
NetLogo NW Extension (1.0.0-RC4) — Cheat Sheet
For download and complete documentation, see:
https://github.com/NetLogo/NW-Extension

G P

nw:set-context turtleset linkset

Specifies the set of turtles and the set of links that the extension will consider to be the current graph. All the turtles from
turtleset and all the links from linkset that connect two turtles from turtleset will be included.

nw:get-context

Reports the content of the current graph context as a list containing two agentsets: the agentset of turtles that are part of the
context and the agentset of links that are part of the context.

nw:with-context turtleset linkset command-block

Executes the command-block with the context temporarily set to turtleset and linkset. Aer command-block finishes run-
ning, the previous context will be restored.

C P

nw:betweenness-centrality, nw:eigenvector-centrality, nw:page-rank nw:closeness-centrality nw:weighted-closeness-
centrality

ese primitives calculate different centrality measures for a turtle. Example:
ask turtles [set size nw:betweenness-centrality]

D  PF P

nw:distance-to target-turtle
nw:weighted-distance-to target-turtle weight-variable-name

Finds the shortest path to the target turtle and reports the total distance for this path, or false if no path exists in the
current context. e nw:distance-to version of the primitive assumes that each link counts for a distance of one. e
nw:weighted-distance-to version accepts a weight-variable-name parameter, which must be a string naming the link
variable to use as the weight of each link in distance calculations. e weights cannot be negative numbers.
Example:
ask turtle 0 [show nw:distance-to turtle 2]
ask turtle 0 [show nw:weighted-distance-to turtle 2 "weight"]

nw:path-to target-turtle
nw:turtles-on-path-to target-turtle
nw:weighted-path-to target-turtle weight-variable-name
nw:turtles-on-weighted-path-to target-turtle weight-variable-name

Finds the shortest path to the target turtle and reports the actual path between the source and the target turtle. e
nw:path-to and nw:weighted-path-to variants will report the list of links that constitute the path, while the nw:turtles-
on-path-to and nw:turtles-on-weighted-path-to variants will report the list of turtles along the path, including the
source and destination turtles. As with the link distance primitives, the nw:weighted-path-to and nw:turtles-on-
weighted-path-to accept a weight-variable-name parameter, which must be a string naming the link variable to use
as the weight of each link in distance calculations. e weights cannot be negative numbers. If no path exist between the
source and the target turtles, all primitives will report an empty list. Examples:

1

ask turtle 0 [show nw:path-to turtle 2]
ask turtle 0 [show nw:turtles-on-path-to turtle 2]
ask turtle 0 [show nw:weighted-path-to turtle 2 "weight"]
ask turtle 0 [show nw:turtles-on-weighted-path-to turtle 2 "weight"]

nw:turtles-in-radius radius
nw:turtles-in-reverse-radius radius

Returns the set of turtles within the given distance (number of links followed) of the calling turtle in the current context.
Both forms include the calling turtle, whom you can exclude with other if need be. e turtles-in-radius form will
follow both undirected links and directed out links. e turtles-in-reverse-radius form will follow both undirected
links and directed in links. Example:
ask turtle 0 [show sort nw:turtles-in-radius 1]

nw:mean-path-length
nw:mean-weighted-path-length weight-variable-name

Reports the average shortest-path length between all distinct pairs of nodes in the current snapshot. If the nw:mean-
weighted-path-length is used, the distances will be calculated using weight-variable-name. e weights cannot be
negative numbers. Reports false unless paths exist between all pairs. Examples:
show nw:mean-path-length
show nw:mean-weighted-path-length "weight"

C  C F P

nw:bicomponent-clusters

Reports the list of bicomponent clusters in the current network context. e result is reported as a list of agentsets of
turtles. One turtle can be a member of more than one bicomponent at once. Example:
let clusters nw:bicomponent-clusters

nw:weak-component-clusters

Reports the list of “weakly” connected components in the current network context. e result is reported as a list of
agentsets of turtles. One turtle cannot be a member of more than one weakly connected component at once. Exam-
ple:
let clusters nw:weak-component-clusters

nw:maximal-cliques

A clique is a subset of a network in which every node has a direct link to every other node. A maximal clique is a clique
that is not, itself, contained in a bigger clique. e result is reported as a list of agentsets of turtles. One turtle can be a
member of more than one maximal clique at once. e primitive uses the Bron–Kerbosch algorithm and only works with
undirected links. Example:
let cliques nw:maximal-cliques

2

nw:biggest-maximal-cliques

e biggest maximal cliques are, as the name implies, the biggest cliques in the current network. Oen, more than one
clique are tied for the title of biggest clique, so the result if reported as a list of agentsets. Example:
let biggest-clique one-of nw:biggest-maximal-cliques

G P

nw:generate-preferential-attachment turtle-breed link-breed nb-nodes [commands]
nw:generate-random turtle-breed link-breed nb-nodes connection-prb [commands]
nw:generate-small-world turtle-breed link-breed rows cols exp toroidal? [commands]
nw:generate-lattice-2d turtle-breed link-breed rows cols exp toroidal? [commands]
nw:generate-ring turtle-breed link-breed nb-nodes [commands]
nw:generate-star turtle-breed link-breed nb-nodes [commands]
nw:generate-wheel turtle-breed link-breed nb-nodes [commands]
nw:generate-wheel-inward turtle-breed link-breed nb-nodes [commands]
nw:generate-wheel-outward turtle-breed link-breed nb-nodes [commands]

e generators are amongst the only primitives that do not operate on the current network context. Instead, all of them
take a turtle-breed and a link-breed as inputs and generate a new network using the given breeds. Examples:
nw:generate-preferential-attachment turtles links 100 [set color red]
nw:generate-random turtles links 100 0.5 [set color green]
nw:generate-small-world turtles links 10 10 2.0 false [set color blue]
nw:generate-wheel turtles links 100 [set color yellow]

I/E P

nw:save-matrix file-name

Saves the current network to file-name, as a text file, in the form of a simple connection matrix. At the moment, nw:save-
matrix does not support link weights. Every link is represented as a 1.00 in the connection matrix. Example:
nw:save-matrix "matrix.txt"

nw:load-matrix file-name turtle-breed link-breed [commands]

Generates a new network according to the connection matrix saved in file-name, using turtle-breed and link-breed
to create the new turtles and links. Please be aware that the breeds that you use to load the matrix may be different from
those that you used when you saved it. Example:
nw:load-matrix "matrix.txt" turtles links

nw:save-graphml file-name

Saves the current network, as defined by nw:set-context in the GraphML format, including every aribute of the turtles
and links. Example:
nw:save-graphml "example.graphml"

nw:load-graphml file-name [commands]

Loads a GraphML file into NetLogo. Tries to assign the aribute values defined in the GraphML file to NetLogo agent
variables of the same names (this is not case sensitive). e first one it tries to set is breed if it is there, so the turtle or
link will get the right breed and, hence, the right breed variables. Undefined variables or breeds are ignored. An optional
command block can be executed for each newly created turtle.
nw:load-graphml "example.graphml" [set color red]

3

