Home Download Help Resources Extensions FAQ NetLogo Publications Contact Us Donate Models: Library Community Modeling Commons User Manuals: Web Printable Chinese Czech Farsi / Persian Japanese Spanish

NetLogo User Community Models(back to the NetLogo User Community Models)
## WHAT IS IT?
This model explores the stability of predatorprey ecosystems. Such a system is called unstable if it tends to result in extinction for one or more species involved. In contrast, a system is stable if it tends to maintain itself over time, despite fluctuations in population sizes.
_____________________________________________________________________________________
<b>Predatormediated coexistence model:</b>
## HOW IT WORKS
There are two main variations to this model.
In the first variation, wolves and sheep wander randomly around the landscape, while the wolves look for sheep to prey on. Each step costs the wolves energy, and they must eat sheep in order to replenish their energy  when they run out of energy they die. To allow the population to continue, each wolf or sheep has a fixed probability of reproducing at each time step. This variation produces interesting population dynamics, but is ultimately unstable.
The second variation includes grass (green) in addition to wolves and sheep. The behavior of the wolves is identical to the first variation, however this time the sheep must eat grass in order to maintain their energy  when they run out of energy they die. Once grass is eaten it will only regrow after a fixed amount of time. This variation is more complex than the first, but it is generally stable.
The construction of this model is described in two papers by Wilensky & Reisman referenced below.
_____________________________________________________________________________________
<b>Predatormediated coexistence model:</b>
## HOW TO USE IT
1. Set the GRASS? switch to TRUE to include grass in the model, or to FALSE to only include wolves (red) and sheep (white).
Parameters:
Notes:
_____________________________________________________________________________________
<b>Predatormediated coexistence model:</b>
Parameters:
## THINGS TO NOTICE
When grass is not included, watch as the sheep and wolf populations fluctuate. Notice that increases and decreases in the sizes of each population are related. In what way are they related? What eventually happens?
Once grass is added, notice the green line added to the population plot representing fluctuations in the amount of grass. How do the sizes of the three populations appear to relate now? What is the explanation for this?
Why do you suppose that some variations of the model might be stable while others are not?
_____________________________________________________________________________________
<b>Predatormediated coexistence model:</b>
## THINGS TO TRY
Try adjusting the parameters under various settings. How sensitive is the stability of the model to the particular parameters?
Can you find any parameters that generate a stable ecosystem that includes only wolves and sheep?
Try setting GRASS? to TRUE, but setting INITIALNUMBERWOLVES to 0. This gives a stable ecosystem with only sheep and grass. Why might this be stable while the variation with only sheep and wolves is not?
Notice that under stable settings, the populations tend to fluctuate at a predictable pace. Can you find any parameters that will speed this up or slow it down?
Try changing the reproduction rules  for example, what would happen if reproduction depended on energy rather than being determined by a fixed probability?
_____________________________________________________________________________________
<b>Predatormediated coexistence model:</b>
Try to change the competitive domince between goats and sheep by playing with the 'sheepgainfromfodd' or'sheepreproduce' and the 'goatgainfromfood' or 'goatreproduce'. How does that affect the populations ?
Take wolfs out of the equations changing the 'initialnumberwolves' to 0. What will happen ?
## EXTENDING THE MODEL
There are a number ways to alter the model so that it will be stable with only wolves and sheep (no grass). Some will require new elements to be coded in or existing behaviors to be changed. Can you develop such a version?
Can you modify the model so the sheep will flock?
Can you modify the model so that wolf actively chase sheep?
## NETLOGO FEATURES
Note the use of breeds to model two different kinds of "turtles": wolves and sheep. Note the use of patches to model grass.
Note use of the ONEOF agentset reporter to select a random sheep to be eaten by a wolf.
## RELATED MODELS
Look at Rabbits Grass Weeds for another model of interacting populations with different rules.
## CREDITS AND REFERENCES
Townsend, C. R., Begon, M. & Harper, J. L. (2008). Essentials of Ecology. Third Edition. Blackwell Publishing, 522 pp.
## HOW TO CITE
If you mention this model or the NetLogo software in a publication, we ask that you include the citations below.
For the model itself:
* Wilensky, U. (1997). NetLogo Wolf Sheep Predation model. http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation. Center for Connected Learning and ComputerBased Modeling, Northwestern University, Evanston, IL.
Please cite the NetLogo software as:
* Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and ComputerBased Modeling, Northwestern University, Evanston, IL.
## COPYRIGHT AND LICENSE
Copyright 1997 Uri Wilensky.
![CC BYNCSA 3.0](http://ccl.northwestern.edu/images/creativecommons/byncsa.png)
This work is licensed under the Creative Commons AttributionNonCommercialShareAlike 3.0 License. To view a copy of this license, visit https://creativecommons.org/licenses/byncsa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
This model was created as part of the project: CONNECTED MATHEMATICS: MAKING SENSE OF COMPLEX PHENOMENA THROUGH BUILDING OBJECTBASED PARALLEL MODELS (OBPML). The project gratefully acknowledges the support of the National Science Foundation (Applications of Advanced Technologies Program)  grant numbers RED #9552950 and REC #9632612.
This model was converted to NetLogo as part of the projects: PARTICIPATORY SIMULATIONS: NETWORKBASED DESIGN FOR SYSTEMS LEARNING IN CLASSROOMS and/or INTEGRATED SIMULATION AND MODELING ENVIRONMENT. The project gratefully acknowledges the support of the National Science Foundation (REPP & ROLE programs)  grant numbers REC #9814682 and REC0126227. Converted from StarLogoT to NetLogo, 2000.
<! 1997 2000 >
_____________________________________________________________________________________
<b>Predatormediated coexistence model:</b>
Copyright 2016. Teresa Sofia Alexandre, Vanessa Costa e RĂºben Rego.
![CC BYNCSA 3.0](http://ccl.northwestern.edu/images/creativecommons/byncsa.png) 
(back to the NetLogo User Community Models)