globals [ average-degree clustering-coefficient turns nb-links ] breed [ links link ] breed [ nodes node ] nodes-own[ degree node-clustering-coefficient pred valeur ] links-own[ strength ] ;;;;;;;;;;;;;;;;;;;;;;;; ;;; Setup Procedures ;;; ;;;;;;;;;;;;;;;;;;;;;;;; to setup ca create-custom-nodes nb-nodes[ fd 40 set shape "circle" ] social-network set turns 0 end ;;;;;;;;;;;;;;;;;;;;;; ;;; Main Procedure ;;; ;;;;;;;;;;;;;;;;;;;;;; to go set turns turns + 1 social-network let tmp [] ask nodes [set tmp lput degree tmp] set average-degree (sum tmp) / nb-nodes set-current-plot "degree distribution" if (max tmp != 0 ) [ set-histogram-num-bars max tmp set-plot-x-range 0 max tmp histogram-list tmp] ;; find the clustering coefficient and add to the aggregate for all iterations find-clustering-coefficient set nb-links count links end ;------------------ ;-- managing the decaying and destroying of links (the evolution but creation) ;-- cf the paper "Structure of growing social networks" (Emily M. Jin, Michelle Girvan, and M. E. J. Newman) ;------------------- to social-network let N 0 ;-- step one let np nb-nodes * ( nb-nodes - 1) / 2 ;if (np > nb-nodes) [set np nb-nodes] ask n-of (np * r0) nodes [ make-edge self one-of remove self values-from nodes[self] ] ;-- step tow let degree-list [] ask nodes [set degree-list lput (degree * (degree - 1)) degree-list] let nm (sum degree-list ) / 2 set N (nm * r1) ;if (N > count nodes with [degree >= 2]) [set N count nodes with [degree >= 2]] let i 0 let max-nb-duo ((max degree-list) * ((max degree-list) - 1)) while [i < N] [ ask one-of nodes with [degree >= 2] [ if ((degree * (degree - 1)) >= random max-nb-duo) [ let neighbor1 one-of __link-neighbors let neighbor2 nobody while [neighbor1 = neighbor2 or neighbor2 = nobody] [set neighbor2 one-of __link-neighbors] make-edge neighbor1 neighbor2 ] set i i + 1 ] ] ;-- step three set degree-list [] ask nodes [set degree-list lput degree degree-list] let max-degree max degree-list let ne (sum degree-list) / 2 set i 0 while [i < ne * gamma] [ ask one-of nodes [ if (degree > random max-degree) [ ask one-of __my-links [destroy-link] ] set i i + 1 ] ] ;--step four decay links ;this step is optional but I think it gives better results ask links [set strength strength - 0.01 if (strength < 0) [destroy-link]] end ;------------------------------------ ;; connects the two nodes ;------------------------------------ to make-edge [node1 node2] without-interruption [ ask node1 [ ifelse (member? node2 __link-neighbors) [ ask __link-with node2 [set strength 1] ][ if (the-degree node1 < Z and the-degree node2 < Z ) [ __create-link-with node2 [ set color green set strength 1 ] set degree degree + 1 ask node2 [set degree degree + 1] ] ] ] ] end ;------------------------------------ ;; destroy a link ;------------------------------------ to destroy-link ask __end1 [set degree degree - 1] ask __end2 [set degree degree - 1] die end to-report the-degree [vertice] let tmp 0 ask vertice [ set tmp count __link-neighbors] report tmp end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Clustering computations ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to-report in-neighborhood? [ hood ] report ( member? __end1 hood and member? __end2 hood ) end to find-clustering-coefficient ifelse not any? nodes with [count __link-neighbors > 1] [ set clustering-coefficient 0 ] [ let total 0 ask nodes with [ count __link-neighbors <= 1] [ set node-clustering-coefficient "undefined" ] ask nodes with [ count __link-neighbors > 1] [ let hood __link-neighbors set node-clustering-coefficient (2 * count links with [ in-neighborhood? hood ] / ((count hood) * (count hood - 1)) ) ;; find the sum for the value at nodes set total total + node-clustering-coefficient ] ;; take the average set clustering-coefficient total / count nodes with [count __link-neighbors > 1] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; graph dispaly the software graphviz can is built to represent graph and can be dowload from ATT labs ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to print-dot-file file-open "LN.dot" file-print "graph \" learning network \" { graph [epsilon=0.15]; node [shape=point];" ask links [file-print "\""+ value-from __end1[who] + "\"--\"" + value-from __end2[who] + "\""] file-print "}" file-close end to dijkstra [node1] locals [fa us p] set fa [] ask nodes [ set color white set valeur nb-nodes + 1 set pred nobody ] set us node1 set valeur-of us 0 set fa lput us fa while [not empty? fa] [ set us first fa set fa remove us fa ask us [ set color red ask __link-neighbors [ set p valeur-of us + strength-of __link-with us if (p < valeur) [ set pred us set valeur p ] if (not member? self fa and color = white) [ set fa lput self fa set color yellow ] ] ] ] end to short-path [node1 node2] let path [] let link-path [] dijkstra node1 let s node2 while [pred-of s != nobody and s != node1] [ set path lput s path ask s [ set color-of __link-with pred yellow set link-path lput __link-with pred link-path ] set s pred-of s ] set path lput node1 path end @#$#@#$#@ GRAPHICS-WINDOW 345 10 810 496 45 45 5.0 1 10 1 1 1 0 0 0 1 -45 45 -45 45 CC-WINDOW 5 510 1044 605 Command Center 0 BUTTON 6 25 72 58 NIL setup NIL 1 T OBSERVER T NIL BUTTON 93 64 170 97 NIL go T 1 T OBSERVER NIL NIL BUTTON 6 64 91 97 go-once go NIL 1 T OBSERVER T NIL SLIDER 836 35 1033 68 nb-nodes nb-nodes 0 500 206 1 1 NIL SLIDER 837 104 1034 137 r0 r0 0 0.0010 3.0E-4 1.0E-4 1 NIL SLIDER 837 214 1035 247 Z Z 0 10 5 1 1 NIL SLIDER 838 136 1034 169 r1 r1 0 10 2 1 1 NIL SLIDER 837 169 1034 202 gamma gamma 0 0.01 0.0050 1.0E-4 1 NIL MONITOR 229 245 332 294 NIL average-degree 3 1 PLOT 10 305 338 491 degree distribution NIL NIL 0.0 10.0 0.0 10.0 true false PENS "default" 1.0 1 -16777216 true MONITOR 11 245 139 294 NIL clustering-coefficient 3 1 BUTTON 6 109 107 142 NIL print-dot-file NIL 1 T OBSERVER T NIL MONITOR 21 194 78 243 NIL turns 3 1 MONITOR 149 243 206 292 NIL nb-links 3 1 @#$#@#$#@ WHAT IS IT? ----------- In some networks, a few "hubs" have lots of connections, while everybody else only has a few. This model shows one way such networks can arise. Such networks can be found in a surprisingly large range of real world situations, ranging from the connections between websites to the collaborations between actors. This model generates these networks by a process of "preferential attachment", in which new network members prefer to make a connection to the more popular existing members. HOW IT WORKS ------------ The model starts with two nodes connected by an edge. At each step, a new node is added. A new node picks an existing node to connect to randomly, but with some bias. More specifically, a node's chance of being selected is directly proportional to the number of connections it already has, or its "degree." This is the mechanism which is called "preferential attachment." HOW TO USE IT ------------- Pressing the GO ONCE button adds one new node. To continuously add nodes, press GO. The LAYOUT? switch controls whether or not the layout procedure is run. This procedure attempts to move the nodes around to make the structure of the network easier to see. The PLOT? switch turns off the plots which speeds up the model. The RESIZE-NODES button will make all of the nodes take on a size representative of their degree distribution. If you press it again the nodes will return to equal size. If you want the model to run faster, you can turn off the LAYOUT? and PLOT? switches and/or freeze the view (using the on/off button in the control strip over the view). The LAYOUT? switch has the greatest effect on the speed of the model. If you have LAYOUT? switched off, and then want the network to have a more appealing layout, press the REDO-LAYOUT button which will run the layout-step procedure until you press the button again. You can press REDO-LAYOUT at any time even if you had LAYOUT? switched on and it will try to make the network easier to see. THINGS TO NOTICE ---------------- The networks that result from running this model are often called "scale-free" or "power law" networks. These are networks in which the distribution of the number of connections of each node is not a normal distribution -- instead it follows what is a called a power law distribution. Power law distributions are different from normal distributions in that they do not have a peak at the average, and they are more likely to contain extreme values (see Barabasi 2002 for a further description of the frequency and significance of scale-free networks). Barabasi originally described this mechanism for creating networks, but there are other mechanisms of creating scale-free networks and so the networks created by the mechanism implemented in this model are referred to as Barabasi scale-free networks. You can see the degree distribution of the network in this model by looking at the plots. The top plot is a histogram of the degree of each node. The bottom plot shows the same data, but both axes are on a logarithmic scale. When degree distribution follows a power law, it appears as a straight line on the log-log plot. One simple way to think about power laws is that if there is one node with a degree distribution of 1000, then there will be ten nodes with a degree distribution of 100, and 100 nodes with a degree distribution of 10. THINGS TO TRY ------------- Let the model run a little while. How many nodes are "hubs", that is, have many connections? How many have only a few? Does some low degree node ever become a hub? How often? Turn off the LAYOUT? switch and freeze the view to speed up the model, then allow a large network to form. What is the shape of the histogram in the top plot? What do you see in log-log plot? Notice that the log-log plot is only a straight line for a limited range of values. Why is this? Does the degree to which the log-log plot resembles a straight line grow as you add more node to the network? EXTENDING THE MODEL ------------------- Assign an additional attribute to each node. Make the probability of attachment depend on this new attribute as well as on degree. (A bias slider could control how much the attribute influences the decision.) Can the layout algorithm be improved? Perhaps nodes from different hubs could repel each other more strongly than nodes from the same hub, in order to encourage the hubs to be physically separate in the layout. NETWORK CONCEPTS ---------------- There are many ways to graphically display networks. This model uses a common "spring" method where the movement of a node at each time step is the net result of "spring" forces that pulls connected nodes together and repulsion forces that push all the nodes away from each other. This code is in the layout-step procedure. You can force this code to execute any time by pressing the REDO LAYOUT button, and pressing it again when you are happy with the layout. NETLOGO FEATURES ---------------- Both nodes and edges are turtles. Edge turtles have the "line" shape. The edge turtle's SIZE variable is used to make the edge be the right length. Lists are used heavily in this model. Each node maintains a list of its neighboring nodes. RELATED MODELS -------------- See other models in the Networks section of the Models Library, such as Giant Component. See also Network Example, in the Code Examples section. CREDITS AND REFERENCES ---------------------- This model is based on: Albert-Laszlo Barabasi. Linked: The New Science of Networks, Perseus Publishing, Cambridge, Massachusetts, pages 79-92. For a more technical treatment, see: Albert-Laszlo Barabasi & Reka Albert. Emergence of Scaling in Random Networks, Science, Vol 286, Issue 5439, 15 October 1999, pages 509-512. Barabasi's webpage has additional information at: http://www.nd.edu/~alb/ The layout algorithm is based on the Fruchterman-Reingold layout algorithm. More information about this algorithm can be obtained at: http://citeseer.ist.psu.edu/fruchterman91graph.html. For a model similar to the one described in the first extension, please consult: W. Brian Arthur, "Urban Systems and Historical Path-Dependence", Chapt. 4 in Urban systems and Infrastructure, J. Ausubel and R. Herman (eds.), National Academy of Sciences, Washington, D.C., 1988. To refer to this model in academic publications, please use: Wilensky, U. (2005). NetLogo Preferential Attachment model. http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. In other publications, please use: Copyright 2005 Uri Wilensky. All rights reserved. See http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment for terms of use. @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 link true 0 Line -7500403 true 150 0 150 300 link direction true 0 Line -7500403 true 150 150 30 225 Line -7500403 true 150 150 270 225 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circle false 0 Circle -7500403 true true 0 0 300 circle 2 false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 line half true 0 Line -7500403 true 150 0 150 150 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 square false 0 Rectangle -7500403 true true 30 30 270 270 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 3.1.3 @#$#@#$#@ set layout? false setup repeat 175 [ go ] repeat 35 [ layout ] @#$#@#$#@ @#$#@#$#@ @#$#@#$#@