patches-own [ alive ; alive = 1 means that the patch is occupied by a living entity; alive = 0 means that the patch is vacant of a living entity. p-local-alive ; local probability of a vacant patch becoming occupied (per quantum evolutionary process) (BIRTH). p-local-dead ; local probability of an occupied patch becoming vacant (DEATH). cr ; auxiliary random variable used in procedures regarding BIRTH. an ; auxiliary random variable used in procedures regarding DEATH. neighborhood-distribution ; patch neighborhood distribution, used to calculate the histogram. ] to setup ca setup-init-configuration colorscheme end to setup-init-configuration ask patches [ ifelse c-clustering [ set cr random-float 1.00 ifelse cr <= p-alive / 10 [ set alive 1 ] [ set alive 0 ] ] [ set alive 0 ] ] end to go no-display birth death do-plot colorscheme display end to birth ask patches with [alive = 0] ; Rule applied to vacant patches. [ set cr random-float 1.000 ifelse c-clustering ; If the clustering rule is ON, the birth of new life occurs with a probability proportional to the number of neighboring patches with living entities [ set p-local-alive mean [ alive ] of neighbors4 if cr <= p-local-alive [ set alive 1 ] ] ; If the clustering rule is OFF, the birth of new life occurs with the probability of the slider value. [ if cr <= p-alive [ set alive 1 ] ] ] end to death ask patches with [alive = 1] ; Rule applied to occupied patches. [ set an random-float 1.000 ; If the clustering rule is ON, death occurs with a probability that is a weighted average between the number of neighboring patches with living entities ; and a constant death probability. ifelse c-clustering [ set p-local-dead weight * p-dead + (1 - weight) * (mean [alive] of neighbors4) if an <= p-local-dead [ set alive 0 ] ] ; If the clustering rule is OFF, death occurs with the probability of the slider value. [ if an <= p-dead [ set alive 0 ] ] ] end to colorscheme ask patches [ ifelse alive = 1 [ set pcolor white ] [ set pcolor black ] ] end to do-plot ; Procedure taken from Copyright 2005 Uri Wilensky. All rights reserved. http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment. ask patches [ set neighborhood-distribution count neighbors with [ alive = 1 ] ] let max-distribution max [ neighborhood-distribution ] of patches set-current-plot "Neighborhood Distribution" plot-pen-reset ;; erase what we plotted before set-plot-x-range 1 (max-distribution + 1) ;; + 1 to make room for the width of the last bar histogram [ neighborhood-distribution ] of patches ;; for this plot, the axes are logarithmic, so we can't ;; use "histogram-from"; we have to plot the points ;; ourselves one at a time set-current-plot "Neighborhood Distribution (log-log)" plot-pen-reset ;; erase what we plotted before ;; the way we create the network there is never a zero degree node, ;; so start plotting at degree one let distribution 1 while [distribution <= max-distribution] [ let matches patches with [ neighborhood-distribution = distribution ] if any? matches [ plotxy log distribution 10 log (count matches) 10 ] set distribution distribution + 1 ] end @#$#@#$#@ GRAPHICS-WINDOW 37 15 350 349 50 50 3.0 1 10 1 1 1 0 1 1 1 -50 50 -50 50 0 0 1 ticks SWITCH 43 371 220 404 c-clustering c-clustering 0 1 -1000 SLIDER 157 424 270 457 p-alive p-alive 0 1 0.5 0.01 1 NIL HORIZONTAL SLIDER 290 426 398 459 p-dead p-dead 0 1 0.5 0.01 1 NIL HORIZONTAL BUTTON 242 372 305 405 NIL setup NIL 1 T OBSERVER NIL NIL NIL NIL BUTTON 318 372 381 405 NIL go T 1 T OBSERVER NIL NIL NIL NIL SLIDER 44 422 136 455 weight weight 0 1 0.95 0.010 1 NIL HORIZONTAL PLOT 362 22 697 225 Neighborhood Distribution density # of patches 0.0 10.0 0.0 10.0 true false PENS "default" 1.0 1 -16777216 true PLOT 711 22 1068 229 Neighborhood Distribution (log-log) log(density) log(# of patches) 0.0 0.3 0.0 0.3 true false PENS "default" 1.0 0 -16777216 true @#$#@#$#@ WHAT IS IT ----------- This is a model of a Quantum Game of Life with path-dependent local quantum computation, exemplifying a Quantum Cellular Automaton. HOW IT WORKS ------------ Each patch can be either vacant of life or occupied by a living entity. At each round of the game, a patch can be actualized into one of the two alternatives: (1) vacant of life or (2) occupied by a living entity, with a certain probability amplitude defined by the local patch quantum (game) state (see the TECHNICAL EXPLANATION section). There are two alternative rules through which this game is played: | (1) - The clustering rule; | (2) - The spatially and temporally independent rule. In the first rule, there is the production of a flocking (or herding) phenomenon, that is, the birth of living entities tends to occur through clustering, making emerge, in the quantum game, a quantum gravitic mechanism where the birth and death of living entities tends to lead to clusters of living entities. In the second rule, the flocking (or herding) phenomenon is absent, the birth and death of living entities occurs with a fixed local probability for each patch, such that there is a fixed local probability for a vacant patch to become occupied by a living entity and a fixed local probability for a living entity, residing in a certain patch, to die. For those who may wish to better understand the formalism behind each rule, they may proceed now to the TECHNICAL EXPLANATION section. HOW TO USE IT ------------- The switch c-clustering controls the rule used, if it is ON, then, the clustering rule is used, if it is OFF, then, the spatially and temporally independent rule is used. The sliders p-alive and p-dead control, respectively, in the case of no clustering, the probability for a vacant patch to become occupied by a new living entity and the probability for a living entity in an occupied patch to die. The third slider, called "weight", is used in the clustering rule, whose basic intuition we now explain (for the formal details see the TECHNICAL EXPLANATION section). If c-clustering is ON, then, there is a local quantum computation for birth and death. Thus, for the clustering rule, there isn't a global law of "alive" and "dead"-patch state, formalized by p-alive and p-dead. The systemic laws of "birth and death" are local and they depend on the number of local patches that are occupied, hence, for a patch that is vacant there is the p-local-alive variable (which is a patch variable in the Netlogo code), defined as: | p-local-alive (mean [alive] of neighbors4) In this game, the patch variable "alive" is set to one of two alternatives: "alive = 1" means that the patch is occupied by a living entity (only one per patch allowed) and "alive = 0" means that the patch is vacant. Notice that if no neighboring patch is occupied by a living entity, the patch cannot become alive because p-local-alive = 0. Above it is defined that p-local-alive coincides with the proportion of occupied four neighbors in a von Neumann neighborhood (periodic conditions being assumed at the borders). After the "birth procedure" takes place, with the above local probabilites, a second procedure, the "death procedure", takes place, with the following local probability rule for a living entity in a patch to die: | p-local-dead weight * p-dead + (1 - weight) * (mean [alive] of neighbors4) The "weight" parameter allows a control of the ecosystemic profile, in regards to the nature of the general conditions for live to thrive. The fixed "p-dead" represents what are considered as fixed threats to life forms coming from the environment, the "weight", thus, represents the importance of these factors over the resource restrictions that lead to death due to overpopulation (which is the second part of the formula "mean [alive] of neighbors4"). PLOTS ----- The plots represent the histogram for the local neighborhood structure (eight neighbors) in a standard scale and in a log-log scale, using an adaptation of the Preferential Attachment Netlogo Model (Copyright 2005 Uri Wilensky. All rights reserved. http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment ). THINGS TO TRY ------------- Run the model with the clustering rule ON and then run the model with the clustering rule OFF, comparing the two alternative distributions. Run the model with the clustering rule ON and change the "weight" slider, evaluating what happens to the game's dynamics. TECHNICAL EXPLANATION --------------------- The quantum game is divided in rounds, such that, at each round there is, for each patch, a local Wheeler-DeWitt-type equation with additional probability amplitude conditions that express, in the formalism, the local systemic computation for that round. Thus, for the the j-th patch and the round "t" (the natural number t is not to be confused with a time instant, instead, it corresponds to a round number, which includes a temporal interval during which births and deaths take place), we have the following Wheeler-DeWitt equation: | (H - u(j,s,t)) * psi(j,s,t) = 0 -------> (1) where s = 0 means that the patch is vacant of a living entity and s = 1 means that the patch contains a living entity (only one living entity per patch allowed, as stated), also, the term u(j,s,t) is a real number such that the above equation has the form of an eigenvalue equation: | H * psi(j,s,t) = u(j,s,t) * psi(j,s,t) -------> (2) Now, we also assume that the eigenvalue u(j,s,t) satisfies the following condition with respect to the eigenfunction psi(j,s,t): | ( u(j,s,t) ^ (-1) ) * psi(j,s,t) = 1 -------> (3) This condition means that psi(j,s,t) assigns, to each alternative "s", for the j-th patch, at the t-th round, the corresponding eigenvalue u(j,s,t). Since psi(j,s,t) is a probability amplitude function for the round, it is necessary a fourth normalization condition: | u(j,0,t) ^ 2 + u(j,1,t) ^ 2 = 1 -------> (4) The conditions, given by Eqs.(3) and (4), are called "probability amplitude conditions". Given this general framework for the quantum game, the Quantum Cellular Automaton dynamics depends, now, upon the evolutionary dynamical structure of the eigenvalues u(j,s,t). In the formally simpler case of the spatially and temporally independent rule, for each patch that is not occupied by a living entity, the eigenvalues are such that: | u(j,0,t) = (1 - p-alive) ^ 0.5 -------> (5) | u(j,1,t) = p-alive ^ 0.5 -------> (6) Thus, each patch that is not occupied by a living entity, can become so with a probability of p-alive, or remain vacant of life with a probability of 1 - p-alive. This comprises the first part of a round: the birth of new life. For the second part of a round (death), for each patch that is occupied by a living entity (this includes those that become occupied during the first part of the round), the eigenvalues are such that: | u(j,0,t) = p-dead ^ 0.5 -------> (7) | u(j,1,t) = (1 - p-dead) ^ 0.5 -------> (8) The interpretation follows directly from the equations. Alternatively, for the clustering rule, we have, for the first round and for a patch that is not occupied by a living entity: | u(j,0,t) = ( 1 - mean [ alive ] of neighbors4 ) ^ 0.5 -------> (9) | u(j,1,t) = mean [ alive ] of neighbors4 ^ 0.5 -------> (10) That is, the mean local field of the neighbors, for the occupancy by living entities, determines the probability of life being born in a patch, we have here a life promoting life self-organization process (since one single neighbor with a living entity leads to a non-zero probability for life to be born in a patch, we are dealing with a game of life with a replicator-type life). Now, for the second part of the round, for each patch that is occupied by a living entity (this includes those that become occupied during the first part of the round), the living entity may live or die in accordance with the following eigenvalues: | u(j,0,t) = ( weight * p-dead + (1 - weight) * mean [alive] of neighbors4 ) ^ 0.5 -------> (11) | u(j,1,t) = ( 1 - (weight * p-dead + (1 - weight) * mean [alive] of neighbors4) ) ^ 0.5 -------> (12) The key to interpret this rule is Eq.(11), which leads to a probability amplitude for death that is a weighted average of p-dead and the mean field of neighbor patches in regards to the dead (vacant) or alive (occupied by living entity) state. This rule controls the way by which the overpopulation affects the local life and death, as explained in the previous section. FINAL NOTES: ------------ The idea for a "quantum game theoretical Wheeler-DeWitt equation plus probability amplitude conditions", leading to a probability amplitude eigenfunction, over the alternative game histories, whose values are numerically coincident with real eigenvalues, comes from a reflection on the nature of the path-dependent evolutionary quantum game theoretical framework laid out in the following paper: Gonçalves, C.P. and Gonçalves, C. (2007), "An Evolutionary Quantum Game Model of Financial Market Dynamics - Theory and Evidence", http://papers.ssrn.com/sol3/papers.cfm?abstract_id=982086 Which is the paper that addresses the model: http://ccl.northwestern.edu/netlogo/models/community/Quantum_Financial_Market The Quantum Game of Life is being introduced as a conceptual tool on how quantum game theory can be used to address the relation between risk and the role of local adaptive dynamics by which living systems may affect positively the ability of expansion of life in a territory, with local ecological constraints. However, it is possible for the game to be adapted to other systemic problems, involving the gravitic effects of systems in the formation of clustering phenomena, be those systems social systems (social gravity) or physical systems. The concept of gravity, incorporated in this model's game theoretical framework, was worked upon from: Madeira, M.O. (2009), "on gravity", http://cmathphil.blogspot.com/2009/03/on-gravity.html @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circle false 0 Circle -7500403 true true 0 0 300 circle 2 false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 line half true 0 Line -7500403 true 150 0 150 150 link true 0 Line -7500403 true 150 0 150 300 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 square false 0 Rectangle -7500403 true true 30 30 270 270 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 4.1 @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ default 0.0 -0.2 0 0.0 1.0 0.0 1 1.0 0.0 0.2 0 0.0 1.0 link direction true 0 Line -7500403 true 150 150 90 180 Line -7500403 true 150 150 210 180 @#$#@#$#@ 0 @#$#@#$#@