extensions [rnd] ;; Each potential solution is represented by a turtle. turtles-own [ bits ;; list of 0's and 1's fitness ] globals [ winner ;; turtle that currently has the best solution ] to setup clear-all create-turtles population-size [ set bits n-values world-width [one-of [0 0 0 0 1]] calculate-fitness hide-turtle ;; the turtles' locations are not used, so hide them ] update-display reset-ticks end to go if [fitness] of winner = world-width [ stop ] ifelse model-type? = "Generacional" ; Generational GA Schema [next-generation] ; Stationary GA Schema [next-station] update-display tick end to update-display set winner max-one-of turtles [fitness] ask patches [ ifelse item pxcor ([bits] of winner) = 1 [ set pcolor white ] [ set pcolor black ] ] end ;; ===== Generating Solutions ;; Each solution has its "fitness score" calculated. ;; Higher scores mean "more fit", and lower scores mean "less fit". ;; The higher a fitness score, the more likely that this solution ;; will be chosen to reproduce and create offspring solutions ;; in the next generation. ;; to calculate-fitness ;; turtle procedure ;; For the "ALL-ONES" problem, the fitness is simply equal to the number of ones ;; that occur in this solution's bits. ;; However, you could solve more interesting problems by changing this procedure ;; to evaluate the bits in other ways. For instance, the bits might ;; encode rules for how a turtle should move across the world in a search for food. set fitness length (remove 0 bits) end ;; This procedure does the main work of the genetic algorithm. ;; We start with the old generation of solutions. ;; We choose solutions with good fitness to produce offspring ;; through crossover (sexual recombination), and to be cloned ;; (asexual reproduction) into the next generation. ;; There is also a chance of mutation occurring in each individual. ;; After a full new generation of solutions has been created, ;; the old generation dies. to next-generation ; The following line of code looks a bit odd, so we'll explain it. ; if we simply wrote "LET OLD-GENERATION TURTLES", ; then OLD-GENERATION would mean the set of all turtles, and when ; new solutions were created, they would be added to the breed, and ; OLD-GENERATION would also grow. Since we don't want it to grow, ; we instead write "TURTLES WITH [TRUE]", which makes OLD-GENERATION ; an agentset, which doesn't get updated when new solutions are created. let old-generation turtles with [true] ; Some number of the population is created by crossover each generation ; we divide by 2 because each time through the loop we create two children. let crossover-count (floor (population-size * crossover-rate / 100 / 2)) repeat crossover-count [ let parents [] set parents selection old-generation let child-bits [] ifelse crossover-type? = "Cruce Uniforme" [set child-bits uniform-crossover ([bits] of (item 0 parents)) ([bits] of (item 1 parents))] [ ifelse crossover-type? = "Un punto" [set child-bits one-point-crossover ([bits] of (item 0 parents)) ([bits] of (item 1 parents))] [set child-bits two-point-crossover ([bits] of (item 0 parents)) ([bits] of (item 1 parents))] ] ; create the two children, with their new genetic material ask item 0 parents [ hatch 1 [ set bits item 0 child-bits ] ] ask item 1 parents [ hatch 1 [ set bits item 1 child-bits ] ] ] ; the remainder of the population is created by cloning ; selected members of the previous generation repeat (population-size - crossover-count * 2) [ ask max-one-of (n-of 3 old-generation) [fitness] [ hatch 1 ] ] ; Include the best solution of old-generation at random position if elitism? [let best-one max-one-of old-generation [fitness] ask one-of turtles [set bits ([bits] of best-one) set fitness ([fitness] of best-one)]] ask old-generation [ die ] ; now we're just talking to the new generation of solutions here ask turtles [ ; there's a chance of mutations occurring if mutation? [mutate] ; finally we update the fitness value for this solution calculate-fitness ] end ;; Procedure to modify the actual generation of solutions. ;; We choose solutions with good fitness to produce offspring ;; through crossover (sexual recombination) and replacing ;; the worst solution of the actual generation with the best child solution. ;; It coult take more ticks to converge than generational model. to next-station repeat replacement-number [ let population turtles with [true] let parents [] set parents selection population let child-bits [] ifelse crossover-type? = "Cruce Uniforme" [set child-bits uniform-crossover ([bits] of (item 0 parents)) ([bits] of (item 1 parents))] [ ifelse crossover-type? = "Un punto" [set child-bits one-point-crossover ([bits] of (item 0 parents)) ([bits] of (item 1 parents))] [set child-bits two-point-crossover ([bits] of (item 0 parents)) ([bits] of (item 1 parents))] ] ; create the two children, with their new genetic material ask item 0 parents [ hatch 1 [ set bits item 0 child-bits ] ] ask item 1 parents [ hatch 1 [ set bits item 1 child-bits ] ] ; We set the 'Who' label of the new solutions let child1 max ([who] of turtles) let child2 child1 - 1 ; Fitness of the generated solutions ask turtle child1 [calculate-fitness] ask turtle child2 [calculate-fitness] replacement population child1 child2 ] ask turtles [ ; there's a chance of mutations occurring ; finally we update the fitness value for this solution if mutation? [mutate calculate-fitness] ] End ;; Selection operator to-report selection [population] ifelse selection-type? = "Torneo" ;; Tournament selection [ ; We use "tournament selection", with tournament size = 3 by default ; This means, we randomly pick 3 solutions from the previous generation ; and select the best one of those 3 to reproduce. let parent1 max-one-of (n-of n-tournament-selection population) [fitness] let parent2 max-one-of (n-of n-tournament-selection population) [fitness] report list parent1 parent2 ] ;; Roulette selection [ let parent1 rnd:weighted-one-of population [fitness] let parent2 rnd:weighted-one-of population [fitness] report list parent1 parent2 ;; Roulette wheel selection in NetLogo ;; https://ccl.northwestern.edu/netlogo/docs/rnd.html ] End ;; Replacement operator ;; New child solutions have to compete to replace the worst solution to replacement [population child1 child2] let f-child1 [fitness] of turtle child1 let f-child2 [fitness] of turtle child2 ; Worst solution let worst-solution min-one-of (population) [fitness] ; The best child replaces the worst solution ifelse f-child1 > f-child2 [ask worst-solution [set bits [bits] of turtle child1 set fitness f-child1]] [ask worst-solution [set bits [bits] of turtle child2 set fitness f-child2]] ask turtle child1 [ die ] ask turtle child2 [ die ] End ;; ===== Crossover operators ;; This reporter performs one-point crossover on two lists of bits. ;; That is, it chooses a random location for a splitting point. ;; Then it reports two new lists, using that splitting point, ;; by combining the first part of bits1 with the second part of bits2 ;; and the first part of bits2 with the second part of bits1; ;; it puts together the first part of one list with the second part of ;; the other. ;; This reporter perform uniform-crossover on two lists of bits- ;; It combines both parents lists and create two new solitions combining them. to-report uniform-crossover [bits1 bits2] let tam (round (length bits1) / 2) let descendant-1 bits1 let descendant-2 bits2 let i 0 while [i < tam] [ let gen (random (length bits1)) set descendant-1 (replace-item gen descendant-1 (item gen bits2)) set descendant-2 (replace-item gen descendant-2 (item gen bits1)) set i (i + 1) ] report (list descendant-1 descendant-2) end ;; This reporter perform one-point crossover on two lists of bits. ;; It choosers a dandom location and combines each parents to create ;; two new solutions. to-report one-point-crossover [bits1 bits2] let split-point 1 + random (length bits1 - 1) report list (sentence (sublist bits1 0 split-point) (sublist bits2 split-point length bits2)) (sentence (sublist bits2 0 split-point) (sublist bits1 split-point length bits1)) end ;; This reporter performs one-segment crossover on two lists of bits. ;; It chooses a random location and a random size for creating a segment. ;; Then it reports a new list, we have to use this crossover two times to generate ;; 2 new solutions. to-report two-point-crossover [bits1 bits2] let childs [] ; We iterate 2 times to generate 2 childs repeat 2 [ ; Parameters to create the segment let n-gens (length bits1) let begin-segment random n-gens let tam-segment random n-gens let child n-values n-gens [0] ; Genetic information (segment) from father1 let i 0 while [i < tam-segment] [ let modify-gen ((begin-segment + i) mod n-gens) set child replace-item modify-gen child (item modify-gen bits1) set i i + 1 ] ; Genetic information (rest of gens) from father2 let rest (n-gens - tam-segment) set i ((begin-segment + tam-segment) mod n-gens) while [i < (((begin-segment + tam-segment) mod n-gens) + rest)] [ set child replace-item (i mod n-gens) child item (i mod n-gens) bits2 set i i + 1 ] ; Insert to last position of list set childs lput child childs ] report childs end ;; ===== Mutation operator ;; This procedure causes random mutations to occur in a solution's bits. ;; The probability that each bit will be flipped is controlled by the ;; MUTATION-RATE slider. to mutate ;; turtle procedure set bits map [ b -> ifelse-value random-float 100.0 < mutation-rate [ 1 - b ] [ b ] ] bits end ;; ===== Diversity Measures ;; Our diversity measure is the mean of all-pairs Hamming distances between ;; the genomes in the population. to-report diversity let distances [] ask turtles [ let bits1 bits ask turtles with [self > myself] [ set distances fput (hamming-distance bits bits1) distances ] ] ; The following formula calculates how much 'disagreement' between genomes ; there could possibly be, for the current population size. ; This formula may not be immediately obvious, so here's a sketch of where ; it comes from. Imagine a population of N turtles, where N is even, and each ; turtle has only a single bit (0 or 1). The most diverse this population ; can be is if half the turtles have 0 and half have 1 (you can prove this ; using calculus!). In this case, there are (N / 2) * (N / 2) pairs of bits ; that differ. Showing that essentially the same formula (rounded down by ; the floor function) works when N is odd, is left as an exercise to the reader. let max-possible-distance-sum floor (count turtles * count turtles / 4) ; Now, using that number, we can normalize our diversity measure to be ; between 0 (completely homogeneous population) and 1 (maximally heterogeneous) report (sum distances) / max-possible-distance-sum end ;; The Hamming distance between two bit sequences is the fraction ;; of positions at which the two sequences have different values. ;; We use MAP to run down the lists comparing for equality, then ;; we use LENGTH and REMOVE to count the number of inequalities. to-report hamming-distance [bits1 bits2] report (length remove true (map [ [b1 b2] -> b1 = b2 ] bits1 bits2)) / world-width end ; Copyright 2008 Uri Wilensky. ; See Info tab for full copyright and license. @#$#@#$#@ GRAPHICS-WINDOW 76 52 884 85 -1 -1 8.0 1 10 1 1 1 0 1 1 1 0 99 0 2 1 1 1 ticks 30.0 BUTTON 203 165 288 198 NIL go T 1 T OBSERVER NIL NIL NIL NIL 0 BUTTON 115 125 288 158 NIL setup NIL 1 T OBSERVER NIL NIL NIL NIL 1 SLIDER 100 229 300 262 population-size population-size 5 200 150.0 5 1 NIL HORIZONTAL PLOT 369 119 788 341 Fitness Plot gen # raw fitness 0.0 20.0 0.0 101.0 true true "" "" PENS "best" 1.0 0 -2674135 true "" "plot max [fitness] of turtles" "avg" 1.0 0 -10899396 true "" "plot mean [fitness] of turtles" "worst" 1.0 0 -13345367 true "" "plot min [fitness] of turtles" BUTTON 115 165 200 198 step go NIL 1 T OBSERVER NIL NIL NIL NIL 0 SLIDER 79 551 211 584 mutation-rate mutation-rate 0 10 0.2 0.1 1 NIL HORIZONTAL PLOT 370 380 790 558 Diversity Plot gen # diversity 0.0 20.0 0.0 1.0 true false "" "" PENS "diversity" 1.0 1 -8630108 true "" "if plot-diversity? [ plot diversity ]" SWITCH 497 585 669 618 plot-diversity? plot-diversity? 0 1 -1000 SLIDER 836 321 1033 354 crossover-rate crossover-rate 0 100 80.0 1 1 NIL HORIZONTAL TEXTBOX 836 298 986 316 Modelo Generacional 12 0.0 1 TEXTBOX 837 442 987 460 Modelo Estacionario 12 0.0 1 SLIDER 836 466 1034 499 replacement-number replacement-number 0 population-size 14.0 1 1 NIL HORIZONTAL CHOOSER 833 214 1031 259 model-type? model-type? "Generacional" "Estacionario" 0 SWITCH 221 551 331 584 mutation? mutation? 0 1 -1000 TEXTBOX 453 24 603 42 Mejor cromosoma 12 0.0 1 MONITOR 910 45 970 90 Fitness [fitness] of winner 0 1 11 SLIDER 90 467 316 500 n-tournament-selection n-tournament-selection 2 population-size / 2 3.0 1 1 NIL HORIZONTAL CHOOSER 122 311 281 356 crossover-type? crossover-type? "Un punto" "Dos puntos" "Cruce Uniforme" 2 TEXTBOX 153 286 303 304 Tipo de cruce 12 0.0 1 TEXTBOX 143 380 293 398 Tipo de selección 12 0.0 1 CHOOSER 130 405 268 450 selection-type? selection-type? "Torneo" "Ruleta" 0 SWITCH 837 376 956 409 elitism? elitism? 0 1 -1000 TEXTBOX 172 523 322 541 Mutación 12 0.0 1 TEXTBOX 832 183 982 201 Tipo de modelo 12 0.0 1 @#$#@#$#@ ## WHAT IS IT? This model demonstrates the use of a genetic algorithm on a very simple problem. Genetic algorithms (GAs) are a biologically-inspired computer science technique that combine notions from Mendelian genetics and Darwinian evolution to search for good solutions to problems (including difficult problems). The GA works by generating a random population of solutions to a problem, evaluating those solutions and then using cloning, recombination and mutation to create new solutions to the problem. In this model we use the simple "ALL-ONES" problem to demonstrate how this is possible. We use such a simple problem in this model in order to highlight the solution technique only. The idea of the "ALL-ONES" problem is to find a string of bits (that is, a sequence of just ones and zeros) that contains all ones, and no zeros. Thus the string that best solves this problem is "111111...111". ## HOW IT WORKS The genetic algorithm is composed of the following steps. 1) A population of random solutions is created. Each solution consists of a string of randomly mixed "1"s and "0"s. 2) Each solution is evaluated on the basis of how well it solves the problem. This measure of the "goodness" of the solution is called its "fitness". In this model, our goal is simply to find a solution that consists of all "1"s. (In real-world applications of the genetic algorithm, the goals are much more complex, but the solutions are still usually encoded as binary strings.) 3) There are two variants of the models to create the new generation of solutions: - **Generational model**: A new generation of solutions is created from the old generation, where solutions that have a higher fitness scores are more likely to be chosen as "parent" solutions than those that have low fitness scores. - **Steady-State model**: Two fathers from the population are chosen and combinated to create a pair of children. The best of them will replace one solution of the actual population (a few individuals are replaced each state). A) There are two selection methods in this model: - **Tournament selection**: with a tournament size of 3 by default. This means that 3 solutions are drawn randomly from the old generation, and the one with the highest fitness is chosen to become a parent. - **Roulette selection**: also known as roulette wheel selection. The fitness level is used to associate a probability of selection with each individual chromosome B) Either one or two parents are chosen to create children. With one parent, the child is a clone or copy of the parent. With two parents, the process is the digital analog of sexual recombination -- the two children inherit part of their genetic material from one parent and part from the other. There are two variants: - **One Point crossover**: a cut (point) is selected on the first father or chromosome. All data beyond this point will be exchanged between the two fathers. - **Double Point crossover**: Instead of cutting the parental chromosomes at a single point as in the previous case, two cuts are randomly chosed. Both parents solutions are combined to create the new solutions. - **Uniform crossover**: Both parents chromosomes are recombined choosing a random list of gens of one of them and the rest of them from the another chromosome. C) There is also a chance that mutation will occur, and some of the child's bits will be changed from "1"s to "0"s, or vice versa. 4) Steps 2 and 3 above are repeated until a solution is found that successfully solves the problem. ## HOW TO USE IT Press the SETUP button to create an initial random population of solutions. Press the STEP button to have one new generation created from the old generation. Press the GO button to have the genetic algorithm run until a solution has been found. The best solution found in each generation is displayed in the VIEW. Each white column represents a "1"-bit and each black column represents a "0"-bit. === Parameters === The POPULATION-SIZE slider controls the number of solutions that are present in each generation. The CROSSOVER-RATE slider controls what percent of each new generation is created through sexual reproduction (recombination or crossover between two parents' genetic material), and what percent (100 - CROSSOVER-RATE) is created through asexual reproduction (cloning of one parent's genetic material). The MUTATION-RATE slider controls the percent chance of mutation. This chance applies to each position in the string of bits of a new individual. For instance, if the string is 100 bits long, and the mutation-rate is set at 1%, then on average one bit will be changed during the creation of each new individual. The PLOT-DIVERSITY? switch controls whether the amount of diversity within the population of solutions is plotted each generation, shown in the "Diversity Plot". Turning off PLOT-DIVERSITY? significantly increases the speed of the model because calculating diversity requires a lot of computation. The CROSSOVER-TYPE? selector controls which type of crossover are going to use the genetic algotihm: Uniform crossover or Segment crossover. The SELECTION-TYPE? selector controls which type of selection method we prefer to select the fathers: Tournament selection or roulette selection. The N-TOURNAMENT-SELECTION slider controls how many possible fathers are going to be involved when tournament selection method is selected. The MODEL-TYPE? selector controls which schema (way to generate next population) is going to be used by our Genetic Algorithm. The ELITISM? switch controls if the most fit handful of individuals are guaranteed a place in the next generation or not. The REPLACEMENT-NUMBER slider controls how many chromosomes are going to be replaced when we are using steady-state model. The "Fitness Plot" is used to show the best, average, and worst fitness values of the solutions at each generation. ## CREDITS AND REFERENCES This model is based off of work by John H. Holland, who is widely regarded as the father of the genetic algorithms. See Holland's book "Adaptation in Natural and Artificial Systems", 1992, MIT Press. This model is a extension of: * Stonedahl, F. and Wilensky, U. (2008). NetLogo Simple Genetic Algorithm model. http://ccl.northwestern.edu/netlogo/models/SimpleGeneticAlgorithm. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circle false 0 Circle -7500403 true true 0 0 300 circle 2 false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 line half true 0 Line -7500403 true 150 0 150 150 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 square false 0 Rectangle -7500403 true true 30 30 270 270 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 6.2.0 @#$#@#$#@ need-to-manually-make-preview-for-this-model @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ default 0.0 -0.2 0 0.0 1.0 0.0 1 1.0 0.0 0.2 0 0.0 1.0 link direction true 0 Line -7500403 true 150 150 90 180 Line -7500403 true 150 150 210 180 @#$#@#$#@ 0 @#$#@#$#@