
 Boris

 NetLogo extension: nlboris

NetLogo thin agent-to-agent communications link

tutorial

outline

This tutorial describes the nlbloris extension for NetLogo which enables Netlogo agents to

send messages to/from each other.

The nlboris extension provides a thin NetLogo communications link – ie: it only allows

NetLogo agents to communicate with each other, not with external agents. A thicker

communications link which allows NetLogo agents to exchange messages with agents

written in Java, Lisp, C# is under development, for updates see www.agent-domain.org.

examples

The following guide is based around 3 examples of NetLogo models. These models are

designed to demonstrate the use of the nlboris extension – it is quite possible to build

these models without using agent-to-agent messaging (particularly the first 2).

example 1 – single target & follower

There are 2 turtles in this example (i) the leader or target (colored green in the model)

and (ii) the follower (blue). The aim of the follower is to reach the target.

The model could easily be built by allowing the follower to detect the target and move

towards it but for the sake of example we use a different approach which works as

follows...

1. the target moves around, occasionally changing direction (its direction of movement

does not consider the position of the follower);

2. at each move the target sends a message to the follower to tell the follower where

the target has moved to;

3. at each step, the follower receives a message (from the target) and moves towards

the location specified in the message.

key aspects of model code

These notes assume that you have access to the full model code – please refer to the

model as you read what follows.

in declarations section

• extensions [nlboris]
this loads the NetLogo extension which handles agent messaging

• globals [portal]
declares a variable to hold the communications hub (Boris calls communications hubs

“portals” but you can name the variable anything you like)

 Boris

 NetLogo extension: nlboris

in setup-globals

• set portal nlboris:make "POP"
make a new communications hub/portal called “POP” and assign it to the portal

variable. All portals have names, these names are not used in the thin link described

here but are required if they are connected to external agents

in setup-followers
• nlboris:register portal "follower"

register the follower with the comms link, the arguments provided are (i) the comms

link (ii) a name for the agent ("follower") which will be the name used for sending &

receiving messages. Note: if turtles are not registered they will not be able to

exchange messages.

in setup-targets

• nlboris:register portal "target"
as above... register the target turtle as a communicable agent called “target”

in move-targets

• nlboris:send-msg portal "follower" (list xcor ycor)
send the agent registered with the name “follower” a message with the target’s xcor

and ycor. Messages are sent as NetLogo Lists.

in move-followers
most of the interesting work is done in the move-followers procedure. This procedure

also contains the type of code fragments that we will often use for agents which

receive messages, it is examined further in the next few sub-sections. move-

followers is specified as follows...

to move-followers
 ask followers
 [if nlboris:is-msg-waiting portal
 [let m nlboris:get-msg portal

 let from item 0 m
 let msg item 1 m
 let tx item 0 msg
 let ty item 1 msg

 facexy tx ty
 fd 1
 ask targets-here [die]
]
]
end

 Boris

 NetLogo extension: nlboris

stage-1 – receiving messages
The code fragment...

if nlboris:is-msg-waiting portal
[let m nlboris:get-msg portal
 ...process message...
]

...is quite typical, it checks to see if there is a message waiting & if so gets that

message...

• nlboris:is-msg-waiting portal
see if there is a message waiting for this turtle

• let m nlboris:get-msg portal
get the message & store it in a (local) variable m

stage-2 – message format
All messages are provided in the form of a List. The first element of the list is the

name of the agent who sent the message, the second element is the main content of

the message (ie: what was sent). This second element is always in the form of a sub-

list.

The code fragment...

let from item 0 m
let msg item 1 m
let tx item 0 msg
let ty item 1 msg

...pulls the received message apart. The first two lines get the name of the sending

agent (item 0 of m) and then the main message content (item 1 of m). The next two

lines (greyed out) extract information from the message content – they are specific

to this example.

example 2 – multiple followers

Similar to the last example – there are 2 breeds (targets & followers). As before there is

one target (colored green in the model) but in this example we use multiple followers

(blue). As in the last example the followers aim to reach the target.

The approach is as follows...

1. the target moves around, occasionally changing direction;

2. at each move the target broadcasts a message to all followers to tell them its

position;

3. each follower receives the message sent by the target and moves towards the

location specified in the message.

key aspects of model code

The code used to specify this model is almost the same as in the last example except

that the target broadcasts its message to all followers instead of just sending it to the

one & only follower. This is specified as...

• nlboris:broadcast portal "FOLLOWERS" (list xcor ycor)

 Boris

 NetLogo extension: nlboris

Note a couple of things about this...

• the use of broadcast is similar to send-msg except that a breed name is used as the

recipient of the message instead of an agent name;

• breed names are in upper-case;

• breed names are in plural.

Followers each have their own name (duplicate names should not be used in nlboris), we

make unique names by adding the who number of Netlogo turtles/breeds to a standard

name. Like this...

• nlboris:register portal (word "follower" who)
so a turtle with a who number of 32 will be registered as “follower32”

example 3 – mine clearance

The scenario is this... the environment contains multiple mines and one bin. Mines can

be made harmless by putting them in the bin (don’t try this at home). When all the

mines are in the bin the model stops running.

There are two types of agent: detectors and cleaners. Detectors have sensors which can

give the direction of a mine but they can only determine a mine’s exact position by

moving up to it. Detectors are not capable of picking up mines so cannot carry them to

the bin.

Cleaners have no sensing capabilities so cannot locate mines on their own but they are

able to pick up mines (one at a time) & carry them to the bin.

Detectors and cleaners work together: detectors find mines then send messages to

cleaners to tell the cleaners where the mines are located. Cleaners get messages from

detectors containing information about the location of mines then go pick up those mines

and carry them to the bin.

Note: this is roughly similar to an example used in a training session I once attended for

building BDI agents in 3APL so the credit for the nature of this example goes to the

authors of the 3APL training materials. Our model is quite different to the kind of

solution you would build in 3APL (we are not using BDI agents) but the example is nice

to use for investigating agent messaging.

running the model

The model allows users to specify the number of mines, detectors & cleaners. The bin is

in the middle of the environment (xcor=0, ycor=0) and all of the agents start there.

Mines are randomly scattered around the environment.

Mines are circular black & white blobs, the bin is a green garbage-can shape, detectors

are blue (standard turtle shape), cleaners are yellow when not carrying a mine and red

when they are carrying.

When the model starts running, detectors (blue) leave the bin area, each heading for a

mine. When a detector reaches a mine it selects a cleaner (at random) and sends it a

message about the mine’s location. The cleaner (yellow) then leaves the bin area to

fetch the mine and the detector moves off towards another mine.

 Boris

 NetLogo extension: nlboris

When the cleaner reaches a mine the cleaner turns red and the mine symbol disappears

from the visual environment, the cleaner then takes the mine to the bin. When a (red)

cleaner holding a mine reaches the bin the cleaner turns yellow & checks if it has a

message waiting from a detector about another mine that needs putting in the bin.

Notice (i) the detectors inevitably finish their work before the cleaners (ii) some cleaners

do more work than others because the detectors randomly choose which cleaners to

inform about mines (so some finish before others).

key aspects of model code

• the bin is implemented as the only member of a turtle breed but it is not active;

• mines are also implemented as members of a breed – this makes a couple of things

easier but they are not active either;

• breed.status variables are used to keep track of the current state and/or objective of

turtles/breeds;

status options for different breeds...

• detectors can be either...

(i) tracking – they have detected a mine and are moving towards it to get its

coordinates (they spend most of their time doing this), or

(ii) looking – they are detecting the direction of a new mine to track;

• cleaners can be...

(i) waiting – idle with nothing to do until a message arrives from a detector

(ii) fetching – moving towards a mine that they have been told about by a detector

(iii) carrying – carrying a mine back to the bin;

• mines can be...

(i) hidden – they have not been detected yet

(ii) found – they have been detected and a detector is now tracking them

(iii) to-clean – a detector has located their exact position & informed a cleaner but

the cleaner has not picked them up yet

(iv) cleaned – a cleaner has them but they are not in the bin yet.

nlboris use

While the strategy/purpose of communication is different, the use of nlboris is similar to

the previous models, ie:

in the setup phase

set up a portal

• set portal nlboris:make "P1"

register each detector

• nlboris:register portal (word "detect" who)

register cleaners, note that cleaners know their names

• set name (word "clean" who)
• nlboris:register portal name

 Boris

 NetLogo extension: nlboris

in move-detectors

Once a detector has reached a mine it knows the mine’s position. It sends this

information to a randomly selected cleaner.

• let cleaner [name] of (one-of cleaners)
• nlboris:send-msg portal cleaner (list ...mine coordinates...)

in move-cleaners

The code here follows that used by followers in the previous example.

