
The	NetLogo	6.0.2	User	Manual

2
26
26
28
28
28
28
28
28
29
29
29
29
30
30
30
30
31
31
32
32
33
33
33
34
34
34
35
35
35
35
36

37
37
37
37
37
37
38
38
38
39
39
39
39
40
40
41
41
42
42
42
43
43
44
44
45

Table	of	Contents

Table	of	Contents
What	is	NetLogo?

Features
Copyright	and	License	Information

How	to	reference
Acknowledgments
NetLogo	license
Commercial	licenses
NetLogo	User	Manual	license
Open	source
Third	party	licenses

Scala
MersenneTwisterFast
Colt
Config
Apache	Commons	Codec	(TM)
Flexmark
JHotDraw
JOGL
Matrix3D
ASM
Log4j
PicoContainer
Parboiled
RSyntaxTextArea
JCodec
Java-Objective-C	Bridge
Webcam-capture
Guava
Gephi
R	Extension
JNA

What's	New?
Version	6.0.2	(August	2017)

Feature	Changes
Bugfixes
Extension	Changes
Documentation	Changes
Model	Changes

Version	6.0.1	(March	2017)
Feature	Changes
Bugfixes
Extension	Changes
Documentation	Changes
Models

Version	6.0	(December	2016)
Feature	Changes
Bugfixes
Language	Changes
Extension	Changes
Operating	System	Support
Documentation	Changes
Internationalization	Changes
Models

Version	5.3.1	(February	2016)
Feature	Changes
Extension	Changes

45
45
45
45
45
45
45
46
46
46
46
47
47
47
47
48
48
49
49
49
49
49
49
50
50
50
50
50
50
51
51
51
51
51
51
51
53
53
53
53
53
54
54
56
56
57
58
58
59
59
60
62
62
62
62

Bugfixes
Version	5.3	(December	2015)

Feature	Changes
Extension	Changes

Version	5.2.1	(September	2015)
Extensions
New	features
Bug	fixes
Model	changes

Version	5.2.0	(April	2015)
Extensions
New	features
Bug	fixes
Model	changes

Version	5.1.0	(July	2014)
Version	5.0.4	(March	2013)
Version	5.0	(February	2012)
Version	4.1.3	(April	2011)
Version	4.1	(December	2009)
Version	4.0	(September	2007)
Version	3.1	(April	2006)
Version	3.0	(September	2005)
Version	2.1	(December	2004)
Version	2.0.2	(August	2004)
Version	2.0	(December	2003)
Version	1.3	(June	2003)
Version	1.2	(March	2003)
Version	1.1	(July	2002)
Version	1.0	(April	2002)

System	Requirements
Application	Requirements

Windows
Mac	OS	X
Linux

3D	Requirements
32-bit	or	64-bit?

Contacting	Us
Web	site
Feedback,	questions,	etc.
Reporting	bugs
Open	source

Sample	Model:	Party
At	a	Party
Challenge
Thinking	with	models
What's	next?

Tutorial	#1:	Models
Sample	Model:	Wolf	Sheep	Predation
Controlling	the	Model:	Buttons
Controlling	speed:	Speed	Slider
Adjusting	Settings:	Sliders	and	Switches
Gathering	Information:	Plots	and	Monitors

Plots
Monitors

Controlling	the	View

66
66
66
66
67
67
68
68
68
71
72
76
77
77
77
79
79
80
80
81
82
83
84
85
86
87
87
88
89
89
89
93
93
93
94
94

95
95
96
97
98

100
100
101
101
101
101
102
103
103
105
105
106
106

Models	Library
Sample	Models
Curricular	Models
Code	Examples
HubNet	Activities

What's	Next?
Tutorial	#2:	Commands

Sample	Model:	Traffic	Basic
Command	Center
Working	with	colors
Agent	Monitors	and	Agent	Commanders
What's	Next?

Tutorial	#3:	Procedures
Agents	and	procedures
Making	the	setup	button
Switching	to	tick-based	view	updates
Making	the	go	button
Experimenting	with	commands
Patches	and	variables
Turtle	variables
Monitors
Switches	and	labels
More	procedures
Plotting
Tick	counter
Some	more	details
What's	next?
Appendix:	Complete	code

Interface	Guide
Menus

Chart:	NetLogo	menus
Tabs
International	Usage

Character	sets
Languages
Support	for	translators

Interface	Tab	Guide
Working	with	interface	elements
Chart:	Interface	Toolbar
The	2D	and	3D	views

Manipulating	the	3D	View
Command	Center

Reporters
Accessing	previous	commands
Clearing
Arranging

Plots
Plot	Pens

Sliders
Agent	Monitors

Info	Tab
Editing
Headings

Input

107
107
107
107
107
107
107
107
107
108
108
108
108
108
108
109
109
109
110
110
111
111
111
111
111
111
112
112
112
112
112
113
113
113
114
115
116
117
117
118
119
120
121
121
121
123
125
126
126
127
128
128
130
134
135
136
136

Paragraphs
Example
Formatted

Italicized	and	bold	text
Example
Formatted

Ordered	lists
Example
Formatted

Unordered	lists
Example
Formatted

Links
Automatic	links
Links	with	text
Local	links

Images
Example
Formatted
Local	images

Block	quotations
Example
Formatted

Code
Example
Formatted

Code	blocks
Example
Formatted

Superscripts	and	subscripts
Example
Formatted

Notes	on	usage
Other	features

Code	Tab	Guide
Included	Files	Menu
Automatic	indentation

Programming	Guide
Agents
Procedures
Variables
Tick	counter

When	to	tick
Fractional	ticks

Colors
Ask
Agentsets

Special	agentsets
Agentsets	and	lists

Breeds
Link	breeds

Buttons
Lists
Math
Random	numbers

Auxiliary	generator
Local	randomness

136
137
137
137
138
138
139
139
139
139
140
140
141
141
141
142
142
142
143
143
144
145
146
146
147
150
152
152
152
152
153
153
153
153
153
154
154
154
156
156
156
156
157
157
157
157
157
157
157
157
158
158

160
160
160
161
162
163
163

Turtle	shapes
Link	shapes
View	updates

Continuous	updates
Tick-based	updates
Choosing	a	mode
Frame	rate

Plotting
Plotting	points
Plot	commands
Other	kinds	of	plots
Histograms
Clearing	and	resetting
Ranges	and	auto	scaling
Using	a	Legend
Temporary	plot	pens
set-current-plot	and	set-current-plot-pen
Conclusion

Strings
Output
File	I/O
Movies
Perspective
Drawing
Topology
Links
Anonymous	procedures

Anonymous	procedure	primitives
Anonymous	procedure	inputs
Anonymous	procedures	and	strings
Concise	syntax
Anonymous	procedures	as	closures
Nonlocal	exits
Anonymous	procedures	and	extensions
Limitations
What	is	Optional?
Code	example

Ask-Concurrent
User	Interaction	Primitives

What	does	"Halt"	mean?
Tie
Multiple	source	files
Syntax

Colors
Notice
Keywords
Identifiers
Scope
Comments
Structure
Commands	and	reporters
Compared	to	other	Logos

Transition	Guide
Changes	for	NetLogo	6.0

Tasks	replaced	by	Anonymous	Procedures
Link	reporters	overhauled	to	be	more	consistent	and	flexible
Removal	of	Applets
Changes	to	the	NetLogo	User	Interface
Nobody	Not	Permitted	as	a	Chooser	Value

163
163
164
164
164
165
165
165
165
165
165
166
167
167
168
168
168
169
169
170
170
170
170
171
171
172
173
173
174
175
175
176
176
177
177
177
177
177

179
179
179
181
181
181
182
182
182
182
182
182
182
183
183
185
185
185
186
186
186
188

Breeds	must	have	singular	and	plural	names
Removal	of	"Movie"	Prims
Improved	Name	Collision	Detection
Removal	of	hubnet-set-client-interface
Improved	&	Updated	Extensions	API
Add	range	primitive

Changes	for	NetLogo	5.2
hsb	primitives
GoGo	extension

Changes	for	NetLogo	5.0
Plotting
Tick	counter
Unicode	characters
Info	tabs
Model	speed
List	performance
Extensions	API

Changes	for	NetLogo	4.1
Combining	set	and	of

Changes	for	NetLogo	4.0
Who	numbering
Turtle	creation:	randomized	vs.	"ordered"
Adding	strings	and	lists
The	-at	primitives
Links
New	"of"	syntax
Serial	ask
Tick	counter
View	update	modes
Speed	slider
Numbers
Agentset	building
RGB	Colors
Tie

Changes	for	NetLogo	3.1
Agentsets
Wrapping
Random	turtle	coordinates

Shapes	Editor	Guide
Getting	started

Importing	shapes
Creating	and	editing	turtle	shapes

Tools
Previews
Overlapping	shapes
Undo
Colors
Other	buttons
Shape	design
Keeping	a	shape

Creating	and	editing	link	shapes
Changing	link	shape	properties

Using	shapes	in	a	model
BehaviorSpace	Guide

What	is	BehaviorSpace?
Why	BehaviorSpace?

How	It	Works
Managing	experiment	setups
Creating	an	experiment	setup
Special	primitives	for	BehaviorSpace	experiments

188
190
190
192
193
193

194
194
194
194
195
195
197
197
197
197
200
201

203
203
203
203
203
203
204
204
204
205
205
206
207
207
207
207
208
208
208
209
210
211
211
212
212
212
213
214
214
214
214
215
216
216

218
218
218
218
218

Running	an	experiment
Advanced	usage

Running	from	the	command	line
Setting	up	experiments	in	XML
Adjusting	JVM	Parameters
Controlling	API

System	Dynamics	Guide
What	is	the	NetLogo	System	Dynamics	Modeler?

Basic	Concepts
Sample	Models

How	it	Works
Diagram	Tab
Code	Tab
The	System	Dynamics	Modeler	and	NetLogo

Tutorial:	Wolf-Sheep	Predation
Step	1:	Sheep	Reproduction
Step	2:	NetLogo	Integration
Step	3:	Wolf	Predation

HubNet	Guide
Understanding	HubNet

NetLogo
HubNet	Architecture

Computer	HubNet
Activities
Clients
Requirements
Starting	an	activity
HubNet	Control	Center
Troubleshooting
Known	Limitations

Teacher	workshops
HubNet	Authoring	Guide
Running	HubNet	in	headless	mode
Getting	help

HubNet	Authoring	Guide
Coding	HubNet	activities

Setup
Receiving	messages	from	clients
Sending	messages	to	clients
Examples

How	to	make	a	client	interface
View	updates	on	the	clients
Clicking	in	the	view	on	clients
Customizing	the	client's	view
Plot	updates	on	the	clients

Modeling	Commons	Guide
Introduction
Modeling	Commons	Accounts
Uploading	Models

Upload	A	New	Model
Upload	A	Child	Of	An	Existing	Model	("forking")
Updating	An	Existing	Model

Logging
Starting	logging

Mac	OS	X	or	Windows
Linux	and	others

Using	logging

218
220
221
222
223
223
223
223
224
225
225
225
226
226
226
227
227
228
228
230
232
233
233
234
234
234
234
235
235
235
236
236
236
236
237
237
237
238
238
238
239
239
239
240
240
240
240
241
241
241
242
242
242
242
243

244
244
244

245

Where	logs	are	stored
How	to	configure	the	logging	output

Advanced	Configuration
Controlling	Guide
Mathematica	Link

What	is	it?
What	can	I	do	with	it?
Installation
Usage
Known	Issues
Source	code
Credits

NetLogo	3D
Introduction

3D	Worlds
The	observer	and	the	3D	view
Custom	Shapes

Tutorial
Step	1:	Depth
Step	2:	Turtle	Movement
Step	3:	Observer	Movement

Dictionary
Commands	and	Reporters
Built-In	Variables
Primitives
at-points4.1
distancexyz4.1	distancexyz-nowrap4.1
dz4.1
face	facexyz4.1
left4.1
link-pitch4.1.2
load-shapes-3d4.1
max-pzcor4.1	min-pzcor4.1
neighbors4.1	neighbors64.1
orbit-down4.1	orbit-left4.1	orbit-right4.1	orbit-up4.1
__oxcor	__oycor	__ozcor
patch4.1
patch-at4.1
patch-at-heading-pitch-and-distance4.1
pitch
pzcor
random-pzcor4.1
random-zcor4.1
right4.1
roll
roll-left4.1
roll-right4.1
setxyz4.1
tilt-down4.1	tilt-up4.1
towards-pitch4.1	towards-pitch-nowrap4.1
towards-pitch-xyz4.1	towards-pitch-xyz-nowrap4.1
turtles-at4.1	<breeds>-at
world-depth4.1
zcor
zoom4.1

Extensions	Guide
Using	Extensions

Where	extensions	are	located

NetLogo	Arduino	Extension

245
245
246
246
246
246
246
246
246
247
247
247
247
247

248
248
248
248
248
248
249
249
249
249

250
250
250
250
250
250
250
251
251
251
251
251
251
251
251
252
252

253
253
253
253
254
254
254
255
255
256
256

257
257
257
257
257
257
257

Using
Notes
Compatibility
Questions

Primitives
arduino:primitives
arduino:ports
arduino:open
arduino:close
arduino:get
arduino:write-string
arduino:write-int
arduino:write-byte
arduino:is-open?

NetLogo	Array	Extension
Using

When	to	Use
Example	use	of	Array	Extension

Primitives
array:from-list
array:item
array:set
array:length
array:to-list

NetLogo	Bitmap	Extension
Using

What	does	the	Bitmap	Extension	do?
Getting	started

Primitives
bitmap:average-color
bitmap:channel
bitmap:copy-to-drawing
bitmap:copy-to-pcolors
bitmap:difference-rgb
bitmap:export
bitmap:from-view
bitmap:to-grayscale
bitmap:height
bitmap:import
bitmap:scaled
bitmap:width

NetLogo	Cf	Extension
Using
Cases
Primitives

cf:when
cf:select
cf:match
cf:matching
cf:case
cf:case-is
cf:else

NetLogo	Csv	Extension
Common	use	cases	and	examples

Read	a	file	all	at	once
Read	a	file	one	line	at	a	time
Read	a	file	one	line	per	tick
Write	a	file

Primitives

257
257
257
258
258
259
259
259

261
261
261
262
262
262
262
262
262
263
263
263
263
264
264
264
265
265
265
266
266
266
267
267
267
267
267
267
268
268
268
268
268
268
269
269
269
269
269
270
270
270
270
270
271
271
271
271
272
273
274
274
275
275
275

Formatting	NetLogo	data	as	CSV
Parsing	CSV	input	to	NetLogo	data
csv:from-row
csv:from-string
csv:from-file
csv:to-row
csv:to-string
csv:to-file

NetLogo	Gis	Extension
Using

How	to	use
Known	Issues
Credits

Primitives
RasterDataset	Primitives
Dataset	Primitives
VectorDataset	Primitives
Coordinate	System	Primitives
Drawing	Primitives
gis:set-transformation
gis:set-transformation-ds
gis:set-world-envelope
gis:set-world-envelope-ds
gis:world-envelope
gis:envelope-of
gis:envelope-union-of
gis:load-coordinate-system
gis:set-coordinate-system
gis:load-dataset
gis:store-dataset
gis:type-of
gis:patch-dataset
gis:turtle-dataset
gis:link-dataset
gis:shape-type-of
gis:property-names
gis:feature-list-of
gis:vertex-lists-of
gis:centroid-of
gis:location-of
gis:property-value
gis:find-features
gis:find-one-feature
gis:find-less-than
gis:find-greater-than
gis:find-range
gis:property-minimum
gis:property-maximum
gis:apply-coverage
gis:coverage-minimum-threshold
gis:set-coverage-minimum-threshold
gis:coverage-maximum-threshold
gis:set-coverage-maximum-threshold
gis:intersects?
gis:contains?
gis:contained-by?
gis:have-relationship?
gis:relationship-of
gis:intersecting
gis:width-of
gis:height-of
gis:raster-value
gis:set-raster-value

275
275
275
276
276
277
277
277
277
278
278
278
278
279
279
279

280
280
280
280
280
280
280
280
281
281
281
281
281
281
281
282
282
282
282
282
282
282
283
283

284
284
284
284
284
285
285
286
286
286
286
286
286
286
287
287
287
287
288
288
288

gis:minimum-of
gis:maximum-of
gis:sampling-method-of
gis:set-sampling-method
gis:raster-sample
gis:raster-world-envelope
gis:create-raster
gis:resample
gis:convolve
gis:apply-raster
gis:drawing-color
gis:set-drawing-color
gis:draw
gis:fill
gis:paint
gis:import-wms-drawing

NetLogo	Gogo	Extension
Usage
Changes
Primitives

Other	Outputs
Utilities
General
Sensors
Outputs	and	Servos
gogo:primitives
gogo:howmany-gogos
gogo:talk-to-output-ports
gogo:set-output-port-power
gogo:output-port-on
gogo:output-port-off
gogo:output-port-clockwise
gogo:output-port-counterclockwise
gogo:set-servo
gogo:led
gogo:beep
gogo:read-sensors
gogo:read-sensor
gogo:read-all
gogo:send-bytes

NetLogo	Ls	Extension
LevelSpace	fundamentals

Headless	and	Interactive	Models
Keeping	Track	of	Models
A	general	use	case:	Asking	and	Reporting
A	general	use	case:	Inter-Model	Interactions
A	general	Usecase:	Tidying	up	“Dead”	Child	Models

Citing	LevelSpace	in	Research
Primitives

Commanding	and	Reporting
Logic	and	Control
Opening	and	Closing	Models
ls:create-models
ls:create-interactive-models
ls:close
ls:reset
ls:ask
ls:of
ls:report
ls:with
ls:let

289
290
290
290
290
290
290
290

291
291
291
291
291
291
291
291
292
292
292
292
292
292
292
292
292
293
293
293
293
293
293
293
293
293
294
294
294
294
294
294
295
295
295
295
295
295
295
296
296
296
296
296
296
296
296
296
297
297
297
298

299
299

ls:models
ls:show
ls:show-all
ls:hide
ls:hide-all
ls:path-of
ls:name-of
ls:model-exists?

NetLogo	Matrix	Extension
Using

When	to	Use
How	to	Use
Example

Primitives
Matrix	creation	and	conversion	to/from	lists
Advanced	features
Matrix	data	retrieval	and	manipulation
Math	operations
matrix:make-constant
matrix:make-identity
matrix:from-row-list
matrix:from-column-list
matrix:to-row-list
matrix:to-column-list
matrix:copy
matrix:pretty-print-text
matrix:get
matrix:get-row
matrix:get-column
matrix:set
matrix:set-row
matrix:set-column
matrix:swap-rows
matrix:swap-columns
matrix:set-and-report
matrix:dimensions
matrix:submatrix
matrix:map
matrix:times-scalar
matrix:times
matrix:*
matrix:times-element-wise
matrix:plus-scalar
matrix:plus
matrix:+
matrix:minus
matrix:-
matrix:inverse
matrix:transpose
matrix:real-eigenvalues
matrix:imaginary-eigenvalues
matrix:eigenvectors
matrix:det
matrix:rank
matrix:trace
matrix:solve
matrix:forecast-linear-growth
matrix:forecast-compound-growth
matrix:forecast-continuous-growth
matrix:regress

NetLogo	Nw	Extension
Usage

299
301
301
301
301
301
301
301
301
301
301
302
302
303
303
304
304
304
304
305
305
305
306
306
306
307
307
307
307
307
308
308
308
308
309
309
309
309
310
310
310
310
311
311
311
311
312
313
314
315

316
316
316
316
316
316
316
317
317
317
317
318

Special	agentsets	vs	normal	agentsets
A	note	regarding	floating	point	calculations
Performance
Primitives

Generators
Path	and	Distance
Clusterer/Community	Detection
Context	Management
Import	and	Export
Centrality	Measures
Clustering	Measures
nw:set-context
nw:get-context
nw:with-context
nw:turtles-in-radius
nw:turtles-in-reverse-radius
nw:distance-to
nw:weighted-distance-to
nw:path-to
nw:turtles-on-path-to
nw:weighted-path-to
nw:turtles-on-weighted-path-to
nw:mean-path-length
nw:mean-weighted-path-length
nw:betweenness-centrality
nw:eigenvector-centrality
nw:page-rank
nw:closeness-centrality
nw:weighted-closeness-centrality
nw:clustering-coefficient
nw:modularity
nw:bicomponent-clusters
nw:weak-component-clusters
nw:louvain-communities
nw:maximal-cliques
nw:biggest-maximal-cliques
nw:generate-preferential-attachment
nw:generate-random
nw:generate-watts-strogatz
nw:generate-small-world
nw:generate-lattice-2d
nw:generate-ring
nw:generate-star
nw:generate-wheel
nw:save-matrix
nw:load-matrix
nw:save-graphml
nw:load-graphml
nw:load
nw:save

NetLogo	Palette	Extension
Using	the	Palette	Extension
Getting	Started

What	colors	should	I	use	?
Should	I	use	a	continuous	color	gradient	or	just	a	discrete	color	set	?
Example	Models
Further	Reading

Primitives
palette:scale-gradient
palette:scale-scheme
palette:scheme-colors
palette:scale-gradient

318
319
319
319
319
319
319
319
320
320
320
320
320

322
322
322
324
324
324
325
325
325
326
326
326
326
326
327
327
327
327
328
328
328
328
329
329
329
329
329
329
329
330
330
330
331
331
331
331
331
332
332
333
333

335
335
335
335
335

References
NetLogo	Profiler	Extension

Using	the	Profiler	Extension
How	to	use
Example

Primitives
profiler:calls
profiler:exclusive-time
profiler:inclusive-time
profiler:start
profiler:stop
profiler:reset
profiler:report

NetLogo	R	Extension
Using

Some	Tips
Installing

Installing	R
Configuring	the	R	extension
Determining	r.home	and	jri.home.paths

Primitives
r:clear
r:clearLocal
r:eval
r:__evaldirect
r:gc
r:get
r:interactiveShell
r:put
r:putagent
r:putagentdf
r:putdataframe
r:putlist
r:putnamedlist
r:setPlotDevice
r:stop

Troubleshooting
Loading	R	packages	fails
After	changing	the	working	directory	in	R	(e.g.	with	setwd())	NetLogo	doesn’t	find	the	extension
Specific	error	code	list

Citation
Copyright	and	License

NetLogo	Rnd	Extension
Usage
A	note	about	performance
Primitives

AgentSet	Primitives
List	Primitives
rnd:weighted-one-of
rnd:weighted-n-of
rnd:weighted-n-of-with-repeats
rnd:weighted-one-of-list
rnd:weighted-n-of-list
rnd:weighted-n-of-list-with-repeats

NetLogo	Sound	Extension
Using

How	to	Use
MIDI	support

Primitives

335
336
336
336
336
336
337
339
339
339
339
339
339
339
340
340
340
340
340
340
340
340
340
340
340
341
341
341
341

342
342
342
342
342
342
342
342
343
343
343
344
344
344
344
345
345
345
346
346
346
347
347
347
348
348

349
349
349
349
349

sound:drums
sound:instruments
sound:play-drum
sound:play-note
sound:play-note-later

Drum	Names
Instrument	Names

NetLogo	Table	Extension
Using

When	to	Use
Example
Manipulating	Tables
Key	Restrictions

Primitives
table:clear
table:counts
table:group-agents
table:group-items
table:from-list
table:get
table:get-or-default
table:has-key?
table:keys
table:length
table:make
table:put
table:remove
table:to-list
table:values

NetLogo	Vid	Extension
Concepts

Video	Source
Source	Lifecycle
Video	Recorder

Primitives
vid:camera-names
vid:camera-open
vid:camera-select
vid:movie-select
vid:movie-open
vid:movie-open-remote
vid:close
vid:start
vid:stop
vid:status
vid:capture-image
vid:set-time
vid:show-player
vid:hide-player
vid:record-view
vid:record-interface
vid:record-source
vid:recorder-status
vid:start-recorder
vid:save-recording

NetLogo	View2.5d	Extension
How	to	Use

Incorporating	Into	Models
Feedback

Primitives

349
349
350
350
350
350
351
351
351
351
351
351
351
351
352
352
352
352
352
352
352

353
353
353
353
353
353
354
354
354
354
354
354
354
355
355
355
355
355
356
356
356
356
357
357
357
357
358
358
358
358
358
358
358
359
359
359
360
360
360
361
361

view2.5d:patch-view
view2.5d:decorate-patch-view
view2.5d:undecorate-patch-view
view2.5d:turtle-view
view2.5d:update-all-patch-views
view2.5d:update-patch-view
view2.5d:update-turtle-view
view2.5d:get-z-scale
view2.5d:set-z-scale
view2.5d:set-turtle-stem-thickness
view2.5d:get-observer-angles
view2.5d:set-observer-angles
view2.5d:get-observer-xy-focus
view2.5d:set-observer-xy-focus
view2.5d:get-observer-distance
view2.5d:set-observer-distance
view2.5d:remove-patch-view
view2.5d:remove-turtle-view
view2.5d:remove-all-patch-views
view2.5d:remove-all-turtle-views
view2.5d:count-windows

FAQ	(Frequently	Asked	Questions)
Questions

General
Downloading
Running
Usage
Programming
BehaviorSpace
NetLogo	3D
Extensions

General
Why	is	it	called	NetLogo?
How	do	I	cite	NetLogo	or	HubNet	in	a	publication?
How	do	I	cite	a	model	from	the	Models	Library	in	a	publication?
Where	and	when	was	NetLogo	created?
What	programming	language	was	NetLogo	written	in?
What's	the	relationship	between	StarLogo	and	NetLogo?
Under	what	license	is	NetLogo	released?	Is	the	source	code	available?
Do	you	offer	any	workshops	or	other	training	opportunities	for	NetLogo?
Are	there	any	NetLogo	textbooks?
Is	NetLogo	available	in	other	languages	besides	English?
Is	NetLogo	compiled	or	interpreted?
Has	anyone	built	a	model	of	<x>?
Are	NetLogo	models	runs	scientifically	reproducible?
Will	NetLogo	and	NetLogo	3D	remain	separate?
Can	I	run	NetLogo	on	my	phone	or	tablet?

Downloading
Can	I	have	multiple	versions	of	NetLogo	installed	at	the	same	time?
I'm	on	a	UNIX	system	and	I	can't	untar	the	download.	Why?
How	do	I	install	NetLogo	unattended

Running
Can	I	run	NetLogo	from	a	CD,	a	network	drive,	or	a	USB	drive?
Why	is	NetLogo	so	much	slower	when	I	unplug	my	Windows	laptop?
Why	does	NetLogo	bundle	Java?
How	come	NetLogo	won't	start	up	on	my	Linux	machine?
When	I	try	to	install	NetLogo	on	Windows,	I	see	"Windows	protected	your	PC"
When	I	try	to	start	NetLogo	on	Windows	I	get	an	error	"The	JVM	could	not	be	started".	Help!
NetLogo	won't	start	on	Mac	OS	Sierra	(or	later)
NetLogo	won't	start	on	Windows	or	crashes	suddenly	on	Mac	OS	Sierra
Can	I	run	NetLogo	from	the	command	line,	without	the	GUI?
Does	NetLogo	take	advantage	of	multiple	processors?

361
361
362
362
362

363
364
364
364
364

362

364
364
365
365
365
365
366
366
366
366

367
367
367
367
367
368
368
368

366

368
368
369
369
369
369
369
369

370
370
370
370
370
370
370
370
370
370
370
370
370
371
371
371
371
371
371
371
371
371
371
371

Can	I	distribute	NetLogo	model	runs	across	a	cluster	or	grid	of	computers?
Is	there	any	way	to	recover	lost	work	if	NetLogo	crashes	or	freezes?

Usage
When	I	move	the	speed	slider	all	the	way	to	the	right,	why	does	my	model	seem	to	stop?
Can	I	use	the	mouse	to	"paint"	in	the	view?
How	big	can	my	model	be?	How	many	turtles,	patches,	procedures,	buttons,	and	so	on	can	my	model	contain?
Can	I	use	GIS	data	in	NetLogo?
My	model	runs	slowly.	How	can	I	speed	it	up?
Can	I	have	more	than	one	model	open	at	a	time?
Can	I	change	the	choices	in	a	chooser	on	the	fly?
Can	I	divide	the	code	for	my	model	up	into	several	files?

Programming
How	does	the	NetLogo	language	differ	from	other	Logos?
How	come	my	model	from	an	earlier	NetLogo	doesn't	work	right?
How	do	I	take	the	negative	of	a	number?
My	turtle	moved	forward	1,	but	it's	still	on	the	same	patch.	Why?
How	do	I	keep	my	turtles	on	patch	centers?
patch-ahead	1	is	reporting	the	same	patch	my	turtle	is	already	standing	on.	Why?
How	do	I	give	my	turtles	"vision"?
Can	agents	sense	what's	in	the	drawing	layer?
I'm	getting	numbers	like	0.10000000004	and	0.799999999999	instead	of	0.1	and	0.8.	Why?
The	documentation	says	that	random-float	1	might	return	0	but	will	never	return	1.	What	if	I	want	1	to	be	included?
How	can	I	keep	two	turtles	from	occupying	the	same	patch?
How	can	I	find	out	if	a	turtle	is	dead?
Does	NetLogo	have	arrays?
Does	NetLogo	have	hash	tables	or	associative	arrays?
How	can	I	use	different	patch	"neighborhoods"	(circular,	Von	Neumann,	Moore,	etc.)?
How	can	I	convert	an	agentset	to	a	list	of	agents,	or	vice	versa?
How	do	I	stop	foreach?
I'm	trying	to	make	a	list.	Why	do	I	keep	getting	the	error	"Expected	a	constant"?

BehaviorSpace
Why	are	the	rows	in	my	BehaviorSpace	table	results	out	of	order?
How	do	I	measure	runs	every	n	ticks?
I'm	varying	a	global	variable	I	declared	in	the	Code	tab,	but	it	doesn't	work.	Why?

NetLogo	3D
Does	NetLogo	work	with	my	stereoscopic	device?

Extensions
I'm	writing	an	extension.	Why	does	the	compiler	say	it	can't	find	org.nlogo.api?

NetLogo	Dictionary
Categories

Turtle-related
Patch-related
Link-related
Agentset
Color
Control	flow	and	logic
Anonymous	Procedures
World
Perspective
HubNet
Input/output
File
List
String
Mathematical
Plotting
BehaviorSpace
System

Built-In	Variables
Turtles
Patches
Links

371
371
371
371
371
371
372
372
372
372
372
372
373
373
373
374
374
374
374
374
375
375
375
375
375
375
375
375
376
376
376
376
377
377
377
377
377
377
377
377
378
378
378
378
378
378
378
379
379
379

379
380
380
381
381
381
381
381
381
382

Other
Keywords
Constants

Mathematical	Constants
Boolean	Constants
Color	Constants

A
abs1.0
acos1.3
all?4.0
and1.0
any?2.0
approximate-hsb4.0
approximate-rgb4.0
Arithmetic	Operators	+1.0	*1.0	-1.0	/1.0	^1.0	<1.0	>1.0	=1.0	!=1.0	<=1.0	>=1.0
asin1.3
ask1.0
ask-concurrent4.0
at-points1.0
atan1.0
autoplot?1.0
auto-plot-off1.0	auto-plot-on1.0

B
back1.0	bk1.0
base-colors4.0
beep2.1
behaviorspace-experiment-name5.2
behaviorspace-run-number4.1.1
both-ends4.0
breed
breed
but-first1.0	butfirst1.0	bf1.0	but-last1.0	butlast1.0	bl1.0

C
can-move?3.1
carefully2.1
ceiling1.0
clear-all1.0	ca1.0
clear-all-plots1.0
clear-drawing3.0	cd3.0
clear-globals5.2
clear-links4.0
clear-output1.0
clear-patches1.0	cp1.0
clear-plot
clear-ticks5.0
clear-turtles1.0	ct1.0
color
cos1.0
count1.0
create-ordered-turtles4.0	cro4.0
create-<breed>-to	create-<breeds>-to	create-<breed>-from	create-<breeds>-from	create-<breed>-with	create-
<breeds>-with	create-link-to4.0	create-links-to4.0	create-link-from4.0	create-links-from4.0	create-link-with4.0
create-links-with4.0
create-turtles1.0	crt1.0
create-temporary-plot-pen1.1

D
date-and-time3.0
die1.0
diffuse1.0
diffuse41.0
directed-link-breed
display1.0

382
382
383
383
383
383
383
383
383
384
384
384
384
384
385
385
385
385
385
386
386
386
386
386
386
386
387
387
387
387
388
388
388
388
388
388
389
389
389
389
389
390
390
390
390
390
390
390
391
391
391
391
391
391
391
392
392
392
392
392
392
392
392

distance1.0
distancexy1.0
downhill1.0	downhill41.0
dx1.0	dy1.0

E
empty?1.0
end
end14.0
end24.0
error5.0
error-message2.1
every1.0
exp1.0
export-view3.0	export-interface2.0	export-output1.0	export-plot1.0	export-all-plots1.2.1	export-world1.0
extensions
extract-hsb1.0
extract-rgb1.0

F
face3.0
facexy3.0
file-at-end?2.0
file-close2.0
file-close-all2.0
file-delete2.0
file-exists?2.0
file-flush4.0
file-open2.0
file-print2.0
file-read2.0
file-read-characters2.0
file-read-line2.0
file-show2.0
file-type2.0
file-write2.0
filter1.3
first1.0
floor1.0
follow3.0
follow-me3.0
foreach1.3
forward1.0	fd1.0
fput1.0

G
globals

H
hatch1.0
heading
hidden?
hide-link4.0
hide-turtle1.0	ht1.0
histogram1.0
home1.0
hsb1.0
hubnet-broadcast1.1
hubnet-broadcast-clear-output4.1
hubnet-broadcast-message4.1
hubnet-clear-override4.1	hubnet-clear-overrides4.1
hubnet-clients-list5.0
hubnet-enter-message?1.2.1
hubnet-exit-message?1.2.1
hubnet-fetch-message1.1
hubnet-kick-client5.0
hubnet-kick-all-clients5.0

392
393
393
393
393
393
393
393
393
394
394
394
394
394
394
394
395
395
395
395
395
396
396
396
396
396
397
397
397

397
398
398
398
398
398
398
398
399
399
399
399
400
400
400
400
400
401
401
401
401
401
401
402
402
402
402
402
402
402
403
403

hubnet-message1.1
hubnet-message-source1.1
hubnet-message-tag1.1
hubnet-message-waiting?1.1
hubnet-reset1.1
hubnet-reset-perspective4.1
hubnet-send1.1
hubnet-send-clear-output4.1
hubnet-send-follow4.1
hubnet-send-message4.1
hubnet-send-override4.1
hubnet-send-watch4.1

I
if1.0
ifelse1.0
ifelse-value2.0
import-drawing3.0
import-pcolors3.0
import-pcolors-rgb4.0
import-world1.0
in-cone3.0
in-<breed>-neighbor?	in-link-neighbor?4.0
in-<breed>-neighbors	in-link-neighbors4.0
in-<breed>-from	in-link-from4.0
__includes4.0
in-radius1.0
insert-item6.0.2
inspect1.1
int1.0
is-agent?1.2.1	is-agentset?1.2.1	is-anonymous-command?6.0	is-anonymous-reporter?6.0	is-boolean?1.2.1	is-
directed-link?4.0	is-link?4.0	is-link-set?4.0	is-list?1.0	is-number?1.2.1	is-patch?1.2.1	is-patch-set?4.0	is-string?1.0
is-turtle?1.2.1	is-turtle-set?4.0	is-undirected-link?4.0
item1.0

J
jump1.0

L
label
label-color
last1.0
layout-circle4.0
layout-radial4.0
layout-spring4.0
layout-tutte4.0
left1.0	lt1.0
length1.0
let2.1
link4.0
link-heading4.0
link-length4.0
link-set4.0
link-shapes4.0
links4.0
links-own
list1.0
ln1.0
log1.0
loop1.0
lput1.0

M
map1.3
max1.0
max-n-of4.0
max-one-of1.0

403
403
403
404
404
404
404
404
405
405
405
405
405
405
406
406
406
406
407
407
407
407
407
408
408
408
408
408
408
409
409
409
409
409
409
409
410
410
410
410
410
411
411
411
411
411
411
412
412
412
412
412
413
413
413
413
413
413
413
413
414
414
414

max-pxcor3.1	max-pycor3.1
mean1.0
median1.0
member?1.0
min1.0
min-n-of4.0
min-one-of1.0
min-pxcor3.1	min-pycor3.1
mod1.0
modes2.0
mouse-down?1.0
mouse-inside?3.0
mouse-xcor1.0	mouse-ycor1.0
move-to4.0
my-<breeds>	my-links4.0
my-in-<breeds>	my-in-links4.0
my-out-<breeds>	my-out-links4.0
myself1.0

N
n-of3.1
n-values2.0
neighbors1.1	neighbors41.1
<breed>-neighbors	link-neighbors4.0
<breed>-neighbor?	link-neighbor?4.0
netlogo-version3.0
netlogo-web?5.2
new-seed3.0
no-display1.0
nobody
no-links4.0
no-patches4.0
not1.0
no-turtles4.0

O
of4.0
one-of1.0
or1.0
other4.0
other-end4.0
out-<breed>-neighbor?	out-link-neighbor?4.0
out-<breed>-neighbors	out-link-neighbors4.0
out-<breed>-to	out-link-to4.0
output-print2.1	output-show2.1	output-type2.1	output-write2.1

P
patch1.0
patch-ahead2.0
patch-at1.0
patch-at-heading-and-distance2.0
patch-here1.0
patch-left-and-ahead2.0	patch-right-and-ahead2.0
patch-set4.0
patch-size4.1
patches1.0
patches-own
pcolor
pen-down1.0	pd1.0	pen-erase3.0	pe3.0	pen-up1.0	pu1.0
pen-mode
pen-size
plabel
plabel-color
plot1.0
plot-name1.0
plot-pen-exists?4.0

414
414
414
414
414
415
415
415
415
415
415
416
416
416
416
417
417
417
418
418
418
418
418
418
419
419
419
419
419
419
419
420
420
420
420
420
421
421
421
421
421
421
422
422
422
422
422
423
423
423
423
423
423
423
423
424
424
424
424
424
425
425
425

plot-pen-down1.0	plot-pen-up1.0
plot-pen-reset1.0
plotxy1.0
plot-x-min1.0	plot-x-max1.0	plot-y-min1.0	plot-y-max1.0
position1.0
precision1.0
print1.0
pxcor	pycor

R
random1.0
random-float2.0
random-exponential1.2.1	random-gamma2.0	random-normal1.2.1	random-poisson1.2.1
random-pxcor3.1	random-pycor3.1
random-seed1.0
random-xcor3.1	random-ycor3.1
range6.0
read-from-string1.1
reduce1.3
remainder1.2.1
remove1.0
remove-duplicates1.0
remove-item2.0
repeat1.0
replace-item1.0
report1.0
reset-perspective3.0	rp3.0
reset-ticks4.0
reset-timer1.0
resize-world4.1
reverse1.0
rgb1.0
ride3.0
ride-me3.0
right1.0	rt1.0
round1.0
run1.3	runresult1.3

S
scale-color1.0
self1.3
;	(semicolon)
sentence1.0	se1.0
set1.0
set-current-directory2.0
set-current-plot1.0
set-current-plot-pen1.0
set-default-shape1.0
set-histogram-num-bars1.0
__set-line-thickness
set-patch-size4.1
set-plot-background-color6.0.2
set-plot-pen-color1.0
set-plot-pen-interval1.0
set-plot-pen-mode1.0
setup-plots5.0
set-plot-x-range1.0	set-plot-y-range1.0
setxy1.0
shade-of?1.0
shape
shapes2.1
show1.0
show-turtle1.0	st1.0
show-link4.0
shuffle2.0

425
425
425
426
426
426
426
427
427
427
427
427
427
427
428
428
428
428
428
428
428
428
429
429
429
429
429
430
430
430
430
430
431
431
431
431
431
432
432
432
432
432
432
433
433
433
433
433
434
434
434
434
434
434
434
435
435
435
435
435
436
436
436

sin1.0
size
sort1.0
sort-by1.3
sort-on5.0
sprout1.0
sqrt1.0
stamp1.0
stamp-erase3.1
standard-deviation1.0
startup
stop1.0
stop-inspecting5.2
stop-inspecting-dead-agents5.2
subject3.0
sublist2.1	substring1.0
subtract-headings2.1
sum1.0

T
tan1.0
thickness
tick4.0
tick-advance4.0
ticks4.0
tie4.0
tie-mode
timer1.0
to
to-report
towards1.0
towardsxy1.0
turtle1.0
turtle-set4.0
turtles1.0
turtles-at1.0
turtles-here1.0
turtles-on2.0
turtles-own
type1.0

U
undirected-link-breed
untie4.0
update-plots5.0
uphill1.0	uphill41.0
user-directory3.1
user-file3.1
user-new-file3.1
user-input1.1
user-message1.1
user-one-of3.1
user-yes-or-no?2.0

V
variance1.0

W
wait1.0
watch3.0
watch-me3.0
while1.0
who
with1.0
<breed>-with	link-with4.0
with-max2.1
with-min2.1

436
436
437
437
437
437
437
437
438
438
438
438
438

with-local-randomness4.0
without-interruption1.1
word1.0
world-width3.1	world-height3.1
wrap-color1.0
write2.0

X
xcor
xor1.0

Y
ycor

->
->6.0

What	is	NetLogo?

NetLogo	is	a	programmable	modeling	environment	for	simulating	natural	and	social
phenomena.	It	was	authored	by	Uri	Wilensky	in	1999	and	has	been	in	continuous
development	ever	since	at	the	Center	for	Connected	Learning	and	Computer-Based
Modeling.

NetLogo	is	particularly	well	suited	for	modeling	complex	systems	developing	over	time.
Modelers	can	give	instructions	to	hundreds	or	thousands	of	"agents"	all	operating
independently.	This	makes	it	possible	to	explore	the	connection	between	the	micro-level
behavior	of	individuals	and	the	macro-level	patterns	that	emerge	from	their	interaction.

NetLogo	lets	students	open	simulations	and	"play"	with	them,	exploring	their	behavior	under
various	conditions.	It	is	also	an	authoring	environment	which	enables	students,	teachers	and
curriculum	developers	to	create	their	own	models.	NetLogo	is	simple	enough	for	students	and
teachers,	yet	advanced	enough	to	serve	as	a	powerful	tool	for	researchers	in	many	fields.

NetLogo	has	extensive	documentation	and	tutorials.	It	also	comes	with	the	Models	Library,	a
large	collection	of	pre-written	simulations	that	can	be	used	and	modified.	These	simulations
address	content	areas	in	the	natural	and	social	sciences	including	biology	and	medicine,
physics	and	chemistry,	mathematics	and	computer	science,	and	economics	and	social
psychology.	Several	model-based	inquiry	curricula	using	NetLogo	are	available	and	more	are
under	development.

NetLogo	is	the	next	generation	of	the	series	of	multi-agent	modeling	languages	including
StarLogo	and	StarLogoT.	NetLogo	runs	on	the	Java	virtual	machine,	so	it	works	on	all	major
platforms	(Mac,	Windows,	Linux,	et	al).	It	is	run	as	a	desktop	application.	Command	line
operation	is	also	supported.

Features

System:
Free,	open	source
Cross-platform:	runs	on	Mac,	Windows,	Linux,	et	al
International	character	set	support

Programming:
Fully	programmable

https://github.com/NetLogo/NetLogo

Approachable	syntax
Language	is	Logo	dialect	extended	to	support	agents
Mobile	agents	(turtles)	move	over	a	grid	of	stationary	agents	(patches)
Link	agents	connect	turtles	to	make	networks,	graphs,	and	aggregates
Large	vocabulary	of	built-in	language	primitives
Double	precision	floating	point	math
First-class	function	values	(aka	anonymous	procedures,	closures,	lambda)
Runs	are	reproducible	cross-platform

Environment:
Command	center	for	on-the-fly	interaction
Interface	builder	w/	buttons,	sliders,	switches,	choosers,	monitors,	text	boxes,
notes,	output	area
Info	tab	for	annotating	your	model	with	formatted	text	and	images
HubNet:	participatory	simulations	using	networked	devices
Agent	monitors	for	inspecting	and	controlling	agents
Export	and	import	functions	(export	data,	save	and	restore	state	of	model,	make	a
movie)
BehaviorSpace,	an	open	source	tool	used	to	collect	data	from	multiple	parallel
runs	of	a	model
System	Dynamics	Modeler
NetLogo	3D	for	modeling	3D	worlds
Headless	mode	allows	doing	batch	runs	from	the	command	line

Display	and	visualization:
Line,	bar,	and	scatter	plots
Speed	slider	lets	you	fast	forward	your	model	or	see	it	in	slow	motion
View	your	model	in	either	2D	or	3D
Scalable	and	rotatable	vector	shapes
Turtle	and	patch	labels

APIs:
controlling	API	allows	embedding	NetLogo	in	a	script	or	application
extensions	API	allows	adding	new	commands	and	reporters	to	the	NetLogo
language;	open	source	example	extensions	are	included

Copyright	and	License	Information

How	to	reference

If	you	use	or	refer	to	NetLogo	in	a	publication,	we	ask	that	you	cite	it.	The	correct	citation	is:
Wilensky,	U.	(1999).	NetLogo.	http://ccl.northwestern.edu/netlogo/.	Center	for	Connected
Learning	and	Computer-Based	Modeling,	Northwestern	University,	Evanston,	IL.

For	HubNet,	cite:	Wilensky,	U.	&	Stroup,	W.,	1999.	HubNet.
http://ccl.northwestern.edu/netlogo/hubnet.html.	Center	for	Connected	Learning	and
Computer-Based	Modeling,	Northwestern	University.	Evanston,	IL.

For	models	in	the	Models	Library,	the	correct	citation	is	included	in	the	"Credits	and
References"	section	of	each	model's	Info	tab.

Acknowledgments

The	CCL	gratefully	acknowledges	two	decades	of	support	for	our	NetLogo	work.	The	original
support	came	from	the	National	Science	Foundation	--	grant	numbers	REC-9814682	and
REC-0126227.	Further	support	has	come	from	REC-0003285,	REC-0115699,	DRL-0196044,
CCF-ITR-0326542,	DRL-REC/ROLE-0440113,	SBE-0624318,	EEC-0648316,	IIS-0713619,
DRL-RED-9552950,	DRL-REC-9632612,	and	DRL-DRK12-1020101,	IIS-1441552,	CNS-
1441016,	CNS-1441041,	CNS-1138461,	IIS-1438813,	IIS-1147621,	DRL-REC-1343873,	IIS-
1438813,	IIS-1441552,	CNS-1441041,	IIS-1546120,	DRL-1546122,	DRL-1614745	and	DRL-
1640201.	Additional	support	came	from	the	Spencer	Foundation,	Texas	Instruments,	the
Brady	Fund,	the	Murphy	fund,	and	the	Northwestern	Institute	on	Complex	Systems.

NetLogo	license

Copyright	1999-2016	by	Uri	Wilensky.

This	program	is	free	software;	you	can	redistribute	it	and/or	modify	it	under	the	terms	of	the
GNU	General	Public	License	as	published	by	the	Free	Software	Foundation;	either	version	2
of	the	License,	or	(at	your	option)	any	later	version.

This	program	is	distributed	in	the	hope	that	it	will	be	useful,	but	WITHOUT	ANY	WARRANTY;
without	even	the	implied	warranty	of	MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR
PURPOSE.	See	the	GNU	General	Public	License	for	more	details.

You	should	have	received	a	copy	of	the	GNU	General	Public	License	along	with	this	program;
if	not,	write	to	the	Free	Software	Foundation,	Inc.,	51	Franklin	Street,	Fifth	Floor,	Boston,	MA
02110-1301,	USA.

Commercial	licenses

Commercial	licenses	are	also	available.	To	inquire	about	commercial	licenses,	please	contact
Uri	Wilensky	at	uri@northwestern.edu.

NetLogo	User	Manual	license

Copyright	1999-2016	by	Uri	Wilensky.

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/hubnet.html
mailto:uri@northwestern.edu

	
The	NetLogo	User	Manual	by	Uri	Wilensky	is	licensed	under	a	Creative	Commons	Attribution-
ShareAlike	3.0	Unported	License.

Open	source

The	NetLogo	source	code	is	hosted	at	https://github.com/NetLogo/NetLogo.	Contributions
from	interested	users	are	welcome.

Third	party	licenses

Scala

Much	of	NetLogo	is	written	in	the	Scala	language	and	uses	the	Scala	standard	libraries.	The
license	for	Scala	is	as	follows:

Copyright (c) 2002 - EPFL

Copyright (c) 2011 - Lightbend, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
Neither the name of the EPFL nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MersenneTwisterFast

For	random	number	generation,	NetLogo	uses	the	MersenneTwisterFast	class	by	Sean	Luke.
The	copyright	for	that	code	is	as	follows:

Copyright (c) 2003 by Sean Luke.
Portions copyright (c) 1993 by Michael Lecuyer.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

http://creativecommons.org/licenses/by-sa/3.0/
http://ccl.northwestern.edu/netlogo/
http://creativecommons.org/licenses/by-sa/3.0/
https://github.com/NetLogo/NetLogo

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
Neither the name of the copyright owners, their employers, nor the names
of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Colt

Parts	of	NetLogo	(specifically,	the	random-gamma	primitive)	are	based	on	code	from	the	Colt
library	(http://acs.lbl.gov/~hoschek/colt/).	The	copyright	for	that	code	is	as	follows:

Copyright 1999 CERN - European Organization for Nuclear Research. Permission
to use, copy, modify, distribute and sell this software and its documentation
for any purpose is hereby granted without fee, provided that the above
copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation. CERN makes no
representations about the suitability of this software for any purpose. It is
provided "as is" without expressed or implied warranty.

Config

NetLogo	uses	the	Typesafe	"Config"	library.	Copyright	(C)	2011-2012	Typesafe	Inc.
http://typesafe.com	The	Config	library	is	licensed	under	the	Apache	2.0	License.	You	may
obtain	a	copy	of	the	license	at	http://www.apache.org/licenses/LICENSE-2.0.

Apache	Commons	Codec	(TM)

The	NetLogo	compiler	uses	a	digest	method	from	the	Apache	Commons	Codec	(TM)	library.
Apache	Commons	Codec	(TM)	is	copyright	and	trademark	2002-2014	the	Apache	Software
Foundation.	It	is	licensed	under	the	Apache	2.0	License.	You	may	obtain	a	copy	of	the	license
at	http://www.apache.org/licenses/LICENSE-2.0.

Flexmark

NetLogo	uses	the	Flexmark	library	(and	extensions)	for	the	info	tab.	The	copyright	and	license
are	as	follows:

Copyright (c) 2015-2016, Atlassian Pty Ltd All rights reserved. Copyright (c)
2016, Vladimir Schneider, All rights reserved. Redistribution and use in

http://acs.lbl.gov/~hoschek/colt/
http://typesafe.com
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

source and binary forms, with or without modification, are permitted provided
that the following conditions are met: * Redistributions of source code must
retain the above copyright notice, this list of conditions and the following
disclaimer. * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

JHotDraw

For	the	system	dynamics	modeler,	NetLogo	uses	the	JHotDraw	library,	which	is	Copyright	(c)
1996,	1997	by	IFA	Informatik	and	Erich	Gamma.	The	library	is	covered	by	the	GNU	LGPL
(Lesser	General	Public	License).	The	text	of	that	license	is	included	in	the	"docs"	folder	which
accompanies	the	NetLogo	download,	and	is	also	available	from
http://www.gnu.org/copyleft/lesser.html	.

JOGL

For	3D	graphics	rendering,	NetLogo	uses	JOGL,	a	Java	API	for	OpenGL,	and	Gluegen,	an
automatic	code	generation	tool.	For	more	information	about	JOGL	and	Gluegen,	see
jogamp.org/.	Both	libraries	are	distributed	under	the	BSD	license:

Copyright 2010 JogAmp Community. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL JogAmp Community OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are
those of the authors and should not be interpreted as representing official
policies, either expressed or implied, of JogAmp Community.

You can address the JogAmp Community via: Web http://jogamp.org/
Forum/Mailinglist http://forum.jogamp.org Chatrooms IRC irc.freenode.net
#jogamp Jabber conference.jabber.org room: jogamp (deprecated!) Repository
http://jogamp.org/git/ Email mediastream _at_ jogamp _dot_ org

http://www.gnu.org/copyleft/lesser.html
http://jogamp.org/

Matrix3D

For	3D	matrix	operations,	NetLogo	uses	the	Matrix3D	class.	It	is	distributed	under	the
following	license:

Copyright (c) 1994-1996 Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
modify and redistribute this software in source and binary code form, provided
that i) this copyright notice and license appear on all copies of the
software; and ii) Licensee does not utilize the software in a manner which is
disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS
OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE
FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

This software is not designed or intended for use in on-line control of
aircraft, air traffic, aircraft navigation or aircraft communications; or in
the design, construction, operation or maintenance of any nuclear facility.
Licensee represents and warrants that it will not use or redistribute the
Software for such purposes.

ASM

For	Java	bytecode	generation,	NetLogo	uses	the	ASM	library.	It	is	distributed	under	the
following	license:

Copyright (c) 2000-2011 INRIA, France Telecom. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holders nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Log4j

For	logging,	NetLogo	uses	the	Log4j	library.	The	copyright	and	license	for	the	library	are	as
follows:

Copyright 2007 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License.

PicoContainer

For	dependency	injection,	NetLogo	uses	the	PicoContainer	library.	The	copyright	and	license
for	the	library	are	as	follows:

Copyright (c) 2004-2011, PicoContainer Organization All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
Neither the name of the PicoContainer Organization nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Parboiled

For	reading	models,	NetLogo	uses	the	Parboiled	library.	The	copyright	and	license	for
Parboiled	are	as	follows:

This software is licensed under the Apache 2 license, quoted below. Copyright

http://www.apache.org/licenses/LICENSE-2.0

© 2009-2013 Mathias Doenitz http://parboiled2.org Copyright © 2013 Alexander
Myltsev Licensed under the Apache License, Version 2.0 (the "License"); you
may not use this file except in compliance with the License. You may obtain a
copy of the License at [http://www.apache.org/licenses/LICENSE-2.0] Unless
required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

RSyntaxTextArea

The	NetLogo	editor	uses	the	RSyntaxTextArea	library.	The	copyright	and	license	are	as
follows:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met: *
Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. * Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided
with the distribution. * Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission. THIS SOFTWARE IS PROVIDED
BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL ©RIGHT HOLDER& BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

JCodec

The	NetLogo	vid	extension	makes	use	of	the	JCodec	library.	The	copyright	and	license	for
JCodec	are	as	follows:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided
with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Java-Objective-C	Bridge

http://parboiled2.org

NetLogo	on	Mac	OS	X	makes	use	of	the	Java-Objective-C	Bridge	library.	This	library	was
created	by	Steve	Hannah	and	is	distributed	under	the	Apache	2.0	license,	available	at
https://www.apache.org/licenses/LICENSE-2.0.

Webcam-capture

The	NetLogo	vid	extension	makes	use	of	the	Webcam-capture	library.	The	copyright	and
license	for	Webcam-capture	are	as	follows:

The MIT License (MIT) Copyright (c) 2012 - 2015 Bartosz Firyn and Contributors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall be included in all copies or
substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Guava

The	NetLogo	ls	extension	makes	use	of	the	Guava	library.	Guava	is	released	under	the
Apache	License	2.0	(http://www.apache.org/licenses/LICENSE-2.0)

Gephi

The	nw	extension	makes	use	of	the	Gephi	library.	Gephi	is	licensed	under	the	following	terms:

Gephi Dual License Header and License Notice

The Gephi Consortium elects to use only the GNU General Public License version
3 (GPL) for any software where a choice of GPL license versions are made
available with the language indicating that GPLv3 or any later version may be
used, or where a choice of which version of the GPL is applied is unspecified.

For more information on the license please see: the Gephi License FAQs.

License headers are available on http://www.opensource.org/licenses/CDDL-1.0
and http://www.gnu.org/licenses/gpl.html.

R	Extension

The	NetLogo	R	Extension	is	licensed	under	the	following	terms:

The R extension is Copyright (C) 2009-2016 Jan C. Thiele and Copyright (C)
2016 Uri Wilensky / The Center for Connected Learning. NetLogo-R-Extension is
free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version. This

https://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details. You
should have received a copy of the GNU General Public License along with
NetLogo-R-Extension (located in GPL.txt). If not, see
http://www.gnu.org/licenses.

JNA

The	NetLogo	R	Extension	makes	use	of	the	JNA	library.	The	JNA	library	is	licensed	under	the
following	terms:

This copy of JNA is licensed under the Apache (Software) License, version 2.0
("the License"). See the License for details about distribution rights, and
the specific rights regarding derivate works. You may obtain a copy of the
License at: http://www.apache.org/licenses/

http://www.gnu.org/licenses/

What's	New?
NetLogo	6.0.2	User	Manual			

The	following	is	a	condensed	history.	Detailed	release	notes	are	on	GitHub.

For	help	running	models	made	in	old	versions,	see	the	Transition	Guide.

Version	6.0.2	(August	2017)

Feature	Changes

The	autosuggest	functionality	introduced	in	NetLogo	6	will	now	display	extension
primitive	names.
A	new	insert-item	primitive	was	added	to	the	language.	It	works	similarly	to	replace-
item,	but	without	removing	the	item	at	the	specified	index.
A	new	set-plot-background-color	primitive	was	added	to	the	language.	It	can	be	used
in	plotting	code	to	set	the	background	color	of	the	plot.
Behaviorsearch's	user	interface	has	been	updated.	It	now	uses	the	JavaFX	UI	toolkit	for
a	more	modern	look	and	feel.

Bugfixes

The	6.0.1	autoconverter	would	error	when	converting	tasks	with	exactly	one	argument
(from	5.3.1	and	earlier	models	only).	The	conversion	would	be	correct,	but	it	was
confusing.	This	has	now	been	remedied	and	the	autoconverter	will	correctly	convert
models	from	5.3.1	and	earlier	without	erroring	on	single-argument	tasks.
Fix	a	bug	where	extensions	weren't	located	properly	when	in	a	path	relative	to	the
model.
Help	browser	now	opens	in	64-bit	Windows.
Fix	a	speed	regression	for	the	import-world	primitive	introduced	in	6.0.
If	an	unexpected	reporter	block	is	passed	to	with	when	used	with	other,	the	error	will
now	reflect	that	the	block	is	unsuitable	for	with	instead	of	other.
When	sort-by	receives	an	unsuitable	reporter	block	from	the	user	it	now	shows	a	useful
error	instead	of	a	cryptic	stack	trace.
String	representations	of	anonymous	procedures	now	show	the	arguments	of	those
anonymous	procedures
When	working	in	an	nls	file,	switching	to	a	different	tab	will	compile	the	nls	file.
Display	error	label	on	nls	file	when	the	code	it	contains	causes	an	error.
Some	users	were	unable	to	open	NetLogo	6	and	6.0.1	in	Mac	OS	Sierra.	We've
changed	our	signing	process	in	6.0.2	to	attempt	to	fix	this	problem.	We	are	continuing	to
track	this	issue	to	determine	whether	our	fix	was	effective.	More	information	(including	a
partial	workaround	for	the	problem)	is	availablehere.

Extension	Changes

Fixed	a	bug	in	gis:patch-dataset	introduced	in	NetLogo	6.
The	table	extension	has	new	table:group-agents	and	table:group-items	primitives
which	can	be	used	to	build	a	table	of	grouped	agents	and	items	by	supplying	an
anonymous	reporter.

Documentation	Changes

https://github.com/NetLogo/NetLogo/wiki/Release-notes
https://github.com/NetLogo/NetLogo/wiki/Known-Issues#netlogo-wont-start-on-mac-os-sierra

Clarify	when	various	parts	of	the	anonymous	procedure	syntax	are	optional.
Fix	a	few	small	documentation	bugs	around	foreach.
Clarify	relationship	between	speed	and	update	modality	in	the	"View	Updates"	section	of
the	programming	guide.

Model	Changes

New	Sample	Models:

Chaos	in	a	Box
Fairy	Circles
SmoothLife

New	Curricular	Models:

Lattice	Land	Curriculum
Lattice	Land	-	Triangles	Explore
Lattice	Land	-	Triangles	Dissection

Revised	Sample	Models:

Anisogamy:	New	color	scheme.	Adds	BehaviorSpace	experiments.
Ethnocentrism:	Now	cross-listed	as	an	Evolutionary	model.
Fireworks:	Rename	fireworks	to	max-fireworks	and	enforce	a	minimum	of	1.
GenJam	-	Duple:	Minor	info	tab	updates.
Wolf	Sheep	Predation:	Revised	to	better	clarify	the	grass?	construct	and	code.

Revised	Curricular	Models:

Connected	Chemistry:
Connected	Chemistry	1:	Fix	NetLogo	Web	incompatibility.
Connected	Chemistry	3:	Update	minimum	number	of	particles	to	2.
Connected	Chemistry	8:	Minor	code	updates.	Small	change	to	default	values.

Revised	HubNet	Activities:

Gridlock	HubNet:	Minor	code	updates.

Revised	Code	Examples:

Info	Tab	Example:	Corrected	formatting	of	un/ordered	lists	example.
LS	Extension	–	Model	Visualizer	and	Plotter	Example:	Updated	code	dependencies	for
WSP.
LS	Extension	–	Model	Interactions	Example:	Updated	code	dependencies	for	WSP.

Version	6.0.1	(March	2017)

Feature	Changes

Brackets	are	required	around	anonymous	procedure	reporters	only	when	there	are	two
or	more	arguments.	For	instance	[[x] -> x] 	can	now	be	written	[x -> x] .	Note	this
change	makes	it	possible	to	create	models	in	NetLogo	6.0.1	that	will	not	run	in	NetLogo
6.0.	If	you	plan	to	use	your	model	in	NetLogo	6.0,	be	sure	to	include	brackets	around
anonymous	procedure	arguments.	For	a	short	period	after	the	release,	models	which
use	unbracketed	lambda	arguments	may	not	work	on	netlogoweb.org.

Bugfixes

The	NetLogo	code	editor	navigates	and	indents	models	much	more	quickly	and
efficiently	than	in	NetLogo	6.0.
The	NetLogo	5-to-6	autoconverter	now	ignores	commented-out	code.
The	behavior	of	layout-radial	in	NetLogo	6	did	not	match	the	5.3.1	behavior.	This	has
been	corrected	and	layout-radial	should	be	identical	between	NetLogo	6.0.1	and
NetLogo	5.3.1
NetLogo	6	raised	a	NullPointerException	when	numbers	became	too	large	for	NetLogo
to	handle.	This	is	now	properly	displayed	to	the	user	as	a	number	out	of	bounds	error.
Improved	performance	of	models	which	use	let	and	anonymous	procedures	together.
Reloading	a	model	now	clears	global	variables.
Clearer	warning	dialogs	when	opening	an	older	version	of	a	NetLogo	2D	file	in	NetLogo
3D.
Using	foreach	improperly	in	the	Command	Center	will	display	the	same	error	as	it	would
if	used	improperly	in	the	code	tab.
Extremely	long	anonymous	procedures	no	longer	cause	an	exception	when	compiled.
in-radius	is	no	longer	pathologically	slow	on	agentsets	created	using	with.

Extension	Changes

A	new	primitive,	table:values	has	been	added	to	the	table	extension.
The	R	extension	has	been	updated	to	take	full	advantage	of	the	JavaGD	R	library	using
r:setPlotDevice.
Users	can	now	supply	a	path	to	the	R	extension	by	configuring	the	value	of	r.lib.paths	in
the	user.properties	file.
Fixed	a	LevelSpace	bug	preventing	interactive	models	from	using	nls	files.
Fixed	a	LevelSpace	bug	causing	NetLogo	to	lock	up	when	trying	to	load	a	nonexistent
file	as	an	interactive	model.

Documentation	Changes

The	system	dynamics	tutorial	now	instructs	the	user	to	set	the	dt	to	a	value	which	gives
stable	behavior
The	documentation	for	follow,	ride,	and	watch	has	been	clarified	to	indicate	that	calling
one	undoes	highlights	and	perspective	changes	caused	by	the	other
The	documentation	for	=	and	!=	indicates	that	they	work	with	extension	objects.
Several	examples	have	been	added	to	sort	clarifying	the	behavior	of	sort	on	lists
featuring	different	types	of	objects.
A	new	section	on	User	Interface	primitives	has	been	added	to	the	programming	guide
which	discusses	the	behavior	of	the	"Halt"	button	in	the	various	user	interaction	dialogs.
Incorrect	example	code	for	foreach	and	reduce	has	been	corrected.

Models

All	models	have	been	updated	to	reflect	the	new	optional	nature	of	brackets	for	zero/one

argument	anonymous	procedures.	This	resulted	in	changes	to	108	models.

All	models	have	been	updated	to	reflect	the	availability	of	the	new	range	primitive.	This
resulted	in	changes	to	12	models.

New	Sample	Model

GenJam	-	Duple

New	Curricular	Model

Lattice	Land	curriculum:
Lattice	Land	Explore

Revised	Sample	Models

PD	2	Person	Iterated:	info	tab	updates	and	extensive	fixes	for	the	code.
Party:	fixed	bug	where	a	monitor	covered	a	plot.
Signaling	Game:	info	tab	updates.

Revised	Curricular	Models

GenEvo	curriculum:
GenEvo	1	Genetic	Switch:	info	tab	updates	and	new	graduated	method	of
displaying	lacZ	concentration.
GenEvo	2	Genetic	Drift:	info	tab	updates	and	interface	tweaks.	New	model
preview.
GenEvo	3	Genetic	Drift	and	Natural	Selection:	info	tab	updates	and	interface
tweaks.
GenEvo	4	Competition:	info	tab	updates.
Genetic	Switch	-	Synthetic	Biology	has	been	renamed	and	is	now	Synthetic
Biology	-	Genetic	Switch.	It	also	received	info	tab	updates	and	a	few	interface
changes.

Version	6.0	(December	2016)

Feature	Changes

The	NetLogo	code	editor	now	offers	autocompletion	support.	Simply	press	the	Control
key	and	the	spacebar	at	the	same	time	while	typing	a	word	and	you	will	see	a	list	of
similar	NetLogo	primitives	as	suggestions.
The	NetLogo	code	editor	offers	the	option	to	"fold"	procedures	to	make	navigating	large
models	simpler.
NetLogo	supports	multi-level	agent-based	modeling	with	the	LevelSpace	extension
Line	numbering	can	be	enabled	in	the	NetLogo	code	editor	by	choosing	"Show	Line
Numbers"	from	the	"Preferences"	dialog.	This	dialog	can	be	opened	by	selecting
"NetLogo"	>	"Preferences"	in	Mac,	or	"Tools"	>	"Preferences"	on	Linux	or	Windows.
The	view	resizing	arrows	have	been	removed	and	the	tick	counter	has	been	relocated
under	the	speed	slider.
When	editing	NetLogo	code,	users	can	right-click	a	variable	name	or	primitive	and
choose	"Show	Usage"	to	see	all	usages	of	that	name	in	the	file.

When	editing	NetLogo	code,	users	can	right-click	a	variable	name	and	choose	"Jump	to
Declaration"	to	see	where	in	the	file	that	variable	is	declared.
The	NetLogo	interface	editor	now	supports	"Undo"	for	widget	addition,	deletion,	and
movement.
NetLogo	can	export	code	to	HTML	with	code-colorization	by	choosing	"Export	Code"	in
the	"Export"	section	of	the	"File"	menu.
The	look	and	feel	of	NetLogo	on	Mac	OS	X	has	changed	significantly.	NetLogo	is	now
using	the	Oracle-supplied	Java	look	and	feel	as	opposed	to	a	third-party	look	and	feel
used	in	prior	versions.
Plots	use	a	random	number	generator	independent	of	the	main-model	random	number
generator.
Model	Preview	Commands	can	be	edited	through	the	GUI	by	choosing	"Preview
Commands	Editor"	in	the	"Tools"	menu.	Those	commands	generate	the	preview	image
that	appears	when	you	upload	your	model	to	the	Modeling	Commons.
NetLogo	displays	a	more	helpful	error	message	when	a	program	fails	due	to	an	"out	of
memory"	error.
NetLogo	and	its	bundled	extensions	are	now	compiled	against	Java	8	and	Scala	2.12.
NetLogo	has	upgraded	the	ASM	bytecode	library	to	enable	generation	of	Java	8
bytecode.

Bugfixes

*-link-neighbor?	primitives	now	work	the	same	way	for	breeded	and	unbreeded	links.
Resizing	the	world	in	NetLogo	3D	no	longer	causes	a	black	view.
Fixed	error	caused	by	right-clicking	a	widget	while	dragging.
Improved	error	message	when	a	user-defined	procedure	shadows	a	breed	procedure.
neighbors4	and	neighbors	no	longer	report	agentsets	containing	the	same	patch	more
than	once.

Language	Changes

Support	for	plural-only	breed	names	(e.g.,	breed [mice])	has	been	removed.	Write	breed
[mice mouse]	instead.
Tasks	have	been	replaced	by	anonymous	procedures.	Tasks	made	use	of	?	variables
which	were	confusing	for	novices	and	difficult	to	read	for	experts.	Additionally,	tasks
could	not	refer	to	the	task	variables	of	a	containing	task.	Anonymous	procedures	may
have	named	arguments	which	can	be	accessed	by	inner	anonymous	tasks.	Upon	first
opening	a	NetLogo	5	model	in	NetLogo	6,	tasks	like	task [?1 + ?2] 	will	be
automatically	converted	to	[[?1 ?2] -> ?1 + ?2] .	See	the	the	transition	guide	for
more	information.
Link	reporters	have	been	overhauled	to	be	more	consistent	and	flexible
The	task	primitive	is	no	longer	supported.
Breed	names	that	conflict	with	language	primitives	are	now	disallowed.	For	instance,
breed [strings string]	is	now	disallowed	since	it	makes	is-string?	ambiguous.
The	compiler	errors	on	duplicated	breed	singular	names.
The	compiler	detects	a	greater	number	of	type	errors,	for	instance	not pxcor	now	raises
a	compiler	error	instead	of	erroring	at	runtime.
set-plot-pen-color	now	accepts	RGB	lists	as	arguments.
The	hubnet-set-client-interface	primitive	has	been	removed.
The	various	primitives	starting	with	movie-	have	been	removed,	as	has	the	movie
encoder.	They	have	been	replaced	with	the	new	vid	extension.	The	transition	guide
provides	more	details	and	information.
The	__change-language	primitive	has	been	removed.	You	can	now	change	the	User
Interface	Language	through	the	preferences	dialog,	which	can	be	found	by	choosing

"Preferences..."	in	the	"NetLogo"	menu	(Mac	OS	X)	or	in	the	"Tools"	menu	(all	other
platforms).
The	string	representation	of	anonymous	procedures	displays	the	body	of	the
anonymous	procedure.

Extension	Changes

NetLogo	6.0	comes	with	three	new,	bundled	extensions:	LevelSpace	ls,	the	vid
extension	for	video	manipulation,	and	the	enhanced	visualization	extension	view2.5d.
ls	enables	multi-level	agent-based	modeling	in	NetLogo.
The	Extensions	API	has	been	updated	from	5.0	to	6.0.	This	means	that	all	non-bundled
extensions	will	need	to	be	updated	to	use	the	new	API.	Extensions	written	for	NetLogo
5	will	not	work	in	NetLogo	6.	If	you're	an	extension	author,	see	the	extension	author
transition	guide	for	6.0	for	more	information.	If	you	regularly	use	extensions	you	may
want	to	contact	their	authors	to	inform	them	a	new	version	of	NetLogo	is	on	the	way	and
they	may	want	to	update	their	extensions.
arduino:get	(in	the	arduino	extension)	correctly	reports	values	from	Windows	64-bit
machines.	In	prior	versions	it	would	only	report	some	values	correctly.
Several	new	features	have	been	added	to	the	nw	extension:

Added	community	detection	using	the	Louvain	method
Added	modularity	measurement
Added	Watts-Strogatz	small-world	network	generation
Made	other	network	generation	algorithms	easier	to	layout
Weighted	primitives	now	take	symbolic	variable	names	instead	of	strings.	See	the
transition	guide	for	more	information.

The	qtj	extension	is	no	longer	bundled	with	NetLogo.	Users	are	encouraged	to	make
use	of	the	new	vid	extension.
The	new	vid	extension	is	now	bundled	with	NetLogo,	combining	features	of	the	late	qtj
extension	and	the	movie	primitives.
The	network	extension	is	no	longer	bundled	with	NetLogo.	Users	are	encouraged	to	use
the	nw	extension	(https://ccl.northwestern.edu/netlogo/docs/nw.html),	which	has	been
bundled	with	NetLogo	for	some	time.
The	gogo-serial	extension	is	no	longer	bundled	with	NetLogo.	Users	are	encouraged	to
transition	to	the	newer	gogo	extension,	which	uses	HID	to	communicate	with	the	GoGo
board.

Operating	System	Support

NetLogo	will	now	be	used	to	open	.nlogo	links	in	PowerPoint	and	other	programs	on
Microsoft	Windows.
The	NetLogo	binaries	on	Mac	OS	X	are	installed	as	runnable	by	any	user.
NetLogo	in	Mac	OS	X	will	not	use	"App	Nap"	while	running.	This	keeps	simulations
running	at	full	speed	when	NetLogo	is	in	the	background.
The	NetLogo	controlling	API	has	changed	since	NetLogo	5.	Programs	that	rely	on	the
controlling	API	(such	as	BehaviorSearch)	will	not	work	until	they	have	been	changed	to
match	the	new	API.

Documentation	Changes

New	documentation	for	anonymous	procedures
The	NetLogo	tutorial	screenshots	have	been	updated	to	correspond	to	the	new	Mac	OS
X	Look	and	Feel.
The	NetLogo	dictionary	displays	the	version	in	which	each	primitive	was	introduced	next
to	that	primitive.

https://github.com/NetLogo/NetLogo/wiki/Hexy-Extension-Transition-Guide

A	Spanish	translation	of	the	NetLogo	dictionary	is	available	here

Internationalization	Changes

A	new	Spanish	translation	of	the	NetLogo	dictionary	is	available	as	part	of	the	NetLogo
manual.
Language	preferences	can	be	changed	by	using	the	new	"Preferences"	menu	instead	of
the	__change-language	primitive.
A	Japanese	localization	for	NetLogo	is	now	available	and	included	with	the	standard
download.
The	Chinese	translation	for	NetLogo	has	been	updated.

Models

New	Sample	Models:

Kicked	Rotator
Kicked	Rotators
Mammoths,	a	legacy	StarLogoT	model,	has	been	converted	to	NetLogo.

New	Curricular	Models:

GenEvo	1	Genetic	Switch
GenEvo	2	Genetic	Drift
GenEvo	3	Genetic	Drift	and	Natural	Selection
GenEvo	4	Competition

New	Code	Examples:

Movie	Playing	Example	(vid	extension)
Movie	Recording	Example	(vid	extension)
Video	Camera	Example	(vid	extension)
Network	Extension	General	Demo	(nw	extension)
Model	Interactions	Example	(ls	extension)
Model	Loader	Example	(ls	extension)
Model	Visualizer	and	Plotter	Example	(ls	extension)

Promoted	Models	(improved	and	no	longer	"unverified"):

ProbLab	Genetics
Traffic	2	Lanes

Revised	Sample	Models:

Giant	Component:	added	text	in	the	info	tab.
Team	Assembly:	removed	unused	switch	widget.
Traffic	Basic,	Traffic	Grid,	Traffic	Intersection:	revised	info	tab.
Voting:	stopped	the	model	when	voting	stabilizes.
Wealth	Distribution:	fixed	typos	in	info	tab,	improved	code	formatting.

diccionario.pdf
diccionario.pdf

Revised	HubNet	Activities:

Bug	Hunters	Competition	HubNet,	Critter	Designers	HubNet,	Fish	Spotters	HubNet:
removed	unnecessary	call	to	hubnet-set-client-interface.
Gridlock	HubNet,	Gridlock	Alternate	HubNet:	revised	info	tab.

Revised	Curricular	Models:

DNA	Replication	Fork:	fixed	a	a	monitor	and	runtime	error	when	using	a	time	limit.

Revised	IABM	models:

Agentset	Efficiency:	clarified	description	of	go-2	in	info	tab.
Agentset	Ordering:	fixed	typos	in	into	tab.
Arduino	Example:	improved	model	to	demonstrate	both	directions	of	communication
with	the	Arduino.
Heroes	and	Cowards:	removed	extra	text	in	info	tab.
Preferential	Attachment	Simple:	removed	extra	pen	in	plot	and	extra	"layout"	button.
Random	Network:	made	sure	that	the	number	of	links	is	never	too	big	for	the	number	of
nodes.
Segregation	Simple	Extension	1,	2	and	3:	fixed	number-of-ethnicities	slider	to	avoid
runtime	errors.
Traffic	Basic	Adaptive	Individuals,	Traffic	Basic	Utility,	Traffic	Grid	Goal:	revised	info	tab.
Traffic	Basic	Adaptive:	revised	info	tab,	clarified	comment	in	adaptive-go	procedure.
Voting	Component	Verification:	stopped	the	model	when	voting	stabilizes.
Voting	Sensitivity	Analysis:	improved	code	for	stopping	the	model	when	voting
stabilizes.

Revised	Code	Examples:

GoGoMonitorSerial,	GoGoMonitorSimpleSerial:	removed	the	models,	as	the	gogo-
serial	and	qtj	extensions	are	no	longer	bundled.
Random	Network	Example:	made	sure	that	the	number	of	links	is	never	too	big	for	the
number	of	nodes.
Since	the	QuickTime	extension	(qtj)	has	been	replaced	by	the	vid	extension,	the
following	models	have	been	converted	to	use	the	vid	extension:

Movie	Example,	replaced	by	Movie	Recording	Example
QuickTime	Movie	Example,	replaced	by	Movie	Playing	Example
QuickTime	Camera	Example,	replaced	by	Video	Camera	Example

Demoted	model:

El	Farol	Network	Congestion,	a	previously	"unverified"	model,	has	been	moved	to	the
NetLogo	User	Community	Models

Version	5.3.1	(February	2016)

Feature	Changes

Mathematica	Link	is	now	included	and	has	been	tested	to	work	with	Mathematica	10.

A	link	to	Introduction	to	Agent-Based	Modelling	has	been	added	to	the	"Help"	menu.

Extension	Changes

The	gogo	extension	now	prompts	the	user	for	the	location	of	Java	upon	opening.	This
version	of	Java	is	used	to	launch	the	gogo	hid	daemon.
The	correct	version	of	the	network	extension	is	now	bundled,	which	will	open	properly
Bundles	the	cf	extension,	which	adds	match,	case,	and	select	primitives.

Bugfixes

Corrects	a	bug	where	turtles	wrapping	around	a	torus-shaped	world	with	pen	down
would	sometimes	cause	NetLogo	to	loop	infinitely.
Fixes	a	bug	where	buttons	would	appear	to	remain	pressed	after	a	right	click	on	Mac.
Fixes	a	bug	where	pressing	the	right	mouse	button	while	dragging	would	confuse	the
mouse-down?	primitive.
Fixes	agent	type-checking	of	tasks	(bug	appeared	in	5.2.1).
link-neighbor?	now	returns	true	if	and	only	if	the	neighbor	is	connected	through	an
undirected	link.
Documentation	fixes	for	my-links	and	mean	primitives.

Version	5.3	(December	2015)

Feature	Changes

Java	8	is	now	bundled	with	all	versions	of	NetLogo,	this	removes	the	need	for	a
separate	Java	6	installation	on	Mac	OS	X
Separate	32-bit	and	64-bit	versions	are	available	for	both	Windows	and	Linux
The	Windows	installer	is	now	an	msi	instead	of	an	exe
javax.media.opengl	is	no	longer	supported	in	Java	8,	it	has	been	replaced	by
com.jogamp.opengl
Mathematica	Link	is	not	distributed	due	to	Java	version	changes

Extension	Changes

A	minor	update	to	the	nw	extension	makes	nw:weighted-path-to	behave	as
documented.
Most	extensions	should	continue	to	work	without	change	unless	they	rely	on
javax.media.opengl,	which	was	renamed	in	the	updated	version	of	JOGL.

Version	5.2.1	(September	2015)

Extensions

An	included	Arduino	extension	for	use	with	Arduino	boards

New	features

New	file	menu	item	to	export	models	to	NetLogo	Web

Bug	fixes

BehaviorSpace	output	type	preference	is	now	remembered
Output	widget	font	is	now	saved	at	the	proper	size	when	zoomed
Reporter	tasks	are	now	evaluated	in	variable	context
runresult	arguments	now	only	get	evaluated	once
The	last	used	directory	is	now	remembered	on	Linux
Whitespace	is	now	stripped	from	models	when	saving

New	Sample	Models:	Artificial	Anasazi,	Bacteria	Food	Hunt,	Bacteria	Hunt	Speeds,
BeeSmart	-	Hive	Finding,	Bug	Hunt	Disruptions,	Bug	Hunt	Environmental	Changes,	Bug
Hunt	Predators	and	Invasive	Species	-	Two	Regions,	Hydrogen	Diffusion	3D,	Lennard-
Jones,	Paths
There	are	46	new	models	in	the	new	IABM	Textbook	folder:	Turtles	Circling	Simple,
Ants	Simple,	Heroes	and	Cowards,	Life	Simple,	Simple	Economy,	4	DLA	extensions,	4
El	Farol	Extensions,	4	Fire	Extensions,	4	Segregation	Extensions,	5	Wolf	Sheep
Extensions,	Agentset	Efficiency,	Agentset	Ordering,	Communication-T-T	Network
Example,	Preferential	Attachment	Simple,	Random	Network,	Traffic	Basic	Adaptive,
Traffic	Basic	Utility,	Traffic	Grid	Goal,	Spread	of	Disease,	Voting	Component
Verification,	Voting	Sensitivity	Analysis,	Arduino	Example,	Disease	With	Android
Avoidance	HubNet,	Example	HubNet,	Run	Example,	Run	Result	Example,	Simple
Machine	Learning,	Simple	Viral	Marketing,	Ticket	Sales,	Sandpile	Simple
New	models	in	the	new	Alternate	Visualizations	folder:	Ethnocentrism	-	Alternative
Visualization,	Flocking	-	Alternative	Visualizations,	Heat	Diffusion	-	Alternative
visualization,	Virus	-	Alternative	Visualization,	Virus	-	Circle	Visualization
Promoted	models:	Honeycomb,	Minority	Game
Many	other	bugfixes	and	upgrades

Model	changes

Improved	Sample	Models:	Altruism,	Ant	Lines,	Artificial	Anasazi,	Cooperation,
Daisyworld,	Divide	the	Cake,	Heat	Diffusion,	Hydrogen	Diffusion	3D,	Lennard-Jones,	N-
Bodies,	PD	Basic	Evolutionary,	Sandpile,	Robby	the	Robot,	Segregation,	Simple
Kinetics	2	and	3,	Traffic	Grid,	GridLock	HubNet,	GridLock	HubNet	Alternate
Revised	Curricular	Models:	4	Block	Stalagmites,	4	Block	Two	Stalagmites,	Bug	Hunter
Competition	HubNet,	Fish	Spotters	HubNet,	Ising,	Tijuana	Bordertowns,	Urban	Suite	-
Tijuana	Bordertowns,
Revised	Code	Examples:	Lottery	Example,	self	Example,	Network	Import	Example
Revised	IABM	Textbook	models:	Simple	Economy,	Fire	Simple	Extension	2	and	3,
Segregation	Simple,	1,	2	and	3,	Agentset	Efficiency,	Preferential	Attachment	Simple,
Random	Network,	Traffic	Basic	Adaptive,	Run	Example,	Traffic	Grid	Goal,
New	IABM	Textbook	model:	Traffic	Basic	Adaptive	Individuals

Version	5.2.0	(April	2015)

Extensions

An	included	CSV	extension	to	read	and	write	CSV	files
An	included	Palette	extension	to	map	different	values	to	colors
The	previous	gogo	extension	has	been	removed.	It	has	been	replaced	with	two	different
gogo	extensions,	gogo	and	gogo-serial.	The	extensions	work	with	different	hardware.
The	gogo	extension	works	with	the	new	style	HID-interface	gogo	boards	and	the	gogo-
serial	extension	works	with	the	old-style	serial-interface	gogo	boards

Upgrade	to	the	network	extension	including	the	following	changes:
Support	for	many	more	file	types,	including	GEXF,	GDF,	GML,	Pajek	NET,
UCINET	DL,	and	Netdraw	VNA
Fixed	bugs	with	GraphML	support
Improved	documentation

New	features

New	primitive	netlogo-web?	added	to	test	whether	you	are	currently	running	in	NetLogo
Web
New	primitive	behaviorspace-experiment-name	added	allowing	you	to	get	the	name	of
the	currently	running	experiment
New	primitive	stop-inspecting	to	stop	inspecting	agents
New	primitive	stop-inspecting-dead-agents	and	menu	item	to	stop	inspecting	dead
agents
__includes	keyword	now	enables	the	Includes	button	when	given	an	empty
hooks	added	for	extensions	to	write	custom	log	messages

Bug	fixes

user-one-of	will	now	signal	an	error	earlier	when	provided	an	empty	list	of	choices
hsb,	extract-hsb,	and	approximate-hsb	have	been	updated	to	represent	true	hsb
conventions
new	deprecated	primitives	__hsb-old,	__extract-hsb-old,	and	__approximate-hsb-old
work	as	the	old	hsb	primitives	did	when	older	models	using	the	hsb	primitives	are
opened	in	NetLogo	5.2,	they	will	be	auto-converted	to	use	the	deprecated	primitives
extract-hsb	--	fixed	bug	where	it	didn't	work	correctly	on	rgb	lists

Model	changes

New	Sample	Models:	Artificial	Anasazi,	Bacteria	Food	Hunt,	Bacteria	Hunt	Speeds,
BeeSmart	-	Hive	Finding,	Bug	Hunt	Disruptions,	Bug	Hunt	Environmental	Changes,	Bug
Hunt	Predators	and	Invasive	Species	-	Two	Regions,	Hydrogen	Diffusion	3D,	Lennard-
Jones,	Paths
There	are	46	new	models	in	the	new	IABM	Textbook	folder:	Turtles	Circling	Simple,
Ants	Simple,	Heroes	and	Cowards,	Life	Simple,	Simple	Economy,	4	DLA	extensions,	4
El	Farol	Extensions,	4	Fire	Extensions,	4	Segregation	Extensions,	5	Wolf	Sheep
Extensions,	Agentset	Efficiency,	Agentset	Ordering,	Communication-T-T	Network
Example,	Preferential	Attachment	Simple,	Random	Network,	Traffic	Basic	Adaptive,
Traffic	Basic	Utility,	Traffic	Grid	Goal,	Spread	of	Disease,	Voting	Component
Verification,	Voting	Sensitivity	Analysis,	Arduino	Example,	Disease	With	Android
Avoidance	HubNet,	Example	HubNet,	Run	Example,	Run	Result	Example,	Simple
Machine	Learning,	Simple	Viral	Marketing,	Ticket	Sales,	Sandpile	Simple
New	models	in	the	new	Alternate	Visualizations	folder:	Ethnocentrism	-	Alternative
Visualization,	Flocking	-	Alternative	Visualizations,	Heat	Diffusion	-	Alternative
visualization,	Virus	-	Alternative	Visualization,	Virus	-	Circle	Visualization
Promoted	models:	Honeycomb,	Minority	Game
Many	other	bugfixes	and	upgrades

Version	5.1.0	(July	2014)

bundle	new	network	extension
File	menu	includes	recently	opened	files

deprecate	applets
support	retina	display	on	new	MacBooks

Version	5.0.4	(March	2013)

upload	models	to	the	Modeling	Commons

Version	5.0	(February	2012)

features:
open	source	(GPL	license;	source	code	online	at
https://github.com/NetLogo/NetLogo)
new	license	for	Sample	Models	and	Curricular	Models	is	Creative	Commons
Attribution-NonCommercial-ShareAlike
international	characters	(Unicode)	supported	throughout	application
GUI	is	localized	in	Spanish,	Russian,	and	Chinese	(volunteer	translators	wanted)
rich	formatting	and	images	in	Info	tabs	using	Markdown
plotting	code	goes	inside	plots	instead	of	in	code	tab
authorable	model	speed	(target	frame	rate	setting)
buttons	optionally	disable	until	ticks	start
translucent	colors	in	3D	view	and	NetLogo	3D	(for	RGB	colors	only)

language	changes:
"tasks"	store	code	to	be	run	later

aka	first-class	functions,	closures,	lambda
new	primitives:	task,	is-command-task?,	is-reporter-task?
these	primitives	accept	tasks:	run,	runresult,	foreach,	map,	reduce,	filter,	n-
values,	sort-by

improved	overall	list	performance	(many	operations	take	near-constant	time
instead	of	linear	time)
you	must	use	reset-ticks	to	start	the	tick	counter	before	using	tick	or	tick-
advance
new	primitives	setup-plots	and	update-plots
new	primitive	sort-on	lets	you	say	e.g.,	sort-on [size] turtles
new	primitive	error	causes	a	runtime	error
random-normal	rejects	negative	standard	deviations

HubNet:
activities	can	run	headless
new	primitives	hubnet-clients-list,	hubnet-kick-client,	hubnet-kick-all-
clients
hubnet-set-client-interface	no	longer	required

other	fixes	and	changes:
tabs	renamed	to	Interface/Info/Code
Command	Center	allows	reporters,	adds	show	command	automatically
NetLogo	3D	uses	.nlogo3d	suffix,	not	.nlogo
import-world	is	much	faster
startup	no	longer	runs	headless	or	in	background	BehaviorSpace	runs
fixed	3D	rendering	bug	where	small	turtles	were	too	bright
Mac	app	runs	in	64	bit	mode	by	default
upgraded	Windows	installer
GoGo	extension	getting-started	experience	now	smoother	on	all	platforms

models:
new	Sample	Models:	Sandpile,	Lightning,	Osmotic	Pressure,	Robby	the	Robot,
Preferential	Attachment	3D
new	Curricular	Models:	Bug	Hunt	Consumers,	Bug	Hunt	Predators	and	Invasive
Species,	Plant	Speciation,	epiDEM	Basic,	epiDEM	Travel	and	Control,	Connected

https://github.com/NetLogo/NetLogo

Chemistry	Atmosphere
new	Code	Examples:	Info	Tab	Example,	GoGoMonitorSimple

Version	4.1.3	(April	2011)

matrix	extension
behaviorspace-run-number

Version	4.1	(December	2009)

parallel	BehaviorSpace
controlling	API	allows	embedding
automatic	code	indenter
searchable	Models	Library
translucent	colors
mini-views	in	agent	monitors
resize-world,	set-patch-size
bitmap,	QuickTime	extensions
individualized	HubNet	client	views
browser-based	HubNet	client

Version	4.0	(September	2007)

link	agents
tick	counter
view	update	modes	(tick-based,	continuous)
speed	slider	fast	forwards
input	boxes	in	interface	tab
include	multiple	source	files
RGB	colors
slider	bounds	may	be	reporters
HubNet	client	editor
Mathematica-NetLogo	link
array,	table,	profiler,	GIS	extensions
models	run	faster	(partial	compilation	to	JVM	byte	code)
logging

Version	3.1	(April	2006)

topologies	(optional	wrapping	at	world	edges)
randomized	agentset	ordering

Version	3.0	(September	2005)

3D	view	(for	2D	models)
formatted	Info	tabs
System	Dynamics	Modeler
follow,	ride,	watch
drawing	layer
GoGo	extension

Version	2.1	(December	2004)

"headless"	mode	for	command	line	operation
"action	keys"	to	trigger	buttons	by	keypresses
makes	QuickTime	movies	of	models
let,	carefully

Version	2.0.2	(August	2004)

extensions	and	controlling	APIs
sound	extension

Version	2.0	(December	2003)

fast,	flicker-free,	non-grid-based	graphics

Version	1.3	(June	2003)

run,	runresult,	map,	foreach,	filter,	reduce

Version	1.2	(March	2003)

computers	as	HubNet	clients

Version	1.1	(July	2002)

Applets

Version	1.0	(April	2002)

first	full	release	(after	a	series	of	betas)

System	Requirements

NetLogo	runs	on	almost	any	current	computer.

If	you	have	any	trouble	with	NetLogo	not	working,	see	Contacting	Us.

Application	Requirements

Windows

NetLogo	runs	on	Windows	10,	Windows	8,	Windows	7	and	Vista.	NetLogo	5.2.1	was	the	last
version	to	support	Windows	XP	and	Windows	2000.

The	NetLogo	installer	for	Windows	includes	Java	8	for	NetLogo's	private	use	only.	Other
programs	on	your	computer	are	not	affected.

Mac	OS	X

Mac	OS	X	10.8.3	or	newer	is	required.	(NetLogo	5.1	was	the	last	version	to	support	10.5	and
10.4;	NetLogo	5.2.1	was	the	last	version	to	support	10.6	and	10.7)

The	NetLogo	application	contains	a	distribution	of	the	Java	8	runtime	for	NetLogo's	private
use	only.	Other	programs	on	your	computer	will	not	be	affected.

Linux

NetLogo	should	work	on	standard	Debian-based	and	Red	Hat-based	Linux	distributions.	The
NetLogo	tarball	includes	a	copy	of	the	Java	8	runtime.

Start	NetLogo	by	running	the	provided	NetLogo	executable.

3D	Requirements

Occasionally	an	older,	less	powerful	system	is	not	able	to	use	the	3D	view	or	NetLogo	3D.
Try	it	and	see.

Some	systems	can	use	3D	but	can't	switch	to	full-screen	mode.	It	depends	on	the	graphics
card	or	controller.	(For	example,	the	ATI	Radeon	IGP	345	and	Intel	82845	probably	will	not
work.)

32-bit	or	64-bit?

For	most	users	on	Linux	or	Windows,	the	32-bit	version	of	NetLogo	is	the	simplest	way	to	a
working	NetLogo	installation.	Advanced	users	will	want	to	understand	the	advantages	of	64-
bit	NetLogo	as	well	as	how	to	determine	whether	their	machine	meets	the	requirements.

The	primary	advantage	of	the	64-bit	version	is	the	ability	to	add	additional	heap	space	by
changing	the	"-Xmx"	JVM	option.	For	more	information,	see	How	big	can	my	model	be.	You
may	also	find	it	helpful	to	browse	Oracle's	documentation	on	the	performance	characteristics
of	the	64-bit	JVM

http://www.oracle.com/technetwork/java/hotspotfaq-138619.html#64bit_performance

To	run	64-bit	NetLogo,	you	must	be	running	64-bit	Windows.	To	determine	whether	your
version	of	Windows	is	64-bit,	see	Is	my	PC	running	the	32-bit	or	64-bit	version	of	Windows	if
you're	using	Windows	Vista,	or	Windows	7,	or	Which	Windows	operating	system	am	I
running?	if	you	are	running	any	other	version	of	Windows.

For	Linux	users,	the	easiest	way	to	determine	whether	your	operating	system	is	64-bit	is
checking	the	output	of

uname -m

If	the	output	shows	"x86_64"	or	"amd64",	you	should	be	able	to	run	the	64-bit	version.

http://windows.microsoft.com/en-us/windows7/find-out-32-or-64-bit
http://windows.microsoft.com/en-us/windows/which-operating-system

Contacting	Us

Feedback	from	users	is	essential	to	us	in	designing	and	improving	NetLogo.	We'd	like	to	hear
from	you.

Web	site

Our	web	site	at	ccl.northwestern.edu	includes	our	mailing	address	and	phone	number.	It	also
has	information	about	our	staff	and	our	various	research	activities.

Feedback,	questions,	etc.

For	help	using	NetLogo,	try	this	group:	http://groups.yahoo.com/group/netlogo-users/.

If	you	have	feedback,	suggestions,	or	questions,	you	may	write	us	at
feedback@ccl.northwestern.edu.

Reporting	bugs

Our	public	bug	tracker	is	on	GitHub	at	https://github.com/NetLogo/NetLogo/issues.	You	can
look	here	to	report	a	new	bug,	check	if	a	bug	has	already	been	reported,	and	so	on.

When	submitting	a	bug	report,	please	try	to	include	as	much	of	the	following	information	as
possible:

A	complete	description	of	the	problem	and	how	it	occurred.
The	NetLogo	model	or	code	you	are	having	trouble	with.	If	possible,	attach	a	complete
model.	(It's	best	if	you	can	reduce	the	amount	of	code	in	the	model	to	the	minimum
necessary	to	demonstrate	the	bug.)
Your	system	information:	NetLogo	version,	OS	version,	Java	version,	and	so	on.	This
information	is	available	from	NetLogo's	"About	NetLogo"	menu	item,	then	clicking	the
System	tab.
Any	error	messages	that	were	displayed.	Please	copy	and	paste	the	entire	error
message	into	your	email,	or	make	a	screen	capture	if	you	are	unable	to	copy	and	paste.

We	also	accept	bug	reports	by	email	at	bugs@ccl.northwestern.edu.

Open	source

NetLogo	is	free,	open	source	software.	The	source	code	is	hosted	at
https://github.com/NetLogo/NetLogo.	Contributions	from	interested	users	are	welcome.

For	discussion	of	NetLogo	API's	and	the	development	of	NetLogo	itself,	try
http://groups.google.com/group/netlogo-devel.

http://ccl.northwestern.edu/
http://groups.yahoo.com/group/netlogo-users/
mailto:feedback@ccl.northwestern.edu
https://github.com/NetLogo/NetLogo/issues
mailto:bugs@ccl.northwestern.edu
https://github.com/NetLogo/NetLogo
http://groups.google.com/group/netlogo-devel

Sample	Model:	Party

This	activity	gets	you	thinking	about	computer	modeling	and	how	you	can	use	it.	It	also	gives
you	insight	into	NetLogo	itself.	We	encourage	beginning	users	to	start	here.

At	a	Party

Have	you	ever	been	at	a	party	and	noticed	how	people	cluster	in	groups?	You	may	have	also
noticed	that	people	don't	just	stay	in	a	group.	As	they	circulate,	the	groups	change.	If	you
watched	these	changes	over	time,	you	might	notice	patterns.

For	example,	in	social	settings,	people	may	exhibit	different	behavior	than	at	work	or	home.
Individuals	who	are	confident	within	their	work	environment	may	become	shy	and	timid	at	a
social	gathering.	And	others	who	are	reserved	at	work	may	be	the	"party	starter"	with	friends.

These	patterns	can	depend	on	the	type	of	gathering.	In	some	settings,	people	are	trained	to
organize	themselves	into	mixed	groups;	for	example,	party	games	or	school-like	activities.	But
in	a	non-structured	atmosphere,	people	tend	to	group	in	a	more	random	manner.

Is	there	any	type	of	pattern	to	this	kind	of	grouping?

Let's	take	a	closer	look	at	this	question	by	using	the	computer	to	model	human	behavior	at	a
party.	NetLogo's	"Party"	model	looks	specifically	at	the	question	of	grouping	by	gender	at
parties:	why	do	groups	tend	to	form	that	are	mostly	men,	or	mostly	women?

Let's	use	NetLogo	to	explore	this	question.

What	to	do:

1.	 Start	NetLogo.
2.	 Choose	"Models	Library"	from	the	File	menu.

3.	 Open	the	"Social	Science"	folder.
4.	 Click	on	the	model	called	"Party".
5.	 Press	the	"open"	button.
6.	 Press	the	"setup"	button.

In	the	view	of	the	model,	you	will	see	pink	and	blue	groups	with	numbers:

These	lines	represent	mingling	groups	at	a	party.	Men	are	shown	as	blue,	women	pink.	The
numbers	are	the	sizes	of	the	groups.

Do	all	the	groups	have	about	the	same	number	of	people?

Do	all	the	groups	have	about	the	same	number	of	each	sex?

Let's	say	you	are	having	a	party	and	invited	150	people.	You	are	wondering	how	people	will
gather	together.	Suppose	10	groups	form	at	the	party.

How	do	you	think	they	will	group?

Instead	of	asking	150	of	your	closest	friends	to	gather	and	randomly	group,	let's	have	the
computer	simulate	this	situation	for	us.

What	to	do:

1.	 Press	the	"go"	button.	(Pressing	"go"	again	will	stop	the	model	manually.)
2.	 Observe	the	movement	of	people	until	the	model	stops.
3.	 Watch	the	plots	to	see	what's	happening	in	another	way.
4.	 Use	the	speed	slider	if	you	need	to	slow	the	model	down.

Now	how	many	people	are	in	each	group?

Originally,	you	may	have	thought	150	people	splitting	into	10	groups,	would	result	in	about	15
people	in	each	group.	From	the	model,	we	see	that	people	did	not	divide	up	evenly	into	the	10
groups.	Instead,	some	groups	became	very	small,	whereas	other	groups	became	very	large.
Also,	the	party	changed	over	time	from	all	mixed	groups	of	men	and	women	to	all	single-sex
groups.

What	could	explain	this?

There	are	lots	of	possible	answers	to	this	question	about	what	happens	at	real	parties.	The
designer	of	this	simulation	thought	that	groups	at	parties	don't	just	form	randomly.	The	groups
are	determined	by	how	the	individuals	at	the	party	behave.	The	designer	chose	to	focus	on	a
particular	variable,	called	"tolerance":

Tolerance	is	defined	here	as	the	percentage	of	people	of	the	opposite	sex	an	individual	is
"comfortable"	with.	If	the	individual	is	in	a	group	that	has	a	higher	percentage	of	people	of	the
opposite	sex	than	their	tolerance	allows,	then	they	become	"uncomfortable"	and	leave	the
group	to	find	another	group.

For	example,	if	the	tolerance	level	is	set	at	25%,	then	males	are	only	"comfortable"	in	groups
that	are	less	than	25%	female,	and	females	are	only	"comfortable"	in	groups	that	are	less

than	25%	male.

As	individuals	become	"uncomfortable"	and	leave	groups,	they	move	into	new	groups,	which
may	cause	some	people	in	that	group	to	become	"uncomfortable"	in	turn.	This	chain	reaction
continues	until	everyone	at	the	party	is	"comfortable"	in	their	group.

Note	that	in	the	model,	"tolerance"	is	not	fixed.	You,	the	user,	can	use	the	tolerance	"slider"	to
try	different	tolerance	percentages	and	see	what	the	outcome	is	when	you	start	the	model
over	again.

How	to	start	over:

1.	 If	the	"go"	button	is	pressed	(black),	then	the	model	is	still	running.	Press	the
button	again	to	stop	it.

2.	 Adjust	the	"tolerance"	slider	to	a	new	value	by	dragging	its	red	handle.
3.	 Press	the	"setup"	button	to	reset	the	model.
4.	 Press	the	"go"	button	to	start	the	model	running	again.

Challenge

As	the	host	of	the	party,	you	would	like	to	see	both	men	and	women	mingling	within	the
groups.	Adjust	the	tolerance	slider	on	the	side	of	the	view	to	get	all	groups	to	be	mixed	as	an
end	result.

To	make	sure	all	groups	of	10	have	both	sexes,	at	what	level	should	we	set	the
tolerance?

Test	your	predictions	on	the	model.

Can	you	see	any	other	factors	or	variables	that	might	affect	the	male	to	female
ratio	within	each	group?

Make	predictions	and	test	your	ideas	within	this	model.

As	you	are	testing	your	hypotheses,	you	will	notice	that	patterns	are	emerging	from	the	data.
For	example,	if	you	keep	the	number	of	people	at	the	party	constant	but	gradually	increase
the	tolerance	level,	more	mixed	groups	appear.

How	high	does	the	tolerance	value	have	to	be	before	you	get	mixed	groups?

What	percent	tolerance	tends	to	produce	what	percentage	of	mixing?

Thinking	with	models

Using	NetLogo	to	model	a	situation	like	a	party	allows	you	to	experiment	with	a	system	in	a
rapid	and	flexible	way	that	would	be	difficult	to	do	in	the	real	world.	Modeling	also	gives	you
the	opportunity	to	observe	a	situation	or	circumstance	with	less	prejudice,	as	you	can	examine
the	underlying	dynamics	of	a	situation.	You	may	find	that	as	you	model	more	and	more,	many
of	your	preconceived	ideas	about	various	phenomena	will	be	challenged.	For	example,	a
surprising	result	of	the	Party	model	is	that	even	if	tolerance	is	relatively	high,	a	great	deal	of
separation	between	the	sexes	occurs.

This	is	a	classic	example	of	an	"emergent"	phenomenon,	where	a	group	pattern	results	from

the	interaction	of	many	individuals.	This	idea	of	"emergent"	phenomena	can	be	applied	to
almost	any	subject.

What	other	emergent	phenomena	can	you	think	of?

To	see	more	examples	and	gain	a	deeper	understanding	of	this	concept	and	how	NetLogo
helps	learners	explore	it,	you	may	wish	to	explore	NetLogo's	Models	Library.	It	contains
models	that	demonstrate	these	ideas	in	systems	of	all	kinds.

For	a	longer	discussion	of	emergence	and	how	NetLogo	helps	learners	explore	it,	see
"Modeling	Nature's	Emergent	Patterns	with	Multi-agent	Languages"	(Wilensky,	2001).

What's	next?

The	section	of	the	User	Manual	called	Tutorial	#1:	Running	Models	goes	into	more	detail
about	how	to	use	the	other	models	in	the	Models	Library.

If	you	want	to	learn	how	to	explore	the	models	at	a	deeper	level,	Tutorial	#2:	Commands	will
introduce	you	to	the	NetLogo	modeling	language.

Eventually,	you'll	be	ready	for	Tutorial	#3:	Procedures.	There	you	can	learn	how	to	alter	and
extend	existing	models	to	give	them	new	behaviors,	and	you	can	start	to	build	your	own
models.

http://ccl.northwestern.edu/papers/MEE/

Tutorial	#1:	Models

If	you	read	the	Sample	Model:	Party	section,	you	got	a	brief	introduction	to	what	it's	like	to
explore	a	NetLogo	model.	This	section	will	go	into	more	depth	about	the	features	that	are
available	while	you're	exploring	the	models	in	the	Models	Library.

Throughout	all	of	the	tutorials,	we'll	be	asking	you	to	make	predictions	about	what	the	effects
of	making	changes	to	the	models	will	be.	Keep	in	mind	that	the	effects	are	often	surprising.
We	think	these	surprises	are	exciting	and	provide	excellent	opportunities	for	learning.

You	may	want	to	print	out	the	tutorials	to	make	them	easier	to	refer	to	while	you're	using
NetLogo.

Sample	Model:	Wolf	Sheep	Predation

We'll	open	one	of	the	Sample	Models	and	explore	it	in	detail.	Let's	try	a	biology	model:	Wolf
Sheep	Predation,	a	predator-prey	population	model.

Open	the	Models	Library	from	the	File	menu.

Choose	"Wolf	Sheep	Predation"	from	the	Biology	section	and	press	"Open".

The	Interface	tab	will	fill	up	with	lots	of	buttons,	switches,	sliders	and	monitors.	These
interface	elements	allow	you	to	interact	with	the	model.	Buttons	are	blue;	they	set	up,	start,
and	stop	the	model.	Sliders	and	switches	are	green;	they	alter	model	settings.	Monitors	and
plots	are	beige;	they	display	data.

If	you'd	like	to	make	the	window	larger	so	that	everything	is	easier	to	see,	you	can	use	the
Zoom	menu.

When	you	first	open	the	model,	you	will	notice	that	the	"view"	(the	graphical	display	of	the
agents	in	the	model)	is	empty	(all	black).	To	begin	the	model,	you	will	first	need	to	set	it	up.

Press	the	"setup"	button.

What	do	you	see	appear	in	the	view?

Press	the	"go"	button	to	start	the	simulation.

As	the	model	is	running,	what	is	happening	to	the	wolf	and	sheep
populations?

Press	the	"go"	button	to	stop	the	model.

Controlling	the	Model:	Buttons

When	a	button	is	pressed,	the	model	responds	with	an	action.	A	button	can	be	a	"once"
button,	or	a	"forever"	button.	You	can	tell	the	difference	between	these	two	types	of	buttons
by	a	symbol	on	the	face	of	the	button.	Forever	buttons	have	two	arrows	in	the	bottom	right
corners,	like	this:

Once	buttons	don't	have	the	arrows,	like	this:

Once	buttons	do	one	action	and	then	stop.	When	the	action	is	finished,	the	button	pops	back
up.

Forever	buttons	do	an	action	over	and	over	again.	When	you	want	the	action	to	stop,	press
the	button	again.	It	will	finish	the	current	action,	then	pop	back	up.

Most	models,	including	Wolf	Sheep	Predation,	have	a	once	button	called	"setup"	and	a
forever	button	called	"go".	Many	models	also	have	a	once	button	called	"go	once"	or	"step
once"	which	is	like	"go"	except	that	it	advances	the	model	by	one	tick	(time	step)	instead	of
over	and	over.	Using	a	once	button	like	this	lets	you	watch	the	progress	of	the	model	more
closely.

Stopping	a	forever	button	is	the	normal	way	to	pause	or	stop	a	model.	After	pausing	you	can
make	it	resume	by	pressing	the	button	again.	(You	can	also	stop	a	model	with	the	"Halt"	item
on	the	Tools	menu,	but	you	should	only	do	this	if	the	model	is	stuck	for	some	reason.	Using
"Halt"	may	interrupt	the	model	in	the	middle	of	an	action,	and	as	the	result	the	model	could
get	confused.)

If	you	like,	experiment	with	the	"setup"	and	"go"	buttons	in	the	Wolf	Sheep
Predation	model.

Do	you	ever	get	different	results	if	you	run	the	model	several	times	with
the	same	settings?

Controlling	speed:	Speed	Slider

The	speed	slider	allows	you	to	control	the	speed	of	a	model,	that	is,	the	speed	at	which	turtles
move,	patches	change	color,	and	so	on.

When	you	move	the	slider	to	the	left	the	model	slows	down	so	there	are	longer	pauses
between	each	tick	(time	step).	That	makes	it	easier	to	see	what	is	happening.	You	might	even
slow	the	model	down	so	far	as	to	see	exactly	what	a	single	turtle	is	doing.

When	you	move	the	speed	slider	to	the	right	the	model	speeds	up.	NetLogo	will	start	skipping
frames,	that	is,	it	won't	update	the	view	at	the	end	of	every	tick,	only	some	ticks.	Updating
takes	time,	so	fewer	view	updates	means	the	model	progresses	faster.

Note	that	if	you	push	the	speed	slider	well	to	the	right,	the	view	may	update	so	infrequently
that	the	model	appears	to	have	slowed	down.	It	hasn't,	as	you	can	see	by	watching	the	tick
counter	race	ahead.	Only	the	frequency	of	view	updates	has	lessened.

Adjusting	Settings:	Sliders	and	Switches

A	model's	settings	let	you	explore	different	scenarios	or	hypotheses.	Altering	the	settings	and
then	running	the	model	to	see	how	it	reacts	can	give	you	a	deeper	understanding	of	the
phenomena	being	modeled.

Switches	and	sliders	give	you	access	to	a	model's	settings.	Here	are	the	switches	and	sliders
in	Wolf	Sheep	Predation:

Let's	experiment	with	their	effect	on	the	behavior	of	the	model.

Open	Wolf	Sheep	Predation	if	it's	not	open	already.
Press	"setup"	and	"go"	and	let	the	model	run	for	about	100	ticks.	(The	tick
count	is	shown	above	the	view.)
Stop	the	model	by	pressing	the	"go"	button.

What	happened	to	the	sheep	over	time?

Let's	take	a	look	and	see	what	would	happen	to	the	sheep	if	we	change	a	setting.

Turn	the	"grass?"	switch	on.
Press	"setup"	and	"go"	and	let	the	model	run	for	a	similar	amount	of	time	as
before.

What	did	the	switch	do?	Was	the	outcome	the	same	as	your	previous	run?

Turning	the	"grass?"	switch	on	affected	the	outcome	of	the	model.	With	the	switch	off,	the
amount	of	grass	available	always	stayed	the	same.	This	is	not	a	realistic	look	at	the	predator-
prey	relationship;	so	by	setting	and	turning	on	a	grass	regrowth	rate,	we	were	able	to	model
all	three	factors:	sheep,	wolf	and	grass	populations.

Another	type	of	setting	is	called	a	slider.

Besides	switches,	a	model	may	also	have	sliders.	While	a	switch	has	only	two	values,	on	and
off,	a	slider	has	a	whole	range	of	numeric	values.	For	example,	the	"initial-number-sheep"
slider	has	a	minimum	value	of	0	and	a	maximum	value	of	250.	The	model	could	run	with	0
sheep	or	it	could	run	with	250	sheep,	or	anywhere	in	between.	Try	this	out	and	see	what
happens.	As	you	move	the	marker	from	the	minimum	to	the	maximum	value,	the	number	on
the	right	side	of	the	slider	changes;	this	is	the	number	the	slider	is	currently	set	to.

Let's	investigate	Wolf	Sheep	Predation's	sliders.

Change	from	the	Interface	to	the	Info	tab	to	learn	what	each	of	this	models'
sliders	represents.

The	Info	tab	offers	guidance	and	insight	into	the	model.	Within	this	tab	you	will	find	an
explanation	of	the	model,	suggestions	on	things	to	try,	and	other	information.	You	may	want
to	read	the	Info	tab	before	running	a	model,	or	you	might	want	to	just	start	experimenting,
then	look	at	the	Info	tab	later.

What	would	happen	to	the	sheep	population	if	there	were	more	sheep	and
less	wolves	initially?

Turn	the	"grass?"	switch	off.
Set	the	"initial-number-sheep"	slider	to	100.
Set	the	"initial-number-wolves"	slider	to	20.
Press	"setup"	and	then	"go".
Let	the	model	run	for	about	100	ticks.

Try	running	the	model	several	times	with	these	settings.

What	happened	to	the	sheep	population?

Did	this	outcome	surprise	you?	What	other	sliders	or	switches	can	be
adjusted	to	help	out	the	sheep	population?

Set	"initial-number-sheep"	to	80	and	"initial-number-wolves"	to	50.	(This	is
close	to	how	they	were	when	you	first	opened	the	model.)
Set	"sheep-reproduce"	to	10.0%.
Press	"setup"	and	then	"go".
Let	the	model	run	for	about	100	time	ticks.

What	happened	to	the	wolves	in	this	run?

When	you	open	a	model,	all	the	sliders	and	switches	are	on	a	default	setting.	If	you	open	a
new	model	or	exit	the	program,	your	changed	settings	will	not	be	saved,	unless	you	choose	to
save	them.

(Note:	in	addition	to	sliders	and	switches,	some	models	have	choosers	and	input	boxes.	The
Wolf	Sheep	Predation	doesn't	have	any	of	these,	though.)

Gathering	Information:	Plots	and	Monitors

The	view	lets	you	see	what's	going	on	in	a	model.	NetLogo	also	provides	has	other	ways	of
giving	you	information	about	model	run,	such	as	plots	and	monitors.

Plots

The	plot	in	Wolf	Sheep	Predation	contains	three	lines:	sheep,	wolves,	and	grass	/	4.	(The
grass	count	is	divided	by	four	so	it	doesn't	make	the	plot	too	tall.)	The	lines	show	what's
happening	in	the	model	over	time.	The	plot	legend	shows	what	each	line	indicates.	In	this
case,	it's	the	population	counts.

When	a	plot	gets	close	to	becoming	filled	up,	the	horizontal	axis	is	compressed	and	all	of	the
data	from	before	gets	squeezed	into	a	smaller	space.	In	this	way,	more	room	is	made	for	the
plot	to	grow.

If	you	want	to	save	the	data	from	a	plot	to	view	or	analyze	it	in	another	application,	use	the
"Export	Plot"	item	on	the	File	menu.	It	saves	the	plot	data	in	a	format	that	can	by	read	back	by
spreadsheet	and	database	programs	such	as	Excel.	You	can	also	export	a	plot	by	right-
clicking	it	and	choosing	"Export..."	from	the	popup	menu.

Monitors

Monitors	are	another	means	of	displaying	information	from	a	model.	Here	are	the	monitors	in
Wolf	Sheep	Predation:

The	monitors	show	us	the	population	of	sheep	and	wolves,	and	the	amount	of	grass.
(Remember,	the	amount	of	grass	is	divided	by	four	to	keep	the	plot	from	getting	too	tall.)

The	numbers	displayed	in	the	monitors	change	as	the	model	runs,	whereas	the	plots	show
you	data	from	the	whole	course	of	the	model	run.

Controlling	the	View

In	the	Interface	tab,	you'll	see	a	toolbar	of	controls.	Some	of	these	control	aspects	of	the	view.

Let's	experiment	with	the	effect	of	these	controls.

Press	"setup"	and	then	"go"	to	start	the	model	running.
As	the	model	runs,	move	the	speed	slider	to	the	left.

What	happens?

This	slider	is	helpful	if	a	model	is	running	too	fast	for	you	to	see	what's	going	on	in
detail.

Move	the	speed	slider	to	the	middle.
Try	moving	the	speed	slider	to	the	right.
Now	try	checking	and	unchecking	the	"view	updates"	checkbox.

What	happens?

Fast	forwarding	the	model	and	turning	off	view	updates	are	useful	if	you're	impatient	and	want
a	model	to	run	faster.	Fast	forwarding	(moving	the	speed	slider	to	the	right)	drops	view
updates	so	the	model	can	run	fast,	since	updating	the	view	takes	time	that	could	be	used	for
running	the	model	itself.

When	view	updates	are	off	completely,	the	model	continues	to	run	in	the	background,	and
plots	and	monitors	still	update.	But	if	you	want	to	see	what's	happening,	you	need	to	turn	view
updates	back	on	by	rechecking	the	box.	Many	models	run	much	faster	when	view	updates
are	off.	For	others,	it	makes	little	difference.

The	size	of	the	view	is	determined	by	five	separate	settings:	min-pxcor,	max-pxcor,	min-
pycor,	max-pycor,	and	patch	size.	Let's	take	a	look	at	what	happens	when	we	change	the
size	of	the	view	in	the	"Wolf	Sheep	Predation"	model.

There	are	more	model	settings	than	there's	room	for	in	the	toolbar.	The	"Settings..."	button
lets	you	get	to	the	rest	of	the	settings.

Press	the	"Settings..."	button	in	the	toolbar.

A	dialog	will	open	containing	all	the	settings	for	the	view:

What	are	the	current	settings	for	min-pxcor,	max-pxcor,	min-pycor,	max-
pycor,	and	patch	size?

Press	"cancel"	to	make	this	window	go	away	without	changing	the	settings.
Place	your	mouse	pointer	next	to,	but	still	outside	of,	the	view.

You	will	notice	that	the	pointer	turns	into	a	crosshair.

Hold	down	the	mouse	button	and	drag	the	crosshair	over	the	view.

The	view	is	now	selected,	which	you	know	because	it	is	now	surrounded	by	a	gray
border.

Drag	one	of	the	square	black	"handles".	The	handles	are	found	on	the	edges
and	at	the	corners	of	the	view.
Unselect	the	view	by	clicking	anywhere	in	the	white	background	of	the
Interface	tab.
Press	the	"Settings..."	button	again	and	look	at	the	settings.

What	numbers	changed?

What	numbers	didn't	change?

The	NetLogo	world	is	a	two	dimensional	grid	of	"patches".	Patches	are	the	individual	squares
in	the	grid.	In	Wolf	Sheep	Predation,	when	the	"grass?"	switch	is	on	the	individual	patches	are
easily	seen,	because	some	are	green,	others	brown.

Think	of	the	patches	as	being	like	square	tiles	in	a	room	with	a	tile	floor.	By	default,	exactly	in
the	middle	of	the	room	is	a	tile	labeled	(0,0);	meaning	that	if	the	room	was	divided	in	half	one
way	and	then	the	other	way,	these	two	dividing	lines	would	intersect	on	this	tile.	We	now	have
a	coordinate	system	that	will	help	us	locate	objects	within	the	room:

How	many	tiles	away	is	the	(0,0)	tile	from	the	right	side	of	the	room?

How	many	tiles	away	is	the	(0,0)	tile	from	the	left	side	of	the	room?

In	NetLogo,	the	number	of	tiles	from	right	to	left	is	called	world-width.	And	the	number	of	tiles
from	top	to	bottom	is	world-height.	These	numbers	are	defined	by	top,	bottom,	left	and	right
boundaries.

In	these	diagrams,	max-pxcor	is	3	,	min-pxcor	is	-3,	max-pycor	is	2	and	min-pycor	is	-2.

When	you	change	the	patch	size,	the	number	of	patches	(tiles)	doesn't	change,	the	patches
only	get	larger	or	smaller	in	the	view.

Let's	look	at	the	effect	of	changing	the	minimum	and	maximum	coordinates	in	the	world.

Using	the	Settings	dialog	that	is	still	open,	change	max-pxcor	to	30	and	max-
pycor	value	to	10.	Notice	that	min-pxcor	and	min-pycor	change	too.	That's
because	by	default	the	origin	(0,0)	is	in	the	center	of	the	world.

What	happened	to	the	shape	of	the	view?

Press	the	"setup"	button.

Now	you	can	see	the	new	patches	you	have	created.

Edit	the	view	by	pressing	the	"Settings..."	button	again.
Change	the	patch	size	to	20	and	press	"OK".

What	happened	to	the	size	of	the	view?	Did	its	shape	change?

Editing	the	view	also	lets	you	change	other	settings.	Feel	free	to	experiment	with	these.

Once	you	are	done	exploring	the	Wolf	Sheep	Predation	model,	you	may	want	to	take	some
time	just	to	explore	some	of	the	other	models	available	in	the	Models	Library.

Models	Library

The	library	contains	four	sections:	Sample	Models,	Curricular	Models,	Code	Examples,	and
HubNet	Activities.

Sample	Models

The	Sample	Models	section	is	organized	by	subject	area	and	currently	contains	more	than
200	models.	We	are	continuously	working	on	adding	new	models	to	it,	so	come	visit	this
section	at	a	later	date	to	view	the	new	additions	to	the	library.

Some	of	the	folders	in	Sample	Models	have	folders	inside	them	labeled	"(unverified)".	These
models	are	complete	and	functional,	but	are	still	in	the	process	of	being	reviewed	for	content,
accuracy,	and	quality	of	code.

Curricular	Models

These	are	models	designed	to	be	used	in	schools	in	the	context	of	curricula	developed	by	the
CCL	at	Northwestern	University.	Some	of	these	are	models	are	also	listed	under	Sample
Models;	others	are	unique	to	this	section.	See	the	Info	tabs	of	the	models	for	more
information	on	the	curricula	they	go	with.

Code	Examples

These	are	simple	demonstrations	of	particular	features	of	NetLogo.	They'll	be	useful	to	you
later	when	you're	extending	existing	models	or	building	new	ones.	For	example,	if	you	wanted
to	add	a	histogram	to	your	model,	you'd	look	at	"Histogram	Example"	to	find	out	how.

HubNet	Activities

This	section	contains	participatory	simulations	for	use	with	groups.	For	more	information
about	HubNet,	see	the	HubNet	Guide.

What's	Next?

If	you	want	to	learn	how	to	explore	models	at	a	deeper	level,	Tutorial	#2:	Commands	will
introduce	you	to	the	NetLogo	modeling	language.

In	Tutorial	#3:	Procedures	you	can	learn	how	to	alter	and	extend	existing	models	and	build
new	ones.

Tutorial	#2:	Commands

So	far	you've	successfully	navigated	your	way	through	opening	and	running	models,	pressing
buttons,	changing	sliders	and	switches,	and	gathering	information	from	a	model	using	plots
and	monitors.

In	this	section,	the	focus	will	start	to	shift	from	observing	models	to	manipulating	models.	You
will	start	to	see	the	inner	workings	of	the	models	and	be	able	to	change	how	they	look.

Sample	Model:	Traffic	Basic

Open	the	Models	Library	(from	the	File	menu).
Open	Traffic	Basic,	found	in	the	"Social	Science"	section.
Run	the	model	for	a	while	to	get	a	feel	for	it.
Consult	the	Info	tab	for	any	questions	you	may	have.

In	this	model,	you	will	notice	one	red	car	in	a	stream	of	blue	cars.	The	stream	of	cars	are	all
moving	in	the	same	direction.	Every	so	often	they	"pile	up"	and	stop	moving.	This	is	modeling
how	traffic	jams	can	form	without	a	specific	cause	like	an	accident.

You	may	alter	the	settings	and	observe	a	few	runs	to	get	a	fuller	understanding	of	the	model.

As	you	are	using	the	Traffic	Basic	model,	have	you	noticed	any	additions
you	would	like	to	make	to	the	model?

Looking	at	the	Traffic	Basic	model,	you	may	notice	the	environment	is	fairly	simple;	a	black
background	with	a	white	street	and	number	of	blue	cars	and	one	red	car.	Changes	that	could
be	made	to	the	model	include:	changing	the	color	and	shape	of	the	cars,	adding	a	house	or
street	light,	creating	a	stop	light,	or	even	creating	another	lane	of	traffic.	Some	of	these
suggested	changes	are	visual,	to	enhance	the	look	of	the	model,	while	others	are	more
behavioral.	We	will	be	focusing	more	on	the	simpler	or	cosmetic	changes	throughout	most	of
this	tutorial.	(Tutorial	#3	will	go	into	greater	detail	about	behavioral	changes,	which	require
changing	the	Code	tab.)

To	make	these	simple	changes	we	will	be	using	the	Command	Center.

Command	Center

The	Command	Center	is	found	in	the	Interface	tab.	It	allows	you	to	enter	commands	or
directions	to	a	model.	Commands	are	instructions	you	can	give	to	NetLogo's	agents:	turtles,
patches,	links,	and	the	observer.

In	Traffic	Basic:

Press	the	"setup"	button.
Locate	the	Command	Center.

Click	the	mouse	in	the	white	box	at	the	bottom	of	the	Command	Center.
Type	the	text	shown	here:

Press	the	return	key.

What	happened	to	the	View?

You	may	have	noticed	the	background	of	the	View	has	turned	all	yellow	and	the
street	has	disappeared.

Why	didn't	the	cars	turn	yellow	too?

Looking	back	at	the	command	that	was	written,	we	asked	only	the	patches	to
change	their	color.	In	this	model,	the	cars	are	represented	by	a	different	kind	of
agent,	called	"turtles".	Therefore,	the	cars	did	not	receive	these	instructions	and	thus
did	not	change.

What	happened	in	the	Command	Center?

You	may	have	noticed	that	the	command	you	just	typed	is	now	displayed	in	the
Command	Center	as	shown	below:

Type	in	the	bottom	of	the	Command	Center	the	text	shown	below:

Was	the	result	what	you	expected?

The	view	should	have	a	yellow	background	with	a	line	of	brown	cars	in	the	middle:

The	NetLogo	world	is	a	two	dimensional	world	that	is	made	up	of	turtles,	patches,	links,	and
an	observer.	The	patches	are	the	ground	over	which	the	turtles	move.	Links	are	connections
between	turtles.	And	the	observer	is	a	being	that	oversees	everything	that	is	going	on.	(For
more	specifics,	refer	to	the	NetLogo	Programming	Guide.)

In	the	Command	Center	you	can	give	commands	to	any	of	these	types	of	agents.	You	choose
which	type	to	talk	to	by	using	the	popup	menu	located	in	the	bottom	left	corner.	You	can	also
use	the	tab	key	on	your	keyboard	to	cycle	through	the	different	types.

In	the	Command	Center,	click	on	the	"observer>"	in	the	bottom	left	corner:

Choose	"turtles"	from	the	popup	menu.
Type	set color pink	and	press	return.
Press	the	tab	key	until	you	see	"patches>"	in	the	bottom	left	corner.
Type	set pcolor white	and	press	return.

What	does	the	View	look	like	now?

Do	you	notice	any	differences	between	these	two	commands	and	the
observer	commands	from	earlier?

The	observer	oversees	the	world	and	therefore	can	give	a	command	to	the	patches	or	turtles
using	ask.	Like	in	the	first	example	(observer>	ask patches [set pcolor yellow]),	the
observer	has	to	ask	the	patches	to	set	their	pcolor	to	yellow.	But	when	a	command	is	directly
given	to	a	group	of	agents	like	in	the	second	example	(patches>	set pcolor white),	you	only
have	to	give	the	command	itself.

Press	"setup".

What	happened?

Why	did	the	View	revert	back	to	the	old	version,	with	the	black	background	and	white	road?
Upon	pressing	the	"setup"	button,	the	model	will	reconfigure	itself	back	to	the	settings	outlined
in	the	Code	tab.	The	Command	Center	doesn't	permanently	change	the	model.	It	allows	you
to	manipulate	the	NetLogo	world	directly	to	further	answer	those	"What	if"	questions	that	pop

up	as	you	are	investigating	the	models.	(The	Code	tab	is	explained	in	the	next	tutorial,	and	in
the	Programming	Guide.)

Now	that	we	have	familiarized	ourselves	with	the	Command	Center,	let's	look	at	some	more
details	about	how	colors	work	in	NetLogo.

Working	with	colors

You	may	have	noticed	in	the	previous	section	that	we	used	two	different	words	for	changing
color:	color	and	pcolor.

What	is	the	difference	between	color	and	pcolor?

Choose	"turtles"	from	the	popup	menu	in	the	Command	Center	(or	use	the	tab
key).
Type	set color blue	and	press	return.

What	happened	to	the	cars?

Think	about	what	you	did	to	make	the	cars	turn	blue,	and	try	to	make	the	patches
turn	red.

If	you	try	to	ask	the	patches	to	set color red,	an	error	message	occurs:

Type	set pcolor red	instead	and	press	return.

We	call	color	and	pcolor	"variables".	Some	commands	and	variables	are	specific	to	turtles
and	some	are	specific	to	patches.	For	example,	the	color	variable	is	a	turtle	variable,	while
the	pcolor	variable	is	a	patch	variable.

Go	ahead	and	practice	altering	the	colors	of	the	turtles	and	patches	using	the	set	command
and	these	two	variables.

To	be	able	to	make	more	changes	to	the	colors	of	turtles	and	patches,	or	shall	we	say	cars
and	backgrounds,	we	need	to	gain	a	little	insight	into	how	NetLogo	deals	with	colors.

In	NetLogo,	colors	have	a	numeric	value.	In	all	of	the	exercises	we	have	been	using	the	name
of	the	color.	This	is	because	NetLogo	recognizes	16	different	color	names.	This	does	not
mean	that	NetLogo	only	recognizes	16	colors.	There	are	many	shades	in	between	these
colors	that	can	be	used	too.	Here's	a	chart	that	shows	the	whole	NetLogo	color	space:

To	get	an	intermediate	shade,	you	refer	to	it	by	a	number	instead,	or	by	adding	or	subtracting
a	number	from	a	name.	For	example,	when	you	type	set color red,	this	does	the	same	thing
as	if	you	had	typed	set color 15.	And	you	can	get	a	lighter	or	darker	version	of	the	same
color	by	using	a	number	that	is	a	little	larger	or	a	little	smaller,	as	follows.

Choose	"patches"	from	the	popup	menu	in	the	Command	Center	(or	use	the
tab	key).
Type	set pcolor red - 2	(The	spacing	around	the	"-"	is	important.)

By	subtracting	from	red,	you	make	it	darker.

Type	set pcolor red + 2

By	adding	to	red,	you	make	it	lighter.

You	can	use	this	technique	on	any	of	the	colors	listed	in	the	chart.

Agent	Monitors	and	Agent	Commanders

In	the	previous	activity,	we	used	the	set	command	to	change	the	colors	of	all	the	cars.	But	if
you	recall,	the	original	model	contained	one	red	car	amongst	a	group	of	blue	cars.	Let's	look
at	how	to	change	only	one	car's	color.

Press	"setup"	to	get	the	red	car	to	reappear.
Right-click	on	the	red	car.

If	there	is	another	turtle	close	to	the	red	turtle	you'll	see	more	than	one	turtle
listed	at	the	bottom	of	the	menu.	Move	your	mouse	over	the	turtle	selections,
notice	when	your	mouse	highlights	a	turtle	menu	item	that	turtle	is	highlighted
in	the	view.	Select	"inspect	turtle"	from	the	sub-menu	for	the	red	turtle.

A	turtle	monitor	for	that	car	will	appear:

The	mini-view	at	the	top	of	the	agent	monitor	will	always	stay	centered	on	this	agent.	You	can
zoom	the	view	in	and	out	using	the	slider	below	the	view	and	you	can	watch	this	turtle	in	the
main	view	by	pressing	the	"watch-me"	button.

Taking	a	closer	look	at	this	turtle	monitor,	we	can	see	all	of	the	variables	that	belong	to	the
red	car.	A	variable	is	a	location	that	holds	a	value.

Let's	take	a	closer	look	at	the	turtle	monitor:

What	is	this	turtle's	who	number?

What	color	is	this	turtle?

What	shape	is	this	turtle?

This	turtle	monitor	is	showing	a	turtle	who	that	has	a	who	number	of	0,	a	color	of	15	(red	--
see	chart	above),	and	the	shape	of	a	car.

There	are	two	other	ways	to	open	a	turtle	monitor	besides	right-clicking.	One	way	is	to
choose	"Turtle	Monitor"	from	the	Tools	menu,	then	type	the	who	number	of	the	turtle	you
want	to	inspect	into	the	"who"	field	and	press	return.	The	other	way	is	to	type	inspect turtle
0	(or	other	who	number)	into	the	Command	Center.

You	close	a	turtle	monitor	by	clicking	the	close	box	in	the	upper	left	hand	corner	(Mac)	or
upper	right	hand	corner	(other	operating	systems).

Now	that	we	know	more	about	Agent	Monitors,	we	have	three	ways	to	change	an	individual
turtle's	color.

One	way	is	to	use	the	box	called	an	Agent	Commander	found	at	the	bottom	of	an	Agent
Monitor.	You	type	commands	here,	just	like	in	the	Command	Center,	but	the	commands	you
type	here	are	only	done	by	this	particular	turtle.

In	the	Agent	Commander	of	the	Turtle	Monitor	for	turtle	0,	type	set color
pink.

What	happens	in	the	View?

Did	anything	change	in	the	Turtle	Monitor?

A	second	way	to	change	one	turtle's	color	is	to	go	directly	to	the	color	variable	in	the	Turtle
Monitor	and	change	the	value.

Select	the	text	to	the	right	of	"color"	in	the	Turtle	Monitor.
Type	in	a	new	color	such	as	green + 2.

What	happened?

The	third	way	to	change	an	individual	turtle's	or	patch's	color	is	to	use	the	observer.	Since,
the	observer	oversees	the	NetLogo	world,	it	can	give	commands	that	affect	individual	turtles,
as	well	as	groups	of	turtles.

In	the	Command	Center,	select	"observer"	from	the	popup	menu	(or	use	the
tab	key).
Type	ask turtle 0 [set color blue]	and	press	return.

What	happens?

Just	as	there	are	Turtle	Monitors,	there	are	also	Patch	Monitors.	Patch	monitors
work	very	similarly	to	Turtle	Monitors.

Can	you	make	a	patch	monitor	and	use	it	to	change	the	color	of	a	single
patch?

If	you	try	to	have	the	observer	ask patch 0 [set pcolor blue],	you'll	get	an	error	message:

To	ask	an	individual	turtle	to	do	something,	we	use	its	who	number.	But	patches	don't	have
who	numbers,	therefore	we	need	to	refer	to	them	some	other	way.

Remember,	patches	are	arranged	on	a	coordinate	system.	Two	numbers	are	needed	to	plot	a
point	on	a	graph:	an	x-axis	value	and	a	y-axis	value.	Patch	locations	are	designated	in	the
same	way	as	plotting	a	point.

Open	a	patch	monitor	for	any	patch.

The	monitor	shows	that	for	the	patch	in	the	picture,	its	pxcor	variable	is	-19	and	its
pycor	variable	is	0.	If	we	go	back	to	the	analogy	of	the	coordinate	plane	and	wanted
to	plot	this	point,	the	point	would	be	found	on	the	x	axis	left	of	the	origin,	where	x=-
19	and	y=0.

To	tell	this	particular	patch	to	change	color:

In	the	bottom	of	the	patch	monitor,	enter	set pcolor blue	and	press	return.

Typing	a	command	in	a	turtle	or	patch	monitor	addresses	only	that	turtle	or	patch.

You	can	also	talk	to	a	single	patch	from	the	Command	Center:

In	the	Command	Center,	enter	ask patch -19 0 [set pcolor green]	and
press	return.

What's	Next?

At	this	point,	you	may	want	to	take	some	time	to	try	out	the	techniques	you've	learned	on
some	of	the	other	models	in	the	Models	Library.

In	Tutorial	#3:	Procedures	you	can	learn	how	to	alter	and	extend	existing	models	and	build
your	own	models.

Tutorial	#3:	Procedures

This	tutorial	leads	you	through	the	process	of	building	a	complete	model,	built	up	in	stages,	with	every	step	explained	along	the	way.

Agents	and	procedures

In	Tutorial	#2,	you	learned	how	to	use	the	command	center	and	agent	monitors	to	inspect	and	modify	agents	and	make	them	do	things.
Now	you're	ready	to	learn	about	the	real	heart	of	a	NetLogo	model:	the	Code	tab.

You've	seen	that	agents	in	NetLogo	are	divided	into	patches,	turtles,	links,	and	the	observer.	Patches	are	stationary	and	arranged	in	a
grid.	Turtles	move	over	that	grid.	Links	connect	two	turtles.	The	observer	oversees	everything	that's	going	on	and	does	whatever	the
turtles,	patches	and	links	can't	do	for	themselves.

All	four	types	of	agents	can	run	NetLogo	commands.	All	four	can	also	run	"procedures".	A	procedure	combines	a	series	of	NetLogo
commands	into	a	single	new	command	that	you	define.

You	will	now	learn	to	write	procedures	that	make	turtles	move,	eat,	reproduce,	and	die.	You	will	also	learn	how	to	make	monitors,
sliders,	and	plots.	The	model	we'll	build	is	a	simple	ecosystem	model	not	unlike	Wolf	Sheep	Predation	from	Tutorial	#1.

Making	the	setup	button

To	start	a	new	model,	select	"New"	from	the	File	menu.	Then	begin	by	creating	a	setup	button:

Click	the	"Add"	icon	in	the	toolbar	at	the	top	of	the	Interface	tab.
On	the	menu	next	to	Add,	select	Button	(if	it	isn't	already	selected).
Click	wherever	you	want	the	button	to	appear	in	the	empty	white	area	of	the	Interface	tab.
A	dialog	box	for	editing	the	button	opens.	Type	setup	in	the	box	labeled	"Commands".
Press	the	OK	button	when	you're	done;	the	dialog	box	closes.

Now	you	have	a	setup	button.	Pressing	the	button	runs	a	procedure	called	"setup".	A	procedure	is	a	sequence	of	NetLogo	commands
that	we	assign	a	new	name.	We'll	define	that	procedure	soon,	but	we	haven't	yet.	The	button	refers	to	a	procedure	that	doesn't	exist,	so
the	button	turns	red:

If	you	want	to	see	the	actual	error	message,	click	the	button.

Now	we'll	create	the	"setup"	procedure,	so	the	error	message	will	go	away:

Switch	to	the	Code	tab.
Type	the	following:

to setup
 clear-all
 create-turtles 100 [setxy random-xcor random-ycor]
 reset-ticks
end

When	you're	done,	the	Code	tab	looks	like	this:

Note	that	some	lines	are	indented.	Most	people	find	it	helpful	to	indent	their	code.	It	isn't	mandatory,	but	it	makes	the	code	easier	to	read
and	change.

Your	procedure	begins	with	to	and	ends	with	end.	Every	procedure	begins	and	ends	with	these	words.

Let's	look	at	what	you	typed	in	and	see	what	each	line	of	your	procedure	does:

to setup	begins	defining	a	procedure	named	"setup".
clear-all	resets	the	world	to	an	initial,	empty	state.	All	the	patches	turn	black	and	any	turtles	you	might	have	created	disappear.
Basically,	it	wipes	the	slate	clean	for	a	new	model	run.
create-turtles 100	creates	100	turtles.	They	start	out	standing	at	the	origin,	that	is,	the	center	of	patch	0,0.
After	create-turtles	we	can	put	commands	for	the	new	turtles	to	run,	enclosed	by	square	brackets.
setxy random-xcor random-ycor	is	a	command	using	"reporters".	A	reporter,	as	opposed	to	a	command,	reports	a	result.	First	each
turtle	runs	the	reporter	random-xcor	which	will	report	a	random	number	from	the	allowable	range	of	turtle	coordinates	along	the	X
axis.	Then	each	turtle	runs	the	reporter	random-ycor,	same	for	the	Y	axis.	Finally	each	turtle	runs	the	setxy	command	with	those
two	numbers	as	inputs.	That	makes	the	turtle	move	to	the	point	with	those	coordinates.
reset-ticks	starts	the	tick	counter,	now	that	setup	is	otherwise	complete.
end	completes	the	definition	of	the	"setup"	procedure.

When	you're	done	typing,	switch	to	the	Interface	tab	and	press	the	setup	button	you	made	before.	You	will	see	the	turtles	scattered
around	the	world:

Press	setup	a	couple	more	times,	and	see	how	the	arrangement	of	turtles	is	different	each	time.	Note	that	some	turtles	may	be	right	on
top	of	each	other.

Think	a	bit	about	what	you	needed	to	do	to	make	this	happen.	You	needed	to	make	a	button	in	the	interface	and	make	a	procedure	that
the	button	uses.	The	button	only	worked	once	you	completed	both	of	these	separate	steps.	In	the	remainder	of	this	tutorial,	you	will
often	have	to	complete	two	or	more	similar	steps	to	add	another	feature	to	the	model.	If	something	doesn't	appear	to	work	after	you
completed	what	you	thought	is	the	final	step	for	that	new	feature,	continue	to	read	ahead	to	see	if	there	is	still	more	to	do.	After	reading
ahead	for	a	couple	of	paragraphs,	you	should	then	go	back	over	the	directions	to	see	if	there	is	any	step	you	might	have	missed.

Switching	to	tick-based	view	updates

Now	that	we're	using	the	tick	counter	(with	reset-ticks),	we	should	tell	NetLogo	that	it	only	needs	to	update	the	view	once	per	tick,
instead	of	continuously	updating	it.

Find	the	view	updates	menu.	It's	above	the	view	and	by	default	says	"continuous".
Choose	"on	ticks"	instead.

This	makes	your	model	run	faster	and	ensures	a	consistent	appearance	(since	the	updates	will	happen	at	consistent	times).	See	the
Programming	Guide	for	a	fuller	discussion	of	view	updates.

Making	the	go	button

Now	make	a	button	called	"go".	Follow	the	same	steps	you	used	to	make	the	setup	button,	except:

For	Commands	enter	go	instead	of	setup.
Check	the	"Forever"	checkbox	in	the	edit	dialog.
Check	the	"Disable	until	ticks	start"	checkbox	too.

The	"Forever"	checkbox	makes	the	button	stay	down	once	pressed,	so	its	commands	run	over	and	over	again,	not	just	once.

The	"Disable	until	ticks	start"	prevents	you	from	pressing	go	before	setup.

Then	add	a	go	procedure	to	the	Code	tab:

to go
 move-turtles
 tick
end

tick	is	a	primitive	that	advances	the	tick	counter	by	one	tick.

But	what	is	move-turtles?	Is	it	a	primitive	(in	other	words,	built-in	to	NetLogo)?	No,	it's	another	procedure	that	you're	about	to	add.	So
far,	you	have	introduced	two	procedures	that	you	added	yourself:	setup	and	go.

Add	the	move-turtles	procedure	after	the	goprocedure:

to go

 move-turtles
 tick
end

to move-turtles
 ask turtles [
 right random 360
 forward 1
]
end

Note	there	are	no	spaces	around	the	hyphen	in	move-turtles.	In	Tutorial	#2	we	used	red - 2,	with	spaces,	in	order	to	subtract	two
numbers,	but	here	we	want	move-turtles,	without	spaces.	The	"-"	combines	"move"	and	"turtles"	into	a	single	name.

Here	is	what	each	command	in	the	move-turtles	procedure	does:

ask turtles [...]	says	that	each	turtle	should	run	the	commands	in	the	brackets.
right random 360	is	another	command	that	uses	a	reporter.	First,	each	turtle	picks	a	random	whole	number	between	0	and	359.
(random	doesn't	include	the	number	you	give	it	as	a	possible	result.)	Then	the	turtle	turns	right	this	number	of	degrees.
forward 1	makes	the	turtle	move	forward	one	step.

Why	couldn't	we	have	just	written	all	of	these	commands	in	go	instead	of	in	a	separate	procedure?	We	could	have,	but	during	the	course
of	building	your	project,	it's	likely	that	you'll	add	many	other	parts.	We'd	like	to	keep	go	as	simple	as	possible,	so	that	it	is	easy	to
understand.	Eventually,	it	will	include	many	other	things	you	want	to	have	happen	as	the	model	runs,	such	as	calculating	something	or
plotting	the	results.	Each	of	these	things	to	do	will	have	its	own	procedure	and	each	procedure	will	have	its	own	unique	name.

The	'go'	button	you	made	in	the	Interface	tab	is	a	forever	button,	meaning	that	it	will	continually	run	its	commands	until	you	shut	it	off	(by
clicking	on	it	again).	After	you	have	pressed	'setup'	once,	to	create	the	turtles,	press	the	'go'	button.	Watch	what	happens.	Turn	it	off,	and
you'll	see	that	all	the	turtles	stop	in	their	tracks.

Note	that	if	a	turtle	moves	off	the	edge	of	the	world,	it	"wraps",	that	is,	it	appears	on	the	other	side.	(This	is	the	default	behavior.	It	can	be
changed;	see	the	Topology	section	of	the	Programming	Guide	for	more	information.)

Experimenting	with	commands

We	suggest	you	start	experimenting	with	other	turtle	commands.

Type	commands	into	the	Command	Center	(like	turtles> set color red),	or	add	commands	to	setup,	go,	or	move-turtles.

Note	that	when	you	enter	commands	in	the	Command	Center,	you	must	choose	turtles>,	patches>,	links>,	or	observer>	in	the	popup
menu	on	the	left,	depending	on	which	agents	are	going	to	run	the	commands.	It's	just	like	using	ask turtles	or	ask patches,	but	saves
typing.	You	can	also	use	the	tab	key	to	switch	agent	types,	which	you	might	find	more	convenient	than	using	the	menu.

You	might	try	typing	turtles>	pen-down	into	the	Command	Center	and	then	pressing	the	go	button.

Also,	inside	the	move-turtles	procedure	you	can	try	changing	right random 360	to	right random 45.

Play	around.	It's	easy	and	the	results	are	immediate	and	visible	--	one	of	NetLogo's	many	strengths.

When	you	feel	you've	done	enough	experimenting	for	now,	you're	ready	to	continue	improving	the	model	you	are	building.

Patches	and	variables

Now	we've	got	100	turtles	aimlessly	moving	around,	completely	unaware	of	anything	else	around	them.	Let's	make	things	a	little	more
interesting	by	giving	these	turtles	a	nice	background	against	which	to	move.

Go	back	to	the	setup	procedure.	We	can	rewrite	it	as	follows:

to setup
 clear-all
 setup-patches
 setup-turtles
 reset-ticks
end

The	new	definition	of	setup	refers	to	two	new	procedures.	To	define	setup-patches,	add	this:

to setup-patches
 ask patches [set pcolor green]
end

The	setup-patches	procedure	sets	the	color	of	every	patch	to	green	to	start	with.	(A	turtle's	color	variable	is	color;	a
patch's	is	pcolor.)

The	only	part	remaining	in	our	new	'setup'	that	is	still	undefined	is	setup-turtles.

Add	this	procedure	too:

to setup-turtles
 create-turtles 100
 ask turtles [setxy random-xcor random-ycor]

end

Did	you	notice	that	the	new	setup-turtles	procedure	has	most	of	the	same	commands	as	the	old	setup	procedure?

Switch	back	to	the	Interface	tab.
Press	the	setup	button.

Voila!	A	lush	NetLogo	landscape	complete	with	turtles	and	green	patches	appears:

After	seeing	the	new	setup	procedure	work	a	few	times,	you	may	find	it	helpful	to	read	through	the	procedure	definitions	again.

Turtle	variables

So	we	have	some	turtles	running	around	on	a	landscape,	but	they	aren't	doing	anything	with	it.	Let's	add	some	interaction	between	the
turtles	and	the	patches.

We'll	make	the	turtles	eat	"grass"	(the	green	patches),	reproduce,	and	die.	The	grass	will	gradually	grow	back	after	it	is	eaten.

We'll	need	a	way	of	controlling	when	a	turtle	reproduces	and	dies.	We'll	determine	that	by	keeping	track	of	how	much	"energy"	each
turtle	has.	To	do	that	we	need	to	add	a	new	turtle	variable.

You've	already	seen	built-in	turtle	variables	like	color.	To	make	a	new	turtle	variable,	we	add	a	turtles-own	declaration	at	the	top	of	the
Code	tab,	before	all	the	procedures.	Call	it	energy:

turtles-own [energy]

to go
 move-turtles
 eat-grass
 tick
end

Let's	use	this	newly	defined	variable	(energy)	to	allow	the	turtles	to	eat.

Switch	to	the	Code	tab.
Rewrite	the	go	procedure	as	follows:

to go
 move-turtles
 eat-grass
 tick
end

Add	a	new	eat-grass	procedure:

to eat-grass
 ask turtles [
 if pcolor = green [
 set pcolor black
 set energy energy + 10
]
]
end

We	are	using	the	if	command	for	the	first	time.	Look	at	the	code	carefully.	Each	turtle,	when	it	runs	these	commands,	compares	the
value	of	the	patch	color	it	is	on	(pcolor)	to	the	value	for	green.	(A	turtle	has	direct	access	to	the	variables	of	the	patch	it	is	standing	on.)	If
the	patch	color	is	green,	the	comparison	reports	true,	and	only	then	will	the	turtle	run	the	commands	inside	the	brackets	(otherwise	it
skips	them).	The	commands	make	the	turtle	change	the	patch	color	to	black	and	increase	its	own	energy	by	10.	The	patch	turns	black
to	signify	that	the	grass	at	that	spot	has	been	eaten.	And	the	turtle	is	given	more	energy,	from	having	just	eaten.

Next,	let's	make	the	movement	of	turtles	use	up	some	of	the	turtle's	energy.

Rewrite	move-turtles	as	follows:

to move-turtles
 ask turtles [
 right random 360
 forward 1
 set energy energy - 1
]
end

As	each	turtle	wanders,	it	will	lose	one	unit	of	energy	at	each	step.

Switch	to	the	Interface	tab	now	and	press	the	setup	button	and	the	go	button.

You'll	see	the	patches	turn	black	as	turtles	travel	over	them.

Monitors

Next	you	will	create	two	monitors	in	the	Interface	tab	with	the	toolbar.	(You	make	them	just	like	buttons	and	sliders,	using	the	Add	icon
on	the	toolbar.)	Let's	make	the	first	monitor	now.

Create	a	monitor	by	clicking	the	Add	icon	on	the	toolbar,	selecting	Monitor	next	to	it,	and	clicking	on	an	open	spot	in
the	Interface.

A	dialog	box	will	appear.

In	the	dialog	type:	count turtles	(see	image	below).
Press	the	OK	button	to	close	the	dialog.

turtles	is	an	"agentset",	the	set	of	all	turtles.	count	tells	us	how	many	agents	are	in	that	set.

Let's	make	the	second	monitor	now:

Create	a	monitor	by	clicking	the	Add	icon	on	the	toolbar,	selecting	Monitor	next	to	it,	and	clicking	on	an	open	spot	in
the	Interface.

A	dialog	box	will	appear.

In	the	Reporter	section	of	the	dialog	box	type:	count patches with [pcolor = green]	(see	image	below).
In	the	Display	name	section	of	the	dialog	box	type:	green patches
Press	the	OK	button	to	close	the	dialog	box.

Here	we're	using	count	again	to	see	how	many	agents	are	in	an	agentset.	patches	is	the	set	of	all	the	patches,	but	we	don't	just	want	to
know	how	many	patches	there	are	total,	we	want	to	know	how	many	of	them	are	green.	That's	what	with	does;	it	makes	a	smaller
agentset	of	just	those	agents	for	whom	the	condition	in	the	brackets	is	true.	The	condition	is	pcolor = green,	so	that	gives	us	just	the
green	patches.

Now	we	have	two	monitors	that	will	report	how	many	turtles	and	green	patches	we	have,	to	help	us	track	what's	going	on	in	our	model.
As	the	model	runs,	the	numbers	in	the	monitors	will	automatically	change.

Use	the	setup	and	go	buttons	and	watch	the	numbers	in	the	monitors	change.

Switches	and	labels

The	turtles	aren't	just	turning	the	patches	black.	They're	also	gaining	and	losing	energy.	As	the	model	runs,	try	using	a	turtle	monitor	to
watch	one	turtle's	energy	go	up	and	down.

It	would	be	nicer	if	we	could	see	every	turtle's	energy	all	the	time.	We	will	now	do	exactly	that,	and	add	a	switch	so	we	can	turn	the	extra
visual	information	on	and	off.

Click	on	the	Add	icon	on	the	toolbar	(in	the	Interface	tab).
Select	Switch	from	the	menu	next	to	Add.
Click	on	an	open	spot	in	the	interface.

A	dialog	will	appear.

Into	the	Global	variable	field,	type	show-energy?	Don't	forget	to	include	the	question	mark	in	the	name.	(See	image
below.)

Now	go	back	to	the	'go'	procedure	using	the	Code	tab	with	the	Toolbar.
Rewrite	the	eat-grass	procedure	as	follows:

to eat-grass
 ask turtles [
 if pcolor = green [
 set pcolor black
 set energy energy + 10
]
 ifelse show-energy?
 [set label energy]
 [set label ""]
]
end

The	eat-grass	procedure	introduces	the	ifelse	command.	Look	at	the	code	carefully.	Each	turtle,	when	it	runs	these	new	commands,
checks	the	value	of	show-energy?	(determined	by	the	switch).	If	the	switch	is	on,	comparison	is	true	and	the	turtle	will	run	the	commands
inside	the	first	set	of	brackets.	In	this	case,	it	assigns	the	value	for	the	energy	to	the	label	of	the	turtle.	If	the	comparison	is	false	(the
switch	is	off)	then	the	turtle	runs	the	commands	inside	the	second	set	of	brackets.	In	this	case,	it	removes	the	text	labels	(by	setting	the
label	of	the	turtle	to	be	nothing).

(In	NetLogo,	a	piece	of	text	is	called	a	"string",	short	for	string	of	characters.	A	string	is	a	sequence	of	letters	or	other	characters,	written
between	double	quotes.	Here	we	have	two	double	quotes	right	next	to	each	other,	with	nothing	in	between	them.	That's	an	empty	string.
If	a	turtle's	label	is	an	empty	string,	no	text	is	attached	to	the	turtle.)

Test	this	in	the	Interface	tab,	by	running	the	model	(using	the	setup	and	go	buttons)	switching	the	show-energy?
switch	back	and	forth.

When	the	switch	is	on,	you'll	see	the	energy	of	each	turtle	go	up	each	time	it	eats	grass.	You'll	also	see	its	energy	going	down	whenever
it	moves.

More	procedures

Now	our	turtles	are	eating.	Let's	make	them	reproduce	and	die,	too.	And	let's	make	the	grass	grow	back.	We'll	add	all	three	of	these	of
these	behaviors	now,	by	making	three	separate	procedures,	one	for	each	behavior.

Go	to	the	Code	tab.
Rewrite	the	go	procedure	as	follows:

to go
 move-turtles
 eat-grass
 reproduce
 check-death
 regrow-grass
 tick
end

Add	the	procedures	for	reproduce,	check-death,	and	regrow-grass	as	shown	below:

to reproduce
 ask turtles [
 if energy > 50 [
 set energy energy - 50
 hatch 1 [set energy 50]
]
]
end

to check-death
 ask turtles [
 if energy <= 0 [die]
]
end

to regrow-grass
 ask patches [
 if random 100 < 3 [set pcolor green]
]
end

Each	of	these	procedures	uses	the	if	command.	Each	turtle,	when	it	runs	check-death	it	will	check	to	see	if	its	energy	is	less	or	equal	to
0.	If	this	is	true,	then	the	turtle	is	told	to	die	(die	is	a	NetLogo	primitive).

When	each	turtle	runs	reproduce,	it	checks	the	value	of	the	turtle's	energy	variable.	If	it	is	greater	than	50,	then	the	turtle	runs	the
commands	inside	the	first	set	of	brackets.	In	this	case,	it	decreases	the	turtle's	energy	by	50,	then	'hatches'	a	new	turtle	with	an	energy
of	50.	The	hatch	command	is	a	NetLogo	primitive	which	looks	like	this:	hatch	number	[commands].	This	turtle	creates	number	new
turtles,	each	identical	to	its	parent,	and	asks	the	new	turtle(s)	that	have	been	hatched	to	run	commands.	You	can	use	the	commands	to
give	the	new	turtles	different	colors,	headings,	or	whatever.	In	our	case	we	run	one	command.	We	set	the	energy	for	the	newly	hatched
turtle	to	be	50.

When	each	patch	runs	regrow-grass	it	will	check	to	see	if	a	random	integer	from	0	to	99	is	less	than	3.	If	so,	the	patch	color	is	set	to
green.	This	will	happen	3%	of	the	time	(on	average)	for	each	patch,	since	there	are	three	numbers	(0,	1,	and	2)	out	of	100	possible	that
are	less	than	3.

Switch	to	the	Interface	tab	now	and	press	the	setup	and	go	buttons.

You	should	see	some	interesting	behavior	in	your	model	now.	Some	turtles	die	off,	some	new	turtles	are	created	(hatched),	and	some
grass	grows	back.	This	is	exactly	what	we	set	out	to	do.

If	you	continue	to	watch	your	monitors	in	your	model,	you	will	see	that	the	count	turtles	and	green	patches	monitors	both	fluctuate.	Is
this	pattern	of	fluctuation	predictable?	Is	there	a	relationship	between	the	variables?

It'd	be	nice	if	we	had	a	easier	way	to	track	the	changes	in	the	model	behavior	over	time.	NetLogo	allows	us	to	plot	data	as	we	go	along.
That	will	be	our	next	step.

Plotting

To	make	plotting	work,	we'll	need	to	create	a	plot	in	the	Interface	tab	and	put	some	commands	inside	it.

The	commands	we	put	in	the	plots	will	run	automatically	when	our	setup	procedure	calls	reset-ticks	and	when	our	go	procedure	calls
tick.

Create	a	plot	by	clicking	the	Add	icon	on	the	toolbar,	selecting	Plot	next	to	it,	and	clicking	on	an	open	spot	in	the
Interface.
Set	its	Name	to	"Totals"	(see	image	below)
Set	the	X	axis	label	to	"time"
Set	the	Y	axis	label	to	"totals"
Change	the	name	of	the	"default"	pen	to	"turtles".
Enter	plot count turtles	under	Pen	Update	Commands.
Press	the	"Add	Pen"	button.
Change	the	name	of	the	new	pen	to	"grass".
Enter	plot count patches with [pcolor = green] 	under	Pen	Update	Commands.

When	you're	done,	the	dialog	should	look	like	this:

Press	OK	in	the	Plot	dialog	to	finish	editing.

Note	that	when	you	create	the	plot	you	can	also	set	the	minimum	and	maximum	values	on	the	X	and	Y	axes.	You'll	want	to	leave	the
"Auto	Scale"	checkbox	checked,	so	that	if	anything	you	plot	exceeds	the	minimum	and	maximum	values	for	the	axes,	the	axes	will
automatically	grow	so	you	can	see	all	the	data.

Note	that	we	used	the	plot	command	to	add	the	next	point	to	a	plot.	This	command	moves	the	current	plot	pen	to	the	point	that	has	an
X	coordinate	equal	to	1	greater	than	the	previously	plotted	X	coordinate	and	a	Y	coordinate	equal	to	the	value	given	in	the	plot
command	(in	the	first	case,	the	number	of	turtles,	and	in	the	second	case,	the	number	of	green	patches).	As	the	pens	move	they	each
draw	a	line.

Setup	and	run	the	model	again.

You	can	now	watch	the	plot	being	drawn	as	the	model	is	running.	Your	plot	should	have	the	general	shape	of	the	one	below,	though
your	plot	might	not	look	exactly	the	same.

Remember	that	we	left	"Auto	Scale?"	on.	This	allows	the	plot	to	readjust	itself	when	it	runs	out	of	room.

If	you	forget	which	pen	is	which,	you	can	edit	the	plot	and	check	the	"Show	legend?"	checkbox.

You	might	try	running	the	model	several	times	to	see	what	aspects	of	the	plot	are	the	same	and	which	are	different	from	run	to	run.

Tick	counter

To	make	comparisons	between	plots	from	one	model	run	and	another,	it	is	often	useful	to	do	the	comparison	for	the	same	length	of
model	run.	Learning	how	to	stop	or	start	an	action	at	a	specific	time	can	help	make	this	happen	by	stopping	the	model	at	the	same	point
each	model	run.	Keeping	track	of	how	many	times	the	go	procedure	is	run	is	a	useful	way	to	cue	these	actions.	That's	what	the	tick
counter	does.

You're	already	using	the	tick	counter	in	your	model,	with	the	reset-ticks	and	tick	commands,	which	also	trigger	plotting.

You	can	also	use	the	tick	counter	for	other	things,	such	as	to	set	a	limit	on	the	total	length	of	a	run.

Change	the	go	procedure:

to go
 if ticks >= 500 [stop]
 move-turtles
 eat-grass
 check-death
 reproduce
 regrow-grass
 tick
end

Now	setup	and	run	the	model.

The	graph	and	model	won't	keep	running	forever.	They	should	stop	automatically	when	the	tick	counter	in	the	Interface	tab's	toolbar
reaches	500.

The	tick	command	advances	the	tick	counter	by	1.	ticks	is	a	reporter	which	reports	the	current	value	of	the	tick	counter.	reset-ticks,	in
your	setup	procedure,	takes	care	of	restarting	the	tick	counter	at	0	when	a	new	run	is	set	up	and	ready	to	begin.

Some	more	details

First,	instead	of	always	using	100	turtles,	you	can	have	a	varying	number	of	turtles.

Create	a	slider	named	"number":	click	the	Add	icon	on	the	toolbar,	select	Slider	next	to	it,	and	click	on	an	open	spot
in	the	interface.
Try	changing	the	minimum	and	maximum	values	in	the	slider.
Then	inside	of	setup-turtles,	instead	of	create-turtles 100	you	can	type:

to setup-turtles
 create-turtles number [setxy random-xcor random-ycor]
end

Test	this	change	and	compare	how	having	more	or	fewer	turtles	initially	affect	the	plots	over	time.

Second,	wouldn't	it	be	nice	to	adjust	the	energy	the	turtles	gain	and	lose	as	they	eat	grass	and	reproduce?

Make	a	slider	called	energy-from-grass.
Make	another	slider	called	birth-energy.
Then,	inside	of	eat-grass,	make	this	change:

to eat-grass
 ask turtles [
 if pcolor = green [
 set pcolor black
 set energy (energy + energy-from-grass)
]
 ifelse show-energy?
 [set label energy]
 [set label ""]
]
end

And,	inside	of	reproduce,	make	this	change:

to reproduce
 ask turtles [
 if energy > birth-energy [
 set energy energy - birth-energy
 hatch 1 [set energy birth-energy]
]
]
end

Finally,	what	other	slider	could	you	add	to	vary	how	often	grass	grows	back?	Are	there	rules	you	can	add	to	the	movement	of	the	turtles
or	to	the	newly	hatched	turtles	that	happen	only	at	certain	times?	Try	writing	them.

What's	next?

So	now	you	have	a	simple	model	of	an	ecosystem.	Patches	grow	grass.	Turtles	wander,	eat	the	grass,	reproduce,	and	die.

You	have	created	an	interface	containing	buttons,	sliders,	switches,	monitors,	and	a	plot.	You've	even	written	a	series	of	procedures	to
give	the	turtles	something	to	do.

That's	where	this	tutorial	leaves	off.

If	you'd	like	to	look	at	some	more	documentation	about	NetLogo,	the	Interface	Guide	section	of	the	manual	walks	you	through	every
element	of	the	NetLogo	interface	in	order	and	explains	its	function.	For	a	detailed	description	and	specifics	about	writing	procedures,

refer	to	the	Programming	Guide.	All	of	the	primitives	are	listed	and	described	in	the	NetLogo	Dictionary.

Also,	you	can	continue	experimenting	with	and	expanding	this	model	if	you'd	like,	experimenting	with	different	variables	and	behaviors
for	the	agents.

Alternatively,	you	may	want	to	revisit	the	first	model	in	the	tutorial,	Wolf	Sheep	Predation.	This	is	the	model	you	used	in	Tutorial #1.	In
the	Wolf	Sheep	Predation	model,	you	saw	sheep	move	around,	consume	resources	that	are	replenished	occasionally	(grass),	reproduce
under	certain	conditions,	and	die	if	they	ran	out	of	resources.	But	that	model	had	another	type	of	creature	moving	around	--	wolves.	The
addition	of	wolves	requires	some	additional	procedures	and	some	new	primitives.	Wolves	and	sheep	are	two	different	"breeds"	of	turtle.
To	see	how	to	use	breeds,	study	Wolf	Sheep	Predation.

Alternatively,	you	can	look	at	other	models	(including	the	many	models	in	the	Code	Examples	section	of	the	Models	Library)	or	even	go
ahead	and	build	your	own	model.	You	don't	even	have	to	model	anything.	It	can	be	interesting	just	to	watch	patches	and	turtles	forming
patterns,	to	try	to	create	a	game	to	play,	or	whatever.

Hopefully	you	have	learned	some	things,	both	in	terms	of	the	NetLogo	language	and	about	how	to	go	about	building	a	model.	The	entire
set	of	procedures	that	was	created	above	is	shown	below.

Appendix:	Complete	code

The	complete	model	is	also	available	in	NetLogo's	Models	Library,	in	the	Code	Examples	section.	It's	called	"Tutorial	3".

Notice	that	this	listing	is	full	of	"comments",	which	begin	with	semicolons.	Comments	let	you	mix	an	explanation	the	code	right	in	with	the
code	itself.	You	might	use	comments	to	help	others	understand	your	model,	or	you	might	use	them	as	notes	to	yourself.

In	the	Code	tab,	comments	are	gray,	so	your	eyes	can	pick	them	out	easily.

turtles-own [energy] ;; for keeping track of when the turtle is ready
 ;; to reproduce and when it will die

to setup
 clear-all
 setup-patches
 setup-turtles
 reset-ticks
end

to setup-patches
 ask patches [set pcolor green]
end

to setup-turtles
 create-turtles number ;; uses the value of the number slider to create turtles
 ask turtles [setxy random-xcor random-ycor]
end

to go
 if ticks >= 500 [stop] ;; stop after 500 ticks
 move-turtles
 eat-grass
 check-death
 reproduce
 regrow-grass
 tick ;; increase the tick counter by 1 each time through
end

to move-turtles
 ask turtles [
 right random 360
 forward 1
 set energy energy - 1 ;; when the turtle moves it looses one unit of energy
]
end

to eat-grass
 ask turtles [
 if pcolor = green [
 set pcolor black
 ;; the value of energy-from-grass slider is added to energy
 set energy energy + energy-from-grass
]
 ifelse show-energy?
 [set label energy] ;; the label is set to be the value of the energy
 [set label ""] ;; the label is set to an empty text value
]
end

to reproduce
 ask turtles [
 if energy > birth-energy [
 set energy energy - birth-energy ;; take away birth-energy to give birth
 hatch 1 [set energy birth-energy] ;; give this birth-energy to the offspring
]
]
end

to check-death
 ask turtles [
 if energy <= 0 [die] ;; removes the turtle if it has no energy left
]
end

to regrow-grass
 ask patches [;; 3 out of 100 times, the patch color is set to green
 if random 100 < 3 [set pcolor green]
]
end

Interface	Guide

This	section	of	the	manual	explains	the	function	of	each	element	in	NetLogo's	user	interface.

In	NetLogo,	you	have	the	choice	of	viewing	models	found	in	the	Models	Library,	adding	to
existing	models,	or	creating	your	own	models.	The	NetLogo	interface	was	designed	to	meet	all
these	needs.

The	interface	can	be	divided	into	two	main	parts:	NetLogo	menus,	and	the	main	NetLogo
window.	The	main	window	is	divided	into	tabs.

Menus
Tabs
International	usage

Menus

On	a	Mac,	if	you	are	running	the	NetLogo	application,	the	menu	bar	is	located	at	the	top	of	the
screen.	On	other	platforms,	the	menu	bar	is	found	at	the	top	of	the	NetLogo	window.

The	functions	available	from	the	menus	in	the	menubar	are	listed	in	the	following	chart.

Chart:	NetLogo	menus

File

New Starts	a	new	model.

Open… Opens	any	NetLogo	model	on	your	computer.

Models	Library A	collection	of	demonstration	models.

Recent	Files Re-opens	any	previously	model	opened	with	"File	->	Open"

Save Save	the	current	model,	or	the	currently	selected	source	file.

Save	As… Save	the	current	model,	or	the	currently	selected	source	file,	using	a
different	name.

Save	All Save	the	current	model	and	all	open	source	files.	This	option	is	only
available	when	one	or	more	source	files	are	open.

Upload	to
Modeling
Commons

Uploads	the	model	to	Modeling	Commons.	See	Modeling	Commons

Save	As
NetLogo

Saves	a	web	page,	in	HTML	format,	containing	NetLogo	web	running

NetLogo
Web… your	model.

Export	World…
Saves	all	variables,	the	current	state	of	all	turtles	and	patches,	the
drawing	,	the	plots,	the	output	area	and	the	random	state	information	to
a	file.

Export	Plot… Saves	the	data	in	a	plot	to	a	file.

Export	All
Plots… Saves	the	data	in	all	the	plots	to	a	file.

Export	View… Save	a	picture	of	the	current	view	(2D	or	3D)	to	a	file	(in	PNG	format).

Export
Interface… Save	a	picture	of	the	current	Interface	tab.	(in	PNG	format)

Export
Output…

Save	the	contents	of	the	output	area	or	the	output	section	of	the
command	center	to	a	file.

Export	Code… Save	the	model's	code	to	an	HTML	file,	preserving	colors.

Import	World…Load	a	file	that	was	saved	by	Export	World.

Import	Patch
Colors… Load	an	image	into	the	patches;	see	the	import-pcolors	command.

Import	Patch
Colors	RGB…

Load	an	image	into	the	patches	using	RGB	colors;	see	the	import-
pcolors-rgb	command.

Import
Drawing… Load	an	image	into	the	drawing,	see	the	import-drawing	command.

Import	HubNet
Client
Interface…

Load	the	interface	from	another	model	into	the	HubNet	Client	Editor.

Print… Sends	the	contents	of	the	currently	showing	tab	to	your	printer.

Quit Exits	NetLogo.	On	a	Mac,	this	item	is	on	the	NetLogo	menu	instead.

Edit

Undo Undo	last	text	editing	action	you	performed.

Redo Redo	last	undo	action	you	performed.

Cut Cuts	out	or	removes	the	selected	text	and	temporarily	saves	it	to	the
clipboard.

Copy Copies	the	selected	text.

dictionary#import-pcolors
dictionary#import-pcolors-rgb
dictionary#import-drawing

Paste Places	the	clipboard	text	where	cursor	is	currently	located.

Delete Deletes	selected	text.

Select	All Select	all	the	text	in	the	active	window.

Find… Finds	a	word	or	sequence	of	characters	within	the	Info	or	Code	tabs.

Find	Next Find	the	next	occurrence	of	the	word	or	sequence	you	last	used	Find
with.

Comment	/	
Uncomment

Used	in	the	Code	tab	to	add	or	remove	semicolons	from	code
(semicolons	are	used	in	NetLogo	code	to	indicate	comments).

Shift	Left	/	Shift
Right Used	in	the	Code	tab	to	change	the	indentation	level	of	code.

Format Used	in	the	Code	tab	to	correct	the	indentation	of	the	currently	selected
code.

Snap	to	Grid
Available	only	in	the	Interface	Tab.	When	enabled	new	widgets	stay	on
a	5	pixel	grid	so	it	is	easier	to	line	them	up.	(Note:	this	feature	is	disabled
when	zoomed	in	or	out.)

Convert	from
5.3.1	to	6.0

Available	only	in	an	".nls"	code	tab.	Treats	the	code	in	this	tab	as	though
it	were	written	in	5.3.1	and	converts	it	to	run	in	NetLogo	6.	Note	that	this
will	not	take	into	account	code	defined	in	the	main	code	tab.	"Undo"
doesn't	take	this	operation	into	account,	so	you	won't	want	to	save
unless	you're	satisfied	with	the	changes.

Tools

Preferences… Opens	the	preferences	dialog,	where	you	can	customize	various
NetLogo	settings.	On	a	Mac,	this	item	is	on	the	NetLogo	menu	instead.

Halt

Stops	all	running	code,	including	buttons	and	the	command	center.
(Warning:	since	the	code	is	interrupted	in	the	middle	of	whatever	it	was
doing,	you	may	get	unexpected	results	if	you	try	to	continue	running	the
model	without	first	pressing	"setup"	to	start	the	model	run	over.)

Globals
Monitor Displays	the	values	of	all	global	variables.

Turtle	Monitor

Displays	the	values	of	all	of	the	variables	in	a	particular	turtle.	You	can
can	also	edit	the	values	of	the	turtle's	variables	and	issue	commands	to
the	turtle.	(You	can	also	open	a	turtle	monitor	via	the	View;	see	the	View
section	below.)

Patch	Monitor

Displays	the	values	of	all	of	the	variables	in	a	particular	patch.	You	can
can	also	edit	the	values	of	the	patch's	variables	and	issue	commands	to
the	patch.	(You	can	also	open	a	patch	monitor	via	the	View;	see	the
View	section	below.)

Link	Monitor

Displays	the	values	of	all	of	the	variables	in	a	particular	link.	You	can
can	also	edit	the	values	of	the	link's	variables	and	issue	commands	to
the	link.	(You	can	also	open	a	link	monitor	via	the	View;	see	the	View
section	below.)

Close	All
Agent	MonitorsCloses	all	open	agent	monitor	windows.

Close	Monitors
for	Dead
Agents

Closes	all	open	agent	monitor	windows	targeting	dead	agents.

Hide/Show
Command
Center

Makes	the	command	center	visible	or	invisible.	(Note	that	the	command
center	can	also	be	shown	or	hidden,	or	resized,	with	the	mouse.)	This
option	is	only	available	when	the	Interface	Tab	is	active

3D	View Opens	the	3D	view.	See	the	Views	section	for	more	information.

Color
Swatches

Opens	the	Color	Swatches.	See	the	Color	Section	of	the	Programming
Guide	for	details.

Turtle	Shapes
Editor Draw	turtle	shapes.	See	the	Shapes	Editor	Guide	for	more	information.

Link	Shapes
Editor Draw	link	shapes.	See	the	Shapes	Editor	Guide	for	more	information.

BehaviorSpaceRuns	the	model	over	and	over	with	different	settings.	See	the
BehaviorSpace	Guide	for	more	information.

System
Dynamics
Modeler

Opens	the	System	Dynamics	Modeler.	See	the	System	Dynamics
Modeler	Guide	for	more	details.

Preview
Commands
Editor

Allows	for	easy	editing	of	the	commands	sequence	used	to	create
preview	images	for	models.	Gives	a	way	to	specify	what	code	will	be
used	(or	specify	that	the	image	is	manually	made)	and	preview	the
resulting	image.

HubNet	Client
Editor

Opens	the	HubNet	Client	Editor.	See	the	HubNet	Authoring	Guide	for
more	details.

HubNet
Control	Center

Disabled	if	no	HubNet	activity	is	open.	See	the	HubNet	Guide	for	more
information.

Zoom

Larger Increase	the	overall	screen	size	of	the	model.	Useful	on	large	monitors
or	when	using	a	projector	in	front	of	a	group.

Normal	Size Reset	the	screen	size	of	the	model	to	the	normal	size.

Smaller Decrease	the	overall	screen	size	of	the	model.

Tabs
This	menu	offers	keyboard	shortcuts	for	each	of	the	tabs.	On	a	Mac,	it's
Command	1	through	Command	3.	On	Windows,	it's	Control	1	through
Control	3.	Additional	numbers	are	used	for	tabs	containing	".nls"	files.

Help

Look	Up	In
Dictionary

Opens	a	browser	with	the	dictionary	entry	for	the	selected	command	or
reporter.	(You	may	also	use	the	F1	key	for	this.)

NetLogo	User
Manual Opens	this	manual	in	a	web	browser.

NetLogo
Dictionary Opens	the	NetLogo	Dictionary	in	a	web	browser.

NetLogo	Users
Group Opens	the	NetLogo	Users	Group	site	in	a	web	browser.

Introduction	to
Agent-Based
Modeling

Opens	the	MIT	Press	page	for	"Introduction	to	Agent-Based	Modeling"
(by	Uri	Wilensky	and	William	Rand)	in	a	web	browser.

Donate Opens	the	NetLogo	donation	page	in	a	web	browser.

About	NetLogo
6.0.2…

Information	on	the	current	NetLogo	version	you	are	running.	On	a	Mac,
this	menu	item	is	on	the	NetLogo	menu	instead.

Tabs

At	the	top	of	NetLogo's	main	window	are	three	tabs	labeled	"Interface",	"Info"	and	"Code"	.	Only
one	tab	at	a	time	can	be	visible,	but	you	can	switch	between	them	by	clicking	on	the	tabs	at	the
top	of	the	window.

Right	below	the	row	of	tabs	is	a	toolbar	containing	a	row	of	controls.	The	controls	available	vary
from	tab	to	tab.

International	Usage

Character	sets

NetLogo	always	saves	and	loads	models	in	the	UTF-8	character	encoding,	which	includes	a
wide	range	of	international	characters.

If	you	are	in	a	locale	other	than	U.S.	English,	let	us	know	if	you	have	any	trouble	using	your	local

character	set.

The	Transition	Guide	has	advice	on	converting	models	containing	international	characters	from
earlier	NetLogo	versions.

Languages

Most	of	NetLogo's	GUI,	and	some	of	its	error	messages,	are	now	"internationalized".	This
means	that	it	is	now	possible	to	display	NetLogo	in	different	languages.

We	say	"possible"	here	because	the	current	release	of	NetLogo	only	supports	English,	Spanish,
Chinese,	Russian,	and	Japanese.

The	work	on	internationalization	is	not	complete.	We	are	asking	for	help	from	the	user
community	in	helping	us	localize	items	such	as	the	menus	and	error	messages.

Default	language

By	default,	NetLogo	uses	the	same	language	your	operating	system	is	set	to,	if	available.	(If
unavailable,	you	get	English.)

You	can	record	a	preference	for	a	different	language	by	changing	the	"User	Interface	Language"
option	in	the	preferences	dialog.	Once	a	new	language	is	chosen	you	will	have	to	restart
NetLogo.

Support	for	translators

We	hope	NetLogo	will	become	available	in	many	different	languages.	If	you	would	like	to
translate	NetLogo	to	your	language,	see	this	wiki	page	for	instructions.

https://github.com/NetLogo/NetLogo/wiki/Localization

Interface	Tab	Guide

The	Interface	tab	is	where	you	watch	your	model	run.	It	also	has	tools	you	can	use	to	inspect	and	alter
what's	going	on	inside	the	model.

When	you	first	open	NetLogo,	the	Interface	tab	is	empty	except	for	the	view,	where	the	turtles	and
patches	appear,	and	the	Command	Center,	which	allows	you	to	issue	NetLogo	commands.

Working	with	interface	elements
The	2D	and	3D	views
Command	Center
Plots
Sliders
Agent	monitors

Working	with	interface	elements

The	toolbar	on	the	Interface	tab	contains	buttons	that	let	you	edit,	delete,	and	create	items	in	the
Interface	tab	and	a	menu	that	lets	you	select	different	interface	items	(such	as	buttons	and	sliders).

The	buttons	in	the	toolbar	are	described	below.

Adding:	To	add	an	interface	element,	select	the	element	from	the	drop	down	menu.	Note	that	the	Add
button	stays	down.	Then	click	on	the	white	area	below	the	toolbar.	(If	the	menu	is	already	showing	the
right	type,	you	can	just	press	the	Add	button	instead	of	using	the	menu	again.)

Selecting:	To	select	an	interface	element,	drag	a	rectangle	around	it	with	your	mouse.	A	gray	border
with	black	handles	will	appear	around	the	element	to	show	it	is	selected.

Selecting	multiple	items:	You	can	select	multiple	interface	elements	at	the	same	time	by	including
them	in	the	rectangle	you	drag.	If	multiple	elements	are	selected,	one	of	them	is	the	"key"	item,	which
means	that	if	you	use	the	"Edit"	or	"Delete"	buttons	on	the	Interface	Toolbar,	only	the	key	item	is
affected.	The	key	item's	border	is	darker	gray.

Unselecting:	To	unselect	all	interface	elements,	click	the	mouse	on	the	white	background	of	the
Interface	tab.	To	unselect	an	individual	element,	right-click	the	element	and	choose	"Unselect"	from	the
popup	menu.

Editing:	To	change	the	characteristics	of	an	interface	element,	select	the	element,	then	press	the	"Edit"
button	on	the	Interface	toolbar.	You	may	also	double	click	the	element	once	it	is	selected.	A	third	way	to
edit	an	element	is	to	right-click	it	and	choose	"Edit"	from	the	popup	menu.	If	you	use	this	last	method,	it	is
not	necessary	to	select	the	element	first.

Moving:	Select	the	interface	element,	then	drag	it	with	your	mouse	to	its	new	location.	If	you	hold	down
the	shift	key	while	dragging,	the	element	will	move	only	straight	up	and	down	or	straight	left	and	right.

Resizing:	Select	the	interface	element,	then	drag	the	black	"handles"	in	the	selection	border.

Deleting:	Select	the	element	or	elements	you	want	to	delete,	then	press	the	"Delete"	button	on	the

Interface	toolbar.	You	may	also	delete	an	element	by	right-clicking	it	and	choosing	"Delete"	from	the
popup	menu.	If	you	use	this	latter	method,	it	is	not	necessary	to	select	the	element	first.

To	learn	more	about	the	different	kinds	of	interface	elements,	refer	to	the	chart	below.

Chart:	Interface	Toolbar

Icon	&	Name Description
A	button	is	either	once	or	forever.	When	you	click	on	a	once	button,	it	executes	its
instructions	once.	The	forever	button	executes	the	instructions	over	and	over,	until
you	click	on	the	button	again	to	stop	the	action.	If	you	have	assigned	an	action	key
to	the	button,	pressing	the	corresponding	keyboard	key	will	act	just	like	a	button
press	when	the	button	is	in	focus.	Buttons	with	action	keys	have	a	letter	in	the	upper
right	corner	of	the	button	to	show	what	the	action	key	is.	If	the	keyboard	focus	is	in
another	interface	element	such	as	the	Command	Center,	pressing	the	action	key
won't	trigger	the	button.	The	letter	in	the	upper	right	hand	corner	of	the	button	will	be
dimmed	in	this	situation.	To	enable	action	keys,	click	in	the	white	background	of	the
Interface	tab.

Sliders	are	global	variables,	which	are	accessible	by	all	agents.	They	are	used	in
models	as	a	quick	way	to	change	a	variable	without	having	to	recode	the	procedure
every	time.	Instead,	the	user	moves	the	slider	to	a	value	and	observes	what
happens	in	the	model.

Switches	are	a	visual	representation	for	a	true/false	global	variable.	You	may	set	the
variable	to	either	on	(true)	or	off	(false)	by	flipping	the	switch.

Choosers	let	you	choose	a	value	for	a	global	variable	from	a	list	of	choices,
presented	in	a	drop	down	menu.	The	choices	may	be	strings,	numbers,	booleans,	or
lists.

Input	Boxes	are	global	variables	that	contain	strings	or	numbers.	The	model	author
chooses	what	types	of	values	you	can	enter.	Input	boxes	can	be	set	to	check	the
syntax	of	a	string	for	commands	or	reporters.	Number	input	boxes	read	any	type	of
constant	number	reporter	which	allows	a	more	open	way	to	express	numbers	than	a
slider.	Color	input	boxes	offer	a	NetLogo	color	chooser.

Monitors	display	the	value	of	any	reporter.	The	reporter	could	be	a	variable,	a
complex	reporter,	or	a	call	to	a	reporter	procedure.	Monitors	automatically	update
several	times	per	second.

Plots	show	data	the	model	is	generating.

The	output	area	is	a	scrolling	area	of	text	which	can	be	used	to	create	a	log	of
activity	in	the	model.	A	model	may	only	have	one	output	area.

Notes	lets	you	add	informative	text	labels	to	the	Interface	tab.	The	contents	of	notes
do	not	change	as	the	model	runs.

The	other	controls	in	the	Interface	toolbar	allow	you	to	control	the	view	updates	and	various	other	model
properties.

The	slider	lets	you	control	how	fast	the	model	runs.	Slower	can	be	valuable	since	some	models	run
so	fast	they're	hard	to	follow.	You	can	also	fast-forward	the	model	by	moving	the	slider	to	the	right,
reducing	the	frequency	of	view	updates.
The	view	updates	checkbox	controls	whether	view	updates	happen	at	all.
The	update	mode	menu	allows	you	to	switch	between	continuous	and	tick-based	updates.
The	"Settings..."	button	allows	you	to	change	model	settings.

"Continuous"	updates	means	that	NetLogo	updates	(that	is,	redraws)	the	view	many	times	a	second,

regardless	of	what	is	going	on	in	the	model.	"Tick-based"	updates	means	that	the	view	only	updates
when	the	tick	counter	advances.	(For	a	fuller	discussion	of	view	updates,	see	the	Programming	Guide.)

The	2D	and	3D	views

The	large	black	square	in	the	Interface	tab	is	the	2D	view.	It's	a	visual	representation	of	the	NetLogo
world	of	turtles	and	patches.	Initially	it's	all	black	because	the	patches	are	black	and	there	are	no	turtles
yet.	You	can	open	the	3D	View,	an	alternate	visual	representation	of	the	world,	by	right	clicking	(ctrl-
clicking	on	Mac)	on	the	View	and	choosing	"Switch	to	3D	View"	(this	option	is	also	available	in	the
"Tools"	menu).

There	are	a	number	of	settings	for	the	View	(accessible	by	editing	the	View,	or	by	pressing	the
"Settings..."	button	in	the	Interface	Toolbar):

Notice	that	the	settings	are	broken	up	into	three	groups.	There	are	world,	view,	and	ticks	counter
settings.	World	settings	affect	the	properties	of	the	world	that	the	turtles	live	in	(changing	them	may
require	resetting	the	world).	View	and	tick	counter	settings	only	affect	the	appearance,	changing	them
will	not	affect	the	outcome	of	the	model.

The	world	settings	allow	you	to	define	the	boundaries	and	topology	of	the	world.	At	the	top	of	the	left
side	of	the	world	panel	you	can	choose	a	location	for	the	origin	of	the	world	either	"Center",	"Corner",
"Edge",	or	"Custom".	By	default	the	world	has	a	center	configuration	where	(0,0)	is	at	the	center	of	the
world	and	you	define	the	number	of	patches	from	the	center	to	the	right	and	left	boundaries	and	the
number	of	patches	from	the	center	to	the	top	and	bottom	boundaries.	For	example:	if	you	set	Max-Pxcor
=	10,	then	Min-Pxcor	will	automatically	be	set	to	-10,	thus	there	are	10	patches	to	the	left	of	the	origin
and	10	patches	to	the	right	of	patch	0	0,	for	a	total	of	21	patches	in	each	row.

A	Corner	configuration	allows	you	to	define	the	location	of	the	origin	as	one	of	the	corners	of	the	world,
upper	left,	upper	right,	lower	left,	or	lower	right.	Then	you	define	the	far	boundary	in	the	x	and	y
directions.	For	example	if	you	choose	to	put	the	origin	in	the	lower	left	corner	of	the	world	you	define	the
right	and	top	(positive)	boundaries.

Edge	mode	allows	you	to	place	the	origin	along	one	of	the	edges	(x	or	y)	then	define	the	far	boundary	in
that	direction	and	both	boundaries	in	the	other.	For	example	if	you	select	edge	mode	along	the	bottom	of
the	world,	you	must	also	define	the	top	boundary,	as	well	as	the	left	and	the	right.

Finally,	Custom	mode	allows	you	to	place	the	origin	at	any	location	in	the	world,	though	patch	0	0	must
still	exist	in	the	world.

As	you	change	the	settings	you	will	notice	that	the	changes	you	make	are	reflected	in	the	preview	on	the
right	side	of	the	panel	which	shows	the	origin	and	the	boundaries.	The	width	and	height	of	the	world	are
displayed	below	the	preview.

Also	below	the	preview	there	are	two	checkboxes,	the	world	wrap	settings.	These	allow	you	to	control
the	topology	of	the	world.	Notice	when	you	click	the	check	boxes	the	preview	indicates	which	directions
allow	wrapping,	and	the	name	of	the	topology	is	displayed	next	to	the	world	dimensions.	See	the
Topology	section	of	the	Programming	Guide	for	more	information.

The	view	settings	allow	you	to	customize	the	look	of	the	view	without	changing	the	world.	Changing	view
settings	will	never	force	a	world	reset.	To	change	the	size	of	the	2D	View	adjust	the	"Patch	Size"	setting,
measured	in	pixels.	This	does	not	change	the	number	of	patches,	only	how	large	the	patches	appear	in
the	2D	View.	(Note	that	the	patch	size	does	not	affect	the	3D	View,	as	you	can	simply	make	the	3D	View
larger	by	making	the	window	larger.)

The	font	size	setting	lets	you	control	the	size	of	turtle,	patch,	and	link	labels.

The	frame	rate	controls	how	often	the	view	gets	updated.	This	can	have	a	dramatic	effect	on	the	default
speed	at	which	a	model	runs.	For	more	details,	see	the	view	updates	section	of	the	Programming	Guide.

The	"Smooth	edges"	checkbox	controls	the	use	of	anti-aliasing	in	the	3D	view	only	and	only	appears
when	editing	from	the	3D	view.	Unchecking	it	makes	lines	appear	more	jagged	but	may	speed	up
rendering.

Tick	counter	settings	control	the	appearance	of	the	tick	counter	which	is	visible	(or	not)	in	the	view
control	strip.

Turtle,	patch	and	link	monitors	are	easily	available	through	the	View,	just	right-click	on	the	turtle	or	patch
you	want	to	inspect,	and	choose	"inspect	turtle	..."	or	"inspect	patch	..."	from	the	popup	menu.	You	can
also	watch,	follow	or	ride	a	turtle	by	selecting	the	appropriate	item	in	the	turtle	sub-menu.	(Turtle,	patch
and	link	monitors	can	also	be	opened	from	the	Tools	menu	or	by	using	the	inspect	command.)

Some	NetLogo	models	let	you	interact	with	the	turtles	and	patches	with	your	mouse	by	clicking	and
dragging	in	the	View.

Manipulating	the	3D	View

At	the	bottom	of	the	window	there	are	buttons	to	move	the	observer,	or	change	the	perspective	from
which	you	are	looking	at	the	world.

A	blue	cross	appears	at	the	current	focus	point	as	you	adjust	these	settings.	The	little	blue	triangle	will
always	point	along	the	y-axis	in	the	positive	direction,	so	you	can	orient	yourself	in	case	you	get	lost.

To	look	at	the	world	from	a	different	angle,	press	the	"rotate"	button,	then	click	and	drag	the	mouse.	The
observer	will	continue	to	face	the	same	point	as	before	(where	the	blue	cross	is)	but	its	position	in	the
relation	to	the	xy-plane	will	change.

To	move	closer	or	farther	away	from	the	world	or	the	agent	you	are	watching,	following	or	riding,	press
the	"zoom"	button	and	drag	up	and	down.	Note	when	you	are	in	follow	or	ride	mode	zooming	will	switch
you	between	ride	and	follow,	since	ride	is	just	a	special	case	of	follow	where	the	distance	at	which	you
are	following	is	0.

To	change	the	position	of	the	observer	without	changing	the	direction	it	is	facing	select	the	"move"
button	and	drag	the	mouse	inside	the	3D	View	while	holding	down	the	mouse	button.

To	allow	the	mouse	position	and	state	to	be	passed	to	the	model	select	the	"interact"	button	and	it	will
function	just	as	the	mouse	does	in	the	2D	view.

To	return	the	observer	and	focus	point	to	their	default	positions	press	the	"Reset	Perspective"	button	(or
use	the	reset-perspective	command).

Fullscreen	Mode

To	enter	fullscreen	mode,	press	the	"Full	Screen"	button,	to	exit	fullscreen	mode,	press	the	Esc	key.

Note:	Fullscreen	mode	doesn't	work	on	every	computer.	It	depends	on	your	graphics	card.	See	the
System	Requirements	for	details.

3D	Shapes

Some	shapes	are	automatically	mapped	to	true	3D	counterparts	in	the	3D	view.	For	example,	the	2D
circle	shape	becomes	a	sphere	in	the	3D	view.
Shape	name 3D	shape
default 3D	turtle	shape
circle sphere
dot small	sphere
square cube
triangle cone
line 3D	line
cylinder 3D	cylinder
line-half 3D	line-half
car 3D	car

All	other	shapes	are	based	on	their	2D	forms.	If	a	shape	is	a	rotatable	shape,	it	is	assumed	to	be	a	top
view	and	it	is	extruded	as	if	through	a	cookie	cutter	and	oriented	parallel	to	the	xy-plane,	as	in	Ants.

Or,	if	a	shape	is	non-rotatable,	it	is	assumed	to	be	a	side	view,	and	it	is	drawn	always	facing	the
observer,	as	in	Wolf	Sheep	Predation.

Command	Center

The	Command	Center	allows	you	to	issue	commands	directly,	without	adding	them	to	the	model's
procedures.	This	is	useful	for	inspecting	and	manipulating	agents	on	the	fly.

(Tutorial	#2:	Commands	is	an	introduction	to	using	commands	in	the	Command	Center.)

Let's	take	a	look	at	the	design	of	the	Command	Center.

The	smaller	box,	below	the	large	box,	is	where	you	type	a	command.	After	typing	it	press	the	Return	or
Enter	key	to	run	it.

To	the	left	of	where	you	type	is	a	popup	menu	that	initially	says	"observer>".	You	can	choose	either
observer,	turtles,	or	patches,	to	specify	which	agents	run	the	command	you	type.

Tip:	a	quicker	way	to	change	agent	types	is	to	use	the	Tab	key.

Reporters

If	you	enter	a	reporter	into	the	Command	Center,	the	show	command	will	be	inserted	before	it
automatically.

Accessing	previous	commands

After	you	type	a	command,	it	appears	in	the	large	scrolling	box	above	the	command	line.	You	can	use
Copy	on	the	Edit	menu	in	this	area	to	copy	commands	and	then	paste	them	elsewhere,	such	as	the
Code	tab.

You	can	also	access	previous	commands	using	the	history	popup,	which	is	the	small	downward	pointing
triangle	to	the	right	of	where	you	type	commands.	Click	on	the	triangle	and	a	menu	of	previously	typed
commands	appears,	so	you	can	pick	one	to	use	again.

Tip:	a	quicker	way	to	access	previous	commands	is	with	the	up	and	down	arrow	keys	on	your	keyboard.

Clearing

To	clear	the	large	scrolling	area	containing	previous	commands	and	output,	click	"clear"	in	the	top	right
corner.

To	clear	the	history	popup	menu,	choose	"Clear	History"	on	that	menu.

Arranging

You	can	hide	and	show	the	command	center	using	the	Hide	Command	Center	and	Show	Command
Center	items	on	the	Tools	menu.

To	resize	the	command	center,	drag	the	bar	that	separates	it	from	the	model	interface.	Or,	click	one	of
the	little	arrows	on	the	right	end	of	the	bar	to	make	the	command	center	either	very	big	or	hidden
altogether.

To	switch	between	a	vertical	command	center	and	a	horizontal	one,	click	the	button	with	the	double-
headed	arrow,	just	to	the	left	of	"Clear".

Plots

When	the	mouse	pointer	is	over	the	white	area	of	a	plot,	the	x	and	y	coordinates	of	the	mouse	location
appear.	(Note	that	the	mouse	location	might	not	correspond	exactly	to	any	actual	data	points	in	the	plot.
If	you	need	to	know	the	exact	coordinates	of	plotted	points,	use	the	Export	Plot	menu	item	and	inspect
the	resulting	file	in	another	program.)

When	you	create	a	plot,	as	with	all	widgets,	the	edit	dialog	automatically	appears.

Many	of	the	fields	are	fairly	self-explanatory,	such	as	the	name	of	the	plot,	labels	for	the	x	and	y	axes,
ranges	for	the	axes,	and	the	"Show	legend?"	checkbox.

If	Auto	Scale?	is	checked	the	x	and	y	changes	will	automatically	readjust	as	points	are	added	to	the	plot
if	they	are	outside	the	current	range.

Under	"Plot	setup	commands"	and	"Plot	update	commands"	you	can	enter	commands	that	will
automatically	be	run	at	appropriate	times.	Click	the	little	triangle	to	open	the	text	box	for	the	commands.
Plot	commands	are	explained	in	more	detail	in	the	Plotting	section	of	the	Programming	Guide.

Plot	Pens

In	the	plot	pens	section	of	the	dialog,	you	can	create	and	customize	your	plot's	pens.	Each	table	row
represents	a	pen.	By	default	there	is	one	pen	named	"default".	(You	may	wish	to	change	it	to	a	name	that
has	meaning	in	your	model.)

To	edit	the	color	of	a	pen	click	the	colored	rectangle	to	the	left	of	the	pen's	name.	This	will	bring	up	a
dialog	that	allows	you	to	set	the	color	to	one	of	the	NetLogo	base	hues	or	a	custom	color	using	the	color
swatches.

To	edit	the	pen's	name,	double	click	the	name.

In	the	"Pen	Update	Commands"	column	you	can	enter	commands	that	will	be	run	when	reset-ticks,
tick,	or	update-plots	commands	are	run.	This	is	explained	in	more	detail	in	the	Plotting	section	of	the
Programming	Guide.

The	last	column	has	two	buttons.	Clicking	the	pencil	icon	will	bring	up	an	edit	dialog	with	additional	pen
settings.	The	trash	can	button	deletes	the	pen.

Plot	Pen	Advanced	Settings

Clicking	a	pen's	edit	button	will	open	this	dialog:

Mode	allows	you	to	change	the	appearance	of	the	plot	pen:	line,	bar	(for	a	bar	chart),	or	point	(a
scatter	plot	of	individual	points).
Interval	is	the	amount	by	which	x	advances	every	time	you	use	the	plot	command.
If	the	"Show	in	legend"	checkbox	is	checked	the	selected	pen	will	be	a	part	of	the	legend	in	the
upper	right	hand	corner	of	the	plot.
In	the	"Setup	commands"	field	you	can	enter	commands	that	will	be	run	when	reset-ticks	or
setup-plots	runs.
In	the	"Update	commands"	field	you	can	enter	commands	that	will	be	run	when	tick	or	update-
plots	runs.	This	field	reappears	in	the	advanced	dialog	to	provide	space	for	editing	lengthier	sets
of	commands.

For	more	detailed	information	on	how	each	of	these	features	works	you	can	see	the	Plotting	Section	of
the	Programming	Guide.

Sliders

A	slider	has	an	associated	global	variable.	Moving	the	slider	changes	the	variable's	value.

When	you	place	a	slider	in	the	Interface	tab	the	edit	dialog	automatically	opens,	as	with	all	widgets.	Most
of	the	fields	will	be	familiar.	However,	it	is	important	to	notice	the	minimum,	maximum	and	increment
fields	will	take	any	reporter,	not	just	constants.	So,	for	example,	you	could	make	the	minimum	min-pxcor
and	the	maximum	max-pxcor	and	the	slider	bounds	will	automatically	adjust	when	you	change	the	size	of
the	world.

Agent	Monitors

Agent	monitors	display	both	the	values	of	all	the	variables	for	a	particular	agent	and	a	mini-view	that

shows	the	agent	and	a	small	area	around	it.

You	can	open	agent	monitors	through	the	Tools	menu	or	the	inspect	command.

You	can	zoom	in	or	out	using	the	slider	beneath	the	view	and	you	can	watch	the	agent	in	the	main	view
using	the	watch-me	button.

Below	the	slider	the	current	value	of	each	agent	variable	is	displayed.	You	can	enter	a	new	value.	It	will
be	as	if,	for	example,	the	code	set pcolor ...	had	run.

Below	the	agent	variable	area	there	is	a	mini-command	center.	Rather	than	running	code	as	the
observer,	or	talking	to	all	of	the	turtles,	patches,	or	links,	the	code	entered	in	this	command	center	is	run
only	by	this	agent.

You	can	close	an	agent	monitor	by	clicking	the	box	in	the	upper	left	corner,	or	by	pressing	the	Esc	key.	If
you	hold	down	shift	while	you	click	the	box	all	open	agent	monitors	will	close	or	you	can	close	all	the
agent	monitors	using	the	"Close	All	Monitors"	option	in	the	Tools	Menu.

Info	Tab

The	Info	tab	provides	an	introduction	to	a	model.	It	explains	what	system	is	being	modeled,	how
the	model	was	created,	and	and	how	to	use	it.	It	may	also	suggest	things	to	explore	and	ways	to
extend	the	model,	or	call	your	attention	to	particular	NetLogo	features	the	model	uses.

You	may	wish	to	read	the	Info	tab	before	starting	a	model.

Editing

The	normal,	formatted	view	of	the	Info	tab	is	not	editable.	To	make	edits,	click	the	"Edit"	button.
When	done	editing,	click	the	"Edit"	button	again.

You	edit	the	Info	tab	as	unformatted	plain	text.	When	you're	done	editing,	the	plain	text	you
entered	is	displayed	in	a	more	attractive	format.

To	control	how	the	formatted	display	looks,	you	use	a	"markup	language"	called	Markdown.	You
may	have	encountered	Markdown	elsewhere;	it	is	used	on	a	number	of	web	sites.	(There	are
other	markup	languages	in	use	on	the	web;	for	example,	Wikipedia	used	a	markup	language
called	MediaWiki.	Markup	languages	differ	in	details.)

The	remainder	of	this	guide	is	a	tour	of	Markdown.

Headings
Paragraphs
Italicized	and	bold	text
Ordered	lists
Unordered	lists
Links
Images
Block	quotations
Code
Code	blocks
Superscripts	and	subscripts
Notes	on	usage
Other	features

Headings

A	heading	begins	with	one	or	more	hash	marks	(#).	First	level	headings	get	one	hash,	second
level	headings	get	two,	and	so	on	up	to	four	levels.

Input

First-level heading

Second-level heading

Third-level heading

Fourth-level heading

Paragraphs

Example

This is a paragraph. There are no spaces before the word 'This'.

This is another paragraph. The first line has two sentences.
The entire paragraph has two lines and three sentences.

Line breaks in the input,
Make line breaks in the output,
Like this.

Formatted

This	is	a	paragraph.	There	are	no	spaces	before	the	word	'This'.

This	is	another	paragraph.	The	first	line	has	two	sentences.	The	entire	paragraph	has	two	lines
and	three	sentences.

Line	breaks	in	the	input,	Make	line	breaks	in	the	output,	Like	this.

Italicized	and	bold	text

Example

For italics, surround text with underscores:
hello, world.

For bold, surround text with two asterisks:
hello, world.

You can also combine them:
**hello** and **_goodbye_**

Formatted

For	italics,	surround	text	with	underscores:	hello,	world.

For	bold,	surround	text	with	two	asterisks:	hello,	world.

You	can	also	combine	them:	hello	and	goodbye

Ordered	lists

Example

We are about to start an ordered list.

 1. Ordered lists are indented 2 spaces.
 1. Subitems are indented 2 more spaces (4 in all).
 2. The next item in the list starts with the next number.
 3. And so on...

Formatted

We	are	about	to	start	an	ordered	list.

1.	 Ordered	lists	are	indented	2	spaces.
1.	 Subitems	are	indented	2	more	spaces	(4	in	all	for	a	second	level	item).

2.	 The	next	item	in	the	list	starts	with	the	next	number.
3.	 And	so	on…

Unordered	lists

Example

We are about to start an unordered list.

 * Like ordered lists, unordered lists are also indented 2 spaces.
 * Unlike ordered lists, unordered lists use stars instead of numbers.
 * Sub items are indented 2 more spaces.
 * Here's another sub item.

Formatted

We	are	about	to	start	an	unordered	list.

Like	ordered	lists,	unordered	lists	are	also	indented	2	spaces.
Unlike	ordered	lists,	unordered	lists	use	stars	instead	of	numbers.

Sub	items	are	indented	2	more	spaces.
Here's	another	sub	item.

Links

Automatic	links

The	simplest	way	to	create	a	link	is	to	just	type	it	in:

Example

http://ccl.northwestern.edu/netlogo/

Formatted

http://ccl.northwestern.edu/netlogo/

Links	with	text

If	you	want	to	use	your	own	text	for	the	link,	here's	how:

[link text here](link.address.here)

Example

[NetLogo](http://ccl.northwestern.edu/netlogo/)

http://ccl.northwestern.edu/netlogo/

Formatted

NetLogo

Local	links

It	is	also	possible	to	link	to	a	page	on	your	computer,	instead	of	a	page	somewhere	on	the
Internet.

Local	links	have	this	form:

[alt text](file:path)

Any	spaces	in	the	path	must	be	converted	to	%20.	For	example,	this:

file:my page.html

must	be	written	as:

file:my%20page.html

The	path	is	relative	to	the	directory	that	the	model	file	is	in.

Example

The	easiest	way	to	link	to	files	on	your	computer	is	to	put	them	into	the	same	directory	as	your
model.	Assuming	you	have	a	file	named	index.html	in	the	same	directory	as	your	model,	the	link
would	look	like	this:

[Home](file:index.html)

Example

Here	is	another	example	where	the	file	lives	in	a	directory	called	docs,	and	docs	is	in	the	same
directory	as	your	model:

[Home](file:docs/index.html)

Images

Images	are	very	similar	to	links,	but	have	an	exclamation	point	in	front:

![alt text](http://location/of/image)

(The	alternate	text	is	the	text	that	gets	displayed	if	the	image	is	not	found.)

Example

![NetLogo](http://ccl.northwestern.edu/netlogo/images/netlogo-title-new.jpg)

http://ccl.northwestern.edu/netlogo/

Formatted

Local	images

Also	very	similar	to	links,	it	is	possible	to	display	an	image	on	your	computer	instead	of	an	image
somewhere	on	the	Internet.	Assuming	you	have	an	image	named	image.jpg,	local	images	look
like	this:

![alt text](file:path)

The	path	is	relative	to	the	directory	that	the	model	file	is	in.

As	with	local	links,	any	spaces	in	the	name	of	the	file	or	the	path	must	be	converted	to	%20.

Example

Like	local	links,	the	easiest	way	to	display	images	on	your	computer	is	to	put	them	into	the	same
directory	as	your	model.	This	example	displays	the	image	"Perspective	Example.png",	which
resides	in	the	same	directory	as	this	model	(Info	Tab	Example).

![Example](file:Perspective%20Example.png)

Formatted

Block	quotations

Consecutive	lines	starting	with	>	will	become	block	quotations.	You	can	put	whatever	text	you	like
inside	of	it	and	you	can	also	style	it.

Example

> Let me see: four times five is twelve, and four times six is thirteen,
> and four times seven is --- _oh dear!_
> I shall never get to twenty at that rate!

Formatted

Let	me	see:	four	times	five	is	twelve,	and	four	times	six	is	thirteen,	and	four	times
seven	is	--	oh	dear!	I	shall	never	get	to	twenty	at	that	rate!

Code

To	include	a	short	piece	of	code	in	a	sentence,	surround	it	with	backticks	(`).

Example

You can create a single turtle with the `crt 1` command.

Formatted

You	can	create	a	single	turtle	with	the	crt 1	command.

Code	blocks

It	is	also	possible	to	have	blocks	of	code.	To	create	a	code	block,	indent	every	line	of	the	block	by
4	spaces.	Another	way	is	to	surround	it	with	a	three	backticks	line	before	and	after	the	block.	(If
you	don't	want	your	code	to	be	colored	as	NetLogo	code,	add	text	after	the	first	three	backticks.)

Example

About to start the code block.
Leave a blank line after this one, and then put the code block:

 ; a typical go procedure
 to go
 ask turtles
 [fd 1]
 tick
 end

or:

About to start the code block.
Leave a blank line after this one, and then put the code block:

```
; a typical go procedure
to go
  ask turtles
    [ fd 1 ]
  tick
end
```

Formatted

About	to	start	the	code	block.	Leave	a	blank	line	after	this	one,	and	then	put	the	code	block:

; a typical go procedure
to go
 ask turtles
 [fd 1]
 tick
end

Superscripts	and	subscripts

Superscripts	and	subscripts	are	useful	for	writing	formulas,	equations,	footnotes	and	more.
Subscripts	appear	half	a	character	below	the	baseline,	and	are	written	using	the	HTML	tag	<sub>.
Superscripts	appear	half	a	character	above	the	baseline,	and	are	written	using	the	HTML	tag
<sup>.

Example

H₂O

2x⁴ + x²

WWW^[1]

Formatted

H2O

2x4	+	x2	+	42

WWW[1]

Notes	on	usage

Paragraphs,	lists,	code	blocks	and	other	features	should	be	separated	from	each	other	with
a	blank	line.	If	you	find	that	something	isn't	formatted	the	way	you	expected,	it	might	be
because	you	need	to	add	a	blank	line	before	it.

To	prevent	a	special	character	from	being	treated	as	markup,	put	a	backslash	(\)	before	it.

We	use	GitHub	flavored	newlines	(https://github.github.com/github-flavored-markdown/)
instead	of	traditional	Markdown	handling	of	newlines.	This	means	that	newlines	are	treated
as	real	line	breaks,	instead	of	being	combined	with	the	previous	line	into	a	single	paragraph.

Other	features

Markdown	has	additional	features	that	we	have	not	shown	here.

We	have	tested	the	features	shown	above	on	a	variety	of	systems.	If	you	use	other	Markdown
features,	you	may	find	that	they	work	on	your	computer,	or	not.	Even	a	feature	that	works	on	your
computer	might	work	differently,	or	not	work	at	all,	for	someone	with	a	different	operating	system
or	Java	virtual	machine.

If	you	want	all	NetLogo	users	to	be	able	to	read	your	Info	tab,	use	only	the	features	shown	above.

More	information	about	Markdown	is	at	http://daringfireball.net/projects/markdown/.	For	rendering
Markdown,	NetLogo	uses	the	Flexmark-java	library.

https://github.github.com/github-flavored-markdown/
http://daringfireball.net/projects/markdown/
https://github.com/vsch/flexmark-java

Code	Tab	Guide

The	Code	tab	is	where	the	code	for	the	model	is	stored.	Commands	you	only	want	to	use
immediately	go	in	the	Command	Center;	commands	you	want	to	save	and	use	later,	over	and
over	again,	are	found	in	the	Code	tab.

To	determine	if	the	code	has	any	errors,	you	may	press	the	"Check"	button.	If	there	are	any
syntax	errors,	the	Code	tab	will	turn	red,	the	code	that	contains	the	error	will	be	highlighted,
and	an	error	message	will	appear.

Switching	tabs	also	causes	the	code	to	be	checked,	so	if	you	just	switch	tabs,	pressing	the
Check	button	first	isn't	necessary.

To	find	a	fragment	of	code	in	the	procedures,	click	on	the	"Find"	button	in	the	Code	toolbar
and	the	Find	dialog	will	appear.

You	may	enter	a	word	or	phrase	to	find,	and	optionally	also	a	new	word	or	phrase	to	replace	it
with.	The	"Ignore	case"	checkbox	controls	whether	the	capitalization	must	be	the	same	to
indicate	a	match.

If	the	"Wrap	around"	checkbox	is	checked,	the	entire	Code	tab	will	be	checked	for	the	phrase,
starting	at	the	cursor	position.	When	it	reaches	the	end	it	will	return	to	the	top,	otherwise	only
the	area	from	the	cursor	position	to	the	end	of	the	Code	tab	will	be	searched.	The	"Next"	and
"Previous"	buttons	will	move	down	and	up	to	find	another	occurrence	of	the	search	phrase.

"Replace"	changes	the	currently	selected	phrase	with	the	replace	phrase	and	"Replace	&
Find"	changes	the	selected	phrase	and	moves	to	the	next	occurrence.	"Replace	All"	will
change	all	instances	of	the	find	phrase	in	the	search	area	with	the	replace	phrase.

To	find	a	particular	procedure	definition	in	your	code,	use	the	"Procedures"	popup	menu	in	the
Code	tab.	The	menu	lists	all	procedures	in	alphabetical	order.

The	"Shift	Left",	"Shift	Right",	"Comment",	and	"Uncomment"	items	on	the	Edit	menu	are	used
in	the	Code	tab	to	change	the	indentation	level	of	your	code	or	add	and	remove	semicolons,
which	mark	comments,	from	sections	of	code.

For	more	information	about	writing	procedures,	read	Tutorial	#3:	Procedures	and	the
Programming	Guide.

Included	Files	Menu

Caution:	The	includes	facility	is	new	and	experimental.

When	you	add	the	__includes	keyword	to	a	model	a	menu	to	the	right	of	the	procedures	menu
appears.	This	is	the	"Included	Files"	menu	which	lists	all	the	NetLogo	source	files	(.nls)
included	in	this	file.	You	can	make	this	menu	always	visible	using	the	Preferences	dialog.

You	can	choose	a	file	name	from	the	menu	to	open	a	tab	for	that	file,	or	you	can	open	a	new
or	existing	file	using	New	Source	File	and	Open	Source	File,	respectively.

Once	you've	opened	new	tabs	they	become	accessible	from	the	Tabs	menu,	and	you	can	use
the	keyboard	to	move	from	tab	to	tab	(Command	+	number	on	Mac,	Control	+	number	on
other	operating	systems).

Automatic	indentation

When	the	Indent	Automatically	checkbox	is	selected,	NetLogo	will	automatically	attempt	to
align	your	code	in	a	logically	structured	format.	For	example,	when	you	open	a	set	of	square
brackets	"["	(perhaps	after	an	if	statement),	NetLogo	will	automatically	add	spaces	so	that	the
following	lines	of	code	are	two	spaces	further	indented	than	the	bracket.	When	you	close	the
square	brackets	the	closing	bracket	will	be	lined	up	with	the	matching	open	bracket.

NetLogo	will	try	to	indent	the	code	as	you	type,	but	you	can	also	press	the	tab	key	anywhere
on	any	line	to	ask	NetLogo	to	indent	the	line	immediately.	Or,	you	can	select	a	whole	region	of
code	and	press	the	tab	key	to	re-indent	all	of	it.

Programming	Guide

This	section	describes	the	NetLogo	programming	language	in	detail.

The	Code	Example	models	mentioned	throughout	can	be	found	in	the	Code	Examples	section	of	the
Models	Library.

Agents
Procedures
Variables
Tick	counter
Colors
Ask
Agentsets
Breeds
Buttons
Lists
Math
Random	numbers
Turtle	shapes
Link	shapes
View	updates
Plotting
Strings
Output
File	I/O
Movies
Perspective
Drawing
Topology
Links
Anonymous	procedures
Ask-Concurrent
User	Interaction	Primitives
Tie
Multiple	source	files
Syntax

Agents

The	NetLogo	world	is	made	up	of	agents.	Agents	are	beings	that	can	follow	instructions.

In	NetLogo,	there	are	four	types	of	agents:	turtles,	patches,	links,	and	the	observer.

Turtles	are	agents	that	move	around	in	the	world.	The	world	is	two	dimensional	and	is	divided	up	into	a
grid	of	patches.	Each	patch	is	a	square	piece	of	"ground"	over	which	turtles	can	move.	Links	are	agents
that	connect	two	turtles.	The	observer	doesn't	have	a	location	--	you	can	imagine	it	as	looking	out	over
the	world	of	turtles	and	patches.

The	observer	doesn't	observe	passively	--	it	gives	instructions	to	the	other	agents.

When	NetLogo	starts	up,	there	are	no	turtles.	The	observer	can	make	new	turtles.	Patches	can	make
new	turtles	too.	(Patches	can't	move,	but	otherwise	they're	just	as	"alive"	as	turtles.)

Patches	have	coordinates.	The	patch	at	coordinates	(0,	0)	is	called	the	origin	and	the	coordinates	of	the
other	patches	are	the	horizontal	and	vertical	distances	from	this	one.	We	call	the	patch's	coordinates
pxcor	and	pycor.	Just	like	in	the	standard	mathematical	coordinate	plane,	pxcor	increases	as	you	move
to	the	right	and	pycor	increases	as	you	move	up.

The	total	number	of	patches	is	determined	by	the	settings	min-pxcor,	max-pxcor,	min-pycor,	and	max-
pycor	When	NetLogo	starts	up,	min-pxcor,	max-pxcor,	min-pycor,	and	max-pycor	are	-16,	16,	-16,	and	16
respectively.	This	means	that	pxcor	and	pycor	both	range	from	-16	to	16,	so	there	are	33	times	33,	or

1089	patches	total.	(You	can	change	the	number	of	patches	with	the	Settings	button.)

Turtles	have	coordinates	too:	xcor	and	ycor.	A	patch's	coordinates	are	always	integers,	but	a	turtle's
coordinates	can	have	decimals.	This	means	that	a	turtle	can	be	positioned	at	any	point	within	its	patch;	it
doesn't	have	to	be	in	the	center	of	the	patch.

Links	do	not	have	coordinates.	Every	link	has	two	ends,	and	each	end	is	a	turtle.	If	either	turtle	dies,	the
link	dies	too.	A	link	is	represented	visually	as	a	line	connecting	the	two	turtles.

Procedures

In	NetLogo,	commands	and	reporters	tell	agents	what	to	do.	A	command	is	an	action	for	an	agent	to
carry	out,	resulting	in	some	effect.	A	reporter	is	instructions	for	computing	a	value,	which	the	agent	then
"reports"	to	whoever	asked	it.

Typically,	a	command	name	begins	with	a	verb,	such	as	"create",	"die",	"jump",	"inspect",	or	"clear".
Most	reporter	names	are	nouns	or	noun	phrases.

Commands	and	reporters	built	into	NetLogo	are	called	primitives.	The	NetLogo	Dictionary	has	a
complete	list	of	built-in	commands	and	reporters.

Commands	and	reporters	you	define	yourself	are	called	procedures.	Each	procedure	has	a	name,
preceded	by	the	keyword	to	or	to-report,	depending	on	whether	it	is	a	command	procedure	or	a
reporter	procedure.	The	keyword	end	marks	the	end	of	the	commands	in	the	procedure.	Once	you
define	a	procedure,	you	can	use	it	elsewhere	in	your	program.

Many	commands	and	reporters	take	inputs	--	values	that	the	command	or	reporter	uses	in	carrying	out
its	actions	or	computing	its	result.

Here	are	two	command	procedures:

to setup
 clear-all
 create-turtles 10
 reset-ticks
end

to go
 ask turtles [
 fd 1 ;; forward 1 step
 rt random 10 ;; turn right
 lt random 10 ;; turn left
]
 tick
end

Note	the	use	of	semicolons	to	add	"comments"	to	the	program.	Comments	can	make	your	code	easier
to	read	and	understand,	but	they	don't	affect	its	behavior.

In	this	program,

setup	and	go	are	user-defined	commands.
clear-all,	create-turtles,	reset-ticks,	ask,	lt	("left	turn"),	rt	("right	turn")	and	tick,	are	all
primitive	commands.
random	and	turtles	are	primitive	reporters.	random	takes	a	single	number	as	an	input	and	reports	a
random	integer	that	is	less	than	the	input	(in	this	case,	between	0	and	9).	turtles	reports	the
agentset	consisting	of	all	the	turtles.	(We'll	explain	about	agentsets	later.)

setup	and	go	can	be	called	by	other	procedures,	or	by	buttons,	or	from	the	Command	Center.

Many	NetLogo	models	have	a	once	button	that	calls	a	procedure	called	setup	and	a	forever	button	that
calls	a	procedure	called	go.

In	NetLogo,	you	may	specify	which	agents	--	turtles,	patches,	or	links	--	are	to	run	each	command.	If	you
don't	specify,	the	code	is	run	by	the	observer.	In	the	code	above,	the	observer	uses	ask	to	make	the	set
of	all	turtles	run	the	commands	between	the	square	brackets.

clear-all	and	create-turtles	can	only	be	run	by	the	observer.	fd,	on	the	other	hand,	can	only	be	run
by	turtles.	Some	other	commands	and	reporters,	such	as	set	and	ticks,	can	be	run	by	different	agent
types.

Here	are	some	more	advanced	features	you	can	take	advantage	of	when	defining	your	own	procedures.

Procedures	with	inputs

Procedures	can	take	inputs,	just	like	many	primitives	do.	To	create	a	procedure	that	accepts	inputs,	put
their	names	in	square	brackets	after	the	procedure	name.	For	example:

to draw-polygon [num-sides len] ;; turtle procedure
 pen-down
 repeat num-sides [
 fd len
 rt 360 / num-sides
]
end

Elsewhere	in	the	program,	you	might	use	the	procedure	by	asking	the	turtles	to	each	draw	an	octagon
with	a	side	length	equal	to	its	who	number:

ask turtles [draw-polygon 8 who]

Reporter	procedures

Just	like	you	can	define	your	own	commands,	you	can	define	your	own	reporters.	You	must	do	two
special	things.	First,	use	to-report	instead	of	to	to	begin	your	procedure.	Then,	in	the	body	of	the
procedure,	use	report	to	report	the	value	you	want	to	report.

to-report absolute-value [number]
 ifelse number >= 0
 [report number]
 [report (- number)]
end

Variables

Agent	variables

Agent	variables	are	places	to	store	values	(such	as	numbers)	in	an	agent.	An	agent	variable	can	be	a
global	variable,	a	turtle	variable,	a	patch	variable,	or	a	link	variable.

If	a	variable	is	a	global	variable,	there	is	only	one	value	for	the	variable,	and	every	agent	can	access	it.
You	can	think	of	global	variables	as	belonging	to	the	observer.

Turtle,	patch,	and	link	variables	are	different.	Each	turtle	has	its	own	value	for	every	turtle	variable.	The
same	goes	for	patches	and	links.

Some	variables	are	built	into	NetLogo.	For	example,	all	turtles	and	links	have	a	color	variable,	and	all
patches	have	a	pcolor	variable.	(The	patch	variable	begins	with	"p"	so	it	doesn't	get	confused	with	the
turtle	variable,	since	turtles	have	direct	access	to	patch	variables.)	If	you	set	the	variable,	the	turtle	or
patch	changes	color.	(See	next	section	for	details.)

Other	built-in	turtle	variables	including	xcor,	ycor,	and	heading.	Other	built-in	patch	variables	include
pxcor	and	pycor.	(There	is	a	complete	list	here.)

You	can	also	define	your	own	variables.	You	can	make	a	global	variable	by	adding	a	switch,	slider,
chooser,	or	input	box	to	your	model,	or	by	using	the	globals	keyword	at	the	beginning	of	your	code,	like
this:

globals [score]

You	can	also	define	new	turtle,	patch	and	link	variables	using	the	turtles-own	,	patches-own	and	links-
own	keywords,	like	this:

turtles-own [energy speed]
patches-own [friction]
links-own [strength]

These	variables	can	then	be	used	freely	in	your	model.	Use	the	set	command	to	set	them.	(Any	variable
you	don't	set	has	a	starting	value	of	zero.)

Global	variables	can	be	read	and	set	at	any	time	by	any	agent.	As	well,	a	turtle	can	read	and	set	patch
variables	of	the	patch	it	is	standing	on.	For	example,	this	code:

ask turtles [set pcolor red]

causes	every	turtle	to	make	the	patch	it	is	standing	on	red.	(Because	patch	variables	are	shared	by
turtles	in	this	way,	you	can't	have	a	turtle	variable	and	a	patch	variable	with	the	same	name.)

In	other	situations	where	you	want	an	agent	to	read	a	different	agent's	variable,	you	can	use	of.
Example:

show [color] of turtle 5
;; prints current color of turtle with who number 5

You	can	also	use	of	with	a	more	complicated	expression	than	just	a	variable	name,	for	example:

show [xcor + ycor] of turtle 5
;; prints the sum of the x and y coordinates of
;; turtle with who number 5

Local	variables

A	local	variable	is	defined	and	used	only	in	the	context	of	a	particular	procedure	or	part	of	a	procedure.
To	create	a	local	variable,	use	the	let	command.	If	you	use	let	at	the	top	of	a	procedure,	the	variable
will	exist	throughout	the	procedure.	If	you	use	it	inside	a	set	of	square	brackets,	for	example	inside	an
"ask",	then	it	will	exist	only	inside	those	brackets.

to swap-colors [turtle1 turtle2]
 let temp [color] of turtle1
 ask turtle1 [set color [color] of turtle2]
 ask turtle2 [set color temp]
end

Tick	counter

In	many	NetLogo	models,	time	passes	in	discrete	steps,	called	"ticks".	NetLogo	includes	a	built-in	tick
counter	so	you	can	keep	track	of	how	many	ticks	have	passed.

The	current	value	of	the	tick	counter	is	shown	above	the	view.	(You	can	use	the	Settings	button	to	hide
the	tick	counter,	or	change	the	word	"ticks"	to	something	else.)

In	code,	to	retrieve	the	current	value	of	the	tick	counter,	use	the	ticks	reporter.	The	tick	command
advances	the	tick	counter	by	1.	The	clear-all	command	clears	the	tick	counter	along	with	everything
else.

When	the	tick	counter	is	clear,	it's	an	error	to	try	to	read	or	modify	it.	Use	the	reset-ticks	command
when	your	model	is	done	setting	up,	to	start	the	tick	counter.

If	your	model	is	set	to	use	tick-based	updates,	then	the	tick	command	will	usually	also	update	the	view.
See	the	later	section,	View	Updates.

When	to	tick

Use	reset-ticks	at	the	end	of	your	setup	procedure.

Use	tick	at	the	end	of	your	go	procedure.

to setup
 clear-all
 create-turtles 10
 reset-ticks
end

to go
 ask turtles [fd 1]
 tick
end

Fractional	ticks

In	most	models,	the	tick	counter	starts	at	0	and	goes	up	1	at	a	time,	from	integer	to	integer.	But	it's	also
possible	for	the	tick	counter	to	take	on	in-between	floating	point	values.

To	advance	the	tick	counter	by	a	fractional	amount,	use	the	tick-advance	command.	This	command
takes	a	numeric	input	specifying	how	far	to	advance	the	tick	counter.

A	typical	use	of	fractional	ticks	is	to	approximate	continuous	or	curved	motion.	See,	for	example,	the
GasLab	models	in	the	Models	Library	(under	Chemistry	&	Physics).	These	models	calculate	the	exact
time	at	which	a	future	event	is	to	occur,	then	advance	the	tick	counter	to	exactly	that	time.

Colors

NetLogo	represents	colors	in	different	ways.	A	color	can	be	number	in	the	range	0	to	140,	with	the
exception	of	140	itself.	Below	is	a	chart	showing	the	range	of	such	colors	you	can	use	in	NetLogo.

The	chart	shows	that:

Some	of	the	colors	have	names.	(You	can	use	these	names	in	your	code.)
Every	named	color	except	black	and	white	has	a	number	ending	in	5.
On	either	side	of	each	named	color	are	darker	and	lighter	shades	of	the	color.
0	is	pure	black.	9.9	is	pure	white.
10,	20,	and	so	on	are	all	so	dark	they	are	very	nearly	black.
19.9,	29.9	and	so	on	are	all	so	light	they	are	very	nearly	white.

Code	Example:	The	color	chart	was	made	in	NetLogo	with	the	Color	Chart	Example	model.

If	you	use	a	number	outside	the	0	to	140	range,	NetLogo	will	repeatedly	add	or	subtract	140	from	the
number	until	it	is	in	the	0	to	140	range.	For	example,	25	is	orange,	so	165,	305,	445,	and	so	on	are
orange	too,	and	so	are	-115,	-255,	-395,	etc.	This	calculation	is	done	automatically	whenever	you	set
the	turtle	variable	color	or	the	patch	variable	pcolor.	Should	you	need	to	perform	this	calculation	in
some	other	context,	use	the	wrap-color	primitive.

If	you	want	a	color	that's	not	on	the	chart,	more	exist	between	the	integers.	For	example,	26.5	is	a	shade
of	orange	halfway	between	26	and	27.	This	doesn't	mean	you	can	make	any	color	in	NetLogo;	the
NetLogo	color	space	is	only	a	subset	of	all	possible	colors.	It	contains	only	a	fixed	set	of	discrete	hues
(one	hue	per	row	of	the	chart).	Starting	from	one	of	those	hues,	you	can	either	decrease	its	brightness
(darken	it)	or	decrease	its	saturation	(lighten	it),	but	you	cannot	decrease	both	brightness	and	saturation.
Also,	only	the	first	digit	after	the	decimal	point	is	significant.	Thus,	color	values	are	rounded	down	to	the
next	0.1,	so	for	example,	there's	no	visible	difference	between	26.5	and	26.52	or	26.58.

Color	primitives

There	are	a	few	primitives	that	are	helpful	for	working	with	colors.

We	have	already	mentioned	the	wrap-color	primitive.

The	scale-color	primitive	is	useful	for	converting	numeric	data	into	colors.

shade-of?	will	tell	you	if	two	colors	are	both	"shades"	of	the	same	basic	hue.	For	example,	shade-of?
orange 27	is	true,	because	27	is	a	lighter	shade	of	orange.

Code	Example:	Scale-color	Example	demonstrates	the	scale-color	reporter.

RGB	and	RGBA	Colors

NetLogo	also	represents	colors	as	RGB	(red/green/blue)	lists	and	RGBA	(red/green/blue/alpha)	lists.
When	using	RGB	colors	the	full	range	of	colors	is	available	to	you.	RGBA	colors	allow	all	the	colors	that
RGB	allows	and	you	can	also	vary	the	transparency	of	a	color.	RGB	and	RGBA	lists	are	made	up	of
three	or	four	integers,	respectively,	between	0	and	255	if	a	number	is	outside	that	range	255	is
repeatedly	subtracted	until	it	is	in	the	range.	You	can	set	any	color	variables	in	NetLogo	(color	for	turtles
and	links	and	pcolor	for	patches)	to	an	RGB	list	and	that	agent	will	be	rendered	appropriately.	So	you
can	set	the	color	of	patch	0	0	to	pure	red	using	the	following	code:

set pcolor [255 0 0]

Turtles,	links,	and	labels	can	all	contain	RGBA	lists	as	their	color	variables,	however,	patches	cannot
have	RGBA	pcolors	You	can	set	the	color	of	a	turtle	to	be	approximately	half	transparent	pure	red	with
the	following	code:

set color [255 0 0 125]

You	can	convert	from	a	NetLogo	color	to	RGB	or	HSB	(hue/saturation/brightness)	using	extract-hsb	and
extract-rgb.	You	can	use	rgb	to	generate	rgb	lists	and	hsb	to	convert	from	an	HSB	color	to	RGB.

Since	many	colors	are	missing	from	the	NetLogo	color	space,	approximate-hsb	and	approximate-rgb

often	can't	give	you	the	exact	color	you	ask	for,	but	they	try	to	come	as	close	as	possible.

Example:	you	can	change	any	turtle	from	it's	existing	NetLogo	color	to	a	half	transparent	version	of	that
color	using:

set color lput 125 extract-rgb color

Code	Examples:	HSB	and	RGB	Example	(lets	you	experiment	with	the	HSB	and	RGB	color
systems),	Transparency	Example

Color	Swatches	dialog

The	Color	Swatches	dialog	helps	you	experiment	with	and	choose	colors.	Open	it	by	choosing	Color
Swatches	on	the	Tools	Menu.

When	you	click	on	a	color	swatch	(or	a	color	button),	that	color	will	be	shown	against	other	colors.	In	the
bottom	left,	the	code	for	the	currently	selected	color	is	displayed	(for	example,	red + 2)	so	you	can	copy
and	paste	it	into	your	code.	On	the	bottom	right	there	are	three	increment	options,	1,	0.5,	and	0.1.
These	numbers	indicate	the	difference	between	two	adjacent	swatches.	When	the	increment	is	1	there
are	10	different	shades	in	each	row;	when	the	increment	is	0.1	there	are	100	different	shades	in	each
row.	0.5	is	an	intermediate	setting.

Ask

NetLogo	uses	the	ask	command	to	give	commands	to	turtles,	patches,	and	links.	All	code	to	be	run	by
turtles	must	be	located	in	a	turtle	"context".	You	can	establish	a	turtle	context	in	any	of	three	ways:

In	a	button,	by	choosing	"Turtles"	from	the	popup	menu.	Any	code	you	put	in	the	button	will	be	run
by	all	turtles.
In	the	Command	Center,	by	choosing	"Turtles"	from	the	popup	menu.	Any	commands	you	enter
will	be	run	by	all	the	turtles.
By	using	ask turtles,	hatch,	or	other	commands	which	establish	a	turtle	context.

The	same	goes	for	patches,	links,	and	the	observer,	except	that	you	cannot	ask	the	observer.	Any	code
that	is	not	inside	any	ask	is	by	default	observer	code.

Here's	an	example	of	the	use	of	ask	in	a	NetLogo	procedure:

to setup
 clear-all
 create-turtles 100 ;; create 100 turtles with random headings
 ask turtles
 [set color red ;; turn them red
 fd 50] ;; spread them around
 ask patches
 [if pxcor > 0 ;; patches on the right side
 [set pcolor green]] ;; of the view turn green
 reset-ticks
end

The	models	in	the	Models	Library	are	full	of	other	examples.	A	good	place	to	start	looking	is	in	the	Code
Examples	section.

Usually,	the	observer	uses	ask	to	ask	all	turtles,	all	patches	or	all	links	to	run	commands.	You	can	also
use	ask	to	have	an	individual	turtle,	patch	or	link	run	commands.	The	reporters	turtle,	patch,	link	and
patch-at	are	useful	for	this	technique.	For	example:

to setup
 clear-all
 crt 3 ;; make 3 turtles
 ask turtle 0 ;; tell the first one...
 [fd 1] ;; ...to go forward
 ask turtle 1 ;; tell the second one...
 [set color green] ;; ...to become green
 ask turtle 2 ;; tell the third one...
 [rt 90] ;; ...to turn right
 ask patch 2 -2 ;; ask the patch at (2,-2)
 [set pcolor blue] ;; ...to become blue
 ask turtle 0 ;; ask the first turtle
 [ask patch-at 1 0 ;; ...to ask patch to the east
 [set pcolor red]] ;; ...to become red
 ask turtle 0 ;; tell the first turtle...
 [create-link-with turtle 1] ;; ...make a link with the second
 ask link 0 1 ;; tell the link between turtle 0 and 1
 [set color blue] ;; ...to become blue
 reset-ticks
end

Every	turtle	created	has	a	who	number.	The	first	turtle	created	is	number	0,	the	second	turtle	number	1,
and	so	forth.

The	turtle	primitive	reporter	takes	a	who	number	as	an	input,	and	reports	the	turtle	with	that	who
number.	The	patch	primitive	reporter	takes	values	for	pxcor	and	pycor	and	reports	the	patch	with	those
coordinates.	The	link	primitive	takes	two	inputs,	the	who	numbers	of	the	two	turtles	it	connects.	And	the
patch-at	primitive	reporter	takes	offsets:	distances,	in	the	x	and	y	directions,	from	the	first	agent.	In	the
example	above,	the	turtle	with	who	number	0	is	asked	to	get	the	patch	east	(and	no	patches	north)	of
itself.

You	can	also	select	a	subset	of	turtles,	or	a	subset	of	patches,	or	a	subset	of	links	and	ask	them	to	do
something.	This	involves	using	agentsets.	The	next	section	explains	them	in	detail.

When	you	ask	a	set	of	agents	to	run	more	than	one	command,	each	agent	must	finish	before	the	next
agent	starts.	One	agent	runs	all	of	the	commands,	then	the	next	agent	runs	all	of	them,	and	so	on.	For
example,	if	you	write:

ask turtles
 [fd 1
 set color red]

first	one	turtle	moves	and	turns	red,	then	another	turtle	moves	and	turns	red,	and	so	on.

But	if	you	write	it	this	way:

ask turtles [fd 1]
ask turtles [set color red]

first	all	the	turtles	move,	then	they	all	turn	red.

Agentsets

An	agentset	is	exactly	what	its	name	implies,	a	set	of	agents.	An	agentset	can	contain	either	turtles,
patches	or	links,	but	not	more	than	one	type	at	once.

An	agentset	is	not	in	any	particular	order.	In	fact,	it's	always	in	a	random	order.	And	every	time	you	use
it,	the	agentset	is	in	a	different	random	order.	This	helps	you	keep	your	model	from	treating	any
particular	turtles,	patches	or	links	differently	from	any	others	(unless	you	want	them	to	be).	Since	the
order	is	random	every	time,	no	one	agent	always	gets	to	go	first.

You've	seen	the	turtles	primitive,	which	reports	the	agentset	of	all	turtles,	the	patches	primitive,	which
reports	the	agentset	of	all	patches	and	the	links	primitive	which	reports	the	agentset	of	all	links.

But	what's	powerful	about	the	agentset	concept	is	that	you	can	construct	agentsets	that	contain	only
some	turtles,	some	patches	or	some	links.	For	example,	all	the	red	turtles,	or	the	patches	with	pxcor
evenly	divisible	by	five,	or	the	turtles	in	the	first	quadrant	that	are	on	a	green	patch	or	the	links
connected	to	turtle	0.	These	agentsets	can	then	be	used	by	ask	or	by	various	reporters	that	take
agentsets	as	inputs.

One	way	is	to	use	turtles-here	or	turtles-at,	to	make	an	agentset	containing	only	the	turtles	on	my
patch,	or	only	the	turtles	on	some	other	patch	at	some	x	and	y	offsets.	There's	also	turtles-on	so	you
can	get	the	set	of	turtles	standing	on	a	given	patch	or	set	of	patches,	or	the	set	of	turtles	standing	on	the
same	patch	as	a	given	turtle	or	set	of	turtles.

Here	are	some	more	examples	of	how	to	make	agentsets:

;; all other turtles:
other turtles
;; all other turtles on this patch:
other turtles-here
;; all red turtles:
turtles with [color = red]
;; all red turtles on my patch
turtles-here with [color = red]
;; patches on right side of view
patches with [pxcor > 0]
;; all turtles less than 3 patches away
turtles in-radius 3
;; the four patches to the east, north, west, and south
patches at-points [[1 0] [0 1] [-1 0] [0 -1]]
;; shorthand for those four patches
neighbors4
;; turtles in the first quadrant that are on a green patch
turtles with [(xcor > 0) and (ycor > 0)
 and (pcolor = green)]
;; turtles standing on my neighboring four patches
turtles-on neighbors4
;; all the links connected to turtle 0
[my-links] of turtle 0

Note	the	use	of	other	to	exclude	this	agent.	This	is	common.

Once	you	have	created	an	agentset,	here	are	some	simple	things	you	can	do:

Use	ask	to	make	the	agents	in	the	agentset	do	something
Use	any?	to	see	if	the	agentset	is	empty
Use	all?	to	see	if	every	agent	in	an	agentset	satisfies	a	condition.
Use	count	to	find	out	exactly	how	many	agents	are	in	the	set

And	here	are	some	more	complex	things	you	can	do:

Pick	a	random	agent	from	the	set	using	one-of.	For	example,	we	can	make	a	randomly	chosen
turtle	turn	green:

ask one-of turtles [set color green]

Or	tell	a	randomly	chosen	patch	to	sprout	a	new	turtle:

ask one-of patches [sprout 1]

Use	the	max-one-of	or	min-one-of	reporters	to	find	out	which	agent	is	the	most	or	least	along	some
scale.	For	example,	to	remove	the	richest	turtle,	you	could	say

ask max-one-of turtles [sum assets] [die]

Make	a	histogram	of	the	agentset	using	the	histogram	command	(in	combination	with	of).
Use	of	to	make	a	list	of	values,	one	for	each	agent	in	the	agentset.	Then	use	one	of	NetLogo's	list
primitives	to	do	something	with	the	list.	(See	the	"Lists"	section	below.)	For	example,	to	find	out
how	rich	turtles	are	on	the	average,	you	could	say

show mean [sum assets] of turtles

Use	turtle-set,	patch-set	and	link-set	reporters	to	make	new	agentsets	by	gathering	together
agents	from	a	variety	of	possible	sources.
Use	no-turtles,	no-patches	and	no-links	reporters	to	make	empty	agentsets.
Check	whether	two	agentsets	are	equal	using	=	or	!=.
Use	member?	to	see	whether	a	particular	agent	is	a	member	of	an	agentset.

This	only	scratches	the	surface.	See	the	Models	Library	for	many	more	examples,	and	consult	the
NetLogo	Dictionary	for	more	information	about	all	of	the	agentset	primitives.

More	examples	of	using	agentsets	are	provided	in	the	individual	entries	for	these	primitives	in	the
NetLogo	Dictionary.

Special	agentsets

The	agentsets	turtles	and	links	have	special	behavior	because	they	always	hold	the	sets	of	all	turtles
and	all	links.	Therefore,	these	agentsets	can	grow.

The	following	interaction	shows	the	special	behavior.	Assume	the	Code	tab	has	globals [g].	Then:

observer> clear-all
observer> create-turtles 5
observer> set g turtles
observer> print count g
5
observer> create-turtles 5
observer> print count g
10
observer> set g turtle-set turtles
observer> print count g
10
observer> create-turtles 5
observer> print count g
10
observer> print count turtles
15

The	turtles	agentset	grows	when	new	turtles	are	born,	but	other	agentsets	don't	grow.	If	I	write	turtle-
set turtles,	I	get	a	new,	normal	agentset	containing	just	the	turtles	that	currently	exist.	New	turtles	don't
join	when	they're	born.

Breed	agentsets	are	special	in	the	same	way	as	turtles	and	links.	Breeds	are	introduced	and
explained	below.

Agentsets	and	lists

Earlier,	we	said	that	agentsets	are	always	in	random	order,	a	different	random	order	every	time.	If	you
need	your	agents	to	do	something	in	a	fixed	order,	you	need	to	make	a	list	of	the	agents	instead.	See
the	Lists	section	below.

Code	Example:	Ask	Ordering	Example

Breeds

NetLogo	allows	you	to	define	different	"breeds"	of	turtles	and	breeds	of	links.	Once	you	have	defined
breeds,	you	can	go	on	and	make	the	different	breeds	behave	differently.	For	example,	you	could	have
breeds	called	sheep	and	wolves,	and	have	the	wolves	try	to	eat	the	sheep	or	you	could	have	link	breeds
called	streets	and	sidewalks	where	foot	traffic	is	routed	on	sidewalks	and	car	traffic	is	routed	on	streets.

You	define	turtle	breeds	using	the	breed	keyword,	at	the	top	of	the	Code	tab,	before	any	procedures:

breed [wolves wolf]
breed [sheep a-sheep]

You	can	refer	to	a	member	of	the	breed	using	the	singular	form,	just	like	the	turtle	reporter.	When
printed,	members	of	the	breed	will	be	labeled	with	the	singular	name.

Some	commands	and	reporters	have	the	plural	name	of	the	breed	in	them,	such	as	create-<breeds>.
Others	have	the	singular	name	of	the	breed	in	them,	such	as	<breed>

The	order	in	which	breeds	are	declared	is	also	the	order	in	which	they	are	layered	in	the	view.	So
breeds	defined	later	will	appear	on	top	of	breeds	defined	earlier;	in	this	example,	sheep	will	be	drawn
over	wolves.

When	you	define	a	breed	such	as	sheep,	an	agentset	for	that	breed	is	automatically	created,	so	that	all	of
the	agentset	capabilities	described	above	are	immediately	available	with	the	sheep	agentset.

The	following	new	primitives	are	also	automatically	available	once	you	define	a	breed:	create-sheep,
hatch-sheep,	sprout-sheep,	sheep-here,	sheep-at,	sheep-on,	and	is-a-sheep?.

Also,	you	can	use	sheep-own	to	define	new	turtle	variables	that	only	turtles	of	the	given	breed	have.	(It's
allowed	for	more	than	one	breed	to	own	the	same	variable.)

A	turtle's	breed	agentset	is	stored	in	the	breed	turtle	variable.	So	you	can	test	a	turtle's	breed,	like	this:

if breed = wolves [...]

Note	also	that	turtles	can	change	breeds.	A	wolf	doesn't	have	to	remain	a	wolf	its	whole	life.	Let's
change	a	random	wolf	into	a	sheep:

ask one-of wolves [set breed sheep]

The	set-default-shape	primitive	is	useful	for	associating	certain	turtle	shapes	with	certain	breeds.	See
the	section	on	shapes	below.

Who	numbers	are	assigned	irrespective	of	breeds.	If	you	already	have	a	frog 0,	then	the	first	mouse	will
be	mouse 1,	not	mouse 0,	since	the	who	number	0	is	already	taken.

Here	is	a	quick	example	of	using	breeds:

breed [mice mouse]
breed [frogs frog]
mice-own [cheese]
to setup
 clear-all
 create-mice 50

 [set color white
 set cheese random 10]
 create-frogs 50
 [set color green]
 reset-ticks
end

Code	Example:	Breeds	and	Shapes	Example

Link	breeds

Link	breeds	are	very	similar	to	turtle	breeds,	however,	there	are	a	few	differences.

When	you	declare	a	link	breed	you	must	declare	whether	it	is	a	breed	of	directed	or	undirected	links	by
using	the	directed-link-breed	and	undirected-link-breed	keywords.

directed-link-breed [streets street]
undirected-link-breed [friendships friendship]

Once	you	have	created	a	breeded	link	you	cannot	create	unbreeded	links	and	vice	versa.	(You	can,
however,	have	directed	and	undirected	links	in	the	same	world,	just	not	in	the	same	breed)

Unlike	with	turtle	breeds	the	singular	breed	name	is	required	for	link	breeds,	as	many	of	the	link
commands	and	reports	use	the	singular	name,	such	as	<link-breed>-neighbor?.

The	following	primitives	are	also	automatically	available	once	you	define	a	directed	link	breed:	create-
street-from	create-streets-from	create-street-to	create-streets-to	in-street-neighbor?	in-
street-neighbors	in-street-from	my-in-streets	my-out-streets	out-street-neighbor?	out-street-
neighbors	out-street-to

And	the	following	are	automatically	available	when	you	define	an	undirected	link	breed:	create-
friendship-with	create-friendships-with	friendship-neighbor?	friendship-neighbors	friendship-
with	my-friendships

Multiple	link	breeds	may	declare	the	same	-own	variable,	but	a	variable	may	not	be	shared	between	a
turtle	breed	and	a	link	breed.

Just	as	with	turtle	breeds	the	order	in	which	link	breeds	are	declared	defines	the	order	in	which	the	links
are	drawn,	so	the	friendships	will	always	be	on	top	of	streets	(if	for	some	reason	these	breeds	were	in
the	same	model).	You	can	also	use	<link-breeds>-own	to	declare	variables	of	each	link	breed
separately.

You	can	change	the	breed	of	a	link	with	set breed.	(However,	you	cannot	change	a	breeded	link	to	an
unbreeded	one,	to	prevent	having	breeded	and	unbreeded	links	in	the	same	world.)

ask one-of friendships [set breed streets]
ask one-of friendships [set breed links] ;; produces a runtime error

set-default-shape	may	also	be	used	with	link	breeds	to	associate	it	with	a	particular	link	shape.

Code	Example:	Link	Breeds	Example

Buttons

Buttons	in	the	interface	tab	provide	an	easy	way	to	control	the	model.	Typically	a	model	will	have	at
least	a	"setup"	button,	to	set	up	the	initial	state	of	the	world,	and	a	"go"	button	to	make	the	model	run
continuously.	Some	models	will	have	additional	buttons	that	perform	other	actions.

A	button	contains	some	NetLogo	code.	That	code	is	run	when	you	press	the	button.

A	button	may	be	either	a	"once	button",	or	a	"forever	button".	You	can	control	this	by	editing	the	button
and	checking	or	unchecking	the	"Forever"	checkbox.	Once	buttons	run	their	code	once,	then	stop	and
pop	back	up.	Forever	buttons	keep	running	their	code	over	and	over	again.

A	forever	button	stops	if	the	user	presses	the	button	again	to	stop	it.	The	button	waits	until	the	current
iteration	has	finished,	then	pops	up.

A	forever	button	can	also	be	stopped	from	code.	If	the	forever	button	directly	calls	a	procedure,	then
when	that	procedure	stops,	the	button	stops.	(In	a	turtle	or	patch	forever	button,	the	button	won't	stop
until	every	turtle	or	patch	stops	--	a	single	turtle	or	patch	doesn't	have	the	power	to	stop	the	whole
button.)

Normally,	a	button	is	labeled	with	the	code	that	it	runs.	For	example,	a	button	that	says	"go"	on	it	usually
contains	the	code	"go",	which	means	"run	the	go	procedure".	(Procedures	are	defined	in	the	Code	tab;
see	below.)	But	you	can	also	edit	a	button	and	enter	a	"display	name"	for	the	button,	which	is	a	text	that
appears	on	the	button	instead	of	the	code.	You	might	use	this	feature	if	you	think	the	actual	code	would
be	confusing	to	your	users.

When	you	put	code	in	a	button,	you	must	also	specify	which	agents	you	want	to	run	that	code.	You	can
choose	to	have	the	observer	run	the	code,	or	all	turtles,	or	all	patches,	or	all	links.	(If	you	want	the	code
to	be	run	by	only	some	turtles	or	some	patches,	you	could	make	an	observer	button,	and	then	have	the
observer	use	the	ask	command	to	ask	only	some	of	the	turtles	or	patches	to	do	something.)

When	you	edit	a	button,	you	have	the	option	to	assign	an	"action	key".	This	makes	that	key	on	the
keyboard	behave	just	like	a	button	press.	If	the	button	is	a	forever	button,	it	will	stay	down	until	the	key	is
pressed	again	(or	the	button	is	clicked).	Action	keys	are	particularly	useful	for	games	or	any	model
where	rapid	triggering	of	buttons	is	needed.

Buttons	take	turns

More	than	one	button	can	be	pressed	at	a	time.	If	this	happens,	the	buttons	"take	turns",	which	means
that	only	one	button	runs	at	a	time.	Each	button	runs	its	code	all	the	way	through	once	while	the	other
buttons	wait,	then	the	next	button	gets	its	turn.

In	the	following	examples,	"setup"	is	a	once	button	and	"go"	is	a	forever	button.

Example	#1:	The	user	presses	"setup",	then	presses	"go"	immediately,	before	the	"setup"	has	popped
back	up.	Result:	"setup"	finishes	before	"go"	starts.

Example	#2:	While	the	"go"	button	is	down,	the	user	presses	"setup".	Result:	the	"go"	button	finishes	its
current	iteration.	Then	the	"setup"	button	runs.	Then	"go"	starts	running	again.

Example	#3:	The	user	has	two	forever	buttons	down	at	the	same	time.	Result:	first	one	button	runs	its
code	all	the	way	through,	then	the	other	runs	its	code	all	the	way	through,	and	so	on,	alternating.

Note	that	if	one	button	gets	stuck	in	an	infinite	loop,	then	no	other	buttons	will	run.

Turtle,	patch,	and	link	forever	buttons

There	is	a	subtle	difference	between	putting	commands	in	a	turtle,	patch	or	link	forever	button,	and
putting	the	same	commands	in	an	observer	button	that	does	ask turtles,	ask patches	or	ask links.	An
"ask"	doesn't	complete	until	all	of	the	agents	have	finished	running	all	of	the	commands	in	the	"ask".	So
the	agents,	as	they	all	run	the	commands	concurrently,	can	be	out	of	sync	with	each	other,	but	they	all
sync	up	again	at	the	end	of	the	ask.	The	same	isn't	true	of	turtle,	patch	and	link	forever	buttons.	Since
ask	was	not	used,	each	turtle	or	patch	runs	the	given	code	over	and	over	again,	so	they	can	become
(and	remain)	out	of	sync	with	each	other.

At	present,	this	capability	is	very	rarely	used	in	the	models	in	our	Models	Library.	A	model	that	does	use
the	capability	is	the	Termites	model,	in	the	Biology	section	of	Sample	Models.	The	"go"	button	is	a	turtle
forever	button,	so	each	termite	proceeds	independently	of	every	other	termite,	and	the	observer	is	not
involved	at	all.	This	means	that	if,	for	example,	you	wanted	to	add	ticks	and/or	a	plot	to	the	model,	you
would	need	to	add	a	second	forever	button	(an	observer	forever	button),	and	run	both	forever	buttons	at

the	same	time.	Note	also	that	a	model	like	this	cannot	be	used	with	BehaviorSpace.

Code	Example:	State	Machine	Example	shows	how	Termites	can	be	recoded	in	a	tick-based
way,	without	using	a	turtle	forever	button.

At	present,	NetLogo	has	no	way	for	one	forever	button	to	start	another.	Buttons	are	only	started	when
you	press	them.

Lists

In	the	simplest	models,	each	variable	holds	only	one	piece	of	information,	usually	a	number	or	a	string.
Lists	let	you	store	multiple	pieces	of	information	in	a	single	value	by	collecting	that	information	in	a	list.
Each	value	in	the	list	can	be	any	type	of	value:	a	number,	or	a	string,	an	agent	or	agentset,	or	even
another	list.

Lists	allow	for	the	convenient	packaging	of	information	in	NetLogo.	If	your	agents	carry	out	a	repetitive
calculation	on	multiple	variables,	it	might	be	easier	to	have	a	list	variable,	instead	of	multiple	number
variables.	Several	primitives	simplify	the	process	of	performing	the	same	computation	on	each	value	in
a	list.

The	NetLogo	Dictionary	has	a	section	that	lists	all	of	the	list-related	primitives.

Constant	lists

You	can	make	a	list	by	simply	putting	the	values	you	want	in	the	list	between	brackets,	like	this:	set
mylist [2 4 6 8].	Note	that	the	individual	values	are	separated	by	spaces.	You	can	make	lists	that
contain	numbers	and	strings	this	way,	as	well	as	lists	within	lists,	for	example	[[2 4] [3 5]].

The	empty	list	is	written	by	putting	nothing	between	the	brackets,	like	this:	[].

Building	lists	on	the	fly

If	you	want	to	make	a	list	in	which	the	values	are	determined	by	reporters,	as	opposed	to	being	a	series
of	constants,	use	the	list	reporter.	The	list	reporter	accepts	two	other	reporters,	runs	them,	and
reports	the	results	as	a	list.

If	I	wanted	a	list	to	contain	two	random	values,	I	might	use	the	following	code:

set random-list list (random 10) (random 20)

This	will	set	random-list	to	a	new	list	of	two	random	integers	each	time	it	runs.

To	make	longer	or	shorter	lists,	you	can	use	the	list	reporter	with	fewer	or	more	than	two	inputs,	but	in
order	to	do	so,	you	must	enclose	the	entire	call	in	parentheses,	e.g.:

(list random 10)
(list random 10 random 20 random 30)

For	more	information,	see	Varying	number	of	inputs.

Some	kinds	of	lists	are	most	easily	built	using	the	n-values	reporter,	which	allows	you	to	construct	a	list
of	a	specific	length	by	repeatedly	running	a	given	reporter.	You	can	make	a	list	of	the	same	value
repeated,	or	all	the	numbers	in	a	range,	or	a	lot	of	random	numbers,	or	many	other	possibilities.	See
dictionary	entry	for	details	and	examples.

The	of	primitive	lets	you	construct	a	list	from	an	agentset.	It	reports	a	list	containing	each	agent's	value
for	the	given	reporter.	(The	reporter	could	be	a	simple	variable	name,	or	a	more	complex	expression	--
even	a	call	to	a	procedure	defined	using	to-report.)	A	common	idiom	is

max [...] of turtles
sum [...] of turtles

and	so	on.

You	can	combine	two	or	more	lists	using	the	sentence	reporter,	which	concatenates	lists	by	combining
their	contents	into	a	single,	larger	list.	Like	list,	sentence	normally	takes	two	inputs,	but	can	accept	any
number	of	inputs	if	the	call	is	surrounded	by	parentheses.

Changing	list	items

Technically,	lists	can't	be	modified,	but	you	can	construct	new	lists	based	on	old	lists.	If	you	want	the
new	list	to	replace	the	old	list,	use	set.	For	example:

set mylist [2 7 5 Bob [3 0 -2]]
; mylist is now [2 7 5 Bob [3 0 -2]]
set mylist replace-item 2 mylist 10
; mylist is now [2 7 10 Bob [3 0 -2]]

The	replace-item	reporter	takes	three	inputs.	The	first	input	specifies	which	item	in	the	list	is	to	be
changed.	0	means	the	first	item,	1	means	the	second	item,	and	so	forth.

To	add	an	item,	say	42,	to	the	end	of	a	list,	use	the	lput	reporter.	(fput	adds	an	item	to	the	beginning	of
a	list.)

set mylist lput 42 mylist
; mylist is now [2 7 10 Bob [3 0 -2] 42]

But	what	if	you	changed	your	mind?	The	but-last	(bl	for	short)	reporter	reports	all	the	list	items	but	the
last.

set mylist but-last mylist
; mylist is now [2 7 10 Bob [3 0 -2]]

Suppose	you	want	to	get	rid	of	item	0,	the	2	at	the	beginning	of	the	list.

set mylist but-first mylist
; mylist is now [7 10 Bob [3 0 -2]]

Suppose	you	wanted	to	change	the	third	item	that's	nested	inside	item	3	from	-2	to	9?	The	key	is	to
realize	that	the	name	that	can	be	used	to	call	the	nested	list	[3	0	-2]	is	item 3 mylist.	Then	the	replace-
item	reporter	can	be	nested	to	change	the	list-within-a-list.	The	parentheses	are	added	for	clarity.

set mylist (replace-item 3 mylist
 (replace-item 2 (item 3 mylist) 9))
; mylist is now [7 10 Bob [3 0 9]]

Iterating	over	lists

If	you	want	to	do	some	operation	on	each	item	in	a	list	in	turn,	the	foreach	command	and	the	map
reporter	may	be	helpful.

foreach	is	used	to	run	a	command	or	commands	on	each	item	in	a	list.	It	takes	an	input	list	and	a
command	name	or	block	of	commands,	like	this:

foreach [1 2 3] show
=> 1
=> 2
=> 3
foreach [2 4 6]
 [n -> crt n

 show (word "created " n " turtles")]
=> created 2 turtles
=> created 4 turtles
=> created 6 turtles

In	the	block,	the	variable	n	holds	the	current	value	from	the	input	list.

Here	are	some	more	examples	of	foreach:

foreach [1 2 3] [steps -> ask turtles [fd steps]]
;; turtles move forward 6 patches
foreach [true false true true] [should-move? -> ask turtles [if should-move? [fd 1]]]
;; turtles move forward 3 patches

map	is	similar	to	foreach,	but	it	is	a	reporter.	It	takes	an	input	list	and	a	reporter	name	or	reporter	block.
Note	that	unlike	foreach,	the	reporter	comes	first,	like	this:

show map round [1.2 2.2 2.7]
;; prints [1 2 3]

map	reports	a	list	containing	the	results	of	applying	the	reporter	to	each	item	in	the	input	list.	Again,	use
the	variable	named	in	the	anonymous	procedure	(x	in	the	examples	below)	to	refer	to	the	current	item	in
the	list.

Here	are	a	couple	more	examples	of	map:

show map [x -> x < 0] [1 -1 3 4 -2 -10]
;; prints [false true false false true true]
show map [x -> x * x] [1 2 3]
;; prints [1 4 9]

Besides	map	and	foreach,	other	primitives	for	processing	whole	lists	in	a	configurable	way	include	filter,
reduce,	and	sort-by.

These	primitives	aren't	always	the	solution	for	every	situation	in	which	you	want	to	operate	on	an	entire
list.	In	some	situations,	you	may	need	to	use	some	other	technique	such	as	a	loop	using	repeat	or
while,	or	a	recursive	procedure.

The	blocks	of	code	we're	giving	to	map	and	foreach	in	these	examples	are	actually	anonymous
procedures.	Anonymous	procedures	are	explained	in	more	detail	in	Anonymous	procedures,	below.

Varying	number	of	inputs

Some	commands	and	reporters	involving	lists	and	strings	may	take	a	varying	number	of	inputs.	In	these
cases,	in	order	to	pass	them	a	number	of	inputs	other	than	their	default,	the	primitive	and	its	inputs	must
be	surrounded	by	parentheses.	Here	are	some	examples:

show list 1 2
=> [1 2]
show (list 1 2 3 4)
=> [1 2 3 4]
show (list)
=> []

Note	that	each	of	these	special	primitives	has	a	default	number	of	inputs	for	which	no	parentheses	are
required.	The	primitives	which	have	this	capability	are	list,	word,	sentence,	map,	foreach,	run,	and
runresult.

Lists	of	agents

Earlier,	we	said	that	agentsets	are	always	in	random	order,	a	different	random	order	every	time.	If	you
need	your	agents	to	do	something	in	a	fixed	order,	you	need	to	make	a	list	of	the	agents	instead.

There	are	two	primitives	that	help	you	do	this,	sort	and	sort-by.

Both	sort	and	sort-by	can	take	an	agentset	as	input.	The	result	is	always	a	new	list,	containing	the
same	agents	as	the	agentset	did,	but	in	a	particular	order.

If	you	use	sort	on	an	agentset	of	turtles,	the	result	is	a	list	of	turtles	sorted	in	ascending	order	by	who
number.

If	you	use	sort	on	an	agentset	of	patches,	the	result	is	a	list	of	patches	sorted	left-to-right,	top-to-bottom.

If	you	use	sort	on	an	agentset	of	links,	the	result	is	a	list	of	links,	sorted	in	ascending	order	first	by	end1
then	by	end2	any	remaining	ties	are	resolved	by	breed	in	the	order	they	are	declared	in	the	Code	tab.

If	you	need	descending	order	instead,	you	can	combine	reverse	with	sort,	for	example	reverse sort
turtles.

If	you	want	your	agents	to	be	ordered	by	some	other	criterion	than	the	standard	ones	sort	uses,	you'll
need	to	use	sort-by	instead.

Here's	an	example:

sort-by [[a b] -> [size] of a < [size] of b] turtles

This	returns	a	list	of	turtles	sorted	in	ascending	order	by	their	turtle	variable	size.

There's	a	common	pattern	to	get	a	list	of	agents	in	a	random	order,	using	a	combination	of	of	and	self,
in	the	rare	case	that	you	cannot	just	use	ask:

[self] of my-agentset

Asking	a	list	of	agents

Once	you	have	a	list	of	agents,	you	might	want	to	ask	them	each	to	do	something.	To	do	this,	use	the
foreach	and	ask	commands	in	combination,	like	this:

foreach sort turtles [the-turtle ->
 ask the-turtle [
 ...
]
]

This	will	ask	each	turtle	in	ascending	order	by	who	number.	Substitute	"patches"	for	"turtles"	to	ask
patches	in	left-to-right,	top-to-bottom	order.

Note	that	you	can't	use	ask	directly	on	a	list	of	turtles.	ask	only	works	with	agentsets	and	single	agents.

Performance	of	lists

The	data	structure	underlying	NetLogo's	lists	is	a	sophisticated	tree-based	data	structure	on	which	most
operations	run	in	near-constant	time.	That	includes	fput,	lput,	butfirst,	butlast,	length,	item,	and
replace-item.

One	exception	to	the	fast-performance	rule	is	that	concatenating	two	lists	with	sentence	requires
traversing	and	copying	the	whole	second	list.	(This	may	be	fixed	in	a	future	version.)

Technically,	"near-constant	time"	is	actually	logarithmic	time,	proportional	to	the	depth	of	the	underlying
tree,	but	these	trees	have	large	nodes	and	a	high	branching	factor,	so	they	are	never	more	than	a	few
levels	deep.	This	means	that	changes	can	be	made	in	at	most	a	few	steps.	The	trees	are	immutable,	but
they	share	structure	with	each	other,	so	the	whole	tree	doesn't	need	to	be	copied	to	make	a	changed
version.

The	actual	data	structure	used	is	the	immutable	Vector	class	from	the	Scala	collections	library.	These
are	32-wide	hash	array	mapped	tries,	as	implemented	by	Tiark	Rompf,	based	in	part	on	work	by	Phil
Bagwell	and	Rich	Hickey.

http://en.wikipedia.org/wiki/Hash_array_mapped_trie

Math

All	numbers	in	NetLogo	are	stored	internally	as	double	precision	floating	point	numbers,	as	defined	in
the	IEEE	754	standard.	They	are	64	bit	numbers	consisting	of	one	sign	bit,	an	11-bit	exponent,	and	a
52-bit	mantissa.	See	the	IEEE	754	standard	for	details.

An	"integer"	in	NetLogo	is	simply	a	number	that	happens	to	have	no	fractional	part.	No	distinction	is
made	between	3	and	3.0;	they	are	the	same	number.	(This	is	the	same	as	how	most	people	use
numbers	in	everyday	contexts,	but	different	from	some	programming	languages.	Some	languages	treat
integers	and	floating	point	numbers	as	distinct	types.)

Integers	are	always	printed	by	NetLogo	without	the	trailing	".0":

show 1.5 + 1.5
observer: 3

If	a	number	with	a	fractional	part	is	supplied	in	a	context	where	an	integer	is	expected,	the	fractional	part
is	simply	discarded.	So	for	example,	crt 3.5	creates	three	turtles;	the	extra	0.5	is	ignored.

The	range	of	integers	is	+/-9007199254740992	(2^53,	about	9	quadrillion).	Calculations	that	exceed	this
range	will	not	cause	runtime	errors,	but	precision	will	be	lost	when	the	least	significant	(binary)	digits	are
rounded	off	in	order	fit	the	number	into	64	bits.	With	very	large	numbers,	this	rounding	can	result	in
imprecise	answers	which	may	be	surprising:

show 2 ^ 60 + 1 = 2 ^ 60
=> true

Calculations	with	smaller	numbers	can	also	produce	surprising	results	if	they	involve	fractional
quantities,	since	not	all	fractions	can	be	precisely	represented	and	roundoff	may	occur.	For	example:

show 1 / 6 + 1 / 6 + 1 / 6 + 1 / 6 + 1 / 6 + 1 / 6
=> 0.9999999999999999
show 1 / 9 + 1 / 9 + 1 / 9 + 1 / 9 + 1 / 9 + 1 / 9 + 1 / 9 + 1 / 9 + 1 / 9
=> 1.0000000000000002

Any	operation	which	produces	the	special	quantities	"infinity"	or	"not	a	number"	will	cause	a	runtime
error.

Scientific	notation

Very	large	or	very	small	floating	point	numbers	are	displayed	by	NetLogo	using	"scientific	notation".
Examples:

show 0.000000000001
=> 1.0E-12
show 50000000000000000000
=> 5.0E19

Numbers	in	scientific	notation	are	distinguished	by	the	presence	of	the	letter	E	(for	"exponent").	It	means
"times	ten	to	the	power	of",	so	for	example,	1.0E-12	means	1.0	times	10	to	the	-12	power:

show 1.0 * 10 ^ -12
=> 1.0E-12

You	can	also	use	scientific	notation	yourself	in	NetLogo	code:

show 3.0E6
=> 3000000
show 8.123456789E6
=> 8123456.789
show 8.123456789E7

=> 8.123456789E7
show 3.0E16
=> 3.0E16
show 8.0E-3
=> 0.0080
show 8.0E-4
=> 8.0E-4

These	examples	show	that	numbers	with	fractional	parts	are	displayed	using	scientific	notation	if	the
exponent	is	less	than	-3	or	greater	than	6.	Numbers	outside	of	NetLogo's	integer	range	of	-
9007199254740992	to	9007199254740992	(+/-2^53)	are	also	always	shown	in	scientific	notation:

show 2 ^ 60
=> 1.15292150460684698E18

When	entering	a	number,	the	letter	E	may	be	either	upper	or	lowercase.	When	printing	a	number,
NetLogo	always	uses	an	uppercase	E:

show 4.5e20
=> 4.5E20

Floating	point	accuracy

Because	numbers	in	NetLogo	are	subject	to	the	limitations	of	how	floating	point	numbers	are
represented	in	binary,	you	may	get	answers	that	are	slightly	inaccurate.	For	example:

show 0.1 + 0.1 + 0.1
=> 0.30000000000000004
show cos 90
=> 6.123233995736766E-17

This	is	an	inherent	issue	with	floating	point	arithmetic;	it	occurs	in	all	programming	languages	that	use
floating	point	numbers.

If	you	are	dealing	with	fixed	precision	quantities,	for	example	dollars	and	cents,	a	common	technique	is
to	use	only	integers	(cents)	internally,	then	divide	by	100	to	get	a	result	in	dollars	for	display.

If	you	must	use	floating	point	numbers,	then	in	some	situations	you	may	need	to	replace	a
straightforward	equality	test	such	as	if x = 1 [...]	with	a	test	that	tolerates	slight	imprecision,	for
example	if abs (x - 1) < 0.0001 [...] .

Also,	the	precision	primitive	is	handy	for	rounding	off	numbers	for	display	purposes.	NetLogo	monitors
round	the	numbers	they	display	to	a	configurable	number	of	decimal	places,	too.

Random	numbers

The	random	numbers	used	by	NetLogo	are	what	is	called	"pseudo-random".	(This	is	typical	in	computer
programming.)	That	means	they	appear	random,	but	are	in	fact	generated	by	a	deterministic	process.
"Deterministic"	means	that	you	get	the	same	results	every	time,	if	you	start	with	the	same	random
"seed".	We'll	explain	in	a	minute	what	we	mean	by	"seed".

In	the	context	of	scientific	modeling,	pseudo-random	numbers	are	actually	desirable.	That's	because	it's
important	that	a	scientific	experiment	be	reproducible	--	so	anyone	can	try	it	themselves	and	get	the
same	result	that	you	got.	Since	NetLogo	uses	pseudo-random	numbers,	the	"experiments"	that	you	do
with	it	can	be	reproduced	by	others.

Here's	how	it	works.	NetLogo's	random	number	generator	can	be	started	with	a	certain	seed	value,
which	must	be	an	integer	in	the	range	-2147483648	to	2147483647.	Once	the	generator	has	been
"seeded"	with	the	random-seed	command,	it	always	generates	the	same	sequence	of	random	numbers
from	then	on.	For	example,	if	you	run	these	commands:

random-seed 137

show random 100
show random 100
show random 100

You	will	always	get	the	numbers	79,	89,	and	61	in	that	order.

Note,	however,	that	you're	only	guaranteed	to	get	those	same	numbers	if	you're	using	the	same	version
of	NetLogo.	Sometimes	when	we	make	a	new	version	of	NetLogo	the	random	number	generator
changes.	(Presently,	we	use	a	generator	known	as	the	Mersenne	Twister.)

To	create	a	number	suitable	for	seeding	the	random	number	generator,	use	the	new-seed	reporter.	new-
seed	creates	a	seed,	evenly	distributed	over	the	space	of	possible	seeds,	based	on	the	current	date	and
time.	It	never	reports	the	same	seed	twice	in	a	row.

Code	Example:	Random	Seed	Example

If	you	don't	set	the	random	seed	yourself,	NetLogo	sets	it	to	a	value	based	on	the	current	date	and	time.
There	is	no	way	to	find	out	what	random	seed	it	chose,	so	if	you	want	your	model	run	to	be	reproducible,
you	must	set	the	random	seed	yourself	ahead	of	time.

The	NetLogo	primitives	with	"random"	in	their	names	(random,	random-float,	and	so	on)	aren't	the	only
ones	that	use	pseudo-random	numbers.	Many	other	operations	also	make	random	choices.	For
example,	agentsets	are	always	in	random	order,	one-of	and	n-of	choose	agents	randomly,	the	sprout
command	creates	turtles	with	random	colors	and	headings,	and	the	downhill	reporter	chooses	a	random
patch	when	there's	a	tie.	All	of	these	random	choices	are	governed	by	the	random	seed	as	well,	so
model	runs	can	be	reproducible.

In	addition	to	the	uniformly	distributed	random	integers	and	floating	point	numbers	generated	by	random
and	random-float,	NetLogo	also	offers	several	other	random	distributions.	See	the	dictionary	entries	for
random-normal,	random-poisson,	random-exponential,	and	random-gamma.

Auxiliary	generator

Code	run	by	buttons	or	from	the	command	center	uses	the	main	random	number	generator.

Code	in	monitors	uses	an	auxiliary	random	generator,	so	even	if	a	monitor	does	a	calculation	that	uses
random	numbers,	the	outcome	of	the	model	is	not	affected.	The	same	is	true	of	code	in	sliders.

Local	randomness

You	may	want	to	explicitly	specify	that	a	section	of	code	does	not	affect	the	state	of	the	main	random
generator,	so	the	outcome	of	the	model	is	not	affected.	The	with-local-randomness	command	is
provided	for	this	purpose.	See	its	entry	in	the	NetLogo	Dictionary	for	more	information.

Turtle	shapes

In	NetLogo,	turtle	shapes	are	vector	shapes.	They	are	built	up	from	basic	geometric	shapes;	squares,
circles,	and	lines,	rather	than	a	grid	of	pixels.	Vector	shapes	are	fully	scalable	and	rotatable.	NetLogo
caches	bitmap	images	of	vector	shapes	size	1,	1.5,	and	2	in	order	to	speed	up	execution.

A	turtle's	shape	is	stored	in	its	shape	variable	and	can	be	set	using	the	set	command.

New	turtles	have	a	shape	of	"default".	The	set-default-shape	primitive	is	useful	for	changing	the	default
turtle	shape	to	a	different	shape,	or	having	a	different	default	turtle	shape	for	each	breed	of	turtle.

The	shapes	primitive	reports	a	list	of	currently	available	turtle	shapes	in	the	model.	This	is	useful	if,	for
example,	you	want	to	assign	a	random	shape	to	a	turtle:

ask turtles [set shape one-of shapes]

Use	the	Turtle	Shapes	Editor	to	create	your	own	turtle	shapes,	or	to	add	shapes	to	your	model	from	our
shapes	library,	or	to	transfer	shapes	between	models.	For	more	information,	see	the	Shapes	Editor
section	of	this	manual.

The	thickness	of	the	lines	used	to	draw	the	vector	shapes	can	be	controlled	by	the	__set-line-
thickness	primitive.

Code	Examples:	Breeds	and	Shapes	Example,	Shape	Animation	Example

Link	shapes

Link	Shapes	are	similar	to	turtle	shapes,	only	you	use	the	Link	Shape	Editor	to	create	and	edit	them.
Link	shapes	consist	of	between	0	and	3	lines	which	can	have	different	patterns	and	a	direction	indicator
that	is	composed	of	the	same	elements	as	turtle	shapes.	Links	also	have	a	shape	variable	that	can	be
set	to	any	link	shape	that	is	in	the	model.	By	default	links	have	the	"default"	shape,	though	you	can
change	that	using	set-default-shape.	The	link-shapes	reporter	reports	all	the	link	shapes	included	in
the	current	model.

The	thickness	of	the	lines	in	the	link	shape	is	controlled	by	the	thickness	link	variable.

View	updates

The	"view"	in	NetLogo	lets	you	see	the	agents	in	your	model	on	your	computer's	screen.	As	your	agents
move	and	change,	you	see	them	moving	and	changing	in	the	view.

Of	course,	you	can't	really	see	your	agents	directly.	The	view	is	a	picture	that	NetLogo	paints,	showing
you	how	your	agents	look	at	a	particular	instant.	Once	that	instant	passes	and	your	agents	move	and
change	some	more,	that	picture	needs	to	be	repainted	to	reflect	the	new	state	of	the	world.	Repainting
the	picture	is	called	"updating"	the	view.

When	does	the	view	get	updated?	This	section	discusses	how	NetLogo	decides	when	to	update	the
view,	and	how	you	can	influence	when	it	gets	updated.

NetLogo	offers	two	updates	modes,	"continuous"	updates	and	"tick-based"	updates.	You	can	switch
between	NetLogo's	two	view	update	modes	using	a	popup	menu	at	the	top	of	the	Interface	tab.

Continuous	updates	are	the	default	when	you	start	up	NetLogo	or	start	a	new	model.	Nearly	every
model	in	our	Models	Library,	however,	uses	tick-based	updates.

Continuous	updates	are	simplest,	but	tick-based	updates	give	you	more	control	over	when	and	how
often	updates	happen.

It's	important	exactly	when	an	update	happens,	because	when	updates	happen	determines	what	you
see	on	the	screen.	If	an	update	comes	at	an	unexpected	time,	you	may	see	something	unexpected	--
perhaps	something	confusing	or	misleading.

It's	also	important	how	often	updates	happen,	because	updates	take	time.	The	more	time	NetLogo
spends	updating	the	view,	the	slower	your	model	will	run.	With	fewer	updates,	your	model	runs	faster.

Continuous	updates

Continuous	updates	are	very	simple.	With	continuous	updates,	NetLogo	updates	the	view	a	certain
number	of	times	per	second	--	by	default,	30	times	a	second	when	the	speed	slider	is	in	the	default,
middle	setting.

If	you	move	the	speed	slider	to	a	slower	setting,	NetLogo	will	update	more	than	30	times	a	second,
effectively	slowing	down	the	model.	On	a	faster	setting,	NetLogo	will	update	less	than	30	times	a
second.	On	the	fastest	setting,	updates	will	be	separated	by	several	seconds.

At	extremely	slow	settings,	NetLogo	will	be	updating	so	often	that	you	will	see	your	agents	moving	(or
changing	color,	etc.)	one	at	a	time.

If	you	need	to	temporarily	shut	off	continuous	updates,	use	the	no-display	command.	The	display
command	turns	updates	back	on,	and	also	forces	an	immediate	update	(unless	the	user	is	fast-
forwarding	the	model	using	the	speed	slider).

Tick-based	updates

As	discussed	above	in	the	Tick	Counter	section,	in	many	NetLogo	models,	time	passes	in	discrete
steps,	called	"ticks".	Typically,	you	want	the	view	to	update	once	per	tick,	between	ticks.	That's	the
default	behavior	with	tick-based	updates.

If	you	want	additional	view	updates,	you	can	force	an	update	using	the	display	command.	(The	update
may	be	skipped	if	the	user	is	fast-forwarding	the	model	using	the	speed	slider.)

You	don't	have	to	use	the	tick	counter	to	use	tick-based	updates.	If	the	tick	counter	never	advances,	the
view	will	update	only	when	you	use	the	display	command.

If	you	move	the	speed	slider	to	a	fast	enough	setting,	eventually	NetLogo	will	skip	some	of	the	updates
that	would	ordinarily	have	happened.	Moving	the	speed	slider	to	a	slower	setting	doesn't	cause
additional	updates;	rather,	it	makes	NetLogo	pause	after	each	update.	The	slower	the	setting,	the	longer
the	pause.

Even	under	tick-based	updates,	the	view	also	updates	whenever	a	button	in	the	interface	pops	up	(both
once	and	forever	buttons)	and	when	a	command	entered	in	the	Command	Center	finishes.	So	it's	not
necessary	to	add	the	display	command	to	once	buttons	that	don't	advance	the	tick	counter.	Many
forever	buttons	that	don't	advance	the	tick	counter	do	need	to	use	the	display	command.	An	example	in
the	Models	Library	is	the	Life	model	(under	Computer	Science	->	Cellular	Automata).	The	forever
buttons	that	let	the	user	draw	in	the	view	use	the	display	command	so	the	user	can	see	what	they	are
drawing,	even	though	the	tick	counter	is	not	advancing.

Choosing	a	mode

Advantages	of	tick-based	updates	over	continuous	updates	include:

1.	 Consistent,	predictable	view	update	behavior	which	does	not	vary	from	computer	to	computer	or
from	run	to	run.

2.	 Continuous	updates	can	confuse	the	user	of	your	model	by	letting	them	see	model	states	they
aren't	supposed	to	see,	which	may	be	misleading.

3.	 Since	setup	buttons	don't	advance	the	tick	counter,	they	are	unaffected	by	the	speed	slider;	this	is
normally	the	desired	behavior.

Nearly	every	model	in	our	Models	Library	uses	tick-based	updates.

Continuous	updates	are	occasionally	useful	for	those	rare	models	in	which	execution	is	not	divided	into
short,	discrete	phases.	An	example	in	the	Models	Library	is	Termites.	(See	also,	however,	the	State
Machine	Example	model,	which	shows	how	to	re-code	Termites	using	ticks.)

Even	for	models	that	would	normally	be	set	to	tick-based	updates,	it	may	be	useful	to	switch	to
continuous	updates	temporarily	for	debugging	purposes.	Seeing	what's	going	on	within	a	tick,	instead	of
only	seeing	the	end	result	of	a	tick,	could	help	with	troubleshooting.	After	switching	to	continuous
updates,	you	may	want	to	use	the	speed	slider	to	slow	the	model	down	until	you	see	your	agents
moving	one	at	a	time.	Don't	forget	to	change	back	to	tick-based	updates	when	you	are	done,	as	the
choice	of	update	mode	is	saved	with	the	model.

Changing	the	update	mode	also	affects	model	speed.	Updating	the	view	takes	time;	often	enforcing	a
single	update	per	tick	(by	using	tick-based	updates)	will	make	your	model	faster.	On	the	other	hand,
continuous	updates	will	be	faster	when	running	a	single	tick	is	faster	than	drawing	a	frame	of	the	model.
Most	models	run	faster	under	tick-based	updates,	but	for	an	example	of	a	model	which	is	faster	with
continuous	updates	see	the	"Heroes	and	Cowards"	library	model.

Frame	rate

One	of	the	model	settings	in	NetLogo's	"Settings..."	dialog	is	"Frame	rate"	which	defaults	to	30	frames
per	second.

The	frame	rate	setting	affects	both	continuous	updates	and	tick-based	updates.

With	continuous	updates,	the	setting	directly	determines	the	frequency	of	updates.

With	tick-based	updates,	the	setting	is	a	ceiling	on	how	many	updates	per	second	you	get.	If	the	frame
rate	is	30,	then	NetLogo	will	ensure	that	the	model	never	runs	faster	than	that	when	the	speed	slider	is
in	the	default	position.	If	any	frame	takes	less	than	1/30	of	a	second	to	compute	and	display,	NetLogo
will	pause	and	wait	until	the	full	1/30	of	a	second	has	passed	before	continuing.

The	frame	rate	settings	lets	you	set	what	you	consider	to	be	a	normal	speed	for	your	model.	Then	you,
or	the	user	of	your	model,	can	use	the	speed	slider	to	temporarily	get	a	faster	or	slower	speed.

Plotting

NetLogo's	plotting	features	let	you	create	plots	to	help	you	understand	what's	going	on	in	your	model.

Before	you	can	plot,	you	need	to	create	one	or	more	plots	in	the	Interface	tab.	For	more	information	on
using	and	editing	plots	in	the	Interface	tab,	see	the	Interface	Guide.

Plotting	points

The	two	basic	commands	for	actually	plotting	things	are	plot	and	plotxy.

With	plot	you	need	only	specify	the	y	value	you	want	plotted.	The	x	value	will	automatically	be	0	for	the
first	point	you	plot,	1	for	the	second,	and	so	on.	(That's	if	the	plot	pen's	"interval"	is	the	default	value	of	1;
you	can	change	the	interval.)

The	plot	command	is	especially	handy	when	you	want	your	model	to	plot	a	new	point	at	every	time
step.	Example:

plot count turtles

If	you	need	to	specify	both	the	x	and	y	values	of	the	point	you	want	plotted,	then	use	plotxy	instead.
This	example	assumes	that	a	global	variable	called	time	exists:

plotxy time count-turtles

Plot	commands

Each	plot	and	its	pens	have	setup	and	update	code	fields	that	may	contain	commands	(usually
containing	plot	or	plotxy).	These	commands	are	run	automatically	triggered	by	other	commands	in
NetLogo.

Plot	setup	commands	and	pen	setup	commands	are	run	when	the	either	reset-ticks	or	setup-plots
commands	are	run.	If	the	stop	command	is	run	in	the	body	of	the	plot	setup	commands	then	the	pen
setup	commands	will	not	run.

Plot	update	commands	and	pen	update	commands	are	run	when	the	either	reset-ticks,	tick	or
update-plots	commands	are	run.	If	the	stop	command	is	run	in	the	body	of	the	plot	update	commands
then	the	pen	update	commands	will	not	run.

Here	are	the	four	commands	that	trigger	plotting	explained	in	more	detail.

setup-plots	executes	commands	for	one	plot	at	a	time.	For	each	plot,	the	plot's	setup	commands
are	executed.	If	the	stop	command	is	not	encountered	while	running	those	commands,	then	each
of	the	plot's	pens	will	have	their	setup	code	executed.
update-plots	is	very	similar	to	setup-plots.	For	each	plot,	the	plot's	update	commands	are
executed.	If	the	stop	command	is	not	encountered	while	running	those	commands,	then	each	of
the	plot's	pens	will	have	their	update	code	executed.
tick	is	exactly	the	same	as	update-plots	except	that	the	tick	counter	is	incremented	before	the
plot	commands	are	executed.
reset-ticks	first	resets	the	tick	counter	to	0,	and	then	does	the	equivalent	of	setup-plots	followed
by	update-plots.

A	typical	model	will	use	reset-ticks	and	tick	like	so:

to setup
 clear-all
 ...
 reset-ticks
end

to go
 ...
 tick
end

Note	that	in	this	example	we	plot	from	both	the	setup	and	go	procedures	(because	reset-ticks	runs	plot
setup	and	plot	update	commands).	We	do	this	because	we	want	our	plot	to	include	the	initial	state	of	the
system	at	the	end	of	setup.	We	plot	at	the	end	of	the	go	procedure,	not	the	beginning,	because	we	want
the	plot	always	to	be	up	to	date	after	the	go	button	stops.

Models	that	don't	use	ticks	but	still	want	to	do	plotting	will	instead	use	setup-plots	and	update-plots.	In
the	previous	code,	replace	reset-ticks	with	setup-plots update-plots	and	replace	tick	with	update-
plots.

Code	Example:	Plotting	Example

Other	kinds	of	plots

By	default,	NetLogo	plot	pens	plot	in	line	mode,	so	that	the	points	you	plot	are	connected	by	a	line.

If	you	want	to	move	the	pen	without	plotting,	you	can	use	the	plot-pen-up	command.	After	this
command	is	issued,	the	plot	and	plotxy	commands	move	the	pen	but	do	not	actually	draw	anything.
Once	the	pen	is	where	you	want	it,	use	plot-pen-down	to	put	the	pen	back	down.

If	you	want	to	plot	individual	points	instead	of	lines,	or	you	want	to	draw	bars	instead	of	lines	or	points,
you	need	to	change	the	plot	pen's	"mode".	Three	modes	are	available:	line,	bar,	and	point.	Line	is	the
default	mode.

Normally,	you	change	a	pen's	mode	by	editing	the	plot.	This	changes	the	pen's	default	mode.	It's	also
possible	to	change	the	pen's	mode	temporarily	using	the	set-plot-pen-mode command.	That	command
takes	a	number	as	input:	0	for	line,	1	for	bar,	2	for	point.

Histograms

A	histogram	is	a	special	kind	of	plot	that	measures	how	frequently	certain	values,	or	values	in	certain
ranges,	occur	in	a	collection	of	numbers	that	arise	in	your	model.

For	example,	suppose	the	turtles	in	your	model	have	an	age	variable.	You	could	create	a	histogram	of
the	distribution	of	ages	among	your	turtles	with	the	histogram	command,	like	this:

histogram [age] of turtles

The	numbers	you	want	to	histogram	don't	have	to	come	from	an	agentset;	they	could	be	any	list	of
numbers.

Note	that	using	the	histogram	command	doesn't	automatically	switch	the	current	plot	pen	to	bar	mode.	If
you	want	bars,	you	have	to	set	the	plot	pen	to	bar	mode	yourself.	(As	we	said	before,	you	can	change	a
pen's	default	mode	by	editing	the	plot	in	the	Interface	tab.)

Like	other	types	of	plots,	histograms	can	be	set	to	auto	scale.	However,	auto	scaled	histograms	do	not
automatically	resize	themselves	horizontally	like	other	plot	types	do.	To	set	the	range	programmatically,
you	can	use	the	set-plot-x-range	primitive.

The	width	of	the	bars	in	a	histogram	is	controlled	by	the	plot	pen's	interval.	You	can	set	a	plot	pen's
default	interval	by	editing	the	plot	in	the	Interface	tab.	You	can	also	change	the	interval	temporarily	with
the	set-plot-pen-interval	command	or	the	set-histogram-num-bars.	If	you	use	the	latter	command,
NetLogo	will	set	the	interval	appropriately	so	as	to	fit	the	specified	number	of	bars	within	the	plot's
current	x	range.

Code	Example:	Histogram	Example

Clearing	and	resetting

You	can	clear	the	current	plot	with	the	clear-plot	command,	or	clear	every	plot	in	your	model	with
clear-all-plots.	The	clear-all command	also	clears	all	plots,	in	addition	to	clearing	everything	else	in
your	model.

If	you	want	to	remove	only	the	points	that	a	particular	pen	has	drawn,	use	plot-pen-reset.

When	a	whole	plot	is	cleared,	or	when	a	pen	is	reset,	that	doesn't	just	remove	the	data	that	has	been
plotted.	It	also	restores	the	plot	or	pen	to	its	default	settings,	as	they	were	specified	in	the	Interface	tab
when	the	plot	was	created	or	last	edited.	Therefore,	the	effects	of	such	commands	as	set-plot-
background-color,	set-plot-x-range,	and	set-plot-pen-color	are	only	temporary.

Ranges	and	auto	scaling

The	default	x	and	y	ranges	for	a	plot	are	fixed	numbers,	but	they	can	be	changed	at	setup	time	or	as	the
model	runs.

To	change	the	ranges	at	any	time,	use	set-plot-x-range	and	set-plot-y-range.	Or,	you	can	let	the
ranges	grow	automatically.	Either	way,	when	the	plot	is	cleared	the	ranges	will	return	to	their	default
values.

By	default,	all	NetLogo	plots	have	the	auto	scaling	feature	enabled.	This	means	that	if	the	model	tries	to
plot	a	point	which	is	outside	the	current	displayed	range,	the	range	of	the	plot	will	grow	along	one	or
both	axes	so	that	the	new	point	is	visible.	Histogram	plots,	however,	do	not	auto	scale	horizontally.

In	the	hope	that	the	ranges	won't	have	to	change	every	time	a	new	point	is	added,	when	the	ranges
grow	they	leave	some	extra	room:	25%	if	growing	horizontally,	10%	if	growing	vertically.

If	you	want	to	turn	off	this	feature,	edit	the	plot	and	uncheck	the	Auto	Scale?	checkbox.	At	present,	it	is
not	possible	to	enable	or	disable	this	feature	only	on	one	axis;	it	always	applies	to	both	axes.

Using	a	Legend

You	can	show	the	legend	of	a	plot	by	checking	the	"Show	legend"	checkbox	in	the	edit	dialog.	If	you
don't	want	a	particular	pen	to	show	up	in	the	legend	you	can	uncheck	the	"Show	in	Legend"	checkbox
for	that	pen	also	in	the	advanced	plot	pen	settings	(the	advanced	plot	pen	settings	can	be	opened	by
clicking	the	pencil	button	for	that	pen	in	the	plot	pens	table	in	the	plot	edit	dialog).

Temporary	plot	pens

Most	plots	can	get	along	with	a	fixed	number	of	pens.	But	some	plots	have	more	complex	needs;	they
may	need	to	have	the	number	of	pens	vary	depending	on	conditions.	In	such	cases,	you	can	make
"temporary"	plot	pens	from	code	and	then	plot	with	them.	These	pens	are	called	"temporary"	because
they	vanish	when	the	plot	is	cleared	(by	the	clear-plot,	clear-all-plots,	or	clear-all	commands).

To	create	a	temporary	plot	pen,	use	the	create-temporary-plot-pen	command.	Typically,	this	would	be
done	in	the	Code	tab,	but	it	is	also	possible	to	use	this	command	from	plot	setup	or	plot	update	code	(in
the	edit	dialog).	By	default,	the	new	pen	is	down,	is	black	in	color,	has	an	interval	of	1,	and	plots	in	line
mode.	Commands	are	available	to	change	all	of	these	settings;	see	the	Plotting	section	of	the	NetLogo
Dictionary.

Before	you	can	use	the	pen,	you'll	have	to	use	the	use	the	set-current-plot	and	set-current-plot-pen
commands.	These	are	explained	in	the	next	section.

set-current-plot	and	set-current-plot-pen

Before	NetLogo	5,	it	was	not	possible	to	put	plot	commands	in	the	plot	itself.	All	of	the	plot	code	was
written	in	the	Code	tab	with	the	rest	of	the	code.	For	backwards	compatibility,	and	for	temporary	plot
pens,	this	is	still	supported.	Models	in	previous	versions	of	NetLogo	(and	those	using	temporary	plot
pens)	have	to	explicitly	state	which	plot	is	the	current	plot	with	the	set-current-plot	command	and
which	pen	is	the	current	pen	with	the	set-current-plot-pen	command.

To	set	the	current	plot	use	the	set-current-plot	command	with	the	name	of	the	plot	enclosed	in	double
quotes,	like	this:

set-current-plot "Distance vs. Time"

The	name	of	the	plot	must	be	exactly	as	you	typed	it	when	you	created	the	plot.	Note	that	later	if	you
change	the	name	of	the	plot,	you'll	also	have	to	update	the	set-current-plot	calls	in	your	model	to	use
the	new	name.	(Copy	and	paste	can	be	helpful	here.)

For	a	plot	with	multiple	pens,	you	can	manually	specify	which	pen	you	want	to	plot	with.	If	you	don't
specify	a	pen,	plotting	will	take	place	with	the	first	pen	in	the	plot.	To	plot	with	a	different	pen,	the	set-
current-plot-pen	command	was	used	with	the	name	of	the	pen	enclosed	in	double	quotes,	like	this:

set-current-plot-pen "distance"

Once	the	current	pen	is	set,	then	commands	like	plot count turtles	can	be	executed	for	that	pen.

Older	models	with	plots	usually	had	their	own	do-plotting	procedure	that	looked	something	like	this:

to do-plotting
 set-current-plot "populations"
 set-current-plot-pen "sheep"
 plot count sheep
 set-current-plot-pen "wolves"
 plot count wolves

 set-current-plot "next plot"
 ...
end

Once	again,	this	is	no	longer	necessary	in	NetLogo	5,	unless	you	are	using	temporary	plot	pens.

Conclusion

Not	every	aspect	of	NetLogo's	plotting	system	has	been	explained	here.	See	the	Plotting	section	of	the
NetLogo	Dictionary	for	information	on	additional	commands	and	reporters	related	to	plotting.

Many	of	the	Sample	Models	in	the	Models	Library	illustrate	various	advanced	plotting	techniques.	Also
check	out	the	following	code	examples:

Code	Examples:	Plot	Axis	Example,	Plot	Smoothing	Example,	Rolling	Plot	Example

Strings

Strings	may	contain	any	Unicode	characters.

To	input	a	constant	string	in	NetLogo,	surround	it	with	double	quotes.

The	empty	string	is	written	by	putting	nothing	between	the	quotes,	like	this:	"".

Most	of	the	list	primitives	work	on	strings	as	well:

but-first "string" => "tring"
but-last "string" => "strin"
empty? "" => true
empty? "string" => false
first "string" => "s"
item 2 "string" => "r"
last "string" => "g"
length "string" => 6
member? "s" "string" => true
member? "rin" "string" => true
member? "ron" "string" => false
position "s" "string" => 0
position "rin" "string" => 2
position "ron" "string" => false
remove "r" "string" => "sting"
remove "s" "strings" => "tring"
replace-item 3 "string" "o" => "strong"
reverse "string" => "gnirts"

A	few	primitives	are	specific	to	strings,	such	as	is-string?,	substring,	and	word:

is-string? "string" => true
is-string? 37 => false
substring "string" 2 5 => "rin"
word "tur" "tle" => "turtle"

Strings	can	be	compared	using	the	=,	!=,	<,	>,	<=,	and	>=	operators.

If	you	need	to	embed	a	special	character	in	a	string,	use	the	following	escape	sequences:

\n	=	newline
\t	=	tab
\"	=	double	quote
\\	=	backslash

Output

This	section	is	about	output	to	the	screen.	Output	to	the	screen	can	also	be	later	saved	to	a	file	using
the	export-output	command.	If	you	need	a	more	flexible	method	of	writing	data	to	external	files,	see	the
next	section,	File	I/O.

The	basic	commands	for	generating	output	to	the	screen	in	NetLogo	are	print,	show,	type,	and	write.
These	commands	send	their	output	to	the	Command	Center.

For	full	details	on	these	four	commands,	see	their	entries	in	the	NetLogo	Dictionary.	Here	is	how	they
are	typically	used:

print	is	useful	in	most	situations.
show	lets	you	see	which	agent	is	printing	what.

type	lets	you	print	several	things	on	the	same	line.
write	lets	you	print	values	in	a	format	which	can	be	read	back	in	using	file-read.

A	NetLogo	model	may	optionally	have	an	"output	area"	in	its	Interface	tab,	separate	from	the	Command
Center.	To	send	output	there	instead	of	the	Command	Center,	use	the	output-print,	output-show,
output-type,	and	output-write	commands.

The	output	area	can	be	cleared	with	the	clear-output	command	and	saved	to	a	file	with	export-output.
The	contents	of	the	output	area	will	be	saved	by	the	export-world	command.	The	import-world
command	will	clear	the	output	area	and	set	its	contents	to	the	value	in	imported	world	file.	It	should	be
noted	that	large	amounts	of	data	being	sent	to	the	output	area	can	increase	the	size	of	your	exported
worlds.

If	you	use	output-print,	output-show,	output-type,	output-write,	clear-output,	or	export-output	in	a
model	which	does	not	have	a	separate	output	area,	then	the	commands	apply	to	the	output	portion	of
the	Command	Center.

File	I/O

In	NetLogo,	there	is	a	set	of	primitives	that	give	you	the	power	to	interact	with	outside	files.	They	all
begin	with	the	prefix	file-.

There	are	two	main	modes	when	dealing	with	files:	reading	and	writing.	The	difference	is	the	direction	of
the	flow	of	data.	When	you	are	reading	in	information	from	a	file,	data	that	is	stored	in	the	file	flows	into
your	model.	On	the	other	hand,	writing	allows	data	to	flow	out	of	your	model	and	into	a	file.

When	working	with	files,	always	begin	by	using	the	primitive	file-open.	This	specifies	which	file	you	will
be	interacting	with.	None	of	the	other	primitives	work	unless	you	open	a	file	first.

The	next	file-	primitive	you	use	dictates	which	mode	the	file	will	be	in	until	the	file	is	closed,	reading	or
writing.	To	switch	modes,	close	and	then	reopen	the	file.

The	reading	primitives	include	file-read,	file-read-line,	file-read-characters,	and	file-at-end?	Note
that	the	file	must	exist	already	before	you	can	open	it	for	reading.

Code	Examples:	File	Input	Example

The	primitives	for	writing	are	similar	to	the	primitives	that	print	things	in	the	Command	Center,	except
that	the	output	gets	saved	to	a	file.	They	include	file-print,	file-show,	file-type,	and	file-write.	Note
that	you	can	never	"overwrite"	data.	In	other	words,	if	you	attempt	to	write	to	a	file	with	existing	data,	all
new	data	will	be	appended	to	the	end	of	the	file.	(If	you	want	to	overwrite	a	file,	use	file-delete	to
delete	it,	then	open	it	for	writing.)

Code	Examples:	File	Output	Example

When	you	are	finished	using	a	file,	you	can	use	the	command	file-close	to	end	your	session	with	the
file.	If	you	wish	to	remove	the	file	afterwards,	use	the	primitive	file-delete	to	delete	it.	To	close	multiple
opened	files,	one	needs	to	first	select	the	file	by	using	file-open	before	closing	it.

;; Open 3 files
file-open "myfile1.txt"
file-open "myfile2.txt"
file-open "myfile3.txt"

;; Now close the 3 files
file-close
file-open "myfile2.txt"
file-close
file-open "myfile1.txt"
file-close

Or,	if	you	know	you	just	want	to	close	every	file,	you	can	use	file-close-all.

Two	primitives	worth	noting	are	file-write	and	file-read	.	These	primitives	are	designed	to	easily	save
and	retrieve	NetLogo	constants	such	as	numbers,	lists,	booleans,	and	strings.	file-write	will	always
output	the	variable	in	such	a	manner	that	file-read	will	be	able	to	interpret	it	correctly.

file-open "myfile.txt" ;; Opening file for writing
ask turtles
 [file-write xcor file-write ycor]
file-close

file-open "myfile.txt" ;; Opening file for reading
ask turtles
 [setxy file-read file-read]
file-close

Code	Examples:	File	Input	Example	and	File	Output	Example

Letting	the	user	choose

The	user-directory,	user-file,	and	user-new-file	primitives	are	useful	when	you	want	the	user	to
choose	a	file	or	directory	for	your	code	to	operate	on.

Movies

This	section	describes	how	to	capture	an	".mp4"	movie	of	a	NetLogo	model.

First,	use	the	vid:start-recorder	command	to	start	the	video	recorder.

To	add	a	frame	to	your	movie,	use	either	vid:record-view	or	vid:record-interface,	depending	on
whether	you	want	the	movie	to	show	just	the	current	view,	or	the	entire	Interface	tab.	In	a	single	movie,
the	resolution	will	be	one	of	the	following:

the	resolution	specified	in	the	call	to	vid:start-recorder width height	if	you	specified	the
resolution.	These	are	optional	parameters.
The	resolution	of	the	view	if	you	did	not	specify	a	resolution	in	the	call	to	vid:start-recorder	and
call	vid:record-view	before	calling	vid:record-interface
The	resolution	of	the	interface	if	you	did	not	specify	a	resolution	in	the	call	to	vid:start-recorder
and	call	vid:record-interface	before	calling	vid:record-view

Note	that	if	the	resolution	of	a	recorded	image	doesn't	match	the	resolution	of	the	recording	it	will	be
scaled	to	fit	which	can	result	in	images	which	look	blurry	or	out-of-focus.

When	you're	done	adding	frames,	use	vid:save-recording.	The	filename	you	provide	should	end	with
.mp4,	the	extension	for	MP4-encoded	movies	(playable	in	QuickTime	and	other	programs).

;; export a 30 frame movie of the view
extensions [vid]

;...

setup
vid:start-recorder
vid:record-view ;; show the initial state
repeat 30
[go
 vid:record-view]
vid:save-recording "out.mp4"

A	movie	will	play	back	at	25	frames	per	second.	To	make	the	movie	playback	faster	or	slower,	consider
using	a	video	postprocessing	tool.

To	check	whether	or	not	you	are	recording,	call	vid:recorder-status,	which	reports	a	string	that
describes	the	state	of	the	current	recorder.

To	throw	away	the	movie	currently	being	recorded,	call	vid:reset-recorder.

Code	Example:	Movie	Example

Movies	generated	when	running	headless,	or	by	background	runs	in	a	parallel	BehaviorSpace
experiment	may	use	only	vid:record-view	primitive.	Movies	generated	in	NetLogo	GUI	may	also	use
vid:record-interface	and	vid:record-source.

NetLogo	movies	are	exported	as	H.264-encoded	MP4	files.	To	play	an	MP4	movie,	you	can	use	the	VLC
Player,	a	free	download	from	the	VideoLAN	organization.

Movies	can	take	up	a	lot	of	disk	space.	You	will	probably	want	to	compress	your	movies	with	third-party
software.	The	software	may	give	you	a	choice	of	different	kinds	of	compression.	Some	kinds	of
compression	are	lossless,	while	others	are	lossy.	"Lossy"	means	that	in	order	to	make	the	files	smaller,
some	of	the	detail	in	the	movie	is	lost.	Depending	on	the	nature	of	your	model,	you	may	want	to	avoid
using	lossy	compression,	for	example	if	the	view	contains	fine	pixel-level	detail.

Perspective

The	2D	and	the	3D	view	show	the	world	from	the	perspective	of	the	observer.	By	default	the	observer	is
looking	down	on	the	world	from	the	positive	z-axis	at	the	origin.	You	can	change	the	perspective	of	the
observer	by	using	the	follow,	ride	and	watch	observer	commands	and	follow-me,	ride-me	and	watch-me
turtle	commands.	When	in	follow	or	ride	mode	the	observer	moves	with	the	subject	agent	around	the
world.	The	difference	between	follow	and	ride	is	only	visible	in	the	3D	view.	In	the	3D	view	the	user	can
change	the	distance	behind	the	agent	using	the	mouse.	When	the	observer	is	following	at	zero	distance
from	the	agent	it	is	actually	riding	the	agent.	When	the	observer	is	in	watch	mode	it	tracks	the
movements	of	one	turtle	without	moving.	In	both	views	you	will	see	a	spotlight	appear	on	the	subject	and
in	the	3D	view	the	observer	will	turn	to	face	the	subject.	To	determine	which	agent	is	the	focus	you	can
use	the	subject	reporter.

Code	Example:	Perspective	Example

Drawing

The	drawing	is	a	layer	where	turtles	can	make	visible	marks.

In	the	view,	the	drawing	appears	on	top	of	the	patches	but	underneath	the	turtles.	Initially,	the	drawing	is
empty	and	transparent.

You	can	see	the	drawing,	but	the	turtles	(and	patches)	can't.	They	can't	sense	the	drawing	or	react	to	it.
The	drawing	is	just	for	people	to	look	at.

Turtles	can	draw	and	erase	lines	in	the	drawing	using	the	pen-down	and	pen-erase	commands.	When	a
turtle's	pen	is	down	(or	erasing),	the	turtle	draws	(or	erases)	a	line	behind	it	whenever	it	moves.	The
lines	are	the	same	color	as	the	turtle.	To	stop	drawing	(or	erasing),	use	pen-up.

Lines	drawn	by	turtles	are	normally	one	pixel	thick.	If	you	want	a	different	thickness,	set	the	pen-size
turtle	variable	to	a	different	number	before	drawing	(or	erasing).	In	new	turtles,	the	variable	is	set	to	1.

Lines	made	when	a	turtle	moves	in	a	way	that	doesn't	fix	a	direction,	such	as	with	setxy	or	move-to,	the
shortest	path	line	that	obeys	the	topology	will	be	drawn.

Here's	some	turtles	which	have	made	a	drawing	over	a	grid	of	randomly	shaded	patches.	Notice	how
the	turtles	cover	the	lines	and	the	lines	cover	the	patch	colors.	The	pen-size	used	here	was	2:

http://www.videolan.org/vlc/index.html

The	stamp	command	lets	a	turtle	leave	an	image	of	itself	behind	in	the	drawing	and	stamp-erase	lets	it
remove	the	pixels	below	it	in	the	drawing.

To	erase	the	whole	drawing,	use	the	observer	commmand	clear-drawing.	(You	can	also	use	clear-all,
which	clears	everything	else	too.)

Importing	an	image

The	observer	command	import-drawing	command	allows	you	to	import	an	image	file	from	disk	into	the
drawing.

import-drawing	is	useful	only	for	providing	a	backdrop	for	people	to	look	at.	If	you	want	turtles	and
patches	to	react	to	the	image,	you	should	use	import-pcolors	or	import-pcolors-rgb	instead.

Comparison	to	other	Logos

Drawing	works	somewhat	differently	in	NetLogo	than	some	other	Logos.

Notable	differences	include:

New	turtles'	pens	are	up,	not	down.
Instead	of	using	a	fence	command	to	confine	the	turtle	inside	boundaries,	in	NetLogo	you	edit	the
world	and	turn	wrapping	off.
There	is	no	screen-color,	bgcolor,	or	setbg.	You	can	make	a	solid	background	by	coloring	the
patches,	e.g.	ask patches [set pcolor blue] .

Drawing	features	not	supported	by	NetLogo:

There	is	no	window	command.	This	is	used	in	some	other	Logos	to	let	the	turtle	roam	over	an
infinite	plane.
There	is	no	flood	or	fill	command	to	fill	an	enclosed	area	with	color.

Topology

The	way	the	world	of	patches	is	connected	can	change.	By	default	the	world	is	a	torus	which	means	it
isn't	bounded,	but	"wraps"	--	so	when	a	turtle	moves	past	the	edge	of	the	world,	it	disappears	and
reappears	on	the	opposite	edge	and	every	patch	has	the	same	number	of	"neighbor"	patches.	If	you're	a
patch	on	the	edge	of	the	world,	some	of	your	"neighbors"	are	on	the	opposite	edge.

However,	you	can	change	the	wrap	settings	with	the	Settings	button.	If	wrapping	is	not	allowed	in	a
given	direction	then	in	that	direction	(x	or	y)	the	world	is	bounded.	Patches	along	that	boundary	will	have
fewer	than	8	neighbors	and	turtles	will	not	move	beyond	the	edge	of	the	world.

The	topology	of	the	NetLogo	world	has	four	potential	values,	torus,	box,	vertical	cylinder,	or	horizontal
cylinder.	The	topology	is	controlled	by	enabling	or	disabling	wrapping	in	the	x	or	y	directions.	The	default
world	is	a	torus.

A	torus	wraps	in	both	directions,	meaning	that	the	top	and	bottom	edges	of	the	world	are	connected	and

the	left	and	right	edges	are	connected.	So	if	a	turtle	moves	beyond	the	right	edge	of	the	world	it	appears
again	on	the	left	and	the	same	for	the	top	and	bottom.

A	box	does	not	wrap	in	either	direction.	The	world	is	bounded	so	turtles	that	try	to	move	off	the	edge	of
the	world	cannot.	Note	that	the	patches	around	edge	of	the	world	have	fewer	than	eight	neighbors;	the
corners	have	three	and	the	rest	have	five.

Horizontal	and	vertical	cylinders	wrap	in	one	direction	but	not	the	other.	A	horizontal	cylinder	wraps
vertically,	so	the	top	of	the	world	is	connected	to	the	bottom.	but	the	left	and	right	edges	are	bounded.	A
vertical	cylinder	is	the	opposite;	it	wraps	horizontally	so	the	left	and	right	edges	are	connected,	but	the
top	and	bottom	edges	are	bounded.

Code	Example:	Neighbors	Example

When	coordinates	wrap,	turtles	and	links	wrap	visually	in	the	view,	too.	If	a	turtle	shape	or	link	extends
past	an	edge,	part	of	it	will	appear	at	the	other	edge.	(Turtles	themselves	are	points	that	take	up	no
space,	so	they	cannot	be	on	both	sides	of	the	world	at	once,	but	in	the	view,	they	appear	to	take	up
space	because	they	have	a	shape.)

Wrapping	also	affects	how	the	view	looks	when	you	are	following	a	turtle.	On	a	torus,	wherever	the	turtle
goes,	you	will	always	see	the	whole	world	around	it:

Whereas	in	a	box	or	cylinder	the	world	has	edges,	so	the	areas	past	those	edges	show	up	in	the	view	as
gray:

Code	Example:	Termites	Perspective	Demo	(torus),	Ants	Perspective	Demo	(box)

The	topology	settings	also	control	the	behavior	of	the	distance(xy),	in-radius,	in-cone,	face(xy),	and
towards(xy)	primitives.	The	topology	controls	whether	the	primitives	wrap	or	not.	They	always	use	the
shortest	path	allowed	by	the	topology.	For	example,	the	distance	from	the	center	of	the	patches	in	the
bottom	right	corner	(min-pxcor,	min-pycor)	and	the	upper	left	corner	(max-pxcor,	max-pycor)	will	be	as
follows	for	each	topology	given	that	the	min	and	max	pxcor	and	pycor	are	+/-2:

Torus	-	sqrt(2)	~	1.414	(this	will	be	the	same	for	all	world	sizes	since	the	patches	are	directly
diagonal	to	each	other	in	a	torus.)
Box	-	sqrt(world-width^2	+	world-height^2)	~	7.07
Vertical	Cylinder	-	sqrt(world-height^2	+	1)	~	5.099
Horizontal	Cylinder	-	sqrt(world-width^2	+	1)	~	5.099

All	the	other	primitives	will	act	similarly	to	distance.	If	you	formerly	used	-nowrap	primitives	in	your	model
we	recommend	removing	them	and	changing	the	topology	of	the	world	instead.

If	your	model	has	turtles	that	move	around	you'll	need	to	think	about	what	happens	to	them	when	they
reach	the	edge	of	the	world,	if	the	topology	you're	using	has	some	non-wrapping	edges.	There	are	a	few
common	options:	the	turtle	is	reflected	back	into	the	world	(either	systematically	or	randomly),	the	turtle
exits	the	system	(dies),	or	the	turtle	is	hidden.	It	is	no	longer	necessary	to	check	the	bounds	using	turtle
coordinates,	instead	we	can	just	ask	NetLogo	if	a	turtle	is	at	the	edge	of	the	world.	There	are	a	couple
ways	of	doing	this,	the	simplest	is	to	use	the	can-move?	primitive.

if not can-move? distance [rt 180]

can-move?	merely	returns	true	if	the	position	distance	in	front	of	the	turtle	is	inside	the	NetLogo	world,
false	otherwise.	In	this	case,	if	the	turtle	is	at	the	edge	of	the	world	it	simple	goes	back	the	way	it	came.
You	can	also	use	patch-ahead 1 != nobody	in	place	of	can-move?.	If	you	need	to	do	something	smarter
that	simply	turning	around	it	may	be	useful	to	use	patch-at	with	dx	and	dy.

if patch-at dx 0 = nobody [
 set heading (- heading)
]
if patch-at 0 dy = nobody [
 set heading (180 - heading)
]

This	tests	whether	the	turtle	is	hitting	a	horizontal	or	vertical	wall	and	bounces	off	that	wall.

In	some	models	if	a	turtle	can't	move	forward	it	simply	dies	(exits	the	system,	like	in	Conductor	or
Mousetraps).

if not can-move? distance[die]

If	you	are	moving	turtles	using	setxy	rather	than	forward	you	should	test	to	make	sure	the	patch	you	are
about	to	move	to	exists	since	setxy	throws	a	runtime	error	if	it	is	given	coordinates	outside	the	world.
This	is	a	common	situation	when	the	model	is	simulating	an	infinite	plane	and	turtles	outside	the	view
should	simply	be	hidden.

let new-x new-value-of-xcor
let new-y new-value-of-ycor

ifelse patch-at (new-x - xcor) (new-y - ycor) = nobody
 [hide-turtle]
 [setxy new-x new-y
 show-turtle]

Several	models	in	the	Models	Library	use	this	technique,	Gravitation,	N-Bodies,	and	Electrostatics	are
good	examples.

The	diffuse	and	diffuse4	commands	behave	correctly	in	all	topologies.	Each	patch	diffuses	and	equal
amount	of	the	diffuse	variable	to	each	of	its	neighbors,	if	it	has	fewer	than	8	neighbors	(or	4	if	you	are
using	diffuse4),	the	remainder	stays	on	the	diffusing	patch.	This	means	that	the	overall	sum	of	patch-
variable	across	the	world	remains	constant.	However,	if	you	want	the	diffuse	matter	to	still	fall	off	the
edges	of	the	world	as	it	would	on	an	infinite	plane	you	still	need	to	clear	the	edges	each	step	as	in	the
Diffuse	Off	Edges	Example.

Links

A	link	is	an	agent	that	connects	two	turtles.	These	turtles	are	sometimes	also	called	nodes.

The	link	is	always	drawn	as	a	line	between	the	two	turtles.	Links	do	not	have	a	location	as	turtles	do,
they	are	not	considered	to	be	on	any	patch	and	you	cannot	find	the	distance	from	a	link	to	another	point.

There	are	two	link	designations:	undirected	and	directed.	A	directed	link	is	out	of,	or	from,	one	node	and
into,	or	to,	another	node.	The	relationship	of	a	parent	to	a	child	could	be	modeled	as	a	directed	link.	An
undirected	link	appears	the	same	to	both	nodes,	each	node	has	a	link	with	another	node.	The
relationship	between	spouses,	or	siblings,	could	be	modeled	as	an	undirected	link.

There	is	a	global	agentset	of	all	links,	just	as	with	turtles	and	patches.	You	can	create	undirected	links
using	the	create-link-with	and	create-links-with	commands;	and	directed	links	using	the	create-
link-to,	create-links-to,	create-link-from,	and	create-links-from	commands.	Once	the	first	link	has
been	created	directed	or	undirected,	all	unbreeded	links	must	match	(links	also	support	breeds,	much
like	turtles,	which	will	be	discussed	shortly);	it's	impossible	to	have	two	unbreeded	links	where	one	is
directed	and	the	other	is	undirected.	A	runtime	error	occurs	if	you	try	to	do	it.	(If	all	unbreeded	links	die,
then	you	can	create	links	of	that	breed	that	are	different	in	designation	from	the	previous	links.)

In	general,	link	primitive	names	indicate	what	kind	of	links	they	deal	with:

Primitives	that	have	"out"	in	their	name	utilize	outgoing	and	undirected	links.	You	can	think	of	these
as	"the	links	I	can	use	to	get	from	the	current	node	to	other	nodes."	In	general,	these	are	probably
the	primitives	you	want	to	use.
Primitives	that	have	"in"	in	their	name	utilize	incoming	and	undirected	links.	You	can	think	of	these
as	"the	links	I	can	use	to	get	to	the	current	node	from	other	nodes."
Primtives	that	do	not	specify	"in"	or	"out",	or	have	"with"	in	their	name	utilize	all	links,	both
undirected	and	directed,	incoming	and	outgoing.

A	link's	end1	and	end2	variables	contain	the	two	turtles	the	link	connects.	If	the	link	is	directed,	it	goes
from	end1	to	end2.	If	the	link	is	undirected,	end1	is	always	the	older	of	the	two	turtles,	that	is,	the	turtle
with	the	smaller	who	number.

Link	breeds,	like	turtle	breeds,	allow	you	to	define	different	types	of	links	in	your	model.	Link	breeds
must	either	be	directed	or	undirected,	unlike	unbreeded	links	this	is	defined	at	compile	time	rather	than
run	time.	You	declare	link	breeds	using	the	keywords	undirected-link-breed	and	directed-link-breed.
Breeded	links	can	be	created	using	the	commands	create-<breed>-with	and	create-<breeds>-with	for
undirected	breeds	and	the	commands	create-<breed>-to,	create-<breeds>-to,	create-<breed>-from,
and	create-<breeds>-from	for	directed	links.

There	cannot	be	more	than	one	undirected	link	of	the	same	breed	(or	more	than	one	unbreeded
undirected	link)	between	a	pair	of	agents,	nor	more	than	one	directed	link	of	the	same	breed	in	the
same	direction	between	a	pair	of	agents.	You	can	have	two	directed	links	of	the	same	breed	(or	two
unbreeded	directed	links)	between	a	pair	if	they	are	in	opposite	directions.

Layouts

As	part	of	our	network	support	we	have	also	added	several	different	primitives	that	will	help	you	to
visualize	the	networks.	The	simplest	is	layout-circle	which	evenly	spaces	the	agents	around	the	center
of	the	world	given	a	radius.

layout-radial	is	a	good	layout	if	you	have	something	like	a	tree	structure,	though	even	if	there	are	some
cycles	in	the	tree	it	will	still	work,	though	as	there	are	more	and	more	cycles	it	will	probably	not	look	as
good.	layout-radial	takes	a	root	agent	to	be	the	central	node	places	it	at	(0,0)	and	arranges	the	nodes
connected	to	it	in	a	concentric	pattern.	Nodes	one	degree	away	from	the	root	will	be	arranged	in	a
circular	pattern	around	the	central	node	and	the	next	level	around	those	nodes	and	so	on.	layout-
radial	will	attempt	to	account	for	asymmetrical	graphs	and	give	more	space	to	branches	that	are	wider.
layout-radial	also	takes	a	breed	as	an	input	so	you	use	one	breed	of	links	to	layout	the	network	and
not	another.

Given	a	set	of	anchor	nodes	layout-tutte	places	all	the	other	nodes	at	the	center	of	mass	of	the	nodes
it	is	linked	to.	The	anchor	set	is	automatically	arranged	in	a	circle	layout	with	a	user	defined	radius	and
the	other	nodes	will	converge	into	place	(this	of	course	means	that	you	may	have	to	run	it	several	times
before	the	layout	is	stable.)

layout-spring	is	useful	for	many	kinds	of	networks.	The	drawback	is	that	is	relatively	slow	since	it	takes
many	iterations	to	converge.	In	this	layout	the	links	act	as	springs	that	pull	the	nodes	they	connect
toward	each	other	and	the	nodes	repel	each	other.	The	strength	of	the	forces	is	controlled	by	inputs	to
the	primitives.	These	inputs	will	always	have	a	value	between	0	and	1;	keep	in	mind	that	very	small
changes	can	still	affect	the	appearance	of	the	network.	The	springs	also	have	a	length	(in	patch	units),

however,	because	of	all	the	forces	involved	the	nodes	will	not	end	up	exactly	that	distance	from	each
other.

Code	Examples:Network	Example,	Network	Import	Example,	Giant	Component,	Small
Worlds,	Preferential	Attachment

Anonymous	procedures

Anonymous	procedures	let	you	store	code	to	be	run	later.	Just	like	regular	NetLogo	procedures,	an
anonymous	procedures	can	be	either	a	command	(anonymous	command)	or	a	reporter	(anonymous
reporter).

Anonymous	procedures	are	values,	which	means	they	may	be	passed	as	input,	reported	as	a	result,	or
stored	in	a	variable.

An	anonymous	procedure	might	be	run	once,	multiple	times,	or	not	at	all.

In	other	programming	languages	anonymous	procedures	are	known	as	first-class	functions,	closures,	or
lambda.

Anonymous	procedure	primitives

Primitives	specific	to	anonymous	procedures	are	->,	is-anonymous-command?,	and	is-anonymous-
reporter?.

The	->	creates	an	anonymous	procedure.	The	anonymous	procedure	it	reports	might	be	a	command	or
a	reporter,	depending	on	what	kind	of	block	you	pass	it.	For	example	[-> fd 1] 	reports	an
anonymous	command,	because	fd	is	a	command,	while	[-> count turtles] 	reports	an	anonymous
reporter,	because	count	is	a	reporter.

These	primitives	require	anonymous	procedures	as	input:	foreach,	map,	reduce,	filter,	n-values,	sort-
by.	When	calling	these	primitives,	using	an	->	is	optional	if	your	anonymous	procedure	contains	a	single
primitive	which	has	requires	no	more	inputs	than	are	are	provided	by	the	primitive.	For	example	one
may	write	simply	foreach mylist print	instead	of	foreach mylist [[x] -> print x] ,	though	the
latter	is	also	accepted.	Depending	on	the	anonymous	procedure,	various	parts	of	the	anonymous
procedure	syntax	can	be	omitted.	For	a	summary	of	optional	syntax,	see	the	table	below.

The	run	command	accepts	anonymous	commands	as	well	as	strings.

The	runresult	reporter	accepts	anonymous	reporters	as	well	as	strings.

run	and	runresult	allow	passing	inputs	to	an	anonymous	procedure.	As	with	all	primitives	accepting
varying	number	of	inputs,	the	whole	call	must	be	surrounded	with	parentheses,	so	for	example	(run my-
anonymous-command 5)	or	(runresult my-anonymous-reporter "foo" 2).	When	not	passing	input,	no
parentheses	are	required.

Anonymous	procedure	inputs

An	anonymous	procedure	may	take	zero	or	more	inputs.	The	inputs	are	referenced	the	variables
declared	before	the	arrow.	For	instance,	in	the	anonymous	reporter	[[a b] -> a + b] ,	a	and	b	are
inputs.

Anonymous	procedures	and	strings

Creating	and	running	anonymous	procedures	is	fast.	To	use	run	or	runresult	on	a	new	string	for	the	first
time	is	about	100x	slower	than	running	an	anonymous	procedure.	Modelers	should	normally	use
anonymous	procedures	instead	of	running	strings,	except	when	running	strings	entered	by	the	user.

Concise	syntax

Simple	uses	of	foreach,	map,	reduce,	filter,	n-values,	and	sort-by	can	be	written	with	an	especially
concise	syntax.	You	can	write:

map abs [1 -2 3 -4]
;; => [1 2 3 4]
reduce + [1 2 3 4]
;; => 10
filter is-number? [1 "x" 3]
;; => [1 3]
foreach [1 2 3 4] print
;; prints 1 through 4

In	older	NetLogo	versions	(4	and	earlier),	these	had	to	be	written:

map [abs ?] [1 -2 3 -4]
;; => [1 2 3 4]
reduce [?1 + ?2] [1 2 3 4]
;; => 10
filter [is-number? ?] [1 "x" 3]
;; => [1 3]
foreach [1 2 3 4] [print ?]
;; prints 1 through 4

Anonymous	procedures	as	closures

Anonymous	procedures	are	"closures";	that	means	they	capture	or	"close	over"	the	bindings	(not	just	the
current	values)	of	local	variables	and	procedure	inputs.	They	do	not	capture	agent	variables	and	do	not
capture	the	identity	(or	even	the	agent	type)	of	the	current	agent.

Nonlocal	exits

The	stop	and	report	commands	exit	from	the	dynamically	enclosing	procedure,	not	the	enclosing
anonymous	procedure.	(This	is	backward-compatible	with	older	NetLogo	versions.)

Anonymous	procedures	and	extensions

The	extensions	API	supports	writing	primitives	that	accept	anonymous	procedures	as	input.	Write	us	for
sample	code.

Limitations

We	hope	to	address	at	least	some	of	the	following	limitations	in	future	NetLogo	versions:

import-world	does	not	support	anonymous	procedures.
Anonymous	procedures	can't	be	variadic	(accept	a	varying	number	of	inputs).
Anonymous	reporters	can't	contain	commands,	only	a	single	reporter	expression.	So	for	example
you	must	use	ifelse-value	not	if,	and	you	don't	use	report	at	all.	If	your	code	is	too	complex	to
be	written	as	one	reporter,	you'll	need	to	move	the	code	to	a	separate	reporter	procedure,	and
then	call	that	procedure	from	your	anonymous	reporter,	passing	it	any	needed	inputs.
Anonymous	procedures	are	not	interchangeable	with	command	blocks	and	reporter	blocks.	Only
the	primitives	listed	above	accept	anonymous	procedures	as	input.	Control	primitives	such	as
ifelse	and	while	and	agent	primitives	such	as	of	and	with	don't	accept	anonymous	procedures.
So	for	example	if	I	have	an	anonymous	reporter	let r [-> if random 2 == 0] 	and	two
anonymous	commands	let c1 [-> tick] 	and	let c2 [-> stop] ,	I	can't	write	ifelse r c1 c2,
I	must	write	ifelse runresult r [run c1] [run c2].
The	concise	syntax	where	->	may	be	omitted	is	only	available	to	primitives	and	extension
primitives,	not	ordinary	procedures.	So	for	example	if	I	have	a	procedure	p	that	accepts	an
anonymous	procedure	as	input,	it	must	be	called	as	e.g.	p [-> ...]	not	p [...].

What	is	Optional?

There	are	several	different	ways	of	writing	anonymous	procedures	which	allow	users	to	omit	part	or	all
of	the	anonymous	procedure	syntax.	These	are	summarized	in	the	table	below.

What	is	the	anonymous
procedure	like?

What	can	be	left
out? Examples

The	anonymous	procedure
is	a	single	primitive

input	names
arrow
block
brackets

foreach mylist stamp ; no inputs
foreach mylist print ; single input
(foreach xs ys setxy) ; multiple
inputs
map round [1.3 2.4 3.5] ; reporter,
single input
(map + [1 2 3] [4 5 6]) ; reporter,
multiple inputs

The	anonymous	procedure
takes	no	inputs

input	names
arrow

foreach mylist [print "abc"]
map [4] mylist

The	anonymous	procedure
has	zero	or	one	input(s)

brackets
around	input
names

foreach mylist [-> stamp] ; no
inputs
foreach mylist [x -> print x] ;
single input
foreach mylist [x -> rt x fd x] ;
multiple primitives, single input
map [-> world-width] mylist ;
reporter, no inputs
map [x -> x ^ 2] mylist ; reporter,
single input

Anonymous	procedure	takes
more	than	one	input nothing

(foreach xs ys [[x y] -> setx x +
y])
(map [[x y] -> x mod round y] xs
ys)

Note:	brackets	around	input	names	were	always	required	in	NetLogo	6.0.0.	If	you	copy	and	paste	code
into	NetLogo	6.0.0	using	anonymous	procedures	with	unbracketed	input	names,	the	code	will	not
compile	until	you	add	the	brackets.

Code	example

Code	Example:	State	Machine	Example

Ask-Concurrent

NOTE:	The	following	information	is	included	only	for	backwards	compatibility.	We	don't	recommend
using	the	ask-concurrent	primitive	at	all	in	new	models.

In	very	old	versions	of	NetLogo,	ask	had	simulated	concurrent	behavior	by	default.	Since	NetLogo	4.0
(2007),	ask	is	serial,	that	is,	the	agents	run	the	commands	inside	the	ask	one	at	a	time.

The	following	information	describes	the	behavior	of	the	ask-concurrent	command,	which	behaves	the
way	the	old	ask	behaved.

ask-concurrent	produces	simulated	concurrency	via	a	mechanism	of	turn-taking.	The	first	agent	takes	a
turn,	then	the	second	agent	takes	a	turn,	and	so	on	until	every	agent	in	the	asked	agentset	has	had	a
turn.	Then	we	go	back	to	the	first	agent.	This	continues	until	all	of	the	agents	have	finished	running	all	of
the	commands.

An	agent's	"turn"	ends	when	it	performs	an	action	that	affects	the	state	of	the	world,	such	as	moving,	or
creating	a	turtle,	or	changing	the	value	of	a	global,	turtle,	patch,	or	link	variable.	(Setting	a	local	variable
doesn't	count.)

The	forward	(fd)	and	back	(bk)	commands	are	treated	specially.	When	used	inside	ask-concurrent,
these	commands	can	take	multiple	turns	to	execute.	During	its	turn,	the	turtle	can	only	move	by	one
step.	Thus,	for	example,	fd 20	is	equivalent	to	repeat 20 [fd 1] ,	where	the	turtle's	turn	ends	after
each	run	of	fd.	If	the	distance	specified	isn't	an	integer,	the	last	fraction	of	step	takes	a	full	turn.	So	for
example	fd 20.3	is	equivalent	to	repeat 20 [fd 1] fd 0.3.

The	jump	command	always	takes	exactly	one	turn,	regardless	of	distance.

To	understand	the	difference	between	ask	and	ask-concurrent,	consider	the	following	two	commands:

ask turtles [fd 5]
ask-concurrent turtles [fd 5]

With	ask,	the	first	turtle	takes	five	steps	forward,	then	the	second	turtle	takes	five	steps	forward,	and	so
on.

With	ask-concurrent,	all	of	the	turtles	take	one	step	forward.	Then	they	all	take	a	second	step,	and	so
on.	Thus,	the	latter	command	is	equivalent	to:

repeat 5 [ask turtles [fd 1]]

Code	Example:	Ask-Concurrent	Example	shows	the	difference	between	ask	and	ask-
concurrent.

The	behavior	of	ask-concurrent	cannot	always	be	so	simply	reproduced	using	ask,	as	in	this	example.
Consider	this	command:

ask-concurrent turtles [fd random 10]

In	order	to	get	the	same	behavior	using	ask,	we	would	have	to	write:

turtles-own [steps]
ask turtles [set steps random 10]
while [any? turtles with [steps > 0]] [
 ask turtles with [steps > 0] [
 fd 1
 set steps steps - 1
]
]

To	prolong	an	agent's	"turn",	use	the	without-interruption	command.	(The	command	blocks	inside
some	commands,	such	as	create-turtles	and	hatch,	have	an	implied	without-interruption	around
them.)

Note	that	the	behavior	of	ask-concurrent	is	completely	deterministic.	Given	the	same	code	and	the
same	initial	conditions,	the	same	thing	will	always	happen	(if	you	are	using	the	same	version	of	NetLogo
and	begin	your	model	run	with	the	same	random	seed).

In	general,	we	suggest	you	not	use	ask-concurrent	at	all.	If	you	do,	we	suggest	you	write	your	model	so
that	it	does	not	depend	on	the	exact	details	of	how	ask-concurrent	works.	We	make	no	guarantees	that
its	semantics	will	remain	the	same	in	future	versions	of	NetLogo,	or	that	it	will	continue	to	be	supported

at	all.

User	Interaction	Primitives

NetLogo	features	several	primitives	which	allow	a	model	to	interact	with	the	user.	These	primitives
include	user-directory,	user-file,	user-new-file,	user-input,	user-message,	user-one-of,	and	user-yes-or-
no?.

These	primitives	differ	in	precisely	what	interaction	they	take	with	the	user.	user-directory,	user-file,
and	user-new-file	are	all	reporters	which	prompt	the	user	to	select	an	item	from	the	file	system	and
report	the	path	of	the	selected	item	to	NetLogo.	user-yes-or-no?,	user-one-of,	and	user-input	all
prompt	the	user	to	provide	input	in	the	form	of	text	or	a	selection.	user-message	simply	presents	a
message	to	the	user.

Note	that	all	active	forever	buttons	will	pause	when	one	of	these	primitives	is	used	and	will	resume	only
when	the	user	completes	the	interaction	with	the	button.

What	does	"Halt"	mean?

The	primitives	which	prompt	the	user	for	input,	as	well	as	user-message	all	provide	a	"Halt"	button.	The
effect	of	this	button	is	the	same	for	all	of	these	primitives	-	it	halts	the	model.	When	the	model	is	halted
all	running	code	is	stopped,	including	buttons	and	the	command	center.	Since	halting	stops	code	in	the
middle	of	whatever	it	happened	to	be	doing	at	the	time	it	was	halted,	you	may	see	strange	results	if	you
continue	to	run	the	model	after	a	halt	without	setting	it	up	again.

Tie

Tie	connects	two	turtles	so	that	the	movement	of	one	turtles	affects	the	location	and	heading	of	another.
Tie	is	a	property	of	links	so	there	must	be	a	link	between	two	turtles	to	create	a	tie	relationship.

When	a	link's	tie-mode	is	set	to	"fixed"	or	"free"	end1	and	end2	are	tied	together.	If	the	link	is	directed	end1
is	the	"root	agent"	and	end2	is	the	"leaf	agent".	That	is	when	end1	moves	(using	fd,	jump,	setxy,	etc.)	end2
also	moves	the	same	distance	and	direction.	However	when	end2	moves	it	does	not	affect	end1.

If	the	link	is	undirected	it	is	a	reciprocal	tie	relationship,	meaning,	if	either	turtle	moves	the	other	turtle
will	also	move.	So	depending	on	which	turtle	is	moving	either	turtle	can	be	considered	the	root	or	the
leaf.	The	root	turtle	is	always	the	turtle	that	initiates	the	movement.

When	the	root	turtle	turns	right	or	left,	the	leaf	turtle	rotates	around	the	root	turtle	the	same	amount	as	if
a	stiff	were	attaching	the	turtles.	When	tie-mode	is	set	to	"fixed"	the	heading	of	the	leaf	turtle	changes	by
the	same	amount.	If	the	tie-mode	is	set	to	"free"	the	heading	of	the	leaf	turtle	is	unchanged.

The	tie-mode	of	a	link	can	be	set	to	"fixed"	using	the	tie	command	and	set	to	"none"	(meaning	the
turtles	are	no	longer	tied)	using	untie	to	set	the	mode	to	"free"	you	need	to:	set tie-mode "free".

Code	Example:	Tie	System	Example

Multiple	source	files

The	__includes	keyword	allows	you	to	use	multiple	source	files	in	a	single	NetLogo	model.

The	keyword	begins	with	two	underscores	to	indicate	that	the	feature	is	experimental	and	may	change
in	future	NetLogo	releases.

When	you	open	a	model	that	uses	the	__includes	keyword,	or	if	you	add	it	to	the	top	of	a	model	and	hit
the	Check	button,	the	includes	menu	will	appear	in	the	toolbar.	From	the	includes	menu	you	can	select
from	the	files	included	in	this	model.

When	you	open	included	files	they	appear	in	additional	tabs.	See	the	Interface	Guide	for	more	details.

You	can	have	anything	in	external	source	files	(.nls)	that	you	would	normally	put	in	the	Code	tab:
globals,	breed,	turtles-own,	patches-own,	breeds-own,	procedure	definitions,	etc.	Note	though	that	these
declarations	all	share	the	same	namespace.	That	is,	if	you	declare	a	global	my-global	in	the	Code	tab
you	cannot	declare	a	global	(or	anything	else)	with	the	name	my-global	in	any	file	that	is	included	in	the
model.	my-global	will	be	accessible	from	all	the	included	files.	The	same	would	be	true	if	my-global	were
declared	in	one	of	the	included	files.

Syntax

Colors

In	the	Code	tab	and	elsewhere	in	the	NetLogo	user	interface,	program	code	is	color-coded	by	the
following	scheme:

Keywords	are	green
Constants	are	orange
Comments	are	gray
Primitive	commands	are	blue
Primitive	reporters	are	purple
Everything	else	is	black

Notice

The	remainder	of	this	section	contains	technical	terminology	which	will	be	unfamiliar	to	some	readers.

Keywords

The	only	keywords	in	the	language	are	globals,	breed,	turtles-own,	patches-own,	to,	to-report,	and	end,
plus	extensions	and	the	experimental	__includes	keyword.	(Built-in	primitive	names	may	not	be
shadowed	or	redefined,	so	they	are	effectively	a	kind	of	keyword	as	well.)

Identifiers

All	primitives,	global	and	agent	variable	names,	and	procedure	names	share	a	single	global	case-
insensitive	namespace;	local	names	(let	variables	and	the	names	of	procedure	inputs)	may	not	shadow
global	names	or	each	other.	Identifiers	may	contain	any	Unicode	letter	or	digit	and	the	following	ASCII
characters:

.?=*!<>:#+/%$_^'&-

Some	primitive	names	begin	with	two	underscores	to	indicate	that	they	are	experimental	and	are
especially	likely	to	change	or	be	removed	in	future	NetLogo	releases.

Scope

NetLogo	is	lexically	scoped.	Local	variables	(including	inputs	to	procedures)	are	accessible	within	the
block	of	commands	in	which	they	are	declared,	but	not	accessible	by	procedures	called	by	those
commands.

Comments

The	semicolon	character	introduces	a	comment,	which	lasts	until	the	end	of	the	line.	There	is	no	multi-
line	comment	syntax.

Structure

A	program	consists	of	optional	declarations	(globals,	breed,	turtles-own,	patches-own,	<BREED>-own,
extensions)	in	any	order,	followed	by	zero	or	more	procedure	definitions.	Multiple	breeds	may	be
declared	with	separate	breed	declarations;	the	other	declarations	may	appear	once	only.

Every	procedure	definition	begins	with	to	or	to-report,	the	procedure	name,	and	an	optional	bracketed
list	of	input	names.	Every	procedure	definition	ends	with	end.	In	between	are	zero	or	more	commands.

Commands	and	reporters

Commands	take	zero	or	more	inputs;	the	inputs	are	reporters,	which	may	also	take	zero	or	more	inputs.
No	punctuation	separates	or	terminates	commands;	no	punctuation	separates	inputs.	Identifiers	must	be
separated	by	whitespace	or	by	parentheses	or	square	brackets.	(So	for	example,	a+b	is	a	single
identifier,	but	a(b[c]d)e	contains	five	identifiers.)

All	commands	are	prefix.	All	user-defined	reporters	are	prefix.	Most	primitive	reporters	are	prefix,	but
some	(arithmetic	operators,	boolean	operators,	and	some	agentset	operators	like	with	and	in-points)	are
infix.

All	commands	and	reporters,	both	primitive	and	user-defined,	take	a	fixed	number	of	inputs	by	default.
(That's	why	the	language	can	be	parsed	though	there	is	no	punctuation	to	separate	or	terminate
commands	and/or	inputs.)	Some	primitives	are	variadic,	that	is,	may	optionally	take	a	different	number
of	inputs	than	the	default;	parentheses	are	used	to	indicate	this,	e.g.	(list 1 2 3) 	(since	the	list
primitive	only	takes	two	inputs	by	default).	Parentheses	are	also	used	to	override	the	default	operator
precedence,	e.g.	(1 + 2) * 3 ,	as	in	other	programming	languages.

Sometimes	an	input	to	a	primitive	is	a	command	block	(zero	or	more	commands	inside	square	brackets)
or	a	reporter	block	(a	single	reporter	expression	inside	square	brackets).	User-defined	procedures	may
not	take	a	command	or	reporter	block	as	input.

Operator	precedences	are	as	follows,	high	to	low:

with,	at-points,	in-radius,	in-cone
(all	other	primitives	and	user-defined	procedures)
^
*,	/,	mod
+,	-
<,	>,	<=,	>=
=,	!=
and,	or,	xor

Compared	to	other	Logos

There	is	no	agreed-upon	standard	definition	of	Logo;	it	is	a	loose	family	of	languages.	We	believe	that
NetLogo	has	enough	in	common	with	other	Logos	to	earn	the	Logo	name.	Still,	NetLogo	differs	in	some
respects	from	most	other	Logos.	The	most	important	differences	are	as	follows.

Surface	differences

The	precedence	of	mathematical	operators	is	different.	Infix	math	operators	(like	+,	*,	etc.)	have
lower	precedence	than	reporters	with	names.	For	example,	in	many	Logos,	if	you	write	sin x + 1,
it	will	be	interpreted	as	sin (x + 1).	NetLogo,	on	the	other	hand,	interprets	it	the	way	most	other
programming	languages	would,	and	the	way	the	same	expression	would	be	interpreted	in
standard	mathematical	notation,	namely	as	(sin x) + 1.
The	and	and	or	reporters	are	special	forms,	not	ordinary	functions,	and	they	"short	circuit",	that	is,
they	only	evaluate	their	second	input	if	necessary.
Procedures	can	only	be	defined	in	the	Code	tab,	not	interactively	in	the	Command	Center.
Reporter	procedures,	that	is,	procedures	that	"report"	(return)	a	value,	must	be	defined	with	to-
report	instead	of	to.	The	command	to	report	a	value	from	a	reporter	procedure	is	report,	not
output.

When	defining	a	procedure,	the	inputs	to	the	procedure	must	be	enclosed	in	square	brackets,	e.g.
to square [x].
Variable	names	are	always	used	without	any	punctuation:	always	foo,	never	:foo	or	"foo.	(To
make	this	work,	instead	of	a	make	command	taking	a	quoted	argument	we	supply	a	set	special
form	which	does	not	evaluate	its	first	input.)	As	a	result,	procedures	and	variables	occupy	a	single
shared	namespace.

The	last	three	differences	are	illustrated	in	the	following	procedure	definitions:

most	Logos NetLogo

to square :x
output :x * :x
end

to-report square [x]
report x * x
end

Deeper	differences

NetLogo's	local	variables	and	inputs	to	procedures	are	lexically	scoped,	not	dynamically	scoped.
NetLogo	has	no	"word"	data	type	(what	Lisp	calls	"symbols").	Eventually,	we	may	add	one,	but
since	it	is	seldom	requested,	it	may	be	that	the	need	doesn't	arise	much	in	agent-based	modeling.
We	do	have	strings.	In	most	situations	where	traditional	Logo	would	use	words,	we	simply	use
strings	instead.	For	example	in	Logo	you	could	write	[see spot run]	(a	list	of	words),	but	in
NetLogo	you	must	write	"see spot run"	(a	string)	or	["see" "spot" "run"]	(a	list	of	strings)
instead.
NetLogo's	run	command	works	on	anonymous	procedures	and	strings,	not	lists	(since	we	have	no
"word"	data	type),	and	does	not	permit	the	definition	or	redefinition	of	procedures.
Control	structures	such	as	if	and	while	are	special	forms,	not	ordinary	functions.	You	can't	define
your	own	special	forms,	so	you	can't	define	your	own	control	structures.	(You	can	do	something
similar	using	anonymous	procedures,	but	you	must	use	the	->,	run,	and	runresult	primitives	for
that,	you	cannot	make	them	implicit.)
Anonymous	procedures	(aka	function	values	or	lambda)	are	true	lexically-scoped	closures.	This
feature	is	available	in	NetLogo	and	in	modern	Lisps,	but	not	in	standard	Logo.

Of	course,	the	NetLogo	language	also	contains	other	features	not	found	in	most	Logos,	most	importantly
agents	and	agentsets.

Transition	Guide

Many	models	created	in	earlier	versions	of	NetLogo	also	work	in	NetLogo	5.0.	However,
some	models	will	need	changes.	If	an	old	model	isn't	working,	this	section	of	the	User	Manual
may	be	able	to	help	you.

What	issues	may	arise	depends	on	what	version	of	NetLogo	the	model	was	created	with.

This	guide	only	covers	changes	most	likely	to	cause	issues	for	users.	See	the	Release	notes
for	more	complete	details	on	differences	between	versions.

Changes	for	NetLogo	6.0
Changes	for	NetLogo	5.2
Changes	for	NetLogo	5.0
Changes	for	NetLogo	4.1
Changes	for	NetLogo	4.0
Changes	for	NetLogo	3.1

Changes	for	NetLogo	6.0

Tasks	replaced	by	Anonymous	Procedures

In	NetLogo	6.0,	tasks	have	been	replaced	by	anonymous	procedures.	This	means	that	task	is
no	longer	a	primitive,	it's	been	replaced	by	the	new	arrow	syntax	for	creating	anonymous
procedures.	Similarly,	question	mark	variables	like	?,	?1,	and	?2	are	now	just	ordinary	names
in	NetLogo	and	can	be	used	to	name	procedure	variables,	let	variables,	or	anonymous
procedure	variables.	Finally,	is-reporter-task?	and	is-command-task?	have	been	replaced	by
is-anonymous-reporter?	and	is-anonymous-command?.

To	make	this	transition	easier,	we've	added	an	automatic	conversion	step	which	should	allow
most	models	saved	in	NetLogo	5	to	be	converted	to	use	the	new	syntax	automatically.	The
autoconverter	has	been	a	substantial	piece	of	effort	and	we've	tested	it	on	all	the	models	in
the	models	library.	To	use	it,	ensure	the	model	compiles	and	run	properly	in	NetLogo	5	or
later,	then	save	it	from	NetLogo	5	or	later.	Then,	simply	open	the	model	in	NetLogo	6.	If	all
goes	well,	you'll	see	the	converter	has	changed	code	like	task [?1 + ?2] 	to	[[?1 ?2] -> ?1
+ ?2].	The	question	marks	are	meant	to	serve	as	temporary	placeholders	for	conversion.
They	enable	your	model	to	run,	but	you	can	(and	should)	replace	these	variables	with
meaningful	names.	If	you	open	a	model	with	tasks	and	it	has	not	been	converted,	the
autoconverter	wasn't	able	to	convert	your	model.	Rather	than	attempt	to	autoconvert	your
model	and	break	something,	the	model	will	open,	you	will	be	shown	the	appropriate	errors
and	given	a	chance	to	edit	your	model.

While	we	have	tested	the	autoconverter	thoroughly,	we	expect	there	to	be	some	cases	it
doesn't	cover.

If	you	make	use	of	extensions	that	aren't	yet	compiled	for	NetLogo	6,	the	autoconverter
will	not	work	until	those	extensions	have	been	updated.
If	your	code	uses	run	or	runresult	to	evaluate	strings	containing	tasks,	the
autoconverter	will	not	change	those	strings	to	be	anonymous	procedures.	To	make	run
and	runresult	work	as	expected,	look	at	strings	in	your	model	and	change	any	which
rely	on	task	or	?-variables	to	instead	rely	on	anonymous	procedures

If	your	model	doesn't	fall	into	the	above	categories	and	doesn't	convert	or	converts	incorrectly,
please	email	our	feedback	address	and	we'll	be	happy	to	offer	whatever	assistance	we	can.

https://github.com/NetLogo/NetLogo/wiki/Release-notes
mailto:ccl-feedback@ccl.northwestern.edu

Link	reporters	overhauled	to	be	more	consistent	and	flexible

In	previous	versions	of	NetLogo,	link	reporters	have	had	a	number	of	inconsistencies
regarding	directed	and	undirected	links.	For	example,	my-links	would	report	all	links
connected	to	a	turtle,	whereas	link-neighbors	would	only	report	neighbors	connected	by
undirected	links.	Furthermore,	it	was	quite	difficult	to	work	with	models	where	the	links	could
either	be	directed	or	undirected.

To	alleviate	these	issues,	the	link	primitives	have	been	overhauled	in	6.0.	These	changes
only	affect	existing	models	that	use	both	directed	and	undirected	links	while	also	using	the
unbreeded	link	primitives.

The	changes	are	as	follows:

Link	reporters	that	contain	the	word	"out"	now	utilize	both	directed,	outgoing	links	and
undirected	links.	That	is,	they	now	specify	links	that	can	be	used	to	get	from	the	current
node	to	other	nodes.	For	example,	out-link-neighbor?	will	report	true	if	the	current
turtle	is	connected	to	the	given	turtle	by	either	an	outgoing	directed	link	or	an	undirected
link.	If	you	only	want	directed,	outgoing	links,	you	can	use	a	breed-specific	reporter	or
my-out-links with [is-directed? self].	Generally,	when	working	with	models	that
have	both	directed	and	undirected	links,	you	will	probably	want	to	use	the	"out"
primitives	for	most	things	now.
Link	reporters	that	contain	the	word	"in"	now	utilize	both	directed,	incoming	links	and
undirected	links.	That	is,	they	now	specify	links	that	can	be	used	to	get	to	the	current
node	from	other	nodes.	For	example,	in-link-neighbor?	will	report	true	if	the	current
turtle	is	connected	to	the	given	turtle	by	either	an	incoming	directed	link	or	an	undirected
link.	If	you	only	want	directed,	incoming	links,	you	can	use	a	breed-specific	reporter	or
my-in-links with [is-directed? self].
Link	reporters	that	do	not	specify	"out"	or	"in"	utilize	all	links.

Furthermore,	there	are	no	longer	restrictions	regarding	which	reporters	can	be	used	with
which	breeds.	For	unbreeded	links,	this	makes	it	possible	to	use	the	same	primitives
regardless	of	whether	your	network	ends	up	being	directed	or	undirected.

The	new	behavior	(including	all	changed	primitives)	is	summarized	by	the	following	table,
where	"un"	refers	to	undirected	links,	"out"	refers	to	directed,	outgoing	links,	and	"in"	refers	to
directed,	incoming	links.

New	link	reporter	behavior

Old	link	reporter	behavior

Removal	of	Applets

Oracle,	the	company	behind	Java,	has	announced	that	Java	applets	are	deprecated	(see	this
blog	post	for	more	information).	This	comes	as	the	major	browsers	have	removed	support	for
plug-ins	(like	java	applets)	or	announced	that	they	plan	to	do	so.

https://blogs.oracle.com/java-platform-group/entry/moving_to_a_plugin_free

Instead	of	using	applets	to	distribute	your	model,	NetLogo	offers	the	option	to	export	to
NetLogo	Web.	While	NetLogo	Web	doesn't	yet	offer	the	full	functionality	of	desktop	NetLogo
(in	particular,	extensions	aren't	supported),	it	is	now	capable	of	running	most	of	the	models	in
the	NetLogo	models	library	and	we	hope	that	most	model	distributors	will	find	that	it	meets
their	needs.	To	export	to	NetLogo	Web,	choose	the	"Save	As	NetLogo	Web"	option	from	the
"File"	menu.

Changes	to	the	NetLogo	User	Interface

Users	will	notice	several	tweaks	to	the	NetLogo	User	interface	when	opening	NetLogo	6	for
the	first	time.	We've	removed	the	bar	border	above	the	view.	To	open	the	3D	View	in	6.0,	you
can	right	click	on	the	view	and	choose	"Switch	to	3D	View",	or	choose	the	same	option	from
the	"Tools"	menu.	Ticks	are	now	displayed	in	the	interface	tab	toolbar	beneath	the	speed
slider.	To	adjust	the	label	used	for	"ticks"	and	other	view	properties,	you	can	choose	the
"Settings"	button	at	the	far	right	of	the	interface	tab	toolbar	or	right-click	on	the	view	and
choose	"Edit..."	from	the	context	menu	that	appears.

Nobody	Not	Permitted	as	a	Chooser	Value

In	NetLogo	6.0,	nobody	is	no	longer	a	valid	chooser	value.	Just	as	you	can't	put	turtle 0	or
turtles,	nobody	refers	to	a	non-literal	value	which	isn't	supported	in	choosers.	As	part	of	this
transition,	choosers	containing	nobody	(or	nobody	within	a	nested	list)	will	have	all	uses	of
nobody	changed	to	"nobody"	when	opened	in	NetLogo	6.0.

Breeds	must	have	singular	and	plural	names

In	NetLogo	6.0,	you	must	specify	both	plural	and	singular	breed	names.	In	prior	versions,
declarations	like	breed [mice]	were	legal,	but	this	support	has	been	removed	in	6.0.	If	you
have	models	which	use	only	plural	breed	names,	it	is	recommended	that	you	convert	them	to
specify	both	names	before	opening	in	6.0	since	doing	so	will	permit	the	NetLogo	converter	to
work	most	effectively	on	any	other	code	in	your	model	which	needs	conversion.

Removal	of	"Movie"	Prims

The	NetLogo	movie	prims	hadn't	been	updated	in	quite	some	time	and	generated	invalid
quicktime	movie	files.	They	have	been	replaced	by	prims	in	the	new	vid	extension.	The	full
documentation	for	the	vid	extension	is	available	in	the	Vid	Extension	section	of	the	manual.
As	with	all	extensions,	users	will	need	to	include	vid	in	the	extensions	section	of	their
NetLogo	model.

Many	of	the	movie	primitives	have	direct	parallels	in	the	vid	extension	which	can	be	found	in
the	following	table:

movie	prim vid	prim
movie-cancel vid:reset-recorder

movie-close vid:save-recording file-name

movie-grab-view vid:record-view

movie-grab-interface vid:record-interface

movie-start file-name vid:start-recorder optional-width optional-height

movie-status vid:recorder-status

When	you	first	open	a	file	in	NetLogo	6.0,	your	file	will	be	automatically	converted	to	use	the

new	primitives.	This	will	include	adding	a	new	global	variable	-	_recording-save-file-name	to
track	the	name	of	the	active	recording,	as	well	as	adding	the	vid	extension	to	the	model.	You
should	verify	that	the	conversion	took	place	correctly.	There	is	no	replacement	for	movie-set-
frame-rate.	The	vid	extension	records	frames	at	25	per	second,	slightly	more	than	the	default
15	frames-per-second	of	the	movie	prims.	If	your	recording	is	sensitive	to	framerate,	consider
recording	each	existing	frame	twice	(2/25	is	fairly	close	to	1/15)	or	consider	using	a
postprocessing	tool	(like	gstreamer	or	ffmpeg)	to	adjust	the	video	playback	speed.

Improved	Name	Collision	Detection

In	NetLogo	6.0,	expanded	error-checking	in	the	NetLogo	compiler	causes	models	which
define	undirected-link-breed [undirected-links undirected-link] 	and/or	directed-
link-breed [directed-links directed-link]	to	error	for	redefining	a	primitive	reporter
(either	is-directed-link?	or	is-undirected-link?).	If	your	model	doesn't	use	is-directed-
link?	or	is-undirected-link?	at	all,	simply	changing	the	breed	names	should	resolve	the
error.

If	you	used	either	of	the	is-<directedness>-link?	prim,	there	are	several	ways	you	might
modify	your	model	to	account	for	this	change.	If	your	model	has	no	other	breeded	links,
consider	removing	the	link	breed	and	using	the	built-in	link	primitives.	If	your	model	has	other
breeded	links,	but	only	of	different	directedness,	simply	changing	the	breed	name	(and	all
related	primitive	names)	should	resolve	the	problem.	Note	that	in	this	case	is-directed-link?
and/or	is-undirected-link?	continue	to	behave	the	same	as	before.	If	your	model	has	other
breeded	links	of	the	same	directedness,	the	change	will	vary	depending	on	your	model.	The
breed	name(s)	must	be	changed,	but	you	must	decide	whether	you	used	is-directed-link?	/
is-undirected-link?	to	check	link	directedneess	or	to	check	that	link	breed	membership.	If
you	used	it	to	check	link	directedness	leaving	it	as-is	should	keep	the	current	behavior	of	the
model.	Otherwise,	it	can	simply	be	replaced	by	is-<breed>?.

Removal	of	hubnet-set-client-interface

The	hubnet-set-client-interface	primitive	was	rendered	obsolete	by	the	introduction	of	the
HubNet	client	editor	and	end	of	support	for	calculator	HubNet.	We	have	found	it	used	in	very
few	models	and	have	decided	to	remove	it	from	the	language.	On	opening	an	existing	model
in	6.0,	the	autoconverter	should	remove	all	uses	of	hubnet-set-client-interface	from	your
code.

Improved	&	Updated	Extensions	API

One	of	our	goals	in	NetLogo	6.0	has	been	to	make	it	easier	to	develop	extensions	and	easy
to	develop	more	powerful	extensions.	To	that	end,	we've	bumped	the	extension	API	from	5.0
to	6.0.	Existing	extensions	will	need	to	recompile	changing	the	"NetLogo-Extension-API-
Version"	in	their	jar's	MANIFEST.MF	from	5.0	to	6.0.

Some	of	the	changes	we've	made	to	the	extensions	API	include:

org.nlogo.api.Context	now	allows	access	to	the	current	world	and	workspace	objects
without	requiring	a	cast	to	an	org.nlogo.nvm.ExtensionContext.
org.nlogo.api.Workspace	has	been	introduced	as	a	stable	API	for	extensions	to	depend
on.
A	NetLogo	jar	is	now	available	from	BinTray.

For	a	full	list	of	changes	between	5.0	and	6.0,	please	visit	our	Extension	Transition	Guide	on
GitHub.

https://github.com/NetLogo/NetLogo/wiki/Hexy-Extension-Transition-Guide

In	service	of	making	it	easier	to	build	extensions,	we've	expanded	and	improved	the	NetLogo
Extension	Plugin	for	sbt,	the	Scala	Build	Tool.	Sbt	is	a	powerful	tool	for	building	JVM	projects
and	can	be	used	in	projects	that	use	Scala,	Java,	or	a	combination	of	the	two.	We're	now
using	the	Extension	Plugin	to	build	all	of	the	bundled	extensions	and	we	strongly	recommend
extension	authors	take	advantage	of	the	plugin	as	it	makes	configuring	a	NetLogo	extension
build	extremely	straightforward.	The	plugin	handles	fetching	the	NetLogo	jar	which	extensions
compile	against	as	well	as	generation	of	a	jar	for	the	extension	containing	the	appropriate
metadata.

Add	range	primitive

A	new	range	primitive	was	added	in	NetLogo	6.	As	"range"	may	appear	in	existing	models	as
a	procedure	or	variable	name,	we	have	added	an	autoconversion	step	which	will	ensure	that
these	models	continue	to	operate	immediately	upon	opening	in	NetLogo	6.	Existing	uses	of
range	in	models	authored	before	NetLogo	6	will	be	converted	to	_range	upon	first	opening	in
NetLogo	6.	Once	the	model	opens,	you	can	rename	_range	to	suit	your	model.

Changes	for	NetLogo	5.2

hsb	primitives

In	5.2,	the	hsb	primitives	have	been	changed	to	work	with	the	standard	scale	values	of	360
for	hue,	and	100	for	saturation	and	brightness.	This	affects	the	primitives	hsb,	extract-hsb	and
approximate-hsb.

The	old	primitives,	scaled	to	255,	are	automatically	transitioned	to	and	have	been	renamed
__hsb-old,	__extract-hsb-old	and	__approximate-hsb-old.

GoGo	extension

The	GoGo	extension	has	been	upgraded	to	use	newer	GoGo	boards	with	the	HID	interface.
Many	of	the	older	primitives	no	longer	work,	and	will	alert	you	to	upgrading	your	GoGo
board's	firmware.

If	you	need	to	continue	to	use	a	serial	interface,	you	can	use	the	bundled	gogo-serial
extension.	Change	your	model	to	use	gogo-serial	as	opposed	to	gogo.	More	details	[here]
(https://github.com/NetLogo/NetLogo/wiki/GoGo-Upgrade).

If	you	cannot	upgrade	to	use	the	new	HID	extension	nor	the	new	serial	extension,	the	original
extension	can	be	found	at	https://github.com/NetLogo/GoGo-RXTX-Extension

Changes	for	NetLogo	5.0

Plotting

In	5.0,	you	don't	have	to	put	your	plotting	code	in	the	Code	tab	anymore.	Instead,	you	can	put
it	inside	the	plots	themselves,	in	the	Interface	tab.

Nonetheless,	the	old	style	and	all	of	the	existing	plotting	primitives	are	still	supported.	We
recommend	changing	your	model	to	use	the	new	style,	but	if	you	don't,	it	should	still	work.

https://github.com/NetLogo/NetLogo-Extension-Plugin
http://www.scala-sbt.org/

The	following	example	shows	how	to	change	a	model	to	use	the	new	style.	Suppose	you
have	a	typical	NetLogo	4.1	model	with	one	plot	called	"populations"	and	two	pens	called
"robots"	and	"humans".	The	old	code	might	look	like:

to setup
 clear-all
 ...
 do-plotting
end

to go
 ...
 tick
 do-plotting
end

to do-plotting
 set-current-plot "populations"
 set-current-plot-pen "robots"
 plot count robots
 set-current-plot-pen "humans"
 plot count humans
end

Here	are	the	steps	to	make	the	transition:

Copy	the	plot count robots	command	and	paste	it	into	the	Update	Commands	field	for
the	robots	pen	in	the	plot	edit	dialog.	Remove	it	from	the	do-plotting	procedure.
The	plot count humans	command	can	be	moved	in	the	same	way	for	the	humans	pen.
After	those	lines	are	removed	from	the	do-plotting	procedure,	it	doesn't	actually	do
anything	anymore!	Remove	it.
The	final	step	is	to	replace	the	do-plotting	procedure	calls	in	setup	and	go.	In	setup,	the
do-plotting	call	should	be	changed	to	reset-ticks.	In	go,	the	do-plotting	call	should	be
changed	to	tick.	reset-ticks	and	tick	will	both	cause	plotting	to	happen	automatically.

The	resulting	(much	simpler)	code	looks	like	this:

to setup
 clear-all
 ...
 reset-ticks
end

to go
 ...
 tick
end

For	more	details	on	how	plotting	works	in	NetLogo	5.0,	see	the	Plotting	Sections	of	the
Programming	Guide	and	the	Interface	Guide.	For	details	on	how	plotting	interacts	with	the	tick
counter,	read	on.

Tick	counter

The	way	the	tick	counter	works	has	changed	in	5.0.	Instead	of	being	initially	set	to	0,	the	tick
counter	is	initially	blank.

reset-ticks

You	must	use	reset-ticks	to	start	the	tick	counter	at	0	before	using	ticks,	tick	or	tick-

advance	for	the	first	time.

reset-ticks	should	go	at	the	end	of	your	setup	procedure.	Putting	it	there	will	allow	your
model	to	work	with	5.0's	new	plotting	features.

reset-ticks	and	plotting

In	5.0,	you	don't	have	to	put	your	plotting	code	in	the	Code	tab	anymore.	Instead,	you	can	put
it	inside	the	plots	themselves,	in	the	Interface	tab.	Code	inside	plots	is	triggered	by	reset-
ticks	and	tick.	Resetting	the	tick	counter	runs	plot	setup	code,	and	then	it	also	runs	plot
update	code	to	plot	the	initial	state	of	the	model.	The	initial	state	of	the	model	won't	be	in
place	until	the	end	of	setup,	so	that's	why	reset-ticks	should	go	at	the	end.

__clear-all-and-reset-ticks

In	order	for	models	from	previous	NetLogo	versions	to	work	in	5.0	without	changes,	when	an
old	model	is	opened	in	5.0,	any	occurrences	of	clear-all	(or	ca)	are	automatically	changed	to
__clear-all-and-reset-ticks,	which	combines	the	effects	of	clear-all	and	reset-ticks.	The
two	underscores	on	the	name	indicate	that	this	is	not	a	normal	primitive,	but	exists	only	for
backwards	compatibility.

You	should	remove	__clear-all-and-reset-ticks	from	your	code,	replace	it	with	clear-all,
and	put	reset-ticks	at	the	end	of	your	setup	procedure.	(This	doesn't	happen	automatically
because	the	structure	of	NetLogo	models	is	too	free-form	for	an	automatic	converter	to
reliably	make	the	change	for	you.)

Unicode	characters

NetLogo	5.0	fully	supports	international	characters	cross-platform,	using	the	Unicode
character	set.	NetLogo	5.0	model	files	always	represent	Unicode	characters	using	the	UTF-8
encoding.

Previous	versions	of	NetLogo	allowed	Unicode	characters	to	be	used	in	some	contexts.
However,	model	files	were	saved	in	the	platform's	default	encoding,	which	on	most	systems
was	something	other	than	UTF-8.	Characters	were	handled	correctly	on	the	same	platform
(e.g.	two	Windows	machines),	but	could	be	altered	if	the	model	was	moved	between	platforms
(e.g.	from	Windows	to	Mac	or	vice	versa).

When	opening	an	existing	model	in	NetLogo	5.0,	if	the	model	contains	international	or	other
non-ASCII	characters,	the	characters	may	be	interpreted	incorrectly,	because	they	were
originally	written	in	a	platform-specific	encoding,	but	then	read	back	in	in	UTF-8.

If	only	a	few	characters	are	affected,	you	might	find	it	easiest	just	to	fix	them	manually.

But	if	you	expect	a	large	number	of	characters	to	be	affected,	and	you	want	them	translated
automatically,	you	can	use	a	third	party	utility	to	re-encode	your	.nlogo	file	from	its	original
encoding	into	UTF-8.	After	conversion,	open	the	model	in	NetLogo	5.0	and	all	characters
should	be	correct.

Info	tabs

NetLogo	5.0	uses	the	Markdown	markup	language	to	allow	you	to	format	your	Info	tab,
including	headers,	bold	and	italics,	images,	and	so	forth.

Earlier	versions	of	NetLogo	used	a	custom	markup	language	with	much	more	limited
capabilities.

When	opening	a	model	from	an	older	version,	NetLogo	5.0	translates	your	old	markup	into
Markdown.	Most	of	the	time	this	produces	good	results,	but	you	may	want	to	check	the
results	yourself	and	make	sure	that	your	Info	tab	still	looks	good.

Model	speed

In	NetLogo	5.0	every	model	has	a	"target	frame	rate"	which	affects	the	default	speed	at	which
the	model	runs,	when	the	speed	slider	is	in	the	middle,	on	the	"normal	speed"	setting.

The	default	target	frame	rate	for	new	models,	and	for	models	that	were	created	in	earlier
versions	of	NetLogo,	is	30	frames	per	second.	If	you	are	using	tick-based	updates,	as	we
recommend	for	most	models,	then	that	translates	to	30	ticks	per	second.

If	your	model	runs	slower	in	5.0	than	it	ran	in	4.1,	it's	probably	just	because	its	speed	is	being
limited	by	this	rate.	If	you	want,	you	can	press	the	Settings	button	in	the	Interface	tab	and
change	the	frame	rate	to	a	higher	number.

Some	old	models	used	the	every	command	to	set	a	default	speed.	In	most	case	this	can	be
now	removed	from	the	code,	and	the	target	frame	rate	setting	used	instead.

List	performance

The	underlying	data	structure	for	NetLogo	lists	has	changed.

In	NetLogo	4.1,	a	NetLogo	list	was	represented	internally	as	a	singly	linked	list.	Some
operations	on	singly	linked	lists	are	fast	(such	as	first	and	butfirst)	but	others	are	slow
because	they	could	require	traversing	the	whole	list	(such	as	item	and	last).

In	NetLogo	5.0,	lists	are	now	actually	trees	internally.	As	a	result,	some	operations	are	a	little
slower,	but	other	operations	are	drastically	faster	on	long	lists.	See	the	Lists	section	of	the
Programming	Guide	for	details.

Some	models	may	run	a	little	slower	with	the	new	data	structure,	especially	if	you	make
heavy	use	of	short	lists.	But	other	models	will	run	faster	--	perhaps	dramatically	faster.

Some	special	ways	of	writing	list-processing	code	that	were	useful	in	NetLogo	4.1	are	no
longer	needed	in	5.0.	For	example,	since	in	4.1	fput	was	fast	and	lput	was	slow,	modelers
sometimes	built	up	lists	in	reverse	order	using	fput,	perhaps	calling	reverse	later	to	restore
the	intended	order.	In	NetLogo	5.0,	you	don't	need	to	code	that	way	anymore.	fput	and	lput
are	the	same	speed.

Extensions	API

If	you	are	the	author	of	an	extension,	you	will	need	to	recompile	it	against	the	5.0	NetLogo.jar
and	lib	directory	for	it	to	work	with	5.0.

You	may	also	need	to	be	aware	of	the	following	changes:

Syntax	constants

The	code	for	specifying	the	syntax	of	a	primitive	has	changed	slightly,	for	example

Syntax.TYPE_STRING	is	now	Syntax.StringType().	(From	Java,	the	pair	of	parentheses	at	the
end	is	required.	In	Scala,	you	can	omit	them.)

LogoList	construction

One	significant	change	is	that	org.nlogo.api.LogoList	no	longer	has	a	public	constructor.
Instead,	there	are	two	new	ways	to	construct	a	LogoList.

If	you	have	a	java.lang.Iterable,	you	can	copy	the	contents	into	a	fresh	LogoList	by	passing
it	to	the	static	method	LogoList.fromJava().	See	the	array	extension	source	code	for	a
sample	usage.

Or,	to	build	up	a	new	list	one	item	a	time,	use	org.nlogo.api.LogoListBuilder.	The
Extensions	Guide	has	sample	code	showing	the	use	of	LogoListBuilder.

Primitive	classes

In	prior	NetLogo	versions,	the	extensions	API	required	that	each	extension	primitive	have	its
own	separate	top-level	class	with	a	no-argument	constructor.	These	limitations	have	now
been	lifted.	Also,	api.Primitive	objects	are	now	made	only	once,	when	the	extension	is
loaded,	instead	of	every	time	the	Code	tab	was	recompiled.

Changes	for	NetLogo	4.1

Combining	set	and	of

The	following	syntax	is	no	longer	supported:

set [<variable>] of <agent> <value>

Commands	of	this	form	must	be	rewritten	using	ask:

ask <agent> [set <variable> <value>]

Or,	if	the	new	value	must	be	computed	by	the	asking	agent	and	not	by	the	agent	whose
variable	is	being	set:

;; OPTION #1 (using let):
let new-value <value>
ask <agent> [set <variable> new-value]

;; OPTION #2 (using myself):
ask <agent> [set <variable> [value] of myself]

So	for	example,	this:

set [color] of turtle 0 red

Can	be	rewritten	as:

ask turtle 0 [set color red]

It	is	not	necessary	to	use	let	or	myself	since	red	is	red	from	the	point	of	view	of	both	agents.

However,	this:

set [color] of turtle 0 color

Must	be	rewritten	as:

let new-color color
ask turtle 0 [set color new-color]

or

ask turtle 0 [set color [color] of myself]

in	order	not	to	change	the	meaning,	since	the	two	agents	may	have	different	starting	values
for	color.	The	form	using	myself	is	briefer,	but	the	former	using	let	may	be	considered
clearer,	depending	on	context	and	individual	preference.

Changes	for	NetLogo	4.0

Who	numbering

Prior	to	NetLogo	4.0,	a	dead	turtle's	who	number	(stored	in	the	who	turtle	variable)	could	be
reassigned	to	a	later	newborn	turtle.	In	NetLogo	4.0,	who	numbers	are	never	reused	until	who
numbering	is	reset	to	0	by	the	clear-all	or	clear-turtles	command.	This	change	in	behavior
may	break	a	few	old	models.

Turtle	creation:	randomized	vs.	"ordered"

NetLogo	4.0	provides	two	different	observer	commands	for	creating	turtles,	create-turtles
(crt)	and	create-ordered-turtles	(cro).

crt	gives	the	new	turtles	random	colors	and	random	integer	headings.	cro	assigns	colors
sequentially	and	gives	the	turtles	sequential	equally	spaced	headings,	with	the	first	turtle
facing	north	(heading	of	0).

Prior	to	NetLogo	4.0,	the	crt	command	behaved	the	way	cro	does	now.	If	your	old	model
depends	on	the	"ordered"	behavior,	you	will	need	to	change	your	code	to	use	cro	instead	of
crt.

It	is	common	for	old	models	that	used	crt	to	contain	extra	commands	to	randomize	the	new
turtles'	headings,	for	example	rt random 360	or	set heading random 360.	These	commands
are	no	longer	necessary	when	used	inside	crt.

Adding	strings	and	lists

Prior	to	NetLogo	4.0,	the	+	(addition)	operator	could	be	used	to	concatenate	strings	and	join

lists.	In	current	NetLogo,	+	only	works	on	numbers.	To	concatenate	strings,	use	the	word
primitive;	to	join	lists	together,	use	the	sentence	primitive.	This	language	change	was	made	to
increase	the	speed	of	code	that	uses	+.

Old	code:

print "There are " + count turtles + " turtles."

New	code:

print (word "There are " count turtles " turtles.")

Likewise,	if	you	need	to	concatenate	lists,	use	SENTENCE.

This	change	is	not	handled	automatically	when	converting	old	models;	users	will	need	to
change	their	code	by	hand.

We	know	this	change	will	be	awkward	for	users	who	are	used	to	the	old	syntax.	We	have
made	this	change	for	efficiency	and	consistency.	We	can	implement	an	addition	operator	that
only	adds	numbers	much	more	efficiently	than	one	that	handles	several	different	data	types.
Because	addition	is	such	a	common	operation,	NetLogo's	overall	speed	is	affected.

The	-at	primitives

The	observer	may	no	longer	use	patch-at,	turtles-at,	and	BREEDS-at.	Use	patch,	turtles-on
patch,	and	BREEDS-on patch	instead.	Note	that	patch	now	rounds	its	inputs	(before	it	only
accepted	integer	inputs).

Links

NetLogo	3.1	had	supports	for	using	links	to	connect	turtles	to	make	networks,	graphs,	and
geometric	figures.	The	links	were	themselves	turtles.

In	NetLogo	4.0,	instead	of	links	being	turtles,	links	are	now	an	independent	fourth	agent	type,
right	alongside	observer,	turtles,	patches.	The	primitives	involving	links	are	no	longer
considered	experimental;	they	are	now	fully	part	of	the	language.

Models	that	use	the	old,	experimental	turtle-based	link	primitives	will	need	to	be	updated	to
use	link	agents.	The	differences	are	not	huge,	but	hand	updating	is	required.

Links	are	documented	in	the	Links	section	of	the	Programming	Guide,	and	in	the	NetLogo
Dictionary	entries	for	the	link	primitives.	See	the	Networks	section	of	the	Models	Library	for
example	models	that	use	links.	There	are	also	some	link-based	Code	Examples.

First	you	will	need	to	remove	any	breeds	called	"links"	if	you	are	only	using	one	type	of	links
then	you	will	not	have	to	use	breeds	at	all.	If	you	are	using	multiple	types	of	links	see
undirected-link-breed	and	directed-link-breed.	Commands	and	reporters	that	contain	the
word	"links"	(like	__create-links-with,	etc.)	will	automatically	be	converted	to	the	new	form
without	underscores	(create-links-with).	However,	primitives	that	use	a	different	breed
name	(such	as	"edges")	will	not	be	converted.	You	will	need	to	remove	the	underscores	by
hand	and	unless	you	are	declaring	a	link	breed	with	that	name	you	will	need	to	change	the
breed	designation	to	"links".

The	commands	remove-link(s)-with/from/to	no	longer	exist.	Instead	you	should	ask	the
links	in	question	to	die.

For	example:

ask turtle 0 [__remove-links-with link-neighbors]

becomes

ask turtle 0 [ask my-links [die]]

Several	of	the	layout	commands	have	slightly	different	inputs,	the	first	two	inputs	are
generally	a	turtle	agentset	and	a	link	agentset	to	perform	the	layout	on.	See	the	dictionary
entries	for	details.	layout-spring,	layout-radial	layout-tutte

You	may	also	need	to	rearrange	the	declaration	of	turtles-own	variables,	since	links	were
once	actually	turtles.	Any	variables	that	apply	to	links	should	be	moved	into	a	links-own	block.

Since	links	are	no	longer	turtles	they	no	longer	have	the	built-in	turtle	variables	(though	some
of	the	link	variables	are	the	same	such	as	color	and	label.	If	you	formerly	used	the	location	of
link	turtles	you	will	now	need	to	calculate	the	midpoint	of	the	link.	This	is	fairly	simple	in	a	non-
wrapping	world.

to-report link-xcor
 report mean [xcor] of both-ends
end

to-report link-ycor
 report mean [ycor] of both-ends
end

it	is	a	little	bit	trickier	in	a	wrapping	world	but	still	fairly	straightforward.

to-report link-xcor
 let other-guy end2
 let x 0
 ask end1
 [
 hatch 1
 [
 face other-guy
 fd [distance other-guy] of myself / 2
 set x xcor
 die
]
]
 report x
end

and	similarly	for	ycor.

If	you	used	either	the	size	or	heading	of	the	link	turtles	you	can	use	the	reporters	link-length
and	link-heading	instead.

New	"of"	syntax

We	have	replaced	three	different	language	constructs,	-of	(with	hyphen),	value-from,	and
values-from	with	a	single	of	construct	(no	hyphen).

old new
color-of turtle 0 [color] of turtle 0

value-from turtle 0 [size * size] [size * size] of turtle 0

mean values-from turtles [size] mean [size] of turtles

When	of	is	used	with	a	single	agent,	it	reports	a	single	value.	When	used	with	an	agentset,	it
reports	a	list	of	values	(in	random	order,	since	agentsets	are	always	in	random	order).

Note	that	when	opening	old	models	in	the	new	version,	-of,	value-from,	and	values-from	will
automatically	be	converted	to	use	"of"	instead,	but	some	nested	uses	of	these	constructs	are
too	complex	for	the	converter	and	must	be	converted	by	hand.

Serial	ask

The	ask	command	is	now	serial	rather	than	concurrent.	In	other	words,	the	asked	agents	will
run	one	at	a	time.	Not	until	one	agent	completely	finishes	the	entire	body	of	the	ask	does	the
next	agent	start.

Note	that	even	the	old	ask	was	never	truly	concurrent;	we	simulated	concurrent	execution	by
interleaving	execution	among	the	agents	using	a	turn-taking	mechanism	described	in	the
NetLogo	FAQ.

We	have	made	this	change	because	in	our	experience,	users	often	wrote	models	that
behaved	in	unexpected	ways	due	to	the	simulated	concurrency,	but	rarely	wrote	models	that
benefited	from	the	simulated	concurrency.	Models	exhibiting	unexpected	behavior	could
usually	be	fixed	by	adding	the	without-interruption	command	in	the	right	places,	but	it	was
difficult	for	users	to	know	whether	that	command	was	needed	and	if	so,	where.

In	NetLogo	4.0,	without-interruption	is	no	longer	necessary	unless	your	model	uses	ask-
concurrent	(or	a	turtle	or	patch	forever	button	containing	code	that	depends	on	simulated
concurrency).	In	most	models,	all	uses	of	without-interruption	can	be	removed.

The	simulated	concurrency	formerly	employed	by	"ask"	is	still	accessible	in	three	ways:

You	may	use	the	ask-concurrent	primitive	instead	of	ask	to	get	the	old	simulated
concurrency.	(We	don't	recommend	this,	though.)
Commands	issued	in	the	Command	Center	directly	to	turtles,	patches,	or	links	have	an
implied	ask-concurrent.
Turtle,	patch,	and	link	forever	buttons	have	an	implied	ask-concurrent	as	well.

Note	that	ask	itself	is	always	serial	regardless	of	the	context	in	which	it	is	used,	however.

In	our	own	Models	Library,	models	that	make	use	of	this	concurrency	are	rare.	A	prominent
example,	though,	is	Termites,	which	uses	a	concurrent	turtle	forever	button.

Tick	counter

NetLogo	now	has	a	built-in	tick	counter	for	representing	the	passage	of	simulated	time.

You	advance	the	counter	by	one	using	the	tick	command.	If	you	need	to	read	its	value,
there's	a	reporter	called	ticks.	The	clear-all	command	resets	the	tick	counter;	so	does
reset-ticks.

In	most	models	the	tick	counter	will	be	integer-valued,	but	if	you	want	to	use	smaller
increments	of	time,	you	can	use	the	tick-advance	command	to	advance	the	tick	counter	by

any	positive	amount,	including	fractional	amounts.	Some	Models	Library	models	that	use
tick-advance	are	Vector	Fields	and	the	GasLab	models.

The	value	of	the	tick	counter	is	displayed	in	the	toolbar	at	the	top	of	the	Interface	tab.	(You
can	use	the	Settings...	button	in	the	toolbar	to	hide	the	tick	counter,	or	change	the	word	"ticks"
to	something	else.)

View	update	modes

In	the	past,	NetLogo	always	tried	to	update	the	view	about	20	times	a	second.	We're	now
calling	that	"continuous"	view	updates.	The	biggest	problem	with	it	was	that	you	usually	want
updates	to	happen	between	model	ticks,	not	in	the	middle	of	a	tick,	so	we	had	a	checkbox	on
buttons	that	(by	default)	forced	a	display	update	after	every	button	iteration.	That	made	sure
updates	happened	between	ticks,	but	it	didn't	get	rid	of	the	intermediate	updates.	You	had	to
use	no-display	and	display	to	lock	them	out.

We	still	support	continuous	updates.	They	are	the	default	when	you	start	up	NetLogo.	But
most	Models	Library	models	now	use	tick-based	updates.	With	tick-based	updates,	updates
happen	only	when	the	tick	counter	advances.	(The	display	command	can	be	used	to	force
additional	updates;	see	below.)

The	advantages	of	tick-based	updates	as	we	see	them	are	as	follows:

1.	 Consistent,	predictable	view	update	behavior	which	does	not	vary	from	computer	to
computer	or	from	run	to	run.

2.	 Intermediate	updates	can	confuse	the	user	of	your	model	by	letting	them	see	things
they	aren't	supposed	to	see,	which	may	be	misleading.

3.	 Increased	speed.	Updating	the	view	takes	time,	so	if	one	update	per	tick	is	enough,	then
enforcing	than	there	is	only	one	update	per	tick	will	make	your	model	faster.

4.	 Instead	of	having	a	"force	view	update"	checkbox	in	every	button	like	in	NetLogo	3.1,	we
only	need	one	choice	which	applies	to	the	entire	model.

5.	 Using	the	speed	slider	to	slow	down	a	model	now	just	inserts	pauses	between	ticks.	So
with	tick-based	updates,	setup	buttons	are	no	longer	affected	by	the	speed	slider.	This
was	a	real	annoyance	with	the	old	speed	slider.	(The	annoyance	persists	for	models
that	use	continuous	updates,	though.)

As	mentioned	above,	most	models	in	our	Models	Library	now	use	tick-based	updates.

Even	for	models	that	would	normally	be	set	to	tick-based	updates,	it	may	be	useful	to	switch
to	continuous	updates	temporarily	for	debugging	purposes.	Seeing	what's	going	on	within	a
tick,	instead	of	only	seeing	the	end	result	of	a	tick,	could	help	with	troubleshooting.

If	you	switch	your	model	to	use	tick-based	updates,	you'll	also	need	to	add	the	tick	command
to	your	code,	otherwise	the	view	won't	update.	(Note	that	the	view	still	always	updates	when	a
button	pops	up	or	a	command	entered	in	the	command	center	finishes,	though.	So	it's	not	like
the	view	will	just	stay	frozen	indefinitely.)

How	to	make	a	model	use	ticks	and	tick-based	updates

Here	are	the	steps	to	follow	to	convert	your	model	to	use	ticks	and	tick-based	updates	in
NetLogo	4.0:

1.	 In	the	Interface	tab	toolbar,	on	the	right	hand	side	where	it	says	"update	view:",	change
the	setting	from	"continuously"	to	"on	ticks".

2.	 Add	the	tick	command	to	your	go	procedure,	at	or	near	the	end.	In	Models	Library

models	we	always	put	tick	after	the	agents	move	but	before	any	plotting	commands.
That's	because	the	plotting	commands	might	contain	something	like	plotxy ticks ...
and	we	want	the	new	value	of	the	tick	counter	used,	not	the	old	one.	Most	models	don't
refer	to	the	tick	counter	in	their	plotting	commands,	but	nonetheless,	for	consistency	and
to	avoid	mistakes	we	suggest	always	putting	tick	before	the	plotting	commands.

Some	models	will	require	some	additional	changes:

1.	 If	your	model	already	has	a	global	"ticks"	or	"clock"	or	"time"	variable,	get	rid	of	it.	Use
the	tick	command	and	ticks	reporter	instead.	(If	your	model	uses	fractional	increments
of	time,	use	tick-advance	instead	of	tick.)	If	you	had	a	monitor	for	that	variable,	you	can
get	rid	of	it;	there's	now	a	tick	counter	in	the	toolbar.

2.	 clear-all	resets	the	tick	counter	to	zero.	If	you	don't	use	clear-all	in	your	setup
procedure,	then	you	may	need	to	add	reset-ticks	to	reset	the	counter	to	zero.

3.	 If	you	used	no-display	and	display	to	prevent	view	updates	from	happening	in	the
middle	of	go,	you	can	get	rid	of	them.

4.	 If	your	model	needs	to	update	the	view	without	advancing	the	tick	counter	(examples:
Party,	Dice	Stalagmite,	network	models	with	animated	layout,	models	with	mouse
interaction	buttons),	use	the	display	command	to	force	additional	view	updates	so	the
user	can	see	what	is	going	on.

Speed	slider

Previous	versions	of	NetLogo	had	a	speed	slider	that	could	be	used	to	make	models	run
slower,	so	you	can	see	what's	going	on.

In	NetLogo	4.0,	the	slider	can	be	used	to	speed	up	models	as	well.	It	does	this	by	updating
the	view	less	frequently.	Updating	the	view	takes	time,	so	the	fewer	updates,	the	faster	the
model	runs.

The	default	position	of	the	slider	is	in	the	center.	When	you're	at	the	center,	the	slider	says
"normal	speed".

As	you	move	the	slider	away	from	the	center	position,	the	model	will	gradually	run	faster	or
slower.

At	very	high	speeds,	view	updates	become	very	infrequent	and	may	be	separated	by	several
seconds.	It	may	feel	like	the	model	is	actually	running	slower,	since	the	updates	are	so
infrequent.	But	watch	the	tick	counter,	or	other	indicators	such	as	plots,	and	you'll	see	that
yes,	the	model	really	is	running	faster.	If	the	infrequent	updates	are	disconcerting,	don't	push
the	slider	so	far	over.

When	using	tick-based	updates,	slowing	the	model	down	does	not	cause	additional	view
updates.	Rather,	NetLogo	simply	pauses	after	each	tick.

When	using	continuous	updates,	slowing	the	model	down	means	view	updates	become	more
closely	spaced.	If	you	push	the	speed	slider	more	than	halfway	to	the	left,	the	model	will	be
running	so	slowly	that	you	can	watch	turtles	moving	one	at	a	time!	This	is	new	in	NetLogo	4.0;
in	previous	NetLogo	versions,	no	matter	how	slowly	you	ran	a	model,	you	would	never	see	the
agents	in	an	ask	moving	one	at	a	time;	all	the	agents	in	an	ask	always	appeared	to	move
together.

Numbers

NetLogo	no	longer	maintains	an	internal	distinction	between	integers	and	floating	point

numbers.	So	for	example:

Old:

observer> print 3
3
observer> print 3.0
3.0
observer> print 1 + 2
3
observer> print 1.5 + 1.5
3.0
observer> print 3 = 3.0
true

(The	last	line	shows	that	although	the	distinction	between	integer	3	and	floating	point	3.0	was
maintained,	the	two	numbers	were	still	considered	equal.)

New:

observer> print 3
3
observer> print 3.0
3
observer> print 1 + 2
3
observer> print 1.5 + 1.5
3
observer> print 3 = 3.0
true

We	expect	that	only	rare	models	will	be	negatively	impacted	by	this	change.

A	benefit	of	this	change	is	that	NetLogo	now	supports	a	much	larger	range	of	integers.	The
old	range	was	-2,147,483,648	to	2,147,483,647	(around	+/-	2	billion);	the	new	range	is	+/-
9,007,199,254,740,992	(around	+/-	9	quadrillion).

Agentset	building

NetLogo	3.1	(and	some	earlier	versions)	included	primitives	called	turtles-from	and	patches-
from	that	were	occasionally	useful	for	building	agentsets.	In	NetLogo	4.0,	these	primitives
have	been	replaced	with	new	primitives	called	turtle-set	and	patch-set	that	are	much	more
flexible	and	powerful.	(link-set	exists	as	well.)	See	the	entries	for	these	primitives	in	the
NetLogo	Dictionary.	Models	that	use	the	old	turtles-from	and	patches-from	will	need	to	be
altered	by	hand	to	use	the	new	primitives.

RGB	Colors

In	NetLogo	3.1	RGB	and	HSB	colors	could	be	approximated	as	NetLogo	colors	using	the	rgb
and	hsb	primitives.	These	have	been	renamed	to	approximate-rgb	and	approximate-hsb	and
now	expect	inputs	in	the	range	0-255,	not	0-1.

The	full	RGB	spectrum	is	now	available	in	NetLogo	so	it	may	no	longer	be	necessary	to	use
these	primitives	at	all.	You	can	set	any	color	variable	to	a	three-item	RGB	list,	with	values	in
the	0-255	range,	and	get	that	exact	color.	See	the	Color	section	of	the	Programming	Guide
for	details.

Tie

In	previous	versions	__tie	was	provided	as	an	experimental	feature.	As	of	NetLogo	4.0	links
have	a	tie-mode	variable	which	can	be	set	to	"none",	"free",	or	"fixed".	In	4.0	tie	is	now	a
link-only	primitive.	This	means	that	to	tie	turtle	1	to	turtle	0	you	write:

 ask turtle 0 [create-link-to turtle 1 [tie]]

See	the	Tie	section	of	the	programming	guide	for	details.

Changes	for	NetLogo	3.1

Agentsets

If	your	model	is	behaving	strangely	or	incorrectly,	it	may	be	because	since	NetLogo	3.1,
agentsets	are	now	always	in	random	order.	In	prior	versions	of	NetLogo,	agentsets	were
always	in	a	fixed	order.	If	your	code	depended	on	that	fixed	order,	then	it	won't	work	anymore.
How	to	fix	your	model	to	work	with	randomized	agentsets	depends	on	the	details	of	what	your
code	is	doing.	In	some	situations,	it	is	helpful	to	use	the	sort	or	sort-by	primitives	to	convert
an	agentset	(random	order)	into	a	list	of	agents	(fixed	order).	See	"Lists	of	agents"	in	the	Lists
section	of	the	Programming	Guide.

Wrapping

If	you	are	seeing	pieces	of	turtle	shapes	wrapping	around	the	view	edges,	it's	because
NetLogo	3.0	allowed	you	to	turn	off	such	wrapping	in	the	view	without	affecting	the	behavior
of	the	model.	Since	NetLogo	3.1,	if	you	don't	want	the	view	to	wrap	you	must	make	it	so	the
world	doesn't	wrap,	using	the	new	topology	feature.	Making	this	change	may	require	other
changes	to	your	model,	though.	See	the	Topology	section	of	the	Programming	Guide	for	a
thorough	discussion	of	how	to	convert	your	model	to	take	advantage	of	this	new	feature.

Random	turtle	coordinates

Many	models	made	in	NetLogo	3.0	or	earlier	use	setxy random world-width random world-
height	to	scatter	turtles	randomly,	using	either	random	or	random-float.	It	only	works	if	world
wrapping	is	on.

(Why?	Because	when	wrapping	is	on,	you	can	set	coordinates	of	turtles	to	numbers	beyond
the	edge	of	the	world	and	NetLogo	will	wrap	the	turtle	to	the	other	side.	But	in	worlds	that
don't	wrap	setting	the	x	or	y	coordinates	of	a	turtle	to	a	point	outside	the	bounds	of	the	world
causes	a	runtime	error.	The	world	wrap	settings	were	added	in	NetLogo	3.1.	See	the
Topology	section	of	the	Programming	Guide	for	more	information.)

To	fix	your	model	so	that	it	works	regardless	of	the	wrapping	settings,	use	one	of	these	two
commands	instead:

setxy random-xcor random-ycor
setxy random-pxcor random-pycor

The	two	commands	are	a	bit	different.	The	first	command	puts	the	turtle	on	a	random	point	in

the	world.	The	second	command	puts	the	turtle	on	the	center	of	a	random	patch.	An	even
more	concise	way	to	put	a	turtle	on	the	center	of	a	random	patch	is:

move-to one-of patches

Shapes	Editor	Guide

The	Turtle	and	Link	Shape	Editors	allows	you	to	create	and	save	turtle	and	link	designs.

NetLogo	uses	fully	scalable	and	rotatable	vector	shapes,	which	means	you	can	create
designs	by	combining	basic	geometric	elements,	which	can	appear	on-screen	in	any	size	or
orientation.

Getting	started

To	begin	making	shapes,	choose	Turtle	Shapes	Editor	or	Link	Shapes	Editor	in	the	Tools
menu.	A	new	window	will	open	listing	all	the	shapes	currently	in	the	model,	beginning	with
default,	the	default	shape.	The	Shapes	Editor	allows	you	to	edit	shapes,	create	new	shapes,
and	borrow	from	another	model.	You	can	also	import	turtle	shapes	from	a	library	of	pre-
existing	shapes.

Importing	shapes

Every	new	model	in	NetLogo	starts	off	containing	a	small	core	set	of	frequently	used	shapes.
Many	more	turtle	shapes	are	available	by	using	the	Import	from	library...	button.	This	brings
up	a	dialog	where	you	can	select	one	or	more	shapes	and	bring	them	into	your	model.	Select
the	shapes,	then	press	the	Import	button.

Similarly,	you	can	use	the	Import	from	model...	button	to	borrow	shapes	from	another	model.

Default	shapes

Here	are	the	turtle	shapes	that	are	included	by	default	in	every	new	NetLogo	model:

First	row:	default,	airplane,	arrow,	box,	bug,	butterfly,	car	
Second	row:	circle,	circle	2,	cow,	cylinder,	dot,	face	happy,	face	neutral	
Third	row:	face	sad,	fish,	flag,	flower,	house,	leaf,	line	
Fourth	row:	line	half,	pentagon,	person,	plant,	sheep,	square,	square	2	

Fifth	row:	star,	target,	tree,	triangle,	triangle	2,	truck,	turtle	
Sixth	row:	wheel,	x

Shapes	library

And	here	are	the	shapes	in	the	shapes	library	(including	all	of	the	default	shapes,	too):

By	default	there	is	only	one	Link	shape	in	a	model,	that	is	"default".	This	shape	is	simply	a
single	straight	line	with	a	simple	arrowhead	(if	the	link	happens	to	be	directed).

Creating	and	editing	turtle	shapes

Pressing	the	New	button	will	make	a	new	shape.	Or,	you	may	select	an	existing	shape	and
press	Edit.

Tools

In	the	upper	left	corner	of	the	editing	window	is	a	group	of	drawing	tools.	The	arrow	is	the
selection	tool,	which	selects	an	already	drawn	element.

To	draw	a	new	element,	use	one	of	the	other	seven	tools:

The	line	tool	draws	line	segments.
The	circle,	square,	and	polygon	tools	come	in	two	versions,	solid	and	outline.

When	using	the	polygon	tool,	click	the	mouse	to	add	a	new	segment	to	the	polygon.	When
you're	done	adding	segments,	double	click.

After	you	draw	a	new	element,	it	is	selected,	so	you	can	move,	delete,	or	reshape	it	if	you
want:

To	move	it,	drag	it	with	the	mouse
To	delete	it,	press	the	Delete	button.
To	reshape	it,	drag	the	small	"handles"	that	appear	on	the	element	only	when	it	is
selected.
To	change	its	color,	click	on	the	new	color.

Previews

As	you	draw	your	shape,	you	will	also	see	it	in	five	smaller	sizes	in	the	five	preview	areas
found	near	the	bottom	of	the	editing	window.	The	previews	show	your	shape	as	it	might
appear	in	your	model,	including	how	it	looks	as	it	rotates.	The	number	below	each	preview	is
the	size	of	the	preview	in	pixels.	When	you	edit	the	view,	patch	size	is	also	measured	in
pixels.	So	for	example,	the	preview	with	"20"	below	it	shows	you	how	your	shape	would	look
on	a	turtle	(of	size	1)	on	patches	of	size	20	pixels.

The	rotatable	feature	can	be	turned	off	if	you	want	a	shape	that	always	faces	the	same	way,
regardless	of	the	turtle's	heading.

Overlapping	shapes

New	elements	go	on	top	of	previous	elements.	You	can	change	the	layering	order	by
selecting	an	element	and	then	using	the	Bring	to	front	and	Send	to	back	buttons.

Undo

At	any	point	you	can	use	the	Undo	button	to	undo	the	edit	you	just	performed.

Colors

Elements	whose	color	matches	the	Color	that	changes	(selected	from	a	drop-down	menu	--
the	default	is	gray)	will	change	color	according	to	the	value	of	each	turtle's	color	variable	in
your	model.	Elements	of	other	colors	don't	change.	For	example,	you	could	create	cars	that
always	have	yellow	headlights	and	black	wheels,	but	different	body	colors.

Other	buttons

The	"Rotate	Left"	and	"Rotate	Right"	buttons	rotate	elements	by	90	degrees.	The	"Flip
Horizontal"	and	"Flip	Vertical"	buttons	reflect	elements	across	the	axes.

These	four	buttons	will	rotate	or	flip	the	entire	shape,	unless	an	element	is	selected,	in	which
case	only	that	element	is	affected.

These	buttons	are	especially	handy	in	conjunction	with	the	"Duplicate"	button	if	you	want	to
make	shapes	that	are	symmetrical.	For	example,	if	you	were	making	a	butterfly,	you	could
draw	the	butterfly's	left	wing	with	the	polygon	tool,	then	duplicate	the	wing	with	the	"Duplicate"
button,	then	turn	the	copy	into	a	right	wing	with	the	"Flip	Horizontal"	button.

Shape	design

It's	tempting	to	draw	complicated,	interesting	shapes,	but	remember	that	in	most	models,	the
patch	size	is	so	small	that	you	won't	be	able	to	see	very	much	detail.	Simple,	bold,	iconic
shapes	are	usually	best.

Keeping	a	shape

When	the	shape	is	done,	give	it	a	name	and	press	the	Done	button	at	the	bottom	of	the
editing	window.	The	shape	and	its	name	will	now	be	included	in	the	list	of	shapes	along	with
the	"default"	shape.

Creating	and	editing	link	shapes

Managing	link	shapes	is	very	similar	to	managing	turtle	shapes.	So,	you	can	create	a	new
shape	by	pressing	the	New	button	or	you	can	edit	existing	shapes.	When	you	are	done
editing	a	shape	press	Done	if	you	want	to	keep	it.

Changing	link	shape	properties

There	are	several	different	properties	for	each	link	shape	that	you	are	allowed	to	change:

Name	-	link	shapes	can	have	the	same	name	as	turtle	shapes	but	must	be	unique
among	link	shapes.
Direction	Indicator	-	the	direction	indicator	(the	little	arrow	on	directed	links)	is	just	like
the	turtle	vector	shapes,	you	can	edit	it	using	the	same	editor	by	pressing	the	Edit
button.
Curviness	-	this	is	the	amount	of	bend	in	a	link	expressed	in	patches	(this	is	particularly
useful	if	you	have	directed	links	going	in	both	directions	so	you	can	discern	both	links)
Number	of	lines:	You	can	have	1,	2,	or	3	lines	in	each	link	shape,	you	control	this	by
selecting	line	patterns	in	the	"left	line",	"middle	line",	and	"right	line"	selection	boxes.
Dash	pattern	of	lines:	There	are	several	dashed	line	patterns	available	in	the	selection
boxes	so	not	all	lines	need	be	solid.

Here	are	some	link	shapes	with	various	properties:

Using	shapes	in	a	model

In	the	model's	code	or	in	the	command	center,	you	can	use	any	of	the	shapes	that	are	in	the
model	(though	only	turtles	can	have	turtle	shapes	and	only	links	can	have	link	shapes).	For
example,	suppose	you	want	to	create	50	turtles	with	the	shape	"rabbit".	Provided	there	is
some	turtle	shape	called	rabbit	in	this	model,	give	this	command	to	the	observer	in	the
command	center:

observer> crt 50

And	then	give	these	commands	to	the	turtles	to	spread	them	out,	then	change	their	shape:

turtles> fd random 15
turtles> set shape "rabbit"

Voila!	Rabbits!	Note	the	use	of	double	quotes	around	the	shape	name.	Shape	names	are
strings.

Similarly,	you	can	set	the	shape	variable	of	links.	Assuming	there	is	a	link	shape	called	"road"
in	this	model:

observer> crt 5 [create-links-with other turtles]
turtles> fd 5
links> set shape "road"

The	set-default-shape	command	is	also	useful	for	assigning	shapes	to	turtles	and	links.

BehaviorSpace	Guide

This	guide	has	three	parts:

What	is	BehaviorSpace?:	A	general	description	of	the	tool,	including	the	ideas	and
principles	behind	it.
How	It	Works:	Walks	you	through	how	to	use	the	tool	and	highlights	its	most	commonly
used	features.
Advanced	Usage:	How	to	use	BehaviorSpace	from	the	command	line,	or	from	your
own	Java	code.

What	is	BehaviorSpace?

BehaviorSpace	is	a	software	tool	integrated	with	NetLogo	that	allows	you	to	perform
experiments	with	models.

BehaviorSpace	runs	a	model	many	times,	systematically	varying	the	model's	settings	and
recording	the	results	of	each	model	run.	This	process	is	sometimes	called	"parameter
sweeping".	It	lets	you	explore	the	model's	"space"	of	possible	behaviors	and	determine	which
combinations	of	settings	cause	the	behaviors	of	interest.

If	your	computer	has	multiple	processor	cores,	then	by	default,	model	runs	will	happen	in
parallel,	one	per	core.

Why	BehaviorSpace?

The	need	for	this	type	of	experiment	is	revealed	by	the	following	observations.	Models	often
have	many	settings,	each	of	which	can	take	a	range	of	values.	Together	they	form	what	in
mathematics	is	called	a	parameter	space	for	the	model,	whose	dimensions	are	the	number	of
settings,	and	in	which	every	point	is	a	particular	combination	of	values.	Running	a	model	with
different	settings	(and	sometimes	even	the	same	ones)	can	lead	to	drastically	different
behavior	in	the	system	being	modeled.	So,	how	are	you	to	know	which	particular
configuration	of	values,	or	types	of	configurations,	will	yield	the	kind	of	behavior	you	are
interested	in?	This	amounts	to	the	question	of	where	in	its	huge,	multi-dimension	parameter
space	does	your	model	perform	best?

For	example,	suppose	you	want	speedy	synchronization	from	the	agents	in	the	Fireflies
model.	The	model	has	four	sliders	--	number,	cycle-length,	flash-length	and	number-flashes	--
that	have	approximately	2000,	100,	10	and	3	possible	values,	respectively.	That	means	there
are	2000	*	100	*	10	*	3	=	600,000	possible	combinations	of	slider	values!	Trying	combinations
one	at	a	time	is	hardly	an	efficient	way	to	learn	which	one	will	evoke	the	speediest
synchronization.

BehaviorSpace	offers	you	a	much	better	way	to	solve	this	problem.	If	you	specify	a	subset	of
values	from	the	ranges	of	each	slider,	it	will	run	the	model	with	each	possible	combination	of
those	values	and,	during	each	model	run,	record	the	results.	In	doing	so,	it	samples	the
model's	parameter	space	--	not	exhaustively,	but	enough	so	that	you	will	be	able	to	see
relationships	form	between	different	sliders	and	the	behavior	of	the	system.	After	all	the	runs
are	over,	a	dataset	is	generated	which	you	can	open	in	a	different	tool,	such	as	a
spreadsheet,	database,	or	scientific	visualization	application,	and	explore.

By	enabling	you	to	explore	the	entire	"space"	of	behaviors	a	model	can	exhibit,
BehaviorSpace	can	be	a	powerful	assistant	to	the	modeler.

How	It	Works

To	begin	using	BehaviorSpace,	open	your	model,	then	choose	the	BehaviorSpace	item	on
NetLogo's	Tools	menu.

Managing	experiment	setups

The	dialog	that	opens	lets	you	create,	edit,	duplicate,	delete,	and	run	experiment	setups.
Experiments	are	listed	by	name	and	how	by	model	runs	the	experiment	will	consist	of.

Experiment	setups	are	considered	part	of	a	NetLogo	model	and	are	saved	as	part	of	the
model.

To	create	a	new	experiment	setup,	press	the	"New"	button.

Creating	an	experiment	setup

In	the	new	dialog	that	appears,	you	can	specify	the	following	information.	Note	that	you	don't
always	need	to	specify	everything;	some	parts	can	be	left	blank,	or	left	with	their	default
values,	depending	on	your	needs.

Experiment	name:	If	you	have	multiple	experiments,	giving	them	different	names	will	help
you	keep	them	straight.

Vary	variables	as	follows:	This	is	where	you	specify	which	settings	you	want	varied,	and
what	values	you	want	them	to	take.	Variables	can	include	sliders,	switches,	choosers,	and
any	global	variables	in	your	model.

Variables	can	also	include	max-pxcor,	min-pxcor,	max-pycor	and	min-pycor,	world-width,
world-height	and	random-seed.	These	are	not,	strictly	speaking,	variables,	but	BehaviorSpace
lets	you	vary	them	as	if	they	were.	Varying	the	world	dimensions	lets	you	explore	the	effect	of
world	size	upon	your	model.	Since	setting	world-width	and	world-height	does	not	necessarily
define	the	bounds	of	the	world	how	they	are	varied	depends	on	the	location	of	the	origin.	If
the	origin	is	centered,	BehaviorSpace	will	keep	it	centered	so	the	values	world-width	or
world-height	must	be	odd.	If	one	of	the	bounds	is	at	zero	that	bound	will	be	kept	at	zero	and
the	other	bound	will	move,	for	example	if	you	start	with	a	world	with	min-pxcor = 0	max-pxcor
= 10	and	you	vary	world-width	like	this:

["world-width" [11 1 14]]

min-pxcor	will	stay	at	zero	and	max-pxcor	will	set	to	11,	12,	and	13	for	each	of	the	runs.	If
neither	of	these	conditions	are	true,	the	origin	is	not	centered,	nor	at	the	edge	of	the	world
you	cannot	vary	world-height	or	world-width	directly	but	you	should	vary	max-pxcor,	max-
pycor,	min-pxcor	and	min-pycor	instead.

Varying	random-seed	lets	you	repeat	runs	by	using	a	known	seed	for	the	NetLogo	random
number	generator.	Note	that	you're	also	free	to	use	the	random-seed	command	in	your
experiment's	setup	commands.	For	more	information	on	random	seeds,	see	the	Random
Numbers	section	of	the	Programmer's	Guide.

You	may	specify	values	either	by	listing	the	values	you	want	used,	or	by	specifying	that	you
want	to	try	every	value	within	a	given	range.	For	example,	to	give	a	slider	named	number
every	value	from	100	to	1000	in	increments	of	50,	you	would	enter:

["number" [100 50 1000]]

Or,	to	give	it	only	the	values	of	100,	200,	400,	and	800,	you	would	enter:

["number" 100 200 400 800]

Be	careful	with	the	brackets	here.	Note	that	there	are	fewer	square	brackets	in	the	second
example.	Including	or	not	including	this	extra	set	of	brackets	is	how	you	tell	BehaviorSpace
whether	you	are	listing	individual	values,	or	specifying	a	range.

Also	note	that	the	double	quotes	around	the	variable	names	are	required.

You	can	vary	as	many	settings	as	you	want,	including	just	one,	or	none	at	all.	Any	settings
that	you	do	not	vary	will	retain	their	current	values.	Not	varying	any	settings	is	useful	if	you
just	want	to	do	many	runs	with	the	current	settings.

What	order	you	list	the	variables	in	determines	what	order	the	runs	will	be	done	in.	All	values
for	a	later	variable	will	be	tried	before	moving	to	the	next	value	for	an	earlier	variable.	So	for
example	if	you	vary	both	x	and	y	from	1	to	3,	and	x	is	listed	first,	then	the	order	of	model	runs
will	be:	x=1	y=1,	x=1	y=2,	x=1	y=3,	x=2	y=1,	and	so	on.

Repetitions:	Sometimes	the	behavior	of	a	model	can	vary	a	lot	from	run	to	run	even	if	the
settings	don't	change,	if	the	model	uses	random	numbers.	If	you	want	to	run	the	model	more
than	once	at	each	combination	of	settings,	enter	a	higher	number.

Measure	runs	using	these	reporters:	This	is	where	you	specify	what	data	you	want	to
collect	from	each	run.	For	example,	if	you	wanted	to	record	how	the	population	of	turtles	rose
and	fell	during	each	run,	you	would	enter:

count turtles

You	can	enter	one	reporter,	or	several,	or	none	at	all.	If	you	enter	several,	each	reporter	must
be	on	a	line	by	itself,	for	example:

count frogs
count mice
count birds

If	you	don't	enter	any	reporters,	the	runs	will	still	take	place.	This	is	useful	if	you	want	to
record	the	results	yourself	your	own	way,	such	as	with	the	export-world	command.

Measure	runs	at	every	step:	Normally	NetLogo	will	measure	model	runs	at	every	step,
using	the	reporters	you	entered	in	the	previous	box.	If	you're	doing	very	long	model	runs,	you
might	not	want	all	that	data.	Uncheck	this	box	if	you	only	want	to	measure	each	run	after	it
ends.

Setup	commands:	These	commands	will	be	used	to	begin	each	model	run.	Typically,	you
will	enter	the	name	of	a	procedure	that	sets	up	the	model,	typically	setup.	But	it	is	also
possible	to	include	other	commands	as	well.

Go	commands:	These	commands	will	be	run	over	and	over	again	to	advance	to	the	model
to	the	next	"step".	Typically,	this	will	be	the	name	of	a	procedure,	such	as	go,	but	you	may
include	any	commands	you	like.

Stop	condition:	This	lets	you	do	model	runs	of	varying	length,	ending	each	run	when	a
certain	condition	becomes	true.	For	example,	suppose	you	wanted	each	run	to	last	until	there
were	no	more	turtles.	Then	you	would	enter:

not any? turtles

If	you	want	the	length	of	runs	to	all	be	of	a	fixed	length,	just	leave	this	blank.

The	run	may	also	stop	because	the	go	commands	use	the	stop	command,	in	the	same	way
that	stop	can	be	used	to	stop	a	forever	button.	The	stop	command	may	be	used	directly	in	the
go	commands,	or	in	a	procedure	called	directly	by	the	go	commands.	(The	intent	is	that	the
same	go	procedure	should	work	both	in	a	button	and	in	a	BehaviorSpace	experiment.)	Note
that	the	step	in	which	stop	is	used	is	considered	to	have	been	aborted,	so	no	results	will	be
recorded	for	that	step.	Therefore,	the	stopping	test	should	be	at	the	beginning	of	the	go
commands	or	procedure,	not	at	the	end.

Final	commands:	These	are	any	extra	commands	that	you	want	run	once,	when	the	run
ends.	Usually	this	is	left	blank,	but	you	might	use	it	to	call	the	export-world	command	or
record	the	results	of	the	run	in	some	other	way.

Time	limit:	This	lets	you	set	a	fixed	maximum	length	for	each	run.	If	you	don't	want	to	set	any
maximum,	but	want	the	length	of	the	runs	to	be	controlled	by	the	stop	condition	instead,	enter
0.

Special	primitives	for	BehaviorSpace	experiments

Currently	there	are	only	two,	behaviorspace-run-number	and	behaviorspace-experiment-name.
The	run	number	reported	by	the	former	primitive	matches	the	run	number	used	in	the	results
files	generated	by	BehaviorSpace.	The	experiment	name	reported	by	the	latter	matches	the
name	with	which	the	experiment	was	set	up.

Running	an	experiment

When	you're	done	setting	up	your	experiment,	press	the	"OK"	button,	followed	by	the	"Run"
button.	A	dialog	titled	"Run	options"	will	appear.

Run	options:	formats

The	run	options	dialog	lets	you	select	the	formats	you	would	like	the	data	from	your
experiment	saved	in.	Data	is	collected	for	each	run	or	step,	according	to	the	setting	of
Measure	runs	at	every	step	option.	In	either	case,	the	initial	state	of	the	system	is	recorded,
after	the	setup	commands	run	but	before	the	go	commands	run	for	the	first	time.

Table	format	lists	each	interval	in	a	row,	with	each	metric	in	a	separate	column.	Table	data	is
written	to	the	output	file	as	each	run	completes.	Table	format	is	suitable	for	automated
processing	of	the	data,	such	as	importing	into	a	database	or	a	statistics	package.

Spreadsheet	format	calculates	the	min,	mean,	max,	and	final	values	for	each	metric,	and	then
lists	each	interval	in	a	row,	with	each	metric	in	a	separate	column.	Spreadsheet	data	is	more

human-readable	than	Table	data,	especially	if	imported	into	a	spreadsheet	application.

(Note	however	that	spreadsheet	data	is	not	written	to	the	results	file	until	the	experiment
finishes.	Since	spreadsheet	data	is	stored	in	memory	until	the	experiment	is	done,	very	large
experiments	could	run	out	of	memory.	So	you	should	disable	spreadsheet	output	unless	you
really	want	it.	If	you	do	want	spreadsheet	output,	note	that	if	anything	interrupts	the
experiment,	such	as	a	runtime	error,	running	out	of	memory,	or	a	crash	or	power	outage,	no
spreadsheet	results	will	be	written.	For	long	experiments,	you	may	want	to	also	enable	table
format	as	a	precaution	so	that	if	something	happens	and	you	get	no	spreadsheet	output	you'll
at	least	get	partial	table	output.)

After	selecting	your	output	formats,	BehaviorSpace	will	prompt	you	for	the	name	of	a	file	to
save	the	results	to.	The	default	name	ends	in	".csv".	You	can	change	it	to	any	name	you	want,
but	don't	leave	off	the	".csv"	part;	that	indicates	the	file	is	a	Comma	Separated	Values	(CSV)
file.	This	is	a	plain-text	data	format	that	is	readable	by	any	text	editor	as	well	as	by	most
popular	spreadsheet	and	database	programs.

Run	options:	parallel	runs

The	run	options	dialog	also	lets	you	select	whether	you	want	multiple	model	runs	to	happen	in
parallel,	and	if	so,	how	many	are	allowed	to	be	simultaneously	active.	This	number	will	default
to	the	number	of	processor	cores	in	your	computer.

There	are	a	few	cautions	associated	with	parallel	runs.

First,	if	multiple	runs	are	active,	only	one	of	them	will	be	in	the	"foreground"	and	cause	the
view	and	plots	to	update.	The	other	runs	will	happen	invisibly	in	the	background.

Second,	invisible	background	runs	can't	use	primitives	that	only	work	in	the	GUI.	For
example,	a	background	run	can't	make	a	movie.

Third,	since	parallel	runs	progress	independently	of	each	other,	table	format	output	may
contain	interleaved,	out-of-order	results.	When	you	analyze	your	table	data,	you	may	wish	to
sort	it	by	run	number	first.	(Spreadsheet	format	output	is	not	affected	by	this	issue,	since	it	is
not	written	until	the	experiment	completes	or	is	aborted.)

Fourth,	using	all	available	processor	cores	may	make	your	computer	slow	to	use	for	other
tasks	while	the	experiment	is	running.

Fifth,	doing	runs	in	parallel	will	multiply	the	experiment's	memory	requirements	accordingly.
You	may	need	to	increase	NetLogo's	memory	ceiling	(see	this	FAQ	entry).

Observing	runs

After	you	complete	the	run	options	dialog,	another	dialog	will	appear,	titled	"Running
Experiment".	In	this	dialog,	you'll	see	a	progress	report	of	how	many	runs	have	been
completed	so	far	and	how	much	time	has	passed.	If	you	entered	any	reporters	for	measuring
the	runs,	and	if	you	left	the	"Measure	runs	at	every	step"	box	checked,	then	you'll	see	a	plot	of
how	they	vary	over	the	course	of	each	run.

You	can	also	watch	the	runs	in	the	main	NetLogo	window.	(If	the	"Running	Experiment"	dialog
is	in	the	way,	just	move	it	to	a	different	place	on	the	screen.)	The	view	and	plots	will	update	as
the	model	runs.	If	you	don't	need	to	see	them	update,	then	use	the	checkboxes	in	the
"Running	Experiment"	dialog	to	turn	the	updating	off.	This	will	make	the	experiment	go	faster.

If	you	want	to	stop	your	experiment	before	it's	finished,	press	the	"Abort"	button.	Any	results

generated	so	far	will	still	be	saved.

When	all	the	runs	have	finished,	the	experiment	is	complete.

Advanced	usage

Running	from	the	command	line

It	is	possible	to	run	BehaviorSpace	experiments	"headless",	that	is,	from	the	command	line,
without	any	graphical	user	interface	(GUI).	This	is	useful	for	automating	runs	on	a	single
machine	or	a	cluster	of	machines.

No	Java	programming	is	required.	Experiment	setups	can	be	created	in	the	GUI	and	then	run
later	from	the	command	line,	or,	if	you	prefer,	you	can	create	or	edit	experiment	setups
directly	using	XML.

How	to	use	it

Run	NetLogo	using	the	included	command	line	script.	This	is	found	in	the	root	directory	of
your	NetLogo	installation	and	is	named	netlogo-headless.sh	on	Mac	and	Linux	and	netlogo-
headless.bat	on	Windows.	The	netlogo-headless	script	supports	the	following	arguments:

--model <path>:	pathname	of	model	to	open	(required)
--setup-file <path>:	read	experiment	setups	from	this	file	instead	of	the	model	file
--experiment <name>:	name	of	experiment	to	run
--table <path>:	pathname	to	send	table	output	to	(or	-	for	standard	output)
--spreadsheet <path>:	pathname	to	send	table	output	to	(or	-	for	standard	output)
--threads <number>:	use	this	many	threads	to	do	model	runs	in	parallel,	or	1	to	disable
parallel	runs.	defaults	to	one	thread	per	processor.
--min-pxcor <number>:	override	world	size	setting	in	model	file
--max-pxcor <number>:	override	world	size	setting	in	model	file
--min-pycor <number>:	override	world	size	setting	in	model	file
--max-pycor <number>:	override	world	size	setting	in	model	file

--model	is	required.	If	you	don't	specify	--experiment,	you	must	specify	--setup-file.	By
default	no	results	are	generated,	so	you'll	usually	want	to	specify	either	--table	or	--
spreadsheet,	or	both.	If	you	specify	any	of	the	world	dimensions,	you	must	specify	all	four.

Note:	The	remainder	of	this	guide	uses	netlogo-headless.sh	to	refer	to	the	NetLogo
Headless	launch	script.	If	you	are	using	Windows,	please	substitute	netlogo-headless.bat	for
netlogo-headless.sh	in	each	example.

Examples

It	is	easiest	if	you	create	your	experiment	setup	ahead	of	time	in	the	GUI,	so	it	is	saved	as
part	of	the	model.	To	run	an	experiment	setup	saved	in	a	model,	here	is	an	example
command	line:

netlogo-headless.sh \
 --model Fire.nlogo \
 --experiment experiment1 \
 --table -

For	this	to	work,	Java	(version	1.8	or	later)	must	be	available.	You	can	make	Java	available	to
headless	in	either	of	two	ways

1.	 Set	the	JAVA_HOME	environment	variable	to	the	path	to	the	Java	installation.	This	is	the
directory	of	the	Java	installation	which	contains	a	"bin"	directory.

2.	 Add	the	directory	containing	the	Java	executable	to	the	PATH	environment	variable

If	JAVA_HOME	is	defined,	netlogo-headless	will	run	NetLogo	using	the	Java	that	it	points	to,
ignoring	the	version	of	Java	available	on	the	path.

After	the	named	experiment	has	run,	the	results	are	sent	to	standard	output	in	table	format,
as	CSV.	("-"	is	how	you	specify	standard	output	instead	of	output	to	a	file.)

When	running	netlogo	headless,	it	forces	the	system	property	java.awt.headless	to	be	true.
This	tells	Java	to	run	in	headless	mode,	allowing	NetLogo	to	run	on	machines	when	a
graphical	display	is	not	available.

The	required	--model	argument	is	used	to	specify	the	model	file	you	want	to	open.

The	--experiment	argument	is	used	to	specify	the	name	of	the	experiment	you	want	to	run.
(At	the	time	you	create	an	experiment	setup	in	the	GUI,	you	assign	it	a	name.)

Here's	another	example	that	shows	some	additional,	optional	arguments:

netloog-headless.sh \
 --model Fire.nlogo \
 --experiment experiment2 \
 --max-pxcor 100 \
 --min-pxcor -100 \
 --max-pycor 100 \
 --min-pycor -100

Note	the	use	of	the	optional	--max-pxcor,	--max-pycor,	etc.	arguments	to	specify	a	different
world	size	than	that	saved	in	the	model.	(It's	also	possible	for	the	experiment	setup	to	specify
values	for	the	world	dimensions;	if	they	are	specified	by	the	experiment	setup,	then	there	is
no	need	to	specify	them	on	the	command	line.)

Since	neither	--table	nor	--spreadsheet	is	specified,	no	results	will	be	generated.	This	is
useful	if	the	experiment	setup	generates	all	the	output	you	need	by	some	other	means,	such
as	exporting	world	files	or	writing	to	a	text	file.

Yet	another	example:

netlogo-headless.sh \
 --model Fire.nlogo \
 --experiment experiment2 \
 --table table-output.csv \
 --spreadsheet spreadsheet-output.csv

The	optional	--table <filename>	argument	specifies	that	output	should	be	generated	in	a
table	format	and	written	to	the	given	file	as	CSV	data.	If	-	is	specified	as	the	filename,	than
the	output	is	sent	to	the	standard	system	output	stream.	Table	data	is	written	as	it	is
generated,	with	each	complete	run.

The	optional	--spreadsheet <filename>	argument	specified	that	spreadsheet	output	should
be	generated	and	written	to	the	given	file	as	CSV	data.	If	-	is	specified	as	the	filename,	than
the	output	is	sent	to	the	standard	system	output	stream.	Spreadsheet	data	is	not	written	out
until	all	runs	in	the	experiment	are	finished.

Note	that	it	is	legal	to	specify	both	--table	and	--spreadsheet,	and	if	you	do,	both	kinds	of
output	file	will	be	generated.

Here	is	one	final	example	that	shows	how	to	run	an	experiment	setup	which	is	stored	in	a
separate	XML	file,	instead	of	in	the	model	file:

netlogo-headless.sh \
 --model Fire.nlogo \
 --setup-file fire-setups.xml \
 --experiment experiment3

If	the	XML	file	contains	more	than	one	experiment	setup,	it	is	necessary	to	use	the	--
experiment	argument	to	specify	the	name	of	the	setup	to	use.

In	order	to	run	a	NetLogo	3D	experiment,	run	headless	with	the	--3D	argument,	for	example:

netlogo-headless.sh \
 --3D \
 --model "Mousetraps 3D.nlogo3d" \
 --experiment experiment1 \
 --table -

Note	that	you	should	supply	a	3D	model	and	there	are	also	3D	arguments	--max-pzcor
<number>	and	--min-pzcor <number>.

The	next	section	has	information	on	how	to	create	standalone	experiment	setup	files	using
XML.

Setting	up	experiments	in	XML

We	don't	yet	have	detailed	documentation	on	authoring	experiment	setups	in	XML,	but	if	you
already	have	some	familiarity	with	XML,	then	the	following	pointers	may	be	enough	to	get	you
started.

The	structure	of	BehaviorSpace	experiment	setups	in	XML	is	determined	by	a	Document
Type	Definition	(DTD)	file.	The	DTD	is	stored	in	NetLogo.jar,	as	system/behaviorspace.dtd.
(JAR	files	are	also	zip	files,	so	you	can	extract	the	DTD	from	the	JAR	using	Java's	"jar"	utility
or	with	any	program	that	understands	zip	format.)

The	easiest	way	to	learn	what	setups	look	like	in	XML,	though,	is	to	author	a	few	of	them	in
BehaviorSpace's	GUI,	save	the	model,	and	then	examine	the	resulting	.nlogo	file	in	a	text
editor.	The	experiment	setups	are	stored	towards	the	end	of	the	.nlogo	file,	in	a	section	that
begins	and	ends	with	a	experiments	tag.	Example:

<experiments>
 <experiment name="experiment" repetitions="10" runMetricsEveryStep="true">
 <setup>setup</setup>
 <go>go</go>
 <exitCondition>not any? fires</exitCondition>
 <metric>burned-trees</metric>
 <enumeratedValueSet variable="density">
 <value value="40"/>
 <value value="0.1"/>
 <value value="70"/>
 </enumeratedValueSet>
 </experiment>
</experiments>

In	this	example,	only	one	experiment	setup	is	given,	but	you	can	put	as	many	as	you	want
between	the	beginning	and	ending	experiments	tags.

Between	looking	at	the	DTD,	and	looking	at	examples	you	create	in	the	GUI,	it	will	hopefully
be	apparent	how	to	use	the	tags	to	specify	different	kind	of	experiments.	The	DTD	specifies
which	tags	are	required	and	which	are	optional,	which	may	be	repeated	and	which	may	not,
and	so	forth.

When	XML	for	experiment	setups	is	included	in	a	model	file,	it	does	not	begin	with	any	XML
headers,	because	not	the	whole	file	is	XML,	only	part	of	it.	If	you	keep	experiment	setups	in
their	own	file,	separate	from	the	model	file,	then	the	extension	on	the	file	should	be	.xml	not
.nlogo,	and	you'll	need	to	begin	the	file	with	proper	XML	headers,	as	follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE experiments SYSTEM "behaviorspace.dtd">

The	second	line	must	be	included	exactly	as	shown.	In	the	first	line,	you	may	specify	a
different	encoding	than	UTF-8,	such	as	ISO-8859-1.

Adjusting	JVM	Parameters

Opening	the	NetLogo	Headless	launcher	script	will	show	the	options	used	to	launch	java
when	running	NetLogo	Headless.	You	can	adjust	various	JVM	parameters	in	this	script.	You
may	also	pass	in	Java	properties	starting	with	-D	to	the	launcher.

Note	the	use	of	-Xmx	to	specify	a	maximum	heap	size	of	one	gigabyte.	If	you	don't	specify	a
maximum	heap	size,	you	will	get	your	VM's	default	size,	which	may	be	unusably	small.	(One
gigabyte	is	an	arbitrary	size	which	should	be	more	than	large	enough	for	most	models;	you
can	specify	a	different	limit	if	you	want.)

Note	the	use	of	-Dfile.encoding=UTF-8.	This	forces	all	file	I/O	to	use	UTF-8	encoding.	Doing
so	ensures	that	NetLogo	can	load	all	models	consistently,	and	that	file-*	primitives	work
consistently	on	all	platforms,	including	models	containing	Unicode	characters.

Controlling	API

If	BehaviorSpace	is	not	sufficient	for	your	needs,	a	possible	alternative	is	to	use	our
Controlling	API,	which	lets	you	write	Java	code	that	controls	NetLogo.	The	API	lets	you	run
BehaviorSpace	experiments	from	Java	code,	or,	you	can	write	custom	code	that	controls
NetLogo	more	directly	to	do	BehaviorSpace-like	things.	See	the	Controlling	section	of	the
User	Manual	for	further	details	on	both	possibilities.

System	Dynamics	Guide

This	guide	has	three	parts:

What	is	the	System	Dynamics	Modeler?:	A	general	description	of	the	tool,	including	the	ideas	and
principles	behind	it.
How	It	Works:	Describes	the	interface	and	how	you	use	it.
Tutorial:	Wolf-Sheep	Predation	(aggregate):	Walks	you	through	creating	a	model	with	the	System
Dynamics	Modeler.

What	is	the	NetLogo	System	Dynamics	Modeler?

System	Dynamics	is	a	type	of	modeling	where	you	try	to	understand	how	things	relate	to	one	another.	It	is	a	little
different	from	the	agent-based	approach	we	normally	use	in	NetLogo	models.

With	the	agent-based	approach	we	usually	use	in	NetLogo,	you	program	the	behavior	of	individual	agents	and
watch	what	emerges	from	their	interaction.	In	a	model	of	Wolf-Sheep	Predation,	for	example,	you	provide	rules
for	how	wolves,	sheep	and	grass	interact	with	each	other.	When	you	run	the	simulation,	you	watch	the	emergent
aggregate-level	behavior:	for	example,	how	the	populations	of	wolves	and	sheep	change	over	time.

With	the	System	Dynamics	Modeler,	you	don't	program	the	behavior	of	individual	agents.	Instead,	you	program
how	populations	of	agents	behave	as	a	whole.	For	example,	using	System	Dynamics	to	model	Wolf-Sheep
Predation,	you	specify	how	the	total	number	of	sheep	would	change	as	the	total	number	of	wolves	goes	up	or
down,	and	vice	versa.	You	then	run	the	simulation	to	see	how	both	populations	change	over	time.

The	System	Dynamics	Modeler	allows	you	to	draw	a	diagram	that	defines	these	populations,	or	"stocks",	and
how	they	affect	each	other.	The	Modeler	reads	your	diagram	and	generates	the	appropriate	NetLogo	code	--
global	variables,	procedures	and	reporters	--	to	run	your	System	Dynamics	model	inside	of	NetLogo.

Basic	Concepts

A	System	Dynamics	diagram	is	made	of	four	kinds	of	elements:	Stocks,	Variables,	Flows	and	Links.

A	Stock	is	a	collection	of	stuff,	an	aggregate.	For	example,	a	Stock	can	represent	a	population	of	sheep,	the
water	in	a	lake,	or	the	number	of	widgets	in	a	factory.

A	Flow	brings	things	into,	or	out	of	a	Stock.	Flows	look	like	pipes	with	a	faucet	because	the	faucet	controls	how
much	stuff	passes	through	the	pipe.

A	Variable	is	a	value	used	in	the	diagram.	It	can	be	an	equation	that	depends	on	other	Variables,	or	it	can	be	a
constant.

A	Link	makes	a	value	from	one	part	of	the	diagram	available	to	another.	A	link	transmits	a	number	from	a
Variable	or	a	Stock	into	a	Stock	or	a	Flow.

The	System	Dynamics	Modeler	figures	out	how	the	value	of	your	Stocks	change	over	time	by	estimating	them
over	and	over.	The	estimation	isn't	always	perfect,	but	you	can	affect	its	accuracy	by	changing	the	value	of	dt.	As
dt	decreases,	you	estimate	the	model	more	frequently,	so	it	gets	more	accurate.	However,	decreasing	dt	also
makes	the	model	slower.

Sample	Models

There	are	four	basic	models	in	the	Sample	Models	section	of	the	NetLogo	Models	Library	that	demonstrate	the
use	of	the	System	Dynamics	Modeler.	All	four	basic	models	explore	population	growth	(and,	in	models	with
predation,	population	decline).

Exponential	Growth	and	Logistic	Growth	are	simple	examples	of	growth	in	one	stock.

Wolf	Sheep	Predation	(System	Dynamics)	is	an	example	of	a	system	with	multiple	stocks	influencing	one
another.	It	models	a	predator-prey	ecosystem	using	the	System	Dynamics	Modeler.

Wolf	Sheep	Predation	(Docked	Hybrid)	is	an	example	of	a	model	that	runs	both	the	a	System	Dynamics	model
and	an	agent-based	model	side-by-side.	It	runs	the	System	Dynamics	implementation	of	Wolf-Sheep	Predation
next	to	the	agent-based	Wolf	Sheep	Predation	model	from	the	Biology	section	of	Sample	Models.

How	it	Works

To	open	the	System	Dynamics	Modeler,	choose	the	System	Dynamics	Modeler	item	in	the	Tools	menu.	The
System	Dynamics	Modeler	window	will	appear.

Diagram	Tab

The	Diagram	tab	is	where	you	draw	your	System	Dynamics	diagram.

The	toolbar	contains	buttons	to	edit,	delete	and	create	items	in	your	diagram.

Creating	Diagram	Elements

A	System	Dynamics	diagram	is	made	up	of	four	kinds	of	components:	Stocks,	Variables,	Flows	and	Links.

Stock

To	create	a	Stock,	press	the	Stock	button	in	the	toolbar	and	click	in	the	diagram	area	below.	A	new	Stock
appears.	Each	Stock	requires	a	unique	name,	which	becomes	a	global	variable.	Stocks	also	require	an
Initial	value.	It	can	be	a	number,	a	variable,	a	complex	NetLogo	expression,	or	a	call	to	a	NetLogo	reporter.

Variable

To	create	a	Variable,	press	the	Variable	button	and	click	on	the	diagram.	Each	Variable	in	the	System
Dynamics	Model	requires	a	unique	name,	which	becomes	the	name	of	a	procedure,	or	a	global	variable.
Variables	also	require	an	Expression.	This	expression	can	be	a	number,	a	variable,	a	complex	NetLogo
expression,	or	a	call	to	a	NetLogo	reporter.

Flow

To	create	a	Flow,	press	the	Flow	button.	Click	and	hold	where	you	want	the	Flow	to	begin	--	either	on	a
Stock	or	in	an	empty	area	--	and	drag	the	mouse	to	where	you	want	the	Flow	to	end	--	on	a	Stock	or	in	an
empty	area.	Each	Flow	requires	a	unique	name,	which	becomes	a	NetLogo	reporter.	Flows	require	an
Expression,	which	is	the	rate	of	flow	from	the	input	to	the	output.	This	expression	can	be	a	number,	a
variable,	a	complex	NetLogo	expression,	or	a	call	to	a	NetLogo	reporter.	If	the	value	is	negative,	the	flow	is
in	the	opposite	direction.

When	more	than	one	Flow	is	connected	to	a	Stock,	it	is	important	to	consider	how	they	should	interact	with
one	another.	NetLogo	will	not	enforce	that	the	Flows	out	of	a	stock	occur	in	any	particular	order.	Also,
NetLogo	will	not	ensure	that	the	sum	of	Flows	out	of	a	Stock	are	less	than	or	equal	to	the	value	of	the
Stock.	These	behaviors	can	be	implemented	explicitly	when	creating	the	Expression	for	a	Flow.

For	example,	if	the	Flow	is	defined	as	a	constant	value,	10,	you	can	ensure	it	never	draws	more	than	the
value	of	the	Stock	by	using	the	min	primitive:	min (list stock 10).	If	I	want	Flow	A	to	deplete	a	Stock
before	Flow	B	is	calculated,	I	can	link	Flow	A	to	Flow	B	and	modify	Flow	B	to	subtract	Flow	A's	value	from
the	stock:	min (list (max (list 0 (stock - flow-a))) 10).

Link

To	create	a	Link,	click	and	hold	on	the	starting	point	for	the	link	--	a	Variable,	Stock	or	Flow	--	and	drag	the
mouse	to	the	destination	Variable	or	Flow.

Working	with	Diagram	Elements

When	you	create	a	Stock,	Variable,	or	Flow,	you	see	a	red	question-mark	on	the	element.	The	question-mark
indicates	that	the	element	doesn't	have	a	name	yet.	The	red	color	indicates	that	the	Stock	is	incomplete:	it's
missing	one	or	more	values	required	to	generate	a	System	Dynamics	model.	When	a	diagram	element	is
complete,	the	name	turns	black.

Selecting:	To	select	a	diagram	element,	click	on	it.	To	select	multiple	elements,	hold	the	shift	key.	You	can	also
select	one	or	more	elements	by	dragging	a	selection	box.

Editing:	To	edit	a	diagram	element,	select	the	element	and	press	the	"Edit"	button	on	the	toolbar.	Or	just	double-
click	the	element.	(You	can	edit	Stocks,	Flows	and	Variables,	but	you	can't	edit	Links).

Moving:	To	move	a	diagram	element,	select	it	and	drag	the	mouse	to	a	new	location.

Editing	dt

On	the	right	side	of	the	toolbar	is	the	default	dt,	the	interval	used	to	approximate	the	results	of	your	System
Dynamics	model.	To	change	the	value	of	the	default	dt	for	your	aggregate	model,	press	the	Edit	button	next	to
the	dt	display	and	enter	a	new	value.

Errors

When	you	click	the	"check"	button	or	when	you	edit	a	stock,	flow,	or	variable	the	modeler	will	automatically
generate	the	NetLogo	code	the	corresponds	to	your	diagram	and	try	to	compile	that	code.	If	there	is	an	error	the
Code	tab	will	turn	red	and	a	message	will	appear,	and	the	portion	of	the	generated	code	that	is	causing	the
trouble	will	be	highlighted.

This	should	give	you	a	better	idea	which	element	in	the	diagram	is	causing	the	problem.

Code	Tab

The	System	Dynamics	Modeler	generates	NetLogo	variables	and	procedures	based	on	the	contents	of	your
diagram.	These	procedures	are	what	make	the	diagram	actually	perform	calculations.	The	Code	tab	in	the
System	Dynamics	Modeler	window	displays	the	NetLogo	procedures	generated	from	your	diagram.

You	can't	edit	the	contents	of	the	Code	tab.	To	modify	your	System	Dynamics	mode,	edit	the	diagram.

Let's	take	a	closer	look	at	how	the	generated	code	relates	to	the	diagram.:

Stocks	correspond	to	a	global	variable	that	is	initialized	to	the	value	or	expression	you	provided	in	the
Initial	value	field.	Each	Stock	will	be	updated	every	step	based	on	the	Flows	in	and	out.

Flows	correspond	to	a	procedure	that	contains	the	expression	you	provided	in	the	Expression	field.

Variables	can	either	be	global	variables	or	procedures.	If	the	Expression	you	provided	is	a	constant	it	will
be	a	global	variable	and	initialized	to	that	value.	If	you	used	a	more	complicated	Expression	to	define	the
Variable	it	will	create	a	procedure	like	a	Flow.

The	variables	and	procedures	defined	in	this	tab	are	accessible	in	the	main	NetLogo	window,	just	like	the
variables	and	procedures	you	define	yourself	in	the	main	NetLogo	Code	tab.	You	can	call	the	procedures	from
the	main	Code	tab,	from	the	Command	Center,	or	from	buttons	in	the	Interface	tab.	You	can	refer	to	the	global
variables	anywhere,	including	in	the	main	Code	tab	and	in	monitors.

There	are	three	important	procedures	to	notice:	system-dynamics-setup,	system-dynamics-go,	and	system-
dynamics-do-plot.

system-dynamics-setup	initializes	the	aggregate	model.	It	sets	the	value	of	dt,	calls	reset-ticks,	and	initializes
your	stocks	and	your	converters.	Converters	with	a	constant	value	are	initialized	first,	followed	by	the	stocks	with
constant	values.	The	remaining	stocks	are	initialized	in	alphabetical	order.

system-dynamics-go	runs	the	aggregate	model	for	dt	time	units.	It	computes	the	values	of	Flows	and	Variables
and	updates	the	value	of	Stocks.	It	also	calls	tick-advance	with	the	value	of	dt.	Converters	and	Flows	with	non-
constant	Expressions	will	be	calculated	only	once	when	this	procedure	is	called,	however,	their	order	of
evaluation	is	undefined

system-dynamics-do-plot	plots	the	values	of	Stocks	in	the	aggregate	model.	To	use	this,	first	create	a	plot	in	the
main	NetLogo	window.	You	then	need	to	define	a	plot	pen	for	each	Stock	you	want	to	be	plotted.	This	procedure
will	use	the	current	plot,	which	you	can	change	using	the	set-current-plot	command.

The	System	Dynamics	Modeler	and	NetLogo

The	diagram	you	create	with	the	System	Dynamics	Modeler,	and	the	procedures	generated	from	your	diagram,
are	part	of	your	NetLogo	model.	When	you	a	save	the	NetLogo	model,	your	diagram	is	saved	with	it,	in	the	same
file.

Tutorial:	Wolf-Sheep	Predation

Let's	create	a	model	of	Wolf-Sheep	Predation	with	the	System	Dynamics	Modeler.

Step	1:	Sheep	Reproduction

Open	a	new	model	in	NetLogo.
Launch	the	System	Dynamics	Modeler	in	the	Tools	menu.

Our	model	will	have	a	population	of	wolves	and	a	population	of	sheep.	Let's	start	with	the	sheep.	First,	create	a
Stock	that	holds	a	population	of	Sheep.

Press	the	Stock	button	in	the	toolbar.

Click	in	the	diagram	area.

You	see	a	Stock	with	a	red	question-mark	in	the	middle.

Double-click	the	Stock	to	edit.
Name	the	stock	sheep
Set	the	initial	value	to	100.
Deselect	the	Allow	Negative	Values	checkbox.	It	doesn't	make	sense	to	have	negative	sheep!

Our	sheep	population	can	increase	if	new	sheep	are	born.	To	add	this	to	our	diagram,	we	create	a	Flow	into	the
stock	of	sheep.

Click	on	the	Flow	button	in	the	toolbar	and	press	the	mouse	button	in	an	empty	area	to	the	left
of	the	sheep	Stock.	Drag	the	Flow	to	the	right	until	it	connects	to	the	sheep	Stock	and	let	go.
Edit	the	Flow	and	name	it	sheep-births.
For	now,	enter	a	constant,	such	as	1,	into	the	Expression	field.

The	number	of	sheep	born	during	a	period	of	time	depends	on	the	number	of	sheep	that	are	alive:	more	sheep
means	more	reproduction.

Draw	a	Link	from	the	sheep	Stock	to	the	sheep-births	Flow.

The	rate	of	sheep	births	also	depends	on	some	constant	factors	that	are	beyond	the	scope	of	this	model:	the
rate	of	reproduction,	etc.

Create	a	Variable	and	name	it	sheep-birth-rate.	Set	its	value	to	0.04
Draw	a	Link	from	the	sheep-birth-rate	Variable	to	the	sheep-births.

Your	diagram	should	look	something	like	this:

Our	diagram	has	the	correct	structure	but	we	aren't	yet	finished	because	it	the	amount	of	sheep	flowing	into	the
stock	doesn't	depend	upon	the	number	of	sheep	and	sheep	birth	rate.

Edit	the	sheep-births	Flow	and	set	the	expression	to	sheep-birth-rate * sheep.

We	now	have	a	complete	diagram.	To	see	the	NetLogo	code	generated	by	our	diagram,	you	can	click	on	the
Code	tab	of	the	System	Dynamics	Modeler	window.	It	looks	like	this:

Step	2:	NetLogo	Integration

Once	you	create	an	aggregate	model	with	the	System	Dynamics	Modeler,	you	can	interact	with	the	model
through	the	main	NetLogo	interface	window.	Let's	build	our	NetLogo	model	to	run	the	code	generated	by	our
diagram.	We'll	need	a	setup	and	go	buttons	which	call	the	system-dynamics-setup	and	system-dynamics-go
procedures	created	by	the	System	Dynamics	Modeler.	And	we'll	want	a	monitor	and	a	plot	to	watch	the	changes
in	sheep	population.

Select	the	main	NetLogo	window
In	the	Code	tab,	write:

to setup
 ca
 system-dynamics-setup
end

to go
 system-dynamics-go
 system-dynamics-do-plot
end

Move	to	the	Interface	tab
Create	a	setup	button
Create	a	go	button	(don't	forget	to	make	it	forever)
Create	a	sheep	monitor.
Create	a	plot	called	"populations"	with	a	pen	named	"sheep".

Now	we're	ready	to	run	our	model.

Press	the	setup	button.
Don't	press	the	"go"	button	yet.	Instead,	type	go	four	or	five	times	into	the	Command	Center

Notice	what	happens.	The	sheep	population	increases	exponentially.	After	four	or	five	iterations,	we	have	an
enormous	number	of	sheep.	That's	because	we	have	sheep	reproduction,	but	our	sheep	never	die.

To	fix	that,	let's	finish	our	diagram	by	introducing	a	population	of	wolves	which	eat	sheep.

Step	3:	Wolf	Predation

Move	back	to	the	System	Dynamics	window
Add	a	stock	of	wolves
Add	Flows,	Variables	and	Links	to	make	your	diagram	look	like	this:

Add	one	more	Flow	from	the	wolves	Stock	to	the	Flow	that	goes	out	of	the	Sheep	stock.
Fill	in	the	names	of	the	diagram	elements	so	it	looks	like	this:

where	
initial-value	of	wolves	is	30,	
wolf-deaths	is	wolves * wolf-death-rate	,	
wolf-death-rate	is	0.15,	
predator-efficiency	is	.8,	
wolf-births	is	wolves * predator-efficiency * predation-rate * sheep,	
predation-rate	is	3.0E-4,	
and	sheep-deaths	is	sheep * predation-rate * wolves.

Adjust	the	dt	of	the	system	dynamics	model	by	selecting	"Edit"	next	to	dt	in	the	toolbar	of	the
system	dynamics	modeler.	In	the	dialog	that	appears,	enter	0.01.

Now	we're	really	done.

Go	back	to	the	main	NetLogo	window
Add	a	plot	pen	named	"wolves"	to	the	population	plot
Press	setup	and	go	to	see	your	System	Dynamics	Modeler	diagram	in	action.

You	see	a	plot	of	the	populations	that	looks	like	this:

HubNet	Guide

This	section	of	the	User	Manual	introduces	the	HubNet	system	and	includes	instructions	to
set	up	and	run	a	HubNet	activity.

HubNet	is	a	technology	that	lets	you	use	NetLogo	to	run	participatory	simulations	in	the
classroom.	In	a	participatory	simulation,	a	whole	class	takes	part	in	enacting	the	behavior	of	a
system	as	each	student	controls	a	part	of	the	system	by	using	an	individual	device,	such	as	a
networked	computer.

For	example,	in	the	Gridlock	simulation,	each	student	controls	a	traffic	light	in	a	simulated	city.
The	class	as	a	whole	tries	to	make	traffic	flow	efficiently	through	the	city.	As	the	simulation
runs,	data	is	collected	which	can	afterwards	be	analyzed	on	a	computer.

For	more	information	on	participatory	simulations	and	their	learning	potential,	please	visit	the
Participatory	Simulations	Project	web	site.

Understanding	HubNet

NetLogo

NetLogo	is	a	programmable	modeling	environment.	It	comes	with	a	large	library	of	existing
simulations,	both	participatory	and	traditional,	that	you	can	use	and	modify.	Content	areas
include	social	science	and	economics,	biology	and	medicine,	physics	and	chemistry,	and
mathematics	and	computer	science.	You	and	your	students	can	also	use	it	to	build	your	own
simulations.

In	traditional	NetLogo	simulations,	the	simulation	runs	according	to	rules	that	the	simulation
author	specifies.	HubNet	adds	a	new	dimension	to	NetLogo	by	letting	simulations	run	not	just
according	to	rules,	but	by	direct	human	participation.

Since	HubNet	builds	upon	NetLogo,	we	recommend	that	before	trying	HubNet	for	the	first
time,	you	become	familiar	with	the	basics	of	NetLogo.	To	get	started	using	NetLogo	models,
see	Tutorial	#1:	Running	Models	in	the	NetLogo	Users	Manual.

HubNet	Architecture

HubNet	simulations	are	based	on	a	client/server	architecture.	The	activity	leader	uses	the
NetLogo	application	to	run	a	HubNet	activity.	When	NetLogo	is	running	a	HubNet	activity,	we
refer	to	it	as	a	HubNet	server.	Participants	use	a	client	application	to	log	in	and	interact	with
the	HubNet	server.

While	HubNet	is	only	supported	via	the	Java	Desktop	clients	at	the	moment,	we	hope	to	add
support	for	other	types	of	clients	such	as	tablets	and	phones	in	the	future.

Computer	HubNet

Activities

The	following	activities	are	available	in	the	Models	Library,	in	the	HubNet	Activities	folder.
Information	on	how	to	run	the	models	and	activities	can	be	found	in	the	Info	tab	of	each

http://ccl.northwestern.edu/rp/ps/index.shtml

model.	Additional	discussion	of	educational	goals	and	ways	to	incorporate	many	of	the
activities	into	your	classroom	in	the	Participatory	Simulations	Guide	on	the	Participatory
Simulations	Project	web	site.

Bug	Hunters	Camouflage	-	students	hunt	bugs	and	camouflaging	emerges.
Dice	Stalagmite	HubNet	-	students	roll	dice	and	explore	the	space	of	dependent	and
independent	events.
Disease	-	A	disease	spreads	through	the	simulated	population	of	students.
Disease	Doctors	-	A	slight	modification	to	the	Disease	activity	where	some	students	can
recover	from	the	disease.
Gridlock	-	Students	use	traffic	lights	to	control	the	flow	of	traffic	through	a	city.
Polling	-	Ask	students	questions	and	plot	their	answers.
Root	Beer	Game	-	An	adaptation	of	a	popular	game	created	at	MIT	in	the	early	1960s
that	shows	how	small	delays	in	a	distribution	system	can	create	big	problems.
Sampler	-	Students	engage	in	statistical	analysis	as	individuals	and	as	a	classroom.
Through	these	activities,	students	discover	the	meaning	and	use	of	basic	concepts	in
statistics.
Tragedy	of	the	Commons	-	Students	work	as	farmers	sharing	a	common	resource.

Clients

To	use	the	client	application	you	simply	need	to	launch	the	HubNet	client	application	that	is
bundled	with	NetLogo.

Requirements

To	use	Computer	HubNet,	you	need	a	networked	computer	with	NetLogo	installed	for	the
server.	When	using	the	client	application	you	will	also	need	a	networked	computer	with
NetLogo	installed	for	each	participant.	When	using	in	classroom	settings	we	also	suggest	an
attached	projector	for	the	leader	to	project	the	entire	simulation	to	the	participants.

Starting	an	activity

You'll	find	the	HubNet	activities	in	NetLogo's	Models	Library,	in	the	HubNet	Activities	folder.
We	suggest	doing	a	few	practice	runs	of	an	activity	before	trying	it	in	front	of	a	class.

Open	a	Computer	HubNet	model.	NetLogo	will	prompt	you	to	enter	the	name	of	your	new
HubNet	session.	This	is	the	name	that	participants	will	use	to	identify	this	activity.	Enter	a
name	and	press	Start.

NetLogo	will	open	the	HubNet	Control	Center,	which	lets	you	interact	with	the	HubNet	server.

You,	as	the	leader,	should	then	notify	everyone	that	they	may	join.	To	join	the	activity,

http://ccl.northwestern.edu/partsims.html

participants	launch	the	HubNet	Client	application	and	enter	their	name.	They	should	see	your
activity	listed	and	can	join	your	activity	by	selecting	it	and	pressing	Enter.	If	the	activity	you
started	is	not	listed	the	student	can	enter	the	server	address	manually	which	can	be	found	in
the	HubNet	Control	Center.

HubNet	Control	Center

The	HubNet	Control	Center	lets	you	interact	with	the	HubNet	server.	It	displays	the	name,
activity,	address	and	port	number	of	your	server.	The	"Mirror	2D	View	on	clients"	checkbox
controls	whether	the	HubNet	participants	can	see	the	view	on	their	clients,	assuming	there	is
a	view	in	the	client	setup.	The	"Mirror	plots	on	clients"	checkbox	controls	whether	participants
will	receive	plot	information.

The	client	list	on	the	right	displays	the	names	of	clients	that	are	currently	connected	to	you
activity.	To	remove	a	participant	from	the	activity,	select	their	name	in	the	list	and	press	the
Kick	button.	To	launch	your	own	HubNet	client	press	the	Local	button,	this	is	particularly
useful	when	you	are	debugging	an	activity.	The	"Reset"	button	kicks	out	all	currently	logged	in
clients	and	reloads	the	client	interface.

The	lower	part	of	the	Control	Center	displays	messages	when	a	participant	joins	or	leaves	the
activity.	To	broadcast	a	message	to	all	the	participants,	click	on	the	field	at	the	bottom,	type
your	message	and	press	Broadcast	Message.

Troubleshooting

I	started	a	HubNet	activity,	but	when	participants	open	a	HubNet	Client,	my
activity	isn't	listed.

On	some	networks,	the	HubNet	Client	cannot	automatically	detect	a	HubNet	server.	Tell	your
participants	to	manually	enter	the	server	address	and	port	of	your	HubNet	server,	which

appear	in	the	HubNet	Control	Center.

Note:	The	technical	details	on	this	are	as	follows.	In	order	for	the	client	to	detect	the	server,
multicast	routing	must	be	available	between	them.	Not	all	networks	support	multicast	routing.
In	particular,	networks	that	use	the	IPsec	protocol	typically	do	not	support	multicast.	The	IPsec
protocol	is	used	on	many	virtual	private	networks	(VPNs).

When	a	participant	tries	to	connect	to	an	activity,	nothing	happens	(the	client
appears	to	hang	or	gives	an	error	saying	that	no	server	was	found).

If	your	computer	or	network	has	a	firewall,	it	may	be	impeding	the	HubNet	server	from
communicating.	Make	sure	that	your	computer	and	network	are	not	blocking	ports	used	by
the	HubNet	server	(ports	9173-9180).

The	view	on	the	HubNet	client	is	gray.

Verify	that	the	"Mirror	2D	view	on	clients"	checkbox	in	the	HubNet	Control	Center	is
selected.
Make	sure	that	the	display	switch	in	the	model	is	on.
If	you	have	made	changes	to	the	size	of	the	view	on	the	server	you	may	need	to	press
the	"Reset"	button	in	the	Control	Center	to	ensure	the	clients	get	the	new	size.

There	is	no	view	on	the	HubNet	client.

Some	activities	don't	have	a	view	on	the	client.	If	you	want	to	add	a	view	simply	select
"HubNet	Client	Editor"	from	the	Tools	Menu	and	add	a	view	like	any	other	widget.	Make	sure
to	press	the	"Reset"	button	before	having	clients	log	in.

I	can't	quit	a	HubNet	client.

You	will	have	to	force	the	client	to	quit.	On	OS	X,	force	quit	the	application	by	selecting	Force
Quit...	in	the	Apple	menu.	On	Windows,	press	Ctrl-Alt-Delete	to	open	the	Task	Manager,
select	HubNet	Client	and	press	End	Task.

My	computer	went	to	sleep	while	running	a	HubNet	activity.	When	I	woke	the
computer	up,	I	got	an	error	and	HubNet	wouldn't	work	anymore.

The	HubNet	server	may	stop	working	if	the	computer	goes	to	sleep.	If	this	happens,	quit	the
NetLogo	application	and	start	over.	Change	the	settings	on	your	computer	so	it	won't	sleep
again.

My	problem	is	not	addressed	on	this	page.

See	Contacting	Us.

Known	Limitations

If	HubNet	malfunctions,	see	the	bug	reporting	information	at	Contacting	Us.

Please	note	that:

HubNet	has	not	yet	been	extensively	tested	with	large	numbers	of	clients	(i.e.	more	than
about	25).	Unexpected	results	may	occur	with	more	clients.
Out-of-memory	conditions	are	not	handled	gracefully
Sending	large	amounts	of	plotting	messages	to	the	clients	can	take	a	long	time.
NetLogo	does	not	handle	malicious	clients	in	a	robust	manner	(in	other	words,	it	is	likely
vulnerable	to	denial-of-service	type	attacks).
Performance	does	not	degrade	gracefully	over	slow	or	unreliable	network	connections.
If	you	are	on	a	wireless	network	or	sub-LAN,	the	IP	address	in	the	HubNet	Control
Center	is	not	always	the	entire	IP	address	of	the	server.
Computer	HubNet	has	only	been	tested	on	LANs,	and	not	on	dial-up	connections	or
WANs.

Teacher	workshops

For	information	on	upcoming	workshops	and	NetLogo	and	HubNet	use	in	the	classroom,
please	contact	us.

HubNet	Authoring	Guide

To	learn	about	authoring	or	modifying	HubNet	activities,	see	the	HubNet	Authoring	Guide.

Running	HubNet	in	headless	mode

To	learn	about	running	HubNet	activities	from	the	command	line,	with	no	GUI	on	the	server,
see	the	HubNet	section	in	the	Controlling	Guide.

Getting	help

If	you	have	any	questions	about	HubNet	or	need	help	getting	started,	contact	us.

HubNet	Authoring	Guide

This	guide	shows	how	to	understand	and	modify	the	code	of	existing	HubNet	activities	and
write	your	own	new	ones.	It	assumes	you	are	familiar	with	running	HubNet	activities,	basic
NetLogo	code	and	NetLogo	interface	elements.	For	more	general	information	about	HubNet
see	the	HubNet	Guide.

Coding	HubNet	activities
Setup
Receiving	information	from	clients
Sending	information	to	clients
Examples

How	to	make	a	client	interface
View	updates	on	the	clients
Clicking	in	the	view	on	clients
Customizing	the	client's	view
Plot	updates	on	the	clients

Coding	HubNet	activities

Many	HubNet	activities	will	share	bits	of	the	same	code.	That	is	the	code	that	it	used	to	setup
the	network	and	the	code	that	is	used	to	receive	information	from	and	send	information	to	the
clients.	If	you	understand	this	code	you	should	be	able	to	easily	make	modifications	to
existing	activities	and	you	should	have	a	good	start	on	writing	your	own	activities.	To	get	you
started	we	have	provided	a	Template	model	(in	HubNet	Activities	->	Code	Examples)	that
contains	the	most	basic	components	that	will	be	in	the	majority	of	HubNet	activities.	You
should	be	able	to	use	this	activity	as	a	starting	point	for	most	projects.

Code	Example:	Template

Setup

To	make	a	NetLogo	model	into	a	HubNet	activity	you	must	first	initialize	the	network.	In	most
HubNet	activities	you	will	use	the	startup	procedure	to	initialize	the	network.	startup	is	a
special	procedure	that	NetLogo	runs	automatically	when	you	open	any	model.	That	makes	it	a
good	place	to	put	code	that	you	want	to	run	once	and	only	once	(no	matter	how	many	times
the	user	runs	the	model).	For	HubNet	we	put	the	command	that	initializes	the	network	in
startup	because	once	the	network	is	setup	we	don't	need	to	do	so	again.	We	initialize	the
system	using	hubnet-reset,	which	will	ask	the	user	for	a	session	name	and	open	up	the
HubNet	Control	Center.	Here	is	the	startup	procedure	in	the	template	model:

to startup
 hubnet-reset
end

Now	that	the	network	is	all	setup	you	don't	need	to	worry	about	calling	hubnet-reset	again.
Take	a	look	at	the	setup	procedure	in	the	template	model:

to setup
 cp
 cd
 clear-output

 ask turtles
 [
 set step-size 1
 hubnet-send user-id "step-size" step-size
]
end

For	the	most	part	it	looks	like	most	other	setup	procedures,	however,	you	should	notice	that	it
does	not	call	clear-all.	In	this	model,	and	in	the	great	majority	of	HubNet	activities	in	the
Models	Library,	we	have	a	breed	of	turtles	that	represent	the	currently	logged	in	clients.	In	this
case	we've	called	this	breed	students.	Whenever	a	client	logs	in	we	create	a	student	and
record	any	information	we	might	need	later	about	that	client	in	a	turtle	variable.	Since	we	don't
want	to	require	users	to	log	out	and	log	back	in	every	time	we	setup	the	activity	we	don't	want
to	kill	all	the	turtles,	instead,	we	want	to	set	all	the	variables	back	to	initial	values	and	notify
the	clients	of	any	changes	we	make	(more	on	that	later).

Receiving	messages	from	clients

During	the	activity	you	will	be	transferring	data	between	the	HubNet	clients	and	the	server.
Most	HubNet	activities	will	call	a	procedure	in	the	go	loop	that	checks	for	new	messages	from
clients	in	this	case	it's	called	listen	clients:

to listen-clients
 while [hubnet-message-waiting?]
 [
 hubnet-fetch-message
 ifelse hubnet-enter-message?
 [create-new-student]
 [
 ifelse hubnet-exit-message?
 [remove-student]
 [execute-command hubnet-message-tag]
]
]
end

As	long	as	there	are	messages	in	the	queue	this	loop	fetches	each	message	one	at	a	time.
hubnet-fetch-message	makes	the	next	message	in	the	queue	the	current	message	and	sets
the	reporters	hubnet-message-source,	hubnet-message-tag,	and	hubnet-message	to	the
appropriate	values.	The	clients	send	messages	when	the	users	login	and	logout	any	time	the
user	manipulates	one	of	the	interface	elements,	that	is,	pushes	a	button,	moves	a	slider,
clicks	in	the	view,	etc.	We	step	through	each	message	and	decide	what	action	to	take
depending	on	the	type	of	message	(enter,	exit,	or	other),	the	hubnet-message-tag	(the	name
of	the	interface	element),	and	the	hubnet-message-source	of	the	message	(the	name	of	the
client	the	message	came	from).

On	an	enter	message	we	create	a	turtle	with	a	user-id	that	matches	the	hubnet-message-
source	which	is	the	name	that	each	user	enters	upon	entering	the	activity,	it	is	guaranteed	to
be	unique.

to create-new-student
 create-students 1
 [
 set user-id hubnet-message-source
 set label user-id
 set step-size 1
 send-info-to-clients
]
end

At	this	point	we	set	any	other	client	variables	to	default	values	and	send	them	to	the	clients	if
appropriate.	We	declared	a	students-own	variable	for	every	interface	element	on	the	client	that
holds	state,	that	is,	anything	that	would	be	a	global	variable	on	the	server,	sliders,	choosers,
switches	and	input	boxes.	It	is	important	to	make	sure	that	these	variables	stay	synchronized
with	the	values	visible	on	the	client.

When	the	clients	logout	they	send	an	exit	message	to	the	server	which	gives	you	a	chance	to
clean	up	any	information	you	have	been	storing	about	the	client,	in	this	case	we	merely	have
to	ask	the	appropriate	turtle	to	die.

to remove-student
 ask students with [user-id = hubnet-message-source]
 [die]
end

All	other	messages	are	interface	elements	identified	by	the	hubnet-message-tag	which	is	the
name	that	appears	in	the	client	interface.	Every	time	an	interface	element	changes	a	message
is	sent	to	the	server.	Unless	you	store	the	state	of	the	values	currently	displayed	in	the	client
interface	will	not	be	accessible	in	other	parts	of	the	model.	That's	why	we've	declared	a
students-own	variable	for	every	interface	element	that	has	a	state	(sliders,	switches,	etc).
When	we	receive	the	message	from	the	client	we	set	the	turtle	variable	to	the	content	of	the
message:

if hubnet-message-tag = "step-size"
[
 ask students with [user-id = hubnet-message-source]
 [set step-size hubnet-message]
]

Since	buttons	don't	have	any	associated	data	there	is	generally	no	associated	turtle	variable,
instead	they	indicate	an	action	taken	by	the	client,	just	as	with	a	regular	button	there	is	often
procedure	associated	with	each	button	that	you	call	whenever	you	receive	a	message
indicating	the	button	has	been	pressed.	Though	it	is	certainly	not	required,	the	procedure	is
often	a	turtle	procedure,	that	is,	something	that	the	student	turtle	associated	with	the	message
source	can	execute:

if command = "move left"
[set heading 270
 fd 1]

Sending	messages	to	clients

As	mentioned	earlier	you	can	also	send	values	to	any	interface	elements	that	display
information:	monitors,	sliders,	switches,	choosers,	and	input	boxes	(note	that	plots	and	the
view	are	special	cases	that	have	their	own	sections).

There	are	two	primitives	that	allow	you	to	send	information	hubnet-send	and	hubnet-
broadcast.	Broadcast	sends	the	information	to	all	the	clients;	send	sends	to	one	client,	or	a
selected	group.

As	suggested	earlier,	nothing	on	the	client	updates	automatically.	If	a	value	changes	on	the
server,	it	is	your	responsibility	as	the	activity	author	to	update	monitors	on	the	client.

For	example,	say	you	have	a	slider	on	the	client	called	step-size	and	a	monitor	called	Step
Size	(note	that	the	names	must	be	different)	you	might	write	updating	code	like	this:

if hubnet-message-tag = "step-size"
[
 ask student with [user-id = hubnet-message-source]
 [
 set step-size hubnet-message
 hubnet-send user-id "Step Size" step-size
]
]

You	can	send	any	type	of	data	you	want,	numbers,	strings,	lists,	lists	of	lists,	lists	of	strings,
however,	if	the	data	is	not	appropriate	for	the	receiving	interface	element	(say,	if	you	were	to
send	a	string	to	a	slider)	the	message	will	be	ignored.	Here	are	a	few	code	examples	for
different	types	of	data:

data
type hubnet-broadcast	example hubnet-send	example

number hubnet-broadcast "A" 3.14 hubnet-send "jimmy" "A" 3.14

string hubnet-broadcast "STR1" "HI THERE"
hubnet-send ["12" "15"] "STR1" "HI
THERE"

list	of
numbers hubnet-broadcast "L2" [1 2 3]

hubnet-send hubnet-message-source "L2"
[1 2 3]

matrix	of
numbers

hubnet-broadcast "[A]" [[1 2] [3
4]]

hubnet-send "susie" "[A]" [[1 2] [3
4]]

list	of
strings

hubnet-broadcast "user-names"
[["jimmy" "susie"] ["bob"
"george"]]

hubnet-send "teacher" "user-names"
[["jimmy" "susie"] ["bob" "george"]]

Examples

Study	the	models	in	the	"HubNet	Activities"	section	of	the	Models	Library	to	see	how	these
primitives	are	used	in	practice	in	the	Code	tab.	Disease	is	a	good	one	to	start	with.

How	to	make	a	client	interface

Open	the	HubNet	Client	Editor,	found	in	the	Tools	Menu.	Add	any	buttons,	sliders,	switches,
monitors,	plots,	choosers,	or	notes	that	you	want	just	as	you	would	in	the	interface	tab.	You'll
notice	that	the	information	you	enter	for	each	of	the	widgets	is	slightly	different	than	in	the
Interface	panel.	Widgets	on	the	client	don't	interact	with	the	model	in	the	same	way.	Instead
of	a	direct	link	to	commands	and	reporters	the	widgets	send	messages	back	to	the	server	and
the	model	then	determines	how	those	messages	affect	the	model.	All	widgets	on	the	client
have	a	tag	which	is	a	name	that	uniquely	identifies	the	widget.	When	the	server	receives	a
message	from	that	widget	the	tag	is	found	in	hubnet-message-tag

For	example,	if	you	have	a	button	called	"move	left",	a	slider	called	"step-size",	a	switch	called
"all-in-one-step?",	and	a	monitor	called	"Location:",	the	tags	for	these	interface	elements	will
be	as	follows:

interface
element tag

move	left move	left
step-size step-size
all-in-one-step? all-in-one-step?

Location: Location:

Note	that	you	can	only	have	one	interface	element	with	a	specific	name.	Having	more	than
one	interface	element	with	the	same	tag	in	the	client	interface	will	result	in	unpredictable
behavior	since	it	is	not	clear	which	element	you	intended	to	send	the	information	to.

View	updates	on	the	clients

View	mirroring	lets	views	of	the	world	be	displayed	in	clients	as	well	on	the	server.	View
mirroring	is	enabled	using	a	checkbox	in	the	HubNet	Control	Center.

When	mirroring	is	enabled,	client	views	update	whenever	the	view	on	the	server	does.	To
avoid	excessive	network	traffic,	the	view	should	not	update	more	often	than	necessary.
Therefore	we	strongly	recommend	using	tick-based	updates,	rather	than	continuous	updates.
See	the	View	Updates	section	of	the	Programming	Guide	for	an	explanation	of	the	two	types
of	updates.

With	tick-based	updates,	updates	happen	when	a	tick	or	display	command	runs.	We
recommend	using	these	commands	only	inside	an	every	block,	to	limit	the	frequency	of	view
updates	and	thus	also	limit	network	traffic.	For	example:

every 0.1
[
 display
]

If	there	is	no	View	in	the	clients	or	if	the	Mirror	2D	View	on	Clients	checkbox	in	the	HubNet
Control	Center	is	not	checked,	then	no	view	updates	are	sent	to	the	clients.

Clicking	in	the	view	on	clients

If	the	View	is	included	in	the	client,	two	messages	are	sent	to	the	server	every	time	the	user
clicks	in	the	view.	The	first	message,	when	the	user	presses	the	mouse	button,	has	the	tag
"View".	The	second	message,	sent	when	the	user	releases	the	mouse	button,	has	the	tag
"Mouse	Up".	Both	messages	consist	of	a	two	item	list	of	the	x	and	y	coordinates.	For
example,	to	turn	any	patch	that	was	clicked	on	by	the	client	red,	you	would	use	the	following
NetLogo	code:

if hubnet-message-tag = "View"
[
 ask patches with [pxcor = (round item 0 hubnet-message) and
 pycor = (round item 1 hubnet-message)]
 [set pcolor red]
]

Customizing	the	client's	view

When	view	mirroring	is	enabled,	by	default	clients	see	the	same	view	the	activity	leader	sees
on	the	server.	But	you	can	change	this	so	that	each	client	sees	something	different,	not	just	a
literal	"mirror".

You	can	change	what	a	client	sees	in	two	distinct	ways.	We	call	them	"client	perspectives"
and	"client	overrides".

Changing	a	client's	perspective	means	making	it	"watch"	or	"follow"	a	particular	agent,	much

like	the	watch	and	follow	commands	that	work	with	ordinary	NetLogo	models.	See	the
dictionary	entries	for	hubnet-send-watch,	hubnet-send-follow,	and	hubnet-reset-perspective.

Code	Example:	Client	Perspective	Example

Client	overrides	let	you	change	the	appearance	of	patches,	turtles,	and	links	in	the	client
views.	You	can	override	any	of	the	variables	affecting	an	agent's	appearance,	including	the
hidden?	variable	causing	a	turtle	or	link	to	be	visible	or	invisible.	See	the	dictionary	entries	for
hubnet-send-override,	hubnet-clear-override,	and	hubnet-clear-overrides.

Code	Example:	Client	Overrides	Example

Plot	updates	on	the	clients

If	plot	mirroring	is	enabled	(in	the	HubNet	Control	Center)	and	a	plot	in	the	NetLogo	model
changes	and	a	plot	with	the	exact	same	name	exists	on	the	clients,	a	message	with	that
change	is	sent	to	the	clients	causing	the	client's	plot	to	make	the	same	change.	For	example,
let's	pretend	there	is	a	HubNet	model	that	has	a	plot	called	Milk	Supply	in	NetLogo	and	the
clients.	Milk	Supply	is	the	current	plot	in	NetLogo	and	in	the	Command	Center	you	type:

plot 5

This	will	cause	a	message	to	be	sent	to	all	the	clients	telling	them	that	they	need	to	plot	a
point	with	a	y	value	of	5	in	the	next	position	of	the	plot.	Notice,	if	you	are	doing	a	lot	of	plotting
all	at	once,	this	can	generate	a	lot	of	plotting	messages	to	be	sent	to	the	clients.

Modeling	Commons	Guide

Introduction

The	Modeling	Commons	(http://modelingcommons.org/)	is	a	Web-based	collaboration	system	for
NetLogo	modelers.	Users	of	the	Modeling	Commons	can	share,	download,	modify,	create	variations
of,	comment	on,	and	run	NetLogo	models	--	both	those	that	are	a	part	of	the	NetLogo	models
library,	and	also	those	that	have	been	uploaded	by	other	NetLogo	users.

By	uploading	your	NetLogo	models	to	the	Modeling	Commons,	you	make	it	easy	for	others	to	see,
review,	and	comment	on	your	work.	You	can	optionally	keep	the	model	private,	either	to	yourself	or
to	a	group	of	your	choice,	if	you	aren't	comfortable	with	letting	everyone	see	the	model.	You	can
always	change	the	permissions	associated	with	a	model,	if	you	change	your	mind	later	on.

NetLogo	now	makes	it	possible	to	save	models	to	the	Modeling	Commons,	just	as	you	can	save
them	to	.nlogo	files	on	your	own	computer.	You	can	access	this	functionality	by	selecting	"Upload	to
Modeling	Commons"	from	the	"File"	menu.

Use	of	the	Modeling	Commons	is	free	of	charge.	You	may	use	it	for	your	own	personal	work,	for
your	research	group	or	company,	or	for	a	class	in	which	you	are	a	student	or	teacher.	The	Modeling
Commons	is	sponsored	by	the	CCL,	the	same	group	that	develops	and	distributes	NetLogo.

Modeling	Commons	Accounts

In	order	to	upload	models	to	the	Modeling	Commons,	you	must	first	be	a	registered	user.
Unregistered	users	can	view	and	download	models,	but	cannot	upload,	edit,	or	comment	on	them.

The	first	time	that	you	invoke	"Save	to	Modeling	Commons"	in	NetLogo,	you	will	be	prompted	to
enter	your	e-mail	address	and	password.	If	you	already	have	an	account,	then	you	can	enter	this
information	and	click	on	the	"Login"	button.

If	you	don't	yet	have	an	account	with	the	Modeling	Commons,	then	you	will	need	to	create	one.
Click	on	the	"Create	Account"	button,	and	enter	the	requested	information.	Once	you	have	done	so,
click	on	the	"Create	Account"	button.	If	there	are	no	errors,	then	you	will	be	prompted	to	upload	a
NetLogo	model.	Alternatively,	you	may	go	to	the	Modeling	Commons	itself	and	register	with	your
Web	browser.

Uploading	Models

http://modelingcommons.org/
http://modelingcommons.org/

There	are	three	ways	to	upload	a	model	to	the	Modeling	Commons:	Uploading,	updating,	and
creating	a	child	("forking").	The	following	sections	describe	these	in	detail.

Upload	A	New	Model

A	new	model	will	be	created	in	the	Modeling	Commons,	with	its	own	page,	description,	and	forum.
You	should	use	this	function	the	first	time	that	you	save	a	model	to	the	Modeling	Commons.

You	must	give	your	model	a	name.	Model	names	are	not	required	to	be	unique;	you	could	have	2	or
more	models	with	the	same	name,	though	we	recommend	that	you	not	do	this.

By	default,	anyone	can	view,	fork,	and	update	your	model.	You	can	restrict	the	ability	to	view	and
fork	your	model	by	changing	the	visibility	permission.	You	can	restrict	the	ability	to	update	your
model	by	changing	the	changeability	permission.	In	order	to	set	permissions	for	multiple	people,
assign	your	model	to	a	group,	and	then	restrict	visibility	or	changeability	to	members	of	that	group.
Groups	can	be	created	from	the	Modeling	Commons.	Once	you	have	uploaded	your	model,	you	can
edit	the	permissions	from	the	model's	Modeling	Commons	page.

You	can	optionally	upload	a	preview	image	to	your	model.	The	preview	image	will	be	displayed
alongside	your	model	whenever	it	is	shown	on	the	Modeling	Commons.	While	uploading	a	preview
image	is	optional,	we	highly	recommend	that	you	do	so,	in	one	of	the	following	three	ways:

The	"Use	current	image"	option	tells	NetLogo	to	use	the	current	view	as	your	preview.	We
recommend	that	you	first	run	the	model,	such	that	it	shows	off	the	key	visual	features.
The	"Auto-generate	image"	feature	auto-generates	a	preview	image	by	running	random-seed 0

http://modelingcommons.org/account/groups#group_tabs_new_group

setup repeat 75 [go].	This	option	will	only	be	enabled	if	you	have	defined	setup	and	go
procedures	for	NetLogo	to	run.
The	"Image	from	file"	feature	allows	you	to	upload	any	PNG	image.	Preview	images	work	best
when	they	are	square.

Upload	A	Child	Of	An	Existing	Model	("forking")

Saving	a	model	in	this	way,	sometimes	known	as	"forking,"	does	not	change	or	overwrite	the
original	model.	Rather,	it	creates	a	new	model	on	the	Modeling	Commons,	much	as	a	plain	"save"
would	do,	simultaneously	creating	a	parent-child	relationship	between	the	old	model	and	the	new
one.	This	relationship	can	be	seen	on	the	"family"	tab	for	a	given	model.	You	may	fork	any	model	for
which	you	have	"view"	permissions,	including	one	that	you	cannot	change.	You	may	wish,	for
example,	to	create	a	variation	on	a	model	in	the	NetLogo	models	library.

To	fork	a	model,	you	must	give	your	new	child	a	name,	as	well	as	select	an	existing	model	to	fork.
To	indicate	the	existing	model,	start	typing	the	name	of	the	model	that	you	would	like	to	fork.	Select
its	name	from	among	the	search	results.

Finally,	you	must	enter	a	description	about	what	you	are	changing	in	your	child	model,	and	how	it
relates	to	its	parent.

Updating	An	Existing	Model

Use	this	option	if	you	have	improved	a	model	that	already	exists	in	the	Modeling	Commons.	Existing

attachments,	discussions,	and	social	tags	will	be	preserved,	but	the	model	that	users	can	display,
run,	and	download	will	be	updated.	You	may	only	update	a	model	for	which	you	have	"write"
permissions.

All	versions	of	a	model	are	saved	in	the	Modeling	Commons,	so	you	should	feel	free	to	experiment
with	new	ideas.	If	something	goes	wrong,	you	can	always	refer	to	an	old	version	from	the	"history"
tab	on	a	model's	page.

To	indicate	which	model	should	be	updated,	start	typing	the	name	of	the	model.	Select	the	name
that	pops	up	with	the	search	results.	Finally,	enter	a	description	about	what	you	are	changing	in
your	new	version.

Logging

NetLogo's	logging	facility	allows	researchers	to	record	student	actions	for	later	analysis.

Logging	in	NetLogo,	once	initiated,	is	invisible	to	the	student.	The	researcher	can	choose	the
type	of	events	logged	through	a	configuration	file.

NetLogo	uses	the	log4j	package	for	logging.	If	you	have	previous	experience	with	this	package
you'll	find	logging	in	NetLogo	familiar.

Logging	is	supported	only	by	the	special	NetLogo	Logging	application.

Starting	logging

This	depends	on	what	operating	system	you	are	using.

Mac	OS	X	or	Windows

There	is	a	special	logging	launcher	in	the	NetLogo	directory	called	NetLogo	Logging.	Double
click	on	the	icon.

On	Windows,	the	NetLogo	directory	can	be	found	at	C:\Program Files,	unless	you	chose	a
different	location	when	you	installed	NetLogo.

Linux	and	others

To	enable	logging,	invoke	the	netlogo.sh	script	as	follows:

netlogo.sh --logging netlogo_logging.xml

You	could	also	modify	the	script	to	include	these	flags,	or	copy	the	script	and	modify	the	copy.

You	can	replace	netlogo_logging.xml	with	any	valid	log4j	XML	configuration	file,	which	will	be
discussed	in	more	detail	later.

Using	logging

When	NetLogo	starts	up	it	will	ask	for	a	user	name.	This	name	will	appear	in	all	the	logs
generated	during	this	session.

Where	logs	are	stored

Logs	are	stored	in	the	OS-specific	temp	directory.	On	most	Unix-like	systems	that	is	/tmp.	On
Windows	Vista	the	logs	can	be	found	in	c:\Users\<user>\AppData\Local\Temp,	where	<user>	is
the	logged	in	user.	On	Mac	OS	X,	the	temp	directory	varies	for	each	user.	You	can	determine
your	temp	directory	by	opening	the	Terminal	application	and	typing	echo $TMPDIR	at	the
prompt.

There	are	two	convenience	commands	that	will	help	you	manage	the	logs.	__zip-log-files
filename	will	gather	all	the	logs	in	the	temp	directory	and	put	them	in	one	zip	file,	at	the
location	specified.	After	doing	__zip-log-files	the	existing	logs	are	not	deleted,	you	can	do	so

explicitly	by	using	__delete-log-files.

The	following	is	a	chart	describing	the	name	of	the	loggers	available,	the	type	of	events	each
logs,	at	what	level,	and	provides	a	sample	output	using	the	XMLLayout.	All	the	loggers	are
found	in	org.nlogo.log.Logger.	When	referring	to	the	loggers	in	the	configuration	file	you
should	use	the	fully	qualified	name.	So,	for	example,	the	logger	GLOBALS	would	actually	be
org.nlogo.log.Logger.GLOBALS

Logger Events Level Example

GLOBALS
a	global	variable
changes

info,
debug

<event logger="org.nlogo.log.Logger.GLOBALS"
 timestamp="1177341065988"
 level="INFO"
 type="globals">
 <name>FOO</name>
 <value>51.0</value>
</event>

GREENS

sliders,
switches,
choosers,	input
boxes	are
changed
through	the
interface

info

<event logger="org.nlogo.log.Logger.GREENS"
 timestamp="1177341065988"
 level="INFO"
 type="slider">
 <action>changed</action>
 <name>foo</name>
 <value>51.0</value>
 <parameters>
 <min>0.0</min>
 <max>100.0</max>
 <inc>1.0</inc>
 </parameters>
</event>

CODE

code	is
compiled,
including:
command
center,	Code
tab,	slider
bounds,	and
buttons

info

<event logger="org.nlogo.log.Logger.CODE"
 timestamp="1177341072208"
 level="INFO"
 type="command center">
 <action>compiled</action>
 <code>crt 1</code>
 <agentType>O</agentType>
 <errorMessage>success</errorMessage>
</event>

WIDGETS

a	widget	is
added	or
removed	from
the	interface

info

<event logger="org.nlogo.log.Logger.WIDGETS"
 timestamp="1177341058351"
 level="INFO"
 type="slider">
 <name></name>
 <action>added</action>
</event>

BUTTONS
a	button	is
pressed	or
released

info

<event logger="org.nlogo.log.Logger.BUTTONS"
 timestamp="1177341053679"
 level="INFO"
 type="button">
 <name>show 1</name>
 <action>released</action>
 <releaseType>once</releaseType>

</event>

SPEED
the	speed	slider
changes info

<event logger="org.nlogo.log.Logger.SPEED"
 timestamp="1177341042202"
 level="INFO"
 type="speed">
 <value>0.0</value>
</event>

TURTLES
turtles	die	or
are	born info

<event logger="org.nlogo.log.Logger.TURTLES"
 timestamp="1177341094342"
 level="INFO"
 type="turtle">
 <name>turtle 1</name>
 <action>born</action>
 <breed>TURTLES</breed>
</event>

LINKS
links	die	or	are
born info

<event logger="org.nlogo.log.Logger.LINKS"
 timestamp="1177341094342"
 level="INFO"
 type="link">
 <name>link 2 7</name>
 <action>born</action>
 <breed>LINKS</breed>
</event>

How	to	configure	the	logging	output

The	default	logging	configuration	(netlogo_logging.xml)	looks	something	like	this:

NetLogo	defines	8	loggers,	all	descend	directly	from	the	root	logger,	which	means	unless	you
explicitly	set	the	properties	(appender,	layout,	and	output	level)	in	the	configuration	they	will
inherit	them	from	the	root.	In	the	default	configuration	the	root	is	set	to	level	INFO,	the
appender	is	org.nlogo.log.XMLFileAppender	and	layout	is	org.nlogo.log.XMLLayout.	Together
these	generate	a	nicely	formatted	XML	file	as	defined	in	the	netlogo_logging.dtd	which	is
based	on	the	log4j	dtd.	If	the	appender	is	a	FileAppender	(including	the	XMLFileAppender)	a
new	file	is	start	each	time	the	user	opens	a	model.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="false" xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="A1" class="org.nlogo.log.XMLFileAppender">
 <layout class="org.nlogo.log.XMLLayout"/>
 </appender>

 <category name="org.nlogo.log.Logger.WIDGETS">
 <priority value="off" />
 </category>

 <category name="org.nlogo.log.Logger.TURTLES">
 <priority value="off" />
 </category>

 <category name="org.nlogo.log.Logger.LINKS">

 <priority value="off" />
 </category>

 <root>
 <priority value ="info" />
 <appender-ref ref="A1" />
 </root>

</log4j:configuration>

This	configuration,	first	defines	an	appender	named	"A1"	of	type	XMLFileAppender	with	an
XMLLayout.	The	appender	defines	where	the	logging	data	goes,	in	this	case	the	data	goes
into	a	file.	In	fact,	if	NetLogo	is	given	a	FileAppender	it	will	automatically	start	a	new	file	every
time	the	user	opens	a	new	model.	The	XMLFileAppender	also	does	some	formatting	and
writes	the	appropriate	headers	to	the	file.	The	layout	defines	how	to	write	each	individual
message.	Unless	you	are	an	advanced	user	there	is	no	need	change	(or	worry	about)	the
appender	or	the	layout.

At	the	end	of	the	configuration	notice	the	definition	of	the	root	logger.	All	of	the	other	loggers
descend	from	the	root	logger	and,	thus,	inherit	the	properties	of	the	root	unless	explicitly	set.
This	case	is	fairly	simple,	having	set	up	the	appender	A1	we	make	that	the	default	appender
for	the	root	(and	all	other	loggers)	and	make	the	default	priority	"INFO".	Messages	that	are
logged	at	the	INFO	level	or	higher	will	be	written,	messages	logged	at	lower	levels	will	not.
Note	that	with	only	one	exception	NetLogo	always	logs	at	level	INFO.	Sets	to	globals	that	don't
change	the	value	of	the	global	are	logged	at	level	DEBUG.	Which	means	that	these	messages
are	disabled	by	default,	since	debug	is	lower	level	than	info.	The	rest	of	the	body	of	the
configuration	file	overrides	properties	of	the	root	logger	in	a	few	specific	loggers	(or	categories
as	they	are	known	in	the	configuration	file,	the	terms	can	be	assumed	to	be	synonymous	for
the	proposes	of	this	document).	That	is	it	turns	off	the	WIDGET,	TURTLES,	and	LINKS
loggers,	by	default.	To	re-enable	them	you	can	changes	the	priority	from	off	to	info,	like	this:

 <category name="org.nlogo.log.Logger.TURTLES">
 <priority value="info" />
 </category>

or	you	can	simply	remove	the	entire	reference	to	the	category	from	the	configuration	file,	as	it
is	not	serving	any	other	purpose.

Advanced	Configuration

This	is	only	a	basic	introduction	to	configuration	files	for	logging	in	NetLogo.	There	are	many
more	configuration	options	available	through	the	log4j	framework.	See	the	log4j
documentation.

https://logging.apache.org/log4j/1.2/manual.html

Controlling	Guide

NetLogo	can	be	invoked	and	controlled	by	another	program	running	on	the	Java	Virtual
Machine.	For	example,	you	might	want	to	call	NetLogo	from	a	small	program	that	does
something	simple	like	automate	a	series	of	model	runs.	Or,	you	might	want	to	embed
NetLogo	models	in	a	larger	application.

For	more	information,	go	here.

https://github.com/NetLogo/NetLogo/wiki/Controlling-API

Mathematica	Link

What	is	it?

The	NetLogo-Mathematica	link	provides	modelers	with	an	easy	to	use,	real-time	link	between
NetLogo	and	Mathematica.	Together,	these	tools	can	provide	users	with	a	highly	interactive,
self-documenting	work	flow	that	neither	can	provide	alone.

Mathematica	includes	many	of	the	tools	that	agent-based	modelers	rely	on	throughout	the
research	process:	advanced	import	capabilities,	statistical	functions,	data	visualization,	and
document	creation.	With	the	NetLogo-Mathematica	link,	you	can	run	all	of	these	tools	side-by-
side	with	NetLogo.

Because	all	Mathematica	documents,	or	notebooks,	contain	comments,	code,	images,
annotations,	and	interactive	objects,	the	integration	of	NetLogo	and	Mathematica	provides	a
more	complete	solution	for	complex	model	exploration	for	students	and	researchers	alike.

The	basic	functionality	of	the	link	is	much	like	the	NetLogo	Controlling	API:	you	can	load
models,	execute	commands,	and	report	back	data	from	NetLogo.	Unlike	the	Controlling	API,
which	is	based	on	Java,	all	interactions	with	the	link	are	interpreted,	making	it	ideal	not	only
for	rapidly	designing	custom	BehaviorSpace-like	experiments,	but	also	as	a	companion	to
NetLogo	in	debugging	your	model.

For	more	information	about	Mathematica,	please	visit	the	Wolfram	Research	web	site.

What	can	I	do	with	it?

Here	are	a	few	examples	of	what	you	can	do	with	the	Mathematica-NetLogo	link.

Analyze	your	model	in	real-time	with	seamless	two-way	data	conversion
Develop	high	quality,	custom	visualizations	of	model	data
Collect	detailed	simulation	data	across	large	multi-dimensional	parameter	spaces
Rapidly	develop	interactive	interfaces	for	exploring	model	behavior
Have	direct	access	to	patches	and	network	data	with	built-in	functions

Installation

The	NetLogo-Mathematica	link	supports	Mathematica	10	or	greater.	To	install	the	NetLogo-
Mathematica	link:

Go	to	the	menu	bar	in	Mathematica
Click	on	File	and	select	Install...
In	the	Install	Mathematica	Item	dialog
Select	Package	for	Type	of	item	to	install
Click	Source,	and	select	From	file...
In	the	file	browser,	go	to	the	location	of	your	NetLogo	installation,
click	on	the	Mathematica	Link	subfolder,	and	select	NetLogo.m.
For	Install	Name,	enter	NetLogo.

You	can	either	install	the	NetLogo	link	in	your	user	base	directory	or	in	the	system-wide
directory.	If	the	NetLogo	link	is	installed	in	the	user	base	directory,	other	users	on	the	system
must	also	go	through	the	NetLogo-Mathematica	link	installation	process	to	use	it.	This	option
might	be	preferable	if	you	do	not	have	permission	to	modify	files	outside	of	your	home
directory.	Otherwise,	you	can	install	NetLogo-Mathematica	link	in	the	system-wide

http://www.wolfram.com/

Mathematica	base	directory.

Usage

This	section	will	very	briefly	introduce	how	to	use	the	NetLogo-Mathematica	Link.	It	will	show
you	how	to	load	the	NetLogo-Mathematica	link	package,	start	NetLogo,	execute	commands,
and	retrieve	data	from	NetLogo.

Loading	the	package:	Once	the	NetLogo-Mathematica	link	is	installed,	you	can	load	the
package	by	entering	the	following	into	your	Mathematica	notebook:

<<NetLogo`

Launching	NetLogo	from	Mathematica:	To	begin	your	NetLogo	session	in	Mathematica,
type	the	following	into	your	notebook:

NLStart["your netlogo path"];

where	"your	netlogo	path"	is	the	directory	that	netlogo	is	located	in.	Typically	on	a	Mac	this
will	be	"/Applications/NetLogo	6.0.2/"

Loading	a	model:	To	load	a	model,	you	must	specify	the	full	path	of	the	model.	In	this
example	we	will	load	the	Forest	Fire	model,	and	the	path	will	be	given	using	the	typical	Mac
install	location.

NLLoadModel["/Applications/NetLogo 6.0.2/models/Sample Models/Earth
Science/Fire.nlogo"];

Executing	a	NetLogo	command:	Commands	can	be	executed	by	passing	a	string	of
commands	to	NLCommand[].	The	NLCommand[]	function	automatically	splices	common
Mathematica	data	types	into	strings	suitable	for	NetLogo.	The	following	commands	set	the
density	using	a	single	string,	or	set	the	density	using	a	Mathematica	defined	variable,
myDensity.

NLCommand["set density 50"];
myDensity = 60;
NLCommand["set density", myDensity];

Reporting	information	from	NetLogo:	NetLogo	data	can	be	reported	back	to	Mathematica
using	NLReport[].	This	includes	numbers,	strings,	boolean	values,	and	lists.

NLReport["count turtles"];
NLReport["[(list pxcor pycor)] of n-of 10 patches"]

For	more	information,	see	the	NetLogo-Mathematica	Tutorial	notebook	included	with
NetLogo.	The	notebook	walks	you	through	the	process	of	using	the	link,	with	many	examples
along	the	way.	If	you	do	not	have	Mathematica,	but	are	considering	using	the	link,	you	can
find	a	PDF	of	the	notebook	included	with	NetLogo	in	the	"Mathematica	Link"	directory.

Known	Issues

A	NetLogo	session	cannot	be	quit	without	exiting	J/Link	(the	Java-Mathematica	link)
entirely.	This	may	disrupt	other	packages	that	make	use	of	J/Link.
If	a	model	loaded	with	the	NetLogo-Mathematica	link	uses	a	NetLogo	extension,	the
extension	must	be	located	in	the	same	directory	as	the	model	itself.	If	the	extension	is
located	in	NetLogo's	application-wide	extensions	directory,	it	will	not	be	found.
Calls	to	NetLogo,	such	as	NLCommand[]	and	NLReport[],	cannot	be	aborted.

Source	code

The	source	code	for	the	NetLogo-Mathematica	link	is	in	the	public	domain.	It	is	hosted	on	line
at	https://github.com/NetLogo/Mathematica-Link.

Credits

The	primary	developer	of	the	NetLogo-Mathematica	link	was	Eytan	Bakshy.

To	refer	to	this	package	in	academic	publications,	please	use:	Bakshy,	E.,	Wilensky,	U.
(2007).	NetLogo-Mathematica	Link.	http://ccl.northwestern.edu/netlogo/mathematica.html.
Center	for	Connected	Learning	and	Computer-Based	Modeling,	Northwestern	University,
Evanston,	IL.

https://github.com/NetLogo/Mathematica-Link

NetLogo	3D

NetLogo	includes	the	NetLogo	3D	application	that	allows	you	to	create	3D	worlds.

Notice:	NetLogo's	support	for	3D	is	less	developed	than	NetLogo	2D.	Models	created	with
this	release	may	not	be	compatible	with	future	versions.	While	we've	made	efforts	to
ensure	a	quality	product,	NetLogo	3D	has	not	been	subject	to	the	same	level	of	quality
control	as	the	main	application.

Introduction
Tutorial
Dictionary

Introduction

To	get	started	using	NetLogo	3D,	launch	the	NetLogo	3D	application	and	check	out	the
Sample	Models	in	the	3D	section	of	the	Models	Library.

When	you're	ready	to	write	your	own	3D	model,	look	at	the	Code	Examples	in	the	3D
section	of	the	Models	Library.

Code	Example:	Turtle	Perspective	Example	3D	helps	you	learn	about	the	different
perspectives.

Code	Example:	Turtle	and	Observer	Motion	Example	3D	helps	you	understand
how	turtles	and	the	observer	move	in	3D.	You	can	also	step	through	this	model
with	the	tutorial	below.

3D	Worlds

An	unspeakable	horror	seized	me.	There	was	a	darkness;	then	a	dizzy,	sickening
sensation	of	sight	that	was	not	like	seeing;	I	saw	a	Line	that	was	no	Line;	Space	that	was
not	Space:	I	was	myself,	and	not	myself.	When	I	could	find	voice,	I	shrieked	loud	in	agony,
"Either	this	is	madness	or	it	is	Hell."

"It	is	neither,"	calmly	replied	the	voice	of	the	Sphere,	"it	is	Knowledge;	it	is	Three
Dimensions:	open	your	eye	once	again	and	try	to	look	steadily."	
--	Edwin	A.	Abbott,	Flatland:	A	romance	in	many	dimensions

NetLogo	3D's	world	has	width,	height	and	depth.	Patches	are	cubes.	In	addition	to	pxcor
and	pycor,	patches	have	pzcor.

Turtles	have	three	Cartesian	coordinates,	instead	of	two,	to	describe	position.	In	addition
to	xcor	and	ycor,	turtles	have	zcor.

A	turtle's	orientation	is	defined	by	three	turtle	variables,	heading,	pitch	and	roll.	You	can
imagine	the	turtle	as	having	two	vectors	to	define	its	orientation	in	3D	space.	One	vector
comes	straight	out	of	the	nose	of	the	turtle,	this	is	the	direction	the	turtle	will	travel	when	it
moves	forward.	The	second	vector	is	perpendicular	to	the	forward	vector	and	comes	out
of	the	right	side	of	the	turtle	(as	if	the	turtle	were	to	stick	its	right	arm	straight	out	from	its
body).	Heading	is	the	angle	between	the	forward	vector	of	the	turtle	projected	onto	the	xy-
plane	and	the	vector	[0	1	0].	Pitch	is	the	angle	between	the	forward	vector	of	the	turtle	and
the	xy-plane	and	finally	roll	is	the	angle	between	the	right	vector	of	the	turtle	and	the	xy-

plane.	When	turtle	turns	right	or	left	in	3D	space	it	rotates	around	the	down	vector,	that	is
the	vector	that	is	perpendicular	to	both	the	forward	and	right	vectors.	Depending	on	the
orientation	of	the	turtle	more	than	one	of	the	internal	turtle	variables	may	change	as	the
result	of	a	turn.

The	observer	and	the	3D	view

The	point	of	view	that	you	see	the	world	from	is	considered	the	location	and	orientation	of
the	observer.	This	is	similar	to	the	3D	view	in	NetLogo	2D.	However,	there	are	a	few	more
ways	to	control	the	observer.	You	can	set	the	point	that	the	observer	is	facing	by	using
face	and	facexyz	which	work	the	same	way	as	the	turtle	commands,	the	observer	turns	so
the	center	of	the	view	is	on	the	given	point	or	the	location	of	the	given	agent	at	the	time	it
is	called.	You	can	change	the	location	of	the	observer	using	setxyz.	The	observer	will
move	to	view	the	world	as	if	standing	on	the	given	location,	the	point	the	observer	faces
will	stay	the	same.	For	example	create	a	new	model	and	observer	will	be	located	at	(0,	0,
49.5),	that	is,	on	the	z-axis	49.5	patch	units	away	from	the	origin	and	the	observer	is
facing	the	origin,	(0,	0,	0).	If	you	setxyz 0 49.5 0	the	observer	will	move	so	it	is	on	the
positive	y-axis	but	it	will	keep	the	origin	at	the	center	of	the	view.	You	can	also	move	the
observer	using	the	rotation	primitives	that	will	allow	you	to	move	the	observer	around	the
world	as	if	on	the	surface	of	a	sphere	where	the	center	is	the	location	the	observer	is
facing.	You	may	notice	from	the	above	examples	that	the	observer	is	not	constrained	to
be	within	the	bounds	of	the	world.

Custom	Shapes

NetLogo	automatically	interprets	2D	shapes	so	they	are	extruded,	like	a	cookie	cutter
shape	in	the	3D	view.	You	can	also	use	the	primitive	load-shapes-3d	to	load	shapes
described	in	an	external	file	in	a	custom	format	described	here.	Currently	we	do	not	import
shapes	in	any	standard	formats.

For	each	shape	in	a	custom	3D	shape	file,	a	2D	shape	of	the	same	name	must	exist	as
well.	You	can	create	the	2D	shape	in	the	Turtle	Shapes	Editor.

The	input	file	may	contain	any	number	of	shapes	with	any	number	of	rectangular	or
triangular	surfaces.	The	format	of	the	input	file	should	be	as	follows:

number of shapes in file
name of first shape
type of surface (quads or tris)
surface1
surface2
.
.
.
stop
type of surface
surfaceA
.
.
.
stop
end-shape

Each	surface	is	defined	by	a	unit	normal	vector	and	the	vertices	listed	in	clockwise	order,
tris	should	have	three	vertices	and	quads	should	have	four.

normal: xn yn zn
x1 y1 z1

x2 y2 z2
x3 y3 z3
x4 y4 z4

A	file	declaring	just	a	two	dimensional,	patch-sized,	square	in	the	xy-plane	centered	at	the
origin	would	look	like	this:

1
square
quads
normal: 0 0 1
0.15 0.15 0
-0.15 0.15 0
-0.15 -0.15 0
0.15 -0.15 0
normal: 0 0 -1
0.15 0.15 0
0.15 -0.15 0
-0.15 -0.15 0
-0.15 0.15 0
stop
end-shape

Tutorial

Step	1:	Depth

One	of	the	first	things	you	will	notice	when	you	open	NetLogo	3D	is	that	the	world	is	a
cube	instead	of	a	square.

You	can	open	up	the	Model	Settings,	by	clicking	on	the	"Settings..."	button	at	the	top	of
the	3D	View.	You'll	notice	in	addition	to	max-pxcor,	min-pxcor,	max-pycor,	and	min-pycor,
there	is	also	max-pzcor	and	min-pzcor.

The	z-axis	is	perpendicular	to	both	the	x-axis	and	the	y-axis,	when	you	reset-perspective
it	is	the	axis	that	comes	straight	out	of	the	screen.	In	the	default	position	max-pzcor	is	the
face	of	the	cube	nearest	to	you	and	min-pzcor	is	the	face	farthest	from	you.	As	always
min-pxcor	is	on	the	left,	max-pxcor	on	the	right,	min-pycor	on	the	bottom,	and	max-pycor	on
the	top.

You'll	also	notice	on	the	left	side	of	the	Model	Settings	that	there	are	options	for	wrapping
in	all	three	directions,	however,	they	are	all	checked	and	grayed	out.	Topologies	are	not
yet	supported	in	NetLogo	3D,	so	the	world	always	wraps	in	all	dimensions.

Move	to	the	Command	Center	and	type	print count patches.

Is	the	number	smaller	or	larger	than	you	expected?

In	a	3D	world	the	number	of	patches	grows	very	quickly	since	count patches = world-
width * world-height * world-depth.	It's	important	to	keep	this	in	mind	when	you	are
building	your	model.	Lots	of	patches	can	slow	your	model	down	or	even	cause	NetLogo	to
run	out	of	memory.

Type	ask patch 1 2 3 [set pcolor red] 	into	the	Command	Center.
Use	the	mouse	in	the	3D	view	to	rotate	the	world.

Notice	the	shape	of	the	patch	and	its	position	in	relation	to	the	edges	of	the	world.	You'll
also	notice	that	you	now	need	three	coordinates	to	address	patches	in	a	3D	world.

Step	2:	Turtle	Movement

Open	the	Models	Library	in	the	File	menu.	(If	you	are	on	a	Mac	and	you	don't
have	a	File	menu,	click	on	the	main	NetLogo	window	first	and	it	should
reappear.)
Open	Turtle	and	Observer	Motion	Example	3D	in	3D/Code	Examples

Take	a	moment	to	look	for	the	controls	and	monitors.	In	the	bottom	left	you'll	notice	a
group	of	monitors	that	describe	the	location	and	orientation	of	the	turtle,	though	until	you
press	the	setup	button	they'll	all	say	"N/A".

Press	the	"setup"	button

Heading,	pitch,	and	roll	are	turtle	variables	that	represent	the	orientation	of	the	turtle.
Heading	is	absolute	in	relation	to	the	x/y	plane;	it	is	the	rotation	of	the	turtle	around	the	z-
axis.

Pitch	is	the	angle	between	the	nose	of	the	turtle	and	the	xy-plane.	It	is	relative	to	heading.

Roll	is	the	rotation	around	the	turtle's	forward	vector.	It	is	relative	to	heading	and	pitch.

When	turtles	are	created	with	create-turtles	or	create-ordered-turtles,	their	initial
headings	vary	but	their	initial	pitch	and	roll	are	always	zero.

Take	a	look	at	the	"Turtle	Movement"	buttons.

Press	the	"left	1"	button.

How	does	the	turtle	move?	Is	is	the	same	or	different	from	2D	NetLogo?
Which	of	the	turtle	variables	change?

Press	the	"pitch-down	1"	button.

How	does	the	turtle	move?	Which	of	the	turtle	variables	change?

Press	the	"left	1"	button	again.

How	does	the	turtle	move?	Is	it	different	than	the	last	time	you	pressed	the
"left	1"	button?

Take	a	little	time	to	play	with	the	Turtle	Movement	buttons,	watching	both	how
the	turtle	moves	and	which	of	the	turtle	variables	change.

You	probably	noticed	that	often	more	than	one	of	the	turtle	variables	may	change	for	a
single	turn.	For	this	reason	we	suggest	that	you	use	the	turtle	commands	rather	than

setting	the	orientation	variables	directly.

Step	3:	Observer	Movement

At	the	bottom	of	the	interface	you	will	see	Orbit,	Zoom,	and	Move	buttons.	If	you	have
ever	used	the	3D	view	in	NetLogo	2D	or	if	you	have	been	using	the	mouse	controls	in	the
3D	view	through	this	tutorial	you	have	been	moving	the	observer.	Changing	the	point	of
view	in	the	3D	view	is	actually	moving	and	changing	the	orientation	of	the	observer.	The
observer	has	x,	y	and	z	coordinates,	just	like	a	turtle	or	patch,	while	turtles	and	patches
are	constrained	to	be	inside	the	world	the	observer	can	be	anywhere.	Like	a	turtle	the
observer	has	a	heading,	pitch	and	roll,	these	variables	control	where	the	observer	is
looking,	that	is,	what	you	see	in	the	view.

Move	to	the	3D	view,	and	make	sure	"Orbit"	is	selected	in	the	bottom	left
corner	of	the	view.
Click	and	hold	the	mouse	button	in	the	middle	of	the	view,	move	the	mouse
left,	right,	up,	and	down.

How	does	the	position	and	orientation	of	the	observer	change?

Press	the	reset-perspective	button	in	the	lower	right	corner	of	the	view	and
select	"Zoom"	in	the	lower	left	corner.
Click	and	hold	the	mouse	button	in	the	middle	of	the	view	and	move	the
mouse	up	and	down.

Which	of	the	observer	variables	change?	Which	stay	the	same?

Try	rotating	the	world	a	bit	and	then	zoom	again.
Press	the	"Move"	button	in	the	lower	left	corner	of	the	view.
Click	and	hold	the	mouse	button	in	the	middle	of	the	view	and	move	the
mouse	up,	down,	left	and	right.

How	does	the	view	change?	How	do	the	observer	variables	change?

After	you	are	done	exploring	the	world	using	the	mouse	controls	you	can	take	a	look	at	the
observer	control	buttons	in	the	lower	left	portion	of	the	interface.

You	may	already	be	familiar	with	the	first	three	buttons	in	the	observer	group	from	your
experience	with	NetLogo	2D.	Watch,	follow,	and	ride,	are	special	modes	that	automatically
update	the	position	and	orientation	of	the	observer.	When	in	follow	or	ride	mode,	the
observer	position	and	orientation	are	the	same	as	the	turtle's.	Note	that	follow	and	ride	are
functionally	exactly	the	same,	the	difference	is	only	visual	in	the	3D	view.	When	in	watch
mode	the	observer	does	not	move	but	updates	to	face	the	target	agent.

Press	the	"setup"	button	again	so	you	are	back	to	the	default	orientation.
Press	the	"orbit-right"	button.

How	did	the	view	change?	Was	it	what	you	expected?	How	is	it	similar	or
different	from	using	the	mouse	controls?

Take	a	little	time	to	experiment	with	orbit,	roll	and	zoom	buttons;	notice

similarities	and	differences	to	the	mouse	controls.

The	direction	of	the	orbit	commands	refer	to	the	direction	that	the	observer	moves.	That	is,
imagine	that	the	observer	is	on	the	surface	of	a	sphere,	the	center	of	the	sphere	is	the
point	that	the	observer	is	facing	represented	by	the	blue	cross,	by	default	(0,0,0).	The
observer	will	always	face	the	center	of	the	sphere	and	the	radius	of	the	sphere	will	remain
constant.	The	directions,	up,	down,	left,	and	right,	refer	to	moving	along	the	lines	of
latitude	and	the	lines	of	longitude	of	the	sphere.	When	you	zoom	the	radius	of	the	sphere
changes	but	the	center	and	the	observer's	orientation	in	relation	to	the	center	of	the
sphere	will	remain	the	same.

Press	one	of	the	"setxyz"	buttons.

How	does	the	view	change?	How	do	the	observer	variables	change?

Press	the	"facexyz"	button.

How	does	the	view	change?	How	do	the	observer	variables	change?

When	you	setxyz	the	center	of	the	sphere	remains	the	same	(so	the	observer
automatically	keeps	that	point	in	the	center	of	the	view.)	However,	the	radius	of	the	sphere
may	change	as	well	as	the	observer's	orientation	in	relation	to	the	center.	When	you
facexyz	or	face,	the	center	of	the	sphere	changes	but	the	observer	does	not	move.	The
radius	of	the	sphere	may	change,	as	well	as	the	orientation	of	the	observer.

Dictionary

Commands	and	Reporters

Turtle-related	primitives

distancexyz	distancexyz-nowrap	dz	left	patch-at	patch-at-heading-pitch-and-distance	tilt-down
tilt-up	right	roll-left	roll-right	setxyz	towards-pitch	towards-pitch-nowrap	towards-pitch-xyz
towards-pitch-xyz-nowrap	turtles-at

Patch-related	primitives

distancexyz	distancexyz-nowrap	neighbors	neighbors6	patch	patch-at	patch-at-heading-pitch-
and-distance

Agentset	primitives

at-points	breeds-at	turtles-at

World	primitives

Since	4.1

Since	4.1
Since	4.1

max-pzcor	min-pzcor	random-pzcor	random-zcor	world-depth	load-shapes-3d

Observer	primitives

face	facexyz	orbit-down	orbit-left	orbit-right	orbit-up	__oxcor	__oycor	__ozcor	setxyz	zoom

Link	primitives

link-pitch

Built-In	Variables

Turtles

zcor	pitch	roll

Patches

pzcor

Primitives

at-points

agentset	at-points	[[x1	y1	z1]	[x2	y2	z2]	...]

Reports	a	subset	of	the	given	agentset	that	includes	only	the	agents	on	the	patches	the
given	distances	away	from	this	agent.	The	distances	are	specified	as	a	list	of	three-item
lists,	where	the	three	items	are	the	x,	y,	and	z	offsets.

If	the	caller	is	the	observer,	then	the	points	are	measured	relative	to	the	origin,	in	other
words,	the	points	are	taken	as	absolute	patch	coordinates.

If	the	caller	is	a	turtle,	the	points	are	measured	relative	to	the	turtle's	exact	location,	and
not	from	the	center	of	the	patch	under	the	turtle.

ask turtles at-points [[2 4 0] [1 2 1] [10 15 10]]
[fd 1] ;; only the turtles on the patches at the
 ;; distances (2,4,0), (1,2,1) and (10,15,10),
 ;; relative to the caller, move

distancexyz
distancexyz-nowrap

distancexyz	xcor	ycor	zcor
distancexyz-nowrap	xcor	ycor	zcor
	

Since	4.1

Since	4.1

Since	4.1

3D	versions	of	distancexy.

Reports	the	distance	from	this	agent	to	the	point	(xcor,	ycor,	zcor).

The	distance	from	a	patch	is	measured	from	the	center	of	the	patch.

distancexyz-nowrap	always	reports	the	in	world	distance,	never	a	distance	that	would
require	wrapping	around	the	edges	of	the	world.	With	distancexyz	the	wrapped	distance
(around	the	edges	of	the	world)	is	used	if	that	distance	is	shorter	than	the	in	world
distance.

if (distancexyz 0 0 0) < 10
 [set color green]
;; all turtles less than 10 units from
;; the center of the screen turn green.

dz

dz

Reports	the	z-increment	(the	amount	by	which	the	turtle's	zcor	would	change)	if	the	turtle
were	to	take	one	step	forward	at	its	current	heading	and	pitch.

NOTE:	dz	is	simply	the	sine	of	the	turtle's	pitch.	Both	dx	and	dy	have	changed	in	this	case.
So,	dx	=	cos(pitch)	*	sin(heading)	and	dy	=	cos(pitch)	*	cos(heading).

See	also	dx,	dy.

face
facexyz

face	agent
facexyz	x	y	z
	

Set	the	caller's	heading	and	pitch	towards	agent	or	towards	the	point	(x,y,z).

If	the	caller	and	the	target	are	at	the	same	x	and	y	coordinates	the	caller's	heading	will	not
change.	If	the	caller	and	the	target	are	also	at	the	same	z	coordinate	the	pitch	will	not
change	either.

left

left	number

The	turtle	turns	left	by	number	degrees,	relative	to	its	current	orientation.	While	left	in	a	2D
world	only	modifies	the	turtle's	heading,	left	in	a	3D	world	may	also	modify	the	turtle's
pitch	and	roll.

Since	4.1.2

Since	4.1

Since	4.1
Since	4.1

Since	4.1
Since	4.1

See	also	left,	tilt-up,	tilt-down

link-pitch

link-pitch

Reports	the	pitch	from	end1	to	end2	of	this	link.

ask link 0 1 [print link-pitch]
;; prints [[towards-pitch other-end] of end1] of link 0 1

See	also	link-heading,	pitch

load-shapes-3d

load-shapes-3d	filename

Loads	custom	3D	shapes	from	the	given	file.	See	the	3D	guide	for	more	details.	You	must
also	add	a	2D	shape	of	the	same	name	to	the	model	using	the	Turtle	Shapes	Editor.
Custom	shapes	override	built-in	3D	shapes	and	converted	2D	shapes.

max-pzcor
min-pzcor

max-pzcor
min-pzcor

These	reporters	give	the	maximum	and	minimum	z-coordinates	(respectively)	for	patches,
which	determines	the	size	of	the	world.

Unlike	in	older	versions	of	NetLogo	the	origin	does	not	have	to	be	at	the	center	of	the
world.	However,	the	minimum	z-coordinate	has	to	be	less	than	or	equal	to	0	and	the
maximum	z-coordinate	has	to	be	greater	than	or	equal	to	0.

Note:	You	can	set	the	size	of	the	world	only	by	editing	the	view	--	these	are	reporters
which	cannot	be	set.

See	also	max-pxcor,	max-pycor,	min-pxcor,	min-pycor,	and	world-depth.

neighbors
neighbors6

neighbors
neighbors6
	

Since	4.1
Since	4.1
Since	4.1
Since	4.1

Since	4.1

3D	versions	of	neighbors	and	neighbors4.

Reports	an	agentset	containing	the	26	surrounding	patches	(neighbors)	or	6	surrounding
patches	(neighbors6).

show sum values-from neighbors [count turtles-here]
 ;; prints the total number of turtles on the twenty-six
 ;; patches around this turtle or patch
ask neighbors6 [set pcolor red]
 ;; turns the six neighboring patches red

orbit-down
orbit-left
orbit-right
orbit-up

orbit-down	number
orbit-left	number
orbit-right	number
orbit-up	number

Rotate	the	observer	around	the	last	point	faced.	Imagine	the	observer	is	on	the	surface	of
a	sphere,	the	last	point	face	is	the	center	of	that	sphere.	Up	and	down	orbit	along	the	lines
of	longitude	and	right	and	left	orbit	along	the	lines	of	latitude.	The	observer	will	remain
facing	the	last	point	faced	so	the	heading	and	pitch	may	change	as	result	of	orbiting.
However,	because	we	assume	an	absolute	north	pole	(parallel	to	the	positive	z-axis)	the
roll	will	never	change.

See	also	setxyz,	face	and	zoom

__oxcor
__oycor
__ozcor

__oxcor
__oycor
__ozcor

Reports	the	x-,	y-,	or	z-coordinate	of	the	observer.

See	also	setxyz

patch

patch	pxcor	pycor	pzcor

3D	version	of	patch.

Since	4.1

Since	4.1

Given	three	integers,	reports	the	single	patch	with	the	given	pxcor,	pycor	and	pzcor.
pxcor,	pycor	and	pzcor	must	be	integers.

ask (patch 3 -4 2) [set pcolor green]
;; patch with pxcor of 3 and pycor of -4 and pzcor of 2 turns green

See	also	patch

patch-at

patch-at	dx	dy	dz
	

3D	version	of	patch-at.

Reports	the	single	patch	at	(dx,	dy,	dz)	from	the	caller,	that	is,	dx	patches	east,	dy	patches
north	and	dz	patches	up	from	the	caller.

ask patch-at 1 -1 1 [set pcolor green]
;; turns the patch just southeast and up from the caller green

patch-at-heading-pitch-and-distance

patch-at-heading-pitch-and-distance	heading	pitch	distance
	

3D	version	of	patch-at-heading-and-distance.

patch-at-heading-pitch-and-distance	reports	the	single	patch	that	is	the	given	distance
from	this	turtle	or	patch,	along	the	given	absolute	heading	and	pitch.	(In	contrast	to	patch-
left-and-ahead	and	patch-right-and-ahead,	this	turtle's	current	heading	is	not	taken	into
account.)

ask patch-at-heading-pitch-and-distance 0 90 1 [set pcolor green]
;; turns the patch directly above the caller green.

pitch

pitch

This	is	a	built-in	turtle	variable.	Pitch	is	the	angle	between	the	"nose"	of	the	turtle	and	the
xy-plane.	Heading	and	pitch	together	define	the	forward	vector	of	the	turtle	or	the	direction
that	the	turtle	is	facing.

This	is	a	number	greater	than	or	equal	to	0	and	less	than	360.	0	is	parallel	to	the	xy-plane,
90	is	parallel	to	the	z-axis.	While	you	can	set	pitch	we	recommend	that	you	use	the
primitives	to	turn	the	turtle.	Depending	on	the	position	more	than	one	relative	angle

Since	4.1

Since	4.1

(heading,	pitch	and	roll)	may	change	at	once.

Example:

;; assume roll and heading are 0
set pitch 45 ;; turtle is now north and up
set heading heading + 10 ;; same effect as "tilt-up 10"

See	also	heading,	roll,	tilt-up,	tilt-down,	right,	left

pzcor

pzcor
	

This	is	a	built-in	patch	variable.	It	holds	the	z	coordinate	of	the	patch.	It	is	always	an
integer.	You	cannot	set	this	variable,	because	patches	don't	move.

pzcor	is	greater	than	or	equal	to	min-pzcor	and	less	than	or	equal	to	max-pzcor.

All	patch	variables	can	be	directly	accessed	by	any	turtle	standing	on	the	patch.

See	also	pxcor,	pycor,	zcor.

random-pzcor

random-pzcor

Reports	a	random	integer	ranging	from	min-pzcor	to	max-pxcor	inclusive.

ask turtles [
 ;; move each turtle to the center of a random patch
 setxyz random-pxcor random-pycor random-pzcor
]

See	also	random-pxcor,	random-pycor.

random-zcor

random-zcor

Reports	a	random	floating	point	number	from	the	allowable	range	of	turtle	coordinates
along	the	z	axis.

Turtle	coordinates	range	from	min-pzcor	-	0.5	(inclusive)	to	max-pzcor	+	0.5	(exclusive).

ask turtles [
 ;; move each turtle to a random point
 setxyz random-xcor random-ycor random-zcor
]

Since	4.1

Since	4.1

Since	4.1

See	also	random-xcor,	random-ycor.

right

right	number

The	turtle	turns	right	by	number	degrees,	relative	to	its	current	orientation.	While	right	in	a
2D	world	only	modifies	the	turtle's	heading,	right	in	a	3D	world	may	also	modify	the	turtle's
pitch	and	roll.

See	also	right	and	left

roll

roll

This	is	a	built-in	turtle	variable.	Roll	is	the	angle	between	the	"wing-tip"	of	the	turtle	and	the
xy-plane.

This	is	a	number	greater	than	or	equal	to	0	and	less	than	360.	You	can	set	this	variable	to
make	a	turtle	roll.	Since	roll	is	always	from	the	turtle's	point	of	view,	rolling	right	and	left
only	only	change	roll	regardless	of	turtle	orientation.

Example:

set roll 45 ;; turtle rotated right
set roll roll + 10 ;; same effect as "roll-right 10"

See	also	heading,	pitch,	roll-left,	roll-right.

roll-left

roll-left	number

The	wingtip	of	the	turtle	rotates	to	the	left	number	degrees	with	respect	to	the	current
heading	and	pitch.

roll-right

roll-right	number

The	wingtip	of	the	turtle	rotates	to	the	right	number	degrees	with	respect	to	the	current
heading	and	pitch.

Since	4.1

Since	4.1
Since	4.1

Since	4.1
Since	4.1

setxyz

setxyz	x	y	z
	

3D	version	of	setxy.

The	agent,	a	turtle	or	the	observer,	sets	its	x-coordinate	to	x,	its	y-coordinate	to	y	and	its	z-
coordinate	to	z.	When	the	observer	uses	setxyz	it	remains	facing	the	same	point	so	the
heading,	pitch,	and	roll,	may	also	change.

For	turtles	equivalent	to	set xcor x set ycor y set zcor z,	except	it	happens	in	one	time
step	instead	of	three.

setxyz 0 0 0
;; agent moves to the middle of the center patch

See	also	face

tilt-down
tilt-up

tilt-down	number
tilt-up	number

The	nose	of	the	turtle	rotates	by	number	degrees,	relative	to	its	current	orientation.
Depending	on	the	orientation	of	the	turtle	more	than	one	of	the	relative	angles	(heading,
pitch,	and	roll)	may	change	when	a	turtle	turns.

towards-pitch
towards-pitch-nowrap

towards-pitch	agent
towards-pitch-nowrap	agent
	

Reports	the	pitch	from	this	agent	to	the	given	agent.

If	the	wrapped	distance	(around	the	edges	of	the	screen)	is	shorter	than	the	on-screen
distance,	towards-pitch	will	report	the	pitch	of	the	wrapped	path.	towards-pitch-nowrap
never	uses	the	wrapped	path.

Note:	In	order	to	get	one	turtle	to	face	another	you	need	to	use	both	towards-pitch	and
towards.

Note:	asking	for	the	pitch	from	an	agent	to	itself,	or	an	agent	on	the	same	location,	will
cause	a	runtime	error.

See	also	towards

Since	4.1
Since	4.1

Since	4.1

Since	4.1

towards-pitch-xyz
towards-pitch-xyz-nowrap

towards-pitch-xyz	x	y	z
towards-pitch-xyz-no-wrap	x	y	z
	

Reports	the	pitch	from	this	agent	to	the	coordinates	x,	y,	z

If	the	wrapped	distance	(around	the	edges	of	the	screen)	is	shorter	than	the	on-screen
distance,	towards-pitch	will	report	the	pitch	of	the	wrapped	path.	towards-pitch-nowrap
never	uses	the	wrapped	path.

Note:	In	order	to	get	a	turtle	to	face	a	given	location	you	need	to	use	both	towards-pitch-
xyz	and	towardsxy.

Note:	asking	for	the	pitch	from	an	agent	to	the	location	it	is	standing	on	will	cause	a
runtime	error.

See	also	towardsxy

turtles-at
<breeds>-at

turtles-at	dx	dy	dz
<breeds>-at	dx	dy	dz
	

3D	versions	of	turtles-at	and	breeds-at.

Reports	an	agentset	containing	the	turtles	on	the	patch	(dx,	dy,	dz)	from	the	caller
(including	the	caller	itself	if	it's	a	turtle).

;; suppose I have 40 turtles at the origin
show [count turtles-at 0 0 0] of turtle 0
=> 40

world-depth

world-depth

Reports	the	total	depth	of	the	NetLogo	world.

The	depth	of	the	world	is	the	same	as	max-pzcor	-	min-pzcor	+	1.

See	also	max-pzcor,	min-pzcor,	world-width,	and	world-height

zcor

dictionary.htnl#turtles-at

Since	4.1

zcor

This	is	a	built-in	turtle	variable.	It	holds	the	current	z	coordinate	of	the	turtle.	This	is	a
floating	point	number,	not	an	integer.	You	can	set	this	variable	to	change	the	turtle's
location.

This	variable	is	always	greater	than	or	equal	to	(-	screen-edge-z)	and	strictly	less	than
screen-edge-z.

See	also	setxy,	xcor,	ycor,	pxcor,	pycor,	pzcor

zoom

zoom	number

Move	the	observer	toward	the	point	it	is	facing,	number	steps.	The	observer	will	never
move	beyond	the	point	it	is	facing	so	if	number	is	greater	than	the	distance	to	that	point	it
will	only	move	as	far	as	the	point	it	is	facing.

Extensions	Guide

NetLogo	allows	users	to	write	new	commands	and	reporters	in	Java	and	other	languages	and
use	them	in	their	models.	This	section	of	the	User	Manual	introduces	this	facility	and	shows
how	to	use	an	extension	in	your	model	once	you	have	obtained	or	made	one.

Extensions	created	by	members	of	the	NetLogo	community	are	available	from
https://github.com/NetLogo/NetLogo/wiki/Extensions.

For	information	on	creating	your	own	extensions,	go	here.

Using	Extensions

To	use	an	extension	in	a	model,	add	the	extensions	keyword	at	the	beginning	of	the	Code
tab,	before	declaring	any	breeds	or	variables.

After	extensions	comes	a	list	of	extension	names	in	square	brackets.	For	example:

extensions [sound speech]

Using	extensions	tells	NetLogo	to	find	and	open	the	specified	extension	and	makes	the
custom	commands	and	reporters	found	in	the	extension	available	to	the	current	model.	You
can	use	these	commands	and	reporters	just	as	if	they	were	built-in	NetLogo	primitives.

Where	extensions	are	located

NetLogo	will	look	for	extensions	in	several	places:

1.	 In	the	folder	of	the	current	model.
2.	 The	extensions	folder	located	with	the	NetLogo	installation.	For	typical	NetLogo

installations:
On	Mac	OS	X:	/Applications/NetLogo 6.0.2/extensions
On	64-bit	Windows	with	64-bit	NetLogo	or	32-bit	Windows	with	32-bit	NetLogo:
C:\Program Files\NetLogo 6.0.2\app\extensions
On	64-bit	Windows	with	32-bit	NetLogo:	C:\Program Files (x86)\NetLogo
6.0.2\app\extensions
On	Linux:	the	app/extensions	subdirectory	of	the	NetLogo	directory	extracted	from
the	installation	.tgz

Each	NetLogo	extension	consists	of	a	folder	with	the	same	name	as	the	extension,	entirely	in
lower	case.	This	folder	must	contain	a	JAR	file	with	the	same	name	as	the	folder.	For
example	the	sound	extension	is	stored	in	a	folder	called	sound	with	a	file	inside	called
sound.jar.

To	install	a	NetLogo	extension	for	use	by	any	model,	put	the	extension's	folder	in	the	NetLogo
extensions	directory.	Or,	you	can	just	keep	the	extension's	folder	in	the	same	folder	as	the
model	that	uses	it.

Some	extensions	depend	on	additional	files.	These	files	will	be	in	the	extension's	folder	along
with	the	JAR	file.	The	folder	may	also	contain	other	files	such	as	documentation	and	example
models.

https://github.com/NetLogo/NetLogo/wiki/Extensions
https://github.com/NetLogo/NetLogo/wiki/Extensions-API

NetLogo	Arduino	Extension

Using

For	a	first	use	without	compiling	code,	do	the	following:

1.	 Acquire	the	NetLogo	software.	The	Arduino	extension	comes	pre-installed	with
NetLogo	5.2.1	and	later.

2.	 Acquire	an	Arduino	board	and	install	the	arduino	IDE

3.	 Use	the	Arduino	IDE	to	edit	the	Sketch	(if	desired)	and	send	to	the	board.	(See
elaborate	comments	in	the	sketch	for	recommendations	about	what	to	comment
out/leave	in	depending	on	your	setup	&	circuit	on	the	board.)

4.	 Once	the	Arduino	has	the	sketch	loaded	on	it,	it	will	run	that	sketch	whenever	it	is
powered	on.

5.	 Open	the	test	“Arduino	Example”	model	in	the	NetLogo	Models	library	(it’s	in	the
“IABM	Textbook”	>	“Chapter	8”	folder)

6.	 Connect	the	Arduino	to	a	USB	port	on	the	computer	if	it	is	not	still	connected	from
step	3.

7.	 Press	OPEN	to	choose	the	port	to	communicate	with	and	establish	the	connection.

8.	 Use	the	buttons	to	send	byte	commands;	use	the	interface	to	inspect	variable
value(s)	that	your	sketch	is	sending.

9.	 Note	that	by	typing	arduino:primitives	you	can	get	a	list	of	the	available	commands
in	the	extension.

Notes

A	NetLogo	model	using	this	extension	must	work	in	conjunction	with	an	Arduino	Sketch.
These	two	endpoints	communicate	by	way	of	an	application	protocol	that	they	define.	For
example,	if	the	NetLogo	model	sends	a	byte	‘1’	over	the	wire	this	may	mean	something	to
the	Arduino	Sketch,	which	will	respond	accordingly.	The	Arduino	Sketch	for	its	own	part
may	send	name-value	pairs	over	the	serial	port,	which	then	can	be	looked	up
asynchronously	by	the	NetLogo	model.

The	modeler	is	free	to	build	as	simple	or	as	complex	an	application	protocol	on	top	of	this
raw	communication	mechanism.

The	asynchronous	nature	of	the	board-to-computer	communications	has	one	notable
limitation.	If	you	choose	to	try	to	simulate	a	synchronous,	BLOCKING	READ
communications	pattern,	(e.g.,	by	sending	a	byte-based	signal	to	the	board,	which	triggers
a	response	in	a	known	name-value	pair),	then	you	are	likely	to	be	‘off	by	one’	response.
That	is,	if	you	do	the	following	in	NetLogo	code:

arduino:write-byte b
show arduino:get "varname"

You	are	likely	to	get	the	value	of	varname	from	the	PRIOR	command	represented	by

http://ccl.northwestern.edu/netlogo/download.shtml

writing	the	byte	b.	This	is	because	the	second	line	of	NetLogo	code	will	execute	while	the
Arduino	is	off	generating	a	new	value	for	varname.

There	are	ways	of	getting	around	this	(simulating	a	blocking	interface	by	polling	on	a	value
to	indicate	fresh	“news”	on	varname).	But	this	extension	works	best	in	settings	where	the
Arduino	Sketch	is	“chatty”	and	the	NetLogo	model	samples	this	stream	when	it	needs
data.

Compatibility

This	code	has	been	tested	on	Windows	7	and	10	with	32-bit	NetLogo	and	on	Mac	OS	X.
You	are	likely	to	encounter	issues	when	running	this	with	64-bit	NetLogo	in	Windows	8	or
Windows	10,	so	if	you	have	Windows	8	or	10,	please	download	the	32-Bit	version	of
NetLogo	if	you	plan	on	using	the	Arduino	extension.	We	strive	for	cross-platform
compatibility	across	Mac,	Win,	and	Linux.	So	if	you	have	troubles,	please	let	us	know.

Questions

If	you	run	into	problems	or	have	questions	about	the	extension,	please	email	ccl-feedback
or	cbrady@inquirelearning.com.

Primitives

arduino:primitives	arduino:ports	arduino:open	arduino:close	arduino:get	arduino:write-
string	arduino:write-int	arduino:write-byte	arduino:is-open?

arduino:primitives

arduino:primitives

Reports	a	list	of	primitives	available	in	the	extension,	with	basic	hints	about	their	syntax.

arduino:ports

arduino:ports

Reports	a	list	of	port	names

arduino:open

arduino:open	port-name

Opens	the	port	named	port-name.

arduino:close

arduino:close

Closes	the	currently	open	port.

mailto:ccl-feedback@ccl.northwestern.edu
mailto:cbrady@inquirelearning.com

arduino:get

arduino:get	var-name

Reads	and	reports	the	value	associated	with	var-name	on	the	Arduino	board.	Note:	var-
name	is	case	insensitive.

arduino:write-string

arduino:write-string	string-message

Writes	a	string	message	to	the	currently	open	port.

arduino:write-int

arduino:write-int	int-message

Writes	a	integer	message	to	the	currently	open	port.

arduino:write-byte

arduino:write-byte	byte-message

Writes	a	byte	message	to	the	currently	open	port.

arduino:is-open?

arduino:is-open?

Reports	a	boolean	value	(true	or	false)	indicating	if	a	port	is	open.

NetLogo	Array	Extension

Using

The	array	extension	is	pre-installed	in	NetLogo.

To	use	the	array	extension	in	your	model,	add	a	line	to	the	top	of	your	Code	tab:

extensions [array]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so
just	add	array	to	the	list.

For	more	information	on	using	NetLogo	extensions,	see	the	Extensions	Guide

When	to	Use

In	general,	anything	you	can	do	with	an	array	in	NetLogo,	you	could	also	just	use	a	list	for.
But	you	may	want	to	consider	using	an	array	instead	for	speed	reasons.	Lists	and	arrays
have	different	performance	characteristics,	so	you	may	be	able	to	make	your	model	run
faster	by	selecting	the	appropriate	data	structure.

Arrays	are	useful	when	you	need	a	collection	of	values	whose	size	is	fixed.	You	can
quickly	access	or	alter	any	item	in	an	array	if	you	know	its	position.

Unlike	NetLogo’s	lists	and	strings,	arrays	are	“mutable”.	That	means	that	you	can	actually
modify	them	directly,	rather	than	constructing	an	altered	copy	as	with	lists.	If	the	array	is
used	in	more	than	one	place	in	your	code,	any	changes	you	make	will	show	up
everywhere.	It’s	tricky	to	write	code	involving	mutable	structures	and	it’s	easy	to	make
subtle	errors	or	get	surprising	results,	so	we	suggest	sticking	with	lists	and	strings	unless
you’re	certain	you	want	and	need	mutability.

Example	use	of	Array	Extension

let a array:from-list n-values 5 [0]
print a
=> {{array: 0 0 0 0 0}}
print array:length a
=> 5
foreach n-values 5 [i -> i] [i -> array:set a i i * i]
print a
=> {{array: 0 1 4 9 16}}
print array:item a 0
=> 0
print array:item a 3
=> 9
array:set a 3 50
print a
=> {{array: 0 1 4 50 16}}

Primitives

array:from-list	array:item	array:set	array:length	array:to-list

array:from-list

array:from-list

array:from-list	list

Reports	a	new	array	containing	the	same	items	in	the	same	order	as	the	input	list.

array:item

array:item	array	index

Reports	the	item	in	the	given	array	with	the	given	index	(ranging	from	zero	to	the	length	of
the	array	minus	one).

array:set

array:set	array	index	value

Sets	the	item	in	the	given	array	with	the	given	index	(ranging	from	zero	to	the	length	of
the	array	minus	one)	to	the	given	value.

Note	that	unlike	the	replace-item	primitive	for	lists,	a	new	array	is	not	created.	The	given
array	is	actually	modified.

array:length

array:length	array

Reports	the	length	of	the	given	array,	that	is,	the	number	of	items	in	the	array.

array:to-list

array:to-list	array

Reports	a	new	list	containing	the	same	items	in	the	same	order	as	the	given	array.

NetLogo	Bitmap	Extension

Using

The	bitmap	extension	is	pre-installed	in	NetLogo.	For	instructions	on	using	it,	or	for	more
information	about	NetLogo	extensions,	see	the	NetLogo	User	Manual.

What	does	the	Bitmap	Extension	do?

The	Bitmap	Extension	allows	you	to	manipulate	and	import	images	into	the	drawing	and
patches.	It	offers	features	not	provided	by	the	NetLogo	core	primitives,	such	as:	scaling,
manipulation	of	different	color	channels,	and	width	and	height	reporters.

Getting	started

To	import	and	manipulate	images	you	will	need	to	include	the	bitmap	extension	in	your
NetLogo	model.

extensions[bitmap]

The	image	file	formats	supported	are	determined	by	your	Java	virtual	machine’s	imageio
library.	Typically	this	is	PNG,	JPG,	GIF,	and	BMP.	PNG	is	a	good,	standard	choice	that	is
likely	to	work	everywhere.

If	the	image	format	supports	transparency	(alpha),	that	information	will	be	imported	as
well.

Primitives

bitmap:average-color	bitmap:channel	bitmap:copy-to-drawing	bitmap:copy-to-pcolors
bitmap:difference-rgb	bitmap:export	bitmap:from-view	bitmap:to-grayscale	bitmap:height
bitmap:import	bitmap:scaled	bitmap:width

bitmap:average-color

bitmap:average-color	image

Reports	a	3-element	list	describing	the	amount	of	R,	G,	and	B	in	image,	by	summing
across	all	pixels,	and	normalizing	each	component	by	the	number	of	pixels	in	the	image,
so	each	component	ranges	from	0	to	255.

bitmap:channel

bitmap:channel	image	channel

Extracts	either	the	alpha,	red,	green,	or	blue	channel	from	an	image.	The	input	channel
should	be	an	integer	0-3	indicating	the	channel	to	remove	(alpha=0,	red=1,	green=2,
blue=3).	The	resulting	image	is	a	grayscale	image	representing	specified	channel.

bitmap:copy-to-drawing

bitmap:copy-to-drawing	image	x	y

Imports	the	given	image	into	the	drawing	without	scaling	the	image	at	the	given	pixel
coordinates.

bitmap:copy-to-pcolors

bitmap:copy-to-pcolors	image	boolean

Imports	the	given	image	into	the	pcolors,	scaled	to	fit	the	world.	The	second	input
indicates	whether	the	colors	should	be	interpreted	as	NetLogo	colors	or	left	as	RGB
colors.	false	means	RGB	colors.

bitmap:difference-rgb

bitmap:difference-rgb	image1	image2

Reports	an	image	that	is	the	absolute	value	of	the	pixel-wise	RGB	difference	between	two
images.	Note	that	image1	and	image2	MUST	be	the	same	width	and	height	as	each	other,
or	errors	will	ensue.

bitmap:export

bitmap:export	image	filename

Writes	image	to	filename.

bitmap:from-view

bitmap:from-view

Reports	an	image	of	the	current	view.

bitmap:to-grayscale

bitmap:to-grayscale	image

Converts	the	given	image	to	grayscale.

bitmap:height

bitmap:height	image

Reports	the	height	of	given	image

bitmap:import

bitmap:import	filename

Reports	a	LogoBitmap	containing	the	image	at	filename.

bitmap:scaled

bitmap:scaled	image	width	height

Reports	a	new	image	that	is	image	scaled	to	the	given	width	and	height

bitmap:width

bitmap:width	image

Reports	the	width	of	the	given	image

NetLogo	Cf	Extension

Using

The	CF	extension	currently	includes	primitives	that	allow	you	to	do	things	similar	to	if-else
if-else	chains	you	see	in	other	languages,	as	well	as	things	similar	to	switches	in	other
languages.	However,	it	does	it	in	a	more	flexible	way	than	many	languages.	A	few	quick
examples	to	get	you	started:

let x 5
let y 7
cf:when
cf:case [x > y] [print "x is bigger than y!"]
cf:case [x < y] [print "x is less than y!"]
cf:else [print "x is the same as y!"]

let my-awesome-number 5
cf:match my-awesome-number
cf:case [[n] -> n > 7] [print "The number is greater than 7!"]
cf:case [[n] -> n < 3] [print "The number is less than 3!"]
cf:else [print "The number is somewhere in between 3 and 7!"]

Cases

Central	to	this	extension	is	the	concept	of	a	case.	A	case	is	simply	a	list	of	two	elements,
where	the	first	element	is	a	reporter	and	the	second	element	is	either	a	reporter	or	a
command.	The	first	element,	called	the	condition,	must	report	either	true	or	false.	The
second	argument	is	called	the	consequent.	If	you’re	curious	about	how	CF	works,	keep
reading	this	section.	Otherwise,	feel	free	to	skip	to	the	list	of	primitives;	you	don’t	need	to
understand	the	internals	to	start	using	CF.

Almost	all	primitives	in	the	CF	extension	take	a	list	of	cases	as	an	argument.	Typically,	they
go	through	the	cases,	looking	for	a	true	condition.	When	they	find	one,	they	then	run	the
consequent.	Although	CF	provides	primitives	that	make	constructing	a	list	of	cases	easy,
you	could	actually	just	build	such	a	list	with	primitives	already	in	NetLogo,	like	so:

let x 5
let y 7
let list-of-cases (list
 (list task [x > y] task [print "x is greater than y!"])
 (list task [x < y] task [print "x is less than y!"])
 (list task [true] task [print "x is the same as y!"])
)

However,	this	is	not	very	nice	looking.	With	CF,	you	can	write	it	like	this	instead:

let x 5
let y 7

let list-of-cases
cf:case [x > y] [print "x is greater than y!"]
cf:case [x < y] [print "x is less than y!"]
cf:else [print "x is the same as y!"]

Primitives

cf:when	cf:select	cf:match	cf:matching	cf:case	cf:case-is	cf:else

cf:when

cf:when	list-of-cases

Runs	the	command	task	from	the	first	case	in	the	list	with	a	true	condition.	For	instance:

let x 3
cf:when
cf:case [x < 2] [print "x is less than 2!"]
cf:case [x < 4] [print "x is less than 4!"]
cf:case [x < 6] [print "x is less than 6!"]
cf:else [print "x is greater than or equal to 6!"]

The	above	code	will	print	out	x is less than 4! 	since	that’s	the	first	case	with	a	true
condition.

If	no	true	case	is	found,	and	no	cf:else	given,	cf:when	will	error	with	a	suggestion	for	a	fix.

cf:select

cf:select	list-of-cases

Picks	the	first	case	in	the	list	with	a	true	condition	and	reports	the	result	of	its	consequent.
The	consequents	of	the	cases	in	a	cf:select	must	be	reporter	tasks.	Thus,	cf:select	is
exactly	like	cf:when,	except	that	it	reports	the	value	from	the	true	case,	rather	than	just
running	it.	For	example:

let x 3
print cf:select
cf:case [x < 2] ["x is less than 2!"]
cf:case [x < 4] ["x is less than 4!"]
cf:case [x < 6] ["x is less than 6!"]
cf:else ["x is greater than or equal to 6!"]

The	above	code	will	print	out	x is less than 4! 	since	that’s	the	first	case	with	a	true
condition.

If	no	true	case	is	found,	and	no	cf:else	given,	cf:select	will	error	with	a	suggestion	for	a
fix.

cf:match

cf:match	value	list-of-cases

cf:match	is	like	cf:when,	except	that	it	applies	the	conditions	in	its	cases	to	the	given	value.
For	instance:

ask patch 0 0 [set pcolor red]
cf:match ([pcolor] of patch 0 0)
cf:case [[c] -> c = green] [print "The center patch is green!"]
cf:case [[c] -> c = red] [print "The center patch is red!"]
cf:case [[c] -> c = blue] [print "The center patch is blue!"]
cf:else [print "I don't know what color the center patch is!"]

The	above	code	will	print	out	The center patch is green! 	since	that’s	the	first	case	with	a
true	condition.

The	value	is	also	passed	to	the	consequent	of	the	case.	For	instance:

cf:match one-of turtles
cf:case [[t] -> [color] of t = red] [[t] -> ask t [show "I'm red!"]]
cf:case [[t] -> [color] of t = blue] [[t] -> ask t [show "I'm blue!"]]
cf:else [[t] -> ask t [show "I'm some other color!"]]

If	no	matching	case	is	found,	cf:match	will	error	with	a	suggestion	for	a	fix.

cf:matching

value	cf:matching	list-of-cases

cf:matching	is	like	cf:match,	except	that	it	reports	the	result	of	the	matching	case.
cf:matching	is	to	cf:match	as	cf:select	is	to	cf:when.	For	instance:

let my-awesome-number 3
print my-awesome-number cf:matching
cf:case [[num] -> num < 2] ["The number is less than 2!"]
cf:case [[num] -> num < 4] ["The number is less than 4!"]
cf:case [[num] -> num < 6] ["The number is less than 6!"]
cf:else ["The number is greater than or equal to 6!"]

The	above	code	will	print	out	The number is less than 4! 	since	that’s	the	first	case	with	a
true	condition.	cf:matching	also	applies	the	consequent	of	the	matching	case	to	the	given
value,	just	like	cf:match:

print (one-of turtles) cf:matching
cf:case [[t] -> [color] of t = red] [[t] -> ["I'm red!"] of t]
cf:case [[t] -> [color] of t = blue] [[t] -> ["I'm blue!"] of t]
cf:else [[t] -> ["I'm some other color!"] of t]

If	no	matching	case	is	found,	cf:matching	will	error	with	a	suggestion	for	a	fix.

cf:case

cf:case	condition	consequent	list-of-remaining-cases

cf:case	allows	you	to	construct	a	list	of	cases	that	the	other	primitives	will	then	pick	from.	It
constructs	a	new	case	from	the	the	two	given	tasks	and	adds	it	to	the	front	of	the	list	of
remaining	cases.	Thus,	you	can	chain	it	together	with	other	instances	of	cf:case	to	create
an	arbitrarily	long	list	of	cases.

Note	that	because	the	condition	in	a	case	is	just	an	anonymous	reporter,	you	can	check	for
many	common	conditions	in	a	very	concise	manner.	For	instance,	if	we	want	to	do
something	depending	on	the	breed	of	a	turtle,	you	can	do:

cf:match my-turtle
cf:case is-wolf? [show "Growl!"]
cf:case is-a-sheep? [show "Baah!"]
cf:case is-dog? [show "Bark!"]
cf:case is-cat? [show "Meow!"]
cf:else [show "I'm not sure what sound to make..."]

cf:case-is

cf:case-is	relationship	consequent	list-of-remaining-cases

cf:case-is	allows	you	to	write	some	common	uses	of	cf:case	in	cf:match	or	cf:matching
in	a	more	concise,	readable	way.	The	given	reporter	should	be	a	relationship	such	as	=,	<,
or	member?.	cf:case-is	then	fills	in	the	second	argument	of	the	reporter	with	the	given
value.	This	is	much	easier	to	understand	in	an	example:

let x 5
print x cf:matching
cf:case-is = 0 ["x is 0!"]
cf:case-is = 1 ["x is 1!"]
cf:case-is > 2 ["x is greater than 2!"]
cf:case-is member? [-1 -2 -3] ["x is either -1, -2, or -3"]
cf:else ["x is something else"]

Thus,	cf:case-is	allows	you	to	do	something	quite	similar	to	switch	in	some	other
languages,	but	is	also	much	more	flexible.

cf:else

cf:else	command/reporter

cf:else	creates	a	case	where	the	condition	is	always	true.	Thus,	it	allows	you	to	create	a
case	that	will	be	run	if	all	the	other	cases	fail.	You	should	almost	always	finish	up	a	chain	of
cases	with	cf:else.	However,	if	you’d	prefer	to	error	rather	than	have	a	default	case,	you
can	replace	cf:else	with	[],	like	so:

let x -5
cf:when
cf:case [0 < x and x < 10] [print "x is between 0 and 10!"]
cf:case [x < 100] [print "x is less than 100!"]
[]

The	above	code	will	error,	since	no	matching	case	will	be	found.

NetLogo	Csv	Extension

Common	use	cases	and	examples

Read	a	file	all	at	once

Just	use	csv:from-file "/path/to/myfile.csv"!	See	from-file	for	more	information.

Read	a	file	one	line	at	a	time

For	really	big	files,	you	may	not	want	to	store	the	entire	file	in	memory,	but	rather	just	process	it	a	line	at	a
time.	For	instance,	if	you	want	to	sum	each	of	the	columns	of	a	numeric	CSV	file,	you	can	do:

to-report sum-columns [file]
 file-open file
 set result csv:from-row file-read-line
 while [not file-at-end?] [
 let row csv:from-row file-read-line
 set result (map [?1 + ?2] result row)
]
 file-close
 report result
end

You	can	also	use	this	technique	to…

Read	a	file	one	line	per	tick

Here’s	an	example	model	that	reads	in	a	file	one	line	per	tick:

globals [data]

to setup
 clear-all
 file-close-all % Close any files open from last run
 file-open "data.csv"
 % other setup goes here
 reset-ticks
end

to go
 if file-at-end? [stop]
 set data csv:from-row file-read-line
 % model update goes here
 tick
end

Write	a	file

Just	use	csv:to-file "/path/to/myfile.csv" my-data!	See	to-file	for	more	information.

Primitives

Formatting	NetLogo	data	as	CSV

csv:to-row	csv:to-string	csv:to-file

Parsing	CSV	input	to	NetLogo	data

csv:from-row	csv:from-string	csv:from-file

csv:from-row

csv:from-row	string
csv:from-row	string	delimiter

Parses	the	given	string	as	though	it	were	a	row	from	a	CSV	file	and	returns	it	as	a	list	of	values.	For	example:

observer> show csv:from-row "one,two,three"
observer: ["one" "two" "three"]

Quotes	can	be	used	when	items	contain	commas:

observer> show csv:from-row "there's,a,comma,\"in,here\""
observer: ["there's" "a" "comma" "in,here"]

You	can	put	two	quotes	in	a	row	to	put	an	actual	quote	in	an	entry.	If	the	entry	is	not	quoted,	you	can	just	use
one	quote:

observer> foreach (csv:from-row "he said \"hi there\",\"afterwards, she said \"\"hello\"\"\"") print
he said "hi there"
afterwards, she said "hello"

Number-like-entries	will	be	parsed	as	numbers:

observer> show csv:from-row "1,-2.5,1e3"
observer: [1 -2.5 1000]

true	and	false	with	any	capitalization	will	be	parsed	as	booleans:

observer> show csv:from-row "true,TRUE,False,falsE"
observer: [true true false false]

To	use	a	different	delimiter,	you	can	specify	a	second,	optional	argument.	Only	single	character	delimiters	are
supported:

observer> show (csv:from-row "1;2;3" ";")
observer: [1 2 3]

Different	types	of	values	can	be	mixed	freely:

observer> show csv:from-row "one,2,true"
observer: ["one" 2 true]

csv:from-string

csv:from-string	string
csv:from-string	string	delimiter

Parses	a	string	representation	of	one	or	more	CSV	rows	and	returns	it	as	a	list	of	lists	of	values.	For	example:

observer> show csv:from-string "1,two,3\nfour,5,true"
observer: [[1 "two" 3] ["four" 5 true]]

csv:from-file

csv:from-file	csv-file
csv:from-file	csv-file	delimiter

Parses	an	entire	CSV	file	to	a	list	of	lists	of	values.	For	example,	if	we	have	a	file	example.csv	that	contains:

1,2,3
4,5,6
7,8,9
10,11,12

Then,	we	get:

observer> show csv:from-file "example.csv"
observer: [[1 2 3] [4 5 6] [7 8 9] [10 11 12]]

The	parser	doesn’t	care	if	the	rows	have	different	numbers	of	items	on	them.	The	number	of	items	in	the	rows
list	will	always	be	<number of delimiters> + 1 ,	though	blank	lines	are	skipped.	This	makes	handling	files	with
headers	quite	easy.	For	instance,	if	we	have	header.csv	that	contains:

My Data
2/1/2015

Parameters:
start,stop,resolution,population,birth?
0,4,1,100,true

Data:
time,x,y
0,0,0
1,1,1
2,4,8
3,9,27

This	gives:

observer> foreach csv:from-file "header.csv" show
observer: ["My Data"]
observer: ["2/1/2015"]
observer: ["Parameters:"]
observer: ["start" "stop" "resolution" "population" "birth?"]
observer: [0 4 1 100 true]
observer: ["Data:"]
observer: ["time" "x" "y"]
observer: [0 0 0]
observer: [1 1 1]
observer: [2 4 8]
observer: [3 9 27]

csv:to-row

csv:to-row	list
csv:to-row	list	delimiter

Reports	the	given	list	as	a	CSV	row.	For	example:

observer> show csv:to-row ["one" 2 true]
observer: "one,2,true"

csv:to-string

csv:to-string	list
csv:to-string	list	delimiter

Reports	the	given	list	of	lists	as	a	CSV	string.	For	example:

observer> show csv:to-string [[1 "two" 3] [4 5]]
observer: "1,two,3\n4,5"

csv:to-file

csv:to-file	csv-file	list
csv:to-file	csv-file	list	delimiter

Writes	the	given	list	of	lists	to	a	new	CSV	file.	For	example:

observer> csv:to-file "myfile.csv" [[1 "two" 3] [4 5]]

will	result	in	a	file	myfile.csv	containing:

1,two,3
4,5

NetLogo	Gis	Extension

Using

This	extension	adds	GIS	(Geographic	Information	Systems)	support	to	NetLogo.	It
provides	the	ability	to	load	vector	GIS	data	(points,	lines,	and	polygons),	and	raster	GIS
data	(grids)	into	your	model.

The	extension	supports	vector	data	in	the	form	of	ESRI	shapefiles.	The	shapefile	(.shp)
format	is	the	most	common	format	for	storing	and	exchanging	vector	GIS	data.	The
extension	supports	raster	data	in	the	form	of	ESRI	ASCII	Grid	files.	The	ASCII	grid	file
(.asc	or	.grd)	is	not	as	common	as	the	shapefile,	but	is	supported	as	an	interchange
format	by	most	GIS	platforms.

How	to	use

In	general,	you	first	define	a	transformation	between	GIS	data	space	and	NetLogo	space,
then	load	datasets	and	perform	various	operations	on	them.	The	easiest	way	to	define	a
transformation	between	GIS	space	and	NetLogo	space	is	to	take	the	union	of	the
“envelopes”	or	bounding	rectangles	of	all	of	your	datasets	in	GIS	space	and	map	that
directly	to	the	bounds	of	the	NetLogo	world.	See	GIS	General	Examples	for	an	example	of
this	technique.

You	may	also	optionally	define	a	projection	for	the	GIS	space,	in	which	case	datasets	will
be	re-projected	to	match	that	projection	as	they	are	loaded,	as	long	as	each	of	your	data
files	has	an	associated	.prj	file	that	describes	the	projection	or	geographic	coordinate
system	of	the	data.	If	no	associated	.prj	file	is	found,	the	extension	will	assume	that	the
dataset	already	uses	the	current	projection,	regardless	of	what	that	projection	is.

Once	the	coordinate	system	is	defined,	you	can	load	datasets	using	gis:load-dataset.	This
primitive	reports	either	a	VectorDataset	or	a	RasterDataset,	depending	on	what	type	of	file
you	pass	it.

A	VectorDataset	consists	of	a	collection	of	VectorFeatures,	each	one	of	which	is	a	point,
line,	or	polygon,	along	with	a	set	of	property	values.	A	single	VectorDataset	may	contain
only	one	of	the	three	possible	types	of	features.

There	are	several	things	you	can	do	with	a	VectorDataset:	ask	it	for	the	names	of	the
properties	of	its	features,	ask	it	for	its	“envelope”	(bounding	rectangle),	ask	for	a	list	of	all
VectorFeatures	in	the	dataset,	search	for	a	single	VectorFeature	or	list	of	VectorFeatures
whose	value	for	a	particular	property	is	less	than	or	greater	than	a	particular	value,	or	lies
within	a	given	range,	or	matches	a	given	string	using	wildcard	matching	(“*”,	which
matches	any	number	of	occurrences	of	any	characters).	If	the	VectorFeatures	are
polygons,	you	can	also	apply	the	values	of	a	particular	property	of	the	dataset’s	features	to
a	given	patch	variable.

There	are	also	several	things	you	can	do	with	a	VectorFeature	from	a	VectorDataset:	ask
it	for	a	list	of	vertex	lists,	ask	it	for	a	property	value	by	name,	ask	it	for	its	centroid	(center	of
gravity),	and	ask	for	a	subset	of	a	given	agentset	whose	agents	intersect	the	given
VectorFeature.	For	point	data,	each	vertex	list	will	be	a	one-element	list.	For	line	data,
each	vertex	list	will	represent	the	vertices	of	a	line	that	makes	up	that	feature.	For	polygon
data,	each	vertex	list	will	represent	one	“ring”	of	the	polygon,	and	the	first	and	last	vertex
of	the	list	will	be	the	same.	The	vertex	lists	are	made	up	of	values	of	type	Vertex,	and	the
centroid	will	be	a	value	of	type	Vertex	as	well.

There	are	a	number	of	operations	defined	for	RasterDatasets	as	well.	Mostly	these	involve
sampling	the	values	in	the	dataset,	or	re-sampling	a	raster	to	a	different	resolution.	You
can	also	apply	a	raster	to	a	given	patch	variable,	and	convolve	a	raster	using	an	arbitrary
convolution	matrix.

Code	Example:	GIS	General	Examples	has	general	examples	of	how	to
use	the	extension

Code	Example:	GIS	Gradient	Example	is	a	more	advanced	example	of
raster	dataset	analysis.

Known	Issues

Values	of	type	RasterDataset,	VectorDataset,	VectorFeature,	and	Vertex	are	not	handled
properly	by	export-world	and	import-world.	To	save	datasets,	you	must	use	the
gis:store-dataset	primitive.

There	is	currently	no	way	to	distinguish	positive-area	“shell”	polygons	from	negative-area
“hole”	polygons,	or	to	determine	which	holes	are	associated	with	which	shells.

Credits

The	primary	developer	of	the	GIS	extension	was	Eric	Russell.

The	GIS	extension	makes	use	of	several	open-source	software	libraries.	For	copyright	and
license	information	on	those,	see	the	copyright	section	of	the	manual.	The	extension	also
contains	elements	borrowed	from	My	World	GIS.

This	documentation	and	the	example	NetLogo	models	are	in	the	public	domain.	The	GIS
extension	itself	is	free	and	open	source	software.	See	the	README.md	file	in	the
extension/gis	directory	for	details.

We	would	love	to	hear	your	suggestions	on	how	to	improve	the	GIS	extension,	or	just
about	what	you’re	using	it	for.	Post	questions	and	comments	at	the	NetLogo	Users	Group,
or	write	directly	to	Eric	Russell	and	the	NetLogo	team	at	ccl-gis@ccl.northwestern.edu

Primitives

RasterDataset	Primitives

gis:width-of	gis:height-of	gis:raster-value	gis:set-raster-value	gis:minimum-of
gis:maximum-of	gis:sampling-method-of	gis:set-sampling-method	gis:raster-sample
gis:raster-world-envelope	gis:create-raster	gis:resample	gis:convolve	gis:apply-raster

Dataset	Primitives

gis:load-dataset	gis:store-dataset	gis:type-of	gis:patch-dataset	gis:turtle-dataset
gis:link-dataset

VectorDataset	Primitives

gis:shape-type-of	gis:property-names	gis:feature-list-of	gis:vertex-lists-of

http://www.myworldgis.org
http://groups.yahoo.com/group/netlogo-users/
mailto:ccl-gis@ccl.northwestern.edu

gis:centroid-of	gis:location-of	gis:property-value	gis:find-features	gis:find-one-
feature	gis:find-less-than	gis:find-greater-than	gis:find-range	gis:property-minimum
gis:property-maximum	gis:apply-coverage	gis:coverage-minimum-threshold	gis:set-
coverage-minimum-threshold	gis:coverage-maximum-threshold	gis:set-coverage-maximum-
threshold	gis:intersects?	gis:contains?	gis:contained-by?	gis:have-relationship?
gis:relationship-of	gis:intersecting

Coordinate	System	Primitives

gis:set-transformation	gis:set-transformation-ds	gis:set-world-envelope	gis:set-world-
envelope-ds	gis:world-envelope	gis:envelope-of	gis:envelope-union-of	gis:load-
coordinate-system	gis:set-coordinate-system

Drawing	Primitives

gis:drawing-color	gis:set-drawing-color	gis:draw	gis:fill	gis:paint	gis:import-wms-
drawing

gis:set-transformation

gis:set-transformation	gis-envelope	netlogo-envelope

Defines	a	mapping	between	GIS	coordinates	and	NetLogo	coordinates.	The	gis-envelope
and	netlogo-envelope	parameters	must	each	be	four-element	lists	consisting	of:

[minimum-x maximum-x minimum-y maximum-y]

The	scale	of	the	transformation	will	be	equal	to	the	minimum	of	the	scale	necessary	to
make	the	mapping	between	the	ranges	of	x	values	and	the	scale	necessary	to	make	the
mapping	between	the	ranges	of	y	values.	The	GIS	space	will	be	centered	in	NetLogo
space.

For	example,	the	following	two	lists	would	map	all	of	geographic	(latitude	and	longitude)
space	in	degrees	to	NetLogo	world	space,	regardless	of	the	current	dimensions	of	the
NetLogo	world:

(list -180 180 -90 90)
(list min-pxcor max-pxcor min-pycor max-pycor)

However,	if	you’re	setting	the	envelope	of	the	NetLogo	world,	you	should	probably	be
using	set-world-envelope.

gis:set-transformation-ds

gis:set-transformation-ds	gis-envelope	netlogo-envelope

Does	the	same	thing	as	set-transformation	above,	except	that	it	allows	the	scale	for
mapping	the	range	of	x	values	to	be	different	than	the	scale	for	y	values.	The	“-ds”	on	the
end	stands	for	“different	scales”.	Using	different	scales	will	cause	distortion	of	the	shape
of	GIS	features,	and	so	it	is	generally	not	recommended,	but	it	may	be	useful	for	some
models.

Here	is	an	example	of	the	difference	between	set-transformation	and	set-transformation-
ds:

Using	[set-transformation]
(#gisset-transformation),	the

scale	along	the	x	and	y	axis	is
the	same,	preserving	the	round

shape	of	the	Earth	in	this
Orthographic	projection.

Using	[set-transformation-ds](#gisset-
transformation-ds),	the	scale	along
the	x	axis	is	stretched	so	that	the

earth	covers	the	entire	NetLogo	View,
which	in	this	case	distorts	the	shape

of	the	Earth.

gis:set-world-envelope

gis:set-world-envelope	gis-envelope

A	shorthand	for	setting	the	transformation	by	mapping	the	envelope	of	the	NetLogo	world
to	the	given	envelope	in	GIS	space,	while	keeping	the	scales	along	the	x	and	y	axis	the
same.	It	is	equivalent	to:

set-transformation gis-envelope (list min-pxcor max-pxcor min-pycor max-pycor)

This	primitive	is	supplied	because	most	of	the	time	you’ll	want	to	set	the	envelope	of	the
entire	NetLogo	world,	rather	than	just	a	part	of	it.

gis:set-world-envelope-ds

gis:set-world-envelope-ds	gis-envelope

A	shorthand	for	setting	the	transformation	by	mapping	the	envelope	of	the	NetLogo	world
to	the	given	envelope	in	GIS	space,	using	different	scales	along	the	x	and	y	axis	if
necessary.	It	is	equivalent	to:

set-transformation-ds gis-envelope (list min-pxcor max-pxcor min-pycor max-pycor)

See	the	pictures	above	for	the	difference	between	using	equal	scales	for	x	and	y
coordinates	and	using	different	scales.

gis:world-envelope

gis:world-envelope

Reports	the	envelope	(bounding	rectangle)	of	the	NetLogo	world,	transformed	into	GIS
space.	An	envelope	consists	of	a	four-element	list	of	the	form:

[minimum-x maximum-x minimum-y maximum-y]

gis:envelope-of

gis:envelope-of	thing

Reports	the	envelope	(bounding	rectangle)	of	thing	in	GIS	coordinates.	The	thing	may	be
an	Agent,	an	AgentSet,	a	RasterDataset,	a	VectorDataset,	or	a	VectorFeature.	An
envelope	consists	of	a	four-element	list	of	the	form:

[minimum-x maximum-x minimum-y maximum-y]

gis:envelope-union-of

gis:envelope-union-of	envelope1	envelope2
gis:envelope-union-of	envelope1	...

Reports	an	envelope	(bounding	rectangle)	that	entirely	contains	the	given	envelopes.	An
envelope	consists	of	a	four-element	list	of	the	form

[minimum-x maximum-x minimum-y maximum-y]

No	assumption	is	made	about	the	coordinate	system	of	the	arguments,	though	if	they	are
not	in	the	same	coordinate	system,	results	will	be	unpredictable.

gis:load-coordinate-system

gis:load-coordinate-system	file

Loads	a	new	global	projection	used	for	projecting	or	re-	projecting	GIS	data	as	it	is	loaded
from	a	file.	The	file	must	contain	a	valid	Well-Known	Text	(WKT)	projection	description.

WKT	projection	files	are	frequently	distributed	alongside	GIS	data	files,	and	usually	have	a
“.prj”	filename	extension.

Relative	paths	are	resolved	relative	to	the	location	of	the	current	model,	or	the	user’s
home	directory	if	the	current	model	hasn’t	been	saved	yet.

The	GIS	extension	does	not	support	all	WKT	coordinate	systems	and	projections.	Only
geographic	("GEOGCS")	and	projected	("PROJCS")	coordinate	systems	are	supported.	For
projected	coordinate	systems,	only	the	following	projections	are	supported:

Albers_Conic_Equal_Area
Lambert_Conformal_Conic_2SP
Polyconic
Lambert_Azimuthal_Equal_Area
Mercator_1SP
Robinson
Azimuthal_Equidistant
Miller
Stereographic

http://geoapi.sourceforge.net/2.0/javadoc/org/opengis/referencing/doc-files/WKT.html

Cylindrical_Equal_Area
Oblique_Mercator
Transverse_Mercator
Equidistant_Conic
hotine_oblique_mercator
Gnomonic
Orthographic

See	remotesensing.org	for	a	complete	list	of	WKT	projections	and	their	parameters.

gis:set-coordinate-system

gis:set-coordinate-system	system

Sets	the	global	projection	used	for	projecting	or	re-	projecting	GIS	data	as	it	is	loaded.	The
system	must	be	either	a	string	in	Well-Known	Text	(WKT)	format,	or	a	NetLogo	list	that
consists	of	WKT	converted	to	a	list	by	moving	each	keyword	inside	its	associated	brackets
and	putting	quotes	around	it.	The	latter	is	preferred	because	it	makes	the	code	much	more
readable.

The	same	limitations	on	WKT	support	apply	as	described	above	in	the	documentation	for
load-coordinate-system

gis:load-dataset

gis:load-dataset	file

Loads	the	given	data	file,	re-projecting	the	data	as	necessary	if	a	global	projection	is
defined	and	if	the	data	file	itself	has	an	associated	.prj	file,	then	reports	the	resulting
dataset.

If	no	“.prj”	file	is	present,	then	load-dataset	assumes	that	the	projection	of	the	data	being
loaded	is	the	same	as	the	current	global	coordinate	system.

Relative	paths	are	resolved	relative	to	the	location	of	the	current	model,	or	the	user’s
home	directory	if	the	current	model	hasn’t	been	saved	yet.

Currently,	two	types	of	data	file	are	supported:

“.shp”	(ESRI	shapefile):	contains	vector	data,	consisting	of	points,	lines,	or	polygons.
When	the	target	file	is	a	shapefile,	load-dataset	reports	a	VectorDataset.
“.asc”	or	“.grd”	(ESRI	ASCII	grid):	contains	raster	data,	consisting	of	a	grid	of	values.
When	the	target	file	is	an	ASCII	grid	file,	load-dataset	reports	a	RasterDataset.

gis:store-dataset

gis:store-dataset	dataset	file

Saves	the	given	dataset	to	the	given	file.	If	the	name	of	the	file	does	not	have	the	proper
file	extension,	the	extension	will	be	automatically	appended	to	the	name.	Relative	paths
are	resolved	relative	to	the	location	of	the	current	model,	or	the	user’s	home	directory	if
the	current	model	hasn’t	been	saved	yet.

Currently,	this	primitive	only	works	for	RasterDatasets,	and	it	can	only	save	those	datasets

http://remotesensing.org/geotiff/proj_list/
http://geoapi.sourceforge.net/2.0/javadoc/org/opengis/referencing/doc-files/WKT.html

as	ESRI	ASCII	grid	files.

gis:type-of

gis:type-of	dataset

Reports	the	type	of	the	given	GIS	dataset:	either	“VECTOR”	or	“RASTER”

gis:patch-dataset

gis:patch-dataset	patch-variable

Reports	a	new	raster	whose	cells	correspond	directly	to	NetLogo	patches,	and	whose	cell
values	consist	of	the	values	of	the	given	patch	variable.	This	primitive	is	basically	the
inverse	of	apply-raster;	apply-raster	copies	values	from	a	raster	dataset	to	a	patch
variable,	while	this	primitive	copies	values	from	a	patch	variable	to	a	raster	dataset.

gis:turtle-dataset

gis:turtle-dataset	turtle-set

Reports	a	new,	point	VectorDataset	built	from	the	turtles	in	the	given	agentset.	The	points
are	located	at	locations	of	the	turtles,	translated	from	NetLogo	space	into	GIS	space	using
the	current	coordinate	transformation.	And	the	dataset’s	properties	consist	of	all	of	the
turtle	variables	common	to	every	turtle	in	the	agentset.

gis:link-dataset

gis:link-dataset	link-set

Reports	a	new,	line	VectorDataset	built	from	the	links	in	the	given	agentset.	The	endpoints
of	each	line	are	at	the	location	of	the	turtles	connected	by	each	link,	translated	from
NetLogo	space	into	GIS	space	using	the	current	coordinate	transformation.	And	the
dataset’s	properties	consist	of	all	of	the	link	variables	common	to	every	link	in	the
agentset.

gis:shape-type-of

gis:shape-type-of	VectorDataset

Reports	the	shape	type	of	the	given	dataset.	The	possible	output	values	are	“POINT”,
“LINE”,	and	“POLYGON”.

gis:property-names

gis:property-names	VectorDataset

Reports	a	list	of	strings	where	each	string	is	the	name	of	a	property	possessed	by	each
VectorFeature	in	the	given	VectorDataset,	suitable	for	use	in	gis:property-value.

gis:feature-list-of

gis:feature-list-of	VectorDataset

Reports	a	list	of	all	VectorFeatures	in	the	given	dataset.

gis:vertex-lists-of

gis:vertex-lists-of	VectorFeature

Reports	a	list	of	lists	of	Vertex	values.	For	point	datasets,	each	vertex	list	will	contain
exactly	one	vertex:	the	location	of	a	point.	For	line	datasets,	each	vertex	list	will	contain	at
least	two	points,	and	will	represent	a	“polyline”,	connecting	each	adjacent	pair	of	vertices
in	the	list.	For	polygon	datasets,	each	vertex	list	will	contain	at	least	three	points,
representing	a	polygon	connecting	each	vertex,	and	the	first	and	last	vertices	in	the	list	will
be	the	same.

gis:centroid-of

gis:centroid-of	VectorFeature

Reports	a	single	Vertex	representing	the	centroid	(center	of	gravity)	of	the	given	feature.
For	point	datasets,	the	centroid	is	defined	as	the	average	location	of	all	points	in	the
feature.	For	line	datasets,	the	centroid	is	defined	as	the	average	of	the	locations	of	the
midpoints	of	all	line	segments	in	the	feature,	weighted	by	segment	length.	For	polygon
datasets,	the	centroid	is	defined	as	the	weighted	sum	of	the	centroids	of	a	decomposition
of	the	area	into	(possibly	overlapping)	triangles.	See	this	FAQ	for	more	details	on	the
polygon	centroid	algorithm.

gis:location-of

gis:location-of	Vertex

Reports	a	two-element	list	containing	the	x	and	y	values	(in	that	order)	of	the	given	vertex
translated	into	NetLogo	world	space	using	the	current	transformation,	or	an	empty	list	if
the	given	vertex	lies	outside	the	NetLogo	world.

gis:property-value

gis:property-value	VectorFeature	property-name

Reports	the	value	of	the	property	with	the	given	name	for	the	given	VectorDataset.	The
reported	value	may	be	a	number,	a	string,	or	a	boolean	value,	depending	on	the	type	of
the	field	in	the	underlying	data	file.

For	shapefiles,	values	from	dBase	CHARACTER	and	DATE	fields	are	returned	as	strings,
values	from	NUMBER	and	FLOAT	fields	are	returned	as	numbers,	and	values	from	LOGICAL
fields	are	returned	as	boolean	values.	MEMO	fields	are	not	supported.	DATE	values	are
converted	to	strings	using	ISO	8601	format	(YYYY-MM-DD).

gis:find-features

http://www.faqs.org/faqs/graphics/algorithms-faq/

gis:find-features	VectorDataset	property-name	specified-value

Reports	a	list	of	all	VectorFeatures	in	the	given	dataset	whose	value	for	the	property
property-name	matches	specified-value	(a	string).	Value	comparison	is	not	case	sensitive,
and	the	wildcard	character	“*”	will	match	any	number	of	occurrences	(including	zero)	of
any	character.

gis:find-one-feature

gis:find-one-feature	VectorDataset	property-name	specified-value

Reports	the	first	VectorFeature	in	the	dataset	whose	value	for	the	property	property-name
matches	the	given	string.	Value	comparison	is	not	case	sensitive,	and	the	wildcard
character	“*”	will	match	any	number	of	occurrences	(including	zero)	of	any	character.
Features	are	searched	in	the	order	that	they	appear	in	the	data	file	that	was	the	source	of
the	dataset,	and	searching	stops	as	soon	as	a	match	is	found.	Reports	nobody	if	no
matching	VectorFeature	is	found.

gis:find-less-than

gis:find-less-than	VectorDataset	property-name	value

Reports	a	list	of	all	VectorFeatures	in	the	given	dataset	whose	value	for	the	property
property-name	is	less	than	the	given	value.	String	values	are	compared	using	case-
sensitive	lexicographic	order	as	defined	in	the	Java	Documentation.	Using	a	string	value
for	a	numeric	property	or	a	numeric	value	for	a	string	property	will	cause	an	error.

gis:find-greater-than

gis:find-greater-than	VectorDataset	property-name	value

Reports	a	list	of	all	VectorFeatures	in	the	given	dataset	whose	value	for	the	property
property-name	is	greater	than	the	given	value.	String	values	are	compared	using	case-
sensitive	lexicographic	order	as	defined	in	the	Java	Documentation.	Using	a	string	value
for	a	numeric	property	or	a	numeric	value	for	a	string	property	will	cause	an	error.

gis:find-range

gis:find-range	VectorDataset	property-name	minimum-value	maximum-value

Reports	a	list	of	all	VectorFeatures	in	the	given	dataset	whose	value	for	the	property
property-name	is	strictly	greater	than	minimum-value	and	strictly	less	than	maximum-
value.	String	values	are	compared	using	case-sensitive	lexicographic	order	as	defined	in
the	Java	Documentation.	Using	a	string	value	for	a	numeric	property	or	a	numeric	value	for
a	string	property	will	cause	an	error.

gis:property-minimum

gis:property-minimum	VectorDataset	property-name

Reports	the	smallest	value	for	the	given	property	over	all	of	the	VectorFeatures	in	the

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)

given	dataset.	String	values	are	compared	using	case-sensitive	lexicographic	order	as
defined	in	the	Java	Documentation.

gis:property-maximum

gis:property-maximum	VectorDataset	property-name

Reports	the	largest	value	for	the	given	property	over	all	of	the	VectorFeatures	in	the	given
dataset.	String	values	are	compared	using	case-sensitive	lexicographic	order	as	defined
in	the	Java	Documentation.

gis:apply-coverage

gis:apply-coverage	VectorDataset	property-name	patch-variable

Copies	values	from	the	given	property	of	the	VectorDataset’s	features	to	the	given	patch
variable.	The	dataset	must	be	a	polygon	dataset;	points	and	lines	are	not	supported.

For	each	patch,	it	finds	all	VectorFeatures	that	intersect	that	patch.	Then,	if	the	property	is
a	string	property,	it	computes	the	majority	value	by	computing	the	total	area	of	the	patch
covered	by	VectorFeatures	having	each	possible	value	of	the	property,	then	returning	the
value	which	represents	the	largest	proportion	of	the	patch	area.	If	the	property	is	a
numeric	property,	it	computes	a	weighted	average	of	property	values	from	all
VectorFeatures	which	intersect	the	patch,	weighted	by	the	proportion	of	the	patch	area
they	cover.

There	are	two	exceptions	to	this	default	behavior:

If	a	percentage	of	a	patches’	area	greater	than	the	coverage-maximum-threshold	is
covered	by	a	single	VectorFeature,	then	the	property	value	from	that	VectorFeature
is	copied	directly.	If	more	than	one	VectorFeature	covers	a	percentage	of	area
greater	than	the	threshold,	only	the	first	will	be	used.

If	the	total	percentage	of	a	patches’	area	covered	by	VectorFeatures	is	less	than	the
coverage-minimum-threshold,	the	target	patch	variable	is	set	to	Not	A	Number.

By	default,	the	minimum	threshold	is	10%	and	the	maximum	threshold	is	33%.	These
values	may	be	modified	using	the	four	primitives	that	follow.

gis:coverage-minimum-threshold

gis:coverage-minimum-threshold

Reports	the	current	coverage	minimum	threshold	used	by	gis:apply-coverage.

gis:set-coverage-minimum-threshold

gis:set-coverage-minimum-threshold	new-threshold

Sets	the	current	coverage	minimum	threshold	to	be	used	by	gis:apply-coverage.

gis:coverage-maximum-threshold

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)

gis:coverage-maximum-threshold

Reports	the	current	coverage	maximum	threshold	used	by	gis:apply-coverage.

gis:set-coverage-maximum-threshold

gis:set-coverage-maximum-threshold	new-threshold

Sets	the	current	coverage	maximum	threshold	to	be	used	by	gis:apply-coverage.

gis:intersects?

gis:intersects?	x	y

Reports	true	if	the	given	objects’	spatial	representations	share	at	least	one	point	in
common,	and	false	otherwise.	The	objects	x	and	y	may	be	any	one	of:

a	VectorDataset,	in	which	case	the	object’s	spatial	representation	is	the	union	of	all	the
points,	lines,	or	polygons	the	dataset	contains.
a	VectorFeature,	in	which	case	the	object’s	spatial	representation	is	defined	by	the
point,	line,	or	polygon	the	feature	contains.
A	turtle,	in	which	case	the	spatial	representation	is	a	point.
A	link,	whose	spatial	representation	is	a	line	segment	connecting	the	two	points
represented	by	the	turtles	the	link	is	connecting.
A	patch,	whose	spatial	representation	is	a	rectangular	polygon.
An	agentset,	whose	spatial	representation	is	the	union	of	the	representations	of	all	of
the	agents	it	contains.
A	list	containing	of	any	of	the	items	listed	here,	including	another	list.	The	spatial
representation	of	such	a	list	is	the	union	of	the	spatial	representations	of	its	contents.

gis:contains?

gis:contains?	x	y

Reports	true	if	every	point	of	y’s	spatial	representation	is	also	a	part	of	x’s	spatial
representation.	Note	that	this	means	that	polygons	do	contain	their	boundaries.	The
objects	x	and	y	may	be	any	one	of

a	VectorDataset,	in	which	case	the	object’s	spatial	representation	is	the	union	of	all	the
points,	lines,	or	polygons	the	dataset	contains.
a	VectorFeature,	in	which	case	the	object’s	spatial	representation	is	defined	by	the
point,	line,	or	polygon	the	feature	contains.
A	turtle,	in	which	case	the	spatial	representation	is	a	point.
A	link,	whose	spatial	representation	is	a	line	segment	connecting	the	two	points
represented	by	the	turtles	the	link	is	connecting.
A	patch,	whose	spatial	representation	is	a	rectangular	polygon.
An	agentset,	whose	spatial	representation	is	the	union	of	the	representations	of	all	of
the	agents	it	contains.
A	list	containing	of	any	of	the	items	listed	here,	including	another	list.	The	spatial
representation	of	such	a	list	is	the	union	of	the	spatial	representations	of	its	contents.

gis:contained-by?

gis:contained-by?	x	y

Reports	true	if	every	point	of	x’s	spatial	representation	is	also	a	part	of	y’s	spatial
representation.	The	objects	x	and	y	may	be	any	one	of:

a	VectorDataset,	in	which	case	the	object’s	spatial	representation	is	the	union	of	all	the
points,	lines,	or	polygons	the	dataset	contains.
a	VectorFeature,	in	which	case	the	object’s	spatial	representation	is	defined	by	the
point,	line,	or	polygon	the	feature	contains.
A	turtle,	in	which	case	the	spatial	representation	is	a	point.
A	link,	whose	spatial	representation	is	a	line	segment	connecting	the	two	points
represented	by	the	turtles	the	link	is	connecting.
A	patch,	whose	spatial	representation	is	a	rectangular	polygon.
An	agentset,	whose	spatial	representation	is	the	union	of	the	representations	of	all	of
the	agents	it	contains.
A	list	containing	of	any	of	the	items	listed	here,	including	another	list.	The	spatial
representation	of	such	a	list	is	the	union	of	the	spatial	representations	of	its	contents.

gis:have-relationship?

gis:have-relationship?	x	y

Reports	true	if	the	spatial	representations	of	the	two	objects	have	the	given	spatial
relationship,	and	false	otherwise.	The	spatial	relationship	is	specified	using	a
Dimensionally	Extended	Nine-	Intersection	Model	(DE-9IM)	matrix.	The	matrix	consists
of	9	elements,	each	of	which	specifies	the	required	relationship	between	the	two	objects’
interior	space,	boundary	space,	or	exterior	space.	The	elements	must	have	one	of	six
possible	values:

“T”,	meaning	the	spaces	must	intersect	in	some	way
“F”,	meaning	the	spaces	must	not	intersect	in	any	way
“0”,	meaning	the	dimension	of	the	spaces’	intersection	must	be	zero	(i.e.,	it	must	be	a
point	or	non-empty	set	of	points).
“1”,	meaning	the	dimension	of	the	spaces’	intersection	must	be	one	(i.e.,	it	must	be	a
line	or	non-empty	set	of	line	segments).
“2”,	meaning	the	dimension	of	the	spaces’	intersection	must	be	two	(i.e.,	it	must	be	a
polygon	or	set	of	polygons	whose	area	is	greater	than	zero).
“*”,	meaning	that	the	two	spaces	may	have	any	relationship.

For	example,	this	matrix:

x
Interior Boundary Exterior

y
Interior T * *

Boundary * * *
Exterior F F *

would	return	true	if	and	only	if	some	part	of	object	x’s	interior	lies	inside	object	y’s	interior,
and	no	part	of	object	x’s	interior	or	boundary	intersects	object	y’s	exterior.	This	is
essentially	a	more	restrictive	form	of	the	contains?	primitive;	one	in	which	polygons	are
not	considered	to	contain	their	boundaries.

The	matrix	is	given	to	the	have-relationship?	primitive	as	a	string,	whose	elements	are
given	in	the	following	order:

1 2 3
4 5 6
7 8 9

So	to	use	the	example	matrix	above,	you	would	write:

gis:have-relationship? x y "T*****FF*"

A	much	more	detailed	and	formal	description	of	the	DE-9IM	matrix	and	the	associated
point-set	theory	can	be	found	in	the	OpenGIS	Simple	Features	Specification	for	SQL.

The	objects	x	and	y	may	be	any	one	of:

a	VectorDataset,	in	which	case	the	object’s	spatial	representation	is	the	union	of	all	the
points,	lines,	or	polygons	the	dataset	contains.
a	VectorFeature,	in	which	case	the	object’s	spatial	representation	is	defined	by	the
point,	line,	or	polygon	the	feature	contains.
A	turtle,	in	which	case	the	spatial	representation	is	a	point.
A	link,	whose	spatial	representation	is	a	line	segment	connecting	the	two	points
represented	by	the	turtles	the	link	is	connecting.
A	patch,	whose	spatial	representation	is	a	rectangular	polygon.
An	agentset,	whose	spatial	representation	is	the	union	of	the	representations	of	all	of
the	agents	it	contains.
A	list	containing	of	any	of	the	items	listed	here,	including	another	list.	The	spatial
representation	of	such	a	list	is	the	union	of	the	spatial	representations	of	its	contents.

gis:relationship-of

gis:relationship-of	x	y

Reports	the	Dimensionally	Extended	Nine-Intersection	Model	(DE-9IM)	matrix	that
describes	the	spatial	relationship	of	the	two	objects.	The	matrix	consists	of	9	elements,
each	of	which	describes	the	relationship	between	the	two	objects’	interior	space,	boundary
space,	or	exterior	space.	Each	element	will	describe	the	dimension	of	the	intersection	of
two	spaces,	meaning	that	it	may	have	one	of	four	possible	values:

“-1”,	meaning	the	spaces	do	not	intersect
“0”,	meaning	the	dimension	of	the	spaces’	intersection	is	zero	(i.e.,	they	intersect	at	a
point	or	set	of	points).
“1”,	meaning	the	dimension	of	the	spaces’	intersection	is	one	(i.e.,	they	intersect	along
one	or	more	lines).
“2”,	meaning	the	dimension	of	the	spaces’	intersection	is	two	(i.e.,	their	intersection	is	a
non-empty	polygon).

For	example,	the	two	polygons	x	and	y	shown	here:

http://www.opengeospatial.org/standards/sfs

have	the	following	DE-9IM	matrix:

x
Interior Boundary Exterior

y
Interior 2 1 2

Boundary 1 0 1
Exterior 2 1 2

Which	would	be	reported	by	the	relationship-of	primitive	as	the	string	“212101212”.

A	much	more	detailed	and	formal	description	of	the	DE-9IM	matrix	and	the	associated
point-set	theory	can	be	found	in	the	OpenGIS	Simple	Features	Specification	for	SQL.

The	objects	x	and	y	may	be	any	one	of:

a	VectorDataset,	in	which	case	the	object’s	spatial	representation	is	the	union	of	all	the
points,	lines,	or	polygons	the	dataset	contains.
a	VectorFeature,	in	which	case	the	object’s	spatial	representation	is	defined	by	the
point,	line,	or	polygon	the	feature	contains.
A	turtle,	in	which	case	the	spatial	representation	is	a	point.
A	link,	whose	spatial	representation	is	a	line	segment	connecting	the	two	points
represented	by	the	turtles	the	link	is	connecting.
A	patch,	whose	spatial	representation	is	a	rectangular	polygon.
An	agentset,	whose	spatial	representation	is	the	union	of	the	representations	of	all	of
the	agents	it	contains.
A	list	containing	of	any	of	the	items	listed	here,	including	another	list.	The	spatial
representation	of	such	a	list	is	the	union	of	the	spatial	representations	of	its	contents.

gis:intersecting

patch-set	gis:intersecting	data

Reports	a	new	agent	set	containing	only	those	members	of	the	given	agent	set	which
intersect	given	GIS	data,	which	may	be	any	one	of:	a	VectorDataset,	a	VectorFeature,	an
Agent,	an	Agent	Set,	or	a	list	containing	any	of	the	above.

gis:width-of

gis:width-of	RasterDataset

Reports	the	number	of	columns	in	the	dataset.	Note	that	this	is	the	number	of	cells	from
left	to	right,	not	the	width	of	the	dataset	in	GIS	space.

http://www.opengeospatial.org/standards/sfs

gis:height-of

gis:height-of	RasterDataset

Reports	the	number	of	rows	in	the	dataset.	Note	that	this	is	the	number	of	cells	from	top	to
bottom,	not	the	height	of	the	dataset	in	GIS	space.

gis:raster-value

gis:raster-value	RasterDataset	x	y

Reports	the	value	of	the	given	raster	dataset	in	the	given	cell.	Cell	coordinates	are
numbered	from	left	to	right,	and	from	top	to	bottom,	beginning	with	zero.	So	the	upper	left
cell	is	(0,	0),	and	the	bottom	right	cell	is	(gis:width-of dataset	-	1,	gis:height-of dataset
-	1).

gis:set-raster-value

gis:set-raster-value	RasterDataset	x	y	value

Sets	the	value	of	the	given	raster	dataset	at	the	given	cell	to	a	new	value.	Cell	coordinates
are	numbered	from	left	to	right,	and	from	top	to	bottom,	beginning	with	zero.	So	the	upper
left	cell	is	(0,	0),	and	the	bottom	right	cell	is	(gis:width-of dataset	-	1,	gis:height-of
dataset	-	1).

gis:minimum-of

gis:minimum-of	RasterDataset

Reports	the	highest	value	in	the	given	raster	dataset.

gis:maximum-of

gis:maximum-of	RasterDataset

Reports	the	lowest	value	in	the	given	raster	dataset.

gis:sampling-method-of

gis:sampling-method-of	RasterDataset

Reports	the	sampling	method	used	to	compute	the	value	of	the	given	raster	dataset	at	a
single	point,	or	over	an	area	smaller	than	a	single	raster	cell.	Sampling	is	performed	by	the
GIS	extension	primitives	raster-sample,	resample,	convolve,	and	apply-raster.	The
sampling	method	will	be	one	of	the	following:

"NEAREST_NEIGHBOR":	the	value	of	the	cell	nearest	the	sampling	location	is	used.
"BILINEAR":	the	value	of	the	four	nearest	cells	are	sampled	by	linear	weighting,
according	to	their	proximity	to	the	sampling	site.
"BICUBIC":	the	value	of	the	sixteen	nearest	cells	are	sampled,	and	their	values	are

combined	by	weight	according	to	a	piecewise	cubic	polynomial	recommended	by
Rifman	(see	Digital	Image	Warping,	George	Wolberg,	1990,	pp	129-131,	IEEE
Computer	Society	Press).
"BICUBIC_2":	the	value	is	sampled	using	the	same	procedure	and	the	same	polynomial
as	with	BICUBIC	above,	but	using	a	different	coefficient.	This	method	may	produce
somewhat	sharper	results	than	BICUBIC,	but	that	result	is	data	dependent.

For	more	information	on	these	sampling	methods	and	on	raster	sampling	in	general,	see
this	wikipedia	article.

gis:set-sampling-method

gis:set-sampling-method	RasterDataset	sampling-method

Sets	the	sampling	method	used	by	the	given	raster	dataset	at	a	single	point,	or	over	an
area	smaller	than	a	single	raster	cell.	Sampling	is	performed	by	the	GIS	extension
primitives	raster-sample,	resample,	convolve,	and	apply-raster.	The	sampling	method	must
be	one	of	the	following:

"NEAREST_NEIGHBOR"
"BILINEAR"
"BICUBIC"
"BICUBIC_2"

See	sampling-method-of	above	for	a	more	specific	description	of	each	sampling	method.

gis:raster-sample

gis:raster-sample	RasterDataset	sample-location

Reports	the	value	of	the	given	raster	over	the	given	location.	The	location	may	be	any	of
the	following:

A	list	of	length	2,	which	is	taken	to	represent	a	point	in	netlogo	space	([xcor ycor])	of
the	sort	reported	by	location-of	Vertex.	The	raster	dataset	is	sampled	at	the	point	of	that
location.
A	list	of	length	4,	which	is	taken	to	represent	an	envelope	in	GIS	space,	of	the	sort
reported	by	envelope-of.	The	raster	dataset	is	sampled	over	the	area	of	that	envelope.
A	patch,	in	which	case	the	raster	dataset	is	sampled	over	the	area	of	the	patch.
A	turtle,	in	which	case	the	raster	dataset	is	sampled	at	the	location	of	that	turtle.
A	Vertex,	in	which	case	the	raster	dataset	is	sampled	at	the	location	of	that	Vertex.

If	the	requested	location	is	outside	the	area	covered	by	the	raster	dataset,	this	primitive
reports	the	special	value	representing	“not	a	number”,	which	is	printed	by	NetLogo	as
“NaN”.	Using	the	special	“not	a	number”	value	as	an	argument	to	primitives	that	expect	a
number	may	cause	an	error,	but	you	can	test	the	value	reported	by	this	primitive	to	filter
out	“not	a	number”	values.	A	value	that	is	not	a	number	will	be	neither	less	than	nor
greater	than	a	number	value,	so	you	can	detect	“not	a	number”	values	using	the	following:

let value gis:raster-sample dataset turtle 0
; set color to blue if value is a number, red if value is "not a number"
ifelse (value <= 0) or (value >= 0)
[set color blue]
[set color red]

http://en.wikipedia.org/wiki/Image_scaling

If	the	requested	location	is	a	point,	the	sample	is	always	computed	using	the	method	set
by	set-sampling-method.	If	the	requested	location	is	an	area	(i.e.,	an	envelope	or	patch),
the	sample	is	computed	by	taking	the	average	of	all	raster	cells	covered	by	the	requested
area.

gis:raster-world-envelope

gis:raster-world-envelope	RasterDataset	x	y

Reports	the	GIS	envelope	needed	to	match	the	boundaries	of	NetLogo	patches	with	the
boundaries	of	cells	in	the	given	raster	dataset.	This	envelope	could	then	be	used	as	an
argument	to	set-transformation-ds.

There	may	be	more	cells	in	the	dataset	than	there	are	patches	in	the	NetLogo	world.	In
that	case,	you	will	need	to	select	a	subset	of	cells	in	the	dataset	by	specifying	which	cell	in
the	dataset	you	want	to	match	with	the	upper-left	corner	of	the	NetLogo	world.	Cells	are
numbered	from	left	to	right,	and	from	top	to	bottom,	beginning	with	zero.	So	the	upper	left
cell	is	(0,	0),	and	the	bottom	right	cell	is	(gis:width-of dataset	-	1,	gis:height-of dataset
-	1).

gis:create-raster

gis:create-raster	width	height	envelope

Creates	and	reports	a	new,	empty	raster	dataset	with	the	given	number	of	columns	and
rows,	covering	the	given	envelope.

gis:resample

gis:resample	RasterDataset	envelope	width	height

Reports	a	new	dataset	that	consists	of	the	given	RasterDataset	resampled	to	cover	the
given	envelope	and	to	contain	the	given	number	of	columns	and	rows.	If	the	new	raster’s
cells	are	smaller	than	the	existing	raster’s	cells,	they	will	be	resampled	using	the	method
set	by	set-sampling-method.	If	the	new	cells	are	larger	than	the	original	cells,	they	will	be
sampled	using	the	"NEAREST_NEIGHBOR"	method.

gis:convolve

gis:convolve	RasterDataset	kernel-rows	kernel-columns	kernel	key-column	key-row

Reports	a	new	raster	whose	data	consists	of	the	given	raster	convolved	with	the	given
kernel.

A	convolution	is	a	mathematical	operation	that	computes	each	output	cell	by	multiplying
elements	of	a	kernel	with	the	cell	values	surrounding	a	particular	source	cell.	A	kernel	is	a
matrix	of	values,	with	one	particular	value	defined	as	the	“key	element”,	the	value	that	is
centered	over	the	source	cell	corresponding	to	the	destination	cell	whose	value	is	being
computed.

The	values	of	the	kernel	matrix	are	given	as	a	list,	which	enumerates	the	elements	of	the
matrix	from	left	to	right,	top	to	bottom.	So	the	elements	of	a	3-by-3	matrix	would	be	listed

in	the	following	order:

1 2 3
4 5 6
7 8 9

The	key	element	is	specified	by	column	and	row	within	the	matrix.	Columns	are	numbered
from	left	to	right,	beginning	with	zero.	Rows	are	numbered	from	top	to	bottom,	also
beginning	with	zero.	So,	for	example,	the	kernel	for	the	horizontal	Sobel	operator,	which
looks	like	this:

1 0 -1

2 0	
(key)

-2

1 0 -1

would	be	specified	as	follows:

let horizontal-gradient gis:convolve dataset 3 3 [1 0 -1 2 0 -2 1 0 -1] 1 1

gis:apply-raster

gis:apply-raster	RasterDataset	patch-variable

Copies	values	from	the	given	raster	dataset	to	the	given	patch	variable,	resampling	the
raster	as	necessary	so	that	its	cell	boundaries	match	up	with	NetLogo	patch	boundaries.
This	resampling	is	done	as	if	using	resample	rather	than	raster-sample,	for	the	sake	of
efficiency.	However,	patches	not	covered	by	the	raster	are	assigned	values	of	“not	a
number”	in	the	same	way	that	raster-sample	reports	values	for	locations	outside	the
raster.

gis:drawing-color

gis:drawing-color

Reports	the	color	used	by	the	GIS	extension	to	draw	vector	features	into	the	NetLogo
drawing	layer.	Color	can	be	represented	either	as	a	NetLogo	color	(a	single	number
between	zero	and	140)	or	an	RGB	color	(a	list	of	3	numbers).	See	details	in	the	Colors
section	of	the	Programming	Guide.

gis:set-drawing-color

gis:set-drawing-color	color

Sets	the	color	used	by	the	GIS	extension	to	draw	vector	features	into	the	NetLogo	drawing
layer.	Color	can	be	represented	either	as	a	NetLogo	color	(a	single	number	between	zero
and	140)	or	an	RGB	color	(a	list	of	3	numbers).	See	details	in	the	Colors	section	of	the
Programming	Guide.

gis:draw

http://en.wikipedia.org/wiki/Sobel_operator

gis:draw	vector-data	line-thickness

Draws	the	given	vector	data	to	the	NetLogo	drawing	layer,	using	the	current	GIS	drawing
color,	with	the	given	line	thickness.	The	data	may	consist	either	of	an	entire
VectorDataset,	or	a	single	VectorFeature.	This	primitive	draws	only	the	boundary	of
polygon	data,	and	for	point	data,	it	fills	a	circle	with	a	radius	equal	to	the	line	thickness.

gis:fill

gis:fill	vector-data	line-thickness

Fills	the	given	vector	data	in	the	NetLogo	drawing	layer	using	the	current	GIS	drawing
color,	using	the	given	line	thickness	around	the	edges.	The	data	may	consist	either	of	an
entire	VectorDataset,	or	a	single	VectorFeature.	For	point	data,	it	fills	a	circle	with	a	radius
equal	to	the	line	thickness.

gis:paint

gis:paint	RasterDataset	transparency

Paints	the	given	raster	data	to	the	NetLogo	drawing	layer.	The	highest	value	in	the
dataset	is	painted	white,	the	lowest	is	painted	in	black,	and	the	other	values	are	painted	in
shades	of	gray	scaled	linearly	between	white	and	black.

The	transparency	input	determines	how	transparent	the	new	image	in	the	drawing	will	be.
Valid	inputs	range	from	0	(completely	opaque)	to	255	(completely	transparent).

gis:import-wms-drawing

gis:import-wms-drawing	server-url	spatial-reference	layers	transparency

Imports	an	image	into	the	NetLogo	drawing	layer	using	the	Web	Mapping	Service
protocol,	as	defined	by	the	Open	Geospatial	Consortium.

The	spatial	reference	and	layers	inputs	should	be	given	as	strings.	The	spatial	reference
input	corresponds	to	the	SRS	parameter	to	the	GetMap	request	as	defined	in	section
7.2.3.5	of	version	1.1.1	of	the	WMS	standard.	The	layers	input	corresponds	to	the
LAYERS	parameter	to	the	as	defined	in	7.2.3.3	of	version	1.1.1	of	the	WMS	standard.

You	can	find	the	list	of	valid	spatial	reference	codes	and	layer	names	by	examining	the
response	to	a	GetCapabilities	request	to	the	WMS	server.	Consult	the	relevant	standard
for	instructions	on	how	to	issue	a	GetCapabilities	request	to	the	server	and	how	to
interpret	the	results.

The	transparency	input	determines	how	transparent	the	new	image	in	the	drawing	will	be.
Valid	inputs	range	from	0	(completely	opaque)	to	255	(completely	transparent).

http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/

NetLogo	Gogo	Extension

Usage

The	GoGo	Extension	comes	preinstalled	when	you	download	and	install	NetLogo.	To	use
the	extension	in	your	model,	add	this	line	to	the	top	of	your	Code	tab:

extensions [gogo]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so
just	add	gogo	to	the	list.

After	loading	the	extension,	you	can	see	whether	one	or	more	HID-based	gogos	are	on
and	attached	to	the	computer	by	typing	the	following	into	the	command	center:

gogo:howmany-gogos

Changes

Compared	to	previous	versions	of	the	GoGo	extension,	this	version	offers:

Improved	robustness.	With	prior	versions	of	the	GoGo	extension,	crashes	were	fairly
common	due	to	problems	in	the	USB-Serial	stack	across	platforms.	The	switch	to	HID
improved	robustness,	and	the	new	extension	also	uses	a	“daemon”	architecture	which
shields	NetLogo	from	any	problems	that	may	occur	in	direct	communication	with	the
GoGo	board.	The	result	is	a	substantial	reduction	in	the	number	of	crashes	of	NetLogo.
No	Installation	of	Drivers.	Because	the	new	GoGo	firmware	presents	the	board	as	an
HID	device,	the	extension	could	be	written	so	as	not	to	require	installing	drivers.	This
means	there	is	no	need	for	the	user	to	have	administrator	rights	on	the	computer.
Directionality	for	Motors.	The	board	now	has	polarity-ensuring	output	connectors,	so
that	“counterclockwise”	or	“clockwise”	can	now	be	specified	in	code.

Primitives

Other	Outputs

gogo:led	gogo:beep

Utilities

gogo:read-all

General

gogo:primitives	gogo:howmany-gogos

Sensors

gogo:read-sensors	gogo:read-sensor

Outputs	and	Servos

gogo:talk-to-output-ports	gogo:set-output-port-power	gogo:output-port-on	gogo:output-
port-off	gogo:output-port-clockwise	gogo:output-port-counterclockwise	gogo:set-servo

gogo:primitives

gogo:primitives

Returns	a	list	of	the	primitives	of	this	extension.

gogo:howmany-gogos

gogo:howmany-gogos

Reports	the	number	of	USB	HID	devices	visible	to	the	computer	and	having	the	correct
vendor	and	product	ID	to	be	a	GoGo	board.	A	board	will	only	be	detected	if	it	is	both
connected	and	powered	on.	Using	this	primitive	is	one	way	to	determine	quickly	whether	a
GoGo	board	has	the	HID	firmware	loaded.	(A	USB-Serial	version	of	the	board	will	not	be
detected.).

gogo:talk-to-output-ports

gogo:talk-to-output-ports	list-of-portnames

Establishes	a	list	of	output	ports	that	will	be	controlled	with	subsequent	output-port
commands.	See	below…

gogo:set-output-port-power

gogo:set-output-port-power	power-level

power-level	is	a	number	between	0	and	100,	reflecting	the	percentage	of	maximum
power.	Sets	the	amount	of	power	that	will	be	fed	to	the	output	ports	indicated	in	talk-to-
output-ports.	This	will	not	affect	the	on-off	state	of	the	output	ports.	So,	for	example,	if	a
motor	is	already	connected	to	an	output	port	and	running,	changing	its	power	will	change
its	speed.	If	the	motor	is	not	running,	changing	the	power	level	will	not	turn	it	on;	instead,	it
will	affect	the	speed	at	which	the	motor	starts	when	it	is	turned	on	with	output-port-on.

gogo:output-port-on

gogo:output-port-on

Turns	on	the	output	ports	which	have	been	indicated	with	talk-to-output-ports.	If	none	have
been	set	with	talk-to-output-ports,	no	ports	will	be	turned	on.

gogo:output-port-off

gogo:output-port-off

Turns	off	the	output	ports	which	have	been	indicated	with	talk-to-output-ports.	If	none	have
been	set	with	talk-to-output-ports,	no	ports	will	be	turned	off.

gogo:output-port-clockwise

gogo:output-port-clockwise

Sets	the	polarity	of	the	output	port(s)	that	have	been	specified	with	talk-to-output-ports,	so
that	a	motor	attached	to	one	of	these	ports	would	turn	clockwise.

gogo:output-port-counterclockwise

gogo:output-port-counterclockwise

Sets	the	polarity	of	the	output	port(s)	that	have	been	specified	with	talk-to-output-ports,
so	that	a	motor	attached	to	one	of	these	ports	would	turn	counterclockwise.

gogo:set-servo

gogo:set-servo	number

Sets	the	Pulse-Width	Modulation	(PWM)	proportion	of	the	output	port(s)	that	have	been
specified	with	talk-to-output-ports.	Note	that	the	servo	connectors	are	the	male	pins	next
to	the	standard	motor	connectors.	Different	servos	respond	to	different	PWM	ranges,	but
all	servos	read	PWM	proportions	and	set	the	position	of	their	main	gear	accordingly.

gogo:led

gogo:led	on-or-off

Turns	the	user-LED	on	or	off,	depending	on	the	argument.	gogo:led	1	turns	the	LED	on;
gogo:led	0	turns	it	off.

gogo:beep

gogo:beep

Causes	the	GoGo	board	to	beep.

gogo:read-sensors

gogo:read-sensors

Reports	a	list	containing	the	current	readings	of	all	eight	sensors	ports	of	the	GoGo.

gogo:read-sensor

gogo:read-sensor	which-sensor

Reports	the	value	of	sensor	number	which-sensor,	where	which-sensor	is	a	number
between	0-7.

gogo:read-all

gogo:read-all

Reports	all	data	available	from	the	board,	in	a	raw-list	form	useful	for	debugging.

gogo:send-bytes

gogo:send-bytes	list

Sends	a	list	of	bytes	to	the	GoGo	board.	Useful	for	debugging	or	for	testing	any	new	or
future	functionality	that	is	added	to	the	GoGo	board	with	new	firmware	updates.

NetLogo	Ls	Extension

LevelSpace	fundamentals

LevelSpace	must	be	loaded	in	a	model	using	extensions [ls]	at	the	top	of	your	model.
Once	this	is	done,	a	model	will	be	able	to	load	up	other	models	using	the	LevelSpace
primitives,	run	commands	and	reporters	in	them,	and	close	them	down	when	they	are	no
longer	needed.

Asking	and	reporting	in	LevelSpace	is	conceptually	pretty	straight	forward:	You	pass	blocks
of	code	to	child	models,	and	the	child	models	respond	as	if	you	had	typed	that	code	into
their	Command	Center.	LevelSpace	allows	you	to	report	strings,	numbers,	and	lists	from	a
child	to	its	parent.	It	is	not	possible	to	directly	report	turtles,	patches,	links,	or	any	of	their
respective	sets.	Further,	it	is	not	possible	to	push	data	from	a	child	to	its	parent	-	parents
must	ask	their	children	to	report.	This	mimicks	the	way	in	which	turtles	cannot	“push”	data
to	the	observer,	but	rely	on	the	observer	to	ask	them	for	it.

In	general,	the	LevelSpace	syntax	has	been	designed	to	align	with	existing	NetLogo
primitives	whenever	possible.

Headless	and	Interactive	Models

LevelSpace	has	two	different	child	model	types;	headless	models	and	interactive	models.
They	each	have	their	strengths	and	weaknesses:

Interactive	models	*	are	full-fledged	models	that	give	full	access	to	their	interface	and
widgets,	*	run	a	bit	slower,	and	use	more	memory	*	are	visible	by	default

Headless	Models	*	only	give	you	access	to	their	view	and	command	center	*	are	faster	and
use	less	memory	than	interactive	models.	*	are	hidden	by	default

Typically	you	will	want	to	use	headless	models	when	you	are	running	a	large	number	of
models,	or	if	you	simply	want	to	run	them	faster.	Interactive	models	are	good	if	you	run	a
small	amount	of	models,	if	you	are	writing	a	LevelSpace	model	and	need	to	be	able	to
debug,	or	if	you	need	access	to	widgets	during	runtime.

Keeping	Track	of	Models

Child	models	are	kept	track	of	in	the	extension	with	an	id	number,	starting	with	0,	and	all
communication	from	parent	to	child	is	done	by	referencing	this	number,	henceforth	referred
to	as	model-id.

The	easiest	way	to	work	with	multiple	models	is	to	store	their	model-id	in	a	list,	and	use
NetLogo’s	list	primitives	to	sort,	filter,	etc.	them	during	runtime.

Keeping	track	of	models	is	important:	Most	LevelSpace	primitives	will	fail	and	cause	a
runtime	interruption	if	provided	a	model-id	to	a	non-existing	model.	You	can	use	ls:model-
exists? model-id	to	check	if	model-id	refers	to	an	existing	model.

A	general	use	case:	Asking	and	Reporting

This	use	case	is	based	on	the	Model	Visualizer	and	Plotter	Example-model	from	the
NetLogo	Models	Library.

A	simple	thing	we	can	do	is	to	open	up	some	models,	run	them	concurrently,	and	calculate
the	average	of	some	reporter.	Let’s	say	that	we	are	interested	in	finding	the	mean	number
of	sheep	in	a	bunch	of	Wolf	Sheep	Predation	models.	First	we	would	open	up	some	of
these	models,	and	set	them	up:

to setup
 ls:reset
 ca
 ls:create-models 30 "Wolf Sheep Predation.nlogo"
 ls:ask ls:models [set grass? true setup]
 reset-ticks
end

We	then	want	to	run	all	our	child	models,	and	then	find	out	what	the	mean	number	of
sheep	is:

to go
 ls:ask ls:models [go]
 show mean [count sheep] ls:of ls:models
end

A	general	use	case:	Inter-Model	Interactions

This	use	case	is	based	on	the	Model	Interactions	Example-model	from	the	NetLogo	Models
Library.

Let’s	imagine	that	we	have	two	models:	a	Wolf	Sheep	Predation-model	called	WSP,	and	a
Climate	Change	model	called	CC.	Now	let’s	imagine	that	we	want	the	regrowth	time	in	the
wSP	model	to	depend	on	the	temperature	in	the	CC	model.	Using	LevelSpace’s	primitives,
we	could	do	something	like	this:

 ; save new regrowth time in a temporary LevelSpace let-variable
 ls:let new-regrowth-time 25 + (abs [temperature - 55] ls:of CC) / 2

 ; remove decimals, pass it to the wolf sheep predation model and change the time
 ls:ask WSP [
 set grass-regrowth-time round new-regrowth-time
]

 ; finally ask both models to go
 ls:ask ls:models [go]

A	general	Usecase:	Tidying	up	“Dead”	Child	Models

As	previously	mentioned,	it	is	important	to	keep	track	of	“living”	and	“dead”	models	when
you	dynamically	create	and	dispose	of	models.	Let	us	imagine	we	have	some	lists	of
models	of	different	kinds,	and	we	want	to	make	sure	that	we	only	keep	the	models	that	are
alive.	After	running	code	that	kills	child	models	we	can	use	the	ls:model-exists?	primitive
to	clean	up	our	list	of	models	like	this:

to-report remove-dead-models [list-of-models]
 report filter [[model-id] -> ls:model-exists model-id] list-of-models
end

We	then	reassign	each	list	of	models	with	this,	e.g.

set a-list-of-models remove-dead-models a-list-of-models
set another-list-of-models remove-dead-models a-list-of-models

Citing	LevelSpace	in	Research

If	you	use	LevelSpace	in	research,	we	ask	that	you	cite	us,

Hjorth,	A.	Head,	B.	&	Wilensky,	U.	(2015).	“LevelSpace	NetLogo	extension”.
http://ccl.northwestern.edu/rp/levelspace/index.shtml	Evanston,	IL:	Center	for	Connected
Learning	and	Computer	Based	Modeling,	Northwestern	University.

Primitives

Commanding	and	Reporting

ls:ask	ls:of	ls:report	ls:with	ls:let

Logic	and	Control

ls:models	ls:show	ls:show-all	ls:hide	ls:hide-all	ls:path-of	ls:name-of	ls:model-exists?

Opening	and	Closing	Models

ls:create-models	ls:create-interactive-models	ls:close	ls:reset

ls:create-models

ls:create-models	number	path
ls:create-models	number	path	anonymous	command

Create	the	specified	number	of	instances	of	the	given	.nlogo	model.	The	path	can	be
absolute,	or	relative	to	the	main	model.	Compared	with	ls:create-interactive-models,	this
primitive	creates	lightweight	models	that	are	hidden	by	default.	You	should	use	this
primitive	if	you	plan	on	having	many	instances	of	the	given	model.	The	models	may	be
shown	using	ls:show;	when	visible,	they	will	have	a	view	and	command	center,	but	no
other	widgets,	e.g.	plots	or	monitors.

If	given	a	command,	LevelSpace	will	call	the	command	after	loading	each	instance	of	the
model	with	the	model-id	as	the	argument.	This	allows	you	to	easily	store	model	ids	in	a
variable	or	list	when	loading	models,	or	do	other	initialization.	For	example,	to	store	a
model	id	in	a	variable,	you	can	do:

let model-id 0
(ls:create-models "My-Model.nlogo" [[id] -> set model-id id])

ls:create-interactive-models

ls:create-interactive-models	number	path
ls:create-interactive-models	number	path	anonymous	command

Like	ls:create-models,	creates	the	specified	number	of	instances	of	the	given	.nlogo

http://ccl.northwestern.edu/rp/levelspace/index.shtml

model.	Unlike	ls:create-models,	ls:create-interactive-models	creates	models	that	are
visible	by	default,	and	have	all	widgets.	You	should	use	this	primitive	if	you	plan	on	having
only	a	handful	of	instances	of	the	given	model,	and	would	like	to	be	able	to	interact	with	the
instances	through	their	interfaces	during	runtime.

ls:close

ls:close	model-or-list-of-models

Close	the	model	or	models	with	the	given	model-id.

ls:reset

ls:reset

Close	down	all	child	models	(and,	recursively,	their	child	models).	You’ll	often	want	to	call
this	in	your	setup	procedure.

Note	that	clear-all	does	not	close	LevelSpace	models.

ls:ask

ls:ask	model-or-list-of-models	command	argument

Ask	the	given	child	model	or	list	of	child	models	to	run	the	given	command.	This	is	the
primary	of	doing	things	with	child	models.	For	example:

ls:ask model-id [create-turtles 5]

You	can	also	ask	a	list	of	models	to	all	do	the	same	thing:

ls:ask ls:models [create-turtles 5]

You	may	supply	the	command	with	arguments,	just	like	you	would	with	anonymous
commands:

let turtle-id 0
let speed 5
(ls:ask model-id [[t s] -> ask turtle t [fd s]] turtle-id speed)

Note	that	the	commands	cannot	access	variables	in	the	parent	model	directly.	You	must
either	pass	information	in	through	arguments	or	using	ls:let.

ls:of

reporter	ls:of	model-or-list-of-models

Run	the	given	reporter	in	the	given	model	and	report	the	result.

ls:of	is	designed	to	work	like	NetLogo’s	inbuilt	of:	If	you	send	ls:of	a	model-id,	it	will
report	the	value	of	the	reporter	from	that	model.	If	you	send	it	a	list	of	model-ids,	it	will

report	a	list	of	values	of	the	reporter	string	from	all	models.	You	cannot	pass	arguments	to
ls:of,	but	you	can	use	ls:let.

[count turtles] ls:of model-id

ls:report

ls:report	model-or-list-of-models	reporter	argument

Run	the	given	reporter	in	the	given	model	and	report	the	result.	This	form	exists	to	allow
you	to	pass	arguments	to	the	reporter.

let turtle-id 0
(ls:report model-id [[a-turtle] -> [color] of turtle a-turtle] turtle-id)

ls:with

list-of-models	ls:with	reporter

Reports	a	new	list	of	models	containing	only	those	models	that	report	true	when	they	run
the	reporter	block.

ls:models ls:with [count turtles > 100]

ls:let

ls:let	variable-name	value

Creates	a	variable	containing	the	given	data	that	can	be	accessed	by	the	child	models.

ask turtles [
 ls:let my-color color
 ls:ask my-model [
 ask turtles [set color my-color]
]
]

ls:let	works	quite	similar	to	let	in	that	the	variable	is	only	locally	accessible:

ask turtles [
 ls:let my-color color
]
;; my-color is innaccessible here

ls:let	is	very	similar	to	let,	except	in	a	few	cases.

ls:let	will	overwrite	previous	values	in	the	variable

If	you	do

ls:let my-var 5

ls:let my-var 6

my-var	will	be	set	equal	to	6.	There	is	no	ls:set.

ls:let	supports	variable	shadowing

If	you	do

ls:let my-var 5
ask turtles [
 ls:let my-var 6
 ls:ask child-model [show my-var]
]
ls:ask child-model [show my-var]

child-model	will	show	6	and	then	5.	This	is	known	as	variable	shadowing.

The	parent	model	cannot	directly	read	the	value	of	an	ls	variable

For	example,	this	does	not	work.

ls:let my-var 5
show my-var

This	is	intentional.	ls	variables	are	meant	to	be	used	for	sharing	data	with	child	models.	The
parent	model	already	has	access	to	the	data.

Furthermore,	changing	the	value	of	an	ls	let	variable	in	a	child	model	will	not	affect	it	in	any
other	model.	For	example:

ls:let my-var 0
ls:ask ls:models [
 set my-var my-var + 1
 show my-var
]

All	models	will	print	1.

ls:let	does	not	respect	the	scope	of	if,	when,	and	repeat

This	behavior	should	be	considered	a	bug	and	not	relied	upon.	It	is	an	unfortunate
consequence	of	the	way	the	NetLogo	engine	works.	Hopefully,	we’ll	be	able	to	correct	this
in	a	future	version	of	NetLogo.

For	example,	this	is	allowable:

if true [
 ls:let my-var 5
]
ls:ask child-model [create-turtles my-var]

The	scope	of	ask	is	respected,	however.

ls:models

ls:models

https://en.wikipedia.org/wiki/Variable_shadowing

Report	a	list	of	model-ids	for	all	existing	models.

ls:show

ls:show	model-or-list-of-models

Makes	all	of	the	given	models	visible.

ls:show-all

ls:show-all	model-or-list-of-models

Makes	all	of	the	given	models	and	their	descendents	visible.

ls:hide

ls:hide	model-or-list-of-models

Hide	all	of	the	given	models.	Hiding	models	is	a	good	way	of	making	your	simulation	run
faster.

ls:hide-all

ls:hide-all	model-or-list-of-models

Hide	all	of	the	given	models	and	their	descendents.	Hiding	models	is	a	good	way	of	making
your	simulation	run	faster.

ls:path-of

ls:path-of	model-or-list-of-models

Report	the	full	path,	including	the	.nlogo	file	name,	of	the	model.	If	a	list	of	models	is	given,
a	list	of	paths	is	reported.

ls:name-of

ls:name-of	model-or-list-of-models

Reports	the	name	of	the	.nlogo	file	of	the	model.	This	is	the	name	of	the	window	in	which
the	model	appears	when	visible.	If	a	list	of	models	is	given,	a	list	of	names	is	reported.

ls:model-exists?

ls:model-exists?	model-or-list-of-models

Report	a	boolean	value	for	whether	there	is	a	model	with	that	model-id.	This	is	often	useful
when	you	are	dynamically	generating	models,	and	want	to	ensure	that	you	are	not	asking
models	that	no	longer	exist	to	do	stuff.

NetLogo	Matrix	Extension

Using

The	matrix	extension	adds	a	new	matrix	data	structure	to	NetLogo.	A	matrix	is	a	mutable	2-dimensional	array	containing
only	numbers.

When	to	Use

Although	matrices	store	numbers,	much	like	a	list	of	lists,	or	an	array	of	arrays,	the	primary	reason	to	use	the	matrix	data
type	is	to	take	advantage	of	special	mathematical	operations	associated	with	matrices.	For	instance,	matrix	multiplication
is	a	convenient	way	to	perform	geometric	transformations,	and	the	repeated	application	of	matrix	multiplication	can	also
be	used	to	simulate	other	dynamic	processes	(for	instance,	processes	on	graph/network	structures).

If	you’d	like	to	know	more	about	matrices	and	how	they	can	be	used,	you	might	consider	a	course	on	linear	algebra,	or
search	the	web	for	tutorials.	The	matrix	extension	also	allows	you	to	solve	linear	algebraic	equations	(specified	in	a
matrix	format),	and	even	to	identify	trends	in	your	data	and	perform	linear	(ordinary	least	squares)	regressions	on	data
sets	with	multiple	explanatory	variables.

How	to	Use

The	matrix	extension	comes	preinstalled.

To	use	the	matrix	extension	in	your	model,	add	a	line	to	the	top	of	your	Code	tab:

extensions [matrix]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so	just	add	matrix	to	the	list.

Example

let m matrix:from-row-list [[1 2 3] [4 5 6]]
print m
=> {{matrix: [[1 2 3][4 5 6]]}}
print matrix:pretty-print-text m
=>
[[1 2 3]
 [4 5 6]]

print matrix:dimensions m
=> [2 3]
;;(NOTE: row & column indexing starts at 0, not 1)
print matrix:get m 1 2 ;; what number is in row 1, column 2?
=> 6
matrix:set m 1 2 10 ;; change the 6 to a 10
print m
=> {{matrix: [[1 2 3][4 5 10]]}}

let m2 matrix:make-identity 3
print m2
=> {{matrix: [[1 0 0][0 1 0][0 0 1]]}}
print matrix:times m m2 ;; multiplying by the identity changes nothing
=> {{matrix: [[1 2 3][4 5 10]]}}

;; make a new matrix with the middle 1 changed to -1
let m3 (matrix:set-and-report m2 1 1 -1)
print m3
=> {{matrix: [[1 0 0][0 -1 0][0 0 1]]}}
print matrix:times m m3
=> {{matrix: [[1 -2 3][4 -5 10]]}}

print matrix:to-row-list (matrix:plus m2 m3)
=> [[2 0 0] [0 0 0] [0 0 2]]

Primitives

Matrix	creation	and	conversion	to/from	lists

matrix:make-constant	matrix:make-identity	matrix:from-row-list	matrix:from-column-list	matrix:to-row-list
matrix:to-column-list	matrix:copy	matrix:pretty-print-text

Advanced	features

matrix:solve	matrix:forecast-linear-growth	matrix:forecast-compound-growth	matrix:forecast-continuous-growth
matrix:regress

Matrix	data	retrieval	and	manipulation

matrix:get	matrix:get-row	matrix:get-column	matrix:set	matrix:set-row	matrix:set-column	matrix:swap-rows
matrix:swap-columns	matrix:set-and-report	matrix:dimensions	matrix:submatrix	matrix:map

Math	operations

matrix:times-scalar	matrix:times	matrix:*	matrix:times-element-wise	matrix:plus-scalar	matrix:plus	matrix:+
matrix:minus	matrix:-	matrix:inverse	matrix:transpose	matrix:real-eigenvalues	matrix:imaginary-eigenvalues
matrix:eigenvectors	matrix:det	matrix:rank	matrix:trace

matrix:make-constant

matrix:make-constant	n-rows	n-cols	initialValue

Reports	a	new	n-rows	by	n-cols	matrix	object,	with	all	entries	in	the	matrix	containing	the	same	value	(number).

matrix:make-identity

matrix:make-identity	size

Reports	a	new	square	matrix	object	(with	dimensions	n-size	x	n-size),	consisting	of	the	identity	matrix	(1s	along	the	main
diagonal,	0s	elsewhere).

matrix:from-row-list

matrix:from-row-list	nested-list

Reports	a	new	matrix	object,	created	from	a	NetLogo	list,	where	each	item	in	that	list	is	another	list	(corresponding	to
each	of	the	rows	of	the	matrix.)

print matrix:from-row-list [[1 2] [3 4]]
=> {{matrix: [[1 2][3 4]]}}
;; Corresponds to this matrix:
;; 1 2
;; 3 4

matrix:from-column-list

matrix:from-column-list	nested-list

Reports	a	new	matrix	object,	created	from	a	NetLogo	list	containing	each	of	the	columns	of	the	matrix.

matrix:to-row-list

matrix:to-row-list	matrix

Reports	a	list	of	lists,	containing	each	row	of	the	matrix.

matrix:to-column-list

matrix:to-column-list	matrix

Reports	a	list	of	lists,	containing	each	column	of	the	matrix.

matrix:copy

matrix:copy	matrix

Reports	a	new	matrix	that	is	an	exact	copy	of	the	given	matrix.	This	primitive	is	important	because	the	matrix	type	is
mutable	(changeable).	Here’s	a	code	example:

let m1 matrix:from-column-list [[1 4 7][2 5 8][3 6 9]] ; a 3x3 matrix
print m1
=> {{matrix: [[1 2 3][4 5 6][7 8 9]]}}
let m2 m1 ;; m2 refers to the same matrix object as m1
let m3 matrix:copy m1 ;; m3 is a new copy containing m1's data

matrix:set m1 0 0 100 ;; now m1 is changed

print m1
=> {{matrix: [[100 2 3][4 5 6][7 8 9]]}}

print m2
=> {{matrix: [[100 2 3][4 5 6][7 8 9]]}}
;;Notice that m2 was also changed, when m1 was changed!

print m3
=> {{matrix: [[1 2 3][4 5 6][7 8 9]]}}

matrix:pretty-print-text

matrix:pretty-print-text	matrix

Reports	a	string	that	is	a	textual	representation	of	the	matrix,	in	a	format	that	is	reasonably	human-readable	when
displayed.

matrix:get

matrix:get	matrix	row-i	col-j

Reports	the	(numeric)	value	at	location	row-i	(second	argument),	col-j	(third	argument),	in	the	given	matrix	given	in	the
first	argument

matrix:get-row

matrix:get-row	matrix	row-i

Reports	a	simple	(not	nested)	NetLogo	list	containing	the	elements	of	row-i	(second	argument)	of	the	matrix	supplied	in
the	first	argument.

matrix:get-column

matrix:get-column	matrix	col-j

Reports	a	simple	(not	nested)	NetLogo	list	containing	the	elements	of	col-j	of	the	matrix	supplied	in	the	first	argument.

matrix:set

matrix:set	matrix	row-i	col-j	new-value

Changes	the	given	matrix	by	setting	the	value	at	location	row-i,	col-j	to	new-value

matrix:set-row

matrix:set-row	matrix	row-i	simple-list

Changes	the	given	matrix	matrix	by	replacing	the	row	at	row-i	with	the	contents	of	the	simple	(not	nested)	NetLogo	list
simple-list.	The	simple-list	must	have	a	length	equal	to	the	number	of	columns	in	the	matrix,	i.e.,	the	matrix	row	length.

matrix:set-column

matrix:set-column	matrix	col-j	simple-list

Changes	the	given	matrix	matrix	by	replacing	the	column	at	col-j	with	the	contents	of	the	simple	(not	nested)	NetLogo	list
simple-list.	The	simple-list	must	have	a	length	equal	to	the	number	of	rows	in	the	matrix,	i.e.,	the	matrix	column	length
length.

matrix:swap-rows

matrix:swap-rows	matrix	row1	row2

Changes	the	given	matrix	matrix	by	swapping	the	rows	at	row1	and	row2	with	each	other.

matrix:swap-columns

matrix:swap-columns	matrix	col1	col2

Changes	the	given	matrix	matrix	by	swapping	the	columns	at	col1	and	col2	with	each	other.

matrix:set-and-report

matrix:set-and-report	matrix	row-i	col-j	new-value

Reports	a	new	matrix,	which	is	a	copy	of	the	given	matrix	except	that	the	value	at	row-i,col-j	has	been	changed	to	new-
value.	A	NetLogo	statement	such	as	set mat matrix:set-and-report mat 2 3 10	will	result	in	mat	pointing	to	this	new
matrix,	a	copy	of	the	old	version	of	mat	with	the	element	at	row	2,	column	3	being	set	to	10.	The	old	version	of	mat	will	be
“lost”.

matrix:dimensions

matrix:dimensions	matrix

Reports	a	2-element	list	([num-rows,num-cols]),	containing	the	number	of	rows	and	number	of	columns	in	the	given
matrix

matrix:submatrix

matrix:submatrix	matrix	r1	c1	r2	c2

Reports	a	new	matrix	object,	consisting	of	a	rectangular	subsection	of	the	given	matrix.	The	rectangular	region	is	from
row	r1	up	to	(but	not	including)	row	r2,	and	from	column	c1	up	to	(but	not	including)	column	c2.

Here	is	an	example:

let m matrix:from-row-list [[1 2 3][4 5 6][7 8 9]]
print matrix:submatrix m 0 1 2 3 ; matrix, row-start, col-start, row-end, col-end
 ; rows from 0 (inclusive) to 2 (exclusive),
 ; columns from 1 (inclusive) to 3 (exclusive)
=> {{matrix: [[2 3][5 6]]}}

matrix:map

matrix:map	anonymous	reporter	matrix
matrix:map	anonymous	reporter	matrix	anything

Reports	a	new	matrix	which	results	from	applying	reporter	(an	anonymous	reporter	or	the	name	of	a	reporter)	to	each	of
the	elements	of	the	given	matrix.	For	example,

matrix:map sqrt matrix

would	take	the	square	root	of	each	element	of	matrix.	If	more	than	one	matrix	argument	is	provided,	the	reporter	is	given
the	elements	of	each	matrix	as	arguments.	Thus,

(matrix:map + matrix1 matrix2)

would	add	matrix1	and	matrix2.

This	reporter	is	meant	to	be	the	same	as	map,	but	for	matrices	instead	of	lists.

matrix:times-scalar

matrix:times-scalar	matrix	factor

As	of	NetLogo	5.1,	matrix:times	can	multiply	matrices	by	scalars	making	this	function	obsolete.	Use	matrix:times
instead.

Reports	a	new	matrix,	which	is	the	result	of	multiplying	every	entry	in	the	original	matrix	by	the	given	scaling	factor.

matrix:times

matrix:times	m1	m2
matrix:times	m1	m2	...

Reports	a	matrix,	which	is	the	result	of	multiplying	the	given	matrices	and	scalars	(using	standard	matrix	multiplication	–
make	sure	your	matrix	dimensions	match	up.)	Without	parentheses,	it	takes	two	arguments.	With	parentheses	it	takes
two	or	more.	The	arguments	may	either	be	numbers	or	matrices,	but	at	least	one	must	be	a	matrix.

matrix:*

m1	matrix:*	m2

Reports	a	matrix,	which	is	the	result	of	multiplying	the	given	matrices	and/or	scalars	(using	standard	matrix	multiplication
–	make	sure	your	matrix	dimensions	match	up.)	This	is	exactly	the	same	as	matrix:times m1 m2

Takes	precedence	over	matrix:+	and	matrix:-,	same	as	normal	multiplication.

matrix:times-element-wise

matrix:times-element-wise	m1	m2

Reports	a	matrix,	which	is	the	result	of	multiplying	the	given	matrices	together,	element-wise.	All	elements	are	multiplied
by	scalar	arguments	as	well.	Note	that	all	matrix	arguments	must	have	the	same	dimensions.	Without	parentheses,	it
takes	two	arguments.	With	parentheses	it	takes	two	or	more.	The	arguments	may	either	be	numbers	or	matrices,	but	at
least	one	must	be	a	matrix.

matrix:plus-scalar

matrix:plus-scalar	matrix	number

As	of	NetLogo	5.1,	matrix:plus	can	add	matrices	and	scalars	making	this	function	obsolete.	Use	matrix:plus	instead.

Reports	a	matrix,	which	is	the	result	of	adding	the	constant	number	to	each	element	of	the	given	matrix.

matrix:plus

matrix:plus	m1	m2
matrix:plus	m1	m2	...

Reports	a	matrix,	which	is	the	result	of	adding	the	given	matrices	and	scalars.	Scalars	are	added	to	each	element.
Without	parentheses,	it	takes	two	arguments.	With	parentheses	it	takes	two	or	more.	The	arguments	may	either	be
numbers	or	matrices,	but	at	least	one	must	be	a	matrix.

matrix:+

m1	matrix:+	m2

Reports	a	matrix,	which	is	the	result	of	adding	the	given	matrices	and/or	scalars.	This	is	exactly	the	same	as	matrix:plus
m1 m2

Takes	precedence	after	matrix:*,	same	as	normal	addition.

matrix:minus

matrix:minus	m1	m2
matrix:minus	m1	m2	...

Reports	a	matrix,	which	is	the	result	of	subtracting	all	arguments	besides	m1	from	m1.	Scalar	arguments	are	treated	as
matrices	of	the	same	size	as	the	matrix	arguments	with	every	element	equal	to	that	scalar.	Without	parentheses,	it	takes
two	arguments.	With	parentheses	it	takes	two	or	more.	The	arguments	may	either	be	numbers	or	matrices,	but	at	least
one	must	be	a	matrix.

matrix:-

m1	matrix:-	m2

Reports	a	matrix,	which	is	the	result	of	subtracting	the	given	matrices	and/or	scalars.	This	is	exactly	the	same	as

matrix:minus m1 m2

Takes	precedence	after	matrix:*,	same	as	normal	subtraction.

matrix:inverse

matrix:inverse	matrix

Reports	the	inverse	of	the	given	matrix,	or	results	in	an	error	if	the	matrix	is	not	invertible.

matrix:transpose

matrix:transpose	matrix

Reports	the	transpose	of	the	given	matrix.

matrix:real-eigenvalues

matrix:real-eigenvalues	matrix

Reports	a	list	containing	the	real	eigenvalues	of	the	given	matrix.

matrix:imaginary-eigenvalues

matrix:imaginary-eigenvalues	matrix

Reports	a	list	containing	the	imaginary	eigenvalues	of	the	given	matrix.

matrix:eigenvectors

matrix:eigenvectors	matrix

Reports	a	matrix	that	contains	the	eigenvectors	of	the	given	matrix.	(Each	eigenvector	as	a	column	of	the	resulting
matrix.)

matrix:det

matrix:det	matrix

Reports	a	the	determinant	of	the	matrix.

matrix:rank

matrix:rank	matrix

Reports	the	effective	numerical	rank	of	the	matrix,obtained	from	SVD	(Singular	Value	Decomposition).

matrix:trace

matrix:trace	matrix

Reports	the	trace	of	the	matrix,	which	is	simply	the	sum	of	the	main	diagonal	elements.

matrix:solve

matrix:solve	A	C

Reports	the	solution	to	a	linear	system	of	equations,	specified	by	the	A	and	C	matrices.	In	general,	solving	a	set	of	linear
equations	is	akin	to	matrix	division.	That	is,	the	goal	is	to	find	a	matrix	B	such	that	A	*	B	=	C.	(For	simple	linear	systems,
C	and	B	can	both	be	1-dimensional	matrices	–	i.e.	vectors).	If	A	is	not	a	square	matrix,	then	a	“least	squares”	solution	is
returned.

;; To solve the set of equations x + 3y = 10 and 7x - 4y = 20
;; We make our A matrix [[1 3][7 -4]], and our C matrix [[10][20]]
let A matrix:from-row-list [[1 3][7 -4]]
let C matrix:from-row-list [[10][20]]
print matrix:solve A C
=> {{matrix: [[4][2.0000000000000004]]}}
;; NOTE: as you can see, the results may be only approximate
;; (In this case, the true solution should be x=4 and y=2.)

matrix:forecast-linear-growth

matrix:forecast-linear-growth	data-list

Reports	a	four-element	list	of	the	form:

[forecast constant slope R2]

The	forecast	is	the	predicted	next	value	that	would	follow	in	the	sequence	given	by	the	data-list	input,	based	on	a	linear
trend-line.	Normally	data-list	will	contain	observations	on	some	variable,	Y,	from	time	t	=	0	to	time	t	=	(n-1)	where	n	is	the
number	of	observations.	The	forecast	is	the	predicted	value	of	Y	at	t	=	n.	The	constant	and	slope	are	the	parameters	of
the	trend-line

Y = *constant* + *slope* * t.

The	R2	value	measures	the	goodness	of	fit	of	the	trend-line	to	the	data,	with	an	R2	=	1	being	a	perfect	fit	and	an	R2	of	0
indicating	no	discernible	trend.	Linear	growth	assumes	that	the	variable	Y	grows	by	a	constant	absolute	amount	each
period.

;; a linear extrapolation of the next item in the list.
print matrix:forecast-linear-growth [20 25 28 32 35 39]
=> [42.733333333333334 20.619047619047638 3.6857142857142824 0.9953743395474031]
;; These results tell us:
;; * the next predicted value is roughly 42.7333
;; * the linear trend line is given by Y = 20.6190 + 3.6857 * t
;; * Y grows by approximately 3.6857 units each period
;; * the R^2 value is roughly 0.9954 (a good fit)

matrix:forecast-compound-growth

matrix:forecast-compound-growth	data-list

Reports	a	four-element	list	of	the	form:

[forecast constant growth-proportion R2]

Whereas	matrix:forecast-linear-growth	assumes	growth	by	a	constant	absolute	amount	each	period,	matrix:forecast-
compound-growth	assumes	that	Y	grows	by	a	constant	proportion	each	period.	The	constant	and	growth-proportion	are
the	parameters	of	the	trend-line

Y = constant * growth-proportiont.

Note	that	the	growth	proportion	is	typically	interpreted	as	growth-proportion	=	(1.0	+	growth-rate).	Therefore,	if
matrix:forecast-compound-growth	returns	a	growth-proportion	of	1.10,	that	implies	that	Y	grows	by	(1.10	-	1.0)	=	10%
each	period.	Note	that	if	growth	is	negative,	matrix:forecast-compound-growth	will	return	a	growth-proportion	of	less	than
one.	E.g.,	a	growth-proportion	of	0.90	implies	a	growth	rate	of	-10%.

NOTE:	The	compound	growth	forecast	is	achieved	by	taking	the	ln	of	Y.	(See	matrix:regress,	below.)	Because	it	is
impossible	to	take	the	natural	log	of	zero	or	a	negative	number,	matrix:forecast-compound-growth	will	result	in	an	error	if
it	finds	a	zero	or	negative	number	in	data-list.

;; a compound growth extrapolation of the next item in the list.
print matrix:forecast-compound-growth [20 25 28 32 35 39]
=> [45.60964465307147 21.15254147944863 1.136621034423892 0.9760867518334806]
;; These results tell us:
;; * the next predicted value is approximately 45.610
;; * the compound growth trend line is given by Y = 21.1525 * 1.1366 ^ t
;; * Y grows by approximately 13.66% each period
;; * the R^2 value is roughly 0.9761 (a good fit)

matrix:forecast-continuous-growth

matrix:forecast-continuous-growth	data-list

Reports	a	four-element	list	of	the	form:

[forecast constant growth-rate R2].	Whereas	matrix:forecast-compound-growth	assumes	discrete	time	with	Y
growing	by	a	given	proportion	each	finite	period	of	time	(e.g.,	a	month	or	a	year),	matrix:forecast-continuous-growth
assumes	that	Y	is	compounded	continuously	(e.g.,	each	second	or	fraction	of	a	second).	The	constant	and	growth-rate
are	the	parameters	of	the	trend-line

Y = constant * e(growth-rate * t)

matrix:forecast-continuous-growth	is	the	“calculus”	analog	of	matrix:forecast-compound-growth.	The	two	will	normally
yield	similar	(but	not	identical)	results,	as	shown	in	the	example	below.	growth-rate	may,	of	course,	be	negative.

NOTE:	The	continuous	growth	forecast	is	achieved	by	taking	the	ln	of	Y.	(See	matrix:regress,	below.)
Because	it	is	impossible	to	take	the	natural	log	of	zero	or	a	negative	number,	matrix:forecast-continuous-
growth	will	result	in	an	error	if	it	finds	a	zero	or	negative	number	in	data-list.

;; a continuous growth extrapolation of the next item in the list.
print matrix:forecast-continuous-growth [20 25 28 32 35 39]
=> [45.60964465307146 21.15254147944863 0.12805985615332668 0.9760867518334806]
;; These results tell us:
;; * the next predicted value is approximately 45.610
;; * the compound growth trend line is given by Y = 21.1525 * e ^ (0.1281 * t)
;; * Y grows by approximately 12.81% each period if compounding takes place continuously
;; * the R^2 value is roughly 0.9761 (a good fit)

matrix:regress

matrix:regress	data-matrix

All	three	of	the	forecast	primitives	above	are	just	special	cases	of	performing	an	OLS	(ordinary-least-squares)	linear
regression	–	the	matrix:regress	primitive	provides	a	flexible/general-purpose	approach.	The	input	is	a	matrix	data-matrix,
with	the	first	column	being	the	observations	on	the	dependent	variable	and	each	subsequent	column	being	the
observations	on	the	(1	or	more)	independent	variables.	Thus	each	row	consists	of	an	observation	of	the	dependent
variable	followed	by	the	corresponding	observations	for	each	independent	variable.

The	output	is	a	Logo	nested	list	composed	of	two	elements.	The	first	element	is	a	list	containing	the	regression	constant
followed	by	the	coefficients	on	each	of	the	independent	variables.	The	second	element	is	a	3-element	list	containing	the
R2	statistic,	the	total	sum	of	squares,	and	the	residual	sum	of	squares.	The	following	code	example	shows	how	the
matrix:regress	primitive	can	be	used	to	perform	the	same	function	as	the	code	examples	shown	in	the	matrix:forecast-*-
growth	primitives	above.	(However,	keep	in	mind	that	the	matrix:regress	primitive	is	more	powerful	than	this,	and	can
have	many	more	independent	variables	in	the	regression,	as	indicated	in	the	fourth	example	below.)

;; this is equivalent to what the matrix:forecast-linear-growth does
let data-list [20 25 28 32 35 39]
let indep-var (n-values length data-list [x -> x]) ; 0,1,2...,5
let lin-output matrix:regress matrix:from-column-list (list data-list indep-var)
let lincnst item 0 (item 0 lin-output)
let linslpe item 1 (item 0 lin-output)
let linR2 item 0 (item 1 lin-output)
;;Note the "6" here is because we want to forecast the value at time t=6.
print (list (lincnst + linslpe * 6) (lincnst) (linslpe) (linR2))

;; this is equivalent to what the matrix:forecast-compound-growth does
let com-log-data-list (map ln [20 25 28 32 35 39])
let com-indep-var2 (n-values length com-log-data-list [x -> x]) ; 0,1,2...,5
let com-output matrix:regress matrix:from-column-list (list com-log-data-list com-indep-var2)
let comcnst exp item 0 (item 0 com-output)
let comprop exp item 1 (item 0 com-output)
let comR2 item 0 (item 1 com-output)
;;Note the "6" here is because we want to forecast the value at time t=6.
print (list (comcnst * comprop ^ 6) (comcnst) (comprop) (comR2))

;; this is equivalent to what the matrix:forecast-continuous-growth does
let con-log-data-list (map ln [20 25 28 32 35 39])
let con-indep-var2 (n-values length con-log-data-list [x -> x]) ; 0,1,2...,5
let con-output matrix:regress matrix:from-column-list (list con-log-data-list con-indep-var2)
let concnst exp item 0 (item 0 con-output)
let conrate item 1 (item 0 con-output)
let conR2 item 0 (item 1 con-output)
print (list (concnst * exp (conrate * 6)) (concnst) (conrate) (conR2))

;; example of a regression with two independent variables:
;; Pretend we have a dataset, and we want to know how well happiness
;; is correlated to snack-food consumption and accomplishing goals.
let happiness [2 4 5 8 10]
let snack-food-consumed [3 4 3 7 8]
let goals-accomplished [2 3 5 8 9]
print matrix:regress matrix:from-column-list (list happiness snack-food-consumed goals-accomplished)
=> [[-0.14606741573033788 0.3033707865168543 0.8202247191011234] [0.9801718440185063 40.8 0.8089887640449439]]
;; linear regression: happiness = -0.146 + 0.303*snack-food-consumed + 0.820*goals-accomplished
;; (Since the 0.820 coefficient is higher than the 0.303 coefficient, it appears that each goal
;; accomplished yields more happiness than does each snack consumed, although both are positively
;; correlated with happiness.)
;; Also, we see that R^2 = 0.98, so the two factors together provide a good fit.

NetLogo	Nw	Extension

Usage

The	first	thing	that	one	needs	to	understand	in	order	to	work	with	the	network	extension	is	how	to	tell	the	extension
which	network	to	work	with.	Consider	the	following	example	situation:

breed [bankers banker]
breed [clients client]

undirected-link-breed [friendships friendship]
directed-link-breed [accounts account]

Basically,	you	have	bankers	and	clients.	Clients	can	have	accounts	with	bankers.	Bankers	can	probably	have
account	with	other	bankers,	and	anyone	can	be	friends	with	anyone.

Now	we	might	want	to	consider	this	whole	thing	as	one	big	network.	If	that	is	the	case,	there	is	nothing	special	to	do:
by	default,	the	NW	extension	primitives	consider	all	turtles	and	all	links	to	be	part	of	the	current	network.

We	could	also,	however,	be	only	interested	in	a	subset	of	the	network.	Maybe	we	want	to	consider	only	friendship
relations.	Furthermore,	maybe	we	want	to	consider	only	the	friendships	between	bankers.	After	all,	having	a	very
high	centrality	in	a	network	of	banker	friendships	is	very	different	from	having	a	high	centrality	in	a	network	of	client
friendships.

To	specify	such	networks,	we	need	to	tell	the	extension	both	which	turtles	and	which	links	we	are	interested	in.	All
the	turtles	from	the	specified	set	of	turtles	will	be	included	in	the	network,	and	only	the	links	from	the	specified	set	of
links	that	are	between	turtles	of	the	specified	set	will	be	included.	For	example,	if	you	ask	for	bankers	and
friendships,	even	the	lonely	bankers	with	no	friends	will	be	included,	but	friendship	links	between	bankers	and
clients	will	not	be	included.	The	way	to	tell	the	extension	about	this	is	with	the	nw:set-context	primitive,	which	you
must	call	prior	to	doing	any	operations	on	a	network.

Some	examples:

nw:set-context turtles links 	will	give	you	everything:	bankers	and	clients,	friendships	and	accounts,	as	one	big
network.
nw:set-context turtles friendships 	will	give	you	all	the	bankers	and	clients	and	friendships	between	any	of
them.
nw:set-context bankers friendships 	will	give	you	all	the	bankers,	and	only	friendships	between	bankers.
nw:set-context bankers links 	will	give	you	all	the	bankers,	and	any	links	between	them,	whether	these	links	are
friendships	or	accounts.
nw:set-context clients accounts 	will	give	you	all	the	clients,	and	accounts	between	each	other,	but	since	in	our
fictional	example	clients	can	only	have	accounts	with	bankers,	this	will	be	a	completely	disconnected	network.

Special	agentsets	vs	normal	agentsets

It	must	be	noted	that	NetLogo	has	two	types	of	agentsets	that	behave	slightly	differently,	and	that	this	has	an	impact
on	the	way	nw:set-context	works.	We	will	say	a	few	words	about	these	concepts	here	but,	for	a	thorough
understanding,	it	is	highly	recommended	that	you	read	the	section	on	agentsets	in	the	NetLogo	programming	guide.

The	“special”	agentsets	in	NetLogo	are	turtles,	links	and	the	different	“breed”	agentsets.	What	is	special	about
them	is	that	they	can	grow:	if	you	create	a	new	turtle,	it	will	be	added	to	the	turtles	agentset.	If	you	have	a	bankers
breed	and	you	create	a	new	banker,	it	will	be	added	to	the	bankers	agentset	and	to	the	turtles	agentset.	Same	goes
for	links.	Other	agentsets,	such	as	those	created	with	the	with	primitive	(e.g.,	turtles with [color = red])	or	the
turtle-set	and	link-set	primitives)	are	never	added	to.	The	content	of	normal	agentsets	will	only	change	if	the
agents	that	they	contain	die.

To	show	how	different	types	of	agentsets	interact	with	nw:set-context,	let’s	create	a	very	simple	network:

clear-all
create-turtles 3 [create-links-with other turtles]

Let’s	set	the	context	to	turtles	and	links	(which	is	the	default	anyway)	and	use	nw:get-context	to	see	what	we
have:

nw:set-context turtles links
show map sort nw:get-context

We	get	all	three	turtles	and	all	three	links:

[[(turtle 0) (turtle 1) (turtle 2)] [(link 0 1) (link 0 2) (link 1 2)]]

Now	let’s	kill	one	turtle:

ask one-of turtles [die]
show map sort nw:get-context

As	expected,	the	context	is	updated	to	reflect	the	death	of	the	turtle	and	of	the	two	links	that	died	with	it:

[[(turtle 0) (turtle 1)] [(link 0 1)]]

What	if	we	now	create	a	new	turtle?

create-turtles 1
show map sort nw:get-context

Since	our	context	is	using	the	special	turtles	agentset,	the	new	turtle	is	automatically	added:

[[(turtle 0) (turtle 1) (turtle 3)] [(link 0 1)]]

Now	let’s	demonstrate	how	it	works	with	normal	agentsets.	We	start	over	with	a	new	network	of	red	turtles:

clear-all
create-turtles 3 [
 create-links-with other turtles
 set color red
]

And	we	set	the	context	to	turtles with [color = red]) 	and	links

nw:set-context (turtles with [color = red]) links
show map sort nw:get-context

Since	all	turtles	are	red,	we	get	everything	in	our	context:

[[(turtle 0) (turtle 1) (turtle 2)] [(link 0 1) (link 0 2) (link 1 2)]]

But	what	if	we	ask	one	of	them	to	turn	blue?

ask one-of turtles [set color blue]
show map sort nw:get-context

No	change.	The	agentset	used	in	our	context	remains	unaffected:

[[(turtle 0) (turtle 1) (turtle 2)] [(link 0 1) (link 0 2) (link 1 2)]]

If	we	kill	one	of	them,	however…

ask one-of turtles [die]
show map sort nw:get-context

It	gets	removed	from	the	set:

[[(turtle 0) (turtle 2)] [(link 0 2)]]

What	if	we	add	a	new	red	turtle?

create-turtles 1 [set color red]
show map sort nw:get-context

Nope:

[[(turtle 0) (turtle 2)] [(link 0 2)]]

A	note	regarding	floating	point	calculations

Neither	JGraphT	nor	Jung,	the	two	network	libraries	that	we	use	internally,	use	strictfp	floating	point	calculations.
This	does	mean	that	exact	reproducibility	of	results	involving	floating	point	calculations	between	different	hardware
architectures	is	not	fully	guaranteed.	(NetLogo	itself	always	uses	strict	math	so	this	only	applies	to	some	primitives	of
the	NW	extension.)

Performance

In	order	to	be	fast	in	as	many	circumstances	as	possible,	the	NW	extension	tries	hard	to	never	calculate	things
twice.	It	remembers	all	paths,	distances,	and	centralities	that	it	calculates.	So,	while	the	first	time	you	ask	for	the
distance	between	turtle 0	and	turtle 3782	may	take	some	time,	after	that,	it	should	be	almost	instantaneous.
Furthermore,	it	keeps	track	of	values	it	just	happened	to	calculate	along	the	way.	For	example,	if	turtle 297	is	closer
to	turtle 0	than	turtle 3782	is,	it	may	just	happen	to	figure	out	the	distance	between	turtle 0	and	turtle 297	while
it	figures	out	the	distance	between	turtle 0	and	turtle 3782.	It	will	remember	this	value,	so	that	if	you	ask	it	for	the
distance	between	turtle 0	and	turtle 297,	it	doesn’t	have	to	do	all	that	work	again.

There	are	a	few	circumstances	where	the	NW	extension	has	to	forget	things.	If	the	network	changes	at	all	(you	add
turtles	or	links,	or	remove	turtles	or	links),	it	has	to	forget	everything.	For	weighted	primitives,	if	the	value	of	the
weight	variable	changes	for	any	of	the	links	in	the	network,	it	will	forget	the	values	associated	with	that	weight
variable.

If	you’re	working	on	a	network	that	can	change	regularly,	try	to	do	all	your	network	calculations	at	once,	then	all	your
network	changes	at	once.	The	more	your	interweave	network	calculations	and	network	changes,	the	more	the	NW
extension	will	have	to	recalculate	things.	For	example,	if	you	have	a	traffic	model,	and	cars	need	to	figure	out	the
shortest	path	to	their	destination	based	on	the	traffic	each	tick,	have	all	the	cars	find	their	shortest	paths,	then
change	the	network	weights	to	account	for	how	traffic	has	changed.

There	may	be	rare	occasions	in	which	you	don’t	want	the	NW	extension	to	remember	values.	For	example,	if	you’re
working	on	an	extremely	large	network,	remembering	all	those	values	may	take	more	memory	than	you	have.	In	that
case,	you	can	just	call	nw:set-context (first nw:get-context) (last nw:get-context) 	to	force	the	NW	extension	to
immediately	forget	everything.

Primitives

Generators

nw:generate-preferential-attachment	nw:generate-random	nw:generate-watts-strogatz	nw:generate-small-world
nw:generate-lattice-2d	nw:generate-ring	nw:generate-star	nw:generate-wheel

Path	and	Distance

nw:turtles-in-radius	nw:turtles-in-reverse-radius	nw:distance-to	nw:weighted-distance-to	nw:path-to	nw:turtles-
on-path-to	nw:weighted-path-to	nw:turtles-on-weighted-path-to	nw:mean-path-length	nw:mean-weighted-path-length

Clusterer/Community	Detection

nw:bicomponent-clusters	nw:weak-component-clusters	nw:louvain-communities	nw:maximal-cliques	nw:biggest-
maximal-cliques

Context	Management

nw:set-context	nw:get-context	nw:with-context

Import	and	Export

nw:save-matrix	nw:load-matrix	nw:save-graphml	nw:load-graphml	nw:load	nw:save

Centrality	Measures

nw:betweenness-centrality	nw:eigenvector-centrality	nw:page-rank	nw:closeness-centrality	nw:weighted-closeness-
centrality

Clustering	Measures

https://github.com/jgrapht
http://jung.sourceforge.net/
http://en.wikipedia.org/wiki/Strictfp

nw:clustering-coefficient	nw:modularity

nw:set-context

nw:set-context	turtleset	linkset

Specifies	the	set	of	turtles	and	the	set	of	links	that	the	extension	will	consider	to	be	the	current	graph.	All	the	turtles
from	turtleset	and	all	the	links	from	linkset	that	connect	two	turtles	from	turtleset	will	be	included.

This	context	is	used	by	all	other	primitives	(unless	specified	otherwise)	until	a	new	context	is	specified.	(At	the
moment,	only	the	generator	primitives	and	the	file	input	primitives	are	exceptions	to	this	rule.)

See	the	usage	section	for	a	much	more	detailed	explanation	of	nw:set-context.

nw:get-context

nw:get-context

Reports	the	content	of	the	current	graph	context	as	a	list	containing	two	agentsets:	the	agentset	of	turtles	that	are
part	of	the	context	and	the	agentset	of	links	that	are	part	of	the	context.

Let’s	say	we	start	with	a	blank	slate	and	the	default	context	consisting	of	turtles	and	links,	nw:get-context	will
report	a	list	the	special	turtles	and	links	breed	agentsets:

observer> clear-all
observer> show nw:get-context
observer: [turtles links]

If	we	add	some	turtles	and	links	to	our	context,	we’ll	still	see	the	same	thing,	even	though	turtles	and	links	have
internally	grown:

observer> crt 2 [create-links-with other turtles]
observer> show nw:get-context
observer: [turtles links]

If	you	had	set	your	context	to	normal	agentsets	instead	(built	with	turtle-set,	link-set	or	with)	here	is	what	you
would	see:

observer> clear-all
observer> nw:set-context turtle-set turtles link-set links
observer> show nw:get-context
observer: [(agentset, 0 turtles) (agentset, 0 links)]

If	you	then	create	new	turtles	and	links,	they	are	not	added	to	the	context	because	normal	agentsets	don’t	grow	(see
Special	agentsets	vs	normal	agentsets):

observer> crt 2 [create-links-with other turtles]
observer> show nw:get-context
observer: [(agentset, 0 turtles) (agentset, 0 links)]

But	if	you	construct	new	agentsets	and	set	the	context	to	them,	your	new	agents	will	be	there:

observer> nw:set-context turtle-set turtles link-set links
observer> show nw:get-context
observer: [(agentset, 2 turtles) (agentset, 1 link)]

If	you	want	to	see	the	actual	content	of	your	context,	it	is	easy	to	turn	your	agentsets	into	lists	that	can	be	nicely
displayed.	Just	use	a	combination	of	map	and	sort:

observer> show map sort nw:get-context
observer: [[(turtle 0) (turtle 1)] [(link 0 1)]]

Finally,	you	can	use	nw:get-context	to	store	a	context	that	you	eventually	want	to	restore:

extensions [nw]
to store-and-restore-context
 clear-all
 crt 2 [
 set color red

 create-links-with other turtles with [color = red] [
 set color yellow
]
]
 crt 2 [
 set color blue
 create-links-with other turtles with [color = blue] [
 set color green
]
]
 nw:set-context turtles with [color = red] links with [color = yellow]
 show map sort nw:get-context
 let old-turtles item 0 nw:get-context
 let old-links item 1 nw:get-context
 nw:set-context turtles with [color = blue] links with [color = green]
 show map sort nw:get-context
 nw:set-context old-turtles old-links
 show map sort nw:get-context
end

Here	is	the	result:

observer> store-and-restore-context
observer: [[(turtle 0) (turtle 1)] [(link 0 1)]]
observer: [[(turtle 2) (turtle 3)] [(link 2 3)]]
observer: [[(turtle 0) (turtle 1)] [(link 0 1)]]

nw:with-context

nw:with-context	turtleset	linkset	command-block

Executes	the	command-block	with	the	context	temporarily	set	to	turtleset	and	linkset.	After	command-block	finishes
running,	the	previous	context	will	be	restored.

For	example:

observer> create-turtles 3 [create-links-with other turtles]
observer> nw:with-context (turtle-set turtle 0 turtle 1) (link-set link 0 1) [show nw:get-context]
observer: [(agentset, 2 turtles) (agentset, 1 link)
observer> show nw:get-context
observer: [turtles links]

If	you	have	NW	extension	code	running	in	two	forever	buttons	or	loop	blocks	that	each	need	to	use	different
contexts,	you	should	use	nw:with-context	in	each	to	make	sure	they	are	operating	in	the	correct	context.

nw:turtles-in-radius

nw:turtles-in-radius	radius

Returns	the	set	of	turtles	within	the	given	distance	(number	of	links	followed)	of	the	calling	turtle	in	the	current
context,	including	the	calling	turtle.

nw:turtles-in-radius	form	will	follow	both	undirected	links	and	directed	out	links.	You	can	think	of	turtles-in-
radius	as	“turtles	who	I	can	get	to	in	radius	steps”.

If	you	want	the	primitive	to	follow	only	undirected	links	or	only	directed	links,	you	can	do	it	by	setting	the	context
appropriately.	For	example:	nw:set-context turtles undir-links 	(assuming	undir-links	is	an	undirected	link
breed)	or	nw:set-context turtles dir-links 	(assuming	dir-links	is	a	directed	link	breed).

Example:

clear-all
create-turtles 5
ask turtle 0 [create-link-with turtle 1]
ask turtle 0 [create-link-with turtle 2]
ask turtle 1 [create-link-with turtle 3]
ask turtle 2 [create-link-with turtle 4]
ask turtle 0 [
 show sort nw:turtles-in-radius 1
]

Will	output:

(turtle 0): [(turtle 0) (turtle 1) (turtle 2)]

As	you	may	have	noticed,	the	result	includes	the	calling	turtle.	This	mimics	the	behavior	of	the	regular	NetLogo	in-
radius	primitive.

nw:turtles-in-reverse-radius

nw:turtles-in-reverse-radius	radius

Like	nw:turtles-in-radius,	but	follows	in-links	instead	of	out-links.	Also	follow	undirected	links.	You	can	think	of
turtles-in-reverse-radius	as	“turtles	who	can	get	to	me	in	radius	steps”.

nw:distance-to

nw:distance-to	target-turtle

Finds	the	shortest	path	to	the	target	turtle	and	reports	the	total	distance	for	this	path,	or	false	if	no	path	exists	in	the
current	context.	Each	link	counts	for	a	distance	of	one.

Example:

to go
 clear-all
 create-turtles 5
 ask turtle 0 [create-link-with turtle 1]
 ask turtle 1 [create-link-with turtle 2]
 ask turtle 0 [create-link-with turtle 3]
 ask turtle 3 [create-link-with turtle 4]
 ask turtle 4 [create-link-with turtle 2]
 ask turtle 0 [show nw:distance-to turtle 2]
end

Will	output:

(turtle 0): 2

nw:weighted-distance-to

nw:weighted-distance-to	target-turtle	weight-variable

Like	nw:distance-to,	but	takes	link	weight	into	account.	The	weights	cannot	be	negative	numbers.

Example:

links-own [weight]
to go
 clear-all
 create-turtles 5
 ask turtle 0 [create-link-with turtle 1 [set weight 2.0]]
 ask turtle 1 [create-link-with turtle 2 [set weight 2.0]]
 ask turtle 0 [create-link-with turtle 3 [set weight 0.5]]
 ask turtle 3 [create-link-with turtle 4 [set weight 0.5]]
 ask turtle 4 [create-link-with turtle 2 [set weight 0.5]]
 ask turtle 0 [show nw:weighted-distance-to turtle 2 weight]
end

Will	output:

(turtle 0): 1.5

nw:path-to

nw:path-to	target-turtle

Finds	the	shortest	path	to	the	target	turtle	and	reports	the	actual	path	between	the	source	and	the	target	turtle.	The
path	is	reported	as	the	list	of	links	that	constitute	the	path.

If	no	path	exist	between	the	source	and	the	target	turtles,	false	will	be	reported	instead.

Note	that	the	NW-Extension	remembers	paths	that	its	calculated	previously	unless	the	network	changes.	Thus,	you
don’t	need	to	store	paths	to	efficiently	move	across	the	network;	you	can	just	keep	re-calling	one	of	the	path
primitives.	If	the	network	changes,	however,	the	stored	answers	are	forgotten.	Example:

ccl.northwestern.edu/netlogo/docs/dictionary.html#in-radius

links-own [weight]
to go
 clear-all
 create-turtles 5
 ask turtle 0 [create-link-with turtle 1]
 ask turtle 1 [create-link-with turtle 2]
 ask turtle 0 [create-link-with turtle 3]
 ask turtle 3 [create-link-with turtle 4]
 ask turtle 4 [create-link-with turtle 2]
 ask turtle 0 [show nw:path-to turtle 2]
end

Will	output:

(turtle 0): [(link 0 1) (link 1 2)]

nw:turtles-on-path-to

nw:turtles-on-path-to	target-turtle

Like	nw:path-to,	but	the	turtles	on	the	path	are	reported,	instead	of	the	links,	including	the	source	turtle	and	target
turtle.

Example:

to go
 clear-all
 create-turtles 5
 ask turtle 0 [create-link-with turtle 1]
 ask turtle 1 [create-link-with turtle 2]
 ask turtle 0 [create-link-with turtle 3]
 ask turtle 3 [create-link-with turtle 4]
 ask turtle 4 [create-link-with turtle 2]
 ask turtle 0 [show nw:turtles-on-path-to turtle 2]
end

Will	output:

(turtle 0): [(turtle 0) (turtle 1) (turtle 2)]

nw:weighted-path-to

nw:weighted-path-to	target-turtle	weight-variable

Like	nw:path-to,	but	takes	link	weight	into	account.

Example:

links-own [weight]
to go
 clear-all
 create-turtles 5
 ask turtle 0 [create-link-with turtle 1 [set weight 2.0]]
 ask turtle 1 [create-link-with turtle 2 [set weight 2.0]]
 ask turtle 0 [create-link-with turtle 3 [set weight 0.5]]
 ask turtle 3 [create-link-with turtle 4 [set weight 0.5]]
 ask turtle 4 [create-link-with turtle 2 [set weight 0.5]]
 ask turtle 0 [show nw:weighted-path-to turtle 2 weight]
end

Will	output:

(turtle 0): [(link 0 3) (link 3 4) (link 2 4)]

nw:turtles-on-weighted-path-to

nw:turtles-on-weighted-path-to	target-turtle	weight-variable

Like	nw:turtles-on-path-to,	but	takes	link	weight	into	account.

Example:

links-own [weight]
to go
 clear-all
 create-turtles 5
 ask turtle 0 [create-link-with turtle 1 [set weight 2.0]]
 ask turtle 1 [create-link-with turtle 2 [set weight 2.0]]
 ask turtle 0 [create-link-with turtle 3 [set weight 0.5]]
 ask turtle 3 [create-link-with turtle 4 [set weight 0.5]]
 ask turtle 4 [create-link-with turtle 2 [set weight 0.5]]
 ask turtle 0 [show nw:weighted-path-to turtle 2 weight]
end

Will	output:

(turtle 0): [(turtle 0) (turtle 3) (turtle 4) (turtle 2)]

nw:mean-path-length

nw:mean-path-length

Reports	the	average	shortest-path	length	between	all	distinct	pairs	of	nodes	in	the	current	context.

Reports	false	unless	paths	exist	between	all	pairs.

Example:

links-own [weight]
to go
 clear-all
 create-turtles 3
 ask turtle 0 [create-link-with turtle 1 [set weight 2.0]]
 ask turtle 1 [create-link-with turtle 2 [set weight 2.0]]
 show nw:mean-path-length
 create-turtles 1 ; create a new, disconnected turtle
 show nw:mean-path-length
end

Will	ouput:

observer: 1.3333333333333333
observer: false

nw:mean-weighted-path-length

nw:mean-weighted-path-length	weight-variable

Like	nw:mean-path-length,	but	takes	into	account	link	weights.

Example:

links-own [weight]
to go
 clear-all
 create-turtles 3
 ask turtle 0 [create-link-with turtle 1 [set weight 2.0]]
 ask turtle 1 [create-link-with turtle 2 [set weight 2.0]]
 show nw:mean-path-length
 show nw:mean-weighted-path-length weight
 create-turtles 1 ; create a new, disconnected turtle
 show nw:mean-path-length
 show nw:mean-weighted-path-length weight
end

Will	ouput:

observer: 2.6666666666666665
observer: false

nw:betweenness-centrality

nw:betweenness-centrality

To	calculate	the	betweenness	centrality	of	a	turtle,	you	take	every	other	possible	pairs	of	turtles	and,	for	each	pair,
you	calculate	the	proportion	of	shortest	paths	between	members	of	the	pair	that	passes	through	the	current	turtle.
The	betweenness	centrality	of	a	turtle	is	the	sum	of	these.

As	of	now,	link	weights	are	not	taken	into	account.

nw:eigenvector-centrality

nw:eigenvector-centrality

The	Eigenvector	centrality	of	a	node	can	be	thought	of	as	the	amount	of	influence	a	node	has	on	a	network.	In
practice,	turtles	that	are	connected	to	a	lot	of	other	turtles	that	are	themselves	well-connected	(and	so	on)	get	a
higher	Eigenvector	centrality	score.

In	this	implementation,	the	eigenvector	centrality	is	normalized	such	that	the	highest	eigenvector	centrality	a	node
can	have	is	1.	This	implementation	is	designed	to	agree	with	Gephi’s	implementation	out	to	at	least	3	decimal
places.	If	you	discover	that	it	disagrees	with	Gephi	on	a	particular	network,	please	report	it.

The	primitive	respects	link	direction,	even	in	mixed-directed	networks.	This	is	the	one	place	where	it	should	disagree
with	Gephi;	Gephi	refuses	to	treat	directed	links	as	directed	in	mixed-networks.

As	of	now,	link	weights	are	not	taken	into	account.

nw:page-rank

nw:page-rank

The	page	rank	of	a	node	can	be	thought	of	as	the	proportion	of	time	that	an	agent	walking	forever	at	random	on	the
network	would	spend	at	this	node.	The	agent	has	an	equal	chance	of	taking	any	of	a	nodes	edges,	and	will	jump
around	the	network	completely	randomly	15%	of	the	time.	In	practice,	like	with	eigenvector	centrality,	turtles	that	are
connected	to	a	lot	of	other	turtles	that	are	themselves	well-connected	(and	so	on)	get	a	higher	page	rank.

Page	rank	is	one	of	the	several	algorithms	that	search	engines	use	to	determine	the	importance	of	a	website.

The	sum	of	all	page	rank	values	should	be	approximately	one.	Unlike	eigenvector	centrality,	page	rank	is	defined	for
all	networks,	no	matter	the	connectivity.	Currently,	it	treats	all	links	as	undirected	links.

As	of	now,	link	weights	are	not	taken	into	account.

nw:closeness-centrality

nw:closeness-centrality

The	closeness	centrality	of	a	turtle	is	defined	as	the	inverse	of	the	average	of	it’s	distances	to	all	other	turtles.	(Some
people	use	the	sum	of	distances	instead	of	the	average,	but	the	extension	uses	the	average.)

Note	that	this	primitive	reports	the	intra-component	closeness	of	a	turtle,	that	is,	it	takes	into	account	only	the
distances	to	the	turtles	that	are	part	of	the	same	component	as	the	current	turtle,	since	distance	to	turtles	in	other
components	is	undefined.	The	closeness	centrality	of	an	isolated	turtle	is	defined	to	be	zero.

nw:weighted-closeness-centrality

nw:weighted-closeness-centrality	link-weight-variable

This	is	identical	to	nw:closeness-centrality,	except	that	weights	provided	by	the	given	variable	are	treated	as	the
distances	of	links.

nw:clustering-coefficient

nw:clustering-coefficient

Reports	the	local	clustering	coefficient	of	the	turtle.	The	clustering	coefficient	of	a	node	measures	how	connected	its
neighbors	are.	It	is	defined	as	the	number	of	links	between	the	node’s	neighbors	divided	by	the	total	number	of
possible	links	between	its	neighbors.

http://en.wikipedia.org/wiki/Betweenness_centrality
http://en.wikipedia.org/wiki/Centrality#Eigenvector_centrality
https://github.com/NetLogo/NW-Extension/issues/new
https://en.wikipedia.org/wiki/PageRank
http://en.wikipedia.org/wiki/Centrality#Closeness_centrality
http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
http://en.wikipedia.org/wiki/Clustering_coefficient#Local_clustering_coefficient

nw:clustering-coefficient	takes	the	directedness	of	links	into	account.	A	directed	link	counts	as	a	single	link
whereas	an	undirected	link	counts	as	two	links	(one	going	one-way,	one	going	the	other).

The	global	clustering	coefficient	measures	how	much	nodes	tend	to	cluster	together	in	the	network	in	general.	It	is
defined	based	on	the	types	of	triplets	in	the	network.	A	triplet	consists	of	a	central	node	and	two	of	its	neighbors.	If	its
neighbors	are	also	connected,	it’s	a	closed	triplet.	If	its	neighbors	are	not	connected,	it’s	an	open	triplet.	The	global
clustering	coefficient	is	simply	the	number	of	closed	triplets	in	a	network	divided	by	the	total	number	of	triplets.	It	can
be	calculated	from	the	local	clustering	coefficient	quite	easily	with	the	following	code

to-report global-clustering-coefficient
 let closed-triplets sum [nw:clustering-coefficient * count my-links * (count my-links - 1)] of turtles
 let triplets sum [count my-links * (count my-links - 1)] of turtles
 report closed-triplets / triplets
end

Note	that	the	above	will	only	work	with	the	default	context,	and	may	need	to	tweaked	if	you’ve	set	the	turtles	or	links
in	the	network	to	something	other	than	turtles	and	links.

The	average	local	clustering	coefficient	is	another	popular	method	for	measuring	the	amount	of	clustering	in	the
network	as	a	whole.	It	may	be	calculated	with

mean [nw:clustering-coefficient] of turtles

nw:modularity

nw:modularity

Modularity	is	a	measurement	of	community	structure	in	the	network.	It	is	defined	based	on	the	number	of	in-
community	links	versus	the	number	of	between-community	links.	This	primitive	takes	as	input	a	list	of	agentsets,
where	each	of	the	agentsets	is	one	the	communities	that	you’re	separating	the	network	into.

This	measurement	works	on	undirected,	directed,	and	mixed-directedness	networks.	In	the	case	of	mixed-
directedness,	undirected	links	are	treated	essentially	the	same	as	two	opposing	directed	links.	It	does	not	take
weight	into	account.

Example:

nw:modularity (list (turtles with [color = blue]) (turtles with [color = red]))

nw:bicomponent-clusters

nw:bicomponent-clusters

Reports	the	list	of	bicomponent	clusters	in	the	current	network	context.	A	bicomponent	(also	known	as	a	maximal
biconnected	subgraph)	is	a	part	of	a	network	that	cannot	be	disconnected	by	removing	only	one	node	(i.e.	you	need
to	remove	at	least	two	to	disconnect	it).	The	result	is	reported	as	a	list	of	agentsets,	in	random	order.	Note	that	one
turtle	can	be	a	member	of	more	than	one	bicomponent	at	once.

nw:weak-component-clusters

nw:weak-component-clusters

Reports	the	list	of	“weakly”	connected	components	in	the	current	network	context.	A	weakly	connected	component	is
simply	a	group	of	nodes	where	there	is	a	path	from	each	node	to	every	other	node.	A	“strongly”	connected
component	would	be	one	where	there	is	a	directed	path	from	each	node	to	every	other.	The	extension	does	not
support	the	identification	of	strongly	connected	components	at	the	moment.

The	result	is	reported	as	a	list	of	agentsets,	in	random	order.	Note	that	one	turtle	cannot	be	a	member	of	more	than
one	weakly	connected	component	at	once.

nw:louvain-communities

nw:louvain-communities

Detects	community	structure	present	in	the	network.	It	does	this	by	maximizing	modularity	using	the	Louvain	method.
The	communities	are	reported	as	a	list	of	turtle-sets.

http://en.wikipedia.org/wiki/Clustering_coefficient#Global_clustering_coefficient
https://en.wikipedia.org/wiki/Modularity_(networks)
http://en.wikipedia.org/wiki/Biconnected_component
http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
https://en.wikipedia.org/wiki/Louvain_Modularity

Often	you’ll	want	to	tell	turtles	about	the	community	that	they	are	in.	You	can	do	this	like	so:

turtles-own [community]

...

foreach ls:louvain-communities [[comm] ->
 ask comm [set community comm]
]

You	can	give	each	community	its	own	color	with	something	like	this:

let communities ls:louvain-communities
let colors sublist 0 (length communities) base-colors
(foreach communities colors [[community col] ->
 ask community [set color col]
])

nw:maximal-cliques

nw:maximal-cliques

A	clique	is	a	subset	of	a	network	in	which	every	node	has	a	direct	link	to	every	other	node.	A	maximal	clique	is	a
clique	that	is	not,	itself,	contained	in	a	bigger	clique.

The	result	is	reported	as	a	list	of	agentsets,	in	random	order.	Note	that	one	turtle	can	be	a	member	of	more	than	one
maximal	clique	at	once.

The	primitive	uses	the	Bron–Kerbosch	algorithm	and	only	works	with	undirected	links.

nw:biggest-maximal-cliques

nw:biggest-maximal-cliques

The	biggest	maximal	cliques	are,	as	the	name	implies,	the	biggest	cliques	in	the	current	context.	Often,	more	than
one	clique	are	tied	for	the	title	of	biggest	clique,	so	the	result	is	reported	as	a	list	of	agentsets,	in	random	order.	If	you
want	only	one	clique,	use	one-of nw:biggest-maximal-cliques.

The	primitive	uses	the	Bron–Kerbosch	algorithm	and	only	works	with	undirected	links.

nw:generate-preferential-attachment

nw:generate-preferential-attachment	turtle-breed	link-breed	num-nodes	optional-command-block

Generates	a	new	network	using	the	Barabási–Albert	algorithm.	This	network	will	have	the	property	of	being	“scale
free”:	the	distribution	of	degrees	(i.e.	the	number	of	links	for	each	turtle)	should	follow	a	power	law.

In	this	version	of	the	primitive,	turtles	are	added,	one	by	one,	each	forming	one	link	to	a	previously	added	turtle,	until
num-nodes	is	reached.	The	more	links	a	turtle	already	has,	the	greater	the	probability	that	new	turtles	form	links	with	it
when	they	are	added.	Future	versions	of	the	primitive	might	provide	more	flexibility	in	the	way	the	network	is
generated.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-preferential-attachment turtles links 100 [set color red]

nw:generate-random

nw:generate-random	turtle-breed	link-breed	num-nodes	connection-probability	optional-command-block

Generates	a	new	random	network	of	num-nodes	turtles	in	which	each	one	has	a	connection-probability	(between	0
and	1)	of	being	connected	to	each	other	turtles.	The	algorithm	uses	the	G(n,	p)	variant	of	the	Erdős–Rényi	model.

The	algorithm	is	O(n²)	for	directed	networks	and	O(n²/2)	for	undirected	networks,	so	generating	more	than	a	couple
thousand	nodes	will	likely	take	a	very	long	time.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

http://en.wikipedia.org/wiki/Clique_%28graph_theory%29
http://en.wikipedia.org/wiki/Bron%E2%80%93Kerbosch_algorithm
http://en.wikipedia.org/wiki/Clique_%28graph_theory%29
http://en.wikipedia.org/wiki/Bron%E2%80%93Kerbosch_algorithm
http://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model

nw:generate-random turtles links 100 0.5 [set color red]

nw:generate-watts-strogatz

nw:generate-watts-strogatz	turtle-breed	link-breed	num-nodes	neighborhood-size	rewire-probability
optional-command-block

Generates	a	new	Watts-Strogatz	small-world	network.

The	algorithm	begins	by	creating	a	ring	of	nodes,	where	each	node	is	connected	to	neighborhood-size	nodes	on
either	side.	Then,	each	link	is	rewired	with	probability	rewire-prob.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	Furthermore,
the	turtles	are	generated	in	the	order	they	appear	as	in	create-ordered-turtles.	So,	in	order	to	lay	the	ring	out	as	a
ring,	you	can	do	something	like:

nw:generate-watts-strogatz turtles links 50 2 0.1 [fd 10]

nw:generate-small-world

nw:generate-small-world	turtle-breed	link-breed	row-count	column-count	clustering-exponent	is-toroidal
optional-command-block

Generates	a	new	small-world	network	using	the	Kleinberg	Model.	Note	that	nw:generate-watts-strogatz	generates	a
more	traditional	small-world	network.

The	algorithm	proceeds	by	generating	a	lattice	of	the	given	number	of	rows	and	columns	(the	lattice	will	wrap	around
itself	if	is-toroidal	is	true).	The	“small	world	effect”	is	created	by	adding	additional	links	between	the	nodes	in	the
lattice.	The	higher	the	clustering-exponent,	the	more	the	algorithm	will	favor	already	close-by	nodes	when	adding
new	links.	A	clustering	exponent	of	2.0	is	typically	used.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-small-world turtles links 10 10 2.0 false [set color red]

The	turtles	are	generated	in	the	order	that	they	appear	in	the	lattice.	So,	for	instance,	to	generate	a	kleinberg	lattice
accross	the	entire	world,	and	lay	it	out	accordingly,	try	the	following:

nw:generate-small-world turtles links world-width world-height 2.0 false
(foreach (sort turtles) (sort patches) [[t p] -> ask t [move-to p]])

nw:generate-lattice-2d

nw:generate-lattice-2d	turtle-breed	link-breed	row-count	column-count	is-toroidal	optional-command-block

Generates	a	new	2D	lattice	network	(basically,	a	grid)	of	row-count	rows	and	column-count	columns.	The	grid	will
wrap	around	itself	if	is-toroidal	is	true.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-lattice-2d turtles links 10 10 false [set color red]

The	turtles	are	generated	in	the	order	that	they	appear	in	the	lattice.	So,	for	instance,	to	generate	a	lattice	accross
the	entire	world,	and	lay	it	out	accordingly,	try	the	following:

nw:generate-lattice-2d turtles links world-width world-height false
(foreach (sort turtles) (sort patches) [[t p] -> ask t [move-to p]])

nw:generate-ring

nw:generate-ring	turtle-breed	link-breed	num-nodes	optional-command-block

Generates	a	ring	network	of	num-nodes	turtles,	in	which	each	turtle	is	connected	to	exactly	two	other	turtles.

https://en.wikipedia.org/wiki/Watts_and_Strogatz_model
http://en.wikipedia.org/wiki/Small-world_network
http://en.wikipedia.org/wiki/Small_world_routing#The_Kleinberg_Model
http://en.wikipedia.org/wiki/Lattice_graph
http://en.wikipedia.org/wiki/Ring_network

The	number	of	nodes	must	be	at	least	three.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-ring turtles links 100 [set color red]

nw:generate-star

nw:generate-star	turtle-breed	link-breed	num-nodes	optional-command-block

Generates	a	star	network	in	which	there	is	one	central	turtle	and	every	other	turtle	is	connected	only	to	this	central
node.	The	number	of	turtles	can	be	as	low	as	one,	but	it	won’t	look	much	like	a	star.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-star turtles links 100 [set color red]

nw:generate-wheel

nw:generate-wheel	turtle-breed	link-breed	num-nodes	optional-command-block

Variants:

nw:generate-wheel-inward
nw:generate-wheel-outward

Generates	a	wheel	network,	which	is	basically	a	ring	network	with	an	additional	“central”	turtle	that	is	connected	to
every	other	turtle.

The	number	of	nodes	must	be	at	least	four.

The	nw:generate-wheel	only	works	with	undirected	link	breeds.	The	nw:generate-wheel-inward	and	nw:generate-
wheel-outward	versions	only	work	with	directed	link-breed.	The	inward	and	outward	part	of	the	primitive	names	refer
to	the	direction	that	the	“spokes”	of	the	wheel	point	to	relative	to	the	central	turtle.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-wheel turtles links 100 [set color red]

nw:save-matrix

nw:save-matrix	file-name

Saves	the	current	network,	as	defined	by	nw:set-context,	to	file-name,	as	a	text	file,	in	the	form	of	a	simple
connection	matrix.

Here	is,	for	example,	a	undirected	ring	network	with	four	nodes:

0.00 1.00 0.00 1.00
1.00 0.00 1.00 0.00
0.00 1.00 0.00 1.00
1.00 0.00 1.00 0.00

And	here	is	the	directed	version:

0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00

At	the	moment,	nw:save-matrix	does	not	support	link	weights.	Every	link	is	represented	as	a	“1.00”	in	the	connection
matrix.	This	will	change	in	a	future	version	of	the	extension.

nw:load-matrix

nw:load-matrix	file-name	optional-command-block

http://en.wikipedia.org/wiki/Star_graph
http://en.wikipedia.org/wiki/Wheel_graph
http://en.wikipedia.org/wiki/Ring_network

Generates	a	new	network	according	to	the	connection	matrix	saved	in	file-name,	using	turtle-breed	and	link-breed	to
create	the	new	turtles	and	links.

At	the	moment,	nw:load-matrix	does	not	support	link	weights.

Please	be	aware	that	the	breeds	that	use	use	to	load	the	matrix	may	be	different	from	those	that	you	used	when	you
saved	it.

For	example:

extensions [nw]
directed-link-breed [dirlinks dirlink]
to go
 clear-all
 crt 5 [create-dirlinks-to other turtles]
 nw:set-context turtles dirlinks
 nw:save-matrix "matrix.txt"
 clear-all
 nw:load-matrix "matrix.txt" turtles links
 layout-circle turtles 10
end

…will	give	you	back	undirected	links,	even	if	you	saved	directed	links	into	the	matrix.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:load-matrix "matrix.txt" turtles links [set color red]

nw:save-graphml

nw:save-graphml	file-name

You	can	save	the	current	graph	to	GraphML.	The	following	NetLogo	code:

extensions [nw]

breed [bankers banker]
bankers-own [bank-name]
breed [clients client]
clients-own [hometown]

undirected-link-breed [friendships friendship]

directed-link-breed [accounts account]
accounts-own [amount]

to go
 clear-all
 create-bankers 1 [
 set bank-name "The Bank"
]
 create-clients 1 [
 set hometown "Turtle City"
 create-friendship-with banker 0
 create-account-to banker 0 [
 set amount 9999.99
]
]
 nw:set-context turtles links
 nw:save-graphml "example.graphml"
end

Will	produce	the	following	GraphML	file:

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns/graphml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns/graphml">
<key id="PEN-MODE" for="node" attr.name="PEN-MODE" attr.type="string"/>
<key id="YCOR" for="node" attr.name="YCOR" attr.type="double"/>
<key id="PEN-SIZE" for="node" attr.name="PEN-SIZE" attr.type="double"/>
<key id="LABEL" for="node" attr.name="LABEL" attr.type="string"/>
<key id="SHAPE" for="node" attr.name="SHAPE" attr.type="string"/>
<key id="BREED" for="node" attr.name="BREED" attr.type="string"/>
<key id="WHO" for="node" attr.name="WHO" attr.type="double"/>
<key id="HIDDEN?" for="node" attr.name="HIDDEN?" attr.type="boolean"/>
<key id="LABEL-COLOR" for="node" attr.name="LABEL-COLOR" attr.type="double"/>
<key id="HEADING" for="node" attr.name="HEADING" attr.type="double"/>
<key id="BANK-NAME" for="node" attr.name="BANK-NAME" attr.type="string"/>
<key id="HOMETOWN" for="node" attr.name="HOMETOWN" attr.type="string"/>
<key id="COLOR" for="node" attr.name="COLOR" attr.type="double"/>
<key id="XCOR" for="node" attr.name="XCOR" attr.type="double"/>

<key id="SIZE" for="node" attr.name="SIZE" attr.type="double"/>
<key id="END1" for="edge" attr.name="END1" attr.type="string"/>
<key id="TIE-MODE" for="edge" attr.name="TIE-MODE" attr.type="string"/>
<key id="END2" for="edge" attr.name="END2" attr.type="string"/>
<key id="LABEL-COLOR" for="edge" attr.name="LABEL-COLOR" attr.type="double"/>
<key id="THICKNESS" for="edge" attr.name="THICKNESS" attr.type="double"/>
<key id="LABEL" for="edge" attr.name="LABEL" attr.type="string"/>
<key id="SHAPE" for="edge" attr.name="SHAPE" attr.type="string"/>
<key id="BREED" for="edge" attr.name="BREED" attr.type="string"/>
<key id="COLOR" for="edge" attr.name="COLOR" attr.type="double"/>
<key id="AMOUNT" for="edge" attr.name="AMOUNT" attr.type="double"/>
<key id="HIDDEN?" for="edge" attr.name="HIDDEN?" attr.type="boolean"/>
<graph edgedefault="undirected">
<node id="client 1">
<data key="PEN-MODE">up</data>
<data key="YCOR">0</data>
<data key="PEN-SIZE">1</data>
<data key="LABEL"></data>
<data key="SHAPE">default</data>
<data key="BREED">clients</data>
<data key="WHO">1</data>
<data key="HIDDEN?">false</data>
<data key="LABEL-COLOR">9.9</data>
<data key="HEADING">356</data>
<data key="HOMETOWN">Turtle City</data>
<data key="COLOR">115</data>
<data key="XCOR">0</data>
<data key="SIZE">1</data>
</node>
<node id="banker 0">
<data key="PEN-MODE">up</data>
<data key="YCOR">0</data>
<data key="PEN-SIZE">1</data>
<data key="LABEL"></data>
<data key="SHAPE">default</data>
<data key="BREED">bankers</data>
<data key="WHO">0</data>
<data key="HIDDEN?">false</data>
<data key="LABEL-COLOR">9.9</data>
<data key="HEADING">32</data>
<data key="BANK-NAME">The Bank</data>
<data key="COLOR">85</data>
<data key="XCOR">0</data>
<data key="SIZE">1</data>
</node>
<edge source="client 1" target="banker 0">
<data key="END1">(client 1)</data>
<data key="TIE-MODE">none</data>
<data key="END2">(banker 0)</data>
<data key="LABEL-COLOR">9.9</data>
<data key="THICKNESS">0</data>
<data key="LABEL"></data>
<data key="SHAPE">default</data>
<data key="BREED">accounts</data>
<data key="COLOR">5</data>
<data key="AMOUNT">9999.99</data>
<data key="HIDDEN?">false</data>
</edge>
<edge source="banker 0" target="client 1">
<data key="END1">(banker 0)</data>
<data key="TIE-MODE">none</data>
<data key="END2">(client 1)</data>
<data key="LABEL-COLOR">9.9</data>
<data key="THICKNESS">0</data>
<data key="LABEL"></data>
<data key="SHAPE">default</data>
<data key="BREED">friendships</data>
<data key="COLOR">5</data>
<data key="HIDDEN?">false</data>
</edge>
</graph>
</graphml>

A	few	things	to	notice:

The	breed	is	stored	as	data	field,	both	for	nodes	and	edges.
The	data	includes	both	NetLogo’s	internal	variables	and	the	variables	that	were	defined	as	either	breeds-own,
turtles-own,	linkbreeds-own	or	links-own.
Each	key	gets	an	attr.type	based	on	the	actual	types	of	the	values	contained	in	the	agent	variables.	The	three
possible	types	are	"string",	"double"	and	"boolean".	To	determine	the	attribute	type	of	a	particular	agent	variable,
the	extension	will	look	at	the	first	agent	in	the	graph.	To	see	which	agent	is	first,	you	can	look	at	the	result	of
nw:get-context.	Note	that	variables	containing	other	types	of	values,	such	as	turtles,	patches,	lists,	etc.,	will	be
stored	as	strings.
This	example	only	has	a	directed	link,	and	you	will	notice	the	<graph edgedefault="directed">	element.	If	we	had
only	undirected	links,	we	would	have	<graph edgedefault="undirected">.	What	if	we	try	to	mix	both	kinds	of	link?
At	the	moment,	the	extension	will	save	such	a	“mixed”	graph	as	if	it	were	an	undirected	graph	(see	this	issue	for
more	details).	The	order	of	the	source	and	target	will	be	respected,	however,	so	if	you	know	which	breeds
represent	directed	links,	you	can	figure	it	out	a	posteriori.

nw:load-graphml

https://github.com/NetLogo/NW-Extension/issues/58

nw:load-graphml	file-name	optional-command-block

Loading	a	GraphML	file	into	NetLogo	with	the	network	extension	should	be	as	simple	as	calling	nw:load-graphml
"example.graphml",	but	there	is	a	bit	of	preparation	involved.

The	key	idea	is	that	nw:load-graphml	will	try	to	assign	the	attribute	values	defined	in	the	GraphML	file	to	NetLogo
agent	variables	of	the	same	names	(this	is	not	case	sensitive).	The	first	one	it	tries	to	set	is	breed	if	it	is	there,	so	the
turtle	or	link	will	get	the	right	breed	and,	hence,	the	right	breed	variables.

One	special	case	is	the	who	number,	which	is	ignored	by	the	importer	if	it	is	present	as	a	GraphML	attribute:	NetLogo
does	not	allow	you	to	modify	this	number	once	a	turtle	is	created	and,	besides,	there	could	already	be	an	existing
turtle	with	that	number.

The	simplest	case	to	handle	is	when	the	original	GraphML	file	has	been	saved	from	NetLogo	by	using	nw:save-
graphml.	In	this	case,	all	you	should	have	to	do	is	to	make	sure	that	you	have	the	same	breed	and	variables
definition	as	when	you	saved	the	file	and	you	should	get	back	your	original	graph.	For	example,	if	you	want	to	load
the	file	from	the	nw:save-graphml	example	above,	you	should	have	the	following	definitions:

breed [bankers banker]
bankers-own [bank-name]
breed [clients client]
clients-own [hometown]

undirected-link-breed [friendships friendship]

directed-link-breed [accounts account]
accounts-own [amount]

Loading	a	graph	that	was	saved	from	a	different	program	than	NetLogo	is	quite	possible	as	well,	but	it	may	take	a	bit
of	tinkering	to	get	all	the	attribute-variable	match	up	right.	If	you	encounter	major	problems,	please	do	not	hesitate	to
open	an	issue.

The	extension	will	try	to	assign	the	type	defined	by	attr.type	to	each	variable	that	it	loads.	If	it’s	unable	to	convert	it
to	that	type,	it	will	load	it	as	a	string.	If	attr.type	is	not	defined,	or	is	set	to	an	unknown	value,	the	extension	will	first
try	to	load	the	value	as	a	double,	then	try	it	as	a	boolean,	and	finally	fall	back	on	a	string.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:load-graphml "example.graphml" [set color red]

Note	that	this	command	block	can	be	used	to	build	a	list	or	an	agentset	containing	the	newly	created	nodes:

let node-list []
nw:load-graphml "example.graphml" [
 set node-list lput self node-list
]
let node-set turtle-set node-list

nw:load

nw:load	file-name	default-turtle-breed	default-link-breed	optional-command-block

Filetype	specific	variants:

nw:load
nw:load-dl
nw:load-gdf
nw:load-gexf
nw:load-gml
nw:load-vna

Import	the	given	file	into	NetLogo.	Like	nw:load-graphml,	the	importer	will	do	its	best	to	match	node	and	edge
attributes	in	the	file	with	turtle	and	link	variables	in	NetLogo.	If	breed	is	specified	for	nodes	and	edges	in	the	file	and
exists	in	NetLogo,	it	will	be	used.	Otherwise,	the	default	turtle	and	link	breeds	are	used.

Limitations:

Multigraphs	are	not	supported	in	importing.	Even	if	the	file	format	supports	it	(and	many	don’t),	only	the	first	link
will	be	used	on	import.	This	is	due	to	a	limitation	in	the	parsing	libraries	NW	uses.	nw:load-graphml	does	support
multigraphs	with	the	normal	NetLogo	limitation	that	two	turtles	can	share	more	than	one	link	only	if	all	the	links	are
of	different	breeds.

https://github.com/NetLogo/NW-Extension/issues/new

nw:load	determines	the	file-type	of	given	file	based	on	the	extension	and	calls	the	corresponding	load-*	primitive	on
it.	Note	that	GraphML	must	be	imported	with	nw:load-graphml.

nw:save

nw:save	file-name

Filetype	specific	variants:

nw:save-dl
nw:save-gdf
nw:save-gexf
nw:save-gml
nw:save-vna

Export	the	network	context	in	the	given	format	to	the	given	file.	Turtle	and	link	attributes	will	be	exported	to	formats
that	support	node	and	edge	properties.

Limitations:

x	and	y	(not	xcor	and	ycor)	can	only	be	numbers.	x	and	y	are	commonly	used	in	formats	pertaining	to	position	and
behind	the	scenes	NW	uses	Gephi’s	libraries	for	exporting.	Furthermore,	x	and	y	will	be	added	even	if	they	didn’t
exist	in	the	model.	Again,	this	is	because	NW	uses	Gephi’s	libraries	which	assume	that	nodes	have	positions
stored	in	x	and	y.	If	you	wish	to	export	to	Gephi	specifically,	we	recommend	creating	x	and	y	turtles	variables	and
setting	them	to	xcor	and	ycor	before	export.
Color	will	be	exported	in	a	standard	RGB	format.	This	should	hopefully	increase	compatibility	with	other	programs.
Turtle	and	link	variables	that	contain	values	of	different	types	will	be	stored	as	strings.	Unfortunately,	most	network
formats	require	that	node	and	attributes	have	a	single	type.
Many	programs	use	label	to	store	the	id	of	nodes.	Thus,	if	you’re	having	trouble	importing	data	exported	from
NetLogo	into	another	program,	you	might	try	setting	turtles’	labels	to	their	who	number.
Multigraphs	are	not	supported.	Thus,	two	turtles	can	share	at	most	one	link.	nw:save-graphml	does	support
multigraphs,	so	use	that	if	turtles	can	have	more	than	one	type	of	link	connecting	them.

nw:save	determines	the	file-type	of	the	given	file	based	on	the	extension	and	calls	the	corresponding	save-*	primitive
on	it.	Note	that	GraphML	must	be	exported	with	nw:save-graphml.

NetLogo	Palette	Extension

Using	the	Palette	Extension

The	NetLogo	palette	extension	allows	to	map	values	to	colors.	The	colors	go	beyond	NetLogo	colors,	including
ColorBrewer	color	schemes	or	arbitrary	RGB	colors.	Additionally,	it	provides	a	primitive	to	map	to	color	gradients	and	a
primitive	to	launch	a	ColorBrewer	dialog	for	easy	scheme	selection.

Getting	Started

To	get	started	with	palettes	add	to	the	top	of	your	Code	tab:

extensions [palette]

you	can	then	call	any	of	the	primitives	by	adding	palette:	before	the	primitive:

palette:scale-gradient
palette:scale-scheme

palette:scheme-color
palette:scheme-dialog

The	palette	extension	primitives	return	a	list	containing	RGB	colors	[[r g b][r g b]...[r g b]] ,	except	for
palette:scheme-dialog	which	opens	a	dialog.

What	colors	should	I	use	?

ColorBrewer	has	many	colors	where	to	start.	ColorBrewer	has	three	schemes	Sequential,	Divergent	and	Qualitative.	The
use	of	ColorBrewer	for	maps	is	discussed	at	length	in	this	paper	(Harrower,	Brewer	2003).	Choosing	the	right	colors	is	a
design	problem,	thus,	there	are	many	acceptable	solution.	However,	these	guidelines	might	be	useful	for	choosing	colors
in	Agent	Based	Models:

Sequential	colors	are	best	for	continuous	natural	phenomena	models	such	as	as	heat	diffusion	in	physics	or	fire	in
earth	sciences.
Divergent	colors	are	useful	for	highlighting	a	middle	value	in	a	model.	It	can	be	also	applied	to	the	heat	diffusion	model
if	the	goal	is	to	highlight	the	middle	temperature.
Qualitative	colors	are	best	for	choosing	colors	in	models	where	color	denotes	category	and	not	value.
For	agents	that	cover	large	areas	avoid	strong	colors	and	try	to	use	pastel	colors.	However,	for	a	low	number	of	small
isolated	agents	try	to	use	strong	colors	such	as	such	a	accent.
The	main	goal	is	to	avoid	having	a	large	area	covered	with	agents	with	a	bright	color	and	or	having	small	areas	having
a	muted	pastel	color.
If	you	are	coloring	both	turtles	and	patches,	make	sure	they	have	different	ranges	of	hue,	saturation	and	value.	E.g.
Use	different	hues	of	pastel	for	patches	and	accent	for	turtles

Should	I	use	a	continuous	color	gradient	or	just	a	discrete	color	set	?

The	answer	depends	on	the	task	that	your	will	be	asking	from	your	user.

For	example,	gradients	are	more	aesthetic	thus	are	more	memorable	than	discrete	colors.	Consequently,	a	gradient	can
be	a	better	choice	for	presentations	where	the	main	goal	of	the	image	is	to	be	attractive	and	memorable.	However,
binning	values	in	a	discrete	set	of	colors	simplifies	tasks	such	as	estimation	and	counting	by	removing	unnecessary
detail	to	display	the	big	picture.	Thus,	discrete	colors	can	be	a	better	choice	for	a	paper	where	the	user	will	have	the	time
and	interest	to	study	the	visualization.

In	order	to	see	the	difference	you	can	turn	on	and	off	the	gradient	in	the	Heat	Diffusion	model.	You	can	observe	that
turning	gradient	on	makes	the	model	more	aesthetic,	but	it	becomes	harder	to	estimate	the	value	of	a	patch	at	a	given
position.

Example	Models

There	is	an	example	of	using	the	palette	primitives	in	the	Code	Examples	section	of	the	models	library:

Palette	Example

And	one	Sample	Model	that	uses	the	extension:

Heat	Diffusion	-	Alternative	Gradient

Further	Reading

Be	sure	to	check	the	ColorBrewer	web	page
To	get	a	deeper	understanding	of	how	to	use	the	color	schemes	read	the	ColorBrewer	paper	(Harrower,	Brewer	2003)

Primitives

palette:scale-gradient	palette:scale-scheme	palette:scheme-colors	palette:scale-gradient

palette:scale-gradient

palette:scale-gradient	rgb-color-list	number	range1	range2

Reports	an	RGB	color	proportional	to	number	using	a	gradient	generated	with	rgb-color-list.	An	rgb-color-list	consist	of	a
list	containing	RGB	list	with	three	values	between	0	and	255:	[[r1	g1	b1]	[r2	g2	b2]	[r3	g3	b3]	…]

If	range1	is	less	than	range2,	the	color	will	be	directly	mapped	to	gradient	colors.	While,	if	range2	is	less	than	range1,	the
color	gradient	is	inverted.

If	number	is	less	than	range1,	then	the	first	color	of	is	RGB-color-list	is	chosen.

If	number	is	grater	than	range2,	then	the	last	color	of	is	RGB-color-list	is	chosen.

Example:

ask patches
[
 set pcolor palette:scale-gradient [[255 0 0] [0 0 255]] pxcor min-pxcor max-pxcor
]

;; colors each patch with a color proportional to the gradient

palette:scale-scheme

palette:scale-scheme	scheme-type	scheme-color	number-of-classes	range1	range2

Reports	an	RGB	color	proportional	to	number	using	the	color	brewer	schemes.	It	takes	six	arguments	the	first	three
arguments	define	the	ColorBrewer	legend.	Fir	the	user	should	select	a	scheme-type	which	can	be	“Sequential”,
“Divergent,	Qualitative”.	Then	it	should	select	a	variety	of	scheme-colors	which	depending	on	the	scheme-color	can	have
names	such	as	“Reds”,	“Divergent”,	“Set1”.	Finally	the	user	should	select	the	number	of	classes	with	a	minimum	of	3	and
a	maximum	between	9	and	11.	For	more	information	go	to	http://www.colorbrewer.org	or	consult	the	scheme-dialog
primitive.

If	range1	is	less	than	range2,	the	color	will	be	directly	mapped	to	scheme	colors.	While,	if	range2	is	less	than	range1,	the
color	scheme	selection	is	inverted.

If	number	is	less	than	range1,	then	the	first	color	of	the	resulting	ColorBrewer	legend	is	chosen.

If	number	is	grater	than	range2,	then	the	last	color	of	the	resulting	ColorBrewer	legend	is	chosen.

Example:

ask patches
[
 set pcolor palette:scale-scheme [[255 0 0] [0 0 255]] pxcor min-pxcor max-pxcor
]

;; colors each patch with a color from the Color Brewer Schemes

palette:scheme-colors

palette:scheme-colors	scheme-type	scheme-color	number-of-classes

report	a	list	of	RGB	colors	with	the	size	specified	in	the	a	number	of	classes

Example:

show palette:scheme-colors "Divergent" "Spectral" 3
=> [[252 141 89] [255 255 191] [153 213 148]]

; The schemes-color primitive can be used with the scale-gradient primitive
ask patches
 [set pcolor palette:scale-gradient palette:scheme-colors "Divergent" "Spectral" 9 pxcor min-pxcor max-pxcor]

http://colorbrewer2.org/
http://www.colorbrewer.org

palette:scale-gradient

palette:scale-gradient	rgb-color-list	number	range1	range2

Reports	an	RGB	color	proportional	to	number	using	a	gradient	generated	with	rgb-color-list.	An	rgb-color-list	consist	of	a
list	containing	RGB	list	with	three	values	between	0	and	255:	[[r1	g1	b1]	[r2	g2	b2]	[r3	g3	b3]	…]

If	range1	is	less	than	range2,	the	color	will	be	directly	mapped	to	gradient	colors.	While,	if	range2	is	less	than	range1,	the
color	gradient	is	inverted.

If	number	is	less	than	range1,	then	the	first	color	of	is	RGB-color-list	is	chosen.

If	number	is	grater	than	range2,	then	the	last	color	of	is	RGB-color-list	is	chosen.

Example:

ask patches
[
 set pcolor palette:scale-gradient [[255 0 0] [0 0 255]] pxcor min-pxcor max-pxcor
]

;; colors each patch with a color proportional to the gradient

References

ColorBrewer	www.colorbrewer.org

HARROWER,	M.	and	C.	BREWER	(2003).	ColorBrewer:	An	online	tool	for	selecting	color	schemes	for	maps.	The
Cartographic	Journal	40(1):	27-37.)

HEALEY,	C	G	(2006)	Perception	in	Visualization,	(comprehensive	review	updated	regularly).

HEALEY,	C	G,	BOOTH	K	S,	and	ENNS,	J	T	(1995).	Visualizing	Real-Time	Multivariate	Data	Using	Preattentive
Processing	ACM	Transactions	on	Modeling	and	Computer	Simulation	5,	3,	190-221.

TUFTE,	E	(1983)	The	Visual	Display	of	Quantitative	Information	,	Graphics	Press.

WARE,	C	(2004)	Information	Visualization,	2nd	Ed.,	Morgan	Kaufmann.	Feedback

http://www.colorbrewer.org

NetLogo	Profiler	Extension

Using	the	Profiler	Extension

If	you’d	like	your	model	to	run	faster,	the	profiler	extension	may	be	useful	to	you.	It
includes	primitives	that	measure	how	many	times	the	procedures	in	your	model	are	called
during	a	run	and	how	long	each	call	takes.	You	can	use	this	information	to	where	to	focus
your	speedup	efforts.

Caution:

The	profiler	extension	is	experimental.	It	is	not	yet	well	tested	or	user	friendly.
Nonetheless,	we	think	some	users	will	find	it	useful.

How	to	use

The	profiler	extension	comes	preinstalled.	To	use	the	extension	in	your	model,	add	a	line
to	the	top	of	your	Code	tab:

extensions [profiler]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so
just	add	profiler	to	the	list.

For	more	information	on	using	NetLogo	extensions,	see	the	Extensions	Guide

Example

setup ;; set up the model
profiler:start ;; start profiling
repeat 20 [go] ;; run something you want to measure
profiler:stop ;; stop profiling
print profiler:report ;; view the results
profiler:reset ;; clear the data

Thanks	to	Roger	Peppe	for	his	contributions	to	the	code.

Primitives

profiler:calls	profiler:exclusive-time	profiler:inclusive-time	profiler:start
profiler:stop	profiler:reset	profiler:report

profiler:calls

profiler:calls	procedure-name

Reports	the	number	of	times	that	procedure-name	was	called.	If	procedure-name	is	not
defined,	then	reports	0.

profiler:exclusive-time

profiler:exclusive-time	procedure-name

Reports	the	exclusive	time,	in	milliseconds,	that	procedure-name	was	running	for.
Exclusive	time	is	the	time	from	when	the	procedure	was	entered,	until	it	finishes,	but	does
not	include	any	time	spent	in	other	user-defined	procedures	which	it	calls.

If	procedure-name	is	not	defined,	then	reports	0.

profiler:inclusive-time

profiler:inclusive-time	procedure-name

Reports	the	inclusive	time,	in	milliseconds,	that	procedure-name	was	running	for.	Inclusive
time	is	the	time	from	when	the	procedure	was	entered,	until	it	finishes.

If	procedure-name	is	not	defined,	then	reports	0.

profiler:start

profiler:start

Instructs	the	profiler	to	begin	recording	user-defined	procedure	calls.

profiler:stop

profiler:stop

Instructs	the	profiler	to	stop	recording	user-defined	procedure	calls.

profiler:reset

profiler:reset

Instructs	the	profiler	to	erase	all	collected	data.

profiler:report

profiler:report

Reports	a	string	containing	a	breakdown	of	all	user-defined	procedure	calls.	The	Calls
column	contains	the	number	of	times	a	user-defined	procedure	was	called.	The	Incl
T(ms)	column	is	the	total	time,	in	milliseconds,	it	took	for	the	call	to	complete,	including	the
time	spent	in	other	user-defined	procedures.	The	Excl T(ms)	column	is	the	total	time,	in
milliseconds,	spent	within	that	user-defined	procedure,	not	counting	other	user-define
procedures	it	called.	The	Excl/calls	column	is	an	estimate	of	the	time,	in	milliseconds,
spent	in	that	user-defined	procedure	for	each	call.

Here	is	example	output:

Sorted by Exclusive Time
Name Calls Incl T(ms) Excl T(ms) Excl/calls

CALLTHEM 13 26.066 19.476 1.498
CALLME 13 6.413 6.413 0.493
REPORTME 13 0.177 0.177 0.014

Sorted by Inclusive Time
Name Calls Incl T(ms) Excl T(ms) Excl/calls
CALLTHEM 13 26.066 19.476 1.498
CALLME 13 6.413 6.413 0.493
REPORTME 13 0.177 0.177 0.014

Sorted by Number of Calls
Name Calls Incl T(ms) Excl T(ms) Excl/calls
CALLTHEM 13 26.066 19.476 1.498

NetLogo	R	Extension

The	R-Extension	of	NetLogo	provides	primitives	to	use	the	statistical	software	R	(Gnu	S)	(see	the	R	Project	website)	within	a
NetLogo	model.	There	are	primitives	to	create	R-Variables	with	values	from	NetLogo	variables	or	agents	and	others	to
evaluate	commands	in	R	with	and	without	return	values.

Using

To	use	the	extension	in	your	model,	add	a	line	to	the	top	of	your	procedures	tab:

extensions [r]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so	just	add	r	to	the	list.

For	more	information	on	using	NetLogo	extensions,	see	the	Extensions	Guide.

For	examples	of	the	usage	of	the	R-Extension,	models	can	be	downloaded	from	the	project	repository.	These	models	are
installed	with	NetLogo	in	the	“models”	directory	of	the	R	extension.	Please	note	that	(as	of	NetLogo	6.0)	these	models	are
not	included	in	the	NetLogo	models	library.

Some	Tips

Plotting

If	you	want	to	use	the	plot	function	of	R,	you	could	activate	the	JavaGD	plot	device	via	r:setPlotDevice,	see	the	“plot-
example1.nlogo”	model.	This	is	the	prefered	method!

But	you	can	also	use	the	standard	R	device,	but	then,	you	have	to	give	R	some	cpu	time,	e.g.	by	run	an	evalulation	of
sys.sleep(0.01)	with	a	forever	button.	See	the	“plot-example2.nlogo”.	(Many	thanks	to	Thomas	Petzold!).	The	creation	of
plots	into	files	is	also	possible.	See	the	“plot-into-file-example.nlogo”	in	the	examples	folder.

Load	and	Save	data	from/into	file(s)

It’s	possible	to	load	and	save	data	from	file	directly	in	R.	This	code	snippet	illustrates:

r:eval "dataname <- read.table('<path to file>')" ; read file
r:eval "write.table(dataname, file='<filename>')" ; write file

Data.frame	with	vector	in	cells

Normally,	a	data.frame	cell	contains	only	a	single	value.	Each	column	is	represented	as	a	vector	and	if	you	would	put	a
vector	of	vectors	to	a	data.frame,	it	would	be	splitted	into	several	columns.	With	the	R-Extension	it	is	possible	to	put	a	vector
into	a	data.frame	cell,	when	you	assign	a	NetLogo	List	to	a	column	which	contains	nested	NetLogo	Lists	for	each	row.	If	you
want,	for	example,	to	use	write.table	on	this	data.frame,	you	have	to	mark	this	column	as	class="AsIs".	You	can	do	this	by
using	the	I(x)-function.

Example:	If	the	column	of	interest	has	the	name	“col1”	of	the	data.frame	“df1”	you	could	execute	r:eval "df1$col1 <-
I(df1$col1)".	Call	help(I)	from	within	an	R	terminal	for	further	details.

Load	an	R-Script

Furthermore,	you	can	define	functions	in	an	R-Script,	load	it,	and	use	the	functions.	Load	R-files	via	r:eval "source('<path
to r-file>')".

Load	a	Package

It’s	also	possible	to	load	R	packages	via	r:eval "library(<name of package>)".

When	you	compile	your	code	containing	extensions [r]	you	will	create	a	new	R	workspace.	Until	you	reload	the	extension,
open	a	new	model	or	submit	the	primitive	[r:clear](#rclear),	all	R	variables	assigned	in	this	session	will	be	available	like
you	would	use	R	from	the	command	line	or	in	the	R	Console.

Interactive	Shell

You	can	open	an	Interactive	R	Shell	via	r:interactiveShell.	This	shell	is	a	port	to	the	underlaying	R	instance.	This	shell
works	on	the	global	environment	(see	Environments	in	the	R	Extension	below)	while	the	extension	itself	work	on	a	custom
local	environment.	But	there	is	one	automatic	variable	“nl.env”	in	the	global	environment,	which	is	a	reference	to	the	local
environment	of	the	extension.	Don’t	delete	this	variable!
You	can	access	a	variable	created	by	the	extension	via	get("<variable name>",nl.env),	for	example	myvar <-
get("myvar",nl.env).	If	you	want	to	plot	from	the	Interactive	Shell	you	should	use	the	included	JavaGD	plot	device	(see

http://www.r-project.org/
https://github.com/NetLogo/R-Extension/tree/master/examples

r:setPlotDevice).	You	can	save	and	load	the	history	of	entered	R	commands	via	a	right-mouse	button	context	menu.

Please	read	the	notes	at	the	top	of	the	output	text	area	after	opening	the	shell!	On	Linux	OS	it	can	happen	that	you	see	an
error	message	from	X11.	Please	check,	if	everything	worked	correcly.	If	so,	you	can	ignore	these	messages.	If	not,	please
write	a	report	to	bugs@ccl.northwestern.edu	or	open	an	issue.

Environments	In	the	R	Extension

When	you	load	a	model	the	R-Extension	creates	a	new	R	environment.	When	you	create	an	R	variable	using	the	R-
Extension,	this	variable	is	created	in	the	local	R	environment.	Furthermore,	all	calls	from	the	R-Extension	work	on	this	local
environment.	This	new	environment	concept	enables	you	to	use	the	extension	in	BehaviorSpace	Experiments.	Therefore,
you	don’t	have	to	care	about	the	environment	while	you’re	not	using	the	Interactive	Shell	or	other	tools,	which	work	on	the
global	environment.	You	can	explicitly	assign	a	variable	to	the	global	environment	by	using	the	<-	operator	or	by	executing
assign(<name>,<value>,envir=.GlobalEnv).	If	you	work	with	the	Interactive	Shell,	see	the	notes	at	the	top	of	the	output	text
area	after	opening	the	shell.

Type	help(environment)	in	an	R	shell	to	learn	more	about	environments.

You	can/should	clear	(i.e.	remove	all	variable	and	free	memory)	the	local	environment	via	[r:clearLocal](#rclearLocal).	If
you	want	to	clear	also	the	global	environment	(the	whole	workspace),	call	[r:clear](#rclear).

Memory

With	the	R-Extension	you	can	load	R	into	the	process	of	NetLogo.	Because	of	the	architecture	of	R,	both	software	share	one
system	process	and	therefore	the	memory	given	to	NetLogo.

In	some	circumstances	it	can	happen	that	you	receive	an	out	of	memory	error	due	to	Java’s	heap	space.	You	can	increase
the	heap	space	before	starting	NetLogo	by	adapting	the	-Xmx	JVM-parameter	(see	also	the	NetLogo	manual	section	on
Windows	memory).	But	on	32-bit	systems,	this	is	very	limited.	Therefore,	it	is	a	good	idea	to	use	a	64-bit	system	if	you
want/need	to	use	high	amount	of	RAM.	You	can	see	the	memory	usage	of	R	by	starting	the	interactive	shell
(r:interactiveShell)	and	type	there:	memory.size(max=F)	and	memory.size(max=T).	Furthermore,	you	can	check	the	memory
limit	by	typing:	memory.limit().
See	also:

R	manual	page	for	memory.profile
R	manual	page	for	object.size
R	manual	page	for	memory.size

If	you	call	the	garbage	collector	in	the	interactive	shell	by	typing	gc(),	you	will	get	some	information	about	the	current
memory	usage	(see	also	http://stat.ethz.ch/R-manual/R-patched/library/base/html/gc.html).

If	you	type	gc(nl.env)	you	will	see	the	percentage	of	memory	used	for	cons	cells	and	vectors.

Don’t	forget	to	call	the	r:gc	primitive	after	removing	an	R	variable	and	don’t	forget	to	remove	R	variable	you	don’t	need
anymore!	See	how	the	memory	usage	changes	after	removing	variable	and	calling	r:gc.

If	you	use	too	much	memory,	it	can	happen,	that	NetLogo	will	close	abruptly.	In	such	a	case,	check	if	there	is	a	way	to
reduce	the	memory	used.	If	not,	try	to	switch	over	to	the	Rserve-extension.	With	the	Rserve-Extension	both	software,
NetLogo	and	R,	run	independently.	There	is,	of	cause,	also	a	limit	of	transferable	data	amount	with	one	request,	but	it	is	less
restrictive.

One	last	note	to	this	topic:	Keep	in	mind	that	R	is	a	vector-oriented	language.	Prevent	mass	calls	with	single	values
whenever	possible	and	replace	them	by	vector	operations.	This	is	much	faster	and	more	stable.

Headless

Since	R-Extension	version	1.1	it	is	possible	use	the	extension	when	NetLogo	is	running	in	headless	mode.	This	is	for
example	the	case,	when	you	run	BehaviorSpace	experiments	from	the	command	line	(see	here).	The	difference	is,	that	the
interactiveShell	is	not	initialized/instanciated.	You	can	use	the	extension	as	you	know	it	from	GUI	mode,	but	it	is	not
possible	to	open	the	interactiveShell	(r:interactiveShell)	and	to	set	the	plot	device	(r:setPlotDevice).	But	one	additional
things	has	to	be	done:	You	have	to	call	r:stop	finally	when	running	NetLogo	headless	to	stop	the	R	engine.	Otherwise
NetLogo	will	not	be	closed	and	you	will	not	get	back	to	the	command	line	prompt.	When	setting	up	a	BehaviorSpace
experiment,	there	is	the	option	to	set	final	commands.	This	is	a	good	place	to	add	the	r:stop	command	(see	image).

mailto:bugs@ccl.northwestern.edu
https://github.com/NetLogo/R-Extension/issues
http://stat.ethz.ch/R-manual/R-patched/library/base/html/memory.profile.html
http://stat.ethz.ch/R-manual/R-patched/library/utils/html/object.size.html
http://stat.ethz.ch/R-manual/R-devel/library/utils/html/memory.size.html
http://stat.ethz.ch/R-manual/R-patched/library/base/html/gc.html
http://rserve-ext.sourceforge.net/

Installing

The	R	Extension	is	bundled	with	NetLogo	6.	To	use	it,	you	will	need	a	compatible	R	installation	and	you	may	need	to
configure	the	extension.

Installing	R

Standard	R	3	installations	should	work	(sometimes	without	configuration).	As	of	NetLogo	6,	the	following	operating	system	/
R	versions	were	tested:

Mac	OS	X,	R	3.3.2
Windows	10,	R	3.3.2
Ubuntu	14.04	(64-bit),	R	3.0.2

Once	R	is	installed,	you	will	need	to	install	the	rJava	package.	Certain	features	of	the	R	extension	rely	on	the	JavaGD
package.

To	install,	start	the	RGui	from	your	program	list,	click	on	the	item	“Packages”	in	the	menu	bar	and	then	on	“Install
Package(s)”.	Select	your	favorite	server	and	find	“rJava”,	as	well	as	“JavaGD”	and/or	“CommonJavaJars”	(both	optional)	in
the	list	of	packages.

If	you	prefer	using	the	console,	you	can	install	the	same	packages	by	running	the	following	commands	in	the	console	(and
following	the	prompts	they	generate,	as	appropriate).

install.packages("rJava")
install.packages("JavaGD") # Optional
install.packages("CommonJavaJars") # Optional

Configuring	the	R	extension

If	you	are	using	Linux	or	Mac	OS	and	one	of	the	above	R	versions,	you	may	not	need	to	perform	any	further	configuration.
An	easy	way	to	determine	whether	you	need	to	configure	the	extension	it	to	open	a	new	NetLogo	model,	add	extensions [
r]	to	the	code	tab	and	press	“Check.”	If	you	see	an	error,	you	need	to	configure	the	R	extension.	The	R	extension	can	be
configured	by	editing	the	“user.properties”	file	in	a	text	editor	(“user.properties”	is	located	in	the	r	extension	directory	as	part
of	the	NetLogo	installation).	The	following	keys	are	used	to	configure	the	extension:

r.home:	Controls	which	installation	of	r	is	used.
jri.home.paths:	Controls	the	path	to	the	jri	subdirectory	of	the	rJava	library.

Note	that	you	will	have	to	exit	NetLogo	and	restart	to	see	configuration	changes	take	effect,	as	the	configuration	file	is	only
loaded	once	per	NetLogo	instance.	See	below	on	how	to	determine	the	appropriate	values	to	for	r.home	and
jri.home.paths.

Configuring	the	Windows	PATH

Windows	requires	an	additional	configuration	step	to	make	the	R	extension	fully	functional.	The	appropriate	directory	from
your	R	installation	needs	to	be	added	to	your	PATH.	To	do	this,	determine	where	your	R	installation	is	located	(here	we’ll
use	the	location	C:\Program	Files\R\R-),	then	follow	these	steps.

1.	 Open	the	System	Properties	dialog.	You	can	type	“Environment	Variable”	into	Cortana	or	navigate	there	through	“Control
Panel”	>	System	>	“Advanced	system	settings”.

2.	 Click	the	“Environment	variables…”	button	in	the	lower	right	of	the	dialog.
3.	 Click	the	“Path”	variable	in	the	lower	panel,	then	click	the	lower	“Edit…”	button.
4.	 Windows	10	allows	you	to	choose	“New”	and	enter	a	separate	path.	If	you’re	using	Windows	7,	append	the	value,	using	a

semicolon	to	separate	it	from	the	entry	before.

If	you’re	using	32-bit	NetLogo,	enter	the	location	C:\Program Files\R\R-<version>\bin\i386\
If	you’re	using	64-bit	NetLogo,	enter	the	location	C:\Program Files\R\R-<version>\bin\x64\

1.	 Choose	OK,	and	OK	again
2.	 Log	out	of	your	user	and	back	in	or	restart	Windows	to	let	the	setting	take	affect.

Note	that	you	will	need	to	update	this	setting	if	you	wish	to	upgrade	the	version	of	R	used	by	NetLogo.

Notes	on	editing	“user.properties”	on	Windows

“user.properties”	is	a	newline-delimited	file.	This	means	if	it	is	opened	in	“Notepad”	it	will	look	like	all	the	text	is	on	a	single
line.	For	this	reason,	it	is	recommended	to	open	first	in	“WordPad”	and	resave	before	editing	in	Notepad.	Alternatively,	if	you
have	a	full-featured	text	editor	(like	Notepad++,	Vim,	or	Emacs)	installed,	you	can	use	that	to	edit	the	file.

To	reiterate	a	warning	given	in	the	“user.properties”	file,	the	directory	separator	for	Windows	must	be	entered	in
user.properties	as	double-backslash	(“\”)	or	single-forward-slash	(“/”).

Determining	r.home	and	jri.home.paths

r.home	is	the	path	to	the	“R”	installation	directory	which	contains	the	“bin”	directory.	If	you’re	having	trouble	finding	this,	you
can	run	R.home(component = "home") 	in	R,	or	R RHOME	on	the	command	line	(if	R	is	on	your	path).

R.home(component = "home")
Returns "C:/PROGRA~1/R/R-33~1.2/bin/x64" on Windows.
Will return other results on other platforms or configurations

jri.home.paths	is	a	list	of	directories	to	check	for	jri.	It’s	in	the	jri	directory	under	the	rJava	library	installation.	You	can	find
the	jri	directory	in	the	rJava	package	by	running	the	following	in	R:

system.file("jri", package = "rJava")
Returns "C:/Users/username/Documents/R/win-library/3.3/rJava/jri" on Windows.
Will return other results on other platforms or configurations

Take	the	path	and	edit	the	user.properties	file,	uncommenting	and	editing	one	set	of	r.home	and	jri.home.paths	to	match
the	values	obtained	in	R.	When	you’re	done,	the	user.properties	file	should	have	the	following	lines	(given	the	above
results):

r.home=C:/PROGRA~1/R/R-33~1.2/bin/x64
jri.home.paths=C:/Users/username/Documents/R/win-library/3.3/rJava/jri

Save	user.properties	and	load	a	model	using	the	R	extension.	You	should	see	it	start	and	run	properly.

Primitives

r:clear	r:clearLocal	r:eval	r:__evaldirect	r:gc	r:get	r:interactiveShell	r:put	r:putagent	r:putagentdf	r:putdataframe
r:putlist	r:putnamedlist	r:setPlotDevice	r:stop

r:clear

r:clear

Clears	the	R-Workspace.	All	variables	in	R	will	be	deleted.	It	evaluates	the	R	command	rm(list=ls())	and
rm(list=ls(nl.env)).	This	deletes	variables	created	in	global	as	well	as	local	environment	(see	R	Environments	for	details
about	environments).	It’s	always	a	good	idea	to	add	this	command	to	your	setup	procedure	under	your	“clear-all”	call.

;; clear the R workspace
r:clear

r:clearLocal

r:clearLocal

It	clears	the	local	R	environment,	which	is	used	by	the	extension.	All	variables	which	have	been	created	in	the	local
environment	will	be	deleted.	It	evaluates	the	R	command	rm(list=ls(nl.env)).	See	R	Environments	for	details	about
environments.	See	r:clear	for	deleting	all	variables,	i.e.	the	globals	as	well.

;; delete the local variables
r:clearLocal

r:eval

r:eval	R-command

It	evaluates	the	submitted	R	command.	The	R	command	shouldn’t	return	a	value.

;; creates a new vector in R with a sequence from 1 to 10
r:eval "x <- seq(1,10)"
show r:get "x"

r:__evaldirect

r:__evaldirect	R-command

Evaluates	the	submitted	R	command	in	the	global	environment	(not	in	the	local	environment	like	r:eval	does)	and	without	a
check	(not	using	try-function	internally).	This	can	be	necessary	for	some	R	packages,	like	gglopt2.	Please	note,	that	you	can
produce	name	clashes	when	creating	new	variables	using	this	primitive.	The	variable	will	be	created	into	the	global
environment	and	will	not	overwrite	variable	with	the	same	name	that	have	been	created	into	the	local	environment.	If	you
request	a	variable	with	r:get	it	will	search	in	the	local	environment	first.	Therefore,	if	there	are	variables	with	the	same	name
in	the	local	and	the	global	environment,	it	will	report	the	variable	from	the	local	environment	and	not	the	variable	created	via
r:__evaldirect.	If	there	is	only	a	variable	with	the	requested	name	in	the	global	environment,	everything	will	be	fine	-	r:get
will	report	the	value	of	this	variable.	If	you	want	to	remove	a	variable	created	via	r:__evaldirect,	i.e.	in	the	global
environment,	call	r:eval "rm(myvar, envir=.GlobalEnv)",	replace	myvar	by	the	name	of	your	variable.	The	R	command
shouldn’t	return	a	value.	This	primitive	is	experimental.

;; creates a new vector in R with a sequence from 1 to 10
r:__evaldirect "x <- seq(1,10)"
show r:get "x"

r:gc

r:gc

Calls	the	garbage	collector	of	Java	(i.e.	the	R-Extension)	and	R.	Call	this	primitive	after	removing	an	R	variable	to	free	the
memory.

;; create a variable
r:eval "x <- 1:10"
;; remove the variable
r:eval "rm(x)"
;; call the garbage collector
r:gc

r:get

r:get	R-command

Reports	the	return	value	of	the	submitted	R	command.	Return	type	could	be	a	String,	Number,	Boolean,	NetLogo	List	or	a
NetLogo	List	of	Lists.

R	lists	will	be	converted	into	a	NetLogo	List.	If	the	R	list	itself	contains	further	lists,	it	will	be	converted	into	a	NetLogo	List
with	nested	NetLogo	lists.	Lists	containing	values	of	different	data	types	are	also	supported	(e.g.	mixed	Strings,	Numbers
and	Booleans/Logicals).

Data.frames	will	be	converted	into	a	NetLogo	List	with	nested	List	for	each	column,	but	the	column	names	will	be	lost	(same
for	named	R	lists).

R	matrices	can	be	received,	but	they	are	converted	into	one	NetLogo	list.	NULL	and	NA	values	are	not	converted	and	will
throw	an	error,	because	NetLogo	has	no	corresponding	value.

;; returns a list with 10 variables
show r:get "rnorm(10)"

r:interactiveShell

r:interactiveShell

Opens	a	window	with	two	textareas.	The	upper	one	is	the	R	output	stream	and	in	the	lower	one	you	can	type	R	commands.
This	is	the	access	to	the	underlaying	R	session.	You	can	type	multi-line	commands.	To	submit	commands	press	Ctrl+Enter.
With	“PageUp”	and	“PageDown”	in	the	input	area	you	can	browse	through	the	histroy	of	submitted	commands.	With	right-
mouseclick	context	menu,	you	can	save	and	load	an	RHistory	(interchangeable	with	R	terminal	and	other	R	GUIs).

Please	note,	that	the	Interactive	Shell	works	on	the	global	environment,	while	commands	submitted	from	NetLogo	lives	in	an
local	environment.	A	reference	to	this	local	environment	is	automatically	added	to	the	global	environment	(named	nl.env,
please	do	not	delete	this	variable.	With	a	call	of	r:clear	you	can	restore	it	but	this	will	empty	your	workspace).	You	can	use
this	to	have	access	to	variables	which	you	have	created	from	NetLogo	by	get("<variable name>",nl.env).	To	copy	for
example	an	variable	with	the	name	var1	from	the	local	environment	to	the	global	environment,	type	var <-
get("var",nl.env).	See	section	R	Environments	for	details.	If	you	just	want	to	see	the	contents	of	a	variable	which	lives	in
the	local	environment,	you	could	submit	your	command,	for	example	in	the	NetLogo	Command	Center,	and	the	result	will	be
shown	in	the	output	area	of	the	Interactive	Shell.	For	example:

r:put "test" (list world-width world-height)
r:interactiveShell
r:eval "print(test)"
r:eval "str(test)"

Variables	which	have	been	created	in	the	Interactive	Shell	are	available	from	NetLogo,	even	if	they	are	created	in	the	global
environment.	But	if	there	is	a	variable	with	the	same	name	in	the	local	environment,	you	will	get	this	variable	in	NetLogo
instead	the	one	from	the	global	environment.

If	you	want	to	execute	plot	commands	from	the	Interactive	Shell	you	should	activate	the	integrated	JavaGD	plot	device	via
r:setPlotDevice	first.

;; opens Interactive Shell
r:interactiveShell

r:put

r:put	name	value

Creates	a	new	variable	in	R	with	the	name	name.	The	value	can	be	a	String,	Number,	Boolean	or	List.

NetLogo	Lists	are	converted	to	R	vectors,	if	all	entries	are	of	the	same	data	type.	If	a	NetLogo	list	contains	different	data
types	(mixed	Strings,	Numbers	of	Booleans),	it	will	be	converted	into	an	R	list.	If	a	NetLogo	List	contains	other/nested
NetLogo	Lists	it	will	be	converted	into	an	R	list	and	the	nested	Lists	are	handled	by	the	same	rule	(Vectors	if	all	items	are	of
the	same	data	type,	…).

;; creates an R variable "testvar" with the size of turtle 0
r:put "testvar" [size] of turtle 0
show r:get "testvar"

r:putagent

r:putagent	name	agent	variables
r:putagent	name	agentset	variables

Creates	a	new	named	list	in	R	with	the	name	name.	The	argument	variables	is	any	number	of	strings	which	list	and
variable(s)	of	the	agent|agentset.	Names	of	the	elements	of	the	R	list	will	be	the	same	as	the	names	of	the	agent	variables.
Turtles	will	be	assigned	in	ascending	order	of	their	who-variable.	Patches	will	be	assigned	in	lines	from	upper	left	to	lower
right.	Since	the	arguments	of	this	primitive	are	repeatable,	don’t	forget	the	parentheses	around	the	statement.

;; creates an R-list "agentlist1" with the size and the id of turtles, don't forget the parentheses
(r:putagent "agentlist1" turtles "size" "who")
show r:get "agentlist1$who"
;; creates an R-list "agentlist2" with the pcolor, pxcor and pycor of patches
(r:putagent "agentlist2" patches "pcolor" "pxcor" "pycor")
show r:get "agentlist2$pcolor"

r:putagentdf

r:putagentdf	name	agent	variables

r:putagentdf	name	agentset	variables

Same	as	r:putagent	but	creates	an	R	data.frame	instead	a	list.	Please	read	the	notes	about	data.frames	if	one	of	your
agent	variables	contains	NetLogo	Lists.

;; creates an R-list "agentlist2" with the pcolor, pxcor and pycor of patches, don't forget the parentheses
(r:putagentdf "df1" patches "pcolor" "pxcor" "pycor")
show r:get "class(df1)"

r:putdataframe

r:putdataframe	name	varname	value
r:putdataframe	name	varname	value	varname2	value2	...

Same	as	r:putnamedlist	but	creates	an	R	data.frame	instead	of	a	list.	If	you	send	more	than	one	list	to	NetLogo	and	the
lists	are	of	different	length,	the	smaller	ones	will	be	filled	with	NA	values.

If	you	send	nested	LogoLists	(e.g.	of	type:	[[]	[]	…])	to	one	column	please	read	the	notes	about	data	frames	with	vectors	in
cells.

;; creates an R-list "agentlist2" with the pcolor, pxcor and pycor of patches, don't forget the parentheses
(r:putdataframe "df1" "v1" [12 13 14 15 16] "v2" ["foo1" "foo2" "foo3" "foo4" "foo5"] "v3" [1.1 2.2 3.3 4.4 5.5])
show r:get "df1$v3"

r:putlist

r:putlist	name	value

Creates	a	new	list	in	R	with	the	name	name.	Variable	is	repeatable	and	can	be	a	Number,	Boolean	or	List.	Each	“Variable”
will	get	the	name	of	its	position	(1,	2,	3,…).	Since	the	arguments	of	this	primitive	are	repeatable,	don’t	forget	the
parentheses	around	the	statement.

;; creates an R-list "list1", don't forget the parentheses
(r:putlist "list1" 25.5 [25 43 32 53] "testvalue" [44.3 32.32 321.2 4.2])
show r:get "class(list1)"
show r:get "list1[[1]]"
show r:get "list1$'0'"
show r:get "list1[[2]]"

r:putnamedlist

r:putnamedlist	name	varname	value
r:putnamedlist	name	varname	value	varname2	value2	...

Creates	a	new	named	list	in	R	with	the	name	name.	Variable	names	and	values	follow	in	alternating	sequence	and	may	be
repeated	as	many	times	as	desired.	Values	can	be	a	Number,	Boolean	or	List.	Each	value	will	get	the	name	varname.	Since
the	arguments	of	this	primitive	are	repeatable,	don’t	forget	to	put	the	statement	into	parentheses.

;; creates an R-list "list1" , don't forget the parentheses
(r:putnamedlist "list1" "v1" 25.5 "v2" [25 43 32 53] "v3" "testvalue" "v4" [44.3 32.32 321.2 4.2])
show r:get "class(list1)"
show r:get "list1[[1]]"
show r:get "list1$v1"

r:setPlotDevice

r:setPlotDevice

To	open	an	R	plot	in	a	window	you	can	use	the	JavaGD	plot	device.	With	this	primitive	you	can	activate	this	device	and	all
following	calls	of	R	plots	will	be	printed	with	this	device.

To	use	this	device,	you	have	to	install	the	JavaGD	package	in	R.	Open	an	R	terminal	or	the	InteractiveShell	(see
r:interactiveShell)	and	type	install.packages("JavaGD").

With	this	plot	window	you	can	save	the	plot	to	an	file	of	different	graphic	type	and	you	can	copy	the	plot	to	the	clipboard.
Please	note,	that	on	Linux	OS	it	can	be	necessary	to	allow	to	add	images	to	the	clipboard	(e.g.	in	KDE	you	have	to	configure
KLIPPER	to	allow	images).	The	resolution	for	raster	images	depends	on	the	size	of	the	plot	window.	If	you	need	high
resolution	maximaze	the	window	(and	don’t	use	jpeg,	because	the	driver	is	bad)	or	better	use	a	vector	image	format.

Please	see	the	notes	about	plotting	for	other	details.

;; activate the JavaGD plot device
r:setPlotDevice

r:stop

r:stop

Stops	the	R	engine.	This	is	needed	(only)	if	NetLogo	is	running	in	headless	mode,	for	example	when	running
BehaviorSpace	experiments	from	the	command	line	with	something	like	this:

java -cp NetLogo.jar org.nlogo.headless.Main --model mymodel.nlogo --experiment exp1 --table outtab1.csv

Should	be	the	last	call	in	headless	simulation.	See	usage	notes	above	for	details.

r:stop

Troubleshooting

Below	are	some	common	problems	and	some	ideas	on	how	to	remedy	them.	Please	keep	in	mind	that	we	plan	to	continue
to	improve	the	R	extension	following	the	release	of	NetLogo	6.	We	welcome	feedback	on	how	to	improve	the	extension	as
well	as	bug	reports	pointing	us	to	any	new	problems	you	encounter.

Loading	R	packages	fails

See,	for	example,	this	post.

After	changing	the	working	directory	in	R	(e.g.	with	setwd())	NetLogo	doesn’t	find	the	extension

Changing	working	directory	in	R	doesn’t	work	because	it	changes	also	Java’s	library	path	that	NetLogo	needs	to	find	its
extensions.	Please	use	absolute	path	to	any	files	in	R	instead	of	changing	the	working	directory.

Specific	error	code	list

Error	#01.	Invalid	R	Home.	R	home	is	specified	via	the	R_HOME	environment	variable	or	a	properties	file,	but	couldn’t	be
found	at	the	specified	path.	See	above	for	how	to	specify	R	home.
Error	#02:	Cannot	find	rJava/JRI.	The	R	Extension	was	unable	to	locate	your	installation	of	rJava.	Some	steps	to	resolve:
Ensure	that	rJava	(0.9-8	or	later)	is	installed	in	R.	Ensure	that	it’s	installed	either	system-wide	or	for	you	as	a	user
Ensure	that	your	configuration	points	to	the	proper	rJava	location.	If	you	have	a	user.properties	file,	ensure	that
jri.home.paths	includes	the	path	given	by	R	when	you	run	system.file("jri",package="rJava")
Error	#03:	Cannot	load	rJava	libraries.	This	may	indicate	a	corrupted	rJava	installation.	Try	reinstalling	rJava.
Error	#04:	Error	in	R-Extension.	This	is	an	unknown	initialization	error.	Ensure	that	you	are	running	R	3.0.0	or	later	and
have	the	rJava	extension	installed	(version	0.9-8	or	later).	Please	report	this	error	to	bugs@ccl.northwestern.edu	or	open
a	new	issue	on	the	R-Extension	issue	tracker.
Error	#05:	There	was	an	error	setting	R_HOME.	Check	your	user.properties	file	to	ensure	that	r.home	specifies	a	valid
path	to	the	R	extension.	You	may	also	be	able	to	work	around	this	error	by	setting	the	R_HOME	environment	variable.	If
this	error	persists,	please	report	it!
Error	#06:	Cannot	load	R	libraries.	This	may	indicate	a	corrupted	or	improperly	configured	R	installation.	If	you’re	certain
that	your	R	installation	is	find,	please	report	this	as	an	issue.

Citation

Thiele,	JC;	Grimm,	V	(2010).	NetLogo	meets	R:	Linking	agent-based	models	with	a	toolbox	for	their	analysis.	Environmental
Modelling	and	Software,	Volume	25,	Issue	8:	972	-	974	[DOI:	10.1016/j.envsoft.2010.02.008]

Copyright	and	License

The	R	extension	is	Copyright	(C)	2009-2016	Jan	C.	Thiele	and	Copyright	(C)	2016	Uri	Wilensky	/	The	Center	for	Connected
Learning.

NetLogo-R-Extension	is	free	software;	you	can	redistribute	it	and/or	modify	it	under	the	terms	of	the	GNU	General	Public
License	as	published	by	the	Free	Software	Foundation;	either	version	2	of	the	License,	or	(at	your	option)	any	later	version.

This	program	is	distributed	in	the	hope	that	it	will	be	useful,	but	WITHOUT	ANY	WARRANTY;	without	even	the	implied
warranty	of	MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	See	the	GNU	General	Public	License	for
more	details.

You	should	have	received	a	copy	of	the	GNU	General	Public	License	along	with	NetLogo-R-Extension	(located	in	GPL.txt).
If	not,	see	http://www.gnu.org/licenses/.

https://beta.groups.yahoo.com/neo/groups/netlogo-users/conversations/topics/18786?reverse=1
mailto:bugs@ccl.northwestern.edu
https://github.com/NetLogo/R-Extension/issues
http://www.gnu.org/licenses/

NetLogo	Rnd	Extension

This	extension	adds	the	ability	to	do	roulette	wheel	selection	in	NetLogo.	It	provides	a	simpler
way	to	accomplish	the	same	thing	as	the	Lottery	Example	from	the	NetLogo	Models	Library.

Usage

Which	primitive	to	use	depends	on	whether	you	want	to	select	an	item	from	a	list	or	from	an
agenset.	It	also	depends	on	whether	you	want	one	or	many	items	and,	if	you	want	many,	if
repeats	are	allowed	or	not.	The	following	table	summarizes	the	situation:

From	an	AgentSet From	a	List
One	item rnd:weighted-one-of rnd:weighted-one-of-list

Many	items,	without
repeats rnd:weighted-n-of rnd:weighted-n-of-list

Many	items,	with	repeats rnd:weighted-n-of-with-
repeats

rnd:weighted-n-of-list-with-
repeats

(Note:	the	initial	version	of	the	extension	had	a	single	set	of	primitives	for	both	lists	and
agentsets,	but	it	turned	out	to	be	confusing,	so	we	changed	it.	If	you	were	using	the	old
version	of	the	extension,	you	will	need	to	modify	your	code	to	use	the	new	primitives.)

In	all	cases,	you	will	need	to	provide	two	things	to	the	primitive:

The	“candidates”:	the	items	that	the	primitive	will	select	from.
The	“weight”:	how	likely	it	is	for	each	candidate	to	be	selected.

If	you	want	to	select	more	than	one	items,	you	will	also	need	to	tell	it:

How	many	items	to	select.

A	note	about	performance

The	extension	uses	Keith	Schwarz’s	implementation	of	Vose’s	Alias	Method	(see	Schwarz’s
Darts,	Dice,	and	Coins	page).	Assuming	you	are	choosing	n	candidates	for	a	collection	of	size
m	with	repeats,	this	method	has	an	initialization	cost	of	O(m)	followed	by	a	cost	of	O(1)	for
each	item	you	pick,	so	O(m	+	n)	overall.

For	example,	in	the	following	code:

let candidates n-values 500 [[n] -> n]
rnd:weighted-n-of-list-with-repeats 100 candidates [[w] -> w]
n-values 100 [rnd:weighted-one-of-list candidates [[w] -> w]]

…the	line	using	rnd:weighted-n-of-list-with-repeats	will	likely	run	100	times	faster	than	the
line	using	a	combination	of	n-values	and	rnd:weighted-one-of-list.	This	is	because
rnd:weighted-n-of-list-with-repeats	only	initializes	the	algorithm	once	and	rnd:weighted-
one-of	does	it	each	time	it	is	called.

(Note	that	composing	n-values	with	rnd:weighted-one-of-list	does	not	preserve	the	order	of
the	original	candidate	list,	while	rnd:weighted-n-of-list-with-repeats	does.)

Things	are	a	bit	more	complicated	if	you	are	choosing	without	repeats,	however.	In	this	case,
the	algorithm	may	have	to	discard	some	picks	because	the	candidates	have	already	been
selected.	When	this	starts	happening	too	often	(maybe	because	some	weights	are	much
bigger	than	others),	the	extension	re-initializes	the	algorithm	with	the	already-picked

https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://github.com/NetLogo/models/blob/master/Code Examples/Lottery Example.nlogo
http://www.keithschwarz.com/darts-dice-coins/

candidates	excluded.	This	should	not	happen	too	often,	however,	so	while	picking	without
repeats	has	an	upper	bound	of	O(m	*	n)	in	theory,	it	should	usually	not	be	much	more	than
O(m	+	n)	in	practice.

The	previous	remarks	apply	to	agentset	primitives	as	much	as	they	apply	to	list	primitives.

Primitives

AgentSet	Primitives

rnd:weighted-one-of	rnd:weighted-n-of	rnd:weighted-n-of-with-repeats

List	Primitives

rnd:weighted-one-of-list	rnd:weighted-n-of-list	rnd:weighted-n-of-list-with-repeats

rnd:weighted-one-of

rnd:weighted-one-of	agentset	reporter

Reports	a	random	agent	from	agentset.

The	probability	of	each	agent	being	picked	is	proportional	to	the	weight	given	by	the	reporter
for	that	agent.	The	weights	must	not	be	negative.

If	the	agentset	is	empty,	it	reports	nobody.

Here	is	a	full	rewrite	of	the	Lottery	Example	model	using	the	rnd:weighted-one-of	primitive:

extensions [rnd]

to setup
 clear-all
 ; create a turtle on every fifth patch
 ask patches with [pxcor mod 5 = 0 and pycor mod 5 = 0] [
 sprout 1 [
 set size 2 + random 6 ; vary the size of the turtles
 set label 0 ; start them out with no wins
 set color color - 2 ; make turtles darker so the labels stand out
]
]
 reset-ticks
end

to go
 ask rnd:weighted-one-of turtles [size] [
 set label label + 1
]
 tick
end

rnd:weighted-n-of

rnd:weighted-n-of	size	agentset	[reporter]

Reports	an	agentset	of	the	given	size	randomly	chosen	from	the	agentset,	with	no	repeats.

The	probability	of	each	agent	being	picked	is	proportional	to	the	weight	given	by	the	reporter
for	that	agent.	The	weights	must	be	non-negative	numbers.

It	is	an	error	for	size	to	be	greater	than	the	size	of	the	agentset.

If,	at	some	point	during	the	selection,	there	remains	only	candidates	with	a	weight	of	0.0,	they
all	have	an	equal	probability	of	getting	picked.

rnd:weighted-n-of-with-repeats

rnd:weighted-n-of-with-repeats	size	agentset	[reporter]

Reports	a	list	of	the	given	size	randomly	chosen	from	the	agentset,	with	repeats.	(Why	a	list
instead	of	an	agentset?	Because	an	agentset	cannot	contain	the	same	agent	more	than
once.)

The	probability	of	each	agent	being	picked	is	proportional	to	the	weight	given	by	the	reporter
for	that	agent.	The	weights	must	be	non-negative	numbers.

It	is	not	an	error	for	size	to	be	greater	than	the	size	of	the	agentset,	but	there	has	to	be	at
least	one	candidate.

If,	at	some	point	during	the	selection,	there	remains	only	candidates	with	a	weight	of	0.0,	they
all	have	an	equal	probability	of	getting	picked.

If	all	weights	are	0.0,	each	candidate	has	an	equal	probability	of	being	picked.

rnd:weighted-one-of-list

rnd:weighted-one-of-list	list	anonymous-reporter

Reports	a	random	item	from	list.

The	probability	of	each	item	being	picked	is	proportional	to	the	weight	given	by	the	anonymous-
reporter	for	that	item.	The	weights	must	not	be	negative.	The	first	argument	passed	to	the
anonymous	procedure	refers	to	the	list	item.	(See	the	Anonymous	Procedures	section	of	the
Programming	Guide	for	more	details.)

It	is	an	error	for	the	list	to	be	empty.

A	common	way	to	use	the	primitive	is	to	have	a	list	of	lists,	where	the	first	item	of	each	sublist
is	the	thing	you	want	to	choose	and	the	second	item	is	the	weight.	Here	is	a	short	example:

let pairs [["A" 0.2] ["B" 0.8]]
repeat 25 [
 ; report the first item of the pair selected using
 ; the second item (i.e., `last p`) as the weight
 type first rnd:weighted-one-of-list pairs [[p] -> last p]
]

This	should	print	B	roughly	four	times	more	often	than	it	prints	A.

If	you	happen	to	have	your	items	and	your	weights	in	two	separate	lists,	you	can	combine
them	into	pairs	by	using	a	combination	of	map	and	list:

let items ["A" "B" "C"]
let weights [0.1 0.2 0.7]
let pairs (map list items weights)

Since	we	apply	map	to	both	the	items	list	and	the	weights	list,	the	parentheses	are	needed	in
(map list items weights).	We	also	use	the	concise	anonymous	procedure	syntax	(see	the

programming	guide)	to	pass	list	as	the	reporter	for	map.	The	same	thing	could	have	been
written	(map [[a b] -> list a b] items weights) .

rnd:weighted-n-of-list

rnd:weighted-n-of-list	size	list	anonymous-reporter

Reports	a	list	of	the	given	size	randomly	chosen	from	the	list	of	candidates,	with	no	repeats.

The	probability	of	each	item	being	picked	is	proportional	to	the	weight	given	by	the	anonymous-
reporter	for	that	item.	The	weights	must	not	be	negative.	The	first	argument	passed	to	the
anonymous	procedure	refers	to	the	list	item.	(See	the	Anonymous	Procedures	section	of	the
Programming	Guide	for	more	details.)

It	is	an	error	for	size	to	be	greater	than	the	size	of	the	list of candidates.

If,	at	some	point	during	the	selection,	there	remains	only	candidates	with	a	weight	of	0.0,	they
all	have	an	equal	probability	of	getting	picked.

The	items	in	the	resulting	list	appear	in	the	same	order	that	they	appeared	in	the	list	of
candidates.	(If	you	want	them	in	random	order,	use	shuffle	on	the	result).

Example:

let candidates n-values 8 [[n] -> 2 ^ (n + 1)] ; make a list with the powers of two
print rnd:weighted-n-of-list 4 candidates [[w] -> w]

This	should	print	a	list	of	four	numbers,	where	the	bigger	numbers	(32,	64,	128,	256)	have	a
much	better	chance	to	show	up	than	the	smaller	ones	(2,	4,	8,	16).

rnd:weighted-n-of-list-with-repeats

rnd:weighted-n-of-list-with-repeats	size	list	anonymous-reporter

Reports	a	list	of	the	given	size	randomly	chosen	from	the	list	of	candidates,	with	repeats.

The	probability	of	each	item	being	picked	is	proportional	to	the	weight	given	by	the	anonymous-
reporter	for	that	item.	The	weights	must	not	be	negative.	The	first	argument	passed	to	the
anonymous	procedure	refers	to	the	list	item.	(See	the	Anonymous	Procedures	section	of	the
Programming	Guide	for	more	details.)

It	is	not	an	error	for	size	to	be	greater	than	the	size	of	the	list	of	candidates,	but	there	has	to
be	at	least	one	candidate.

If,	at	some	point	during	the	selection,	there	remains	only	candidates	with	a	weight	of	0.0,	they
all	have	an	equal	probability	of	getting	picked.

If	all	weights	are	0.0,	each	candidate	has	an	equal	probability	of	being	picked.

The	items	in	the	resulting	list	appear	in	the	same	order	that	they	appeared	in	the	list	of
candidates.	(If	you	want	them	in	random	order,	use	shuffle	on	the	result).

Example:

let pairs [["A" 0.2] ["B" 0.8]]
print map first rnd:weighted-n-of-list-with-repeats 25 pairs [[p] -> last p]

This	should	print	a	list	of	25	As	and	Bs,	with	roughly	four	times	as	many	Bs	than	As.

NetLogo	Sound	Extension

Using

The	Sound	Extension	lets	NetLogo	models	make	two	kinds	of	sounds:	MIDI	sounds	and
playback	of	pre-recorded	sound	files.

The	Java	APIs	used	are	javax.sound.midi	and	java.applet.AudioClip.

How	to	Use

The	sound	extension	comes	preinstalled.	To	use	the	extension	in	your	model,	add	this	at
the	top	of	your	Code	tab:

extensions [sound]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so
just	add	sound	to	the	list.

For	more	information	on	using	NetLogo	extensions,	see	the	Extensions	Guide

For	examples	that	use	the	sound	extension,	see	the	Sound	section	under	Code	Examples
in	the	NetLogo	Models	Library.

MIDI	support

The	MIDI	part	of	the	extension	simulates	a	128-key	electronic	keyboard	with	47	drums	and
128	melodic	instruments,	as	provided	by	General	MIDI	Level	1	specification.

It	supports	15	polyphonic	instrument	channels	and	a	single	percussion	channel.	Using
more	than	15	different	melodic	instruments	simultaneously	in	a	model	will	cause	some
sounds	to	be	lost	or	cut	off.

The	pitch	of	a	melodic	instrument	is	specified	by	a	key	number.	The	keys	on	the	keyboard
are	numbered	consecutively	from	0	to	127,	where	0	is	the	left-most	key.	Middle	C	is	key
number	60.

The	loudness	of	an	instrument	is	specified	by	a	velocity,	which	represents	the	force	with
which	the	keyboard	key	is	depressed.	Velocity	ranges	from	0	to	127,	where	64	is	the
standard	velocity.	A	higher	velocity	results	in	a	louder	sound.

Primitives

sound:drums	sound:instruments	sound:play-drum	sound:play-note	sound:play-note-later

sound:drums

sound:drums

Reports	a	list	of	the	names	of	the	47	drums	for	use	with	sound:play-drum.

http://www.midi.org/about-midi/gm/gm1_spec.shtml

sound:instruments

sound:instruments

Reports	a	list	of	the	names	of	the	128	instruments	for	use	with	sound:play-note,
sound:play-note-later,	sound:start-note	and	sound:stop-note.

sound:play-drum

sound:play-drum	drum	velocity

Plays	a	drum.

Example:

sound:play-drum "ACOUSTIC SNARE" 64

sound:play-note

sound:play-note	instrument	keynumber	velocity	duration

Plays	a	note	for	a	specified	duration,	in	seconds.	The	agent	does	not	wait	for	the	note	to
finish	before	continuing	to	next	command.

;; play a trumpet at middle C for two seconds
sound:play-note "TRUMPET" 60 64 2

sound:play-note-later

sound:play-note-later	delay	instrument	keynumber	velocity	duration

Waits	for	the	specified	delay	before	playing	the	note	for	a	specified	duration,	in	seconds.
The	agent	does	not	wait	for	the	note	to	finish	before	continuing	to	next	command.

Example:

;; in one second, play a trumpet at middle C for two seconds
sound:play-note-later 1 "TRUMPET" 60 64 2

Drum	Names

35. Acoustic Bass Drum 59. Ride Cymbal 2
36. Bass Drum 1 60. Hi Bongo
37. Side Stick 61. Low Bongo
38. Acoustic Snare 62. Mute Hi Conga
39. Hand Clap 63. Open Hi Conga
40. Electric Snare 64. Low Conga
41. Low Floor Tom 65. Hi Timbale
42. Closed Hi Hat 66. Low Timbale
43. Hi Floor Tom 67. Hi Agogo
44. Pedal Hi Hat 68. Low Agogo

45. Low Tom 69. Cabasa
47. Open Hi Hat 70. Maracas
47. Low Mid Tom 71. Short Whistle
48. Hi Mid Tom 72. Long Whistle
49. Crash Cymbal 1 73. Short Guiro
50. Hi Tom 74. Long Guiro
51. Ride Cymbal 1 75. Claves
52. Chinese Cymbal 76. Hi Wood Block
53. Ride Bell 77. Low Wood Block
54. Tambourine 78. Mute Cuica
55. Splash Cymbal 79. Open Cuica
56. Cowbell 80. Mute Triangle
57. Crash Cymbal 2 81. Open Triangle
58. Vibraslap

Instrument	Names

Piano *Reed*
1. Acoustic Grand Piano 65. Soprano Sax
2. Bright Acoustic Piano 66. Alto Sax
3. Electric Grand Piano 67. Tenor Sax
4. Honky-tonk Piano 68. Baritone Sax
5. Electric Piano 1 69. Oboe
6. Electric Piano 2 70. English Horn
7. Harpsichord 71. Bassoon
8. Clavi 72. Clarinet

Chromatic Percussion *Pipe*
9. Celesta 73. Piccolo
10. Glockenspiel 74. Flute
11. Music Box 75. Recorder
12. Vibraphone 76. Pan Flute
13. Marimba 77. Blown Bottle
14. Xylophone 78. Shakuhachi
15. Tubular Bells 79. Whistle
16. Dulcimer 80. Ocarina

Organ *Synth Lead*
17. Drawbar Organ 81. Square Wave
18. Percussive Organ 82. Sawtooth Wave
19. Rock Organ 83. Calliope
20. Church Organ 84. Chiff
21. Reed Organ 85. Charang
22. Accordion 86. Voice
23. Harmonica 87. Fifths
24. Tango Accordion 88. Bass and Lead

Guitar *Synth Pad*
25. Nylon String Guitar 89. New Age
26. Steel Acoustic Guitar 90. Warm
27. Jazz Electric Guitar 91. Polysynth
28. Clean Electric Guitar 92. Choir
29. Muted Electric Guitar 93. Bowed
30. Overdriven Guitar 94. Metal
31. Distortion Guitar 95. Halo
32. Guitar harmonics 96. Sweep

Bass *Synth Effects*
33. Acoustic Bass 97. Rain
34. Fingered Electric Bass 98. Soundtrack
35. Picked Electric Bass 99. Crystal
36. Fretless Bass 100. Atmosphere
37. Slap Bass 1 101. Brightness
38. Slap Bass 2 102. Goblins
39. Synth Bass 1 103. Echoes
40. Synth Bass 2 104. Sci-fi

Strings *Ethnic*
41. Violin 105. Sitar
42. Viola 106. Banjo
43. Cello 107. Shamisen
44. Contrabass 108. Koto
45. Tremolo Strings 109. Kalimba
47. Pizzicato Strings 110. Bag pipe

47. Orchestral Harp 111. Fiddle
48. Timpani 112. Shanai

Ensemble *Percussive*
49. String Ensemble 1 113. Tinkle Bell
50. String Ensemble 2 114. Agogo
51. Synth Strings 1 115. Steel Drums
52. Synth Strings 2 116. Woodblock
53. Choir Aahs 117. Taiko Drum
54. Voice Oohs 118. Melodic Tom
55. Synth Voice 119. Synth Drum
56. Orchestra Hit 120. Reverse Cymbal

Brass *Sound Effects*
57. Trumpet 121. Guitar Fret Noise
58. Trombone 122. Breath Noise
59. Tuba 123. Seashore
60. Muted Trumpet 124. Bird Tweet
61. French Horn 125. Telephone Ring
62. Brass Section 126. Helicopter
63. Synth Brass 1 127. Applause
64. Synth Brass 2 128. Gunshot

NetLogo	Table	Extension

Using

The	table	extension	is	pre-installed	in	NetLogo.

To	use	the	table	extension	in	your	model,	add	a	line	to	the	top	of	your	Code	tab:

extensions [table]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so	just	add	table	to	the	list.

For	more	information	on	using	NetLogo	extensions,	see	the	Extensions	Guide

When	to	Use

In	general,	anything	you	can	do	with	an	table	in	NetLogo,	you	could	also	just	use	a	list	for.	But	you	may	want	to	consider	using	an	table	instead	for
speed	reasons.	Lists	and	tables	have	different	performance	characteristics,	so	you	may	be	able	to	make	your	model	run	faster	by	selecting	the
appropriate	data	structure.

Tables	are	useful	when	you	need	to	do	associate	values	with	other	values.	For	example,	you	might	make	a	table	of	words	and	their	definitions.
Then	you	can	look	up	the	definition	of	any	word.	Here,	the	words	are	the	"keys".	You	can	easily	retrieve	the	value	for	any	key	in	the	table,	but	not
vice	versa.

Unlike	NetLogo’s	lists	and	strings,	tables	are	“mutable”.	That	means	that	you	can	actually	modify	them	directly,	rather	than	constructing	an	altered
copy	as	with	lists.	If	the	table	is	used	in	more	than	one	place	in	your	code,	any	changes	you	make	will	show	up	everywhere.	It’s	tricky	to	write	code
involving	mutable	structures	and	it’s	easy	to	make	subtle	errors	or	get	surprising	results,	so	we	suggest	sticking	with	lists	and	strings	unless	you’re
certain	you	want	and	need	mutability.

Example

let dict table:make
table:put dict "turtle" "cute"
table:put dict "bunny" "cutest"
print dict
=> {{table: "turtle" -> "cute", "bunny" -> "cutest" }}
print table:length dict
=> 2
print table:get dict "turtle"
=> "cute"
print table:get dict "leopard"
=> (error)
print table:keys dict
=> ["turtle" "bunny"]

Manipulating	Tables

If	the	same	key	is	used	with	table:put	more	than	once	for	the	same	table,	the	value	provided	to	last	call	of	table:put	will	be	the	value	shown	when
table:get	is	used.	Here	is	an	example:

let dict table:make
table:put dict "a" 5
table:put dict "a" 3
print table:get dict "a"
=> 3

Because	tables	are	mutable,	manipulating	existing	values	should	be	done	by	calling	table:get	or	table:get-or-default	on	a	key,	transforming	the
returned	value,	and	then	calling	table:put	to	update	the	transformed	value	in	the	table.	Here	is	an	example	procedure	which	increments	a	value	in
a	table	at	a	given	key.	If	the	key	doesn’t	exist,	it	puts	a	1	at	that	key	instead.

to increment-table-value [dict key]
 let i table:get-or-default dict key 0
 table:put dict key i + 1
end

Key	Restrictions

Table	keys	are	limited	to	the	following	NetLogo	types:

Numbers
Strings
Booleans
Lists	containing	only	elements	which	are	themselves	valid	keys

If	you	attempt	to	use	an	illegal	value,	the	table	extension	will	raise	an	exception,	as	shown	in	the	following	example.

crt 1
let dict table:make
table:put dict (one-of turtles) 10
;; Errors with the following message:
;; (turtle 0) is not a valid table key (a table key may only be a number, a string, true or false, or a list whose items are valid keys)

Primitives

table:clear	table:counts	table:group-agents	table:group-items	table:from-list	table:get	table:get-or-default	table:has-key?	table:keys
table:length	table:make	table:put	table:remove	table:to-list	table:values

table:clear

table:clear	table

Removes	all	key-value	pairs	from	table.

table:counts

table:counts	list

Counts	the	occurrences	of	each	element	of	the	given	list	and	reports	the	counts	in	a	table.

table:group-agents

table:group-agents	agentset	anonymous	reporter

Groups	the	agents	in	the	agentset	based	on	the	given	reporter.	Agents	that	report	the	same	thing	for	reporter	will	be	grouped	together.	The	results
of	the	reporter	will	be	used	as	the	keys	in	the	resulting	table	and	the	groups	will	be	agentsets.

For	example:

observer> create-turtles 100 [set color one-of [red green blue]]
observer> show table:group-by turtles [color]
observer: {{table: [[105 (agentset, 38 turtles)] [55 (agentset, 32 turtles)] [15 (agentset, 30 turtles)]]}}

table:group-items

table:group-items	list	anonymous-reporter

Groups	the	items	of	the	list	bsaed	on	the	given	reporter.	The	reporter	should	take	a	single	argument,	which	will	be	the	items	of	the	list.	Items	that
report	the	same	thing	when	passed	to	the	reporter	will	be	grouped	together.	The	results	of	the	reporter	will	be	used	as	the	keys	in	the	resulting
table	and	the	groups	will	be	lists.

For	example:

observer> show table:group-by range 10 [num -> num mod 3]
observer: {{table: [[0 [0 3 6 9]] [1 [1 4 7]] [2 [2 5 8]]]}}

table:from-list

table:from-list	list

Reports	a	new	table	with	the	contents	of	list.	list	must	be	a	list	of	two	element	lists,	or	pairs.	The	first	element	in	the	pair	is	the	key	and	the	second
element	is	the	value.

table:get

table:get	table	key

Reports	the	value	that	key	is	mapped	to	in	the	table.	Causes	an	error	if	there	is	no	entry	for	the	key.

table:get-or-default

table:get-or-default	table	key	default-value

Reports	the	value	that	key	is	mapped	to	in	the	table.	Reports	the	default-value	if	there	is	no	entry	for	the	key.

table:has-key?

table:has-key?	table	key

Reports	true	if	key	has	an	entry	in	table.

table:keys

table:keys	table

Reports	a	list	of	all	the	keys	in	table,	in	the	same	order	the	keys	were	inserted.

table:length

table:length	table

Reports	the	number	of	entries	in	table.

table:make

table:make

Reports	a	new,	empty	table.

table:put

table:put	table	key	value

Maps	key	to	value	in	table.	If	an	entry	already	exists	in	the	table	for	the	given	key,	it	is	replaced.

table:remove

table:remove	table	key

Removes	the	mapping	in	table	for	key.

table:to-list

table:to-list	table

Reports	a	list	with	the	content	of	table.	The	list	will	be	a	list	of	two	element	lists,	or	pairs.	The	first	element	in	the	pair	is	the	key	and	the	second
element	is	the	value.	The	keys	appear	in	the	same	order	they	were	inserted.

table:values

table:values	table

Reports	a	list	with	the	entries	of	table.	The	entries	will	appear	in	the	same	order	they	were	inserted,	with	duplicates	included.

NetLogo	Vid	Extension

Concepts

Video	Source

The	vid	extension	has	a	built-in	concept	of	a	video	source.	At	the	moment,	the	only	video	sources
available	are	movies	in	the	directory	the	model	lives	in	and	cameras	attached	to	the	computer.	The
vid	extension	opens	a	new	video	source	with	the	vid:<source>-open	and	vid:<source>-select.
These	primitives	change	the	source	to	the	selected	source.	If	a	source	is	already	open,	it	closes	it
before	opening	a	new	one.

Source	Lifecycle

Movie	sources	are	“stopped”	after	being	created	by	vid:movie-select	or	vid:movie-open.	Camera
sources	start	off	as	“playing”	after	being	created	by	vid:camera-select	or	vid:camera-open.	If	a
source	is	in	status	“stopped”	it	can	be	started	with	vid:start.	Conversely,	if	the	source	is	“playing”	it
can	be	stopped	with	vid:stop.	When	a	source	is	“stopped”,	each	call	to	vid:capture-image	will
return	the	same	image.

Video	Recorder

The	vid	extension	also	has	the	concept	of	a	recording,	a	series	of	frames	which	can	be	sewn	into
an	“mp4”	movie.	The	recorder	status	can	be	queried	using	vid:recorder-status.	The	recorder
status	is	“inactive”	until	started	with	vid:start-recorder,	which	sets	it	to	“recording”.	While	the
recorder	is	“recording”	the	vid:record-view,	vid:record-interface,	and	vid:record-source	can	be
used	to	save	frames	to	the	recording.	You	can	choose	to	save	the	recording	while	recording	using
vid:save-recording	which	saves	the	movie	to	the	specified	file	and	reset	the	recording	status	to
“inactive”.	If	you	would	prefer	to	throw	away	the	recorded	frames	without	saving,	use	vid:reset-
recorder.

Primitives

vid:camera-names	vid:camera-open	vid:camera-select	vid:movie-select	vid:movie-open	vid:movie-
open-remote	vid:close	vid:start	vid:stop	vid:status	vid:capture-image	vid:set-time	vid:show-
player	vid:hide-player	vid:record-view	vid:record-interface	vid:record-source	vid:recorder-
status	vid:start-recorder	vid:save-recording

vid:camera-names

vid:camera-names

Provides	a	list	of	all	available	cameras.

Example:

vid:camera-names => []
vid:camera-names => ["Mac Camera"]
vid:camera-names => ["Logitech Camera"]

vid:camera-open

vid:camera-open

Opens	the	named	camera	as	a	video	source.	If	no	name	is	provided,	opens	the	first	camera	that

would	be	listed	by	camera-names.

Example:

vid:camera-open ; opens first camera
(vid:camera-open "Logitech Camera")

Errors:

Message	"vid: no cameras found" :	no	cameras	are	available.
Message	"vid: camera "\<name\>" not found":	if	the	named	camera	is	not	available.

vid:camera-select

vid:camera-select

Prompts	the	user	to	select	a	camera	as	video	source.	This	command	does	not	error	if	the	user
cancels.	Use	vid:status	to	see	if	a	user	selected	a	camera.

Example:

vid:camera-select

Errors:

Message	“vid:	no	cameras	found”:	no	cameras	are	available.

vid:movie-select

vid:movie-select

Prompts	the	user	to	select	a	movie	to	use	as	a	video	source.	The	formats	supported	are	those
supported	by	JavaFX2.	This	command	does	not	error	if	the	user	cancels.	Use	vid:status	to	see	if
the	user	selected	a	movie.

Example:

vid:movie-select

Errors:

Message	"vid: format not supported":	the	user	selected	a	movie	with	an	unsupported	format.

vid:movie-open

vid:movie-open	filename

Opens	a	video	from	the	file	system.	If	the	provided	path	is	not	absolute	the	extension	searches	for
the	given	path	relative	to	the	current	model	directory.	If	the	provided	path	is	absolute	the	extension
opens	the	file.

Example:

vid:movie-open "foo.mp4" ; Opens foo.mp4 in the directory containing the model
vid:movie-open user-file ; Opens a dialog for the user to select a movie
vid:movie-open "/tmp/foo.mp4" ; Opens a movie from the "/tmp" directory

https://docs.oracle.com/javafx/2/api/javafx/scene/media/package-summary.html#SupportedMediaTypes

Errors:

Message	"vid: no movie found" :	the	movie	could	not	be	found.
Message	"vid: format not supported":	the	user	selected	a	movie	with	an	unsupported	format.

vid:movie-open-remote

vid:movie-open-remote	url

Opens	a	remote	video	from	a	website	or	ftp	server.

Example:

vid:movie-open-remote "http://example.org/foo.mp4"

Errors:

Message	"vid: no movie found" :	The	specified	URL	could	not	be	loaded	or	errored	while
loading.
Message	"vid: format not supported":	The	file	type	of	the	remote	movie	is	not	supported.
Message	"vid: protocol not supported":	The	movie	was	at	an	unsupported	URL	protocol.
Supported	protocols	are	ftp	and	http.

vid:close

vid:close

Closes	the	currently	selected	video	source.	Has	no	effect	if	there	is	no	active	video	source.

Example:

vid:close

vid:start

vid:start

Starts	the	selected	video	source.	A	video	source	must	have	been	selected	before	calling	vid:start.

Example:

vid:start

Errors:

Message	"vid: no selected source":	There	is	no	currently	selected	video	source.	Select	a
source	with	vid:movie-open,	vid:movie-select,	vid:camera-open,	or	vid:camera-select.

vid:stop

vid:stop

Stops	the	currently	running	video	source.

Example:

vid:stop

vid:status

vid:status

Reports	the	current	status	of	an	active	video.	Note	that	after	calling	vid:movie-open	or	vid:movie-
select	the	status	will	be	set	to	“stopped”,	while	after	calling	vid:camera-open	or	vid:camera-select
the	status	will	be	“playing”.

Example:

vid:status ; => "inactive"

vid:movie-open "foobar.mp4"
vid:status ; => "stopped"

vid:movie-start
vid:status ; => "playing"

vid:capture-image

vid:capture-image	width	height

Captures	an	image	from	the	currently	selected	active	source.

If	width	and	height	are	not	specified,	the	image	is	captured	at	the	current	source	resolution.

Example:

extensions [vid bitmap]

to capture
 ; capture an image if a video source is open,
 ; have the user select a camera if no video source found
 carefully [
 ; when camera open, take an image
 let image vid:capture-image ; returns image suitable for use with bitmap extension
 bitmap:copy-to-drawing image 0 0
] [
 if error-message = "Extension exception: vid: no selected source" [
 vid:camera-select
 vid:start
 let image vid:capture-image
 bitmap:copy-to-drawing image 0 0
]
]
end

If	you	want	to	capture	images	at	a	different	resolution,	simply	replace	vid:capture-image	with,	e.g.,
(vid:capture-image 640 480).

Errors:

Message	"vid: no selected source":	There	is	no	currently	selected	video	source.	Select	a
source	with	vid:movie-open,	vid:movie-select,	vid:camera-open,	or	vid:camera-select.
Message	"vid: invalid dimensions":	The	selected	dimensions	are	invalid	(one	of	the
dimensions	is	zero	or	negative).

vid:set-time

vid:set-time	seconds

Sets	the	time	of	the	current	video	source	to	*seconds*.	This	has	no	effect	when	the	current	video
source	is	a	camera.

Example:

vid:set-time 100

Errors:

Message	"vid: no selected source":	There	is	no	currently	selected	video	source.	Select	a
source	with	vid:movie-open,	vid:movie-select,	vid:camera-open,	or	vid:camera-select.
Message	"vid: invalid time":	The	currently	active	video	does	not	contain	the	specified	second.
The	second	may	be	negative,	or	greater	than	the	length	of	the	video.

vid:show-player

vid:show-player	width	height

Shows	a	player	in	a	separate	window.	If	there	is	no	video	source,	the	window	will	be	an	empty	black
frame.	If	there	is	an	active	video	source,	it	will	be	displayed	in	the	window	with	the	specified	width
and	height.	If	there	is	a	playing	video	source,	it	will	be	displayed	in	the	window	at	its	specified	width
and	height.	If	width	and	height	are	omitted,	the	video	will	be	displayed	in	its	native	resolution.

Example	with	native	resolution:

vid:show-player

Example	with	custom	resolution:

(vid:show-player 640 480)

Errors:

Message	"vid: invalid dimensions":	The	selected	dimensions	are	invalid	(one	of	the
dimensions	is	zero	or	negative).

vid:hide-player

vid:hide-player

Hides	the	player	if	open.	Does	nothing	if	there	is	no	player	window.

Example:

vid:hide-player

vid:record-view

vid:record-view

Records	the	current	image	shown	in	the	NetLogo	view	to	the	active	recording.

Example:

vid:record-view

Errors:

Message	"vid: recorder not started":	The	recorder	has	not	been	started.	Start	the	recorder
with	vid:start-recorder.

vid:record-interface

vid:record-interface

Records	the	NetLogo	interface	view	to	the	active	recording.

Example:

vid:record-interface

Errors:

Message	"vid: recorder not started":	The	recorder	has	not	been	started.	Start	the	recorder
with	vid:start-recorder.
Message	"vid: export interface not supported":	The	calling	NetLogo	version	does	not	support
interface	exports.	This	will	occur	when	running	NetLogo	headlessly.

vid:record-source

vid:record-source

Records	a	frame	to	the	active	recording	from	the	currently	active	source.

Example:

vid:record-source

Errors:

Message	"vid: recorder not started":	The	recorder	has	not	been	started.	Start	the	recorder
with	vid:start-recorder.
Message	"vid: no selected source":	There	is	no	currently	selected	video	source.	Select	a
source	with	vid:movie-open,	vid:movie-select,	vid:camera-open,	or	vid:camera-select.

vid:recorder-status

vid:recorder-status

Reports	the	current	status	of	the	recorder.	Initially	and	after	the	recorder	is	saved	(via	vid:save-
recording)	or	reset	(via	vid:reset-recorder)	the	recorder	status	is	“inactive”.	After	calling
vid:start-recorder	the	status	will	be	“recording”.

Example:

vid:recorder-status ; => "inactive"

vid:start-recorder
vid:recorder-status ; => "recording"

vid:reset-recorder
vid:recorder-status ; => "inactive"

vid:start-recorder

vid:start-recorder

Starts	the	recorder.	If	the	recorder	is	already	running	this	will	cause	an	error	to	be	raised.	If	desired,
a	recording	width	and	height	can	be	supplied.	If	width	and	height	are	not	supplied,	they	will	be
determined	from	the	first	frame	recorded.

Example:

vid:start-recorder
(vid:start-recorder 640 480)

Errors:

Message	"vid: recorder already started":	The	recorder	has	already	been	started.	The	existing
recording	should	be	saved	or	reset	before	starting	the	recording.
Message	"vid: invalid dimensions":	The	selected	dimensions	are	invalid	(one	of	the
dimensions	is	zero	or	negative).

vid:save-recording

vid:save-recording	filename

Saves	the	recording	to	the	specified	path.	If	the	recorder	is	not	running	this	will	cause	an	error	to	be
raised.	Note	that	at	present	the	recording	will	always	be	saved	in	the	“mp4”	format.	If	the	supplied
filename	does	not	end	in	“.mp4”,	the	“.mp4”	suffix	will	be	added.	Note	that	vid:save-recording	will
overwrite	existing	files	of	the	same	name.	vid:save-recording	will	error	if	the	recorder	has	not	been
started	or	if	the	file	cannot	be	written	since	the	containing	directory	does	not	exist.

Example:

vid:save-recording "foo.mp4" ; Saves to foo.mp4 in the directory containing the model
vid:save-recording user-new-file ; Opens a dialog for the user to select a save path
vid:save-recording "/tmp/foo.mp4" ; Saves the recording to the "/tmp" directory

Errors:

Message	"vid: recorder not started":	The	recorder	has	not	been	started.	Start	the	recorder
with	vid:start-recorder.
Message	"vid: no such directory":	The	directory	containing	the	specified	save	file	does	not
exist.
Message	"vid: no frames recorded":	You	tried	to	save	a	recording	with	no	frames	recorded.
Check	that	you	are	recording	properly	or	use	vid:reset-recording	to	to	change	the	recording
format	without	saving.

NetLogo	View2.5d	Extension

The	View2.5D	extension	offers	visualization	for	Patch	and	Turtle	reporters,	in	real	time,	in	a
simulation’s	context.

How	to	Use

The	view2.5d	extension	is	pre-installed	in	NetLogo.

To	use	the	view2.5d	extension	in	your	model,	add	a	line	to	the	top	of	your	Code	tab:

extensions [view2.5d]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so	just	add
view2.5d	to	the	list.

For	more	information	on	using	NetLogo	extensions,	see	the	Extensions	Guide

Incorporating	Into	Models

open	a	window	using	either	the	view2.5d:patch-view	or	view2.5d:turtle-view	commands	(it	can	be	a
good	idea	to	put	these	in	your	‘SETUP’	procedure	or	a	separate	button).

update	your	window’s	view	using	one	of	the	update	commands	(put	these	in	your	‘GO’	procedure).

See	the	View2.5d	Code	Examples	in	the	NetLogo	models	library.

Feedback

Send	comments,	bugs,	or	other	feedback	to	CCL	Feedback	and/or	Corey	Brady.

Primitives

view2.5d:patch-view	view2.5d:decorate-patch-view	view2.5d:undecorate-patch-view	view2.5d:turtle-
view	view2.5d:update-all-patch-views	view2.5d:update-patch-view	view2.5d:update-turtle-view
view2.5d:get-z-scale	view2.5d:set-z-scale	view2.5d:set-turtle-stem-thickness	view2.5d:get-
observer-angles	view2.5d:set-observer-angles	view2.5d:get-observer-xy-focus	view2.5d:set-observer-
xy-focus	view2.5d:get-observer-distance	view2.5d:set-observer-distance	view2.5d:remove-patch-view
view2.5d:remove-turtle-view	view2.5d:remove-all-patch-views	view2.5d:remove-all-turtle-views
view2.5d:count-windows

view2.5d:patch-view

view2.5d:patch-view	Title	Reporter

This	command	must	be	called	from	the	Observer	context.	(Attempting	to	call	from	another	context
causes	an	error)	The	Title	is	a	string,	which	will	be	used	to	label	the	new	Window	and	to	call	for
subsequent	updates	and	modifications.	Specification	of	the	Reporter	uses	the	NetLogo	anonymous
procedure	syntax,	from	the	Observer	perspective.

Example:

view2.5d:patch-view "Test" [[the-turtle] -> [pxcor] of the-turtle]

view2.5d:decorate-patch-view

view2.5d:decorate-patch-view	Title

mailto:ccl-feedback@ccl.northwestern.edu
mailto:cbrady@northwestern.edu

This	command	must	be	called	from	the	Observer	context.	(Attempting	to	call	from	another	context
causes	an	error)	The	Title	is	a	string,	the	label	of	an	existing	Patch	View	Window.	Effect:	draws	the
turtles	of	the	model	at	their	current	location,	on	top	of	the	Patch	view	display

NOTE:	only	has	an	effect	in	the	“structures”	patch	view	(in	the	others,	the	patch	value	is
inclined	based	on	neighbors	&	gradient)

NOTE:	for	negative	patch	values,	the	turtle	shapes	are	drawn	below	(orbit	underneath	to
see	them)

Example:

view2.5d:decorate-patch-view "Test"

view2.5d:undecorate-patch-view

view2.5d:undecorate-patch-view	Title

This	command	must	be	called	from	the	Observer	context.	(Attempting	to	call	from	another	context
causes	an	error)

The	Title	is	a	string,	the	label	of	an	existing	Patch	View	Window.	Effect:	STOPS	drawing	the	turtles	of
the	model	at	their	current	location,	on	top	of	the	Patch	view	display

Example:

view2.5d:undecorate-patch-view "Test"

view2.5d:turtle-view

view2.5d:turtle-view	Title	Agents	Reporter

This	command	must	be	called	from	the	Observer	context.	(Attempting	to	call	from	another	context
causes	an	error)	The	Title	is	a	string,	which	will	be	used	to	label	the	new	Window	and	to	call	for
subsequent	updates.	The	turtle-set	is	any	selector	for	turtles.	Specification	of	the	Reporter	uses	the
NetLogo	task	syntax,	from	the	Observer	perspective.

Example:

view2.5d:turtle-view "Test" turtles with [color = red] [[energy] of ?1]
; This would create a new 2.5d window, plotting the ENERGY value of all turtles that are red.

view2.5d:update-all-patch-views

view2.5d:update-all-patch-views

This	command	must	be	called	from	the	Observer	context.	Updates	all	existing	patch-view	windows
according	to	the	latest	values.

view2.5d:update-patch-view

view2.5d:update-patch-view	Title

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	patch-view	window	with	the
specified	title	(if	any).

view2.5d:update-turtle-view

view2.5d:update-turtle-view	Title	Agents

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	window	with	the
specified	title	(if	any).	The	turtle-set	selector	must	be	supplied	to	refresh	the	set	of	turtles.

view2.5d:get-z-scale

view2.5d:get-z-scale	title

This	reporter	must	be	called	from	the	Observer	context.	Returns	the	current	z-scale	of	the	turtle-view	or
patch-view	window	with	the	specified	title	(if	any).

view2.5d:set-z-scale

view2.5d:set-z-scale	Title	new-z-scale

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	or	patch-view
window	with	the	specified	title	(if	any).	The	view	is	now	displayed	with	the	new	z-scale.

view2.5d:set-turtle-stem-thickness

view2.5d:set-turtle-stem-thickness	Title	thickness

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	window	with	the
specified	title	(if	any).	Turtles	are	now	drawn	with	“pins”	or	“stems”	that	have	the	specified	thickness
(instead	of	the	hairline	default)

view2.5d:get-observer-angles

view2.5d:get-observer-angles	Title

This	reporter	must	be	called	from	the	Observer	context.	Returns	a	list	reflecting	the	observer’s	angular
perspective	{	heading	pitch	}	(the	place	on	an	imaginary	sphere	at	the	zoom	distance	is	updated	to
obey	heading	&	pitch	given)

view2.5d:set-observer-angles

view2.5d:set-observer-angles	Title	heading	pitch

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	window	with	the
specified	title	(if	any).	Sets	the	observer’s	angular	perspective	(the	place	on	an	imaginary	sphere	at	the
zoom	distance	is	updated	to	obey	heading	&	pitch	given)

view2.5d:get-observer-xy-focus

view2.5d:get-observer-xy-focus	Title

This	reporter	must	be	called	from	the	Observer	context.	Returns	a	list	reflecting	the	x	and	y	coordinates
the	observer	is	“looking	at”	in	the	patch	plane.

view2.5d:set-observer-xy-focus

view2.5d:set-observer-xy-focus	Title	number	ycor

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	window	with	the
specified	title	(if	any).	Sets	the	x	and	y	coordinates	the	observer	that	is	“looking	at”	in	the	patch	plane.

view2.5d:get-observer-distance

view2.5d:get-observer-distance	Title

This	reporter	must	be	called	from	the	Observer	context.	Returns	the	observer’s	distance	from	its	“focus
point”

view2.5d:set-observer-distance

view2.5d:set-observer-distance	Title	new-distance

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	window	with	the
specified	title	(if	any).	Sets	the	observer’s	distance	from	its	“focus	point”

view2.5d:remove-patch-view

view2.5d:remove-patch-view	Title

This	command	closes	and	removes	the	specified	patch	view	programmatically	(equivalent	to	closing
the	window	manually).

view2.5d:remove-turtle-view

view2.5d:remove-turtle-view	Title

This	command	closes	and	removes	the	specified	turtle	view	programmatically	(equivalent	to	closing
the	window	manually).

view2.5d:remove-all-patch-views

view2.5d:remove-all-patch-views

This	command	closes	and	removes	all	patch	views	programmatically	(equivalent	to	closing	the
windows	manually).

view2.5d:remove-all-turtle-views

view2.5d:remove-all-turtle-views

This	command	closes	and	removes	all	turtle	views	programmatically	(equivalent	to	closing	the
windows	manually).

view2.5d:count-windows

view2.5d:count-windows

This	reporter	returns	the	number	of	turtle	and	patch	views	that	are	currently	active.

FAQ	(Frequently	Asked	Questions)

Feedback	from	users	is	very	valuable	to	us	in	designing	and	improving	NetLogo.	We'd	like	to
hear	from	you.	(See	Contacting	Us.)

Questions

General

Why	is	it	called	NetLogo?
How	do	I	cite	NetLogo	or	HubNet	in	a	publication?
How	do	I	cite	a	model	from	the	Models	Library	in	a	publication?
Where	and	when	was	NetLogo	created?
What	programming	language	was	NetLogo	written	in?
What's	the	difference	between	StarLogo	and	NetLogo?
Under	what	license	is	NetLogo	released?	Is	the	source	code	available?
Do	you	offer	any	workshops	or	other	training	opportunities	for	NetLogo?
Are	there	any	NetLogo	textbooks?
Is	NetLogo	available	in	other	languages	besides	English?
Is	NetLogo	compiled	or	interpreted?
Has	anyone	built	a	model	of	<x>?
Are	NetLogo	models	runs	scientifically	reproducible?
Will	NetLogo	and	NetLogo	3D	remain	separate	applications?
Can	I	run	NetLogo	on	my	tablet	or	phone?

Downloading

Can	I	have	multiple	versions	of	NetLogo	installed	at	the	same	time?
I'm	on	a	UNIX	system	and	I	can't	untar	the	download.	Why?
How	do	I	install	NetLogo	unattended?

Running

Can	I	run	NetLogo	from	a	CD,	a	network	drive,	or	a	USB	drive?
Why	is	NetLogo	so	much	slower	when	I	unplug	my	Windows	laptop?
Why	does	NetLogo	bundle	Java?
How	come	NetLogo	won't	start	up	on	my	Linux	machine?
When	I	try	to	install	NetLogo	on	Windows,	I	see	"Windows	protected	your	PC"
When	I	try	to	start	NetLogo	on	Windows	I	get	an	error	"The	JVM	could	not	be	started".	Help!
NetLogo	won't	start	on	Mac	OS	Sierra	(or	later)
NetLogo	won't	start	on	Windows	or	crashes	suddenly	on	Mac	OS	Sierra
Can	I	run	NetLogo	from	the	command	line,	without	the	GUI?
Does	NetLogo	take	advantage	of	multiple	processors/cores?
Can	I	distribute	NetLogo	model	runs	across	a	cluster	or	grid	of	computers?
Is	there	any	way	to	recover	lost	work	if	NetLogo	crashes	or	freezes?

Usage

When	I	move	the	speed	slider	all	the	way	to	the	right,	why	does	my	model	seem	to	stop?
Can	I	use	the	mouse	to	"paint"	in	the	view?
How	big	can	my	model	be?	How	many	turtles,	patches,	procedures,	buttons,	and	so	on	can	my
model	contain?
Can	I	use	GIS	data	in	NetLogo?
My	model	runs	slowly.	How	can	I	speed	it	up?
Can	I	have	more	than	one	model	open	at	a	time?
Can	I	change	the	choices	in	a	chooser	on	the	fly?
Can	I	divide	the	code	for	my	model	up	into	several	files?

Programming

How	does	the	NetLogo	language	differ	from	other	Logos?
How	come	my	model	from	an	earlier	NetLogo	doesn't	work	right?
How	do	I	take	the	negative	of	a	number?
My	turtle	moved	forward	1,	but	it's	still	on	the	same	patch.	Why?
How	do	I	keep	my	turtles	on	patch	centers?
patch-ahead 1	is	reporting	the	same	patch	my	turtle	is	already	standing	on.	Why?
How	do	I	give	my	turtles	"vision"?
Can	agents	sense	what's	in	the	drawing	layer?
I'm	getting	numbers	like	0.10000000004	and	0.799999999999	instead	of	0.1	and	0.8.	Why?
The	documentation	says	that	random-float 1.0	might	return	0.0	but	will	never	return	1.0.	What	if	I	want
1.0	to	be	included?
How	can	I	use	different	patch	"neighborhoods"	(circular,	Von	Neumann,	Moore,	etc.)?
How	can	I	keep	two	turtles	from	occupying	the	same	patch?
How	can	I	find	out	if	a	turtle	is	dead?
Does	NetLogo	have	arrays?
Does	NetLogo	have	hash	tables	or	associative	arrays?
How	can	I	convert	an	agentset	to	a	list,	or	vice	versa?
How	do	I	stop	foreach?
I'm	trying	to	make	a	list.	Why	do	I	keep	getting	the	error	"Expected	a	constant"?

BehaviorSpace

Why	are	the	rows	in	my	BehaviorSpace	table	results	out	of	order?
How	do	I	gather	data	every	n	ticks?
I'm	varying	a	global	variable	I	declared	in	the	Code	tab,	but	it	doesn't	work.	Why?

NetLogo	3D

Does	NetLogo	3D	work	with	my	stereoscopic	device?

Extensions

I'm	writing	an	extension.	Why	does	the	compiler	say	it	can't	find	org.nlogo.api?

General

Why	is	it	called	NetLogo?

The	"Logo"	part	is	because	NetLogo	is	a	dialect	of	the	Logo	language.

"Net"	is	meant	to	evoke	the	decentralized,	interconnected	nature	of	the	phenomena	you	can
model	with	NetLogo,	including	network	phenomena.	It	also	refers	to	HubNet,	the	multiuser
participatory	simulation	environment	included	in	NetLogo.

How	do	I	cite	NetLogo	or	HubNet	in	a	publication?

If	you	use	or	refer	to	NetLogo,	HubNet	or	a	model	from	the	NetLogo	models	library,	we	ask
that	you	cite	it	as	follows:

NetLogo	itself:	Wilensky,	U.	1999.	NetLogo.	http://ccl.northwestern.edu/netlogo/.	Center	for
Connected	Learning	and	Computer-Based	Modeling,	Northwestern	University.	Evanston,	IL.

http://ccl.northwestern.edu/netlogo/

HubNet:	Wilensky,	U.	&	Stroup,	W.,	1999.	HubNet.
http://ccl.northwestern.edu/netlogo/hubnet.html.	Center	for	Connected	Learning	and
Computer-Based	Modeling,	Northwestern	University.	Evanston,	IL.

How	do	I	cite	a	model	from	the	Models	Library	in	a	publication?

The	correct	citation	is	included	in	the	"Credits	and	References"	section	of	each	model's	Info
tab.

Where	and	when	was	NetLogo	created?

NetLogo	was	first	created	in	1999	by	Uri	Wilensky	at	the	Center	for	Connected	Learning	and
Computer-Based	Modeling,	then	at	Tufts	University	in	the	Boston	area.	NetLogo	grew	out	of
StarLogoT,	which	was	authored	by	Wilensky	in	1997.	In	2000,	the	CCL	moved	to
Northwestern	University,	in	the	Chicago	area.	NetLogo	1.0	came	out	in	2002,	2.0	in	2003,	3.0
in	2005,	4.0	in	2007,	4.1	in	2009,	and	5.0	in	2012.

What	programming	language	was	NetLogo	written	in?

NetLogo	is	written	mostly	in	Scala,	with	some	parts	in	Java.	(Scala	code	compiles	to	Java
byte	code	and	is	fully	interoperable	with	Java	and	other	JVM	languages.)

What's	the	relationship	between	StarLogo	and	NetLogo?

The	original	StarLogo	began	at	the	MIT	Media	Lab	in	1989	and	ran	on	the	Connection
Machine.	Later	versions	were	developed	for	Macintosh	computers:	MacStarLogo	(1994,	MIT)
and	StarLogoT	(1997,	Tufts).

Today	there	are	two	StarLogo	descendants	under	active	development:	NetLogo	(from	the
CCL	at	Northwestern	University)	and	StarLogo	TNG	(from	MIT).	NetLogo	is	the	most	widely
used	agent-based	modeling	environment	in	both	education	and	research.	StarLogo	TNG	is
distinguished	by	its	programming	interface	based	on	colored	blocks.

Under	what	license	is	NetLogo	released?	Is	the	source	code
available?

NetLogo	is	free,	open	source	software	under	the	GPL	(GNU	General	Public	License),	version
2,	or	(at	your	option)	any	later	version.

Commercial	licenses	are	also	available.	To	inquire	about	commercial	licenses,	please	contact
Uri	Wilensky	at	uri@northwestern.edu.

The	source	code	is	on	GitHub,	here.	Development	discussion	is	on	the	netlogo-devel	group.

The	User	Manual	is	published	under	a	Creative	Commons	Attribution-ShareAlike	license	(CC
BY-SA	3.0).

Source	code	for	all	of	the	extensions	bundled	with	NetLogo	is	on	GitHub,	here.	Most	of	the
extensions	are	in	the	public	domain	(CC0	notice).	Other	extensions	are	released	under	open
source	licenses.	See	each	extension's	README	for	details.

The	Code	Examples	in	the	Models	Library	are	in	the	public	domain	(CC0	notice).

http://ccl.northwestern.edu/netlogo/hubnet.html
http://www.gnu.org/licenses/gpl-2.0.html
mailto:uri@northwestern.edu
https://github.com/NetLogo/NetLogo
http://groups.google.com/group/netlogo-devel
http://creativecommons.org/licenses/by-sa/3.0/
https://github.com/NetLogo/
http://creativecommons.org/about/cc0
http://creativecommons.org/about/cc0

The	rest	of	the	models	in	the	Models	Library	are	provided	under	a	variety	of	licenses.	Some
are	public	domain	and	some	are	open	source,	but	most	are	under	the	Creative	Commons
Attribution-ShareAlike	license	(CC	BY-NC-SA),	which	is	not	an	open	source	license,	though
the	models	are	free	for	noncommercial	distribution	and	use.

See	each	model's	Info	tab	to	check	its	particular	license.

The	models	are	in	a	public	Git	repository	here.

Do	you	offer	any	workshops	or	other	training	opportunities	for
NetLogo?

We	offer	workshops	from	time	to	time.	If	a	workshop	has	been	scheduled,	we	will	announce	it
on	the	NetLogo	Users	Group.

Are	there	any	NetLogo	textbooks?

The	CCL	has	published	a	textbook	(written	by	the	author	of	NetLogo)	that	gives	an
introduction	to	agent-based	modeling	methods	using	NetLogo.	It	goes	step	by	step	with
coding	examples	how	to	design,	build,	revise,	and	analyze	models.	And	it	presents	some
advanced	techniques.

See	www.intro-to-abm.com	for	more	information	on	that	textbook.

See	the	Textbooks	section	of	our	Resources	page.

We	at	the	CCL	have	hoped	to	write	several	more	NetLogo	textbooks.	These	could	be	aimed
at	different	audiences,	such	as:	middle	school,	high	school,	undergraduate	course	in	modeling
or	complexity,	practical	guide	for	interested	adults.

Unfortunately,	we	have	not	yet	been	able	to	find	the	time	to	make	these	happen.	If	anyone
from	the	user	community	would	like	to	collaborate	on	such	a	venture,	please	let	us	know.	We
would	welcome	it.

Is	NetLogo	available	in	other	languages	besides	English?

Volunteers	have	translated	the	user	manual	into	Chinese	and	Czech.	The	translated	versions
are	available	from	the	NetLogo	web	site.

So	far,	the	NetLogo	user	interface	has	been	localized	in	English,	Spanish,	Chinese,	Russian,
and	Japanese.	All	five	languages	are	included	in	the	standard	download.

We	are	seeking	volunteers	to	complete	and	improve	these	localizations	and	to	translate	the
NetLogo	software	and	manual	into	as	many	other	languages	as	possible.	If	you're	able	to	help
in	this	endeavor,	please	contact	us.

Is	NetLogo	compiled	or	interpreted?

Short	answer:	some	of	both.

Long	answer:	NetLogo	does	include	a	compiler	that	generates	Java	byte	code.	However,	this
compiler	does	not	yet	support	the	entire	language,	so	some	parts	of	user	code	remain
interpreted.	Note	that	our	compiler	generates	Java	byte	code,	and	Java	virtual	machines	have

http://creativecommons.org/licenses/by-nc-sa/3.0/
https://github.com/NetLogo/models
http://groups.yahoo.com/group/netlogo-users/
http://www.intro-to-abm.com
http://ccl.northwestern.edu/netlogo/resources.shtml

"just-in-time"	compilers	that	in	turn	compile	Java	byte	code	all	the	way	to	native	code,	so
much	user	code	is	ultimately	translated	to	native	code.

Has	anyone	built	a	model	of	<x>?

Try	looking	at	the	NetLogo	Models	Library,	the	NetLogo	Modeling	Commons,	our	Community
Models	page,	and	our	list	of	references	to	NetLogo	in	outside	works.

You	might	also	ask	the	question	on	the	NetLogo	Users	Group	and/or	search	past	messages
on	the	group.

Are	NetLogo	models	runs	scientifically	reproducible?

Yes.	NetLogo's	pseudorandom	number	generator	and	agent	scheduling	algorithms	are
deterministic,	and	NetLogo	always	uses	Java's	"strict	math"	library,	which	gives	bit-for-bit
identical	results	regardless	of	platform.	But	keep	the	following	cautions	in	mind:

If	your	model	uses	random	numbers,	then	in	order	to	get	reproducible	behavior,	you
must	use	the	random-seed	command	to	set	the	random	seed	in	advance,	so	that	your
model	will	receive	the	exact	same	sequence	of	random	numbers	every	time.
Remember	that	agentsets	are	always	in	random	order,	so	anything	you	do	with
agentsets	uses	random	numbers.
If	your	model	uses	the	every	or	wait	commands	in	such	a	way	that	affects	the	outcome
of	the	model,	then	you	may	get	different	results	on	different	computers,	or	even	on	the
same	computer,	since	the	model	may	run	at	a	different	speed.
In	order	to	reproduce	model	runs	exactly,	you	must	be	using	the	exact	same	version	of
NetLogo.	The	details	of	the	agent	scheduling	mechanism	and	the	random	number
generator	may	change	between	NetLogo	versions,	and	other	changes	(bugfixes	in	the
engine,	language	changes,	and	so	forth)	may	also	affect	the	behavior	of	your	model.
(Then	again,	they	may	not.)
We	have	expended	every	effort	to	make	NetLogo	model	runs	fully	reproducible,	but	of
course	this	can	never	truly	be	an	iron-clad	guarantee,	due	not	only	to	the	possibility	of
random	hardware	failure,	but	also	the	possibility	of	human	error	in	the	design	of:	your
model,	NetLogo,	your	Java	VM,	your	hardware,	and	so	on.

Will	NetLogo	and	NetLogo	3D	remain	separate?

For	now,	yes.	NetLogo	3D	is	included	with	NetLogo,	but	it	is	still	a	separate	application.

Ideally	a	single	unified	application	would	support	both	2D	and	3D	modeling.	We	would	design
the	3D	world	support	so	it	doesn't	get	in	the	way	when	you	are	building	2D	models.	Models
built	in	NetLogo	3D	might	require	changes	in	order	to	run	in	the	hypothetical	unified
application.

Can	I	run	NetLogo	on	my	phone	or	tablet?

No.	Neither	iOS,	nor	Android,	nor	Windows	RT	supports	running	Java	applications	such	as
NetLogo.

We	are	working	on	an	alternate	implementation	of	NetLogo	on	a	JavaScript	and	HTML5
base,	instead	of	Java.	It	will	work	on	a	variety	of	tablets	and	phones.	We	don't	know	yet	when
it	will	be	ready,	and	we	expect	that	for	a	long	time	it	will	only	support	a	subset	of	the	features
in	desktop	NetLogo.	The	many	person-years	of	development	effort	that	have	gone	into	the

http://ccl.northwestern.edu/netlogo/models/
http://modelingcommons.org/
http://ccl.northwestern.edu/netlogo/models/community/
http://ccl.northwestern.edu/netlogo/references.shtml
http://groups.yahoo.com/group/netlogo-users/

Java	version	can't	cheaply	or	easily	be	replicated	on	another	platform.

For	technical	details	on	this	new	project,	go	here.

Downloading

Can	I	have	multiple	versions	of	NetLogo	installed	at	the	same	time?

Yes.	When	you	install	NetLogo,	the	folder	that	is	created	contains	has	the	version	number	in
its	name,	so	multiple	versions	can	coexist.

On	Windows	systems,	whichever	version	you	installed	last	will	be	the	version	that	opens
when	you	double	click	a	model	file	in	Windows	Explorer.	On	Macs,	you	can	control	what
version	opens	via	"Get	Info"	in	the	Finder.

I'm	on	a	UNIX	system	and	I	can't	untar	the	download.	Why?

Some	of	the	files	in	the	tarball	have	long	pathnames,	too	long	for	the	standard	tar	format.	You
must	use	the	GNU	version	of	tar	instead	(or	another	program	which	understands	the	GNU	tar
extensions).	On	some	systems,	the	GNU	version	of	tar	is	available	under	the	name	"gnutar".
You	can	find	out	if	you	are	already	using	the	GNU	version	by	typing	tar --version	and
seeing	if	the	output	says	"tar	(GNU	tar)".

How	do	I	install	NetLogo	unattended

It	depends	on	which	platform	you	are	using.

Linux:	Untar	NetLogo	into	the	appropriate	place.

Mac:	Copy	the	NetLogo	directory	from	the	disk	image	into	the	Applications	folder.

Windows:

Run	the	installer	from	the	command	line	using	the	-q	option:

NetLogo6.0.2Installer.exe -q

Running

Can	I	run	NetLogo	from	a	CD,	a	network	drive,	or	a	USB	drive?

Yes.	NetLogo	runs	fine	from	any	file	system,	including	read-only	file	systems.

Why	is	NetLogo	so	much	slower	when	I	unplug	my	Windows	laptop?

Your	computer	is	switching	to	power	saving	mode	when	unplugged.	It's	normal	for	this	to
reduce	speed	a	little,	but	unfortunately	there	is	a	bug	in	Java	that	drastically	slows	down
Swing	applications,	including	NetLogo.

One	workaround	is	to	change	the	power	settings	on	your	computer	so	it	doesn't	go	into	power

https://github.com/NetLogo/NetLogo/wiki/Tortoise

saving	mode	when	you	unplug	it.	(If	you	do	this,	your	battery	won't	last	as	long.)

Another	workaround	is	to	run	NetLogo	with	an	option	recommended	by	Oracle,	by	editing	the
NetLogo	6.0.2.vmoptions	file,	found	in	the	NetLogo	directory	(under	Program	Files	on	your
hard	drive,	unless	you	installed	NetLogo	in	a	different	location).	Add	on	a	new	line:

-Dsun.java2d.ddoffscreen=false

You	can	see	the	details	of	the	Java	bug	and	vote	for	Oracle	to	fix	it	here.

Why	does	NetLogo	bundle	Java?

Since	Mac	OS	X	Lion,	Apple	have	encouraged	Mac	application	developers	to	bundle	Java.
NetLogo	bundles	Java	because	it	allows	us	to	deliver	a	consistent,	convenient	experience	to
our	users.	Bundling	Java	allows	us	to	test	for	compatibility	once	and	avoid	any	bugs	caused
by	version	mismatches	or	Java	configuration	incompatibilities.

If	users	are	interested	in	using	Java	on	their	system	instead	of	the	version	of	Java	bundled
with	NetLogo,	they	can	configure	NetLogo	to	use	a	different	Java	runtime.	Please	note	that
this	change	is	done	at	your	own	risk.	We	are	unable	to	offer	support	for	problems	caused
by	running	NetLogo	with	an	alternate	Java	Runtime.	To	change	the	Java	runtime	used	by
NetLogo,	open	the	NetLogo.cfg	file	and	modify	the	app.runtime	property	to	the	path	of	your
preferred	Java	Runtime.

How	come	NetLogo	won't	start	up	on	my	Linux	machine?

We	bundle	Oracle's	Java	runtime	when	using	NetLogo	on	Linux.	If	you	would	like	to	change
the	version	of	linux	used,	you	can	modify	the	.cfg	files	to	point	to	a	different	version	of	java
(see	How	big	can	my	model	be?	for	more	information).

In	theory,	any	Java	8	or	later	runtime	will	run	NetLogo.	In	practice,	some	Java
implementations	aren't	high	enough	quality.	Recent	versions	of	OpenJDK	should	work;	older
ones	may	not.	GNU	libgcj	does	not	work.

Ubuntu	users	should	consult	http://help.ubuntu.com/community/Java.

When	I	try	to	install	NetLogo	on	Windows,	I	see	"Windows	protected
your	PC"

Windows	attempts	to	protect	users	from	downloading	malicious	software	by	maintaining	a	list
of	"good"	and	"malicious"	software.	The	first	users	to	install	any	NetLogo	release	will	see	this
warning.	Later	users	may	or	may	not	see	this	warning.	Before	going	any	further,	ensure	you
are	protected.	The	CCL	can	only	vouch	for	NetLogo	downloads	hosted	on	the	CCL	Website.
NetLogo	can	be	freely	downloaded	from	the	official	NetLogo	download	page.	If	you	obtain
NetLogo	from	anywhere	else,	you	install	it	at	your	own	risk!

You	can	continue	past	the	Windows	prompt	by	taking	the	following	steps:

In	the	"Windows	protected	your	PC"	prompt,	click	"More	Info",	the	prompt	will	change
In	the	changed	prompt,	click	"Run	Anyway"	and	continue	with	installation	as	normal

Note	in	order	to	see	the	"More	Info"	or	"Run	Anyway"	options,	you	will	need	to	run	the
installer	as	an	administrator.	If	you	do	not	see	those	options,	right-click	and	choose	"Run	as

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id
http://help.ubuntu.com/community/Java
http://ccl.northwestern.edu/netlogo/download.shtml

administrator"	and/or	change	your	user	account	to	an	administrator	account	before	installing.

We	at	the	CCL	are	working	on	solving	this	problem	and	hope	to	free	our	users	of	the	added
installation	difficulty	soon!

When	I	try	to	start	NetLogo	on	Windows	I	get	an	error	"The	JVM
could	not	be	started".	Help!

A	nearly	certain	fix	is	to	use	a	text	editor	to	edit	the	NetLogo.cfg	file,	changing	1024m	to	a
smaller	number,	like	512m.	This	should	permit	NetLogo	to	start,	although	the	lower	heap	size
limit	may	affect	your	ability	to	run	models	with	many	agents.	See	How	big	can	my	model	be?
for	information	on	model	size	and	how	to	edit	the	cfg	file.

If	running	with	the	lower	heap	size	limit	is	unacceptable,	read	on.

Some	Windows	systems	have	trouble	allocating	large	amounts	of	contiguous	virtual	memory.
Upgrading	to	a	newer	version	of	Windows	may	help.

Running	Windows	in	64-bit	mode	instead	of	32-bit	mode	may	also	help.	Double	check	that
Windows	is	actually	running	in	64-bit	mode;	see	Microsoft's	FAQ	page	on	64-bit	Windows.

NetLogo	won't	start	on	Mac	OS	Sierra	(or	later)

Some	users	have	reported	problems	opening	NetLogo	6	on	Mac	OS	Sierra.	We've	been
unable	to	determine	a	root	cause	for	this	problem,	but	we're	continuing	to	investigate.	We're
looking	for	assistance	from	you	if	you	run	into	this	problem.	It	would	be	extremely	helpful	if
you	could	run	the	following	command	in	the	"Terminal"	application	and	send	the	output	in	an
email	to	bugs@ccl.northwestern.edu.

xattr -pl com.apple.quarantine /Applications/NetLogo\ 6.0/NetLogo\ 6.0.app

running	it	should	give	you	a	single	line	of	output	(something	like	com.apple.quarantine:
01e1;58ac6af2;Firefox;F2E0B1E2-D203-4B05-8DF9-ABA58B52EFEA,	but	yours	will	have	different
numbers,	letters,	and	words).	Please	copy	and	paste	this	string	into	the	email	you	send	us.

There	is	also	a	partial	workaround!	Running	the	following	command	in	the	Terminal	will
enable	users	to	run	NetLogo	without	turning	Gatekeeper	completely	off.	The	command	is:

sudo xattr -dr com.apple.quarantine /Applications/NetLogo\ 6.0/NetLogo\ 6.0.app

Note	that	if	you	plan	to	run	NetLogo	3D,	HubNet	Client,	or	NetLogo	Logging,	you	may	also
need	to	re-run	that	command	once	for	each	of	those	applications.	If	the	workaround	was	not
effective	for	you,	please	send	us	an	email	and	let	us	know.

NetLogo	won't	start	on	Windows	or	crashes	suddenly	on	Mac	OS
Sierra

Some	users	on	Mac	OS	with	discrete	graphics	cards	experience	sudden	crashes	of	NetLogo
when	switching	between	integrated	and	discrete	graphics.	It's	possible	to	prevent	these
crashes	by	disabling	automatic	graphics	switching	in	System	Preferences.

Some	Windows	users	may	also	be	unable	to	open	NetLogo	due	to	graphics	card	settings	or

http://windows.microsoft.com/en-US/windows-vista/32-bit-and-64-bit-Windows-frequently-asked-questions
mailto:bugs@ccl.northwestern.edu?subject=Sierra NetLogo 6 Bug
mailto:bugs@ccl.northwestern.edu?subject=Sierra NetLogo 6 Bug Workaround
https://support.apple.com/en-us/HT202043

drivers.	If	you	are	unable	to	open	NetLogo	on	Windows,	you	might	be	able	to	fix	this	by
updating	or	reinstalling	your	graphics	driver	and/or	disabling	any	graphics	card	utilities.
Because	NetLogo	might	be	unable	to	start	for	a	number	of	reasons,	we	encourage	you	to
contact	us	if	these	steps	aren't	effective	in	resolving	the	problem.

Can	I	run	NetLogo	from	the	command	line,	without	the	GUI?

Yes.	The	easiest	way	is	to	set	up	your	model	run	or	runs	as	a	BehaviorSpace	experiment.	No
additional	programming	is	required.	See	the	BehaviorSpace	Guide	for	details.

Another	option	is	to	use	our	Controlling	API.	Some	light	Java	programming	is	required.	See
the	Controlling	API	Guide	for	details	and	sample	code.

Does	NetLogo	take	advantage	of	multiple	processors?

Only	when	using	BehaviorSpace.	BehaviorSpace	does	parallel	runs,	one	per	processor.

For	a	single	model	run,	only	one	processor	is	used.

We	are	seeking	funding	to	make	it	possible	to	split	a	single	model	run	across	multiple
processors	or	multiple	computers.

Can	I	distribute	NetLogo	model	runs	across	a	cluster	or	grid	of
computers?

Many	of	the	same	comments	in	the	previous	answer	apply.	It	is	not	possible	to	split	a	single
model	run	across	multiple	computers,	but	you	can	have	each	machine	in	a	cluster	doing	one
or	more	separate,	independent	model	runs,	using	either	BehaviorSpace	or	our	Controlling
API.	We	don't	have	automated	support	for	splitting	the	runs	across	clusters,	so	you'll	need	to
arrange	that	yourself.

Various	users	are	already	using	NetLogo	on	clusters,	with	a	variety	of	hardware	and	software.
You	can	seek	them	out	on	the	NetLogo	Users	Group.

Is	there	any	way	to	recover	lost	work	if	NetLogo	crashes	or	freezes?

Yes.	NetLogo	auto-saves	files	as	you	are	working	on	them.	The	path	to	the	auto-save	file
depends	on	whether	or	not	the	NetLogo	model	has	been	saved.

For	NetLogo	models	which	have	been	saved,	a	hidden	file	with	the	name
".filename.tmp.nlogo"	will	be	created	in	the	same	directory	as	the	NetLogo	model.

For	unsaved	NetLogo	models,	autosave	files	can	be	found	in	your	OS-specific	java	temporary
directory.	The	files	are	named	according	to	the	following	format:	autosave_yyyy-MM-
dd.HH_mm_ss.nlogo	where	the	time	and	date	are	the	time	and	date	the	model	was	opened.
The	exact	path	will	depend	on	your	operating	system:

On	Mac	OS,	the	temporary	directory	is	/var/folders/68/<30-character-alphanumeric-
sequence>/T/.	The	30-character-alphanumeric-sequence	is	unique	to	each	machine.
On	Windows	the	logs	can	be	found	in	C:\Users\<user>\AppData\Local\Temp,	where
<user>	is	the	logged	in	user.
On	most	non-Mac	Unix-like	systems	the	temp	directory	is	/tmp.

mailto:bugs@ccl.northwestern.edu?subject=NetLogo 6 Launch Problem in Windows
https://github.com/NetLogo/NetLogo/wiki/Controlling-API
http://groups.yahoo.com/group/netlogo-users/

Usage

When	I	move	the	speed	slider	all	the	way	to	the	right,	why	does	my
model	seem	to	stop?

The	only	way	NetLogo	can	make	your	model	run	faster	is	by	updating	the	view	less
frequently.	As	you	move	the	speed	slider	to	the	right,	view	updates	become	less	and	less
frequent.	Since	view	updates	take	time,	that	means	more	speed.

However,	fewer	updates	also	means	that	the	updates	come	farther	apart.	When	several
seconds	pass	between	updates,	it	may	seem	like	your	model	has	stopped.	It	hasn't.	It's
running	at	full	speed.	Watch	the	tick	counter!	(If	your	model	uses	it.	If	it	doesn't,	watch
something	else,	like	a	plot.)

To	get	a	feel	for	what's	going	on,	try	moving	the	slider	to	the	right	gradually	rather	than
suddenly.	If	you	find	the	updates	too	infrequent	at	the	rightmost	position,	just	don't	push	the
slider	that	far.

Can	I	use	the	mouse	to	"paint"	in	the	view?

NetLogo	does	not	have	a	built-in	set	of	painting	tools	for	painting	in	the	view.	But	with	only	a
few	lines	of	code,	you	can	add	painting	capability	to	your	model.	To	see	how	it's	done,	look	at
Mouse	Example,	in	the	Code	Examples	section	of	the	Models	Library.	The	same	techniques
can	be	used	to	let	the	user	interact	with	your	model	using	the	mouse	in	other	ways,	too.

Another	possibility	is	to	create	an	image	in	another	program	and	import	it	using	the	import
items	on	the	File	menu	or	the	import-*	primitives.

How	big	can	my	model	be?	How	many	turtles,	patches,	procedures,
buttons,	and	so	on	can	my	model	contain?

We	have	tested	NetLogo	with	models	that	use	hundreds	of	megabytes	of	RAM	and	they	work
fine.	We	haven't	tested	models	that	use	gigabytes	of	RAM,	though.	Theoretically	it	should
work,	but	you	might	hit	some	limits	that	are	inherent	in	the	underlying	Java	VM	and/or
operating	system	(either	designed-in	limits,	or	bugs).

The	NetLogo	engine	has	no	fixed	limits	on	size.	By	default,	though,	NetLogo	ships	with	a	one-
gigabyte	ceiling	on	how	much	total	RAM	it	can	use.	If	your	model	exceeds	that	limit,	you'll	get
an	OutOfMemoryError	dialog.

If	you	are	using	BehaviorSpace,	note	that	doing	runs	in	parallel	will	multiply	your	RAM	usage
accordingly.

Each	platform	contains	".cfg"	files	containing	JVM	settings.	There	is	one	cfg	file	for	each	sub-
application	(NetLogo,	NetLogo	3D,	HubNet	Client,	etc.)	Although	the	file	location	varies	by
platform,	the	process	for	changing	it	is	the	same.	Locate	the	section	of	the	file	that	looks	like
the	following:

[JVMOptions]
there may be one or more lines, leave them unchanged
-Xmx1024m
there may be one or more lines, leave them unchanged

Modify	the	value	immediately	following

-Xmx

,	changing	it	to	the	amount	of	space	you	need,	save	the	file,	and	restart	NetLogo.	Platform
specific	notes	follow:

Windows:	The	cfg	files	will	be	in

C:\Program Files (x86)\NetLogo 6.0.2\app

if	you	are	running	64-bit	windows,	and

C:\Program Files\NetLogo 6.0.2\app

otherwise.
Mac	OS	X:	The	file	for	NetLogo	will	be	located	at:

/Application/NetLogo 6.0.2/NetLogo.app/Contents/Java/NetLogo.cfg

For	NetLogo	3D	and	the	other	applications,	you	will	find	the	file	in	the	corresponding
location	for	each	application	package.	You	can	reach	the	cfg	file	by	control-clicking	the
application	in	the	Finder	and	choosing	"Show	Package	Contents"	from	the	popup	menu.

Please	note	that	depending	on	your	version	of	Mac	OS	X,	changing	the	cfg	file	*may*
break	application	signing.	If	this	happens,	follow	Apple's	directions	on	this	page	to
temporarily	allow	apps	from	"Anywhere",	run	NetLogo	once,	then	restore	the	setting	to
"Mac	App	Store	and	Identified	Developers".

Other:	The	cfg	files	will	be	located	in	the

netlogo-6.0.2/app

folder	after	untarring.

By	default,	Mac	builds	of	NetLogo	bundle	a	64-bit	JVM,	which	should	be	able	to	make	use	of
as	much	memory	as	the	lesser	of	available	system	memory	and	the	value	following

-Xmx

.	Windows	and	Linux	will	bundle	a	32-bit	or	64-bit	JVM,	depending	on	which	version	you	have
downloaded.	It	is	recommended	that	you	install	64-bit	NetLogo	on	all	64-bit	operating	systems
for	best	performance.

Can	I	use	GIS	data	in	NetLogo?

Yes,	many	users	are	using	GIS	data	with	NetLogo.	The	most	complete	way	to	do	that	is	with
the	GIS	extension.	See	the	GIS	Extension	Guide.

A	simpler	way	is	to	use	import-pcolors,	but	that	only	works	for	importing	maps	that	are
images,	not	maps	in	other	formats.

https://support.apple.com/en-us/HT202491

It	is	also	possible	to	write	NetLogo	code	that	reads	GIS	data	using	our	file	I/O	primitives	such
as	file-open.	For	example,	see	the	Grand	Canyon	model	in	the	Earth	Science	section	of
Sample	Models.

My	model	runs	slowly.	How	can	I	speed	it	up?

Here's	some	ways	to	make	it	run	faster	without	changing	the	structure	of	the	code:

Use	tick-based	view	updates,	not	continuous	updates.
Decrease	the	frequency	of	view	updates	by	pushing	the	speed	slider	to	the	right,	or	turn
updates	off	using	the	checkbox.
If	your	model	is	using	all	available	RAM	on	your	computer,	then	installing	more	RAM
should	help.	If	your	hard	drive	makes	a	lot	of	noise	while	your	model	is	running,	you
probably	need	more	RAM.
Use	turtle	size	1,	1.5,	or	2,	as	the	2D	renderings	for	these	sizes	are	cached	by	NetLogo.
(This	only	affects	graphics	speed	in	the	2D	view,	not	computation	speed.)

In	many	cases,	though,	if	you	want	your	model	to	run	faster,	you	may	need	to	make	some
changes	to	the	code.	Usually	the	most	obvious	opportunity	for	speedup	is	that	you're	doing
too	many	computations	that	involve	all	the	turtles	or	all	the	patches.	Often	this	can	be	reduced
by	reworking	the	model	so	that	it	does	less	computation	per	time	step.	The	members	of	the
NetLogo	Users	Group	may	be	able	to	help	with	this.

The	profiler	extension	is	useful	for	identifying	which	parts	of	your	code	are	taking	the	most
time.

Unless	you	are	running	the	exact	same	strings	over	and	over,	using	run	and	runresult	are
much	slower	than	running	code	directly;	you	should	avoid	using	these	primitives	on	fresh
strings	in	performance-critical	code.

Can	I	have	more	than	one	model	open	at	a	time?

One	instance	of	NetLogo	can	only	have	one	model	open	at	a	time.	(Unfortunately,	it	is	unlikely
that	this	will	change	in	a	future	version,	due	to	the	engineering	difficulties	involved.)

You	can	have	multiple	models	open	by	opening	multiple	instances	of	NetLogo,	though.	On
Windows	and	Linux,	simply	start	the	application	again.	On	a	Mac,	you'll	need	to	duplicate	the
application	(not	the	whole	folder,	just	the	application	itself)	in	the	Finder,	then	open	the	copy.
(The	copy	takes	up	only	a	very	small	amount	of	additional	disk	space.)

Can	I	change	the	choices	in	a	chooser	on	the	fly?

No.

Can	I	divide	the	code	for	my	model	up	into	several	files?

On	an	experimental	basis,	this	is	available	using	the	__includes	keyword.

Programming

How	does	the	NetLogo	language	differ	from	other	Logos?

http://groups.yahoo.com/group/netlogo-users/

This	is	answered	in	detail	at	the	end	of	the	Programming	Guide.

How	come	my	model	from	an	earlier	NetLogo	doesn't	work	right?

See	the	Transition	Guide	for	help.

How	do	I	take	the	negative	of	a	number?

Any	of	these	ways:

(- x)
-1 * x
0 - x

With	the	first	way,	the	parentheses	are	required.

My	turtle	moved	forward	1,	but	it's	still	on	the	same	patch.	Why?

If	you	have	disabled	wrapping	at	the	world	edges	in	your	model,	then	the	turtle	might	be	at	a
world	edge	and	unable	to	move	any	further.	You	can	test	for	this	using	can-move?.

Assuming	the	turtle	isn't	hitting	a	world	edge,	moving	forward	1	is	only	guaranteed	to	take	a
turtle	to	a	new	patch	if	the	turtle's	heading	is	a	multiple	of	90	(that	is,	exactly	north,	south,
east,	or	west).

It's	because	the	turtle	might	not	be	standing	in	the	center	of	a	patch.	It	might	be	near	the
corner	of	a	patch.	For	example,	suppose	your	turtle	is	close	to	the	southwest	corner	of	a
patch	and	is	facing	northeast.	The	length	of	the	patch	diagonal	is	1.414...	(the	square	root	of
two),	so	fd 1	will	leave	the	turtle	near	the	northeast	corner	of	the	same	patch.

If	you	don't	want	to	have	to	think	about	these	issues,	one	possibility	is	to	write	your	model	in
such	a	way	that	your	turtles	always	come	to	rest	on	patch	centers.	See	next	question.

How	do	I	keep	my	turtles	on	patch	centers?

A	turtle	is	on	a	patch	center	when	its	xcor	and	ycor	are	integers.

You	can	move	a	turtle	to	the	center	of	its	current	patch	with	either	of	these	two	equivalent
commands:

move-to patch-here
setxy pxcor pycor

But	you'll	never	need	to	do	that	if	you	never	allow	turtles	off	of	patch	centers	in	the	first	place.

The	sprout	command	creates	turtles	on	patch	centers.	For	example:

ask n-of 50 patches [sprout 1 [face one-of neighbors4]]

Another	way	for	a	turtle	to	start	on	a	patch	center	is	with	a	command	such	as	this	line	of	turtle
code,	which	moves	it	to	the	center	of	a	random	patch:

move-to one-of patches

Once	a	turtle	is	on	a	patch	center,	as	long	as	its	heading	always	stays	an	exact	multiple	of	90
(that	is	to	say,	due	north,	east,	south,	or	west),	and	as	it	long	as	it	moves	forward	or	back	by
integer	amounts,	it	will	always	land	on	patch	centers.

See	Random	Grid	Walk	Example,	in	the	Code	Examples	section	of	the	Models	Library,	to	see
these	code	snippets	in	use.

patch-ahead 1	is	reporting	the	same	patch	my	turtle	is	already
standing	on.	Why?

See	the	answer	two	answers	up.	It's	the	same	issue.

This	might	not	be	the	meaning	of	"ahead"	you	were	expecting.	With	patch-ahead,	you	must
specify	the	distance	ahead	that	you	want	to	look.	If	you	want	to	know	the	next	patch	a	turtle
would	cross	into	if	it	moved	forward	continuously,	it	is	possible	to	find	that	out.	See	Next	Patch
Example,	in	the	Code	Examples	section	of	the	Models	Library.

How	do	I	give	my	turtles	"vision"?

You	can	use	in-radius	to	let	a	turtle	see	a	circular	area	around	it.

Several	primitives	let	the	turtle	"look"	at	specific	points.	The	patch-ahead	primitive	is	useful	for
letting	a	turtle	see	what	is	directly	in	front	of	it.	If	you	want	the	turtle	to	look	in	another	direction
besides	straight	ahead,	try	patch-left-and-ahead	and	patch-right-and-ahead.

If	you	want	the	turtle	to	have	a	full	"cone"	of	vision,	use	the	in-cone	primitive.

You	can	also	find	out	the	next	patch	a	turtle	would	cross	into	if	it	moved	forward	continuously.
See	Next	Patch	Example,	in	the	Code	Examples	section	of	the	Models	Library.

Can	agents	sense	what's	in	the	drawing	layer?

No.	If	you	want	to	make	marks	that	agents	can	sense,	use	patch	colors.

I'm	getting	numbers	like	0.10000000004	and	0.799999999999	instead
of	0.1	and	0.8.	Why?

See	the	"Math"	section	of	the	Programming	Guide	for	a	discussion	of	this	issue.

The	documentation	says	that	random-float 1	might	return	0	but	will
never	return	1.	What	if	I	want	1	to	be	included?

It	really	doesn't	matter.	Even	if	1	were	a	possible	result,	it	would	only	come	up	approximately
1	in	2^64	tries,	which	means	you'd	be	waiting	hundreds	of	years	before	it	ever	came	up
exactly	1.

Nonetheless,	if	you	are	convinced	that	it	really	must	be	possible	to	get	1,	you	can	use
precision	to	round	your	answer	to	a	certain	number	of	decimal	places.	For	example:

print precision (random-float 1) 10
0.2745173723

(If	you	use	this	method,	note	that	0	and	1	are	only	half	as	likely	to	come	up	as	other	answers.
To	see	why	this	is	so,	consider	the	case	where	you	only	keep	one	digit	after	the	decimal
point.	Results	between	0	and	0.5	get	rounded	to	0,	but	results	between	0.5	and	1.5	get
rounded	to	1;	the	latter	range	is	twice	as	large.	If	you	want	0,	0.1,	0.2,	...,	0.9,	and	1	to	all	be
equally	likely,	an	alternative	is	to	write	random 11 / 10 ;	this	gives	all	11	answers	with	equal
probability.)

How	can	I	keep	two	turtles	from	occupying	the	same	patch?

See	One	Turtle	Per	Patch	Example,	in	the	Code	Examples	section	of	the	Models	Library.

How	can	I	find	out	if	a	turtle	is	dead?

When	a	turtle	dies,	it	turns	into	nobody.	nobody	is	a	special	value	used	in	NetLogo	used	to
indicate	the	absence	of	a	turtle	or	patch.	So	for	example:

if turtle 0 != nobody [...]

You	could	also	use	is-turtle?:

if is-turtle? turtle 0 [...]

Does	NetLogo	have	arrays?

Nearly	all	models	should	just	use	lists	for	this.

The	usual	motivation	for	using	arrays	in	other	programming	languages	is	that	they	provide
fast	random	access	(item)	and	mutation	(replace-item).	But	NetLogo's	lists,	even	though	they
are	immutable,	now	provide	near	constant	time	performance	on	these	operations.

Lists	in	earlier	versions	of	NetLogo	(4.1	and	4.0)	were	simple	singly-linked	lists	and	therefore
these	operations	took	linear	time.	The	data	structure	underlying	NetLogo's	lists	now	is	the
immutable	Vector	class	from	the	Scala	collections	library.	It	uses	32-wide	hash	array	mapped
tries,	as	implemented	by	Tiark	Rompf,	based	in	part	on	work	by	Phil	Bagwell	and	Rich	Hickey.

If	you	are	certain	you	want	to	use	raw,	mutable	JVM	arrays	in	your	model,	they	are	provided
by	the	array	extension.	See	the	Arrays	&	Tables	section	of	the	User	Manual.

Does	NetLogo	have	hash	tables	or	associative	arrays?

Yes,	using	the	table	extension.	See	the	Arrays	&	Tables	section	of	the	User	Manual.

How	can	I	use	different	patch	"neighborhoods"	(circular,	Von
Neumann,	Moore,	etc.)?

The	in-radius	primitives	lets	you	access	circular	neighborhoods	of	any	radius.

http://en.wikipedia.org/wiki/Hash_array_mapped_trie

The	neighbors	primitive	gives	you	a	Moore	neighborhood	of	radius	1,	and	the	neighbors4
primitive	gives	you	a	Von	Neumann	neighborhood	of	radius	1.

For	Moore	or	Von	Neumann	neighborhoods	of	a	larger	radius,	see	Moore	&	Von	Neumann
Example	in	the	Code	Examples	section	of	the	Models	Library.

How	can	I	convert	an	agentset	to	a	list	of	agents,	or	vice	versa?

If	you	want	the	list	in	a	particular	order,	use	the	sort	or	sort-by	primitives.	The	Lists	section	of
the	Programming	Guide	explains	how	to	do	this.	See	also	Ask	Ordering	Example,	in	the	Code
Examples	section	of	the	Models	Library.

If	you	want	the	list	in	a	random	order,	here's	how:

[self] of <agentset>

Because	all	operations	on	agentsets	are	in	random	order,	the	resulting	list	is	in	random	order.

To	convert	a	list	of	agents	to	an	agentset,	use	the	turtle-set,	patch-set,	or	link-set
primitives.

How	do	I	stop	foreach?

To	stop	a	foreach	from	executing	you	need	to	define	a	separate	procedure	that	contains	only
the	foreach,	for	example:

to test
 foreach [1 2 3] [i ->
 if i = 2 [stop]
 print i
]
end

This	code	will	only	print	the	number	1.	The	stop	returns	from	the	current	procedure	so	nothing
after	the	foreach	will	be	executed	either.	(If	the	procedure	is	a	reporter	procedure,	use	report
instead	of	stop.)

I'm	trying	to	make	a	list.	Why	do	I	keep	getting	the	error	"Expected	a
constant"?

If	a	list	contains	only	constants,	you	can	write	it	down	just	by	putting	square	brackets	around
it,	like	[1 2 3] .

If	you	want	your	list	to	contain	items	that	may	vary	at	runtime,	the	list	cannot	be	written	down
directly.	Instead,	you	build	it	using	the	list	primitive.

BehaviorSpace

Why	are	the	rows	in	my	BehaviorSpace	table	results	out	of	order?

This	is	normal	when	doing	multiple	runs	in	parallel.	For	a	discussion	of	the	issue,	see	the

section	on	parallel	runs	in	the	BehaviorSpace	Guide	section	of	the	User	Manual.

How	do	I	measure	runs	every	n	ticks?

Use	repeat	in	your	experiment's	go	commands,	e.g.:

repeat 10 [go]

to	measure	the	run	after	every	10	ticks.	Essentially	you	are	making	one	experiment	step
equal	10	ticks.

I'm	varying	a	global	variable	I	declared	in	the	Code	tab,	but	it	doesn't
work.	Why?

It's	probably	because	your	setup	commands	or	setup	procedure	are	using	clear-all,	causing
the	values	set	by	BehaviorSpace	to	be	cleared.

One	possible	workaround	is	to	change	your	experiment's	setup	commands	to	preserve	the
value	of	the	variable,	e.g.:

let old-var1 var1
setup
set var1 old-var1

This	works	because	even	clear-all	doesn't	clear	the	values	of	local	variables	made	with	let

Another	possible	workaround	is	to	change	your	model's	setup	procedure	to	use	more	specific
clearing	commands	to	clear	only	what	you	want	cleared.

NetLogo	3D

Does	NetLogo	work	with	my	stereoscopic	device?

NetLogo	supports	fullscreen	exclusive	mode.	If	that	is	all	your	device	needs	then,	possibly
yes.	However,	it	can	be	tricky	to	get	it	working.	We	don't	have	any	such	devices	so	it	is	difficult
for	us	to	make	the	process	easier.	If	your	device	needs	something	else,	for	example,
quadbuffers	enabled,	the	answer	is	probably	no.

Extensions

I'm	writing	an	extension.	Why	does	the	compiler	say	it	can't	find
org.nlogo.api?

You	need	to	add	NetLogo.jar	to	your	classpath	when	compiling.	NetLogo.jar	is	included	with
NetLogo.

NetLogo	Dictionary
Alphabetical:	A	B	C	D	E	F	G	H	I	J	L	M	N	O	P	R	S	T	U	V	W	X	Y	->

Categories:	Turtle	-	Patch	-	Links	-	Agentset	-	Color	-	Anonymous	Procedures	-	Control/Logic	-	World	
Perspective	-	Input/Output	-	File	-	List	-	String	-	Math	-	Plotting	-	System	-	HubNet

Special:	Variables	-	Keywords	-	Constants

Categories

This	is	an	approximate	grouping.	Remember	that	a	turtle-related	primitive	might	still	be	used	by	patches	or	the	observer,	and	vice	versa.	To
see	which	agents	(turtles,	patches,	links,	observer)	can	actually	run	a	primitive,	consult	its	dictionary	entry.

Turtle-related

back	(bk)	<breeds>-at	<breeds>-here	<breeds>-on	can-move?	clear-turtles	(ct)	create-<breeds>	create-ordered-<breeds>	create-ordered-
turtles	(cro)	create-turtles	(crt)	die	distance	distancexy	downhill	downhill4	dx	dy	face	facexy	forward	(fd)	hatch	hatch-<breeds>	hide-turtle	(ht)
home	inspect	is-<breed>?	is-turtle?	jump	layout-circle	left	(lt)	move-to	myself	nobody	no-turtles	of	other	patch-ahead	patch-at	patch-at-
heading-and-distance	patch-here	patch-left-and-ahead	patch-right-and-ahead	pen-down	(pd)	pen-erase	(pe)	pen-up	(pu)	random-xcor
random-ycor	right	(rt)	self	set-default-shape	__set-line-thickness	setxy	shapes	show-turtle	(st)	sprout	sprout-<breeds>	stamp	stamp-erase
stop-inspecting	subject	subtract-headings	tie	towards	towardsxy	turtle	turtle-set	turtles	turtles-at	turtles-here	turtles-on	turtles-own	untie	uphill
uphill4

Patch-related

clear-patches	(cp)	diffuse	diffuse4	distance	distancexy	import-pcolors	import-pcolors-rgb	inspect	is-patch?	myself	neighbors	neighbors4
nobody	no-patches	of	other	patch	patch-at	patch-ahead	patch-at-heading-and-distance	patch-here	patch-left-and-ahead	patch-right-and-
ahead	patch-set	patches	patches-own	random-pxcor	random-pycor	self	sprout	sprout-<breeds>	stop-inspecting	subject	turtles-here

Link-related

both-ends	clear-links	create-<breed>-from	create-<breeds>-from	create-<breed>-to	create-<breeds>-to	create-<breed>-with	create-
<breeds>-with	create-link-from	create-links-from	create-link-to	create-links-to	create-link-with	create-links-with	die	hide-link	in-<breed>-
neighbor?	in-<breed>-neighbors	in-<breed>-from	in-link-neighbor?	in-link-neighbors	in-link-from	is-directed-link?	is-link?	is-link-set?	is-<link-
breed>?	is-undirected-link?	layout-radial	layout-spring	layout-tutte	<breed>-neighbor?	<breed>-neighbors	<breed>-with	link-heading	link-
length	link-neighbor?	link	links	links-own	<link-breeds>-own	link-neighbors	link-with	my-<breeds>	my-in-<breeds>	my-in-links	my-links	my-
out-<breeds>	my-out-links	no-links	other-end	out-<breed>-neighbor?	out-<breed>-neighbors	out-<breed>-to	out-link-neighbor?	out-link-
neighbors	out-link-to	show-link	tie	untie

Agentset

all?	any?	ask	ask-concurrent	at-points	<breeds>-at	<breeds>-here	<breeds>-on	count	in-cone	in-radius	is-agent?	is-agentset?	is-patch-set?
is-turtle-set?	link-set	max-n-of	max-one-of	member?	min-n-of	min-one-of	n-of	neighbors	neighbors4	no-links	no-patches	no-turtles	of	one-of
other	patch-set	patches	sort	sort-by	sort-on	turtle-set	turtles	turtles-at	turtles-here	turtles-on	with	with-max	with-min

Color

approximate-hsb	approximate-rgb	base-colors	color	extract-hsb	extract-rgb	hsb	import-pcolors	import-pcolors-rgb	pcolor	rgb	scale-color
shade-of?	wrap-color

Control	flow	and	logic

and	ask	ask-concurrent	carefully	end	error	error-message	every	if	ifelse	ifelse-value	let	loop	not	or	repeat	report	run	runresult	;	(semicolon)	set
stop	startup	to	to-report	wait	while	with-local-randomness	without-interruption	xor

Anonymous	Procedures

->	(anonymous	procedure)	filter	foreach	is-anonymous-command?	is-anonymous-reporter?	map	n-values	reduce	run	runresult	sort-by

World

clear-all	(ca)	clear-drawing	(cd)	clear-globals	clear-patches	(cp)	clear-ticks	clear-turtles	(ct)	display	import-drawing	import-pcolors	import-
pcolors-rgb	no-display	max-pxcor	max-pycor	min-pxcor	min-pycor	patch-size	reset-ticks	resize-world	set-patch-size	stop-inspecting-dead-
agents	tick	tick-advance	ticks	world-width	world-height

Perspective

follow	follow-me	reset-perspective	(rp)	ride	ride-me	subject	watch	watch-me

HubNet

hubnet-broadcast	hubnet-broadcast-clear-output	hubnet-broadcast-message	hubnet-clear-override	hubnet-clear-overrides	hubnet-clients-list
hubnet-enter-message?	hubnet-exit-message?	hubnet-kick-all-clients	hubnet-kick-client	hubnet-fetch-message	hubnet-message	hubnet-
message-source	hubnet-message-tag	hubnet-message-waiting?	hubnet-reset	hubnet-reset-perspective	hubnet-send	hubnet-send-clear-
output	hubnet-send-follow	hubnet-send-message	hubnet-send-override	hubnet-send-watch

Input/output

beep	clear-output	date-and-time	export-view	export-interface	export-output	export-plot	export-all-plots	export-world	import-drawing	import-

pcolors	import-pcolors-rgb	import-world	mouse-down?	mouse-inside?	mouse-xcor	mouse-ycor	output-print	output-show	output-type	output-
write	print	read-from-string	reset-timer	set-current-directory	show	timer	type	user-directory	user-file	user-new-file	user-input	user-message
user-one-of	user-yes-or-no?	write

File

file-at-end?	file-close	file-close-all	file-delete	file-exists?	file-flush	file-open	file-print	file-read	file-read-characters	file-read-line	file-show	file-
type	file-write	user-directory	user-file	user-new-file

List

but-first	but-last	empty?	filter	first	foreach	fput	histogram	insert-item	is-list?	item	last	length	list	lput	map	max	member?	min	modes	n-of	n-
values	of	position	one-of	range	reduce	remove	remove-duplicates	remove-item	replace-item	reverse	sentence	shuffle	sort	sort-by	sort-on
sublist

String

Operators	(<,	>,	=,	!=,	<=,	>=)	but-first	but-last	empty?	first	insert-item	is-string?	item	last	length	member?	position	remove	remove-item	read-
from-string	replace-item	reverse	substring	word

Mathematical

Arithmetic	Operators	(+,	*,	-,	/,	^,	<,	>,	=,	!=,	<=,	>=)	abs	acos	asin	atan	ceiling	cos	e	exp	floor	int	is-number?	ln	log	max	mean	median	min	mod
modes	new-seed	pi	precision	random	random-exponential	random-float	random-gamma	random-normal	random-poisson	random-seed
remainder	round	sin	sqrt	standard-deviation	subtract-headings	sum	tan	variance

Plotting

autoplot?	auto-plot-off	auto-plot-on	clear-all-plots	clear-plot	create-temporary-plot-pen	export-plot	export-all-plots	histogram	plot	plot-name
plot-pen-exists?	plot-pen-down	plot-pen-reset	plot-pen-up	plot-x-max	plot-x-min	plot-y-max	plot-y-min	plotxy	set-current-plot	set-current-plot-
pen	set-histogram-num-bars	set-plot-background-color	set-plot-pen-color	set-plot-pen-interval	set-plot-pen-mode	set-plot-x-range	set-plot-y-
range	setup-plots	update-plots

BehaviorSpace

behaviorspace-experiment-name	behaviorspace-run-number

System

netlogo-version	netlogo-web?

Built-In	Variables

Turtles

breed	color	heading	hidden?	label	label-color	pen-mode	pen-size	shape	size	who	xcor	ycor

Patches

pcolor	plabel	plabel-color	pxcor	pycor

Links

breed	color	end1	end2	hidden?	label	label-color	shape	thickness	tie-mode

Other

->

Keywords

breed	directed-link-breed	end	extensions	globals	__includes	links-own	patches-own	to	to-report	turtles-own	undirected-link-breed

Constants

Mathematical	Constants

e	=	2.718281828459045	
pi	=	3.141592653589793

Boolean	Constants

false	
true

Color	Constants

Since	1.0

Since	1.3

Since	4.0

Since	1.0

Since	2.0

black	=	0	
gray	=	5	
white	=	9.9	
red	=	15	
orange	=	25	
brown	=	35	
yellow	=	45	
green	=	55	
lime	=	65	
turquoise	=	75	
cyan	=	85	
sky	=	95	
blue	=	105	
violet	=	115	
magenta	=	125	
pink	=	135

See	the	Colors	section	of	the	Programming	Guide	for	more	details.

A	

abs

abs	number

Reports	the	absolute	value	of	number.

show abs -7
=> 7
show abs 5
=> 5

acos

acos	number

Reports	the	arc	cosine	(inverse	cosine)	of	the	given	number.	The	input	must	be	in	the	range	-1	to	1.	The	result	is	in	degrees,	and	lies	in	the
range	0	to	180.

all?

all?	agentset	[reporter]

Reports	true	if	all	of	the	agents	in	the	agentset	report	true	for	the	given	reporter.	Otherwise	reports	false	as	soon	as	a	counterexample	is
found.

If	the	agentset	is	empty,	reports	true.

The	reporter	must	report	a	boolean	value	for	every	agent	(either	true	or	false),	otherwise	an	error	occurs.

if all? turtles [color = red]
 [show "every turtle is red!"]

See	also	any?.

and

condition1	and	condition2

Reports	true	if	both	condition1	and	condition2	are	true.

Note	that	if	condition1	is	false,	then	condition2	will	not	be	run	(since	it	can't	affect	the	result).

if (pxcor > 0) and (pycor > 0)
 [set pcolor blue] ;; the upper-right quadrant of
 ;; patches turn blue

any?

any?	agentset

Reports	true	if	the	given	agentset	is	non-empty,	false	otherwise.

Equivalent	to	"count	agentset	>	0",	but	more	efficient	(and	arguably	more	readable).

if any? turtles with [color = red]
 [show "at least one turtle is red!"]

Note:	nobody	is	not	an	agentset.	You	only	get	nobody	back	in	situations	where	you	were	expecting	a	single	agent,	not	a	whole	agentset.	If

Since	4.0

Since	4.0

Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0

any?	gets	nobody	as	input,	an	error	results.

See	also	all?,	nobody.

approximate-hsb

approximate-hsb	hue	saturation	brightness

Reports	a	number	in	the	range	0	to	140,	not	including	140	itself,	that	represents	the	given	color,	specified	in	the	HSB	spectrum,	in	NetLogo's
color	space.

The	first	value	(hue)	should	be	in	the	range	of	0	to	360,	the	second	and	third	(saturation	and	brightness)	in	the	range	between	0	and	100.

The	color	reported	may	be	only	an	approximation,	since	the	NetLogo	color	space	does	not	include	all	possible	colors.

show approximate-hsb 0 0 0
=> 0 ;; (black)
show approximate-hsb 180 57.143 76.863
=> 85 ;; (cyan)

See	also	extract-hsb,	approximate-rgb,	extract-rgb.

approximate-rgb

approximate-rgb	red	green	blue

Reports	a	number	in	the	range	0	to	140,	not	including	140	itself,	that	represents	the	given	color,	specified	in	the	RGB	spectrum,	in	NetLogo's
color	space.

All	three	inputs	should	be	in	the	range	0	to	255.

The	color	reported	may	be	only	an	approximation,	since	the	NetLogo	color	space	does	not	include	all	possible	colors.	(See	approximate-hsb
for	a	description	of	what	parts	of	the	HSB	color	space	NetLogo	colors	cover;	this	is	difficult	to	characterize	in	RGB	terms.)

show approximate-rgb 0 0 0
=> 0 ;; black
show approximate-rgb 0 255 255
=> 85.2 ;; cyan

See	also	extract-rgb,	approximate-hsb,	and	extract-hsb.

Arithmetic	Operators
+
*
-
/
^
<
>
=
!=
<=
>=

All	of	these	operators	take	two	inputs,	and	all	act	as	"infix	operators"	(going	between	the	two	inputs,	as	in	standard	mathematical	use).
NetLogo	correctly	supports	order	of	operations	for	infix	operators.

The	operators	work	as	follows:	+	is	addition,	*	is	multiplication,	-	is	subtraction,	/	is	division,	^	is	exponentiation,	<	is	less	than,	>	is	greater
than,	=	is	equal	to,	!=	is	not	equal	to,	<=	is	less	than	or	equal,	>=	is	greater	than	or	equal.

Note	that	the	subtraction	operator	(-)	always	takes	two	inputs	unless	you	put	parentheses	around	it,	in	which	case	it	can	take	one	input.	For
example,	to	take	the	negative	of	x,	write	(-	x),	with	the	parentheses.

All	of	the	comparison	operators	also	work	on	strings.

All	of	the	comparison	operators	work	on	agents.	Turtles	are	compared	by	who	number.	Patches	are	compared	top	to	bottom	left	to	right,	so
patch	0	10	is	less	than	patch	0	9	and	patch	9	0	is	less	than	patch	10	0.	Links	are	ordered	by	end	points	and	in	case	of	a	tie	by	breed.	So	link
0	9	is	before	link	1	10	as	the	end1	is	smaller,	and	link	0	8	is	less	than	link	0	9.	If	there	are	multiple	breeds	of	links	unbreeded	links	will	come
before	breeded	links	of	the	same	end	points	and	breeded	links	will	be	sorted	in	the	order	they	are	declared	in	the	Code	tab.

Agentsets	can	be	tested	for	equality	or	inequality.	Two	agentsets	are	equal	if	they	are	the	same	type	(turtle	or	patch)	and	contain	the	same
agents.

If	you	are	not	sure	how	NetLogo	will	interpret	your	code,	you	should	add	parentheses.

show 5 * 6 + 6 / 3
=> 32
show 5 * (6 + 6) / 3
=> 20

Many	extension	objects	may	be	tested	for	equality	and	inequality	using	=	and	!=.	For	instance,	the	array,	matrix,	and	table	objects	returned	by
their	respective	extensions	may	be	compared	for	equality	/	inequality.	Extension	objects	may	not	be	tested	using	<,	>,	<=,	or	>=.

Since	1.3

Since	1.0

Since	4.0

Since	1.0

Since	1.0

asin

asin	number

Reports	the	arc	sine	(inverse	sine)	of	the	given	number.	The	input	must	be	in	the	range	-1	to	1.	The	result	is	in	degrees,	and	lies	in	the	range
-90	to	90.

ask

ask	agentset	[commands]
ask	agent	[commands]

The	specified	agent	or	agentset	runs	the	given	commands.

ask turtles [fd 1]
 ;; all turtles move forward one step
ask patches [set pcolor red]
 ;; all patches turn red
ask turtle 4 [rt 90]
 ;; only the turtle with id 4 turns right

Note:	only	the	observer	can	ask	all	turtles	or	all	patches.	This	prevents	you	from	inadvertently	having	all	turtles	ask	all	turtles	or	all	patches
ask	all	patches,	which	is	a	common	mistake	to	make	if	you're	not	careful	about	which	agents	will	run	the	code	you	are	writing.

Note:	Only	the	agents	that	are	in	the	agentset	at	the	time	the	ask	begins	run	the	commands.

ask-concurrent

ask-concurrent	agentset	[commands]

This	primitive	exists	only	for	backwards	compatibility.	We	don't	recommend	using	it	new	models.

The	agents	in	the	given	agentset	run	the	given	commands,	using	a	turn-taking	mechanism	to	produce	simulated	concurrency.	See	the	Ask-
Concurrent	section	of	the	Programming	Guide	for	details	on	how	this	works.

Note:	Only	the	agents	that	are	in	the	agentset	at	the	time	the	ask	begins	run	the	commands.

See	also	without-interruption.

at-points

agentset	at-points	[[x1	y1]	[x2	y2]	...]

Reports	a	subset	of	the	given	agentset	that	includes	only	the	agents	on	the	patches	at	the	given	coordinates	(relative	to	this	agent).	The
coordinates	are	specified	as	a	list	of	two-item	lists,	where	the	two	items	are	the	x	and	y	offsets.

If	the	caller	is	the	observer,	then	the	points	are	measured	relative	to	the	origin,	in	other	words,	the	points	are	taken	as	absolute	patch
coordinates.

If	the	caller	is	a	turtle,	the	points	are	measured	relative	to	the	turtle's	exact	location,	and	not	from	the	center	of	the	patch	under	the	turtle.

ask turtles at-points [[2 4] [1 2] [10 15]]
 [fd 1] ;; only the turtles on the patches at the
 ;; coordinates (2,4), (1,2) and (10,15),
 ;; relative to the caller, move

atan

atan	x	y

Converts	x	and	y	offsets	to	a	turtle	heading	in	degrees	(from	0	to	360).

Note	that	this	version	of	atan	is	designed	to	conform	to	the	geometry	of	the	NetLogo	world,	where	a	heading	of	0	is	straight	up,	90	is	to	the
right,	and	so	on	clockwise	around	the	circle.	(Normally	in	geometry	an	angle	of	0	is	right,	90	is	up,	and	so	on,	counterclockwise	around	the
circle,	and	atan	would	be	defined	accordingly.)

When	y	is	0:	if	x	is	positive,	it	reports	90;	if	x	is	negative,	it	reports	270;	if	x	is	zero,	you	get	an	error.

show atan 1 -1
=> 135
show atan -1 1
=> 315
crt 1 [set heading 30 fd 1 print atan xcor ycor]
=> 30

In	the	final	example,	note	that	the	result	of	atan	equals	the	turtle's	heading.

If	you	ever	need	to	convert	a	turtle	heading	(obtained	with	atan	or	otherwise)	to	a	normal	mathematical	angle,	the	following	should	be	helpful:

to-report heading-to-angle [h]
 report (90 - h) mod 360
end

Since	1.0

Since	1.0
Since	1.0

Since	1.0
Since	1.0

Since	4.0

Since	2.1

Since	5.2

Since	4.1.1

autoplot?

autoplot?

Reports	true	if	auto-plotting	is	on	for	the	current	plot,	false	otherwise.

auto-plot-off
auto-plot-on

auto-plot-off
auto-plot-on

This	pair	of	commands	is	used	to	control	the	NetLogo	feature	of	auto-plotting	in	the	current	plot.	Auto-plotting	will	automatically	update	the	x
and	y	axes	of	the	plot	whenever	the	current	pen	exceeds	these	boundaries.	It	is	useful	when	wanting	to	show	all	plotted	values	in	the	current
plot,	regardless	of	the	current	plot	ranges.

B

back
bk

back	number

The	turtle	moves	backward	by	number	steps.	(If	number	is	negative,	the	turtle	moves	forward.)

Turtles	using	this	primitive	can	move	a	maximum	of	one	unit	per	time	increment.	So	bk 0.5	and	bk 1	both	take	one	unit	of	time,	but	bk 3
takes	three.

If	the	turtle	cannot	move	backward	number	steps	because	it	is	not	permitted	by	the	current	topology	the	turtle	will	complete	as	many	steps	of
1	as	it	can	and	stop.

See	also	forward,	jump,	can-move?.

base-colors

base-colors

Reports	a	list	of	the	14	basic	NetLogo	hues.

print base-colors
=> [5 15 25 35 45 55 65 75 85 95 105 115 125 135]
ask turtles [set color one-of base-colors]
;; each turtle turns a random base color
ask turtles [set color one-of remove gray base-colors]
;; each turtle turns a random base color except for gray

beep

beep

Emits	a	beep.	Note	that	the	beep	sounds	immediately,	so	several	beep	commands	in	close	succession	may	produce	only	one	audible	sound.

Example:

beep ;; emits one beep
repeat 3 [beep] ;; emits 3 beeps at once,
 ;; so you only hear one sound
repeat 3 [beep wait 0.1] ;; produces 3 beeps in succession,
 ;; separated by 1/10th of a second

When	running	headless,	this	command	has	no	effect.

behaviorspace-experiment-name

behaviorspace-experiment-name

Reports	the	current	experiment	name	in	the	current	experiment.

If	no	BehaviorSpace	experiment	is	running,	reports	"".

behaviorspace-run-number

behaviorspace-run-number

Reports	the	current	run	number	in	the	current	BehaviorSpace	experiment,	starting	at	1.

If	no	BehaviorSpace	experiment	is	running,	reports	0.

Since	4.0

Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0

both-ends

both-ends

Reports	the	agentset	of	the	2	nodes	connected	by	this	link.

crt 2
ask turtle 0 [create-link-with turtle 1]
ask link 0 1 [
 ask both-ends [set color red] ;; turtles 0 and 1 both turn red
]

breed

breed
	

This	is	a	built-in	turtle	and	link	variable.	It	holds	the	agentset	of	all	turtles	or	links	of	the	same	breed	as	this	turtle	or	link.	(For	turtles	or	links
that	do	not	have	any	particular	breed,	this	is	the	turtles	agentset	of	all	turtles	or	the	links	agentset	of	all	links	respectively.)

You	can	set	this	variable	to	change	a	turtle	or	link's	breed.	(When	a	turtle	changes	breeds,	its	shape	is	reset	to	the	default	shape	for	that
breed.	See	set-default-shape.)

See	also	breed,	directed-link-breed,	undirected-link-breed

Example:

breed [cats cat]
breed [dogs dog]
;; turtle code:
if breed = cats [show "meow!"]
set breed dogs
show "woof!"

directed-link-breed [roads road]
;; link code
if breed = roads [set color gray]

breed

breed	[<breeds>	<breed>]

This	keyword,	like	the	globals,	turtles-own,	and	patches-own	keywords,	can	only	be	used	at	the	beginning	of	the	Code	tab,	before	any
procedure	definitions.	It	defines	a	breed.	The	first	input	defines	the	name	of	the	agentset	associated	with	the	breed.	The	second	input	defines
the	name	of	a	single	member	of	the	breed.

Any	turtle	of	the	given	breed:

is	part	of	the	agentset	named	by	the	breed	name
has	its	breed	built-in	variable	set	to	that	agentset

Most	often,	the	agentset	is	used	in	conjunction	with	ask	to	give	commands	to	only	the	turtles	of	a	particular	breed.

breed [mice mouse]
breed [frogs frog]
to setup
 clear-all
 create-mice 50
 ask mice [set color white]
 create-frogs 50
 ask frogs [set color green]
 show [breed] of one-of mice ;; prints mice
 show [breed] of one-of frogs ;; prints frogs
end

show mouse 1
;; prints (mouse 1)
show frog 51
;; prints (frog 51)
show turtle 51
;; prints (frog 51)

See	also	globals,	patches-own,	turtles-own,	<breeds>-own,	create-<breeds>,	<breeds>-at,	<breeds>-here.

but-first
butfirst
bf
but-last
butlast
bl

but-first	list
but-first	string
but-last	list
but-last	string

Since	3.1

Since	2.1

Since	1.0

Since	1.0
Since	1.0

Since	1.0

Since	3.0
Since	3.0

Since	5.2

When	used	on	a	list,	but-first	reports	all	of	the	list	items	of	list	except	the	first,	and	but-last	reports	all	of	the	list	items	of	list	except	the	last.

On	strings,	but-first	and	but-last	report	a	shorter	string	omitting	the	first	or	last	character	of	the	original	string.

;; mylist is [2 4 6 5 8 12]
set mylist but-first mylist
;; mylist is now [4 6 5 8 12]
set mylist but-last mylist
;; mylist is now [4 6 5 8]
show but-first "string"
;; prints "tring"
show but-last "string"
;; prints "strin"

C

can-move?

can-move?	distance

Reports	true	if	this	turtle	can	move	distance	in	the	direction	it	is	facing	without	violating	the	topology;	reports	false	otherwise.

It	is	equivalent	to:

patch-ahead distance != nobody

carefully

carefully	[commands1]	[commands2]

Runs	commands1.	If	a	runtime	error	occurs	inside	commands1,	NetLogo	won't	stop	and	alert	the	user	that	an	error	occurred.	It	will	suppress
the	error	and	run	commands2	instead.

The	error-message	reporter	can	be	used	in	commands2	to	find	out	what	error	was	suppressed	in	commands1.	See	error-message.

carefully [print one-of [1 2 3]] [print error-message]
=> 3
observer> carefully [print one-of []] [print error-message]
=> ONE-OF got an empty list as input.

ceiling

ceiling	number

Reports	the	smallest	integer	greater	than	or	equal	to	number.

show ceiling 4.5
=> 5
show ceiling -4.5
=> -4

See	also	floor,	round,	precision.

clear-all
ca

clear-all

Combines	the	effects	of	clear-globals,	clear-ticks,	clear-turtles,	clear-patches,	clear-drawing,	clear-all-plots,	and	clear-output.

clear-all-plots

clear-all-plots

Clears	every	plot	in	the	model.	See	clear-plot	for	more	information.

clear-drawing
cd

clear-drawing

Clears	all	lines	and	stamps	drawn	by	turtles.

clear-globals

Since	4.0

Since	1.0

Since	1.0
Since	1.0

Since	5.0

Since	1.0
Since	1.0

clear-globals

Sets	all	global	variables	to	0.

clear-links

clear-links

Kills	all	links.

See	also	die.

clear-output

clear-output

Clears	all	text	from	the	model's	output	area,	if	it	has	one.	Otherwise	does	nothing.

clear-patches
cp

clear-patches

Clears	the	patches	by	resetting	all	patch	variables	to	their	default	initial	values,	including	setting	their	color	to	black.

clear-plot

clear-plot

In	the	current	plot	only,	resets	all	plot	pens,	deletes	all	temporary	plot	pens,	resets	the	plot	to	its	default	values	(for	x	range,	y	range,	etc.),	and
resets	all	permanent	plot	pens	to	their	default	values.	The	default	values	for	the	plot	and	for	the	permanent	plot	pens	are	set	in	the	plot	Edit
dialog,	which	is	displayed	when	you	edit	the	plot.	If	there	are	no	plot	pens	after	deleting	all	temporary	pens,	that	is	to	say	if	there	are	no
permanent	plot	pens,	a	default	plot	pen	will	be	created	with	the	following	initial	settings:

Pen:	down
Color:	black
Mode:	0	(line	mode)
Name:	"default"
Interval:	1

See	also	clear-all-plots.

clear-ticks

clear-ticks

Clears	the	tick	counter.

Does	not	set	the	counter	to	zero.	After	this	command	runs,	the	tick	counter	has	no	value.	Attempting	to	access	or	update	it	is	an	error	until
reset-ticks	is	called.

See	also	reset-ticks.

clear-turtles
ct

clear-turtles

Kills	all	turtles.

Also	resets	the	who	numbering,	so	the	next	turtle	created	will	be	turtle	0.

See	also	die.

color

color
	

This	is	a	built-in	turtle	or	link	variable.	It	holds	the	color	of	the	turtle	or	link.	You	can	set	this	variable	to	make	the	turtle	or	link	change	color.
Color	can	be	represented	either	as	a	NetLogo	color	(a	single	number),	or	an	RGB	color	(a	list	of	3	numbers).	See	details	in	the	Colors	section
of	the	Programming	Guide.

Since	1.0

Since	1.0

Since	4.0
Since	4.0

Since	4.0
Since	4.0
Since	4.0
Since	4.0
Since	4.0
Since	4.0

See	also	pcolor.

cos

cos	number

Reports	the	cosine	of	the	given	angle.	Assumes	the	angle	is	given	in	degrees.

show cos 180
=> -1

count

count	agentset

Reports	the	number	of	agents	in	the	given	agentset.

show count turtles
;; prints the total number of turtles
show count patches with [pcolor = red]
;; prints the total number of red patches

create-ordered-turtles
cro

create-ordered-turtles	number
create-ordered-turtles	number	[commands]
create-ordered<breeds>	number
create-ordered<breeds>	number	[commands]

Creates	number	new	turtles.	New	turtles	start	at	position	(0,	0),	are	created	with	the	14	primary	colors,	and	have	headings	from	0	to	360,
evenly	spaced.

If	the	create-ordered-<breeds>	form	is	used,	the	new	turtles	are	created	as	members	of	the	given	breed.

If	commands	are	supplied,	the	new	turtles	immediately	run	them.	This	is	useful	for	giving	the	new	turtles	a	different	color,	heading,	or
whatever.	(The	new	turtles	are	created	all	at	once	then	run	one	at	a	time,	in	random	order.)

cro 100 [fd 10] ;; makes an evenly spaced circle

create-<breed>-to
create-<breeds>-to
create-<breed>-from
create-<breeds>-from
create-<breed>-with
create-<breeds>-with
create-link-to
create-links-to
create-link-from
create-links-from
create-link-with
create-links-with

create-<breed>-to	turtle
create-<breed>-to	turtle	[commands]
create-<breed>-from	turtle
create-<breed>-from	turtle	[commands]
create-<breed>-with	turtle
create-<breed>-with	turtle	[commands]
create-<breeds>-to	turtleset
create-<breeds>-to	turtleset	[commands]
create-<breeds>-from	turtleset
create-<breeds>-from	turtleset	[commands]
create-<breeds>-with	turtleset
create-<breeds>-with	turtleset	[commands]
create-link-to	turtle
create-link-to	turtle	[commands]
create-link-from	turtle
create-link-from	turtle	[commands]
create-link-with	turtle
create-link-with	turtle	[commands]
create-links-to	turtleset
create-links-to	turtleset	[commands]
create-links-from	turtleset
create-links-from	turtleset	[commands]
create-links-with	turtleset
create-links-with	turtleset	[commands]

Since	1.0
Since	1.0

Since	1.1

Used	for	creating	breeded	and	unbreeded	links	between	turtles.

create-link-with	creates	an	undirected	link	between	the	caller	and	agent.	create-link-to	creates	a	directed	link	from	the	caller	to	agent.
create-link-from	creates	a	directed	link	from	agent	to	the	caller.

When	the	plural	form	of	the	breed	name	is	used,	an	agentset	is	expected	instead	of	an	agent	and	links	are	created	between	the	caller	and	all
agents	in	the	agentset.

The	optional	command	block	is	the	set	of	commands	each	newly	formed	link	runs.	(The	links	are	created	all	at	once	then	run	one	at	a	time,	in
random	order.)

A	node	cannot	be	linked	to	itself.	Also,	you	cannot	have	more	than	one	undirected	link	of	the	same	breed	between	the	same	two	nodes,	nor
can	you	have	more	than	one	directed	link	of	the	same	breed	going	in	the	same	direction	between	two	nodes.

If	you	try	to	create	a	link	where	one	(of	the	same	breed)	already	exists,	nothing	happens.	If	you	try	to	create	a	link	from	a	turtle	to	itself	you	get
a	runtime	error.

to setup
 clear-all
 create-turtles 5
 ;; turtle 1 creates links with all other turtles
 ;; the link between the turtle and itself is ignored
 ask turtle 0 [create-links-with other turtles]
 show count links ;; shows 4
 ;; this does nothing since the link already exists
 ask turtle 0 [create-link-with turtle 1]
 show count links ;; shows 4 since the previous link already existed
 ask turtle 2 [create-link-with turtle 1]
 show count links ;; shows 5
end

directed-link-breed [red-links red-link]
undirected-link-breed [blue-links blue-link]

to setup
 clear-all
 create-turtles 5
 ;; create links in both directions between turtle 0
 ;; and all other turtles
 ask turtle 0 [create-red-links-to other turtles]
 ask turtle 0 [create-red-links-from other turtles]
 show count links ;; shows 8
 ;; now create undirected links between turtle 0 and other turtles
 ask turtle 0 [create-blue-links-with other turtles]
 show count links ;; shows 12
end

create-turtles
crt

create-turtles	number
create-turtles	number	[commands]
create-<breeds>	number
create-<breeds>	number	[commands]

Creates	number	new	turtles	at	the	origin.	New	turtles	have	random	integer	headings	and	the	color	is	randomly	selected	from	the	14	primary
colors.

If	the	create-<breeds>	form	is	used,	the	new	turtles	are	created	as	members	of	the	given	breed.

If	commands	are	supplied,	the	new	turtles	immediately	run	them.	This	is	useful	for	giving	the	new	turtles	a	different	color,	heading,	or
whatever.	(The	new	turtles	are	created	all	at	once	then	run	one	at	a	time,	in	random	order.)

crt 100 [fd 10] ;; makes a randomly spaced circle

breed [canaries canary]
breed [snakes snake]
to setup
 clear-all
 create-canaries 50 [set color yellow]
 create-snakes 50 [set color green]
end

See	also	hatch,	sprout.

create-temporary-plot-pen

create-temporary-plot-pen	string

A	new	temporary	plot	pen	with	the	given	name	is	created	in	the	current	plot	and	set	to	be	the	current	pen.

Few	models	will	want	to	use	this	primitive,	because	all	temporary	pens	disappear	when	clear-plot	or	clear-all-plots	are	called.	The	normal	way
to	make	a	pen	is	to	make	a	permanent	pen	in	the	plot's	Edit	dialog.

If	a	pen	with	that	name	already	exists	in	the	current	plot,	no	new	pen	is	created,	and	the	existing	pen	is	set	to	the	current	pen.

The	new	temporary	plot	pen	has	the	following	initial	settings:

Since	3.0

Since	1.0

Since	1.0

Since	1.0

Pen:	down
Color:	black
Mode:	0	(line	mode)
Interval:	1

See:	clear-plot,	clear-all-plots,	and	set-current-plot-pen.

D

date-and-time

date-and-time

Reports	a	string	containing	the	current	date	and	time.	The	format	is	shown	below.	All	fields	are	fixed	width,	so	they	are	always	at	the	same
locations	in	the	string.	The	potential	resolution	of	the	clock	is	milliseconds.	(Whether	you	get	resolution	that	high	in	practice	may	vary	from
system	to	system,	depending	on	the	capabilities	of	the	underlying	Java	Virtual	Machine.)

show date-and-time
=> "01:19:36.685 PM 19-Sep-2002"

die

die
	

The	turtle	or	link	dies.

if xcor > 20 [die]
;; all turtles with xcor greater than 20 die
ask links with [color = blue] [die]
;; all the blue links will die

A	dead	agent	ceases	to	exist.	The	effects	of	this	include:

The	agent	will	not	execute	any	further	code.	So	if	you	write	ask turtles [die print "last words?"] ,	no	last	words	will	be	printed,
because	the	turtles	are	already	dead	before	they	have	a	chance	to	print	anything.
The	agent	will	disappear	from	any	agentsets	it	was	in,	reducing	the	size	of	those	agentsets	by	one.
Any	variable	that	was	storing	the	agent	will	now	instead	have	nobody	in	it.	So	for	example	let x one-of turtles ask x [die] print x
prints	nobody.
If	the	dead	agent	was	a	turtle,	every	link	connected	to	it	also	dies.
If	the	observer	was	watching	or	following	the	agent,	the	observer's	perspective	resets,	as	if	reset-perspective	had	been	run.

See	also:	clear-turtles	clear-links

diffuse

diffuse	patch-variable	number

Tells	each	patch	to	give	equal	shares	of	(number	*	100)	percent	of	the	value	of	patch-variable	to	its	eight	neighboring	patches.	number
should	be	between	0	and	1.	Regardless	of	topology	the	sum	of	patch-variable	will	be	conserved	across	the	world.	(If	a	patch	has	fewer	than
eight	neighbors,	each	neighbor	still	gets	an	eighth	share;	the	patch	keeps	any	leftover	shares.)

Note	that	this	is	an	observer	command	only,	even	though	you	might	expect	it	to	be	a	patch	command.	(The	reason	is	that	it	acts	on	all	the
patches	at	once	--	patch	commands	act	on	individual	patches.)

diffuse chemical 0.5
;; each patch diffuses 50% of its variable
;; chemical to its neighboring 8 patches. Thus,
;; each patch gets 1/8 of 50% of the chemical
;; from each neighboring patch.)

diffuse4

diffuse4	patch-variable	number

Like	diffuse,	but	only	diffuses	to	the	four	neighboring	patches	(to	the	north,	south,	east,	and	west),	not	to	the	diagonal	neighbors.

diffuse4 chemical 0.5
;; each patch diffuses 50% of its variable
;; chemical to its neighboring 4 patches. Thus,
;; each patch gets 1/4 of 50% of the chemical
;; from each neighboring patch.)

directed-link-breed

directed-link-breed	[<link-breeds>	<link-breed>]

This	keyword,	like	the	globals	and	breeds	keywords,	can	only	be	used	at	the	beginning	of	the	Code	tab,	before	any	procedure	definitions.	It

Since	1.0

Since	1.0

Since	1.0

defines	a	directed	link	breed.	Links	of	a	particular	breed	are	always	all	directed	or	all	undirected	The	first	input	defines	the	name	of	the
agentset	associated	with	the	link	breed.	The	second	input	defines	the	name	of	a	single	member	of	the	breed.	Directed	links	can	be	created
using	create-link(s)-to,	and	create-link(s)-from,	but	not	create-link(s)-with

Any	link	of	the	given	link	breed:

is	part	of	the	agentset	named	by	the	link	breed	name
has	its	built-in	variable	breed	set	to	that	agentset
is	directed	or	undirected	as	declared	by	the	keyword

Most	often,	the	agentset	is	used	in	conjunction	with	ask	to	give	commands	to	only	the	links	of	a	particular	breed.

directed-link-breed [streets street]
directed-link-breed [highways highway]
to setup
 clear-all
 crt 2
 ;; create a link from turtle 0 to turtle 1
 ask turtle 0 [create-street-to turtle 1]
 ;; create a link from turtle 1 to turtle 0
 ask turtle 0 [create-highway-from turtle 1]
end

ask turtle 0 [show one-of my-in-links]
;; prints (street 0 1)
ask turtle 0 [show one-of my-out-links]
;; prints (highway 1 0)

See	also	breed,	undirected-link-breed

display

display

Causes	the	view	to	be	updated	immediately.	(Exception:	if	the	user	is	using	the	speed	slider	to	fast-forward	the	model,	then	the	update	may
be	skipped.)

Also	undoes	the	effect	of	the	no-display	command,	so	that	if	view	updates	were	suspended	by	that	command,	they	will	resume.

no-display
ask turtles [jump 10 set color blue set size 5]
display
;; turtles move, change color, and grow, with none of
;; their intermediate states visible to the user, only
;; their final state

Even	if	no-display	was	not	used,	"display"	can	still	be	useful,	because	ordinarily	NetLogo	is	free	to	skip	some	view	updates,	so	that	fewer
total	updates	take	place,	so	that	models	run	faster.	This	command	lets	you	force	a	view	update,	so	whatever	changes	have	taken	place	in	the
world	are	visible	to	the	user.

ask turtles [set color red]
display
ask turtles [set color blue]
;; turtles turn red, then blue; use of "display" forces
;; red turtles to appear briefly

Note	that	display	and	no-display	operate	independently	of	the	switch	in	the	view	control	strip	that	freezes	the	view.

See	also	no-display.

distance

distance	agent
	

Reports	the	distance	from	this	agent	to	the	given	turtle	or	patch.

The	distance	to	or	a	from	a	patch	is	measured	from	the	center	of	the	patch.	Turtles	and	patches	use	the	wrapped	distance	(around	the	edges
of	the	world)	if	wrapping	is	allowed	by	the	topology	and	the	wrapped	distance	is	shorter.

ask turtles [show max-one-of turtles [distance myself]]
;; each turtle prints the turtle farthest from itself

distancexy

distancexy	x	y
	

Reports	the	distance	from	this	agent	to	the	point	(x,	y).

The	distance	from	a	patch	is	measured	from	the	center	of	the	patch.	Turtles	and	patches	use	the	wrapped	distance	(around	the	edges	of	the
world)	if	wrapping	is	allowed	by	the	topology	and	the	wrapped	distance	is	shorter.

if (distancexy 0 0) > 10
 [set color green]
;; all turtles more than 10 units from
;; the center of the world turn green.

Since	1.0
Since	1.0

Since	1.0
Since	1.0

Since	1.0

Since	4.0

Since	4.0

downhill
downhill4

downhill	patch-variable
downhill4	patch-variable

Moves	the	turtle	to	the	neighboring	patch	with	the	lowest	value	for	patch-variable.	If	no	neighboring	patch	has	a	smaller	value	than	the
current	patch,	the	turtle	stays	put.	If	there	are	multiple	patches	with	the	same	lowest	value,	the	turtle	picks	one	randomly.	Non-numeric
values	are	ignored.

downhill	considers	the	eight	neighboring	patches;	downhill4	only	considers	the	four	neighbors.

Equivalent	to	the	following	code	(assumes	variable	values	are	numeric):

move-to patch-here ;; go to patch center
let p min-one-of neighbors [patch-variable] ;; or neighbors4
if [patch-variable] of p < patch-variable [
 face p
 move-to p
]

Note	that	the	turtle	always	ends	up	on	a	patch	center	and	has	a	heading	that	is	a	multiple	of	45	(downhill)	or	90	(downhill4).

See	also	uphill,	uphill4.

dx
dy

dx
dy

Reports	the	x-increment	or	y-increment	(the	amount	by	which	the	turtle's	xcor	or	ycor	would	change)	if	the	turtle	were	to	take	one	step
forward	in	its	current	heading.

Note:	dx	is	simply	the	sine	of	the	turtle's	heading,	and	dy	is	simply	the	cosine.	(If	this	is	the	reverse	of	what	you	expected,	it's	because	in
NetLogo	a	heading	of	0	is	north	and	90	is	east,	which	is	the	reverse	of	how	angles	are	usually	defined	in	geometry.)

Note:	In	earlier	versions	of	NetLogo,	these	primitives	were	used	in	many	situations	where	the	new	patch-ahead	primitive	is	now	more
appropriate.

E

empty?

empty?	list
empty?	string

Reports	true	if	the	given	list	or	string	is	empty,	false	otherwise.

Note:	the	empty	list	is	written	[].	The	empty	string	is	written	"".

end

end

Used	to	conclude	a	procedure.	See	to	and	to-report.

end1

end1

This	is	a	built-in	link	variable.	It	indicates	the	first	endpoint	(turtle)	of	a	link.	For	directed	links	this	will	always	be	the	source	for	undirected	links
it	will	always	be	the	turtle	with	the	lower	who	number.	You	cannot	set	end1.

crt 2
ask turtle 0
[create-link-to turtle 1]
ask links
[show end1] ;; shows turtle 0

end2

end2

This	is	a	built-in	link	variable.	It	indicates	the	second	endpoint	(turtle)	of	a	link.	For	directed	links	this	will	always	be	the	destination	for
undirected	links	it	will	always	be	the	turtle	with	the	higher	who	number.	You	cannot	set	end2.

Since	5.0

Since	2.1

Since	1.0

Since	1.0

Since	3.0
Since	2.0
Since	1.0
Since	1.0

Since	1.2.1
Since	1.0

crt 2
ask turtle 1
[create-link-with turtle 0]
ask links
[show end2] ;; shows turtle 1

error

error	value

Causes	a	runtime	error	to	occur.

The	given	value	is	converted	to	a	string	(if	it	isn't	one	already)	and	used	as	the	error	message.

See	also	error-message,	carefully.

error-message

error-message

Reports	a	string	describing	the	error	that	was	suppressed	by	carefully.

This	reporter	can	only	be	used	in	the	second	block	of	a	carefully	command.

See	also	error,	carefully.

every

every	number	[commands]

Runs	the	given	commands	only	if	it's	been	more	than	number	seconds	since	the	last	time	this	agent	ran	them	in	this	context.	Otherwise,	the
commands	are	skipped.

By	itself,	every	doesn't	make	commands	run	over	and	over	again.	You	need	to	use	every	inside	a	loop,	or	inside	a	forever	button,	if	you	want
the	commands	run	over	and	over	again.	every	only	limits	how	often	the	commands	run.

Above,	"in	this	context"	means	during	the	same	ask	(or	button	press	or	command	typed	in	the	Command	Center).	So	it	doesn't	make	sense
to	write	ask turtles [every 0.5 [...]],	because	when	the	ask	finishes	the	turtles	will	all	discard	their	timers	for	the	"every".	The	correct
usage	is	shown	below.

every 0.5 [ask turtles [fd 1]]
;; twice a second the turtles will move forward 1
every 2 [set index index + 1]
;; every 2 seconds index is incremented

See	also	wait.

exp

exp	number

Reports	the	value	of	e	raised	to	the	number	power.

Note:	This	is	the	same	as	e	^	number.

export-view
export-interface
export-output
export-plot
export-all-plots
export-world

export-view	filename
export-interface	filename
export-output	filename
export-plot	plotname	filename
export-all-plots	filename
export-world	filename

export-view	writes	the	current	contents	of	the	current	view	to	an	external	file	given	by	the	string	filename.	The	file	is	saved	in	PNG	(Portable
Network	Graphics)	format,	so	it	is	recommended	to	supply	a	filename	ending	in	".png".

export-interface	is	similar,	but	for	the	whole	interface	tab.

Note	that	export-view	still	works	when	running	NetLogo	in	headless	mode,	but	export-interface	doesn't.

export-output	writes	the	contents	of	the	model's	output	area	to	an	external	file	given	by	the	string	filename.	(If	the	model	does	not	have	a
separate	output	area,	the	output	portion	of	the	Command	Center	is	used.)

export-plot	writes	the	x	and	y	values	of	all	points	plotted	by	all	the	plot	pens	in	the	plot	given	by	the	string	plotname	to	an	external	file	given	by
the	string	filename.	If	a	pen	is	in	bar	mode	(mode	0)	and	the	y	value	of	the	point	plotted	is	greater	than	0,	the	upper-left	corner	point	of	the	bar

Since	1.0

Since	1.0

Since	3.0

will	be	exported.	If	the	y	value	is	less	than	0,	then	the	lower-left	corner	point	of	the	bar	will	be	exported.

export-all-plots	writes	every	plot	in	the	current	model	to	an	external	file	given	by	the	string	filename.	Each	plot	is	identical	in	format	to	the
output	of	export-plot.

export-world	writes	the	values	of	all	variables,	both	built-in	and	user-defined,	including	all	observer,	turtle,	and	patch	variables,	the	drawing,
the	contents	of	the	output	area	if	one	exists,	the	contents	of	any	plots	and	the	state	of	the	random	number	generator,	to	an	external	file	given
by	the	string	filename.	(The	result	file	can	be	read	back	into	NetLogo	with	the	import-world	primitive.)	export-world	does	not	save	the	state	of
open	files.

export-plot,	export-all-plots	and	export-world	save	files	in	in	plain-text,	"comma-separated	values"	(.csv)	format.	CSV	files	can	be	read	by
most	popular	spreadsheet	and	database	programs	as	well	as	any	text	editor.

If	you	wish	to	export	to	a	file	in	a	location	other	than	the	model's	location,	you	should	include	the	full	path	to	the	file	you	wish	to	export.	(Use
the	forward-slash	"/"	as	the	folder	separator.)

Note	that	the	functionality	of	these	primitives	is	also	available	directly	from	NetLogo's	File	menu.

export-world "fire.csv"
;; exports the state of the model to the file fire.csv
;; located in the NetLogo folder
export-plot "Temperature" "c:/My Documents/plot.csv"
;; exports the plot named
;; "Temperature" to the file plot.csv located in
;; the C:\My Documents folder
export-all-plots "c:/My Documents/plots.csv"
;; exports all plots to the file plots.csv
;; located in the C:\My Documents folder

If	the	file	already	exists,	it	is	overwritten.	To	avoid	this	you	may	wish	to	use	some	method	of	generating	fresh	names.	Examples:

export-world user-new-file
export-world (word "results " date-and-time ".csv") ;; Colon characters in the time cause errors on Windows
export-world (word "results " random-float 1.0 ".csv")

extensions

extensions	[name	...]

Allows	the	model	to	use	primitives	from	the	extensions	with	the	given	names.	See	the	Extensions	guide	for	more	information.

extract-hsb

extract-hsb	color

Reports	a	list	of	three	values,	the	first	(hue)	in	the	range	of	0	to	360,	the	second	and	third	(brightness	and	saturation)	in	the	range	of	0	to	100.

The	given	color	can	either	be	a	NetLogo	color	in	the	range	0	to	140,	not	including	140	itself,	or	an	RGB	list	of	three	values	in	the	range	0	to
255	representing	the	levels	of	red,	green,	and	blue.

show extract-hsb cyan
=> [180 57.143 76.863]
show extract-hsb red
=> [3.103 80.93 84.314]
show extract-hsb [255 0 0]
=> [0 100 100]

See	also	approximate-hsb,	approximate-rgb,	extract-rgb.

extract-rgb

extract-rgb	color

Reports	a	list	of	three	values	in	the	range	0	to	255	representing	the	levels	of	red,	green,	and	blue,	respectively,	of	the	given	NetLogo	color	in
the	range	0	to	140,	not	including	140	itself.

show extract-rgb red
=> [215 50 41]
show extract-rgb cyan
=> [84 196 196]

See	also	approximate-rgb,	approximate-hsb,	extract-hsb.

F

face

face	agent

Set	the	caller's	heading	towards	agent.

If	wrapping	is	allowed	by	the	topology	and	the	wrapped	distance	(around	the	edges	of	the	world)	is	shorter,	face	will	use	the	wrapped	path.

Since	3.0

Since	2.0

Since	2.0

Since	2.0

Since	2.0

Since	2.0

Since	4.0

If	the	caller	and	the	agent	are	at	the	exact	same	position,	the	caller's	heading	won't	change.

facexy

facexy	x	y

Set	the	caller's	heading	towards	the	point	(x,y).

If	wrapping	is	allowed	by	the	topology	and	the	wrapped	distance	(around	the	edges	of	the	world)	is	shorter	and	wrapping	is	allowed,	facexy
will	use	the	wrapped	path.

If	the	caller	is	on	the	point	(x,y),	the	caller's	heading	won't	change.

file-at-end?

file-at-end?

Reports	true	when	there	are	no	more	characters	left	to	read	in	from	the	current	file	(that	was	opened	previously	with	file-open).	Otherwise,
reports	false.

file-open "my-file.txt"
print file-at-end?
=> false ;; Can still read in more characters
print file-read-line
=> This is the last line in file
print file-at-end?
=> true ;; We reached the end of the file

See	also	file-open,	file-close-all.

file-close

file-close

Closes	a	file	that	has	been	opened	previously	with	file-open.

Note	that	this	and	file-close-all	are	the	only	ways	to	restart	to	the	beginning	of	an	opened	file	or	to	switch	between	file	modes.

If	no	file	is	open,	does	nothing.

See	also	file-close-all,	file-open.

file-close-all

file-close-all

Closes	all	files	(if	any)	that	have	been	opened	previously	with	file-open.

See	also	file-close,	file-open.

file-delete

file-delete	string

Deletes	the	file	specified	as	string

string	must	be	an	existing	file	with	writable	permission	by	the	user.	Also,	the	file	cannot	be	open.	Use	the	command	file-close	to	close	an
opened	file	before	deletion.

Note	that	the	string	can	either	be	a	file	name	or	an	absolute	file	path.	If	it	is	a	file	name,	it	looks	in	whatever	the	current	directory	is.	This	can
be	changed	using	the	command	set-current-directory.	It	is	defaulted	to	the	model's	directory.

file-exists?

file-exists?	string

Reports	true	if	string	is	the	name	of	an	existing	file	on	the	system.	Otherwise	it	reports	false.

Note	that	the	string	can	either	be	a	file	name	or	an	absolute	file	path.	If	it	is	a	file	name,	it	looks	in	whatever	the	current	directory	is.	This	can
be	changed	using	the	command	set-current-directory.	It	defaults	to	to	the	model's	directory.

file-flush

file-flush

Forces	file	updates	to	be	written	to	disk.	When	you	use	file-write	or	other	output	commands,	the	values	may	not	be	immediately	written	to
disk.	This	improves	the	performance	of	the	file	output	commands.	Closing	a	file	ensures	that	all	output	is	written	to	disk.

Sometimes	you	need	to	ensure	that	data	is	written	to	disk	without	closing	the	file.	For	example,	you	could	be	using	a	file	to	communicate	with
another	program	on	your	machine	and	want	the	other	program	to	be	able	to	see	the	output	immediately.

Since	2.0

Since	2.0

Since	2.0

Since	2.0

file-open

file-open	string

This	command	will	interpret	string	as	a	path	name	to	a	file	and	open	the	file.	You	may	then	use	the	reporters	file-read,	file-read-line,	and	file-
read-characters	to	read	in	from	the	file,	or	file-write,	file-print,	file-type,	or	file-show	to	write	out	to	the	file.

Note	that	you	can	only	open	a	file	for	reading	or	writing	but	not	both.	The	next	file	i/o	primitive	you	use	after	this	command	dictates	which
mode	the	file	is	opened	in.	To	switch	modes,	you	need	to	close	the	file	using	file-close.

Also,	the	file	must	already	exist	if	opening	a	file	in	reading	mode.

When	opening	a	file	in	writing	mode,	all	new	data	will	be	appended	to	the	end	of	the	original	file.	If	there	is	no	original	file,	a	new	blank	file	will
be	created	in	its	place.	(You	must	have	write	permission	in	the	file's	directory.)	(If	you	don't	want	to	append,	but	want	to	replace	the	file's
existing	contents,	use	file-delete	to	delete	it	first,	perhaps	inside	a	carefully	if	you're	not	sure	whether	it	already	exists.)

Note	that	the	string	can	either	be	a	file	name	or	an	absolute	file	path.	If	it	is	a	file	name,	it	looks	in	whatever	the	current	directory	is.	This	can
be	changed	using	the	command	set-current-directory.	It	is	defaulted	to	the	model's	directory.

file-open "my-file-in.txt"
print file-read-line
=> First line in file ;; File is in reading mode
file-open "C:\\NetLogo\\my-file-out.txt"
;; assuming Windows machine
file-print "Hello World" ;; File is in writing mode

Opening	a	file	does	not	close	previously	opened	files.	You	can	use	file-open	to	switch	back	and	forth	between	multiple	open	files.

See	also	file-close	See	also	file-close-all.

file-print

file-print	value

Prints	value	to	an	opened	file,	followed	by	a	carriage	return.

This	agent	is	not	printed	before	the	value,	unlike	file-show.

Note	that	this	command	is	the	file	i/o	equivalent	of	print,	and	file-open	needs	to	be	called	before	this	command	can	be	used.

See	also	file-show,	file-type,	and	file-write.

file-read

file-read

This	reporter	will	read	in	the	next	constant	from	the	opened	file	and	interpret	it	as	if	it	had	been	typed	in	the	Command	Center.	It	reports	the
resulting	value.	The	result	may	be	a	number,	list,	string,	boolean,	or	the	special	value	nobody.

Whitespace	separates	the	constants.	Each	call	to	file-read	will	skip	past	both	leading	and	trailing	whitespace.

Note	that	strings	need	to	have	quotes	around	them.	Use	the	command	file-write	to	have	quotes	included.

Also	note	that	the	file-open	command	must	be	called	before	this	reporter	can	be	used,	and	there	must	be	data	remaining	in	the	file.	Use	the
reporter	file-at-end?	to	determine	if	you	are	at	the	end	of	the	file.

file-open "my-file.data"
print file-read + 5
;; Next value is the number 1
=> 6
print length file-read
;; Next value is the list [1 2 3 4]
=> 4

See	also	file-open	and	file-write.

file-read-characters

file-read-characters	number

Reports	the	given	number	of	characters	from	an	opened	file	as	a	string.	If	there	are	fewer	than	that	many	characters	left,	it	will	report	all	of	the
remaining	characters.

Note	that	it	will	return	every	character	including	newlines	and	spaces.

Also	note	that	the	file-open	command	must	be	called	before	this	reporter	can	be	used,	and	there	must	be	data	remaining	in	the	file.	Use	the
reporter	file-at-end?	to	determine	if	you	are	at	the	end	of	the	file.

file-open "my-file.txt"
print file-read-characters 5
;; Current line in file is "Hello World"
=> Hello

See	also	file-open.

Since	2.0

Since	2.0

Since	2.0

Since	2.0

Since	1.3

Since	1.0

file-read-line

file-read-line

Reads	the	next	line	in	the	file	and	reports	it	as	a	string.	It	determines	the	end	of	the	file	by	a	carriage	return,	an	end	of	file	character	or	both	in
a	row.	It	does	not	return	the	line	terminator	characters.

Also	note	that	the	file-open	command	must	be	called	before	this	reporter	can	be	used,	and	there	must	be	data	remaining	in	the	file.	Use	the
reporter	file-at-end?	to	determine	if	you	are	at	the	end	of	the	file.

file-open "my-file.txt"
print file-read-line
=> Hello World

See	also	file-open.

file-show

file-show	value

Prints	value	to	an	opened	file,	preceded	by	this	agent	agent,	and	followed	by	a	carriage	return.	(This	agent	is	included	to	help	you	keep	track
of	what	agents	are	producing	which	lines	of	output.)	Also,	all	strings	have	their	quotes	included	similar	to	file-write.

Note	that	this	command	is	the	file	i/o	equivalent	of	show,	and	file-open	needs	to	be	called	before	this	command	can	be	used.

See	also	file-print,	file-type,	and	file-write.

file-type

file-type	value

Prints	value	to	an	opened	file,	not	followed	by	a	carriage	return	(unlike	file-print	and	file-show).	The	lack	of	a	carriage	return	allows	you	to	print
several	values	on	the	same	line.

This	agent	is	not	printed	before	the	value.	unlike	file-show.

Note	that	this	command	is	the	file	i/o	equivalent	of	type,	and	file-open	needs	to	be	called	before	this	command	can	be	used.

See	also	file-print,	file-show,	and	file-write.

file-write

file-write	value

This	command	will	output	value,	which	can	be	a	number,	string,	list,	boolean,	or	nobody	to	an	opened	file,	not	followed	by	a	carriage	return
(unlike	file-print	and	file-show).

This	agent	is	not	printed	before	the	value,	unlike	file-show.	Its	output	also	includes	quotes	around	strings	and	is	prepended	with	a	space.	It
will	output	the	value	in	such	a	manner	that	file-read	will	be	able	to	interpret	it.

Note	that	this	command	is	the	file	i/o	equivalent	of	write,	and	file-open	needs	to	be	called	before	this	command	can	be	used.

file-open "locations.txt"
ask turtles
 [file-write xcor file-write ycor]

See	also	file-print,	file-show,	and	file-type.

filter

filter	reporter	list

Reports	a	list	containing	only	those	items	of	list	for	which	the	reporter	reports	true	--	in	other	words,	the	items	satisfying	the	given	condition.
reporter	may	be	an	anonymous	reporter	or	the	name	of	a	reporter.

show filter is-number? [1 "2" 3]
=> [1 3]
show filter [i -> i < 3] [1 3 2]
=> [1 2]
show filter [s -> first s != "t"] ["hi" "there" "everyone"]
=> ["hi" "everyone"]

See	also	map,	reduce,	->	(anonymous	procedure).

first

first	list
first	string

On	a	list,	reports	the	first	(0th)	item	in	the	list.

Since	1.0

Since	3.0

Since	3.0

Since	1.3

Since	1.0
Since	1.0

On	a	string,	reports	a	one-character	string	containing	only	the	first	character	of	the	original	string.

floor

floor	number

Reports	the	largest	integer	less	than	or	equal	to	number.

show floor 4.5
=> 4
show floor -4.5
=> -5

See	also	ceiling,	round,	precision.

follow

follow	turtle

Similar	to	ride,	but,	in	the	3D	view,	the	observer's	vantage	point	is	behind	and	above	turtle.

The	observer	may	only	watch	or	follow	a	single	subject.	Calling	follow	will	alter	the	highlight	created	by	prior	calls	to	watch	and	watch-me,
highlighting	the	followed	turtle	instead.

See	also	follow-me,	ride,	reset-perspective,	watch,	subject.

follow-me

follow-me

Asks	the	observer	to	follow	this	turtle.

The	observer	may	only	watch	or	follow	a	single	subject.	Calling	follow-me	will	remove	the	highlight	created	by	prior	calls	to	watch	and	watch-
me,	highlighting	this	turtle	instead.

See	also	follow.

foreach

foreach	list	command
(foreach	list1	...	command)

With	a	single	list,	runs	the	command	for	each	item	of	list.	command	may	be	the	name	of	a	command,	or	an	anonymous	command	created
with	->.

foreach [1.1 2.2 2.6] show
=> 1.1
=> 2.2
=> 2.6
foreach [1.1 2.2 2.6] [x -> show (word x " -> " round x)]
=> 1.1 -> 1
=> 2.2 -> 2
=> 2.6 -> 3

With	multiple	lists,	runs	command	for	each	group	of	items	from	each	list.	So,	they	are	run	once	for	the	first	items,	once	for	the	second	items,
and	so	on.	All	the	lists	must	be	the	same	length.

Some	examples	make	this	clearer:

(foreach [1 2 3] [2 4 6]
 [[a b] -> show word "the sum is: " (a + b)])
=> "the sum is: 3"
=> "the sum is: 6"
=> "the sum is: 9"
(foreach list (turtle 1) (turtle 2) [3 4]
 [[the-turtle num-steps] -> ask the-turtle [fd num-steps]])
;; turtle 1 moves forward 3 patches
;; turtle 2 moves forward 4 patches

See	also	map,	->	(anonymous	procedure).

forward
fd

forward	number

The	turtle	moves	forward	by	number	steps,	one	step	at	a	time.	(If	number	is	negative,	the	turtle	moves	backward.)

fd 10	is	equivalent	to	repeat 10 [jump 1] .	fd 10.5	is	equivalent	to	repeat 10 [jump 1] jump 0.5.

If	the	turtle	cannot	move	forward	number	steps	because	it	is	not	permitted	by	the	current	topology	the	turtle	will	complete	as	many	steps	of	1

Since	1.0

Since	1.0

as	it	can,	then	stop.

See	also	jump,	can-move?.

fput

fput	item	list

Adds	item	to	the	beginning	of	a	list	and	reports	the	new	list.

;; suppose mylist is [5 7 10]
set mylist fput 2 mylist
;; mylist is now [2 5 7 10]

G

globals

globals	[var1	...]

This	keyword,	like	the	breed,	<breeds>-own,	patches-own,	and	turtles-own	keywords,	can	only	be	used	at	the	beginning	of	a	program,	before
any	function	definitions.	It	defines	new	global	variables.	Global	variables	are	"global"	because	they	are	accessible	by	all	agents	and	can	be
used	anywhere	in	a	model.

Most	often,	globals	is	used	to	define	variables	or	constants	that	need	to	be	used	in	many	parts	of	the	program.

H

hatch

hatch	number	[commands]
hatch-<breeds>	number	[commands]

This	turtle	creates	number	new	turtles.	Each	new	turtle	inherits	of	all	its	variables,	including	its	location,	from	its	parent.	(Exceptions:	each
new	turtle	will	have	a	new	who	number,	and	it	may	be	of	a	different	breed	than	its	parent	if	the	hatch-<breeds>	form	is	used.)

The	new	turtles	then	run	commands.	You	can	use	the	commands	to	give	the	new	turtles	different	colors,	headings,	locations,	or	whatever.
(The	new	turtles	are	created	all	at	once,	then	run	one	at	a	time,	in	random	order.)

If	the	hatch-<breeds>	form	is	used,	the	new	turtles	are	created	as	members	of	the	given	breed.	Otherwise,	the	new	turtles	are	the	same
breed	as	their	parent.

hatch 1 [lt 45 fd 1]
;; this turtle creates one new turtle,
;; and the child turns and moves away
hatch-sheep 1 [set color black]
;; this turtle creates a new turtle
;; of the sheep breed

See	also	create-turtles,	sprout.

heading

heading

This	is	a	built-in	turtle	variable.	It	indicates	the	direction	the	turtle	is	facing.	This	is	a	number	greater	than	or	equal	to	0	and	less	than	360.	0	is
north,	90	is	east,	and	so	on.	You	can	set	this	variable	to	make	a	turtle	turn.

See	also	right,	left,	dx,	dy.

Example:

set heading 45 ;; turtle is now facing northeast
set heading heading + 10 ;; same effect as "rt 10"

hidden?

hidden?
	

This	is	a	built-in	turtle	or	link	variable.	It	holds	a	boolean	(true	or	false)	value	indicating	whether	the	turtle	or	link	is	currently	hidden	(i.e.,
invisible).	You	can	set	this	variable	to	make	a	turtle	or	link	disappear	or	reappear.

See	also	hide-turtle,	show-turtle,	hide-link,	show-link

Example:

Since	4.0

Since	1.0
Since	1.0

Since	1.0

Since	1.0

Since	1.0

Since	1.1

Since	4.1

set hidden? not hidden?
;; if turtle was showing, it hides, and if it was hiding,
;; it reappears

hide-link

hide-link

The	link	makes	itself	invisible.

Note:	This	command	is	equivalent	to	setting	the	link	variable	"hidden?"	to	true.

See	also	show-link.

hide-turtle
ht

hide-turtle

The	turtle	makes	itself	invisible.

Note:	This	command	is	equivalent	to	setting	the	turtle	variable	"hidden?"	to	true.

See	also	show-turtle.

histogram

histogram	list

Histograms	the	values	in	the	given	list

Draws	a	histogram	showing	the	frequency	distribution	of	the	values	in	the	list.	The	heights	of	the	bars	in	the	histogram	represent	the
numbers	of	values	in	each	subrange.

Before	the	histogram	is	drawn,	first	any	previous	points	drawn	by	the	current	plot	pen	are	removed.

Any	non-numeric	values	in	the	list	are	ignored.

The	histogram	is	drawn	on	the	current	plot	using	the	current	plot	pen	and	pen	color.	Auto	scaling	does	not	affect	a	histogram's	horizontal
range,	so	set-plot-x-range	should	be	used	to	control	the	range,	and	the	pen	interval	can	then	be	set	(either	directly	with	set-plot-pen-interval,
or	indirectly	via	set-histogram-num-bars)	to	control	how	many	bars	that	range	is	split	up	into.

Be	sure	that	if	you	want	the	histogram	drawn	with	bars	that	the	current	pen	is	in	bar	mode	(mode	1).

For	histogramming	purposes	the	plot's	X	range	is	not	considered	to	include	the	maximum	X	value.	Values	equal	to	the	maximum	X	will	fall
outside	of	the	histogram's	range.

histogram [color] of turtles
;; draws a histogram showing how many turtles there are
;; of each color

home

home

This	turtle	moves	to	the	origin	(0,0).	Equivalent	to	setxy 0 0.

hsb

hsb	hue	saturation	brightness

Reports	a	RGB	list	when	given	three	numbers	describing	an	HSB	color.	Hue,	saturation,	and	brightness	are	integers	in	the	range	0-360,	0-
100,	0-100	respectively.	The	RGB	list	contains	three	integers	in	the	range	of	0-255.

See	also	rgb

hubnet-broadcast

hubnet-broadcast	tag-name	value

This	broadcasts	value	from	NetLogo	to	the	interface	element	with	the	name	tag-name	on	the	clients.

See	the	HubNet	Authoring	Guide	for	details	and	instructions.

hubnet-broadcast-clear-output

Since	4.1

Since	4.1
Since	4.1

Since	5.0

Since	1.2.1

Since	1.2.1

Since	1.1

Since	5.0

Since	5.0

Since	1.1

hubnet-broadcast-clear-output

This	clears	all	messages	printed	to	the	text	area	on	every	client.

See	also:	hubnet-broadcast-message,	hubnet-send-clear-output

hubnet-broadcast-message

hubnet-broadcast-message	value

This	prints	the	value	in	the	text	area	on	each	client.	This	is	the	same	functionality	as	the	"Broadcast	Message"	button	in	the	HubNet	Control
Center.

See	also:	hubnet-send-message

hubnet-clear-override
hubnet-clear-overrides

hubnet-clear-override	client	agent-or-set	variable-name
hubnet-clear-overrides	client

Remove	overrides	from	the	override	list	on	client.	hubnet-clear-override	removes	only	the	override	for	the	specified	variable	for	the	specified
agent	or	agentset.	hubnet-clear-overrides	removes	all	overrides	from	the	specified	client.

See	also:	hubnet-send-override

hubnet-clients-list

hubnet-clients-list

Reports	a	list	containing	the	names	of	all	the	clients	currently	connected	to	the	HubNet	server.

hubnet-enter-message?

hubnet-enter-message?

Reports	true	if	a	new	client	just	entered	the	simulation.	Reports	false	otherwise.	hubnet-message-source	will	contain	the	user	name	of	the
client	that	just	logged	on.

See	the	HubNet	Authoring	Guide	for	details	and	instructions.

hubnet-exit-message?

hubnet-exit-message?

Reports	true	if	a	client	just	exited	the	simulation.	Reports	false	otherwise.	hubnet-message-source	will	contain	the	user	name	of	the	client	that
just	logged	off.

See	the	HubNet	Authoring	Guide	for	details	and	instructions.

hubnet-fetch-message

hubnet-fetch-message

If	there	is	any	new	data	sent	by	the	clients,	this	retrieves	the	next	piece	of	data,	so	that	it	can	be	accessed	by	hubnet-message,	hubnet-
message-source,	and	hubnet-message-tag.	This	will	cause	an	error	if	there	is	no	new	data	from	the	clients.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-kick-client

hubnet-kick-client	client-name

Kicks	the	client	with	the	given	client-name.	This	is	equivalent	to	clicking	the	client	name	in	the	HubNet	Control	Center	and	pressing	the	Kick
button.

hubnet-kick-all-clients

hubnet-kick-all-clients

Kicks	out	all	currently	connected	HubNet	clients.	This	is	equivalent	to	selecting	all	clients	in	the	HubNet	Control	Center	and	pressing	the	Kick
button.

hubnet-message

hubnet-message

Since	1.1

Since	1.1

Since	1.1

Since	1.1

Since	4.1

Since	1.1

Since	4.1

Since	4.1

Reports	the	message	retrieved	by	hubnet-fetch-message.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-message-source

hubnet-message-source

Reports	the	name	of	the	client	that	sent	the	message	retrieved	by	hubnet-fetch-message.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-message-tag

hubnet-message-tag

Reports	the	tag	that	is	associated	with	the	data	that	was	retrieved	by	hubnet-fetch-message.	The	tag	will	be	one	of	the	Display	Names	of	the
interface	elements	in	the	client	interface.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-message-waiting?

hubnet-message-waiting?

This	looks	for	a	new	message	sent	by	the	clients.	It	reports	true	if	there	is	one,	and	false	if	there	is	not.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-reset

hubnet-reset

Starts	up	the	HubNet	system.	HubNet	must	be	started	to	use	any	of	the	other	hubnet	primitives.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-reset-perspective

hubnet-reset-perspective	tag-name

Clears	watch	or	follow	sent	directly	to	the	client.	The	view	perspective	will	revert	to	the	server	perspective.

See	also:	hubnet-send-watch	hubnet-send-follow

hubnet-send

hubnet-send	string	tag-name	value

hubnet-send	list-of-strings	tag-name	value

For	a	string,	this	sends	value	from	NetLogo	to	the	tag	tag-name	on	the	client	that	has	string	for	its	user	name.

For	a	list-of-strings,	this	sends	value	from	NetLogo	to	the	tag	tag-name	on	all	the	clients	that	have	a	user	name	that	is	in	the	list-of-strings.

Sending	a	message	to	a	non-existent	client,	using	hubnet-send,	generates	a	hubnet-exit-message.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-send-clear-output

hubnet-send-clear-output	string

hubnet-send-clear-output	list-of-strings

This	clears	all	messages	printed	to	the	text	area	on	the	given	client	or	clients	(specified	in	the	string	or	list-of-strings.

See	also:	hubnet-send-message,	hubnet-broadcast-clear-output

hubnet-send-follow

hubnet-send-follow	client-name	agent	radius

Tells	the	client	associated	with	client-name	to	follow	agent	showing	a	radius	sized	Moore	neighborhood	around	the	agent.

A	client	may	only	watch	or	follow	a	single	subject.	Calling	hubnet-send-follow	will	alter	the	highlight	created	by	prior	calls	to	hubnet-send-
watch,	highlighting	the	followed	agent	instead.

See	also:	hubnet-send-watch,	hubnet-reset-perspective

Since	4.1

Since	4.1

Since	4.1

Since	1.0

Since	1.0

Since	2.0

hubnet-send-message

hubnet-send-message	string	value

This	prints	value	in	the	text	area	on	the	client	specified	by	string.

See	also:	hubnet-broadcast-message

hubnet-send-override

hubnet-send-override	client-name	agent-or-set	variable-name
[reporter]

Evaluates	reporter	for	the	agent	or	agentset	indicated	then	sends	the	values	to	the	client	to	"override"	the	value	of	variable-name	only	on
client-name.	This	is	used	to	change	the	appearance	of	agents	in	the	client	view,	hence,	only	built-in	variables	that	affect	the	appearance	of
the	agent	may	be	selected.	For	example,	you	can	override	the	color	variable	of	a	turtle:

ask turtles [hubnet-send-override client-name self "color" [red]]

In	this	example	assume	that	there	is	a	turtles-own	variable	client-name	which	is	associated	with	a	logged	in	client,	and	all	the	turtles	are	blue.
This	code	makes	the	turtle	associated	with	each	client	appear	red	in	his	or	her	own	view	but	not	on	anyone	else's	or	on	the	server.

See	also:	hubnet-clear-overrides

hubnet-send-watch

hubnet-send-watch	client-name	agent

Tells	the	client	associated	with	client-name	to	watch	agent.

A	client	may	only	watch	or	follow	a	single	subject.	Calling	hubnet-send-watch	will	undo	perspective	changes	caused	by	prior	calls	to	hubnet-
send-follow.

See	also:	hubnet-send-follow,	hubnet-reset-perspective

I

if

if	condition	[commands]

Reporter	must	report	a	boolean	(true	or	false)	value.

If	condition	reports	true,	runs	commands.

The	reporter	may	report	a	different	value	for	different	agents,	so	some	agents	may	run	commands	and	others	don't.

if xcor > 0[set color blue]
;; turtles in the right half of the world
;; turn blue

See	also	ifelse,	ifelse-value.

ifelse

ifelse	reporter	[commands1]	[commands2]

Reporter	must	report	a	boolean	(true	or	false)	value.

If	reporter	reports	true,	runs	commands1.

If	reporter	reports	false,	runs	commands2.

The	reporter	may	report	a	different	value	for	different	agents,	so	some	agents	may	run	commands1	while	others	run	commands2.

ask patches
 [ifelse pxcor > 0
 [set pcolor blue]
 [set pcolor red]]
;; the left half of the world turns red and
;; the right half turns blue

See	also	if,	ifelse-value.

ifelse-value

ifelse-value	reporter	[reporter1]	[reporter2]

Reporter	must	report	a	boolean	(true	or	false)	value.

Since	3.0

Since	3.0

Since	4.0

Since	1.0

Since	3.0

If	reporter	reports	true,	the	result	is	the	value	of	reporter1.

If	reporter	reports	false,	the	result	is	the	value	of	reporter2.

This	can	be	used	when	a	conditional	is	needed	in	the	context	of	a	reporter,	where	commands	(such	as	ifelse)	are	not	allowed.

ask patches [
 set pcolor ifelse-value (pxcor > 0) [blue] [red]
]
;; the left half of the world turns red and
;; the right half turns blue
show n-values 10 [ifelse-value (? < 5) [0] [1]]
=> [0 0 0 0 0 1 1 1 1 1]
show reduce [[a b] -> ifelse-value (a > b) [a] [b]]
 [1 3 2 5 3 8 3 2 1]
=> 8

See	also	if,	ifelse.

import-drawing

import-drawing	filename

Reads	an	image	file	into	the	drawing,	scaling	it	to	the	size	of	the	world,	while	retaining	the	original	aspect	ratio	of	the	image.	The	image	is
centered	in	the	drawing.	The	old	drawing	is	not	cleared	first.

Agents	cannot	sense	the	drawing,	so	they	cannot	interact	with	or	process	images	imported	by	import-drawing.	If	you	need	agents	to	sense	an
image,	use	import-pcolors	or	import-pcolors-rgb.

The	following	image	file	formats	are	supported:	BMP,	JPG,	GIF,	and	PNG.	If	the	image	format	supports	transparency	(alpha),	that
information	will	be	imported	as	well.

import-pcolors

import-pcolors	filename

Reads	an	image	file,	scales	it	to	the	same	dimensions	as	the	patch	grid	while	maintaining	the	original	aspect	ratio	of	the	image,	and	transfers
the	resulting	pixel	colors	to	the	patches.	The	image	is	centered	in	the	patch	grid.	The	resulting	patch	colors	may	be	distorted,	since	the
NetLogo	color	space	does	not	include	all	possible	colors.	(See	the	Color	section	of	the	Programming	Guide.)	import-pcolors	may	be	slow	for
some	images,	particularly	when	you	have	many	patches	and	a	large	image	with	many	different	colors.

Since	import-pcolors	sets	the	pcolor	of	patches,	agents	can	sense	the	image.	This	is	useful	if	agents	need	to	analyze,	process,	or	otherwise
interact	with	the	image.	If	you	want	to	simply	display	a	static	backdrop,	without	color	distortion,	see	import-drawing.

The	following	image	file	formats	are	supported:	BMP,	JPG,	GIF,	and	PNG.	If	the	image	format	supports	transparency	(alpha),	then	all	fully
transparent	pixels	will	be	ignored.	(Partially	transparent	pixels	will	be	treated	as	opaque.)

import-pcolors-rgb

import-pcolors-rgb	filename

Reads	an	image	file,	scales	it	to	the	same	dimensions	as	the	patch	grid	while	maintaining	the	original	aspect	ratio	of	the	image,	and	transfers
the	resulting	pixel	colors	to	the	patches.	The	image	is	centered	in	the	patch	grid.	Unlike	import-pcolors	the	exact	colors	in	the	original	image
are	retained.	The	pcolor	variable	of	all	the	patches	will	be	an	RGB	list	rather	than	an	(approximated)	NetLogo	color.

The	following	image	file	formats	are	supported:	BMP,	JPG,	GIF,	and	PNG.	If	the	image	format	supports	transparency	(alpha),	then	all	fully
transparent	pixels	will	be	ignored.	(Partially	transparent	pixels	will	be	treated	as	opaque.)

import-world

import-world	filename

Reads	the	values	of	all	variables	for	a	model,	both	built-in	and	user-defined,	including	all	observer,	turtle,	and	patch	variables,	from	an
external	file	named	by	the	given	string.	The	file	should	be	in	the	format	used	by	the	export-world	primitive.

Note	that	the	functionality	of	this	primitive	is	also	directly	available	from	NetLogo's	File	menu.

When	using	import-world,	to	avoid	errors,	perform	these	steps	in	the	following	order:

1.	 Open	the	model	from	which	you	created	the	export	file.
2.	 Press	the	Setup	button,	to	get	the	model	in	a	state	from	which	it	can	be	run.
3.	 Import	the	file.
4.	 Re-open	any	files	that	the	model	had	opened	with	the	file-open	command.
5.	 If	you	want,	press	Go	button	to	continue	running	the	model	from	the	point	where	it	left	off.

If	you	wish	to	import	a	file	from	a	location	other	than	the	model's	location,	you	may	include	the	full	path	to	the	file	you	wish	to	import.	See
export-world	for	an	example.

in-cone

Since	4.0

Since	4.0

Since	4.0

Since	4.0

Since	1.0

agentset	in-cone	distance	angle

This	reporter	lets	you	give	a	turtle	a	"cone	of	vision"	in	front	of	itself.	The	cone	is	defined	by	the	two	inputs,	the	vision	distance	(radius)	and
the	viewing	angle.	The	viewing	angle	may	range	from	0	to	360	and	is	centered	around	the	turtle's	current	heading.	(If	the	angle	is	360,	then
in-cone	is	equivalent	to	in-radius.)

in-cone	reports	an	agentset	that	includes	only	those	agents	from	the	original	agentset	that	fall	in	the	cone.	(This	can	include	the	agent	itself.)

The	distance	to	a	patch	is	measured	from	the	center	of	the	patch.

ask turtles
 [ask patches in-cone 3 60
 [set pcolor red]]
;; each turtle makes a red "splotch" of patches in a 60 degree
;; cone of radius 3 ahead of itself

in-<breed>-neighbor?
in-link-neighbor?

in-<breed>-neighbor?	agent
in-link-neighbor?	turtle

Reports	true	if	there	is	a	directed	link	going	from	turtle	to	the	caller	or	an	undirected	link	connecting	turtle	to	the	caller.	You	can	think	of	this	as
"is	there	a	link	I	can	use	to	get	from	turtle	to	the	caller?"

crt 2
ask turtle 0 [
 create-link-to turtle 1
 show in-link-neighbor? turtle 1 ;; prints false
 show out-link-neighbor? turtle 1 ;; prints true
]
ask turtle 1 [
 show in-link-neighbor? turtle 0 ;; prints true
 show out-link-neighbor? turtle 0 ;; prints false
]

in-<breed>-neighbors
in-link-neighbors

in-<breed>-neighbors
in-link-neighbors

Reports	the	agentset	of	all	the	turtles	that	have	directed	links	coming	from	them	to	the	caller	as	well	as	all	turtles	that	have	an	undirected	link
connecting	them	with	the	caller.	You	can	think	of	this	as	"all	the	turtles	that	can	get	to	the	caller	using	a	link."

crt 4
ask turtle 0 [create-links-to other turtles]
ask turtle 1 [ask in-link-neighbors [set color blue]] ;; turtle 0 turns blue

in-<breed>-from
in-link-from

in-<breed>-from	turtle
in-link-from	turtle

Reports	a	directed	link	from	turtle	to	the	caller	or	an	undirected	link	connecting	the	two.	If	no	link	exists	then	it	reports	nobody.	If	more	than
one	such	link	exists,	reports	a	random	one.	You	can	think	of	this	as	"give	me	a	link	that	I	can	use	to	travel	from	turtle	to	the	caller."

crt 2
ask turtle 0 [create-link-to turtle 1]
ask turtle 1 [show in-link-from turtle 0] ;; shows link 0 1
ask turtle 0 [show in-link-from turtle 1] ;; shows nobody

See	also:	out-link-to	link-with

__includes

__includes	[filename	...]

Causes	external	NetLogo	source	files	(with	the	.nls	suffix)	to	be	included	in	this	model.	Included	files	may	contain	breed,	variable,	and
procedure	definitions.	__includes	can	only	be	used	once	per	file.

in-radius

agentset	in-radius	number
	

Since	6.0.2

Since	1.1

Since	1.0

Since	1.2.1
Since	1.2.1

Since	6.0
Since	6.0

Since	1.2.1
Since	4.0
Since	4.0
Since	4.0
Since	1.0

Since	1.2.1
Since	1.2.1

Since	4.0
Since	1.0

Since	1.2.1
Since	4.0
Since	4.0

Reports	an	agentset	that	includes	only	those	agents	from	the	original	agentset	whose	distance	from	the	caller	is	less	than	or	equal	to
number.	(This	can	include	the	agent	itself.)

The	distance	to	or	a	from	a	patch	is	measured	from	the	center	of	the	patch.

ask turtles
 [ask patches in-radius 3
 [set pcolor red]]
;; each turtle makes a red "splotch" around itself

insert-item

insert-item	index	list	value
insert-item	index	string1	string2

On	a	list,	inserts	an	item	in	that	list.	index	is	the	index	where	the	item	will	be	inserted.	The	first	item	has	an	index	of	0.	(The	6th	item	in	a	list
would	have	an	index	of	5.)

Likewise	for	a	string,	but	all	characters	in	a	multiple-character	string2	are	inserted	at	index.

show insert-item 2 [2 7 4 5] 15
=> [2 7 15 4 5]
show insert-item 2 "cat" "re"
=> "caret"

inspect

inspect	agent

Opens	an	agent	monitor	for	the	given	agent	(turtle	or	patch).

inspect patch 2 4
;; an agent monitor opens for that patch
inspect one-of sheep
;; an agent monitor opens for a random turtle from
;; the "sheep" breed

See	stop-inspecting	and	stop-inspecting-dead-agents

int

int	number

Reports	the	integer	part	of	number	--	any	fractional	part	is	discarded.

show int 4.7
=> 4
show int -3.5
=> -3

is-agent?
is-agentset?
is-anonymous-command?
is-anonymous-reporter?
is-boolean?
is-directed-link?
is-link?
is-link-set?
is-list?
is-number?
is-patch?
is-patch-set?
is-string?
is-turtle?
is-turtle-set?
is-undirected-link?

is-agent?	value
is-agentset?	value
is-anonymous-command?	value
is-anonymous-reporter?	value
is-boolean?	value
is-<breed>?	value
is-<link-breed>?	value
is-directed-link?	value
is-link?	value
is-link-set?	value
is-list?	value

Since	1.0

Since	1.0

Since	1.0

is-number?	value
is-patch?	value
is-patch-set?	value
is-string?	value
is-turtle?	value
is-turtle-set?	value
is-undirected-link?	value

Reports	true	if	value	is	of	the	given	type,	false	otherwise.

item

item	index	list
item	index	string

On	lists,	reports	the	value	of	the	item	in	the	given	list	with	the	given	index.

On	strings,	reports	the	character	in	the	given	string	at	the	given	index.

Note	that	the	indices	begin	from	0,	not	1.	(The	first	item	is	item	0,	the	second	item	is	item	1,	and	so	on.)

;; suppose mylist is [2 4 6 8 10]
show item 2 mylist
=> 6
show item 3 "my-shoe"
=> "s"

J

jump

jump	number

The	turtle	moves	forward	by	number	units	all	at	once	(rather	than	one	step	at	a	time	as	with	the	forward	command).

If	the	turtle	cannot	jump	number	units	because	it	is	not	permitted	by	the	current	topology	the	turtle	does	not	move	at	all.

See	also	forward,	can-move?.

L

label

label
	

This	is	a	built-in	turtle	or	link	variable.	It	may	hold	a	value	of	any	type.	The	turtle	or	link	appears	in	the	view	with	the	given	value	"attached"	to
it	as	text.	You	can	set	this	variable	to	add,	change,	or	remove	a	turtle	or	link's	label.

See	also	label-color,	plabel,	plabel-color.

Example:

ask turtles [set label who]
;; all the turtles now are labeled with their
;; who numbers
ask turtles [set label ""]
;; all turtles now are not labeled

label-color

label-color
	

This	is	a	built-in	turtle	or	link	variable.	It	holds	a	number	greater	than	or	equal	to	0	and	less	than	140.	This	number	determines	what	color	the
turtle	or	link's	label	appears	in	(if	it	has	a	label).	You	can	set	this	variable	to	change	the	color	of	a	turtle	or	link's	label.

See	also	label,	plabel,	plabel-color.

Example:

ask turtles [set label-color red]
;; all the turtles now have red labels

last

last	list
last	string

Since	4.0

Since	4.0

Since	4.0

Since	4.0

On	a	list,	reports	the	last	item	in	the	list.

On	a	string,	reports	a	one-character	string	containing	only	the	last	character	of	the	original	string.

layout-circle

layout-circle	agentset	radius
layout-circle	list-of-turtles	radius

Arranges	the	given	turtles	in	a	circle	centered	on	the	patch	at	the	center	of	the	world	with	the	given	radius.	(If	the	world	has	an	even	size	the
center	of	the	circle	is	rounded	down	to	the	nearest	patch.)	The	turtles	point	outwards.

If	the	first	input	is	an	agentset,	the	turtles	are	arranged	in	random	order.

If	the	first	input	is	a	list,	the	turtles	are	arranged	clockwise	in	the	given	order,	starting	at	the	top	of	the	circle.	(Any	non-turtles	in	the	list	are
ignored.)

;; in random order
layout-circle turtles 10
;; in order by who number
layout-circle sort turtles 10
;; in order by size
layout-circle sort-by [[a b] -> [size] of a < [size] of b] turtles 10

layout-radial

layout-radial	turtle-set	link-set	root-agent

Arranges	the	turtles	in	turtle-set	connected	by	links	in	link-set,	in	a	radial	tree	layout,	centered	around	the	root-agent	which	is	moved	to	the
center	of	the	world	view.

Only	links	in	the	link-set	will	be	used	to	determine	the	layout.	If	links	connect	turtles	that	are	not	in	turtle-set	those	turtles	will	remain
stationary.

Even	if	the	network	does	contain	cycles,	and	is	not	a	true	tree	structure,	this	layout	will	still	work,	although	the	results	will	not	always	be
pretty.

to make-a-tree
 set-default-shape turtles "circle"
 crt 6
 ask turtle 0 [
 create-link-with turtle 1
 create-link-with turtle 2
 create-link-with turtle 3
]
 ask turtle 1 [
 create-link-with turtle 4
 create-link-with turtle 5
]
 ; do a radial tree layout, centered on turtle 0
 layout-radial turtles links (turtle 0)
end

layout-spring

layout-spring	turtle-set	link-set	spring-constant	spring-length	repulsion-constant

Arranges	the	turtles	in	turtle-set,	as	if	the	links	in	link-set	are	springs	and	the	turtles	are	repelling	each	other.	Turtles	that	are	connected	by
links	in	link-set	but	not	included	in	turtle-set	are	treated	as	anchors	and	are	not	moved.

spring-constant	is	a	measure	of	the	"tautness"	of	the	spring.	It	is	the	"resistance"	to	change	in	their	length.	spring-constant	is	the	force	the
spring	would	exert	if	it's	length	were	changed	by	1	unit.

spring-length	is	the	"zero-force"	length	or	the	natural	length	of	the	springs.	This	is	the	length	which	all	springs	try	to	achieve	either	by	pushing
out	their	nodes	or	pulling	them	in.

repulsion-constant	is	a	measure	of	repulsion	between	the	nodes.	It	is	the	force	that	2	nodes	at	a	distance	of	1	unit	will	exert	on	each	other.

The	repulsion	effect	tries	to	get	the	nodes	as	far	as	possible	from	each	other,	in	order	to	avoid	crowding	and	the	spring	effect	tries	to	keep
them	at	"about"	a	certain	distance	from	the	nodes	they	are	connected	to.	The	result	is	the	laying	out	of	the	whole	network	in	a	way	which
highlights	relationships	among	the	nodes	and	at	the	same	time	is	crowded	less	and	is	visually	pleasing.

The	layout	algorithm	is	based	on	the	Fruchterman-Reingold	layout	algorithm.	More	information	about	this	algorithm	can	be	obtained	here.

to make-a-triangle
 set-default-shape turtles "circle"
 crt 3
 ask turtle 0
 [
 create-links-with other turtles
]
 ask turtle 1
 [
 create-link-with turtle 2
]
 repeat 30 [layout-spring turtles links 0.2 5 1] ;; lays the nodes in a triangle
end

layout-tutte

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8444

Since	1.0
Since	1.0

Since	1.0

Since	2.1

Since	4.0

Since	4.0

layout-tutte	turtle-set	link-set	radius

The	turtles	that	are	connected	by	links	in	link-set	but	not	included	in	turtle-set	are	placed	in	a	circle	layout	with	the	given	radius.	There	should
be	at	least	3	agents	in	this	agentset.

The	turtles	in	turtle-set	are	then	laid	out	in	the	following	manner:	Each	turtle	is	placed	at	centroid	(or	barycenter)	of	the	polygon	formed	by	its
linked	neighbors.	(The	centroid	is	like	a	2-dimensional	average	of	the	coordinates	of	the	neighbors.)

(The	purpose	of	the	circle	of	"anchor	agents"	is	to	prevent	all	the	turtles	from	collapsing	down	to	one	point.)

After	a	few	iterations	of	this,	the	layout	will	stabilize.

This	layout	is	named	after	the	mathematician	William	Thomas	Tutte,	who	proposed	it	as	a	method	for	graph	layout.

to make-a-tree
 set-default-shape turtles "circle"
 crt 6
 ask turtle 0 [
 create-link-with turtle 1
 create-link-with turtle 2
 create-link-with turtle 3
]
 ask turtle 1 [
 create-link-with turtle 4
 create-link-with turtle 5
]
 ; place all the turtles with just one
 ; neighbor on the perimeter of a circle
 ; and then place the remaining turtles inside
 ; this circle, spread between their neighbors.
 repeat 10 [layout-tutte (turtles with [link-neighbors = 1]) links 12]
end

left
lt

left	number

The	turtle	turns	left	by	number	degrees.	(If	number	is	negative,	it	turns	right.)

length

length	list
length	string

Reports	the	number	of	items	in	the	given	list,	or	the	number	of	characters	in	the	given	string.

let

let	variable	value

Creates	a	new	local	variable	and	gives	it	the	given	value.	A	local	variable	is	one	that	exists	only	within	the	enclosing	block	of	commands.

If	you	want	to	change	the	value	afterwards,	use	set.

Example:

let prey one-of sheep-here
if prey != nobody
 [ask prey [die]]

link

link	end1	end2
<breed>	end1	end2

Given	the	who	numbers	of	the	endpoints,	reports	the	link	connecting	the	turtles.	If	there	is	no	such	link	reports	nobody.	To	refer	to	breeded
links	you	must	use	the	singular	breed	form	with	the	endpoints.

ask link 0 1 [set color green]
;; unbreeded link connecting turtle 0 and turtle 1 will turn green
ask directed-link 0 1 [set color red]
;; directed link connecting turtle 0 and turtle 1 will turn red

See	also	patch-at.

link-heading

link-heading

Reports	the	heading	in	degrees	(at	least	0,	less	than	360)	from	end1	to	end2	of	the	link.	Throws	a	runtime	error	if	the	endpoints	are	at	the
same	location.

Since	4.0

Since	4.0

Since	4.0

Since	4.0

Since	1.0

ask link 0 1 [print link-heading]
;; prints [[towards other-end] of end1] of link 0 1

See	also	link-length

link-length

link-length

Reports	the	distance	between	the	endpoints	of	the	link.

ask link 0 1 [print link-length]
;; prints [[distance other-end] of end1] of link 0 1

See	also	link-heading

link-set

link-set	value
(link-set	value1	value2	...)

Reports	an	agentset	containing	all	of	the	links	anywhere	in	any	of	the	inputs.	The	inputs	may	be	individual	links,	link	agentsets,	nobody,	or
lists	(or	nested	lists)	containing	any	of	the	above.

link-set self
link-set [my-links] of nodes with [color = red]

See	also	turtle-set,	patch-set.

link-shapes

link-shapes

Reports	a	list	of	strings	containing	all	of	the	link	shapes	in	the	model.

New	shapes	can	be	created,	or	imported	from	other	models,	in	the	Link	Shapes	Editor.

show link-shapes
=> ["default"]

links

links

Reports	the	agentset	consisting	of	all	links.

show count links
;; prints the number of links

links-own

links-own	[var1	...]
<link-breeds>-own	[var1	...]

The	links-own	keyword,	like	the	globals,	breed,	<breeds>-own,	turtles-own,	and	patches-own	keywords,	can	only	be	used	at	the	beginning	of
a	program,	before	any	function	definitions.	It	defines	the	variables	belonging	to	each	link.

If	you	specify	a	breed	instead	of	"links",	only	links	of	that	breed	have	the	listed	variables.	(More	than	one	link	breed	may	list	the	same
variable.)

undirected-link-breed [sidewalks sidewalk]
directed-link-breed [streets street]
links-own [traffic] ;; applies to all breeds
sidewalks-own [pedestrians]
streets-own [cars bikes]

list

list	value1	value2
(list	value1	...)

Reports	a	list	containing	the	given	items.	The	items	can	be	of	any	type,	produced	by	any	kind	of	reporter.

show list (random 10) (random 10)
=> [4 9] ;; or similar list
show (list 5)

Since	1.0

Since	1.0

Since	1.0

Since	1.0

Since	1.3

Since	1.0

=> [5]
show (list (random 10) 1 2 3 (random 10))
=> [4 1 2 3 9] ;; or similar list

ln

ln	number

Reports	the	natural	logarithm	of	number,	that	is,	the	logarithm	to	the	base	e	(2.71828...).

See	also	e,	log.

log

log	number	base

Reports	the	logarithm	of	number	in	base	base.

show log 64 2
=> 6

See	also	ln.

loop

loop	[commands]

Repeats	the	commands	forever,	or	until	the	enclosing	procedure	exits	through	use	of	the	stop	or	report	commands.

to move-to-world-edge ;; turtle procedure
 loop [
 if not can-move? 1 [stop]
 fd 1
]
end

In	this	example,	stop	exits	not	just	the	loop,	but	the	entire	procedure.

Note:	in	many	circumstances,	it	is	more	appropriate	to	use	a	forever	button	to	repeat	something	indefinitely.	See	Buttons	in	the	Programming
Guide.

lput

lput	value	list

Adds	value	to	the	end	of	a	list	and	reports	the	new	list.

;; suppose mylist is [2 7 10 "Bob"]
set mylist lput 42 mylist
;; mylist now is [2 7 10 "Bob" 42]

M

map

map	reporter	list
(map	reporter	list1	...)

With	a	single	list,	the	given	reporter	is	run	for	each	item	in	the	list,	and	a	list	of	the	results	is	collected	and	reported.	reporter	may	be	an
anonymous	reporter	or	the	name	of	a	reporter.

show map round [1.1 2.2 2.7]
=> [1 2 3]
show map [i -> i * i] [1 2 3]
=> [1 4 9]

With	multiple	lists,	the	given	reporter	is	run	for	each	group	of	items	from	each	list.	So,	it	is	run	once	for	the	first	items,	once	for	the	second
items,	and	so	on.	All	the	lists	must	be	the	same	length.

Some	examples	make	this	clearer:

show (map + [1 2 3] [2 4 6])
=> [3 6 9]
show (map [[a b c] -> a + b = c] [1 2 3] [2 4 6] [3 5 9])
=> [true false true]

See	also	foreach,	->	(anonymous	procedure).

max

Since	4.0

Since	1.0

Since	3.1
Since	3.1

Since	1.0

Since	1.0

max	list

Reports	the	maximum	number	value	in	the	list.	It	ignores	other	types	of	items.

show max [xcor] of turtles
;; prints the x coordinate of the turtle which is
;; farthest right in the world
show max list a b
;; prints the larger of the two variables a and b
show max (list a b c)
;; prints the largest of the three variables a, b, and c

max-n-of

max-n-of	number	agentset	[reporter]

Reports	an	agentset	containing	number	agents	from	agentset	with	the	highest	values	of	reporter.	The	agentset	is	built	by	finding	all	the
agents	with	the	highest	value	of	reporter,	if	there	are	not	number	agents	with	that	value	then	agents	with	the	second	highest	value	are	found,
and	so	on.	At	the	end,	if	there	is	a	tie	that	would	make	the	resulting	agentset	too	large,	the	tie	is	broken	randomly.

;; assume the world is 11 x 11
show max-n-of 5 patches [pxcor]
;; shows 5 patches with pxcor = max-pxcor
show max-n-of 5 patches with [pycor = 0] [pxcor]
;; shows an agentset containing:
;; (patch 1 0) (patch 2 0) (patch 3 0) (patch 4 0) (patch 5 0)

See	also	max-one-of,	with-max.

max-one-of

max-one-of	agentset	[reporter]

Reports	the	agent	in	the	agentset	that	has	the	highest	value	for	the	given	reporter.	If	there	is	a	tie	this	command	reports	one	random	agent
with	the	highest	value.	If	you	want	all	such	agents,	use	with-max	instead.

show max-one-of patches [count turtles-here]

;; prints the first patch with the most turtles on it

See	also	max-n-of,	with-max.

max-pxcor
max-pycor

max-pxcor
max-pycor

These	reporters	give	the	maximum	x-coordinate	and	maximum	y-coordinate,	(respectively)	for	patches,	which	determines	the	size	of	the
world.

Unlike	in	older	versions	of	NetLogo	the	origin	does	not	have	to	be	at	the	center	of	the	world.	However,	the	maximum	x-	and	y-	coordinates
must	be	greater	than	or	equal	to	zero.

Note:	You	can	set	the	size	of	the	world	only	by	editing	the	view	--	these	are	reporters	which	cannot	be	set.

crt 100 [setxy random-float max-pxcor
 random-float max-pycor]
;; distributes 100 turtles randomly in the
;; first quadrant

See	also	min-pxcor,	min-pycor,	world-width,	and	world-height

mean

mean	list

Reports	the	statistical	mean	of	the	numeric	items	in	the	given	list.	Errors	on	non-numeric	items.	The	mean	is	the	average,	i.e.,	the	sum	of	the
items	divided	by	the	total	number	of	items.

show mean [xcor] of turtles
;; prints the average of all the turtles' x coordinates

median

median	list

Reports	the	statistical	median	of	the	numeric	items	of	the	given	list.	Ignores	non-numeric	items.	The	median	is	the	item	that	would	be	in	the
middle	if	all	the	items	were	arranged	in	order.	(If	two	items	would	be	in	the	middle,	the	median	is	the	average	of	the	two.)

Since	1.0

Since	1.0

Since	4.0

Since	1.0

Since	3.1
Since	3.1

show median [xcor] of turtles
;; prints the median of all the turtles' x coordinates

member?

member?	value	list
member?	string1	string2
member?	agent	agentset

For	a	list,	reports	true	if	the	given	value	appears	in	the	given	list,	otherwise	reports	false.

For	a	string,	reports	true	or	false	depending	on	whether	string1	appears	anywhere	inside	string2	as	a	substring.

For	an	agentset,	reports	true	if	the	given	agent	is	appears	in	the	given	agentset,	otherwise	reports	false.

show member? 2 [1 2 3]
=> true
show member? 4 [1 2 3]
=> false
show member? "bat" "abate"
=> true
show member? turtle 0 turtles
=> true
show member? turtle 0 patches
=> false

See	also	position.

min

min	list

Reports	the	minimum	number	value	in	the	list.	It	ignores	other	types	of	items.

show min [xcor] of turtles
;; prints the lowest x-coordinate of all the turtles
show min list a b
;; prints the smaller of the two variables a and b
show min (list a b c)
;; prints the smallest of the three variables a, b, and c

min-n-of

min-n-of	number	agentset	[reporter]

Reports	an	agentset	containing	number	agents	from	agentset	with	the	lowest	values	of	reporter.	The	agentset	is	built	by	finding	all	the	agents
with	the	lowest	value	of	reporter,	if	there	are	not	number	agents	with	that	value	then	the	agents	with	the	second	lowest	value	are	found,	and
so	on.	At	the	end,	if	there	is	a	tie	that	would	make	the	resulting	agentset	too	large,	the	tie	is	broken	randomly.

;; assume the world is 11 x 11
show min-n-of 5 patches [pxcor]
;; shows 5 patches with pxcor = min-pxcor
show min-n-of 5 patches with [pycor = 0] [pxcor]
;; shows an agentset containing:
;; (patch -5 0) (patch -4 0) (patch -3 0) (patch -2 0) (patch -1 0)

See	also	min-one-of,	with-min.

min-one-of

min-one-of	agentset	[reporter]

Reports	a	random	agent	in	the	agentset	that	reports	the	lowest	value	for	the	given	reporter.	If	there	is	a	tie,	this	command	reports	one
random	agent	that	meets	the	condition.	If	you	want	all	such	agents	use	with-min	instead.

show min-one-of turtles [xcor + ycor]
;; reports the first turtle with the smallest sum of
;; coordinates

See	also	with-min,	min-n-of.

min-pxcor
min-pycor

min-pxcor
min-pycor

These	reporters	give	the	minimum	x-coordinate	and	minimum	y-coordinate,	(respectively)	for	patches,	which	determines	the	size	of	the	world.

Unlike	in	older	versions	of	NetLogo	the	origin	does	not	have	to	be	at	the	center	of	the	world.	However,	the	minimum	x-	and	y-	coordinates
must	be	less	than	or	equal	to	zero.

Note:	You	can	set	the	size	of	the	world	only	by	editing	the	view	--	these	are	reporters	which	cannot	be	set.

Since	1.0

Since	2.0

Since	1.0

Since	3.0

Since	1.0
Since	1.0

Since	4.0

crt 100 [setxy random-float min-pxcor
 random-float min-pycor]
;; distributes 100 turtles randomly in the
;; third quadrant

See	also	max-pxcor,	max-pycor,	world-width,	and	world-height

mod

number1	mod	number2

Reports	number1	modulo	number2:	that	is,	the	residue	of	number1	(mod	number2).	mod	is	is	equivalent	to	the	following	NetLogo	code:

number1 - (floor (number1 / number2)) * number2

Note	that	mod	is	"infix",	that	is,	it	comes	between	its	two	inputs.

show 62 mod 5
=> 2
show -8 mod 3
=> 1

See	also	remainder.	mod	and	remainder	behave	the	same	for	positive	numbers,	but	differently	for	negative	numbers.

modes

modes	list

Reports	a	list	of	the	most	common	item	or	items	in	list.

The	input	list	may	contain	any	NetLogo	values.

If	the	input	is	an	empty	list,	reports	an	empty	list.

show modes [1 2 2 3 4]
=> [2]
show modes [1 2 2 3 3 4]
=> [2 3]
show modes [[1 2 [3]] [1 2 [3]] [2 3 4]]
=> [[1 2 [3]]]
show modes [pxcor] of turtles
;; shows which columns of patches have the most
;; turtles on them

mouse-down?

mouse-down?

Reports	true	if	the	mouse	button	is	down,	false	otherwise.

Note:	If	the	mouse	pointer	is	outside	of	the	current	view	,	mouse-down?	will	always	report	false.

mouse-inside?

mouse-inside?

Reports	true	if	the	mouse	pointer	is	inside	the	current	view,	false	otherwise.

mouse-xcor
mouse-ycor

mouse-xcor
mouse-ycor

Reports	the	x	or	y	coordinate	of	the	mouse	in	the	2D	view.	The	value	is	in	terms	of	turtle	coordinates,	so	it	might	not	be	an	integer.	If	you	want
patch	coordinates,	use	round mouse-xcor	and	round mouse-ycor.

Note:	If	the	mouse	is	outside	of	the	2D	view,	reports	the	value	from	the	last	time	it	was	inside.

;; to make the mouse "draw" in red:
if mouse-down?
 [ask patch mouse-xcor mouse-ycor [set pcolor red]]

move-to

move-to	agent

The	turtle	sets	its	x	and	y	coordinates	to	be	the	same	as	the	given	agent's.

Since	4.0

Since	4.0

Since	4.0

Since	1.0

(If	that	agent	is	a	patch,	the	effect	is	to	move	the	turtle	to	the	center	of	that	patch.)

move-to turtle 5
;; turtle moves to same point as turtle 5
move-to one-of patches
;; turtle moves to the center of a random patch
move-to max-one-of turtles [size]
;; turtle moves to same point as biggest turtle

Note	that	the	turtle's	heading	is	unaltered.	You	may	want	to	use	the	face	command	first	to	orient	the	turtle	in	the	direction	of	motion.

See	also	setxy.

my-<breeds>
my-links

my-<breeds>
my-links

Reports	an	agentset	of	all	links	connected	to	the	caller	of	the	corresponding	breed,	regardless	of	directedness.	Generally,	you	might	consider
using	my-out-links	instead	of	this	primitive,	as	it	works	well	for	either	directed	or	undirected	networks	(since	it	excludes	directed,	incoming
links).

crt 5
ask turtle 0
[
 create-links-with other turtles
 show my-links ;; prints the agentset containing all links
 ;; (since all the links we created were with turtle 0)
]
ask turtle 1
[
 show my-links ;; shows an agentset containing the link 0 1
]
end

If	you	only	want	the	undirected	links	connected	to	a	node,	you	can	do	my-links with [not is-directed-link? self].

my-in-<breeds>
my-in-links

my-in-<breeds>
my-in-links

Reports	an	agentset	of	all	the	directed	links	coming	in	from	other	nodes	to	the	caller	as	well	as	all	undirected	links	connected	to	the	caller.
You	can	think	of	this	as	"all	links	that	you	can	use	to	travel	to	this	node".

crt 5
ask turtle 0
[
 create-links-to other turtles
 show my-in-links ;; shows an empty agentset
]
ask turtle 1
[
 show my-in-links ;; shows an agentset containing the link 0 1
]

my-out-<breeds>
my-out-links

my-out-<breeds>
my-out-links

Reports	an	agentset	of	all	the	directed	links	going	out	from	the	caller	to	other	nodes	as	well	as	undirected	links	connected	to	the	caller.	You
can	think	of	this	as	"all	links	you	can	use	to	travel	from	this	node".

crt 5
ask turtle 0
[
 create-links-to other turtles
 show my-out-links ;; shows agentset containing all the links
]
ask turtle 1
[
 show my-out-links ;; shows an empty agentset
]

myself

myself
	 	

"self"	and	"myself"	are	very	different.	"self"	is	simple;	it	means	"me".	"myself"	means	"the	turtle,	patch	or	link	who	asked	me	to	do	what	I'm

Since	3.1

Since	2.0

Since	1.1
Since	1.1

Since	4.0

doing	right	now."

When	an	agent	has	been	asked	to	run	some	code,	using	myself	in	that	code	reports	the	agent	(turtle,	patch	or	link)	that	did	the	asking.

myself	is	most	often	used	in	conjunction	with	of	to	read	or	set	variables	in	the	asking	agent.

myself	can	be	used	within	blocks	of	code	not	just	in	the	ask	command,	but	also	hatch,	sprout,	of,	with,	all?,	with-min,	with-max,	min-one-of,
max-one-of,	min-n-of,	max-n-of.

ask turtles
 [ask patches in-radius 3
 [set pcolor [color] of myself]]
;; each turtle makes a colored "splotch" around itself

See	the	"Myself	Example"	code	example	for	more	examples.

See	also	self.

N

n-of

n-of	size	agentset
n-of	size	list

From	an	agentset,	reports	an	agentset	of	size	size	randomly	chosen	from	the	input	set,	with	no	repeats.

From	a	list,	reports	a	list	of	size	size	randomly	chosen	from	the	input	set,	with	no	repeats.	The	items	in	the	result	appear	in	the	same	order
that	they	appeared	in	the	input	list.	(If	you	want	them	in	random	order,	use	shuffle	on	the	result.)

It	is	an	error	for	size	to	be	greater	than	the	size	of	the	input.

ask n-of 50 patches [set pcolor green]
;; 50 randomly chosen patches turn green

See	also	one-of.

n-values

n-values	size	reporter

Reports	a	list	of	length	size	containing	values	computed	by	repeatedly	running	the	reporter.	reporter	may	be	an	anonymous	reporter	or	the
name	of	a	reporter.

If	the	reporter	accepts	inputs,	the	input	will	be	the	number	of	the	item	currently	being	computed,	starting	from	zero.

show n-values 5 [1]
=> [1 1 1 1 1]
show n-values 5 [i -> i]
=> [0 1 2 3 4]
show n-values 3 turtle
=> [(turtle 0) (turtle 1) (turtle 2)]
show n-values 5 [x -> x * x]
=> [0 1 4 9 16]

See	also	reduce,	filter,	->	(anonymous	procedure),	range.

neighbors
neighbors4

neighbors
neighbors4
	

Reports	an	agentset	containing	the	8	surrounding	patches	(neighbors)	or	4	surrounding	patches	(neighbors4).

show sum [count turtles-here] of neighbors
 ;; prints the total number of turtles on the eight
 ;; patches around this turtle or patch
show count turtles-on neighbors
 ;; a shorter way to say the same thing
ask neighbors4 [set pcolor red]
 ;; turns the four neighboring patches red

<breed>-neighbors
link-neighbors

<breed>-neighbors
link-neighbors

Reports	the	agentset	of	all	turtles	found	at	the	other	end	of	any	links	(undirected	or	directed,	incoming	or	outgoing)	connected	to	this	turtle.

Since	4.0

Since	3.0

Since	5.2

Since	3.0

Since	1.0

crt 3
ask turtle 0
[
 create-links-with other turtles
 ask link-neighbors [set color red] ;; turtles 1 and 2 turn red
]
ask turtle 1
[
 ask link-neighbors [set color blue] ;; turtle 0 turns blue
]
end

<breed>-neighbor?
link-neighbor?

<breed>-neighbor?	turtle
link-neighbor?	turtle

Reports	true	if	there	is	a	link	(either	directed	or	undirected,	incoming	or	outgoing)	between	turtle	and	the	caller.

crt 2
ask turtle 0
[
 create-link-with turtle 1
 show link-neighbor? turtle 1 ;; prints true
]
ask turtle 1
[
 show link-neighbor? turtle 0 ;; prints true
]

netlogo-version

netlogo-version

Reports	a	string	containing	the	version	number	of	the	NetLogo	you	are	running.

show netlogo-version
=> "6.0.2"

netlogo-web?

netlogo-web?

Reports	true	if	the	model	is	running	in	NetLogo	Web.

new-seed

new-seed

Reports	a	number	suitable	for	seeding	the	random	number	generator.

The	numbers	reported	by	new-seed	are	based	on	the	current	date	and	time	in	milliseconds	and	lie	in	the	generator's	usable	range	of	seeds,	-
2147483648	to	2147483647.

new-seed	never	reports	the	same	number	twice	in	succession,	even	across	parallel	BehaviorSpace	runs.	(This	is	accomplished	by	waiting	a
millisecond	if	the	seed	for	the	current	millisecond	was	already	used.)

See	also	random-seed.

no-display

no-display

Turns	off	all	updates	to	the	current	view	until	the	display	command	is	issued.	This	has	two	major	uses.

One,	you	can	control	when	the	user	sees	view	updates.	You	might	want	to	change	lots	of	things	on	the	view	behind	the	user's	back,	so	to
speak,	then	make	them	visible	to	the	user	all	at	once.

Two,	your	model	will	run	faster	when	view	updating	is	off,	so	if	you're	in	a	hurry,	this	command	will	let	you	get	results	faster.	(Note	that
normally	you	don't	need	to	use	no-display	for	this,	since	you	can	also	use	the	on/off	switch	in	view	control	strip	to	freeze	the	view.)

Note	that	display	and	no-display	operate	independently	of	the	switch	in	the	view	control	strip	that	freezes	the	view.

See	also	display.

nobody

nobody

This	is	a	special	value	which	some	primitives	such	as	turtle,	one-of,	max-one-of,	etc.	report	to	indicate	that	no	agent	was	found.	Also,	when	a
turtle	dies,	it	becomes	equal	to	nobody.

Since	4.0

Since	4.0

Since	1.0

Since	4.0

Since	4.0

Since	1.0

Note:	Empty	agentsets	are	not	equal	to	nobody.	If	you	want	to	test	for	an	empty	agentset,	use	any?.	You	only	get	nobody	back	in	situations
where	you	were	expecting	a	single	agent,	not	a	whole	agentset.

set target one-of other turtles-here
if target != nobody
 [ask target [set color red]]

no-links

no-links

Reports	an	empty	link	agentset.

no-patches

no-patches

Reports	an	empty	patch	agentset.

not

not	boolean

Reports	true	if	boolean	is	false,	otherwise	reports	false.

if not any? turtles [crt 10]

no-turtles

no-turtles

Reports	an	empty	turtle	agentset.

O

of

[reporter]	of	agent
[reporter]	of	agentset

For	an	agent,	reports	the	value	of	the	reporter	for	that	agent	(turtle	or	patch).

show [pxcor] of patch 3 5
;; prints 3
show [pxcor] of one-of patches
;; prints the value of a random patch's pxcor variable
show [who * who] of turtle 5
=> 25
show [count turtles in-radius 3] of patch 0 0
;; prints the number of turtles located within a
;; three-patch radius of the origin

For	an	agentset,	reports	a	list	that	contains	the	value	of	the	reporter	for	each	agent	in	the	agentset	(in	random	order).

crt 4
show sort [who] of turtles
=> [0 1 2 3]
show sort [who * who] of turtles
=> [0 1 4 9]

one-of

one-of	agentset
one-of	list

From	an	agentset,	reports	a	random	agent.	If	the	agentset	is	empty,	reports	nobody.

From	a	list,	reports	a	random	list	item.	It	is	an	error	for	the	list	to	be	empty.

ask one-of patches [set pcolor green]
;; a random patch turns green
ask patches with [any? turtles-here]
 [show one-of turtles-here]
;; for each patch containing turtles, prints one of
;; those turtles

;; suppose mylist is [1 2 3 4 5 6]
show one-of mylist
;; prints a value randomly chosen from the list

See	also	n-of.

Since	1.0

Since	4.0

Since	4.0

Since	4.0

Since	4.0

or

boolean1	or	boolean2

Reports	true	if	either	boolean1	or	boolean2,	or	both,	is	true.

Note	that	if	condition1	is	true,	then	condition2	will	not	be	run	(since	it	can't	affect	the	result).

if (pxcor > 0) or (pycor > 0) [set pcolor red]
;; patches turn red except in lower-left quadrant

other

other	agentset
	

Reports	an	agentset	which	is	the	same	as	the	input	agentset	but	omits	this	agent.

show count turtles-here
=> 10
show count other turtles-here
=> 9

other-end

other-end
	

If	run	by	a	turtle,	reports	the	turtle	at	the	other	end	of	the	asking	link.

If	run	by	a	link,	reports	the	turtle	at	the	end	of	the	link	that	isn't	the	asking	turtle.

These	definitions	are	difficult	to	understand	in	the	abstract,	but	the	following	examples	should	help:

ask turtle 0 [create-link-with turtle 1]
ask turtle 0 [ask link 0 1 [show other-end]] ;; prints turtle 1
ask turtle 1 [ask link 0 1 [show other-end]] ;; prints turtle 0
ask link 0 1 [ask turtle 0 [show other-end]] ;; prints turtle 1

As	these	examples	hopefully	make	plain,	the	"other"	end	is	the	end	that	is	neither	asking	nor	being	asked.

out-<breed>-neighbor?
out-link-neighbor?

out-<breed>-neighbor?	turtle
out-link-neighbor?	turtle

Reports	true	if	there	is	a	directed	link	going	from	the	caller	to	turtle	or	if	there	is	an	undirected	link	connecting	the	caller	with	turtle.	You	can
think	of	this	as	"can	I	get	from	the	caller	to	turtle	using	a	link?"

crt 2
ask turtle 0 [
 create-link-to turtle 1
 show in-link-neighbor? turtle 1 ;; prints false
 show out-link-neighbor? turtle 1 ;; prints true
]
ask turtle 1 [
 show in-link-neighbor? turtle 0 ;; prints true
 show out-link-neighbor? turtle 0 ;; prints false
]

out-<breed>-neighbors
out-link-neighbors

out-<breed>-neighbors
out-link-neighbors

Reports	the	agentset	of	all	the	turtles	that	have	directed	links	from	the	caller,	or	undirected	links	with	the	caller.	You	can	think	of	this	as	"who
can	I	get	to	from	the	caller	using	a	link?"

crt 4
ask turtle 0
[
 create-links-to other turtles
 ask out-link-neighbors [set color pink] ;; turtles 1-3 turn pink
]
ask turtle 1
[
 ask out-link-neighbors [set color orange] ;; no turtles change colors
 ;; since turtle 1 only has in-links
]
end

Since	4.0

Since	2.1
Since	2.1
Since	2.1
Since	2.1

Since	1.0

Since	2.0

Since	1.0

out-<breed>-to
out-link-to

out-<breed>-to	turtle
out-link-to	turtle

Reports	a	directed	link	from	the	caller	to	turtle	or	an	undirected	link	connecting	the	two.	If	no	link	exists	then	it	reports	nobody.	If	more	than
one	such	link	exists,	reports	a	random	one.	You	can	think	of	this	as	"give	me	a	link	that	I	can	use	to	travel	from	the	caller	to	turtle."

crt 2
ask turtle 0 [
 create-link-to turtle 1
 show out-link-to turtle 1 ;; shows link 0 1
]
ask turtle 1
[
 show out-link-to turtle 0 ;; shows nobody
]

See	also:	in-link-from	link-with

output-print
output-show
output-type
output-write

output-print	value
output-show	value
output-type	value
output-write	value

These	commands	are	the	same	as	the	print,	show,	type,	and	write	commands	except	that	value	is	printed	in	the	model's	output	area,	instead
of	in	the	Command	Center.	(If	the	model	does	not	have	a	separate	output	area,	then	the	Command	Center	is	used.)

P

patch

patch	xcor	ycor

Given	the	x	and	y	coordinates	of	a	point,	reports	the	patch	containing	that	point.	(The	coordinates	are	absolute	coordinates;	they	are	not
computed	relative	to	this	agent,	as	with	patch-at.)

If	x	and	y	are	integers,	the	point	is	the	center	of	a	patch.	If	x	or	y	is	not	an	integer,	rounding	to	the	nearest	integer	is	used	to	determine	which
patch	contains	the	point.

If	wrapping	is	allowed	by	the	topology,	the	given	coordinates	will	be	wrapped	to	be	within	the	world.	If	wrapping	is	not	allowed	and	the	given
coordinates	are	outside	the	world,	reports	nobody.

ask patch 3 -4 [set pcolor green]
;; patch with pxcor of 3 and pycor of -4 turns green
show patch 1.2 3.7
;; prints (patch 1 4); note rounding
show patch 18 19
;; supposing min-pxcor and min-pycor are -17
;; and max-pxcor and max-pycor are 17,
;; in a wrapping topology, prints (patch -17 -16);
;; in a non-wrapping topology, prints nobody

See	also	patch-at.

patch-ahead

patch-ahead	distance

Reports	the	single	patch	that	is	the	given	distance	"ahead"	of	this	turtle,	that	is,	along	the	turtle's	current	heading.	Reports	nobody	if	the	patch
does	not	exist	because	it	is	outside	the	world.

ask patch-ahead 1 [set pcolor green]
;; turns the patch 1 in front of this turtle
;; green; note that this might be the same patch
;; the turtle is standing on

See	also	patch-at,	patch-left-and-ahead,	patch-right-and-ahead,	patch-at-heading-and-distance.

patch-at

patch-at	dx	dy
	

Since	2.0

Since	1.0

Since	2.0
Since	2.0

Since	4.0

Since	4.1

Reports	the	patch	at	(dx,	dy)	from	the	caller,	that	is,	the	patch	containing	the	point	dx	east	and	dy	patches	north	of	this	agent.

Reports	nobody	if	there	is	no	such	patch	because	that	point	is	beyond	a	non-wrapping	world	boundary.

ask patch-at 1 -1 [set pcolor green]
;; if caller is a turtle or patch, turns the
;; patch just southeast of the caller green

See	also	patch,	patch-ahead,	patch-left-and-ahead,	patch-right-and-ahead,	patch-at-heading-and-distance.

patch-at-heading-and-distance

patch-at-heading-and-distance	heading	distance
	

patch-at-heading-and-distance	reports	the	single	patch	that	is	the	given	distance	from	this	turtle	or	patch,	along	the	given	absolute	heading.
(In	contrast	to	patch-left-and-ahead	and	patch-right-and-ahead,	this	turtle's	current	heading	is	not	taken	into	account.)	Reports	nobody	if	the
patch	does	not	exist	because	it	is	outside	the	world.

ask patch-at-heading-and-distance -90 1 [set pcolor green]
;; turns the patch 1 to the west of this patch green

See	also	patch,	patch-at,	patch-left-and-ahead,	patch-right-and-ahead.

patch-here

patch-here

patch-here	reports	the	patch	under	the	turtle.

Note	that	this	reporter	isn't	available	to	a	patch	because	a	patch	can	just	say	"self".

patch-left-and-ahead
patch-right-and-ahead

patch-left-and-ahead	angle	distance
patch-right-and-ahead	angle	distance

Reports	the	single	patch	that	is	the	given	distance	from	this	turtle,	in	the	direction	turned	left	or	right	the	given	angle	(in	degrees)	from	the
turtle's	current	heading.	Reports	nobody	if	the	patch	does	not	exist	because	it	is	outside	the	world.

(If	you	want	to	find	a	patch	in	a	given	absolute	heading,	rather	than	one	relative	to	the	current	turtle's	heading,	use	patch-at-heading-and-
distance	instead.)

ask patch-right-and-ahead 30 1 [set pcolor green]
;; this turtle "looks" 30 degrees right of its
;; current heading at the patch 1 unit away, and turns
;; that patch green; note that this might be the same
;; patch the turtle is standing on

See	also	patch,	patch-at,	patch-at-heading-and-distance.

patch-set

patch-set	value1
(patch-set	value1	value2	...)

Reports	an	agentset	containing	all	of	the	patches	anywhere	in	any	of	the	inputs.	The	inputs	may	be	individual	patches,	patch	agentsets,
nobody,	or	lists	(or	nested	lists)	containing	any	of	the	above.

patch-set self
patch-set patch-here
(patch-set self neighbors)
(patch-set patch-here neighbors)
(patch-set patch 0 0 patch 1 3 patch 4 -2)
(patch-set patch-at -1 1 patch-at 0 1 patch-at 1 1)
patch-set [patch-here] of turtles
patch-set [neighbors] of turtles

See	also	turtle-set,	link-set.

patch-size

patch-size

Reports	the	size	of	the	patches	in	the	view	in	pixels.	The	size	is	typically	an	integer,	but	may	also	be	a	floating	point	number.

See	also	set-patch-size.

Since	1.0

Since	1.0
Since	1.0
Since	3.0
Since	3.0
Since	1.0
Since	1.0

patches

patches

Reports	the	agentset	consisting	of	all	patches.

patches-own

patches-own	[var1	...]

This	keyword,	like	the	globals,	breed,	<breed>-own,	and	turtles-own	keywords,	can	only	be	used	at	the	beginning	of	a	program,	before	any
function	definitions.	It	defines	the	variables	that	all	patches	can	use.

All	patches	will	then	have	the	given	variables	and	be	able	to	use	them.

All	patch	variables	can	also	be	directly	accessed	by	any	turtle	standing	on	the	patch.

See	also	globals,	turtles-own,	breed,	<breeds>-own.

pcolor

pcolor
	

This	is	a	built-in	patch	variable.	It	holds	the	color	of	the	patch.	You	can	set	this	variable	to	make	the	patch	change	color.

All	patch	variables	can	be	directly	accessed	by	any	turtle	standing	on	the	patch.	Color	can	be	represented	either	as	a	NetLogo	color	(a	single
number)	or	an	RGB	color	(a	list	of	3	numbers).	See	details	in	the	Colors	section	of	the	Programming	Guide.

See	also	color.

pen-down
pd
pen-erase
pe
pen-up
pu

pen-down
pen-erase
pen-up

The	turtle	changes	modes	between	drawing	lines,	removing	lines	or	neither.	The	lines	will	always	be	displayed	on	top	of	the	patches	and
below	the	turtles.	To	change	the	color	of	the	pen	set	the	color	of	the	turtle	using	set color.

Note:	When	a	turtle's	pen	is	down,	all	movement	commands	cause	lines	to	be	drawn,	including	jump,	setxy,	and	move-to.

Note:	These	commands	are	equivalent	to	setting	the	turtle	variable	"pen-mode"	to	"down"	,	"up",	and	"erase".

Note:	On	Windows	drawing	and	erasing	a	line	might	not	erase	every	pixel.

pen-mode

This	is	a	built-in	turtle	variable.	It	holds	the	state	of	the	turtle's	pen.	You	set	the	variable	to	draw	lines,	erase	lines	or	stop	either	of	these
actions.	Possible	values	are	"up",	"down",	and	"erase".

pen-size

This	is	a	built-in	turtle	variable.	It	holds	the	width	of	the	line,	in	pixels,	that	the	turtle	will	draw	(or	erase)	when	the	pen	is	down	(or	erasing).

plabel

plabel
	

This	is	a	built-in	patch	variable.	It	may	hold	a	value	of	any	type.	The	patch	appears	in	the	view	with	the	given	value	"attached"	to	it	as	text.
You	can	set	this	variable	to	add,	change,	or	remove	a	patch's	label.

All	patch	variables	can	be	directly	accessed	by	any	turtle	standing	on	the	patch.

See	also	plabel-color,	label,	label-color.

plabel-color

Since	1.0

Since	1.0

Since	4.0

Since	1.0
Since	1.0

Since	1.0

Since	1.0

Since	1.0
Since	1.0
Since	1.0
Since	1.0

Since	1.0

plabel-color
	

This	is	a	built-in	patch	variable.	It	holds	a	number	greater	than	or	equal	to	0	and	less	than	140.	This	number	determines	what	color	the
patch's	label	appears	in	(if	it	has	a	label).	You	can	set	this	variable	to	change	the	color	of	a	patch's	label.

All	patch	variables	can	be	directly	accessed	by	any	turtle	standing	on	the	patch.

See	also	plabel,	label,	label-color.

plot

plot	number

Increments	the	x-value	of	the	plot	pen	by	plot-pen-interval,	then	plots	a	point	at	the	updated	x-value	and	a	y-value	of	number.	(The	first	time
the	command	is	used	on	a	plot,	the	point	plotted	has	an	x-value	of	0.)

plot-name

plot-name

Reports	the	name	of	the	current	plot	(a	string)

plot-pen-exists?

plot-pen-exists?	string

Reports	true	if	a	plot	pen	with	the	given	name	is	defined	in	the	current	plot.	Otherwise	reports	false.

plot-pen-down
plot-pen-up

plot-pen-down
plot-pen-up

Puts	down	(or	up)	the	current	plot-pen,	so	that	it	draws	(or	doesn't).	(By	default,	all	pens	are	down	initially.)

plot-pen-reset

plot-pen-reset

Clears	everything	the	current	plot	pen	has	drawn,	moves	it	to	(0,0),	and	puts	it	down.	If	the	pen	is	a	permanent	pen,	the	color,	mode,	and
interval	are	reset	to	the	default	values	from	the	plot	Edit	dialog.

plotxy

plotxy	number1	number2

Moves	the	current	plot	pen	to	the	point	with	coordinates	(number1,	number2).	If	the	pen	is	down,	a	line,	bar,	or	point	will	be	drawn	(depending
on	the	pen's	mode).

plot-x-min
plot-x-max
plot-y-min
plot-y-max

plot-x-min
plot-x-max
plot-y-min
plot-y-max

Reports	the	minimum	or	maximum	value	on	the	x	or	y	axis	of	the	current	plot.

These	values	can	be	set	with	the	commands	set-plot-x-range	and	set-plot-y-range.	(Their	default	values	are	set	from	the	plot	Edit	dialog.)

position

position	item	list
position	string1	string2

On	a	list,	reports	the	first	position	of	item	in	list,	or	false	if	it	does	not	appear.

On	strings,	reports	the	position	of	the	first	appearance	string1	as	a	substring	of	string2,	or	false	if	it	does	not	appear.

Note:	The	positions	are	numbered	beginning	with	0,	not	with	1.

;; suppose mylist is [2 7 4 7 "Bob"]

Since	1.0

Since	1.0

Since	1.0

Since	2.0

show position 7 mylist
=> 1
show position 10 mylist
=> false
show position "in" "string"
=> 3

See	also	member?.

precision

precision	number	places

Reports	number	rounded	to	places	decimal	places.

If	places	is	negative,	the	rounding	takes	place	to	the	left	of	the	decimal	point.

show precision 1.23456789 3
=> 1.235
show precision 3834 -3
=> 4000

See	also	round,	ceiling,	floor.

print

print	value

Prints	value	in	the	Command	Center,	followed	by	a	carriage	return.

This	agent	is	not	printed	before	the	value,	unlike	show.

See	also	show,	type,	and	write.

See	also	output-print.

pxcor
pycor

pxcor
pycor
	

These	are	built-in	patch	variables.	They	hold	the	x	and	y	coordinate	of	the	patch.	They	are	always	integers.	You	cannot	set	these	variables,
because	patches	don't	move.

pxcor	is	greater	than	or	equal	to	min-pxcor	and	less	than	or	equal	to	max-pxcor;	similarly	for	pycor	and	min-pycor	and	max-pycor.

All	patch	variables	can	be	directly	accessed	by	any	turtle	standing	on	the	patch.

See	also	xcor,	ycor.

R

random

random	number

If	number	is	positive,	reports	a	random	integer	greater	than	or	equal	to	0,	but	strictly	less	than	number.

If	number	is	negative,	reports	a	random	integer	less	than	or	equal	to	0,	but	strictly	greater	than	number.

If	number	is	zero,	the	result	is	always	0	as	well.

Note:	In	versions	of	NetLogo	prior	to	version	2.0,	this	primitive	reported	a	floating	point	number	if	given	a	non-integer	input.	This	is	no	longer
the	case.	If	you	want	a	floating	point	answer,	you	must	now	use	random-float	instead.

show random 3
;; prints 0, 1, or 2
show random -3
;; prints 0, -1, or -2
show random 3.5
;; prints 0, 1, 2, or 3

See	also	random-float.

random-float

random-float	number

If	number	is	positive,	reports	a	random	floating	point	number	greater	than	or	equal	to	0	but	strictly	less	than	number.

If	number	is	negative,	reports	a	random	floating	point	number	less	than	or	equal	to	0,	but	strictly	greater	than	number.

Since	1.2.1
Since	2.0

Since	1.2.1
Since	1.2.1

Since	3.1
Since	3.1

Since	1.0

Since	3.1
Since	3.1

If	number	is	zero,	the	result	is	always	0.

show random-float 3
;; prints a number at least 0 but less than 3,
;; for example 2.589444906014774
show random-float 2.5
;; prints a number at least 0 but less than 2.5,
;; for example 1.0897423196760796

random-exponential
random-gamma
random-normal
random-poisson

random-exponential	mean
random-gamma	alpha	lambda
random-normal	mean	standard-deviation
random-poisson	mean

Reports	an	accordingly	distributed	random	number	with	the	mean	and,	in	the	case	of	the	normal	distribution,	the	standard-deviation.	(The
standard	deviation	may	not	be	negative.)

random-exponential	reports	an	exponentially	distributed	random	floating	point	number.	It	is	equivalent	to	(- mean) * ln random-float 1.0.

random-gamma	reports	a	gamma-distributed	random	floating	point	number	as	controlled	by	the	floating	point	alpha	and	lambda	parameters.
Both	inputs	must	be	greater	than	zero.	(Note:	for	results	with	a	given	mean	and	variance,	use	inputs	as	follows:	alpha	=	mean	*	mean	/
variance;	lambda	=	1	/	(variance	/	mean).)

random-normal	reports	a	normally	distributed	random	floating	point	number.

random-poisson	reports	a	Poisson-distributed	random	integer.

show random-exponential 2
;; prints an exponentially distributed random floating
;; point number with a mean of 2
show random-normal 10.1 5.2
;; prints a normally distributed random floating point
;; number with a mean of 10.1 and a standard deviation
;; of 5.2
show random-poisson 3.4
;; prints a Poisson-distributed random integer with a
;; mean of 3.4

random-pxcor
random-pycor

random-pxcor
random-pycor

Reports	a	random	integer	ranging	from	min-pxcor	(or	-y)	to	max-pxcor	(or	-y)	inclusive.

ask turtles [
 ;; move each turtle to the center of a random patch
 setxy random-pxcor random-pycor
]

See	also	random-xcor,	random-ycor.

random-seed

random-seed	number

Sets	the	seed	of	the	pseudo-random	number	generator	to	the	integer	part	of	number.	The	seed	must	be	in	the	range	-2147483648	to
2147483647;	note	that	this	is	smaller	than	the	full	range	of	integers	supported	by	NetLogo	(-9007199254740992	to	9007199254740992).

See	the	Random	Numbers	section	of	the	Programming	Guide	for	more	details.

random-seed 47822
show random 100
=> 50
show random 100
=> 35
random-seed 47822
show random 100
=> 50
show random 100
=> 35

random-xcor
random-ycor

random-xcor
random-ycor

Reports	a	random	floating	point	number	from	the	allowable	range	of	turtle	coordinates	along	the	given	axis,	x	or	y.

Since	6.0

Since	1.1

Since	1.3

Turtle	coordinates	range	from	min-pxcor	-	0.5	(inclusive)	to	max-pxcor	+	0.5	(exclusive)	horizontally;	vertically,	substitute	-y	for	-x.

ask turtles [
 ;; move each turtle to a random point
 setxy random-xcor random-ycor
]

See	also	random-pxcor,	random-pycor.

range

range	stop
(range	start	stop)
(range	start	stop	step)

Generates	a	list	of	numbers,	starting	at	start,	ending	before	stop,	counting	by	step.	start	defaults	to	0	and	step	defaults	to	1.

show range 5
=> [0 1 2 3 4]
show (range 2 5)
=> [2 3 4]
show (range 2 5 0.5)
=> [2 2.5 3 3.5 4 4.5]
show (range 10 0 -1)
=> [10 9 8 7 6 5 4 3 2 1]

See	also	n-values

read-from-string

read-from-string	string

Interprets	the	given	string	as	if	it	had	been	typed	in	the	Command	Center,	and	reports	the	resulting	value.	The	result	may	be	a	number,	list,
string,	or	boolean	value,	or	the	special	value	"nobody".

Useful	in	conjunction	with	the	user-input	primitive	for	converting	the	user's	input	into	usable	form.

show read-from-string "3" + read-from-string "5"
=> 8
show length read-from-string "[1 2 3]"
=> 3
crt read-from-string user-input "Make how many turtles?"
;; the number of turtles input by the user
;; are created

reduce

reduce	reporter	list

Reduces	a	list	from	left	to	right	using	the	given	reporter,	resulting	in	a	single	value.	This	means,	for	example,	that	reduce [[a b] -> a + b]
[1 2 3 4]	is	equivalent	to	(((1	+	2)	+	3)	+	4).	If	list	has	a	single	item,	that	item	is	reported.	It	is	an	error	to	reduce	an	empty	list.	reporter	may
be	an	anonymous	reporter	or	the	name	of	a	reporter.

The	first	input	passed	to	the	reporter	is	the	result	so	far,	and	the	second	input	is	the	next	item	in	the	list.

Since	it	can	be	difficult	to	develop	an	intuition	about	what	reduce	does,	here	are	some	simple	examples	which,	while	not	useful	in	themselves,
may	give	you	a	better	understanding	of	this	primitive:

show reduce + [1 2 3]
=> 6
show reduce - [1 2 3]
=> -4
show reduce [[result-so-far next-item] -> next-item - result-so-far] [1 2 3]
=> 2
show reduce [[result-so-far ignored-item] -> result-so-far] [1 2 3]
=> 1
show reduce [[ignored next-item] -> next-item] [1 2 3]
=> 3
show reduce sentence [[1 2] [3 [4]] 5]
=> [1 2 3 [4] 5]
show reduce [[result-so-far next-item] -> fput next-item result-so-far] (fput [] [1 2 3 4 5])
=> [5 4 3 2 1]

Here	are	some	more	useful	examples:

;; find the longest string in a list
to-report longest-string [strings]
 report reduce
 [[longest-so-far next-string] -> ifelse-value (length longest-so-far >= length next-string) [longest-so-far] [next-string]]
 strings
end

show longest-string ["hi" "there" "!"]
=> "there"

;; count the number of occurrences of an item in a list
to-report occurrences [x the-list]
 report reduce
 [[occurrence-count next-item] -> ifelse-value (next-item = x) [occurrence-count + 1] [occurrence-count]] (fput 0 the-list)
end

show occurrences 1 [1 2 1 3 1 2 3 1 1 4 5 1]

Since	1.2.1

Since	1.0

Since	1.0

Since	2.0

Since	1.0

Since	1.0

=> 6

;; evaluate the polynomial, with given coefficients, at x
to-report evaluate-polynomial [coefficients x]
 report reduce [[value coefficient] -> (x * value) + coefficient] coefficients
end

;; evaluate 3x^2 + 2x + 1 at x = 4
show evaluate-polynomial [3 2 1] 4
=> 57

See	also	filter,	->	(anonymous	procedure.

remainder

remainder	number1	number2

Reports	the	remainder	when	number1	is	divided	by	number2.	This	is	equivalent	to	the	following	NetLogo	code:

number1 - (int (number1 / number2)) * number2

show remainder 62 5
=> 2
show remainder -8 3
=> -2

See	also	mod.	mod	and	remainder	behave	the	same	for	positive	numbers,	but	differently	for	negative	numbers.

remove

remove	item	list
remove	string1	string2

For	a	list,	reports	a	copy	of	list	with	all	instances	of	item	removed.

For	strings,	reports	a	copy	of	string2	with	all	the	appearances	of	string1	as	a	substring	removed.

set mylist [2 7 4 7 "Bob"]
set mylist remove 7 mylist
;; mylist is now [2 4 "Bob"]
show remove "to" "phototonic"
=> "phonic"

remove-duplicates

remove-duplicates	list

Reports	a	copy	of	list	with	all	duplicate	items	removed.	The	first	of	each	item	remains	in	place.

set mylist [2 7 4 7 "Bob" 7]
set mylist remove-duplicates mylist
;; mylist is now [2 7 4 "Bob"]

remove-item

remove-item	index	list
remove-item	index	string

For	a	list,	reports	a	copy	of	list	with	the	item	at	the	given	index	removed.

For	strings,	reports	a	copy	of	string	with	the	character	at	the	given	index	removed.

Note	that	the	indices	begin	from	0,	not	1.	(The	first	item	is	item	0,	the	second	item	is	item	1,	and	so	on.)

set mylist [2 7 4 7 "Bob"]
set mylist remove-item 2 mylist
;; mylist is now [2 7 7 "Bob"]
show remove-item 2 "string"
=> "sting"

repeat

repeat	number	[commands]

Runs	commands	number	times.

 pd repeat 36 [fd 1 rt 10]
 ;; the turtle draws a circle

replace-item

Since	1.0

Since	3.0
Since	3.0

Since	4.0

Since	1.0

Since	4.1

Since	1.0

Since	1.0

replace-item	index	list	value
replace-item	index	string1	string2

On	a	list,	replaces	an	item	in	that	list.	index	is	the	index	of	the	item	to	be	replaced,	starting	with	0.	(The	6th	item	in	a	list	would	have	an	index
of	5.)	Note	that	"replace-item"	is	used	in	conjunction	with	"set"	to	change	a	list.

Likewise	for	a	string,	but	the	given	character	of	string1	removed	and	the	contents	of	string2	spliced	in	instead.

show replace-item 2 [2 7 4 5] 15
=> [2 7 15 5]
show replace-item 1 "cat" "are"
=> "caret"

report

report	value

Immediately	exits	from	the	current	to-report	procedure	and	reports	value	as	the	result	of	that	procedure.	report	and	to-report	are	always	used
in	conjunction	with	each	other.	See	to-report	for	a	discussion	of	how	to	use	them.

reset-perspective
rp

reset-perspective

The	observer	stops	watching,	following,	or	riding	any	turtles	(or	patches).	(If	it	wasn't	watching,	following,	or	riding	anybody,	nothing
happens.)	In	the	3D	view,	the	observer	also	returns	to	its	default	position	(above	the	origin,	looking	straight	down).

See	also	follow,	ride,	watch.

reset-ticks

reset-ticks

Resets	the	tick	counter	to	zero,	sets	up	all	plots,	then	updates	all	plots	(so	that	the	initial	state	of	the	world	is	plotted).

Normally	reset-ticks	goes	at	the	end	of	a	setup	procedure.

See	also	clear-ticks,	tick,	ticks,	tick-advance,	setup-plots,	update-plots.

reset-timer

reset-timer

Resets	the	timer	to	zero	seconds.	See	also	timer.

Note	that	the	timer	is	different	from	the	tick	counter.	The	timer	measures	elapsed	real	time	in	seconds;	the	tick	counter	measures	elapsed
model	time	in	ticks.

resize-world

resize-world	min-pxcor	max-pxcor	min-pycor	max-pycor

Changes	the	size	of	the	patch	grid.

As	a	side	effect,	all	turtles	and	links	die,	and	the	existing	patch	grid	is	discarded	and	new	patches	created.

Retaining	references	to	old	patches	or	patch	sets	is	inadvisable	and	may	subsequently	cause	runtime	errors	or	other	unexpected	behavior.

See	also	set-patch-size.

reverse

reverse	list
reverse	string

Reports	a	reversed	copy	of	the	given	list	or	string.

show mylist
;; mylist is [2 7 4 "Bob"]
set mylist reverse mylist
;; mylist now is ["Bob" 4 7 2]
show reverse "live"
=> "evil"

rgb

rgb	red	green	blue

Since	3.0

Since	3.0

Since	1.0
Since	1.0

Since	1.0

Since	1.3
Since	1.3

Reports	a	RGB	list	when	given	three	numbers	describing	an	RGB	color.	The	numbers	are	range	checked	to	be	between	0	and	255.

See	also	hsb

ride

ride	turtle

Set	the	perspective	to	turtle.

Every	time	turtle	moves	the	observer	also	moves.	Thus,	in	the	2D	View	the	turtle	will	stay	at	the	center	of	the	view.	In	the	3D	view	it	is	as	if
looking	through	the	eyes	of	the	turtle.	If	the	turtle	dies,	the	perspective	resets	to	the	default.

The	observer	may	only	watch	or	follow	a	single	subject.	Calling	ride	will	remove	the	highlight	created	by	prior	calls	to	watch	and	watch-me,
highlighting	the	ridden	turtle	instead.

See	also	reset-perspective,	watch,	follow,	subject.

ride-me

ride-me

Asks	the	observer	to	ride	this	turtle.

The	observer	may	only	watch	or	follow	a	single	subject.	Calling	ride-me	will	remove	the	highlight	created	by	prior	calls	to	watch	and	watch-me,
highlighting	this	turtle	instead.

See	also	ride.

right
rt

right	number

The	turtle	turns	right	by	number	degrees.	(If	number	is	negative,	it	turns	left.)

round

round	number

Reports	the	integer	nearest	to	number.

If	the	decimal	portion	of	number	is	exactly	.5,	the	number	is	rounded	in	the	positive	direction.

Note	that	rounding	in	the	positive	direction	is	not	always	how	rounding	is	done	in	other	software	programs.	(In	particular,	it	does	not	match
the	behavior	of	StarLogoT,	which	always	rounded	numbers	ending	in	0.5	to	the	nearest	even	integer.)	The	rationale	for	this	behavior	is	that	it
matches	how	turtle	coordinates	relate	to	patch	coordinates	in	NetLogo.	For	example,	if	a	turtle's	xcor	is	-4.5,	then	it	is	on	the	boundary
between	a	patch	whose	pxcor	is	-4	and	a	patch	whose	pxcor	is	-5,	but	the	turtle	must	be	considered	to	be	in	one	patch	or	the	other,	so	the
turtle	is	considered	to	be	in	the	patch	whose	pxcor	is	-4,	because	we	round	towards	the	positive	numbers.

show round 4.2
=> 4
show round 4.5
=> 5
show round -4.5
=> -4

See	also	precision,	ceiling,	floor.

run
runresult

run	command
(run	command	input1	...)
run	string
runresult	reporter
(runresult	reporter	input1	...)
runresult	string

The	run	form	expects	the	name	of	a	command,	an	anonymous	command,	or	a	string	containing	commands.	This	agent	then	runs	them.

The	runresult	form	expects	the	name	of	a	reporter,	an	anonymous	reporter,	or	a	string	containing	a	reporter.	This	agent	runs	it	and	reports
the	result.

Note	that	you	can't	use	run	to	define	or	redefine	procedures.	If	you	care	about	performance,	note	that	the	code	must	be	compiled	first	which
takes	time.	However,	compiled	bits	of	code	are	cached	by	NetLogo	and	thus	using	run	on	the	same	string	over	and	over	is	much	faster	than
running	different	strings.	The	first	run,	though,	will	be	many	times	slower	than	running	the	same	code	directly,	or	in	an	anonymous	command.

Since	1.0

Since	1.3

Since	1.0
Since	1.0

Since	1.0

Anonymous	procedures	are	recommended	over	strings	whenever	possible.	(An	example	of	when	you	must	use	strings	is	if	you	accept
pieces	of	code	from	the	user	of	your	model.)

Anonymous	procedures	may	freely	read	and/or	set	local	variables	and	procedure	inputs.	Trying	to	do	the	same	with	strings	may	or	may	not
work	and	should	not	be	relied	on.

When	using	anonymous	procedures,	you	can	provide	them	with	inputs,	if	you	surround	the	entire	call	with	parentheses.	For	example:

(run [[turtle-count step-count] -> crt turtle-count [fd step-count]] 10 5)
;; creates 10 turtles and move them forward 5 steps
show (runresult [[a b] -> a + b] 10 5)
=> 15
;; adds 10 and 5

See	also	foreach,	->	(anonymous	procedure).

S

scale-color

scale-color	color	number	range1	range2

Reports	a	shade	of	color	proportional	to	the	value	of	number.

If	range1	is	less	than	range2,	then	the	larger	the	number,	the	lighter	the	shade	of	color.	But	if	range2	is	less	than	range1,	the	color	scaling	is
inverted.

If	number	is	less	than	range1,	then	the	darkest	shade	of	color	is	chosen.

If	number	is	greater	than	range2,	then	the	lightest	shade	of	color	is	chosen.

Note:	for	color	shade	is	irrelevant,	e.g.	green	and	green	+	2	are	equivalent,	and	the	same	spectrum	of	colors	will	be	used.

ask turtles [set color scale-color red age 0 50]
;; colors each turtle a shade of red proportional
;; to its value for the age variable

self

self
	 	

Reports	this	turtle,	patch,	or	link.

"self"	and	"myself"	are	very	different.	"self"	is	simple;	it	means	"me".	"myself"	means	"the	agent	who	asked	me	to	do	what	I'm	doing	right
now."

Note	that	it	is	always	redundant	to	write	[foo] of self.	This	is	always	equivalent	to	simply	writing	foo.

See	also	myself.

;	(semicolon)

;	comments

After	a	semicolon,	the	rest	of	the	line	is	ignored.	This	is	useful	for	adding	"comments"	to	your	code	--	text	that	explains	the	code	to	human
readers.	Extra	semicolons	can	be	added	for	visual	effect.

NetLogo's	Edit	menu	has	items	that	let	you	comment	or	uncomment	whole	sections	of	code.

sentence
se

sentence	value1	value2
(sentence	value1	...)

Makes	a	list	out	of	the	values.	If	any	value	is	a	list,	its	items	are	included	in	the	result	directly,	rather	than	being	included	as	a	sublist.
Examples	make	this	clearer:

show sentence 1 2
=> [1 2]
show sentence [1 2] 3
=> [1 2 3]
show sentence 1 [2 3]
=> [1 2 3]
show sentence [1 2] [3 4]
=> [1 2 3 4]
show sentence [[1 2]] [[3 4]]
=> [[1 2] [3 4]]
show (sentence [1 2] 3 [4 5] (3 + 3) 7)
=> [1 2 3 4 5 6 7]

set

foreach
arrow

Since	2.0

Since	1.0

Since	1.0

Since	1.0

Since	1.0

set	variable	value

Sets	variable	to	the	given	value.

Variable	can	be	any	of	the	following:

A	global	variable	declared	using	"globals"
The	global	variable	associated	with	a	slider,	switch,	chooser,	or	input	box.
A	variable	belonging	to	this	agent
If	this	agent	is	a	turtle,	a	variable	belonging	to	the	patch	under	the	turtle.
A	local	variable	created	by	the	let	command.
An	input	to	the	current	procedure.

set-current-directory

set-current-directory	string

Sets	the	current	directory	that	is	used	by	the	primitives	file-delete,	file-exists?,	and	file-open.

The	current	directory	is	not	used	if	the	above	commands	are	given	an	absolute	file	path.	This	is	defaulted	to	the	user's	home	directory	for
new	models,	and	is	changed	to	the	model's	directory	when	a	model	is	opened.

Note	that	in	Windows	file	paths	the	backslash	needs	to	be	escaped	within	a	string	by	using	another	backslash	"C:\\"

The	change	is	temporary	and	is	not	saved	with	the	model.

set-current-directory "C:\\NetLogo"
;; Assume it is a Windows Machine
file-open "my-file.txt"
;; Opens file "C:\\NetLogo\\my-file.txt"

set-current-plot

set-current-plot	plotname

Sets	the	current	plot	to	the	plot	with	the	given	name	(a	string).	Subsequent	plotting	commands	will	affect	the	current	plot.

set-current-plot-pen

set-current-plot-pen	penname

The	current	plot's	current	pen	is	set	to	the	pen	named	penname	(a	string).	If	no	such	pen	exists	in	the	current	plot,	a	runtime	error	occurs.

set-default-shape

set-default-shape	turtles	string
set-default-shape	links	string
set-default-shape	breed	string

Specifies	a	default	initial	shape	for	all	turtles	or	links,	or	for	a	particular	breed	of	turtles	or	links.	When	a	turtle	or	link	is	created,	or	it	changes
breeds,	it	shape	is	set	to	the	given	shape.

This	command	doesn't	affect	existing	agents,	only	agents	you	create	afterwards.

The	given	breed	must	be	either	turtles,	links,	or	the	name	of	a	breed.	The	given	string	must	be	the	name	of	a	currently	defined	shape.

In	new	models,	the	default	shape	for	all	turtles	is	"default".

Note	that	specifying	a	default	shape	does	not	prevent	you	from	changing	an	agent's	shape	later.	Agents	don't	have	to	be	stuck	with	their
breed's	default	shape.

create-turtles 1 ;; new turtle's shape is "default"
create-cats 1 ;; new turtle's shape is "default"

set-default-shape turtles "circle"
create-turtles 1 ;; new turtle's shape is "circle"
create-cats 1 ;; new turtle's shape is "circle"

set-default-shape cats "cat"
set-default-shape dogs "dog"
create-cats 1 ;; new turtle's shape is "cat"
ask cats [set breed dogs]
 ;; all cats become dogs, and automatically
 ;; change their shape to "dog"

See	also	shape.

set-histogram-num-bars

set-histogram-num-bars	number

Set	the	current	plot	pen's	plot	interval	so	that,	given	the	current	x	range	for	the	plot,	there	would	be	number	number	of	bars	drawn	if	the
histogram	command	is	called.

Since	4.1

Since	6.0.2

Since	1.0

Since	1.0

Since	1.0

Since	5.0

Since	1.0
Since	1.0

See	also	histogram.

__set-line-thickness

__set-line-thickness	number

Specifies	the	thickness	of	lines	and	outlined	elements	in	the	turtle's	shape.

The	default	value	is	0.	This	always	produces	lines	one	pixel	thick.

Non-zero	values	are	interpreted	as	thickness	in	patches.	A	thickness	of	1,	for	example,	produces	lines	which	appear	one	patch	thick.	(It's
common	to	use	a	smaller	value	such	as	0.5	or	0.2.)

Lines	are	always	at	least	one	pixel	thick.

This	command	is	experimental	and	may	change	in	later	releases.

set-patch-size

set-patch-size	size

Sets	the	size	of	the	patches	of	the	view	in	pixels.	The	size	is	typically	an	integer,	but	may	also	be	a	floating	point	number.

See	also	patch-size,	resize-world.

set-plot-background-color

set-plot-background-color	color

Sets	the	background	color	of	the	current	plot.	The	color	may	be	specified	as	a	number	or	a	list.	See	the	Colors	section	of	the	programming
guide	for	more	details.	This	change	is	temporary	and	is	not	saved	with	the	model.	When	the	plot	is	cleared,	the	background	color	will	revert	to
white.

Note:	Plot	backgrounds	do	not	support	transparency.	If	a	list	is	used	to	set	the	color,	the	alpha	component	will	be	ignored.

set-plot-pen-color

set-plot-pen-color	color

Sets	the	color	of	the	current	plot	pen	to	color.

set-plot-pen-interval

set-plot-pen-interval	number

Tells	the	current	plot	pen	to	move	a	distance	of	number	in	the	x	direction	during	each	use	of	the	plot	command.	(The	plot	pen	interval	also
affects	the	behavior	of	the	histogram	command.)

set-plot-pen-mode

set-plot-pen-mode	number

Sets	the	mode	the	current	plot	pen	draws	in	to	number.	The	allowed	plot	pen	modes	are:

0	(line	mode)	the	plot	pen	draws	a	line	connecting	two	points	together.
1	(bar	mode):	the	plot	pen	draws	a	bar	of	width	plot-pen-interval	with	the	point	plotted	as	the	upper	(or	lower,	if	you	are	plotting	a	negative
number)	left	corner	of	the	bar.
2	(point	mode):	the	plot	pen	draws	a	point	at	the	point	plotted.	Points	are	not	connected.

The	default	mode	for	new	pens	is	0	(line	mode).

setup-plots

setup-plots

For	each	plot,	runs	that	plot's	setup	commands,	including	the	setup	code	for	any	pens	in	the	plot.

reset-ticks	has	the	same	effect,	so	in	models	that	use	the	tick	counter,	this	primitive	is	not	normally	used.

See	the	Plotting	section	of	the	Programming	Guide	for	more	details.

See	also	update-plots.

set-plot-x-range
set-plot-y-range

set-plot-x-range	min	max

Since	1.0

Since	1.0

Since	2.1

Since	1.0

set-plot-y-range	min	max

Sets	the	minimum	and	maximum	values	of	the	x	or	y	axis	of	the	current	plot.

The	change	is	temporary	and	is	not	saved	with	the	model.	When	the	plot	is	cleared,	the	ranges	will	revert	to	their	default	values	as	set	in	the
plot's	Edit	dialog.

setxy

setxy	x	y

The	turtle	sets	its	x-coordinate	to	x	and	its	y-coordinate	to	y.

Equivalent	to	set xcor x set ycor y,	except	it	happens	in	one	time	step	instead	of	two.

If	x	or	y	is	outside	the	world,	NetLogo	will	throw	a	runtime	error,	unless	wrapping	is	turned	on	in	the	relevant	dimensions.	For	example,	with
wrapping	turned	on	in	both	dimensions	and	the	default	world	size	where	min-pxcor = -16,	max-pxcor = 16,	min-pycor = -16	and	max-pycor =
16,	asking	a	turtle	to	setxy 17 17	will	move	it	to	the	center	of	patch	(-16,	-16).

setxy 0 0
;; turtle moves to the middle of the center patch
setxy random-xcor random-ycor
;; turtle moves to a random point
setxy random-pxcor random-pycor
;; turtle moves to the center of a random patch

See	also	move-to.

shade-of?

shade-of?	color1	color2

Reports	true	if	both	colors	are	shades	of	one	another,	false	otherwise.

show shade-of? blue red
=> false
show shade-of? blue (blue + 1)
=> true
show shade-of? gray white
=> true

shape

shape
	

This	is	a	built-in	turtle	and	link	variable.	It	holds	a	string	that	is	the	name	of	the	turtle	or	link's	current	shape.	You	can	set	this	variable	to
change	the	shape.	New	turtles	and	links	have	the	shape	"default"	unless	the	a	different	shape	has	been	specified	using	set-default-shape.

Example:

ask turtles [set shape "wolf"]
;; assumes you have made a "wolf"
;; shape in NetLogo's Turtle Shapes Editor
ask links [set shape "link 1"]
;; assumes you have made a "link 1" shape in
;; the Link Shapes Editor

See	also	set-default-shape,	shapes.

shapes

shapes

Reports	a	list	of	strings	containing	all	of	the	turtle	shapes	in	the	model.

New	shapes	can	be	created,	or	imported	from	the	shapes	library	or	from	other	models,	in	the	Shapes	Editor.

show shapes
=> ["default" "airplane" "arrow" "box" "bug" ...
ask turtles [set shape one-of shapes]

show

show	value

Prints	value	in	the	Command	Center,	preceded	by	this	agent,	and	followed	by	a	carriage	return.	(This	agent	is	included	to	help	you	keep	track
of	what	agents	are	producing	which	lines	of	output.)	Also,	all	strings	have	their	quotes	included	similar	to	write.

See	also	print,	type,	and	write.

Since	1.0
Since	1.0

Since	4.0

Since	2.0

Since	1.0

Since	1.0

See	also	output-show.

show-turtle
st

show-turtle

The	turtle	becomes	visible	again.

Note:	This	command	is	equivalent	to	setting	the	turtle	variable	"hidden?"	to	false.

See	also	hide-turtle.

show-link

show-link

The	link	becomes	visible	again.

Note:	This	command	is	equivalent	to	setting	the	link	variable	"hidden?"	to	false.

See	also	hide-link.

shuffle

shuffle	list

Reports	a	new	list	containing	the	same	items	as	the	input	list,	but	in	randomized	order.

show shuffle [1 2 3 4 5]
=> [5 2 4 1 3]
show shuffle [1 2 3 4 5]
=> [1 3 5 2 4]

sin

sin	number

Reports	the	sine	of	the	given	angle.	Assumes	angle	is	given	in	degrees.

show sin 270
=> -1

size

size

This	is	a	built-in	turtle	variable.	It	holds	a	number	that	is	the	turtle's	apparent	size.	The	default	size	is	1,	which	means	that	the	turtle	is	the
same	size	as	a	patch.	You	can	set	this	variable	to	change	a	turtle's	size.

sort

sort	list
sort	agentset

Reports	a	sorted	list	of	numbers,	strings,	or	agents.

If	the	input	contains	no	numbers,	strings,	or	agents,	the	result	is	the	empty	list.

If	the	input	contains	at	least	one	number,	the	numbers	in	the	list	are	sorted	in	ascending	order	and	a	new	list	reported;	non-numbers	are
ignored.

Or,	if	the	input	contains	at	least	one	string,	the	strings	in	the	list	are	sorted	in	ascending	order	and	a	new	list	reported;	non-strings	are
ignored.

Or,	if	the	input	is	an	agentset	or	a	list	containing	at	least	one	agent,	a	sorted	list	of	agents	(never	an	agentset)	is	reported;	non-agents	are
ignored.	Agents	are	sorted	in	the	same	order	the	<	operator	uses.	(Patches	are	sorted	with	the	top	left-most	patch	first	and	the	bottom	right-
most	patch	last,	turtles	are	sorted	by	who	number).

show sort [3 1 4 2]
=> [1 2 3 4]
show sort [2 1 "a"]
=> [1 2]
show sort (list "a" "c" "b" (patch 0 0))
=> ["a" "b" "c"]
show sort (list (patch 0 0) (patch 0 1) (patch 1 0))
=> [(patch 0 1) (patch 0 0) (patch 1 0)]

;; label patches with numbers in left-to-right, top-to-bottom order

Since	1.3

Since	5.0

Since	1.0

Since	1.0

let n 0
foreach sort patches [the-patch ->
 ask the-patch [
 set plabel n
 set n n + 1
]
]

;; some additional examples to clarify behavior in strange cases
show sort (list patch 0 0 patch 0 1 patch 1 0 turtle 0 turtle 1) ; turtles are always sorted lower than patches
=> [(turtle 0) (turtle 1) (patch 0 1) (patch 0 0) (patch 1 0)]
show sort (list nobody false true) ; booleans and nobody cannot be sorted
=> []
show sort (list [1 2 3] turtles) ; lists and agentsets are not included if they are inside a list passed to sort
=> []

See	also	sort-by,	sort-on.

sort-by

sort-by	reporter	list
sort-by	reporter	agentset

If	the	input	is	a	list,	reports	a	new	list	containing	the	same	items	as	the	input	list,	in	a	sorted	order	defined	by	the	boolean	reporter.	reporter
may	be	an	anonymous	reporter	or	the	name	of	a	reporter.

The	two	inputs	to	reporter	are	the	values	being	compared.	The	reporter	should	report	true	if	the	first	argument	comes	strictly	before	the
second	in	the	desired	sort	order,	and	false	otherwise.

If	the	input	is	an	agentset	or	a	list	of	agents,	reports	a	list	(never	an	agentset)	of	agents.

If	the	input	is	a	list,	the	sort	is	stable,	that	is,	the	order	of	items	considered	equal	by	the	reporter	is	not	disturbed.	If	the	input	is	an	agentset,
ties	are	broken	randomly.

show sort-by < [3 1 4 2]
=> [1 2 3 4]
show sort-by > [3 1 4 2]
=> [4 3 2 1]
show sort-by [[string1 string2] -> length string1 < length string2] ["Grumpy" "Doc" "Happy"]
=> ["Doc" "Happy" "Grumpy"]

See	also	sort,	sort-on,	->	(anonymous	procedure).

sort-on

sort-on	[reporter]	agentset

Reports	a	list	of	agents,	sorted	according	to	each	agent's	value	for	reporter.	Ties	are	broken	randomly.

The	values	must	be	all	numbers,	all	strings,	or	all	agents	of	the	same	type.

crt 3
show sort-on [who] turtles
=> [(turtle 0) (turtle 1) (turtle 2)]
show sort-on [(- who)] turtles
=> [(turtle 2) (turtle 1) (turtle 0)]
foreach sort-on [size] turtles
 [the-turtle -> ask the-turtle [do-something]]
;; turtles run "do-something" one at a time, in
;; ascending order by size

See	also	sort,	sort-by.

sprout

sprout	number	[commands]
sprout-<breeds>	number	[commands]

Creates	number	new	turtles	on	the	current	patch.	The	new	turtles	have	random	integer	headings	and	the	color	is	randomly	selected	from	the
14	primary	colors.	The	turtles	immediately	run	commands.	This	is	useful	for	giving	the	new	turtles	different	colors,	headings,	or	whatever.
(The	new	turtles	are	created	all	at	once	then	run	one	at	a	time,	in	random	order.)

If	the	sprout-<breeds>	form	is	used,	the	new	turtles	are	created	as	members	of	the	given	breed.

sprout 5
sprout-wolves 10
sprout 1 [set color red]
sprout-sheep 1 [set color black]

See	also	create-turtles,	hatch.

sqrt

sqrt	number

Reports	the	square	root	of	number.

Since	1.0

Since	3.1

Since	1.0

Since	1.0

Since	5.2

Since	5.2

stamp

stamp
	

This	turtle	or	link	leaves	an	image	of	its	shape	in	the	drawing	at	its	current	location.

Note:	The	shapes	made	by	stamp	may	not	be	pixel-for-pixel	identical	from	computer	to	computer.

stamp-erase

stamp-erase
	

This	turtle	or	link	removes	any	pixels	below	it	in	the	drawing	inside	the	bounds	of	its	shape.

Note:	The	shapes	made	by	stamp-erase	may	not	be	pixel-for-pixel	identical	from	computer	to	computer.

standard-deviation

standard-deviation	list

Reports	the	sample	standard	deviation	of	a	list	of	numbers.	Ignores	other	types	of	items.

(Note	that	this	estimates	the	standard	deviation	for	a	sample,	rather	than	for	a	whole	population,	using	Bessel's	correction.)

show standard-deviation [1 2 3 4 5 6]
=> 1.8708286933869707
show standard-deviation [energy] of turtles
;; prints the standard deviation of the variable "energy"
;; from all the turtles

startup

startup

User-defined	procedure	which,	if	it	exists,	will	be	called	when	a	model	is	first	loaded	in	the	NetLogo	application.

to startup
 setup
end

startup	does	not	run	when	a	model	is	run	headless	from	the	command	line,	or	by	parallel	BehaviorSpace.

stop

stop

This	agent	exits	immediately	from	the	enclosing	procedure,	ask,	or	ask-like	construct	(e.g.	crt,	hatch,	sprout).	Only	the	enclosing	procedure	or
construct	stops,	not	all	execution	for	the	agent.

if not any? turtles [stop]
;; exits if there are no more turtles

Note:	stop	can	also	be	used	to	stop	a	forever	button.	See	Buttons	in	the	Programming	Guide	for	details.

stop	can	also	be	used	to	stop	a	BehaviorSpace	model	run.	If	the	go	commands	directly	call	a	procedure,	then	when	that	procedure	calls	stop,
the	run	ends.

stop-inspecting

stop-inspecting	agent

Closes	the	agent	monitor	for	the	given	agent	(turtle	or	patch).	In	the	case	that	no	agent	monitor	is	open,	stop-inspecting	does	nothing.

stop-inspecting patch 2 4
;; the agent monitor for that patch closes
ask sheep [stop-inspecting self]
;; close all agent monitors for sheep

See	inspect	and	stop-inspecting-dead-agents.

stop-inspecting-dead-agents

stop-inspecting-dead-agents

Closes	all	agent	monitors	for	dead	agents.	See	inspect	and	stop-inspecting.

Since	3.0

Since	2.1
Since	1.0

Since	2.1

Since	1.0

Since	1.0

Since	4.0

subject

subject

Reports	the	turtle	(or	patch)	that	the	observer	is	currently	watching,	following,	or	riding.	Reports	nobody	if	there	is	no	such	turtle	(or	patch).

See	also	watch,	follow,	ride.

sublist
substring

sublist	list	position1	position2
substring	string	position1	position2

Reports	just	a	section	of	the	given	list	or	string,	ranging	between	the	first	position	(inclusive)	and	the	second	position	(exclusive).

Note:	The	positions	are	numbered	beginning	with	0,	not	with	1.

show sublist [99 88 77 66] 1 3
=> [88 77]
show substring "apartment" 1 5
=> "part"

subtract-headings

subtract-headings	heading1	heading2

Computes	the	difference	between	the	given	headings,	that	is,	the	number	of	degrees	in	the	smallest	angle	by	which	heading2	could	be
rotated	to	produce	heading1.	A	positive	answer	means	a	clockwise	rotation,	a	negative	answer	counterclockwise.	The	result	is	always	in	the
range	-180	to	180,	but	is	never	exactly	-180.

Note	that	simply	subtracting	the	two	headings	using	the	-	(minus)	operator	wouldn't	work.	Just	subtracting	corresponds	to	always	rotating
clockwise	from	heading2	to	heading1;	but	sometimes	the	counterclockwise	rotation	is	shorter.	For	example,	the	difference	between	5
degrees	and	355	degrees	is	10	degrees,	not	-350	degrees.

show subtract-headings 80 60
=> 20
show subtract-headings 60 80
=> -20
show subtract-headings 5 355
=> 10
show subtract-headings 355 5
=> -10
show subtract-headings 180 0
=> 180
show subtract-headings 0 180
=> 180

sum

sum	list

Reports	the	sum	of	the	items	in	the	list.

show sum [energy] of turtles
;; prints the total of the variable "energy"
;; from all the turtles

T

tan

tan	number

Reports	the	tangent	of	the	given	angle.	Assumes	the	angle	is	given	in	degrees.

thickness

thickness

This	is	a	built-in	link	variable.	It	holds	a	number	that	is	the	link's	apparent	size	as	a	fraction	of	the	patch	size.	The	default	thickness	is	0,	which
means	that	regardless	of	patch-size	the	links	will	always	appear	1	pixel	wide.	You	can	set	this	variable	to	change	a	link's	thickness.

tick

tick

Advances	the	tick	counter	by	one	and	updates	all	plots.

Since	4.0

Since	4.0

Since	4.0

Since	1.0

If	the	tick	counter	has	not	been	started	yet	with	reset-ticks,	an	error	results.

Normally	tick	goes	at	the	end	of	a	go	procedure.

See	also	ticks,	tick-advance,	reset-ticks,	clear-ticks,	update-plots.

tick-advance

tick-advance	number

Advances	the	tick	counter	by	number.	The	input	may	be	an	integer	or	a	floating	point	number.	(Some	models	divide	ticks	more	finely	than	by
ones.)	The	input	may	not	be	negative.

When	using	tick-based	view	updates,	the	view	is	normally	updated	every	1.0	ticks,	so	using	tick-advance	with	a	number	less	then	1.0	may
not	always	trigger	an	update.	If	you	want	to	make	sure	that	the	view	is	updated,	you	can	use	the	display	command.

If	the	tick	counter	has	not	been	started	yet	with	reset-ticks,	an	error	results.

Does	not	update	plots.

See	also	tick,	ticks,	reset-ticks,	clear-ticks.

ticks

ticks

Reports	the	current	value	of	the	tick	counter.	The	result	is	always	a	number	and	never	negative.

If	the	tick	counter	has	not	been	started	yet	with	reset-ticks,	an	error	results.

Most	models	use	the	tick	command	to	advance	the	tick	counter,	in	which	case	ticks	will	always	report	an	integer.	If	the	tick-advance
command	is	used,	then	ticks	may	report	a	floating	point	number.

See	also	tick,	tick-advance,	reset-ticks,	clear-ticks.

tie

tie

Ties	end1	and	end2	of	the	link	together.	If	the	link	is	a	directed	link	end1	is	the	root	turtle	and	end2	is	the	leaf	turtle.	The	movement	of	the	root
turtle	affects	the	location	and	heading	of	the	leaf	turtle.	If	the	link	is	undirected	the	tie	is	reciprocal	so	both	turtles	can	be	considered	root
turtles	and	leaf	turtles.	Movement	or	change	in	heading	of	either	turtle	affects	the	location	and	heading	of	the	other	turtle.

When	the	root	turtle	moves,	the	leaf	turtles	moves	the	same	distance,	in	the	same	direction.	The	heading	of	the	leaf	turtle	is	not	affected.
This	works	with	forward,	jump,	and	setting	the	xcor	or	ycor	of	the	root	turtle.

When	the	root	turtle	turns	right	or	left,	the	leaf	turtle	is	rotated	around	the	root	turtle	the	same	amount.	The	heading	of	the	leaf	turtle	is	also
changed	by	the	same	amount.

If	the	link	dies,	the	tie	relation	is	removed.

 crt 2 [fd 3]
 ;; creates a link and ties turtle 1 to turtle 0
 ask turtle 0 [create-link-to turtle 1 [tie]]

See	also	untie

tie-mode

tie-mode

This	is	a	built-in	link	variable.	It	holds	a	string	that	is	the	name	of	the	tie	mode	the	link	is	currently	in.	Using	the	tie	and	untie	commands
changes	the	mode	of	the	link.	You	can	also	set	tie-mode	to	"free"	to	create	a	non-rigid	joint	between	two	turtles	(see	the	Tie	section	of	the
Programming	Guide	for	details).	By	default	links	are	not	tied.

See	also:	tie,	untie

timer

timer

Reports	how	many	seconds	have	passed	since	the	command	reset-timer	was	last	run	(or	since	NetLogo	started).	The	potential	resolution	of
the	clock	is	milliseconds.	(Whether	you	get	resolution	that	high	in	practice	may	vary	from	system	to	system,	depending	on	the	capabilities	of
the	underlying	Java	Virtual	Machine.)

See	also	reset-timer.

Note	that	the	timer	is	different	from	the	tick	counter.	The	timer	measures	elapsed	real	time	in	seconds;	the	tick	counter	measures	elapsed

Since	1.0

Since	1.0

Since	1.0

model	time	in	ticks.

to

to	procedure-name
to	procedure-name	[input1	...]

Used	to	begin	a	command	procedure.

to setup
 clear-all
 crt 500
end

to circle [radius]
 crt 100 [fd radius]
end

to-report

to-report	procedure-name
to-report	procedure-name	[input1	...]

Used	to	begin	a	reporter	procedure.

The	body	of	the	procedure	should	use	report	to	report	a	value	for	the	procedure.	See	report.

to-report average [a b]
 report (a + b) / 2
end

to-report absolute-value [number]
 ifelse number >= 0
 [report number]
 [report (- number)]
end

to-report first-turtle?
 report who = 0 ;; reports true or false
end

towards

towards	agent
	

Reports	the	heading	from	this	agent	to	the	given	agent.

If	wrapping	is	allowed	by	the	topology	and	the	wrapped	distance	(around	the	edges	of	the	world)	is	shorter,	towards	will	use	the	wrapped
path.

Note:	asking	for	the	heading	from	an	agent	to	itself,	or	an	agent	on	the	same	location,	will	cause	a	runtime	error.

set heading towards turtle 1
;; same as "face turtle 1"

See	also	face.

towardsxy

towardsxy	x	y
	

Reports	the	heading	from	the	turtle	or	patch	towards	the	point	(x,y).

If	wrapping	is	allowed	by	the	topology	and	the	wrapped	distance	(around	the	edges	of	the	world)	is	shorter,	towardsxy	will	use	the	wrapped
path.

Note:	asking	for	the	heading	to	the	point	the	agent	is	already	standing	on	will	cause	a	runtime	error.

See	also	facexy.

turtle

turtle	number
<breed>	number

Reports	the	turtle	with	the	given	who	number,	or	nobody	if	there	is	no	such	turtle.	For	breeded	turtles	you	may	also	use	the	single	breed	form
to	refer	to	them.

ask turtle 5 [set color red]
;; turtle with who number 5 turns red

Since	4.0

Since	1.0

Since	1.0

Since	1.0

Since	2.0

turtle-set

turtle-set	value1
(turtle-set	value1	value2	...)

Reports	an	agentset	containing	all	of	the	turtles	anywhere	in	any	of	the	inputs.	The	inputs	may	be	individual	turtles,	turtle	agentsets,	nobody,
or	lists	(or	nested	lists)	containing	any	of	the	above.

turtle-set self
(turtle-set self turtles-on neighbors)
(turtle-set turtle 0 turtle 2 turtle 9)
(turtle-set frogs mice)

See	also	patch-set,	link-set.

turtles

turtles

Reports	the	agentset	consisting	of	all	turtles.

show count turtles
;; prints the number of turtles

turtles-at

turtles-at	dx	dy
<breeds>-at	dx	dy
	

Reports	an	agentset	containing	the	turtles	on	the	patch	(dx,	dy)	from	the	caller.	(The	result	may	include	the	caller	itself	if	the	caller	is	a	turtle.)

create-turtles 5 [setxy 2 3]
show count [turtles-at 1 1] of patch 1 2
=> 5

If	the	name	of	a	breed	is	substituted	for	"turtles",	then	only	turtles	of	that	breed	are	included.

turtles-here

turtles-here
<breeds>-here
	

Reports	an	agentset	containing	all	the	turtles	on	the	caller's	patch	(including	the	caller	itself	if	it's	a	turtle).

crt 10
ask turtle 0 [show count turtles-here]
=> 10

If	the	name	of	a	breed	is	substituted	for	"turtles",	then	only	turtles	of	that	breed	are	included.

breed [cats cat]
breed [dogs dog]
create-cats 5
create-dogs 1
ask dogs [show count cats-here]
=> 5

turtles-on

turtles-on	agent
turtles-on	agentset
<breeds>-on	agent
<breeds>-on	agentset
	

Reports	an	agentset	containing	all	the	turtles	that	are	on	the	given	patch	or	patches,	or	standing	on	the	same	patch	as	the	given	turtle	or
turtles.

ask turtles [
 if not any? turtles-on patch-ahead 1
 [fd 1]
]
ask turtles [
 if not any? turtles-on neighbors [
 die-of-loneliness
]
]

If	the	name	of	a	breed	is	substituted	for	"turtles",	then	only	turtles	of	that	breed	are	included.

Since	1.0

Since	4.0

Since	5.0

turtles-own

turtles-own	[var1	...]
<breeds>-own	[var1	...]

The	turtles-own	keyword,	like	the	globals,	breed,	<breeds>-own,	and	patches-own	keywords,	can	only	be	used	at	the	beginning	of	a	program,
before	any	function	definitions.	It	defines	the	variables	belonging	to	each	turtle.

If	you	specify	a	breed	instead	of	"turtles",	only	turtles	of	that	breed	have	the	listed	variables.	(More	than	one	turtle	breed	may	list	the	same
variable.)

breed [cats cat]
breed [dogs dog]
breed [hamsters hamster]
turtles-own [eyes legs] ;; applies to all breeds
cats-own [fur kittens]
hamsters-own [fur cage]
dogs-own [hair puppies]

See	also	globals,	patches-own,	breed,	<breeds>-own.

type

type	value

Prints	value	in	the	Command	Center,	not	followed	by	a	carriage	return	(unlike	print	and	show).	The	lack	of	a	carriage	return	allows	you	to	print
several	values	on	the	same	line.

This	agent	is	not	printed	before	the	value.	unlike	show.

type 3 type " " print 4
=> 3 4

See	also	print,	show,	and	write.

See	also	output-type.

U

undirected-link-breed

undirected-link-breed	[<link-breeds>	<link-breed>]

This	keyword,	like	the	globals	and	breeds	keywords,	can	only	be	used	at	the	beginning	of	the	Code	tab,	before	any	procedure	definitions.	It
defines	an	undirected	link	breed.	Links	of	a	particular	breed	are	always	either	all	directed	or	all	undirected.	The	first	input	defines	the	name	of
the	agentset	associated	with	the	link	breed.	The	second	input	defines	the	name	of	a	single	member	of	the	breed.

Any	link	of	the	given	link	breed:

is	part	of	the	agentset	named	by	the	link	breed	name
has	its	built-in	variable	breed	set	to	that	agentset
is	directed	or	undirected	as	declared	by	the	keyword

Most	often,	the	agentset	is	used	in	conjunction	with	ask	to	give	commands	to	only	the	links	of	a	particular	breed.

undirected-link-breed [streets street]
undirected-link-breed [highways highway]
to setup
 clear-all
 crt 2
 ask turtle 0 [create-street-with turtle 1]
 ask turtle 0 [create-highway-with turtle 1]
end

ask turtle 0 [show sort my-links]
;; prints [(street 0 1) (highway 0 1)]

See	also	breed,	directed-link-breed

untie

untie

Unties	end2	from	end1	(sets	tie-mode	to	"none")	if	they	were	previously	tied	together.	If	the	link	is	an	undirected	link,	then	it	will	untie	end1
from	end2	as	well.	It	does	not	remove	the	link	between	the	two	turtles.

See	also	tie

See	the	Tie	section	of	the	Programming	Guide	for	more	details.

update-plots

Since	1.0
Since	1.0

Since	3.1

Since	3.1

Since	3.1

Since	1.1

update-plots

For	each	plot,	runs	that	plot's	update	commands,	including	the	update	code	for	any	pens	in	the	plot.

tick	has	the	same	effect,	so	in	models	that	use	the	tick	counter,	this	primitive	is	not	normally	used.	Models	that	use	fractional	ticks	may	need
update-plots,	since	tick-advance	does	not	update	the	plots.

See	the	Plotting	section	of	the	Programming	Guide	for	more	details.

See	also	setup-plots.

uphill
uphill4

uphill	patch-variable
uphill4	patch-variable

Moves	the	turtle	to	the	neighboring	patch	with	the	highest	value	for	patch-variable.	If	no	neighboring	patch	has	a	higher	value	than	the	current
patch,	the	turtle	stays	put.	If	there	are	multiple	patches	with	the	same	highest	value,	the	turtle	picks	one	randomly.	Non-numeric	values	are
ignored.

uphill	considers	the	eight	neighboring	patches;	uphill4	only	considers	the	four	neighbors.

Equivalent	to	the	following	code	(assumes	variable	values	are	numeric):

move-to patch-here ;; go to patch center
let p max-one-of neighbors [patch-variable] ;; or neighbors4
if [patch-variable] of p > patch-variable [
 face p
 move-to p
]

Note	that	the	turtle	always	ends	up	on	a	patch	center	and	has	a	heading	that	is	a	multiple	of	45	(uphill)	or	90	(uphill4).

See	also	downhill,	downhill4.

user-directory

user-directory

Opens	a	dialog	that	allows	the	user	to	choose	an	existing	directory	on	the	system.

It	reports	a	string	with	the	absolute	path	or	false	if	the	user	cancels.

set-current-directory user-directory
;; Assumes the user will choose a directory

user-file

user-file

Opens	a	dialog	that	allows	the	user	to	choose	an	existing	file	on	the	system.

It	reports	a	string	with	the	absolute	file	path	or	false	if	the	user	cancels.

file-open user-file
;; Assumes the user will choose a file

user-new-file

user-new-file

Opens	a	dialog	that	allows	the	user	to	choose	a	location	and	name	of	a	new	file	to	be	created.	It	reports	a	string	with	the	absolute	file	path	or
false	if	the	user	cancels.

file-open user-new-file
;; Assumes the user will choose a file

Note	that	this	reporter	doesn't	actually	create	the	file;	normally	you	would	create	the	file	using	file-open,	as	in	the	example.

If	the	user	chooses	an	existing	file,	they	will	be	asked	if	they	wish	to	replace	it	or	not,	but	the	reporter	itself	doesn't	cause	the	file	to	be
replaced.	To	do	that	you	would	use	file-delete.

user-input

user-input	value

Reports	the	string	that	a	user	types	into	an	entry	field	in	a	dialog	with	title	value.

Since	1.1

Since	3.1

Since	2.0

Since	1.0

Since	1.0

value	may	be	of	any	type,	but	is	typically	a	string.

show user-input "What is your name?"

See	the	User	Interaction	Primitives	section	of	the	Programming	Guide	for	additional	details.

user-message

user-message	value

Opens	a	dialog	with	value	displayed	as	the	message	to	the	user.

value	may	be	of	any	type,	but	is	typically	a	string.

user-message (word "There are " count turtles " turtles.")

Note	that	if	a	user	closes	the	user-message	dialog	with	the	"X"	in	the	corner,	the	behavior	will	be	the	same	as	if	they	had	clicked	"OK".

See	the	User	Interaction	Primitives	section	of	the	Programming	Guide	for	additional	details.

user-one-of

user-one-of	value	list-of-choices

Opens	a	dialog	with	value	displayed	as	the	message	and	list-of-choices	displayed	as	a	popup	menu	for	the	user	to	select	from.

Reports	the	item	in	list-of-choices	selected	by	the	user.

value	may	be	of	any	type,	but	is	typically	a	string.

if "yes" = user-one-of "Set up the model?" ["yes" "no"]
 [setup]

See	the	User	Interaction	Primitives	section	of	the	Programming	Guide	for	additional	details.

user-yes-or-no?

user-yes-or-no?	value

Reports	true	or	false	based	on	the	user's	response	to	value.

value	may	be	of	any	type,	but	is	typically	a	string.

if user-yes-or-no? "Set up the model?"
 [setup]

See	the	User	Interaction	Primitives	section	of	the	Programming	Guide	for	additional	details.

V

variance

variance	list

Reports	the	sample	variance	of	a	list	of	numbers.	Ignores	other	types	of	items.

(Note	that	this	computes	an	unbiased	estimate	of	the	variance	for	a	sample,	rather	than	for	a	whole	population,	using	Bessel's	correction.)

The	sample	variance	is	the	sum	of	the	squares	of	the	deviations	of	the	numbers	from	their	mean,	divided	by	one	less	than	the	number	of
numbers	in	the	list.

show variance [2 7 4 3 5]
=> 3.7

W

wait

wait	number

Wait	the	given	number	of	seconds.	(This	needn't	be	an	integer;	you	can	specify	fractions	of	seconds.)	Note	that	you	can't	expect	complete
precision;	the	agent	will	never	wait	less	than	the	given	amount,	but	might	wait	slightly	more.

repeat 10 [fd 1 wait 0.5]

While	the	agent	is	waiting,	no	other	agents	can	do	anything.	Everything	stops	until	the	agent	is	done.

Since	3.0

Since	3.0

Since	1.0

Since	1.0

See	also	every.

watch

watch	agent

Puts	a	spotlight	on	agent.	In	the	3D	view	the	observer	will	also	turn	to	face	the	subject.

The	observer	may	only	watch	or	follow	a	single	subject.	Calling	watch	will	undo	perspective	changes	caused	by	prior	calls	to	follow,	follow-
me,	ride,	and	ride-me.

See	also	follow,	subject,	reset-perspective,	ride,	ride-me,	watch-me.

watch-me

watch-me
	

Asks	the	observer	to	watch	this	agent.

The	observer	may	only	watch	or	follow	a	single	subject.	Calling	watch	will	undo	perspective	changes	caused	by	prior	calls	to	follow,	follow-
me,	ride,	and	ride-me.

See	also	follow,	subject,	reset-perspective,	ride,	ride-me,	watch.

while

while	[reporter]	[commands]

If	reporter	reports	false,	exit	the	loop.	Otherwise	run	commands	and	repeat.

The	reporter	may	have	different	values	for	different	agents,	so	some	agents	may	run	commands	a	different	number	of	times	than	other
agents.

while [any? other turtles-here]
 [fd 1]
;; turtle moves until it finds a patch that has
;; no other turtles on it

who

who

This	is	a	built-in	turtle	variable.	It	holds	the	turtle's	"who	number"	or	ID	number,	an	integer	greater	than	or	equal	to	zero.	You	cannot	set	this
variable;	a	turtle's	who	number	never	changes.

Who	numbers	start	at	0.	A	dead	turtle's	number	will	not	be	reassigned	to	a	new	turtle	until	you	use	the	clear-turtles	or	clear-all	commands,	at
which	time	who	numbering	starts	over	again	at	0.

Example:

show [who] of turtles with [color = red]
;; prints a list of the who numbers of all red turtles
;; in the Command Center, in random order
crt 100
 [ifelse who < 50
 [set color red]
 [set color blue]]
;; turtles 0 through 49 are red, turtles 50
;; through 99 are blue

You	can	use	the	turtle	reporter	to	retrieve	a	turtle	with	a	given	who	number.	See	also	turtle.

Note	that	who	numbers	aren't	breed-specific.	No	two	turtles	can	have	the	same	who	number,	even	if	they	are	different	breeds:

clear-turtles
create-frogs 1
create-mice 1
ask turtles [print who]
;; prints (in some random order):
;; (frog 0): 0
;; (mouse 1): 1

Even	though	we	only	have	one	mouse,	it	is	mouse 1	not	mouse 0,	because	the	who	number	0	was	already	taken	by	the	frog.

with

agentset	with	[reporter]

Takes	two	inputs:	on	the	left,	an	agentset	(usually	"turtles"	or	"patches").	On	the	right,	a	boolean	reporter.	Reports	a	new	agentset	containing
only	those	agents	that	reported	true	--	in	other	words,	the	agents	satisfying	the	given	condition.

Since	4.0

Since	2.1

Since	2.1

Since	4.0

Since	1.1

show count patches with [pcolor = red]
;; prints the number of red patches

<breed>-with
link-with

<breed>-with	turtle
link-with	turtle

Reports	a	link	between	turtle	and	the	caller	(directed	or	undirected,	incoming	or	outgoing).	If	no	link	exists	then	it	reports	nobody.	If	more	than
one	such	link	exists,	reports	a	random	one.

crt 2
ask turtle 0 [
 create-link-with turtle 1
 show link-with turtle 1 ;; prints link 0 1
]

See	also:	in-link-from,	out-link-to

with-max

agentset	with-max	[reporter]

Takes	two	inputs:	on	the	left,	an	agentset	(usually	"turtles"	or	"patches").	On	the	right,	a	reporter.	Reports	a	new	agentset	containing	all
agents	reporting	the	maximum	value	of	the	given	reporter.

show count patches with-max [pxcor]
;; prints the number of patches on the right edge

See	also	max-one-of,	max-n-of.

with-min

agentset	with-min	[reporter]

Takes	two	inputs:	on	the	left,	an	agentset	(usually	"turtles"	or	"patches").	On	the	right,	a	reporter.	Reports	a	new	agentset	containing	only
those	agents	that	have	the	minimum	value	of	the	given	reporter.

show count patches with-min [pycor]
;; prints the number of patches on the bottom edge

See	also	min-one-of,	min-n-of.

with-local-randomness

with-local-randomness	[commands]

The	commands	are	run	without	affecting	subsequent	random	events.	This	is	useful	for	performing	extra	operations	(such	as	output)	without
changing	the	outcome	of	a	model.

Example:

;; Run #1:
random-seed 50 setup repeat 10 [go]
;; Run #2:
random-seed 50 setup
with-local-randomness [watch one-of turtles]
repeat 10 [go]

Since	one-of	is	used	inside	with-local-randomness,	both	runs	will	be	identical.

Specifically	how	it	works	is,	the	state	of	the	random	number	generator	is	remembered	before	the	commands	run,	then	restored	afterwards.	(If
you	want	to	run	the	commands	with	a	fresh	random	state	instead	of	the	same	random	state	that	will	be	restored	later,	you	can	begin	the
commands	with	random-seed new-seed.)

The	following	example	demonstrates	that	the	random	number	generator	state	is	the	same	both	before	the	commands	run	and	afterwards.

random-seed 10
with-local-randomness [print n-values 10 [random 10]]
;; prints [8 9 8 4 2 4 5 4 7 9]
print n-values 10 [random 10]
;; prints [8 9 8 4 2 4 5 4 7 9]

without-interruption

without-interruption	[commands]

This	primitive	exists	only	for	backwards	compatibility.	We	don't	recommend	using	it	in	new	models.

Since	1.0

Since	3.1
Since	3.1

Since	1.0

Since	2.0

The	agent	runs	all	the	commands	in	the	block	without	allowing	other	agents	using	ask-concurrent	to	"interrupt".	That	is,	other	agents	are	put
"on	hold"	and	do	not	run	any	commands	until	the	commands	in	the	block	are	finished.

Note:	This	command	is	only	useful	in	conjunction	with	ask-concurrent.

See	also	ask-concurrent.

word

word	value1	value2
(word	value1	...)

Concatenates	the	inputs	together	and	reports	the	result	as	a	string.

show word "tur" "tle"
=> "turtle"
word "a" 6
=> "a6"
set directory "c:\\foo\\fish\\"
show word directory "bar.txt"
=> "c:\foo\fish\bar.txt"
show word [1 54 8] "fishy"
=> "[1 54 8]fishy"
show (word 3)
=> "3"
show (word "a" "b" "c" 1 23)
=> "abc123"

world-width
world-height

world-width
world-height

These	reporters	give	the	total	width	and	height	of	the	NetLogo	world.

The	width	equals	max-pxcor	-	min-pxcor	+	1	and	the	height	equals	max-pycor	-	min-pycor	+	1.

See	also	max-pxcor,	max-pycor,	min-pxcor,	and	min-pycor

wrap-color

wrap-color	number

wrap-color	checks	whether	number	is	in	the	NetLogo	color	range	of	0	to	140	(not	including	140	itself).	If	it	is	not,	wrap-color	"wraps"	the
numeric	input	to	the	0	to	140	range.

The	wrapping	is	done	by	repeatedly	adding	or	subtracting	140	from	the	given	number	until	it	is	in	the	0	to	140	range.	(This	is	the	same
wrapping	that	is	done	automatically	if	you	assign	an	out-of-range	number	to	the	color	turtle	variable	or	pcolor	patch	variable.)

show wrap-color 150
=> 10
show wrap-color -10
=> 130

write

write	value

This	command	will	output	value,	which	can	be	a	number,	string,	list,	boolean,	or	nobody	to	the	Command	Center,	not	followed	by	a	carriage
return	(unlike	print	and	show).

This	agent	is	not	printed	before	the	value,	unlike	show.	Its	output	also	includes	quotes	around	strings	and	is	prepended	with	a	space.

write "hello world"
=> "hello world"

See	also	print,	show,	and	type.

See	also	output-write.

X

xcor

xcor

This	is	a	built-in	turtle	variable.	It	holds	the	current	x	coordinate	of	the	turtle.	You	can	set	this	variable	to	change	the	turtle's	location.

This	variable	is	always	greater	than	or	equal	to	(min-pxcor	-	0.5)	and	strictly	less	than	(max-pxcor	+	0.5).

See	also	setxy,	ycor,	pxcor,	pycor,

Since	1.0

Since	6.0

xor

boolean1	xor	boolean2

Reports	true	if	either	boolean1	or	boolean2	is	true,	but	not	when	both	are	true.

if (pxcor > 0) xor (pycor > 0)
 [set pcolor blue]
;; upper-left and lower-right quadrants turn blue

Y

ycor

ycor

This	is	a	built-in	turtle	variable.	It	holds	the	current	y	coordinate	of	the	turtle.	You	can	set	this	variable	to	change	the	turtle's	location.

This	variable	is	always	greater	than	or	equal	to	(min-pycor	-	0.5)	and	strictly	less	than	(max-pycor	+	0.5).

See	also	setxy,	xcor,	pxcor,	pycor,

->

->

[[args]	->	commands]
[[args]	->	reporter]

Creates	and	reports	an	anonymous	procedure	-	a	command	or	reporter	-	depending	on	the	input.	Within	commands	or	reporter	the	listed	args
may	be	used	just	as	you	would	use	let	or	procedure	variables.	The	variable	names	in	args	have	the	same	restrictions	as	variable	names	of
commands	and	reporters.	In	addition,	they	must	not	match	the	name	of	any	let	or	procedure	variable	in	their	procedure.

Anonymous	procedures	are	commonly	used	with	the	primitives	foreach,	map,	reduce,	filter,	sort-by,	and	n-values.	See	those	entries	for
example	usage.

See	the	Anonymous	Procedures	section	of	the	Programming	Guide	for	details.

	Table of Contents
	What is NetLogo?
	Features

	Copyright and License Information
	How to reference
	Acknowledgments
	NetLogo license
	Commercial licenses
	NetLogo User Manual license
	Open source
	Third party licenses
	Scala
	MersenneTwisterFast
	Colt
	Config
	Apache Commons Codec (TM)
	Flexmark
	JHotDraw
	JOGL
	Matrix3D
	ASM
	Log4j
	PicoContainer
	Parboiled
	RSyntaxTextArea
	JCodec
	Java-Objective-C Bridge
	Webcam-capture
	Guava
	Gephi
	R Extension
	JNA

	What's New?
	Version 6.0.2 (August 2017)
	Feature Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes
	New Sample Models:
	New Curricular Models:
	Revised Sample Models:
	Revised Curricular Models:
	Revised HubNet Activities:
	Revised Code Examples:

	Version 6.0.1 (March 2017)
	Feature Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Models
	New Sample Model
	New Curricular Model
	Revised Sample Models
	Revised Curricular Models

	Version 6.0 (December 2016)
	Feature Changes
	Bugfixes
	Language Changes
	Extension Changes
	Operating System Support
	Documentation Changes
	Internationalization Changes
	Models
	New Sample Models:
	New Curricular Models:
	New Code Examples:
	Promoted Models (improved and no longer "unverified"):
	Revised Sample Models:
	Revised HubNet Activities:
	Revised Curricular Models:
	Revised IABM models:
	Revised Code Examples:
	Demoted model:

	Version 5.3.1 (February 2016)
	Feature Changes
	Extension Changes
	Bugfixes

	Version 5.3 (December 2015)
	Feature Changes
	Extension Changes

	Version 5.2.1 (September 2015)
	Extensions
	New features
	Bug fixes
	Model changes

	Version 5.2.0 (April 2015)
	Extensions
	New features
	Bug fixes
	Model changes

	Version 5.1.0 (July 2014)
	Version 5.0.4 (March 2013)
	Version 5.0 (February 2012)
	Version 4.1.3 (April 2011)
	Version 4.1 (December 2009)
	Version 4.0 (September 2007)
	Version 3.1 (April 2006)
	Version 3.0 (September 2005)
	Version 2.1 (December 2004)
	Version 2.0.2 (August 2004)
	Version 2.0 (December 2003)
	Version 1.3 (June 2003)
	Version 1.2 (March 2003)
	Version 1.1 (July 2002)
	Version 1.0 (April 2002)

	System Requirements
	Application Requirements
	Windows
	Mac OS X
	Linux

	3D Requirements
	32-bit or 64-bit?

	Contacting Us
	Web site
	Feedback, questions, etc.
	Reporting bugs
	Open source

	Sample Model: Party
	At a Party
	Challenge
	Thinking with models
	What's next?

	Tutorial #1: Models
	Sample Model: Wolf Sheep Predation
	Controlling the Model: Buttons
	Controlling speed: Speed Slider
	Adjusting Settings: Sliders and Switches
	Gathering Information: Plots and Monitors
	Plots
	Monitors

	Controlling the View
	Models Library
	Sample Models
	Curricular Models
	Code Examples
	HubNet Activities

	What's Next?

	Tutorial #2: Commands
	Sample Model: Traffic Basic
	Command Center
	Working with colors
	Agent Monitors and Agent Commanders
	What's Next?

	Tutorial #3: Procedures
	Agents and procedures
	Making the setup button
	Switching to tick-based view updates
	Making the go button
	Experimenting with commands
	Patches and variables
	Turtle variables
	Monitors
	Switches and labels
	More procedures
	Plotting
	Tick counter
	Some more details
	What's next?
	Appendix: Complete code

	Interface Guide
	Menus
	Chart: NetLogo menus

	Tabs
	International Usage
	Character sets
	Languages
	Default language

	Support for translators

	Interface Tab Guide
	Working with interface elements
	Chart: Interface Toolbar
	The 2D and 3D views
	Manipulating the 3D View
	Fullscreen Mode
	3D Shapes

	Command Center
	Reporters
	Accessing previous commands
	Clearing
	Arranging

	Plots
	Plot Pens
	Plot Pen Advanced Settings

	Sliders
	Agent Monitors

	Info Tab
	Editing
	Headings
	Input

	Paragraphs
	Example
	Formatted

	Italicized and bold text
	Example
	Formatted

	Ordered lists
	Example
	Formatted

	Unordered lists
	Example
	Formatted

	Links
	Automatic links
	Example
	Formatted

	Links with text
	Example
	Formatted

	Local links
	Example
	Example

	Images
	Example
	Formatted
	Local images
	Example
	Formatted

	Block quotations
	Example
	Formatted

	Code
	Example
	Formatted

	Code blocks
	Example
	Formatted

	Superscripts and subscripts
	Example
	Formatted

	Notes on usage
	Other features

	Code Tab Guide
	Included Files Menu
	Automatic indentation

	Programming Guide
	Agents
	Procedures
	Variables
	Tick counter
	When to tick
	Fractional ticks

	Colors
	Ask
	Agentsets
	Special agentsets
	Agentsets and lists

	Breeds
	Link breeds

	Buttons
	Lists
	Math
	Random numbers
	Auxiliary generator
	Local randomness

	Turtle shapes
	Link shapes
	View updates
	Continuous updates
	Tick-based updates
	Choosing a mode
	Frame rate

	Plotting
	Plotting points
	Plot commands
	Other kinds of plots
	Histograms
	Clearing and resetting
	Ranges and auto scaling
	Using a Legend
	Temporary plot pens
	set-current-plot and set-current-plot-pen
	Conclusion

	Strings
	Output
	File I/O
	Movies
	Perspective
	Drawing
	Topology
	Links
	Anonymous procedures
	Anonymous procedure primitives
	Anonymous procedure inputs
	Anonymous procedures and strings
	Concise syntax
	Anonymous procedures as closures
	Nonlocal exits
	Anonymous procedures and extensions
	Limitations
	What is Optional?
	Code example

	Ask-Concurrent
	User Interaction Primitives
	What does "Halt" mean?

	Tie
	Multiple source files
	Syntax
	Colors
	Notice
	Keywords
	Identifiers
	Scope
	Comments
	Structure
	Commands and reporters
	Compared to other Logos
	Surface differences
	Deeper differences

	Transition Guide
	Changes for NetLogo 6.0
	Tasks replaced by Anonymous Procedures
	Link reporters overhauled to be more consistent and flexible
	New link reporter behavior
	Old link reporter behavior

	Removal of Applets
	Changes to the NetLogo User Interface
	Nobody Not Permitted as a Chooser Value
	Breeds must have singular and plural names
	Removal of "Movie" Prims
	Improved Name Collision Detection
	Removal of hubnet-set-client-interface
	Improved & Updated Extensions API
	Add range primitive

	Changes for NetLogo 5.2
	hsb primitives
	GoGo extension

	Changes for NetLogo 5.0
	Plotting
	Tick counter
	reset-ticks
	reset-ticks and plotting
	__clear-all-and-reset-ticks

	Unicode characters
	Info tabs
	Model speed
	List performance
	Extensions API
	Syntax constants
	LogoList construction
	Primitive classes

	Changes for NetLogo 4.1
	Combining set and of

	Changes for NetLogo 4.0
	Who numbering
	Turtle creation: randomized vs. "ordered"
	Adding strings and lists
	The -at primitives
	Links
	New "of" syntax
	Serial ask
	Tick counter
	View update modes
	How to make a model use ticks and tick-based updates

	Speed slider
	Numbers
	Agentset building
	RGB Colors
	Tie

	Changes for NetLogo 3.1
	Agentsets
	Wrapping
	Random turtle coordinates

	Shapes Editor Guide
	Getting started
	Importing shapes

	Creating and editing turtle shapes
	Tools
	Previews
	Overlapping shapes
	Undo
	Colors
	Other buttons
	Shape design
	Keeping a shape

	Creating and editing link shapes
	Changing link shape properties

	Using shapes in a model

	BehaviorSpace Guide
	What is BehaviorSpace?
	Why BehaviorSpace?

	How It Works
	Managing experiment setups
	Creating an experiment setup
	Special primitives for BehaviorSpace experiments
	Running an experiment
	Run options: formats
	Run options: parallel runs
	Observing runs

	Advanced usage
	Running from the command line
	How to use it
	Examples

	Setting up experiments in XML
	Adjusting JVM Parameters
	Controlling API

	System Dynamics Guide
	What is the NetLogo System Dynamics Modeler?
	Basic Concepts
	Sample Models

	How it Works
	Diagram Tab
	Creating Diagram Elements
	Working with Diagram Elements
	Editing dt
	Errors

	Code Tab
	The System Dynamics Modeler and NetLogo

	Tutorial: Wolf-Sheep Predation
	Step 1: Sheep Reproduction
	Step 2: NetLogo Integration
	Step 3: Wolf Predation

	HubNet Guide
	Understanding HubNet
	NetLogo
	HubNet Architecture

	Computer HubNet
	Activities
	Clients
	Requirements
	Starting an activity
	HubNet Control Center
	Troubleshooting
	I started a HubNet activity, but when participants open a HubNet Client, my activity isn't listed.
	When a participant tries to connect to an activity, nothing happens (the client appears to hang or gives an error saying that no server was found).
	The view on the HubNet client is gray.
	There is no view on the HubNet client.
	I can't quit a HubNet client.
	My computer went to sleep while running a HubNet activity. When I woke the computer up, I got an error and HubNet wouldn't work anymore.
	My problem is not addressed on this page.

	Known Limitations

	Teacher workshops
	HubNet Authoring Guide
	Running HubNet in headless mode
	Getting help

	HubNet Authoring Guide
	Coding HubNet activities
	Setup
	Receiving messages from clients
	Sending messages to clients
	Examples

	How to make a client interface
	View updates on the clients
	Clicking in the view on clients
	Customizing the client's view
	Plot updates on the clients

	Modeling Commons Guide
	Introduction
	Modeling Commons Accounts
	Uploading Models
	Upload A New Model
	Upload A Child Of An Existing Model ("forking")
	Updating An Existing Model

	Logging
	Starting logging
	Mac OS X or Windows
	Linux and others

	Using logging
	Where logs are stored
	How to configure the logging output

	Advanced Configuration

	Controlling Guide
	Mathematica Link
	What is it?
	What can I do with it?
	Installation
	Usage
	Known Issues
	Source code
	Credits

	NetLogo 3D
	Introduction
	3D Worlds
	The observer and the 3D view
	Custom Shapes

	Tutorial
	Step 1: Depth
	Step 2: Turtle Movement
	Step 3: Observer Movement

	Dictionary
	Commands and Reporters
	Turtle-related primitives
	Patch-related primitives
	Agentset primitives
	World primitives
	Observer primitives
	Link primitives

	Built-In Variables
	Turtles
	Patches

	Primitives
	at-points4.1
	agentset at-points [[x1 y1 z1] [x2 y2 z2] ...]

	distancexyz4.1 distancexyz-nowrap4.1
	distancexyz xcor ycor zcor distancexyz-nowrap xcor ycor zcor

	dz4.1
	dz

	face facexyz4.1
	face agent facexyz x y z

	left4.1
	left number

	link-pitch4.1.2
	link-pitch

	load-shapes-3d4.1
	load-shapes-3d filename

	max-pzcor4.1 min-pzcor4.1
	max-pzcor min-pzcor

	neighbors4.1 neighbors64.1
	neighbors neighbors6

	orbit-down4.1 orbit-left4.1 orbit-right4.1 orbit-up4.1
	orbit-down number orbit-left number orbit-right number orbit-up number

	__oxcor __oycor __ozcor
	__oxcor __oycor __ozcor

	patch4.1
	patch pxcor pycor pzcor

	patch-at4.1
	patch-at dx dy dz

	patch-at-heading-pitch-and-distance4.1
	patch-at-heading-pitch-and-distance heading pitch distance

	pitch
	pitch

	pzcor
	pzcor

	random-pzcor4.1
	random-pzcor

	random-zcor4.1
	random-zcor

	right4.1
	right number

	roll
	roll

	roll-left4.1
	roll-left number

	roll-right4.1
	roll-right number

	setxyz4.1
	setxyz x y z

	tilt-down4.1 tilt-up4.1
	tilt-down number tilt-up number

	towards-pitch4.1 towards-pitch-nowrap4.1
	towards-pitch agent towards-pitch-nowrap agent

	towards-pitch-xyz4.1 towards-pitch-xyz-nowrap4.1
	towards-pitch-xyz x y z towards-pitch-xyz-no-wrap x y z

	turtles-at4.1 <breeds>-at
	turtles-at dx dy dz <breeds>-at dx dy dz

	world-depth4.1
	world-depth

	zcor
	zcor

	zoom4.1
	zoom number

	Extensions Guide
	Using Extensions
	Where extensions are located

	NetLogo Arduino Extension
	Using
	Notes
	Compatibility
	Questions

	Primitives
	arduino:primitives
	arduino:primitives

	arduino:ports
	arduino:ports

	arduino:open
	arduino:open port-name

	arduino:close
	arduino:close

	arduino:get
	arduino:get var-name

	arduino:write-string
	arduino:write-string string-message

	arduino:write-int
	arduino:write-int int-message

	arduino:write-byte
	arduino:write-byte byte-message

	arduino:is-open?
	arduino:is-open?

	NetLogo Array Extension
	Using
	When to Use
	Example use of Array Extension

	Primitives
	array:from-list
	array:from-list list

	array:item
	array:item array index

	array:set
	array:set array index value

	array:length
	array:length array

	array:to-list
	array:to-list array

	NetLogo Bitmap Extension
	Using
	What does the Bitmap Extension do?
	Getting started

	Primitives
	bitmap:average-color
	bitmap:average-color image

	bitmap:channel
	bitmap:channel image channel

	bitmap:copy-to-drawing
	bitmap:copy-to-drawing image x y

	bitmap:copy-to-pcolors
	bitmap:copy-to-pcolors image boolean

	bitmap:difference-rgb
	bitmap:difference-rgb image1 image2

	bitmap:export
	bitmap:export image filename

	bitmap:from-view
	bitmap:from-view

	bitmap:to-grayscale
	bitmap:to-grayscale image

	bitmap:height
	bitmap:height image

	bitmap:import
	bitmap:import filename

	bitmap:scaled
	bitmap:scaled image width height

	bitmap:width
	bitmap:width image

	NetLogo Cf Extension
	Using
	Cases
	Primitives
	cf:when
	cf:when list-of-cases

	cf:select
	cf:select list-of-cases

	cf:match
	cf:match value list-of-cases

	cf:matching
	value cf:matching list-of-cases

	cf:case
	cf:case condition consequent list-of-remaining-cases

	cf:case-is
	cf:case-is relationship consequent list-of-remaining-cases

	cf:else
	cf:else command/reporter

	NetLogo Csv Extension
	Common use cases and examples
	Read a file all at once
	Read a file one line at a time
	Read a file one line per tick
	Write a file

	Primitives
	Formatting NetLogo data as CSV
	Parsing CSV input to NetLogo data
	csv:from-row
	csv:from-row string csv:from-row string delimiter

	csv:from-string
	csv:from-string string csv:from-string string delimiter

	csv:from-file
	csv:from-file csv-file csv:from-file csv-file delimiter

	csv:to-row
	csv:to-row list csv:to-row list delimiter

	csv:to-string
	csv:to-string list csv:to-string list delimiter

	csv:to-file
	csv:to-file csv-file list csv:to-file csv-file list delimiter

	NetLogo Gis Extension
	Using
	How to use
	Known Issues
	Credits

	Primitives
	RasterDataset Primitives
	Dataset Primitives
	VectorDataset Primitives
	Coordinate System Primitives
	Drawing Primitives
	gis:set-transformation
	gis:set-transformation gis-envelope netlogo-envelope

	gis:set-transformation-ds
	gis:set-transformation-ds gis-envelope netlogo-envelope

	gis:set-world-envelope
	gis:set-world-envelope gis-envelope

	gis:set-world-envelope-ds
	gis:set-world-envelope-ds gis-envelope

	gis:world-envelope
	gis:world-envelope

	gis:envelope-of
	gis:envelope-of thing

	gis:envelope-union-of
	gis:envelope-union-of envelope1 envelope2 gis:envelope-union-of envelope1 ...

	gis:load-coordinate-system
	gis:load-coordinate-system file

	gis:set-coordinate-system
	gis:set-coordinate-system system

	gis:load-dataset
	gis:load-dataset file

	gis:store-dataset
	gis:store-dataset dataset file

	gis:type-of
	gis:type-of dataset

	gis:patch-dataset
	gis:patch-dataset patch-variable

	gis:turtle-dataset
	gis:turtle-dataset turtle-set

	gis:link-dataset
	gis:link-dataset link-set

	gis:shape-type-of
	gis:shape-type-of VectorDataset

	gis:property-names
	gis:property-names VectorDataset

	gis:feature-list-of
	gis:feature-list-of VectorDataset

	gis:vertex-lists-of
	gis:vertex-lists-of VectorFeature

	gis:centroid-of
	gis:centroid-of VectorFeature

	gis:location-of
	gis:location-of Vertex

	gis:property-value
	gis:property-value VectorFeature property-name

	gis:find-features
	gis:find-features VectorDataset property-name specified-value

	gis:find-one-feature
	gis:find-one-feature VectorDataset property-name specified-value

	gis:find-less-than
	gis:find-less-than VectorDataset property-name value

	gis:find-greater-than
	gis:find-greater-than VectorDataset property-name value

	gis:find-range
	gis:find-range VectorDataset property-name minimum-value maximum-value

	gis:property-minimum
	gis:property-minimum VectorDataset property-name

	gis:property-maximum
	gis:property-maximum VectorDataset property-name

	gis:apply-coverage
	gis:apply-coverage VectorDataset property-name patch-variable

	gis:coverage-minimum-threshold
	gis:coverage-minimum-threshold

	gis:set-coverage-minimum-threshold
	gis:set-coverage-minimum-threshold new-threshold

	gis:coverage-maximum-threshold
	gis:coverage-maximum-threshold

	gis:set-coverage-maximum-threshold
	gis:set-coverage-maximum-threshold new-threshold

	gis:intersects?
	gis:intersects? x y

	gis:contains?
	gis:contains? x y

	gis:contained-by?
	gis:contained-by? x y

	gis:have-relationship?
	gis:have-relationship? x y

	gis:relationship-of
	gis:relationship-of x y

	gis:intersecting
	patch-set gis:intersecting data

	gis:width-of
	gis:width-of RasterDataset

	gis:height-of
	gis:height-of RasterDataset

	gis:raster-value
	gis:raster-value RasterDataset x y

	gis:set-raster-value
	gis:set-raster-value RasterDataset x y value

	gis:minimum-of
	gis:minimum-of RasterDataset

	gis:maximum-of
	gis:maximum-of RasterDataset

	gis:sampling-method-of
	gis:sampling-method-of RasterDataset

	gis:set-sampling-method
	gis:set-sampling-method RasterDataset sampling-method

	gis:raster-sample
	gis:raster-sample RasterDataset sample-location

	gis:raster-world-envelope
	gis:raster-world-envelope RasterDataset x y

	gis:create-raster
	gis:create-raster width height envelope

	gis:resample
	gis:resample RasterDataset envelope width height

	gis:convolve
	gis:convolve RasterDataset kernel-rows kernel-columns kernel key-column key-row

	gis:apply-raster
	gis:apply-raster RasterDataset patch-variable

	gis:drawing-color
	gis:drawing-color

	gis:set-drawing-color
	gis:set-drawing-color color

	gis:draw
	gis:draw vector-data line-thickness

	gis:fill
	gis:fill vector-data line-thickness

	gis:paint
	gis:paint RasterDataset transparency

	gis:import-wms-drawing
	gis:import-wms-drawing server-url spatial-reference layers transparency

	NetLogo Gogo Extension
	Usage
	Changes
	Primitives
	Other Outputs
	Utilities
	General
	Sensors
	Outputs and Servos
	gogo:primitives
	gogo:primitives

	gogo:howmany-gogos
	gogo:howmany-gogos

	gogo:talk-to-output-ports
	gogo:talk-to-output-ports list-of-portnames

	gogo:set-output-port-power
	gogo:set-output-port-power power-level

	gogo:output-port-on
	gogo:output-port-on

	gogo:output-port-off
	gogo:output-port-off

	gogo:output-port-clockwise
	gogo:output-port-clockwise

	gogo:output-port-counterclockwise
	gogo:output-port-counterclockwise

	gogo:set-servo
	gogo:set-servo number

	gogo:led
	gogo:led on-or-off

	gogo:beep
	gogo:beep

	gogo:read-sensors
	gogo:read-sensors

	gogo:read-sensor
	gogo:read-sensor which-sensor

	gogo:read-all
	gogo:read-all

	gogo:send-bytes
	gogo:send-bytes list

	NetLogo Ls Extension
	LevelSpace fundamentals
	Headless and Interactive Models
	Keeping Track of Models
	A general use case: Asking and Reporting
	A general use case: Inter-Model Interactions
	A general Usecase: Tidying up “Dead” Child Models

	Citing LevelSpace in Research
	Primitives
	Commanding and Reporting
	Logic and Control
	Opening and Closing Models
	ls:create-models
	ls:create-models number path ls:create-models number path anonymous command

	ls:create-interactive-models
	ls:create-interactive-models number path ls:create-interactive-models number path anonymous command

	ls:close
	ls:close model-or-list-of-models

	ls:reset
	ls:reset

	ls:ask
	ls:ask model-or-list-of-models command argument

	ls:of
	reporter ls:of model-or-list-of-models

	ls:report
	ls:report model-or-list-of-models reporter argument

	ls:with
	list-of-models ls:with reporter

	ls:let
	ls:let variable-name value

	ls:models
	ls:models

	ls:show
	ls:show model-or-list-of-models

	ls:show-all
	ls:show-all model-or-list-of-models

	ls:hide
	ls:hide model-or-list-of-models

	ls:hide-all
	ls:hide-all model-or-list-of-models

	ls:path-of
	ls:path-of model-or-list-of-models

	ls:name-of
	ls:name-of model-or-list-of-models

	ls:model-exists?
	ls:model-exists? model-or-list-of-models

	NetLogo Matrix Extension
	Using
	When to Use
	How to Use
	Example

	Primitives
	Matrix creation and conversion to/from lists
	Advanced features
	Matrix data retrieval and manipulation
	Math operations
	matrix:make-constant
	matrix:make-constant n-rows n-cols initialValue

	matrix:make-identity
	matrix:make-identity size

	matrix:from-row-list
	matrix:from-row-list nested-list

	matrix:from-column-list
	matrix:from-column-list nested-list

	matrix:to-row-list
	matrix:to-row-list matrix

	matrix:to-column-list
	matrix:to-column-list matrix

	matrix:copy
	matrix:copy matrix

	matrix:pretty-print-text
	matrix:pretty-print-text matrix

	matrix:get
	matrix:get matrix row-i col-j

	matrix:get-row
	matrix:get-row matrix row-i

	matrix:get-column
	matrix:get-column matrix col-j

	matrix:set
	matrix:set matrix row-i col-j new-value

	matrix:set-row
	matrix:set-row matrix row-i simple-list

	matrix:set-column
	matrix:set-column matrix col-j simple-list

	matrix:swap-rows
	matrix:swap-rows matrix row1 row2

	matrix:swap-columns
	matrix:swap-columns matrix col1 col2

	matrix:set-and-report
	matrix:set-and-report matrix row-i col-j new-value

	matrix:dimensions
	matrix:dimensions matrix

	matrix:submatrix
	matrix:submatrix matrix r1 c1 r2 c2

	matrix:map
	matrix:map anonymous reporter matrix matrix:map anonymous reporter matrix anything

	matrix:times-scalar
	matrix:times-scalar matrix factor

	matrix:times
	matrix:times m1 m2 matrix:times m1 m2 ...

	matrix:*
	m1 matrix:* m2

	matrix:times-element-wise
	matrix:times-element-wise m1 m2

	matrix:plus-scalar
	matrix:plus-scalar matrix number

	matrix:plus
	matrix:plus m1 m2 matrix:plus m1 m2 ...

	matrix:+
	m1 matrix:+ m2

	matrix:minus
	matrix:minus m1 m2 matrix:minus m1 m2 ...

	matrix:-
	m1 matrix:- m2

	matrix:inverse
	matrix:inverse matrix

	matrix:transpose
	matrix:transpose matrix

	matrix:real-eigenvalues
	matrix:real-eigenvalues matrix

	matrix:imaginary-eigenvalues
	matrix:imaginary-eigenvalues matrix

	matrix:eigenvectors
	matrix:eigenvectors matrix

	matrix:det
	matrix:det matrix

	matrix:rank
	matrix:rank matrix

	matrix:trace
	matrix:trace matrix

	matrix:solve
	matrix:solve A C

	matrix:forecast-linear-growth
	matrix:forecast-linear-growth data-list

	matrix:forecast-compound-growth
	matrix:forecast-compound-growth data-list

	matrix:forecast-continuous-growth
	matrix:forecast-continuous-growth data-list

	matrix:regress
	matrix:regress data-matrix

	NetLogo Nw Extension
	Usage
	Special agentsets vs normal agentsets

	A note regarding floating point calculations
	Performance
	Primitives
	Generators
	Path and Distance
	Clusterer/Community Detection
	Context Management
	Import and Export
	Centrality Measures
	Clustering Measures
	nw:set-context
	nw:set-context turtleset linkset

	nw:get-context
	nw:get-context

	nw:with-context
	nw:with-context turtleset linkset command-block

	nw:turtles-in-radius
	nw:turtles-in-radius radius

	nw:turtles-in-reverse-radius
	nw:turtles-in-reverse-radius radius

	nw:distance-to
	nw:distance-to target-turtle

	nw:weighted-distance-to
	nw:weighted-distance-to target-turtle weight-variable

	nw:path-to
	nw:path-to target-turtle

	nw:turtles-on-path-to
	nw:turtles-on-path-to target-turtle

	nw:weighted-path-to
	nw:weighted-path-to target-turtle weight-variable

	nw:turtles-on-weighted-path-to
	nw:turtles-on-weighted-path-to target-turtle weight-variable

	nw:mean-path-length
	nw:mean-path-length

	nw:mean-weighted-path-length
	nw:mean-weighted-path-length weight-variable

	nw:betweenness-centrality
	nw:betweenness-centrality

	nw:eigenvector-centrality
	nw:eigenvector-centrality

	nw:page-rank
	nw:page-rank

	nw:closeness-centrality
	nw:closeness-centrality

	nw:weighted-closeness-centrality
	nw:weighted-closeness-centrality link-weight-variable

	nw:clustering-coefficient
	nw:clustering-coefficient

	nw:modularity
	nw:modularity

	nw:bicomponent-clusters
	nw:bicomponent-clusters

	nw:weak-component-clusters
	nw:weak-component-clusters

	nw:louvain-communities
	nw:louvain-communities

	nw:maximal-cliques
	nw:maximal-cliques

	nw:biggest-maximal-cliques
	nw:biggest-maximal-cliques

	nw:generate-preferential-attachment
	nw:generate-preferential-attachment turtle-breed link-breed num-nodes optional-command-block

	nw:generate-random
	nw:generate-random turtle-breed link-breed num-nodes connection-probability optional-command-block

	nw:generate-watts-strogatz
	nw:generate-watts-strogatz turtle-breed link-breed num-nodes neighborhood-size rewire-probability optional-command-block

	nw:generate-small-world
	nw:generate-small-world turtle-breed link-breed row-count column-count clustering-exponent is-toroidal optional-command-block

	nw:generate-lattice-2d
	nw:generate-lattice-2d turtle-breed link-breed row-count column-count is-toroidal optional-command-block

	nw:generate-ring
	nw:generate-ring turtle-breed link-breed num-nodes optional-command-block

	nw:generate-star
	nw:generate-star turtle-breed link-breed num-nodes optional-command-block

	nw:generate-wheel
	nw:generate-wheel turtle-breed link-breed num-nodes optional-command-block

	nw:save-matrix
	nw:save-matrix file-name

	nw:load-matrix
	nw:load-matrix file-name optional-command-block

	nw:save-graphml
	nw:save-graphml file-name

	nw:load-graphml
	nw:load-graphml file-name optional-command-block

	nw:load
	nw:load file-name default-turtle-breed default-link-breed optional-command-block

	nw:save
	nw:save file-name

	NetLogo Palette Extension
	Using the Palette Extension
	Getting Started
	What colors should I use ?
	Should I use a continuous color gradient or just a discrete color set ?
	Example Models
	Further Reading

	Primitives
	palette:scale-gradient
	palette:scale-gradient rgb-color-list number range1 range2

	palette:scale-scheme
	palette:scale-scheme scheme-type scheme-color number-of-classes range1 range2

	palette:scheme-colors
	palette:scheme-colors scheme-type scheme-color number-of-classes

	palette:scale-gradient
	palette:scale-gradient rgb-color-list number range1 range2

	References

	NetLogo Profiler Extension
	Using the Profiler Extension
	How to use
	Example

	Primitives
	profiler:calls
	profiler:calls procedure-name

	profiler:exclusive-time
	profiler:exclusive-time procedure-name

	profiler:inclusive-time
	profiler:inclusive-time procedure-name

	profiler:start
	profiler:start

	profiler:stop
	profiler:stop

	profiler:reset
	profiler:reset

	profiler:report
	profiler:report

	NetLogo R Extension
	Using
	Some Tips
	Plotting
	Load and Save data from/into file(s)
	Data.frame with vector in cells
	Load an R-Script
	Load a Package
	Interactive Shell
	Environments In the R Extension
	Memory
	Headless

	Installing
	Installing R
	Configuring the R extension
	Configuring the Windows PATH
	Notes on editing “user.properties” on Windows

	Determining r.home and jri.home.paths

	Primitives
	r:clear
	r:clear

	r:clearLocal
	r:clearLocal

	r:eval
	r:eval R-command

	r:__evaldirect
	r:__evaldirect R-command

	r:gc
	r:gc

	r:get
	r:get R-command

	r:interactiveShell
	r:interactiveShell

	r:put
	r:put name value

	r:putagent
	r:putagent name agent variables r:putagent name agentset variables

	r:putagentdf
	r:putagentdf name agent variables r:putagentdf name agentset variables

	r:putdataframe
	r:putdataframe name varname value r:putdataframe name varname value varname2 value2 ...

	r:putlist
	r:putlist name value

	r:putnamedlist
	r:putnamedlist name varname value r:putnamedlist name varname value varname2 value2 ...

	r:setPlotDevice
	r:setPlotDevice

	r:stop
	r:stop

	Troubleshooting
	Loading R packages fails
	After changing the working directory in R (e.g. with setwd()) NetLogo doesn’t find the extension
	Specific error code list

	Citation
	Copyright and License

	NetLogo Rnd Extension
	Usage
	A note about performance
	Primitives
	AgentSet Primitives
	List Primitives
	rnd:weighted-one-of
	rnd:weighted-one-of agentset reporter

	rnd:weighted-n-of
	rnd:weighted-n-of size agentset [reporter]

	rnd:weighted-n-of-with-repeats
	rnd:weighted-n-of-with-repeats size agentset [reporter]

	rnd:weighted-one-of-list
	rnd:weighted-one-of-list list anonymous-reporter

	rnd:weighted-n-of-list
	rnd:weighted-n-of-list size list anonymous-reporter

	rnd:weighted-n-of-list-with-repeats
	rnd:weighted-n-of-list-with-repeats size list anonymous-reporter

	NetLogo Sound Extension
	Using
	How to Use
	MIDI support

	Primitives
	sound:drums
	sound:drums

	sound:instruments
	sound:instruments

	sound:play-drum
	sound:play-drum drum velocity

	sound:play-note
	sound:play-note instrument keynumber velocity duration

	sound:play-note-later
	sound:play-note-later delay instrument keynumber velocity duration

	Drum Names
	Instrument Names

	NetLogo Table Extension
	Using
	When to Use
	Example
	Manipulating Tables
	Key Restrictions

	Primitives
	table:clear
	table:clear table

	table:counts
	table:counts list

	table:group-agents
	table:group-agents agentset anonymous reporter

	table:group-items
	table:group-items list anonymous-reporter

	table:from-list
	table:from-list list

	table:get
	table:get table key

	table:get-or-default
	table:get-or-default table key default-value

	table:has-key?
	table:has-key? table key

	table:keys
	table:keys table

	table:length
	table:length table

	table:make
	table:make

	table:put
	table:put table key value

	table:remove
	table:remove table key

	table:to-list
	table:to-list table

	table:values
	table:values table

	NetLogo Vid Extension
	Concepts
	Video Source
	Source Lifecycle
	Video Recorder

	Primitives
	vid:camera-names
	vid:camera-names

	vid:camera-open
	vid:camera-open

	vid:camera-select
	vid:camera-select

	vid:movie-select
	vid:movie-select

	vid:movie-open
	vid:movie-open filename

	vid:movie-open-remote
	vid:movie-open-remote url

	vid:close
	vid:close

	vid:start
	vid:start

	vid:stop
	vid:stop

	vid:status
	vid:status

	vid:capture-image
	vid:capture-image width height

	vid:set-time
	vid:set-time seconds

	vid:show-player
	vid:show-player width height

	vid:hide-player
	vid:hide-player

	vid:record-view
	vid:record-view

	vid:record-interface
	vid:record-interface

	vid:record-source
	vid:record-source

	vid:recorder-status
	vid:recorder-status

	vid:start-recorder
	vid:start-recorder

	vid:save-recording
	vid:save-recording filename

	NetLogo View2.5d Extension
	How to Use
	Incorporating Into Models
	Feedback

	Primitives
	view2.5d:patch-view
	view2.5d:patch-view Title Reporter

	view2.5d:decorate-patch-view
	view2.5d:decorate-patch-view Title

	view2.5d:undecorate-patch-view
	view2.5d:undecorate-patch-view Title

	view2.5d:turtle-view
	view2.5d:turtle-view Title Agents Reporter

	view2.5d:update-all-patch-views
	view2.5d:update-all-patch-views

	view2.5d:update-patch-view
	view2.5d:update-patch-view Title

	view2.5d:update-turtle-view
	view2.5d:update-turtle-view Title Agents

	view2.5d:get-z-scale
	view2.5d:get-z-scale title

	view2.5d:set-z-scale
	view2.5d:set-z-scale Title new-z-scale

	view2.5d:set-turtle-stem-thickness
	view2.5d:set-turtle-stem-thickness Title thickness

	view2.5d:get-observer-angles
	view2.5d:get-observer-angles Title

	view2.5d:set-observer-angles
	view2.5d:set-observer-angles Title heading pitch

	view2.5d:get-observer-xy-focus
	view2.5d:get-observer-xy-focus Title

	view2.5d:set-observer-xy-focus
	view2.5d:set-observer-xy-focus Title number ycor

	view2.5d:get-observer-distance
	view2.5d:get-observer-distance Title

	view2.5d:set-observer-distance
	view2.5d:set-observer-distance Title new-distance

	view2.5d:remove-patch-view
	view2.5d:remove-patch-view Title

	view2.5d:remove-turtle-view
	view2.5d:remove-turtle-view Title

	view2.5d:remove-all-patch-views
	view2.5d:remove-all-patch-views

	view2.5d:remove-all-turtle-views
	view2.5d:remove-all-turtle-views

	view2.5d:count-windows
	view2.5d:count-windows

	FAQ (Frequently Asked Questions)
	Questions
	General
	Downloading
	Running
	Usage
	Programming
	BehaviorSpace
	NetLogo 3D
	Extensions

	General
	Why is it called NetLogo?
	How do I cite NetLogo or HubNet in a publication?
	How do I cite a model from the Models Library in a publication?
	Where and when was NetLogo created?
	What programming language was NetLogo written in?
	What's the relationship between StarLogo and NetLogo?
	Under what license is NetLogo released? Is the source code available?
	Do you offer any workshops or other training opportunities for NetLogo?
	Are there any NetLogo textbooks?
	Is NetLogo available in other languages besides English?
	Is NetLogo compiled or interpreted?
	Has anyone built a model of <x>?
	Are NetLogo models runs scientifically reproducible?
	Will NetLogo and NetLogo 3D remain separate?
	Can I run NetLogo on my phone or tablet?

	Downloading
	Can I have multiple versions of NetLogo installed at the same time?
	I'm on a UNIX system and I can't untar the download. Why?
	How do I install NetLogo unattended

	Running
	Can I run NetLogo from a CD, a network drive, or a USB drive?
	Why is NetLogo so much slower when I unplug my Windows laptop?
	Why does NetLogo bundle Java?
	How come NetLogo won't start up on my Linux machine?
	When I try to install NetLogo on Windows, I see "Windows protected your PC"
	When I try to start NetLogo on Windows I get an error "The JVM could not be started". Help!
	NetLogo won't start on Mac OS Sierra (or later)
	NetLogo won't start on Windows or crashes suddenly on Mac OS Sierra
	Can I run NetLogo from the command line, without the GUI?
	Does NetLogo take advantage of multiple processors?
	Can I distribute NetLogo model runs across a cluster or grid of computers?
	Is there any way to recover lost work if NetLogo crashes or freezes?

	Usage
	When I move the speed slider all the way to the right, why does my model seem to stop?
	Can I use the mouse to "paint" in the view?
	How big can my model be? How many turtles, patches, procedures, buttons, and so on can my model contain?
	Can I use GIS data in NetLogo?
	My model runs slowly. How can I speed it up?
	Can I have more than one model open at a time?
	Can I change the choices in a chooser on the fly?
	Can I divide the code for my model up into several files?

	Programming
	How does the NetLogo language differ from other Logos?
	How come my model from an earlier NetLogo doesn't work right?
	How do I take the negative of a number?
	My turtle moved forward 1, but it's still on the same patch. Why?
	How do I keep my turtles on patch centers?
	patch-ahead 1 is reporting the same patch my turtle is already standing on. Why?
	How do I give my turtles "vision"?
	Can agents sense what's in the drawing layer?
	I'm getting numbers like 0.10000000004 and 0.799999999999 instead of 0.1 and 0.8. Why?
	The documentation says that random-float 1 might return 0 but will never return 1. What if I want 1 to be included?
	How can I keep two turtles from occupying the same patch?
	How can I find out if a turtle is dead?
	Does NetLogo have arrays?
	Does NetLogo have hash tables or associative arrays?
	How can I use different patch "neighborhoods" (circular, Von Neumann, Moore, etc.)?
	How can I convert an agentset to a list of agents, or vice versa?
	How do I stop foreach?
	I'm trying to make a list. Why do I keep getting the error "Expected a constant"?

	BehaviorSpace
	Why are the rows in my BehaviorSpace table results out of order?
	How do I measure runs every n ticks?
	I'm varying a global variable I declared in the Code tab, but it doesn't work. Why?

	NetLogo 3D
	Does NetLogo work with my stereoscopic device?

	Extensions
	I'm writing an extension. Why does the compiler say it can't find org.nlogo.api?

	NetLogo Dictionary
	Categories
	Turtle-related
	Patch-related
	Link-related
	Agentset
	Color
	Control flow and logic
	Anonymous Procedures
	World
	Perspective
	HubNet
	Input/output
	File
	List
	String
	Mathematical
	Plotting
	BehaviorSpace
	System

	Built-In Variables
	Turtles
	Patches
	Links
	Other

	Keywords
	Constants
	Mathematical Constants
	Boolean Constants
	Color Constants

	A
	abs1.0
	abs number

	acos1.3
	acos number

	all?4.0
	all? agentset [reporter]

	and1.0
	condition1 and condition2

	any?2.0
	any? agentset

	approximate-hsb4.0
	approximate-hsb hue saturation brightness

	approximate-rgb4.0
	approximate-rgb red green blue

	Arithmetic Operators +1.0 *1.0 -1.0 /1.0 ^1.0 <1.0 >1.0 =1.0 !=1.0 <=1.0 >=1.0
	asin1.3
	asin number

	ask1.0
	ask agentset [commands] ask agent [commands]

	ask-concurrent4.0
	ask-concurrent agentset [commands]

	at-points1.0
	agentset at-points [[x1 y1] [x2 y2] ...]

	atan1.0
	atan x y

	autoplot?1.0
	autoplot?

	auto-plot-off1.0 auto-plot-on1.0
	auto-plot-off auto-plot-on

	B
	back1.0 bk1.0
	back number

	base-colors4.0
	base-colors

	beep2.1
	beep

	behaviorspace-experiment-name5.2
	behaviorspace-experiment-name

	behaviorspace-run-number4.1.1
	behaviorspace-run-number

	both-ends4.0
	both-ends

	breed
	breed

	breed
	breed [<breeds> <breed>]

	but-first1.0 butfirst1.0 bf1.0 but-last1.0 butlast1.0 bl1.0
	but-first list but-first string but-last list but-last string

	C
	can-move?3.1
	can-move? distance

	carefully2.1
	carefully [commands1] [commands2]

	ceiling1.0
	ceiling number

	clear-all1.0 ca1.0
	clear-all

	clear-all-plots1.0
	clear-all-plots

	clear-drawing3.0 cd3.0
	clear-drawing

	clear-globals5.2
	clear-globals

	clear-links4.0
	clear-links

	clear-output1.0
	clear-output

	clear-patches1.0 cp1.0
	clear-patches

	clear-plot
	clear-plot

	clear-ticks5.0
	clear-ticks

	clear-turtles1.0 ct1.0
	clear-turtles

	color
	color

	cos1.0
	cos number

	count1.0
	count agentset

	create-ordered-turtles4.0 cro4.0
	create-ordered-turtles number create-ordered-turtles number [commands] create-ordered<breeds> number create-ordered<breeds> number [commands]

	create-<breed>-to create-<breeds>-to create-<breed>-from create-<breeds>-from create-<breed>-with create-<breeds>-with create-link-to4.0 create-links-to4.0 create-link-from4.0 create-links-from4.0 create-link-with4.0 create-links-with4.0
	create-<breed>-to turtle create-<breed>-to turtle [commands] create-<breed>-from turtle create-<breed>-from turtle [commands] create-<breed>-with turtle create-<breed>-with turtle [commands] create-<breeds>-to turtleset create-<breeds>-to turtleset [commands] create-<breeds>-from turtleset create-<breeds>-from turtleset [commands] create-<breeds>-with turtleset create-<breeds>-with turtleset [commands] create-link-to turtle create-link-to turtle [commands] create-link-from turtle create-link-from turtle [commands] create-link-with turtle create-link-with turtle [commands] create-links-to turtleset create-links-to turtleset [commands] create-links-from turtleset create-links-from turtleset [commands] create-links-with turtleset create-links-with turtleset [commands]

	create-turtles1.0 crt1.0
	create-turtles number create-turtles number [commands] create-<breeds> number create-<breeds> number [commands]

	create-temporary-plot-pen1.1
	create-temporary-plot-pen string

	D
	date-and-time3.0
	date-and-time

	die1.0
	die

	diffuse1.0
	diffuse patch-variable number

	diffuse41.0
	diffuse4 patch-variable number

	directed-link-breed
	directed-link-breed [<link-breeds> <link-breed>]

	display1.0
	display

	distance1.0
	distance agent

	distancexy1.0
	distancexy x y

	downhill1.0 downhill41.0
	downhill patch-variable downhill4 patch-variable

	dx1.0 dy1.0
	dx dy

	E
	empty?1.0
	empty? list empty? string

	end
	end

	end14.0
	end1

	end24.0
	end2

	error5.0
	error value

	error-message2.1
	error-message

	every1.0
	every number [commands]

	exp1.0
	exp number

	export-view3.0 export-interface2.0 export-output1.0 export-plot1.0 export-all-plots1.2.1 export-world1.0
	export-view filename export-interface filename export-output filename export-plot plotname filename export-all-plots filename export-world filename

	extensions
	extensions [name ...]

	extract-hsb1.0
	extract-hsb color

	extract-rgb1.0
	extract-rgb color

	F
	face3.0
	face agent

	facexy3.0
	facexy x y

	file-at-end?2.0
	file-at-end?

	file-close2.0
	file-close

	file-close-all2.0
	file-close-all

	file-delete2.0
	file-delete string

	file-exists?2.0
	file-exists? string

	file-flush4.0
	file-flush

	file-open2.0
	file-open string

	file-print2.0
	file-print value

	file-read2.0
	file-read

	file-read-characters2.0
	file-read-characters number

	file-read-line2.0
	file-read-line

	file-show2.0
	file-show value

	file-type2.0
	file-type value

	file-write2.0
	file-write value

	filter1.3
	filter reporter list

	first1.0
	first list first string

	floor1.0
	floor number

	follow3.0
	follow turtle

	follow-me3.0
	follow-me

	foreach1.3
	foreach list command (foreach list1 ... command)

	forward1.0 fd1.0
	forward number

	fput1.0
	fput item list

	G
	globals
	globals [var1 ...]

	H
	hatch1.0
	hatch number [commands] hatch-<breeds> number [commands]

	heading
	heading

	hidden?
	hidden?

	hide-link4.0
	hide-link

	hide-turtle1.0 ht1.0
	hide-turtle

	histogram1.0
	histogram list

	home1.0
	home

	hsb1.0
	hsb hue saturation brightness

	hubnet-broadcast1.1
	hubnet-broadcast tag-name value

	hubnet-broadcast-clear-output4.1
	hubnet-broadcast-clear-output

	hubnet-broadcast-message4.1
	hubnet-broadcast-message value

	hubnet-clear-override4.1 hubnet-clear-overrides4.1
	hubnet-clear-override client agent-or-set variable-name hubnet-clear-overrides client

	hubnet-clients-list5.0
	hubnet-clients-list

	hubnet-enter-message?1.2.1
	hubnet-enter-message?

	hubnet-exit-message?1.2.1
	hubnet-exit-message?

	hubnet-fetch-message1.1
	hubnet-fetch-message

	hubnet-kick-client5.0
	hubnet-kick-client client-name

	hubnet-kick-all-clients5.0
	hubnet-kick-all-clients

	hubnet-message1.1
	hubnet-message

	hubnet-message-source1.1
	hubnet-message-source

	hubnet-message-tag1.1
	hubnet-message-tag

	hubnet-message-waiting?1.1
	hubnet-message-waiting?

	hubnet-reset1.1
	hubnet-reset

	hubnet-reset-perspective4.1
	hubnet-reset-perspective tag-name

	hubnet-send1.1
	hubnet-send string tag-name value
	hubnet-send list-of-strings tag-name value

	hubnet-send-clear-output4.1
	hubnet-send-clear-output string
	hubnet-send-clear-output list-of-strings

	hubnet-send-follow4.1
	hubnet-send-follow client-name agent radius

	hubnet-send-message4.1
	hubnet-send-message string value

	hubnet-send-override4.1
	hubnet-send-override client-name agent-or-set variable-name [reporter]

	hubnet-send-watch4.1
	hubnet-send-watch client-name agent

	I
	if1.0
	if condition [commands]

	ifelse1.0
	ifelse reporter [commands1] [commands2]

	ifelse-value2.0
	ifelse-value reporter [reporter1] [reporter2]

	import-drawing3.0
	import-drawing filename

	import-pcolors3.0
	import-pcolors filename

	import-pcolors-rgb4.0
	import-pcolors-rgb filename

	import-world1.0
	import-world filename

	in-cone3.0
	agentset in-cone distance angle

	in-<breed>-neighbor? in-link-neighbor?4.0
	in-<breed>-neighbor? agent in-link-neighbor? turtle

	in-<breed>-neighbors in-link-neighbors4.0
	in-<breed>-neighbors in-link-neighbors

	in-<breed>-from in-link-from4.0
	in-<breed>-from turtle in-link-from turtle

	__includes4.0
	__includes [filename ...]

	in-radius1.0
	agentset in-radius number

	insert-item6.0.2
	insert-item index list value insert-item index string1 string2

	inspect1.1
	inspect agent

	int1.0
	int number

	is-agent?1.2.1 is-agentset?1.2.1 is-anonymous-command?6.0 is-anonymous-reporter?6.0 is-boolean?1.2.1 is-directed-link?4.0 is-link?4.0 is-link-set?4.0 is-list?1.0 is-number?1.2.1 is-patch?1.2.1 is-patch-set?4.0 is-string?1.0 is-turtle?1.2.1 is-turtle-set?4.0 is-undirected-link?4.0
	is-agent? value is-agentset? value is-anonymous-command? value is-anonymous-reporter? value is-boolean? value is-<breed>? value is-<link-breed>? value is-directed-link? value is-link? value is-link-set? value is-list? value is-number? value is-patch? value is-patch-set? value is-string? value is-turtle? value is-turtle-set? value is-undirected-link? value

	item1.0
	item index list item index string

	J
	jump1.0
	jump number

	L
	label
	label

	label-color
	label-color

	last1.0
	last list last string

	layout-circle4.0
	layout-circle agentset radius layout-circle list-of-turtles radius

	layout-radial4.0
	layout-radial turtle-set link-set root-agent

	layout-spring4.0
	layout-spring turtle-set link-set spring-constant spring-length repulsion-constant

	layout-tutte4.0
	layout-tutte turtle-set link-set radius

	left1.0 lt1.0
	left number

	length1.0
	length list length string

	let2.1
	let variable value

	link4.0
	link end1 end2 <breed> end1 end2

	link-heading4.0
	link-heading

	link-length4.0
	link-length

	link-set4.0
	link-set value (link-set value1 value2 ...)

	link-shapes4.0
	link-shapes

	links4.0
	links

	links-own
	links-own [var1 ...] <link-breeds>-own [var1 ...]

	list1.0
	list value1 value2 (list value1 ...)

	ln1.0
	ln number

	log1.0
	log number base

	loop1.0
	loop [commands]

	lput1.0
	lput value list

	M
	map1.3
	map reporter list (map reporter list1 ...)

	max1.0
	max list

	max-n-of4.0
	max-n-of number agentset [reporter]

	max-one-of1.0
	max-one-of agentset [reporter]

	max-pxcor3.1 max-pycor3.1
	max-pxcor max-pycor

	mean1.0
	mean list

	median1.0
	median list

	member?1.0
	member? value list member? string1 string2 member? agent agentset

	min1.0
	min list

	min-n-of4.0
	min-n-of number agentset [reporter]

	min-one-of1.0
	min-one-of agentset [reporter]

	min-pxcor3.1 min-pycor3.1
	min-pxcor min-pycor

	mod1.0
	number1 mod number2

	modes2.0
	modes list

	mouse-down?1.0
	mouse-down?

	mouse-inside?3.0
	mouse-inside?

	mouse-xcor1.0 mouse-ycor1.0
	mouse-xcor mouse-ycor

	move-to4.0
	move-to agent

	my-<breeds> my-links4.0
	my-<breeds> my-links

	my-in-<breeds> my-in-links4.0
	my-in-<breeds> my-in-links

	my-out-<breeds> my-out-links4.0
	my-out-<breeds> my-out-links

	myself1.0
	myself

	N
	n-of3.1
	n-of size agentset n-of size list

	n-values2.0
	n-values size reporter

	neighbors1.1 neighbors41.1
	neighbors neighbors4

	<breed>-neighbors link-neighbors4.0
	<breed>-neighbors link-neighbors

	<breed>-neighbor? link-neighbor?4.0
	<breed>-neighbor? turtle link-neighbor? turtle

	netlogo-version3.0
	netlogo-version

	netlogo-web?5.2
	netlogo-web?

	new-seed3.0
	new-seed

	no-display1.0
	no-display

	nobody
	nobody

	no-links4.0
	no-links

	no-patches4.0
	no-patches

	not1.0
	not boolean

	no-turtles4.0
	no-turtles

	O
	of4.0
	[reporter] of agent [reporter] of agentset

	one-of1.0
	one-of agentset one-of list

	or1.0
	boolean1 or boolean2

	other4.0
	other agentset

	other-end4.0
	other-end

	out-<breed>-neighbor? out-link-neighbor?4.0
	out-<breed>-neighbor? turtle out-link-neighbor? turtle

	out-<breed>-neighbors out-link-neighbors4.0
	out-<breed>-neighbors out-link-neighbors

	out-<breed>-to out-link-to4.0
	out-<breed>-to turtle out-link-to turtle

	output-print2.1 output-show2.1 output-type2.1 output-write2.1
	output-print value output-show value output-type value output-write value

	P
	patch1.0
	patch xcor ycor

	patch-ahead2.0
	patch-ahead distance

	patch-at1.0
	patch-at dx dy

	patch-at-heading-and-distance2.0
	patch-at-heading-and-distance heading distance

	patch-here1.0
	patch-here

	patch-left-and-ahead2.0 patch-right-and-ahead2.0
	patch-left-and-ahead angle distance patch-right-and-ahead angle distance

	patch-set4.0
	patch-set value1 (patch-set value1 value2 ...)

	patch-size4.1
	patch-size

	patches1.0
	patches

	patches-own
	patches-own [var1 ...]

	pcolor
	pcolor

	pen-down1.0 pd1.0 pen-erase3.0 pe3.0 pen-up1.0 pu1.0
	pen-down pen-erase pen-up

	pen-mode
	pen-size
	plabel
	plabel

	plabel-color
	plabel-color

	plot1.0
	plot number

	plot-name1.0
	plot-name

	plot-pen-exists?4.0
	plot-pen-exists? string

	plot-pen-down1.0 plot-pen-up1.0
	plot-pen-down plot-pen-up

	plot-pen-reset1.0
	plot-pen-reset

	plotxy1.0
	plotxy number1 number2

	plot-x-min1.0 plot-x-max1.0 plot-y-min1.0 plot-y-max1.0
	plot-x-min plot-x-max plot-y-min plot-y-max

	position1.0
	position item list position string1 string2

	precision1.0
	precision number places

	print1.0
	print value

	pxcor pycor
	pxcor pycor

	R
	random1.0
	random number

	random-float2.0
	random-float number

	random-exponential1.2.1 random-gamma2.0 random-normal1.2.1 random-poisson1.2.1
	random-exponential mean random-gamma alpha lambda random-normal mean standard-deviation random-poisson mean

	random-pxcor3.1 random-pycor3.1
	random-pxcor random-pycor

	random-seed1.0
	random-seed number

	random-xcor3.1 random-ycor3.1
	random-xcor random-ycor

	range6.0
	range stop (range start stop) (range start stop step)

	read-from-string1.1
	read-from-string string

	reduce1.3
	reduce reporter list

	remainder1.2.1
	remainder number1 number2

	remove1.0
	remove item list remove string1 string2

	remove-duplicates1.0
	remove-duplicates list

	remove-item2.0
	remove-item index list remove-item index string

	repeat1.0
	repeat number [commands]

	replace-item1.0
	replace-item index list value replace-item index string1 string2

	report1.0
	report value

	reset-perspective3.0 rp3.0
	reset-perspective

	reset-ticks4.0
	reset-ticks

	reset-timer1.0
	reset-timer

	resize-world4.1
	resize-world min-pxcor max-pxcor min-pycor max-pycor

	reverse1.0
	reverse list reverse string

	rgb1.0
	rgb red green blue

	ride3.0
	ride turtle

	ride-me3.0
	ride-me

	right1.0 rt1.0
	right number

	round1.0
	round number

	run1.3 runresult1.3
	run command (run command input1 ...) run string runresult reporter (runresult reporter input1 ...) runresult string

	S
	scale-color1.0
	scale-color color number range1 range2

	self1.3
	self

	; (semicolon)
	; comments

	sentence1.0 se1.0
	sentence value1 value2 (sentence value1 ...)

	set1.0
	set variable value

	set-current-directory2.0
	set-current-directory string

	set-current-plot1.0
	set-current-plot plotname

	set-current-plot-pen1.0
	set-current-plot-pen penname

	set-default-shape1.0
	set-default-shape turtles string set-default-shape links string set-default-shape breed string

	set-histogram-num-bars1.0
	set-histogram-num-bars number

	__set-line-thickness
	__set-line-thickness number

	set-patch-size4.1
	set-patch-size size

	set-plot-background-color6.0.2
	set-plot-background-color color

	set-plot-pen-color1.0
	set-plot-pen-color color

	set-plot-pen-interval1.0
	set-plot-pen-interval number

	set-plot-pen-mode1.0
	set-plot-pen-mode number

	setup-plots5.0
	setup-plots

	set-plot-x-range1.0 set-plot-y-range1.0
	set-plot-x-range min max set-plot-y-range min max

	setxy1.0
	setxy x y

	shade-of?1.0
	shade-of? color1 color2

	shape
	shape

	shapes2.1
	shapes

	show1.0
	show value

	show-turtle1.0 st1.0
	show-turtle

	show-link4.0
	show-link

	shuffle2.0
	shuffle list

	sin1.0
	sin number

	size
	size

	sort1.0
	sort list sort agentset

	sort-by1.3
	sort-by reporter list sort-by reporter agentset

	sort-on5.0
	sort-on [reporter] agentset

	sprout1.0
	sprout number [commands] sprout-<breeds> number [commands]

	sqrt1.0
	sqrt number

	stamp1.0
	stamp

	stamp-erase3.1
	stamp-erase

	standard-deviation1.0
	standard-deviation list

	startup
	startup

	stop1.0
	stop

	stop-inspecting5.2
	stop-inspecting agent

	stop-inspecting-dead-agents5.2
	stop-inspecting-dead-agents

	subject3.0
	subject

	sublist2.1 substring1.0
	sublist list position1 position2 substring string position1 position2

	subtract-headings2.1
	subtract-headings heading1 heading2

	sum1.0
	sum list

	T
	tan1.0
	tan number

	thickness
	thickness

	tick4.0
	tick

	tick-advance4.0
	tick-advance number

	ticks4.0
	ticks

	tie4.0
	tie

	tie-mode
	tie-mode

	timer1.0
	timer

	to
	to procedure-name to procedure-name [input1 ...]

	to-report
	to-report procedure-name to-report procedure-name [input1 ...]

	towards1.0
	towards agent

	towardsxy1.0
	towardsxy x y

	turtle1.0
	turtle number <breed> number

	turtle-set4.0
	turtle-set value1 (turtle-set value1 value2 ...)

	turtles1.0
	turtles

	turtles-at1.0
	turtles-at dx dy <breeds>-at dx dy

	turtles-here1.0
	turtles-here <breeds>-here

	turtles-on2.0
	turtles-on agent turtles-on agentset <breeds>-on agent <breeds>-on agentset

	turtles-own
	turtles-own [var1 ...] <breeds>-own [var1 ...]

	type1.0
	type value

	U
	undirected-link-breed
	undirected-link-breed [<link-breeds> <link-breed>]

	untie4.0
	untie

	update-plots5.0
	update-plots

	uphill1.0 uphill41.0
	uphill patch-variable uphill4 patch-variable

	user-directory3.1
	user-directory

	user-file3.1
	user-file

	user-new-file3.1
	user-new-file

	user-input1.1
	user-input value

	user-message1.1
	user-message value

	user-one-of3.1
	user-one-of value list-of-choices

	user-yes-or-no?2.0
	user-yes-or-no? value

	V
	variance1.0
	variance list

	W
	wait1.0
	wait number

	watch3.0
	watch agent

	watch-me3.0
	watch-me

	while1.0
	while [reporter] [commands]

	who
	who

	with1.0
	agentset with [reporter]

	<breed>-with link-with4.0
	<breed>-with turtle link-with turtle

	with-max2.1
	agentset with-max [reporter]

	with-min2.1
	agentset with-min [reporter]

	with-local-randomness4.0
	with-local-randomness [commands]

	without-interruption1.1
	without-interruption [commands]

	word1.0
	word value1 value2 (word value1 ...)

	world-width3.1 world-height3.1
	world-width world-height

	wrap-color1.0
	wrap-color number

	write2.0
	write value

	X
	xcor
	xcor

	xor1.0
	boolean1 xor boolean2

	Y
	ycor
	ycor

	->
	->6.0
	[[args] -> commands] [[args] -> reporter]

