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Abstract We introduce a design-based research framework, learning axes and
bridging tools, and demonstrate its application in the preparation and study of an
implementation of a middle-school experimental computer-based unit on probability
and statistics, ProbLab (Probability Laboratory, Abrahamson and Wilensky 2002
[Abrahamson, D., & Wilensky, U. (2002). ProbLab. Northwestern University,
Evanston, IL: The Center for Connected Learning and Computer-Based Modeling,
Northwestern University. http://www.ccl.northwestern.edu/curriculum/ProbLab/]).
ProbLab is a mixed-media unit, which utilizes traditional tools as well as the
NetLogo agent-based modeling-and-simulation environment (Wilensky 1999)
[Wilensky, U. (1999). NetLogo. Northwestern University, Evanston, IL: The Center
for Connected Learning and Computer-Based Modeling. http://www.ccl.northwest-
ern.edu/netlogo/] and HubNet, its technological extension for facilitating participa-
tory simulation activities in networked classrooms (Wilensky and Stroup 1999a)
[Wilensky, U., & Stroup, W. (1999a). HubNet. Evanston, IL: The Center for
Connected Learning and Computer-Based Modeling, Northwestern University]. We
will focus on the statistics module of the unit, Statistics As Multi-Participant
Learning-Environment Resource (S.A.M.P.L.E.R.). The framework shapes the
design rationale toward creating and developing learning tools, activities, and
facilitation guidelines. The framework then constitutes a data-analysis lens on
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24 D. Abrahamson, U. Wilensky

implementation cases of student insight into the mathematical content. Working
with this methodology, a designer begins by focusing on mathematical representa-
tions associated with a target concept—the designer problematizes and deconstructs
each representation into a pair of historical/cognitive antecedents (idea elements),
each lying at the poles of a learning axis. Next, the designer creates bridging tools,
ambiguous artifacts bearing interaction properties of each of the idea elements, and
develops activities with these learning tools that evoke cognitive conflict along the
axis. Students reconcile the conflict by means of articulating strategies that embrace
both idea elements, thus integrating them into the target concept.

“Such problems [—especially problems like that of composing a
poem, inventing a machine, or making a scientific discovery—] are
intimations of the potential coherence of hitherto unrelated things,
and their solution establishes a new comprehensive entity, be it a
new power, a new kind of machine, or a new knowledge of nature”
(Polanyi 1967, p. 44).

“Not that I mean as sufficing for invention the bringing together of
objects as disparate as possible; most combinations so formed would
be entirely sterile. But certain among them, very rare, are the most
fruitful of all” (Poincaré 1897/2003, p. 51).

1 Introduction
1.1 Objective

The objective of this paper is to contribute to research on mathematics-education a
new design-oriented framework for fostering conceptual understanding. The pro-
posed framework outlines principled design-research methodology for implementing
constructivist/constructionist pedagogy in the form of concept-targeted learning
environments, including objects, activities, and facilitation emphases for teachers.
These learning environments are designed to structure opportunities for students to
reinvent mathematical concepts through problem-solving interactions with artifacts
that problematize for students their mathematical understandings and foster
reflection that stimulates insight. The framework guides designers along a research
path from diagnosis of a design problem through to design of learning tools and,
eventually, analysis of data from implementing the design. The framework emerged
over several projects (Abrahamson 2004; Abrahamson and Cendak 2006;
Abrahamson and Wilensky 2004a; Fuson and Abrahamson 2005), yet we focus in
this paper on a single project, in which we targeted basic statistical concepts. To
demonstrate the proposed framework, we explain the design rationale, objects, and
activities and then present empirical data of students engaging in these activities and
interpret student insight in light of the framework. Ultimately, the framework
expresses a reflection on our design practice, so as both to ground this practice in the
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learning sciences and formulate guidelines for design in diverse settings and for a
range of mathematical content domains.

In the remainder of this Introduction, we explain the intellectual roots of our
design-oriented framework (e.g., Freudenthal 1986; Papert 1991; Piaget and Inhelder
1952; von Glasersfeld 1987). In the Design section, we situate the design rationale of
our experimental middle-school unit (Abrahamson and Wilensky 2002) within
previous work (the Connected Probability project, Wilensky 1997), explain our
choice of technology-based learning environments for implementing the unit
(NetLogo and HubNet), and then detail the focal activity discussed in this paper
(S.AAM.P.L.E.R., Abrahamson and Wilensky 2004a). In the Results and Discussion
section, we present a set of episodes from our empirical data. Finally, we discuss
implications of our proposed framework for theory of learning and design.

1.2 Conceptual composites, learning axes, bridging tools, and learning
issues: a generic example

We research students’ mathematical cognition, focusing on: the nature of mathe-
matical intuition, reasoning, and learning; the relations among mathematical intui-
tion, reasoning, and learning; and the roles that carefully designed artifacts may play
in supporting students’ development of deep conceptual understanding grounded in
tacit perceptual and experiential knowledge as well as in their prior mathematical
understandings. That is, we are interested in investigating the relations between
human reasoning and artifacts within social contexts created specifically to facilitate
mathematical learning, such as classrooms. But we are also interested in effecting
change—in leveraging insight into students’ mathematical learning so as to increase
mathematical literacy in the general population. Thus, our work lies at the inter-
section of theory and practice—our ‘‘deliverables” are both models of mathematical
learning and mathematical artifacts that we design and research. We have therefore
found design-based research (see Fig. 1, below) a suitable methodological approach
for coordinating our investment in both theory and practice; for making this theory
and practice synergistic (Brown 1992; Cobb et al. 2003; Collins 1992; Collins et al.

Theory of Learning

Theory of Design

Domiain

Analysis
Design Teaching/Learning Data Analysis
Objects Implementation Learning Issues
Activities “Real Time” Coding
Facilitation Data Collecting Conclusions

Fig. 1 Design-for-learning activity framework. A theory of design enfolded within a theory of
learning (top) is applied to mathematical content in the form of domain analysis (middle), which
then guides the iterated development and research of experimental learning tools, in a sequence of
empirical studies with participant students
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2004; Edelson 2002). As we now explain, our methodology is informed by consid-
erations of how people develop mathematical tools and work with them.

1.2.1 Overview of research activity

Our research on mathematical cognition encompasses a broad set of issues
pertaining to the invention, use, and learning of mathematical concepts. We are
particularly interested in the artifacts—mathematical representations, computing
devices, and ritualized procedures around these objects—that mediate numeracy
practices and, possibly, conceptual understanding. For example, we examine
reciprocal relations between media, forms of representations, and content (Wilensky
and Papert 2007) and how these impact historical and individual learning. Thus, in
preparing to design learning tools for a particular mathematical concept, we study
the historical and contemporary mathematical objects that have become canonical in
supporting cultural practice associated with the concept. Also, we investigate how
learners come to engage in activities with these objects.

A study of phylogenic, ontogenetic, and ethnomethodological aspects of mathe-
matical practice related to a target concept is relevant to design. Just as cultures took
millennia in evolving these cognitively ergonomic artifacts, constructivist designers
have argued, so students—who share with their ancestors the capacity to see, touch,
count, and imagine—need opportunities to re-invent these artifacts (Artigue 2002;
Gravemeijer 1994; Wilensky 1997). Only thus, we believe, can students appropriate
these objects as thinking tools; only thus, do students develop trust in their personal
mathematical agency; only thus, do students develop critical numeracy (see also
Gal 2005).

These virtues—mathematical fluency, intellectual confidence, and critical rea-
soning—are assets for citizens of democratic society. Yet, at the same time, we
cannot expect each student to reinvent the wheel. We are therefore searching for an
optimal balance between “‘free range” environments and overly prescriptive cur-
ricula (von Glasersfeld 1992)—a balance that would resonate with professional-
development needs and enable wide distribution of instructional units.

This section introduces four key design-research constructs. These constructs
have emerged in our work as useful for organizing the development of mathematical
objects as well as research on student engagement with these objects: (1) conceptual
composite; (2) learning axis; (3) bridging tool; and (4) learning issue. We will use a
generic example that should be adequate to convey the meaning and application of
these constructs. The constructs will later be demonstrated within the context of
more complex mathematical content—probability and statistics—in subsequent
sections that discuss the development and research of the design that is the focus of
this paper. But before we get to the heart of the paper it is useful to step back and
ask: What would we want of a design-research framework that purported to
accountably implement constructivist/constructionist pedagogical philosophy?

1.2.2 Criteria toward creating a design-for-learning research framework

In order for the desired design framework to accountably implement constructivist/
constructionist pedagogical philosophy, it would need to satisfy a set of criteria.
We have been seeking to create learning environments that:
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1. capitalize on students’ proto-mathematical intuitions pertaining to the target
concept (students’ ecological intelligence, Gigerenzer 1998);

2. elicit students’ holistic strategies, heuristics, perceptual judgments, experiential
acumen, vocabulary, and previous mathematical understandings pertaining to a
class of situated problems that exemplify the target concept (the phenomena
under inquiry);

3. provide materials and activities that enable students to concretize and reflect on
isolated elements of their intuitive strategy through attention to properties of the
materials and actions with these materials;

4. challenge students’ strategy by presenting situations in which the isolated
elements of the strategy appear to be incompatible (even though they are in fact
complementary—students initially do not have the conceptual structures for
explaining the apparent incompatibility and, therefore, take it to imply error,
despite a lingering unarticulated sense that their initial intuitions are in fact
correct);

5. enable students to recognize the complementarity of the isolated strategy
elements and articulate this insight qualitatively in the form of new mathemat-
ical understanding;

6. foster student appropriation of normative symbolical inscriptions as problem-
solving tools that warrant, extend, and sustain the initial intuitive convictions.

The above criteria outline an “unpack-repack,” or “breakdown-buildup,” de-
sign-for-learning strategy—the criteria purport to frame the design of learning
environments in which students unpack their intuitive qualitative strategies into
elements, reflect on these elements and relations among them, and then re-pack the
elements into mathematical problem-solving tools. Thus the “psychological” be-
comes “‘epistemological” (Papert 2000). We now explain the design framework we
created in attempt to satisfy the above criteria.

1.2.3 Overview of framework constructs

Conceptual composites, learning axes, bridging tools, and learning issues are theo-
retical constructs informing our design-based research in Mathematics education.
These constructs, which have emerged through our studies of student learning in
diverse mathematical domains, enable us to articulate our design rationales in terms
of our understanding of how students learn mathematics. In turn, the constructs
enable us to couch data of students’ mathematical learning in terms of their inter-
actions with our designs. We will now explain our key constructs.

1.2.4 Conceptual composite: a domain-analysis technique

Mathematical ideas can be captured in a range of sign systems, such as symbols,
diagrams, or words. For example, a particular cardinal can be expressed, respec-
tively, as “2,” “two,” or “o o0.” Diagrams are unique: unlike symbols and words,
diagrams are inherently given to ambiguity, because they are more loosely tied to
the semiotic system (“‘compiler’”) governing the interpretation of signs. For example,
“2” and ‘“‘two”’—at least in their inscribed form—refer unambiguously to the car-
dinal property, whereas ‘o 0’ might be interpreted as eyes, coins, or “00” as in
“book.” The inherent ambiguity of diagrams requires that a learner adopt a con-
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ventional way of seeing the diagram so as to participate in a social practice that
utilizes these diagrams unambiguously. Addressing this inherent constraint of
diagrams is central to the constructivist pedagogical enterprise, where students en-
gage in activities with objects such as visual representations. Moreover, phenome-
nological analysis implicates a central role of the visual modality—and, more
generally, embodied multimodality—in mathematical learning. That is, we assume
that core mathematics-learning processes transpire as negotiations of multimodal
images. Therefore, ambiguity could play a constructive role in design frameworks
that purport to be sensitive to the cultural evolution of conventional diagrams as well
as foster personal learning processes that emulate this cultural evolution. Ambiguity,
as we now explain, can create learning opportunities.

Mathematical representations, we posit, are conceptual composites, i.e., they en-
fold a historical coordination of two or more ideas. Each of these ideas, or con-
ceptual elements, is associated with one way of selectively attending to the
representation when using it. For example, an array can lend itself to at least two
ways of seeing (see Fig. 2, below). The mathematical expression ab = ba, which
defines the commutative nature of the multiplication operation, expresses the
equivalent cardinality of the products of two different multiplications, each associ-
ated with a unique way of seeing the diagram. To wit, the pictures on the left and
right of Fig. 2 foreground, respectively, the 3-groups-of-2 and 2-groups-of-3 visual
parsing of the 3-by-2 central array (we will further clarify this example in the next
sections). Notwithstanding, one could presumably use the commutative property of
multiplication without understanding it. However, is such practice desirable?

The composite nature of mathematical representations is often covert—one can
use these concepts without appreciating which ideas they enfold or how these ideas
are coordinated. Consequently, standard mathematical tools may be
opaque—Ilearners who, at best, develop procedural fluency with these tools, may not
develop a sense of understanding, because they do not have opportunities to build on
the embedded ideas, even if each one of these embedded ideas is familiar and robust.
Moreover, such consequent lack of connected understanding (Wilensky 1997)
remains concealed from assessment, due to students’ reasonably effective procedural

Conceptual Composite:
Commutative Property of Numbers

—(arb=bra )—

XXX
X r —
XXX
3*2 2*3
A Bridging Tool A
Learning Axis

Fig. 2 Decomposition of a mathematical conceptual composite into complementary components
and a bridging tool for facilitating student recomposition (reinvention): The case of the commutative
property of multiplication
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skills, i.e., the effective procedural performance acts as a smokescreen obscuring the
problematic conceptual understanding. Lacking deep understanding, in turn, is
detrimental in terms of students’ mathematical cognition and affect: it hinders the
potential generativity, creativity, and satisfaction of engaging in mathematical
reasoning (Wilensky 1995, 1997) and compromises students’ performance in solving
problems (Bereiter and Scardamalia 1985).

By depicting mathematical representations as expressing ideas in need of coordi-
nation, the construct of conceptual composites underscores a general design problem.
Namely, there is a tension between, on the one hand, the phylogeny of a mathematical
concept—how it may have evolved over millennia—and, on the other hand, common
classroom ontogeny—a curricular need to learn a new concept within several weeks, if
not days or hours. This tension, we conjecture, can be partially addressed while still
abiding with constructivist/constructionist pedagogical philosophy. We propose to
provide students with the complementary ideas of a target concept and facilitate
problem-solving activities that encourage students to construct the concept as a
coordination of these elements. The following constructs convey a design template for
facilitating such coordination in diverse mathematical content domains.

1.2.5 Learning axis: a design-researcher’s articulation of a target mathematical
concept as idea elements in need of coordination

The learning axis, a design-theory construct, extends between two necessary and
complementary components of a mathematical concept. That is, a particular learning
axis expresses a conceptual-composite analysis of a mathematical representation
toward creating learning tools. The two conceptual elements at the poles of a
learning axis are each within the age-appropriate learner’s comfort zone. The notion
of learning axis positions these differentiated conceptual elements as potentially co-
present within the learner’s attention and reasoning. Student learning is stimulated
when the two elements are experienced as competing and the student attempts to
construct logical reconciliation (“‘bridging”) of these competing perceptions. Such
cognitive conflict is mediated through problem-solving activities with a bridging tool.

1.2.6 Bridging tool: an “‘ambiguous’ artifact affording a learning axis

A bridging tool is a hybrid representation bearing structural properties of each of
two identified conceptual-composite elements at the poles of a learning axis—it is
perceptually similar to each element, so it can concurrently afford either. That is, the
bridging tool constitutes a single diagrammatic substrate carrying both idea elements
couched in the same visual language. In so doing, the bridging tool backgrounds the
similarity of the idea elements, thus accentuating their difference. The juxtaposition
of the elements, in turn, enables their coordination and integration into the standard
representation. Thus, in the proposed framework students learn by clarifying the
bridging tool’s ambiguity. That is, conceptual learning is accomplished as a rule-
expressed coordination of the bridging tool’s competing disambiguations—a coor-
dination that reconciles the tension created by the ambiguity. Students’ sense of
purpose underlying this activity is created by problem-solving contexts.

In Fig. 2, bottom center, we see an example of a picture that could serve as a
bridging tool in a mathematics-education design for the commutativity of multipli-
cation (ab = ba). Two of the possible interpretations of this picture—the picture’s
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meanings—are as 3 columns each made up of 2 X’s or as 2 rows each made up of 3
X’s. These meanings are strongly suggested in the pictures on the left (3*2) and on
the right (2*3), but the meanings are equally likely for the central picture. One might
construct the commutative property of multiplication as a rule that relaxes the
tension inherent in the object’s interpreted ambiguity. That is, to reconcile these
competing meanings, a learner would need to discover how these meanings might be
complementary (‘““AND”’) rather than mutually exclusive (“OR”). Thus, commu-
tativity is constructed as the reconciliation of the conflict created by the competing
affordances of a single object (see the summary section 1.2.8 for further explanation
of bridging tools).

1.2.7 Learning issue

Learning axes are articulated as part of the domain analysis, at a point in the tool-
development process when a learning axis could be implemented in a plurality of
bridging tools that would each potentially facilitate students’ negotiation along the
axis. Yet only once the learning axis has been implemented in the form of an actual
learning tool, a bridging tool, do students have context for engaging the axis. Once
implemented in a design, a learning axis is manifest in students’ behavior in the form of
a learning issue, a design-specific articulation of the learning axis in terms of what
students need to be able to see and do with the particular bridging tools. So the learning
issues are the design-specific challenges on the way to basic mastery of a concept.
Although the design does not prescribe a specific instructional sequence along the
learning issues, the set of learning issues constitutes landmarks in students’ indi-
vidual learning trajectories through the unit, and it is assumed that students
understand a unit only by having struggled with all the key learning issues.

1.2.8 Summary and intellectual foundations of the framework

The learning-axes-and-bridging-tools framework reflects an interpretation of intuition
as a double-edged pedagogical sword—intuition instills a favorable sense of famil-
iarity with situational contexts together with a possibly misleading sense of conceptual
understanding (see Papert 2000, on a differentiation between psychology and epis-
temology). We wish to support students in sustaining positive affective disposition
toward their intuitive reasoning while reflecting on this reasoning and recognizing the
added value of adopting mathematical problem-solving tools that amplify these
intuitions. To do so, we guide students through activities with artifacts designed to
elicit intuitive judgment yet foster a reflective, analytic, formal counterpart to this
intuition. This program has roots in research on students’ learning, as we now discuss.

Given supportive learning environments, learners are inclined to reinvent core
aspects of commonly used mathematical, computational, and, in general, quantita-
tive-symbolical artifacts and procedures (Abrahamson et al. 2006; Bamberger and
Ziporyn 1991; diSessa et al. 1991; Papert 1980). The learning axes approach attempts
to leverage students’ capacity to reinvent mathematics by articulating for designers
domain-analysis principles by which to identify conceptual elements and activity
contexts that foster student reinvention of target concepts. Specifically, we attempt
to create for students a problem space for which two different notions each appear
useful, but where it is not initially clear how these notions may be combined to solve
the problem. So problem spaces that give rise to learning axes include objects that
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both contextualize the problem and stimulate the complementary notions that will
contribute to the solution of the problem—objects that we call bridging tools.

Bridging tools (Abrahamson 2004, 2006a; Fuson and Abrahamson 2005) are
pedagogical artifacts and activities that tap and stimulate students’ previous math-
ematical knowledge, situational understandings, and kinesthetic schemas and link
these reciprocally to mathematical representations. Figure 3 (below) builds on the
apprehending-zone model (Abrahamson 2004; Fuson and Abrahamson 2005), a
mathematics-education model of design, teaching, and learning, to further explain
bridging tools. A bridging tool is created in the Design Tools Space (see Fig. 3, lower
tier). Through participating in the Classroom Activity Space (see Fig. 3, middle tier),
students construct meanings for the bridging tool and link these meanings. A unique
attribute of bridging tools is that each bridging tool is designed to evoke at least two
meanings that are complementary in understanding the target concepts. Each of
these meanings is an affordance of the tool within some activity context, and each
affordance supports a subconstruct of the target domain (see Fig. 3, the dashed
arrows rising from the bridging tool). Students negotiate and reconcile these com-
plementary meanings to construct a new mathematical concept in their Internalized
Space (see Fig. 3, top tier; note vertical axis).

Our design of bridging tools is informed by cognitive, pedagogical, and socio-
constructivist assumptions and motivations that have led us to regard learning tools
as more than computation devices for carrying out solution procedures or scaffolds
towards some alleged abstract understandings. We assume that mathematical
instruments can play pivotal roles in mediating to students mathematical under-
standings. Specifically, bridging tools can potentially embody and convey dilemmas
and solutions inherent in a mathematical domain. Using bridging tools, students
come to emulate thought processes that the designer sensed are conducive to the
construction of central ideas of the target domain.

By focusing on bridging fools as organizing mathematics-education learning
environments rather than on the mathematical concepts, we wish to foreground a
design principle that learning environments should create opportunities for students
to construct new ideas, and that presenting students with completely ‘‘baked’ ideas
may defeat the objective that students themselves construct the concepts (see, e.g.,

Fig. 3 Learning axes and
bridging tools: Student
construction of mathematical \ ===== Am——— Internalized Space
concepts is viewed as a
problem-driven reconciliation
of competing interpretations
afforded by a single bridging
tool. Bridging tools are
designed through domain
analysis of mathematical
concepts

Design Tools Space

’,
Bridging Tool
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von Glasersfeld 1990). Sometimes, we conjecture, outright clarity deprives a learner
of opportunities to construct understandings. In its ambiguity, the bridging tool
sidesteps ready-made clarity, creating instead a generative semiotic node. Thus, the
classroom activities and classroom episodes that we present in this paper attempt to
convey the plausibility of designing for learning opportunities rather than designing
directly for concepts. Bridging tools play a pivotal role in suspending a concept-
driven pedagogy of definitions, formulas, and word problems. Using bridging tools,
students are to experience the challenges inherent in understanding mathematical
concepts and initiate discussion of these challenges. So bridging tools are ‘half
baked” by the designers yet require learners’ active participation to become well
done as emergent mathematical constructs, i.e., to become personal understandings
that are sufficiently shared in the classroom (see also Cobb et al. 1997, on the
emergent perspective on learning).

One assumption of our design framework, coming from Abrahamson (2004), is
that students can construct mathematical concepts as reconciliations of the com-
peting interpretations inherent in a bridging tool. The idea of learning as reconcil-
iation is not new. In 1837, William Whewell wrote the following words about
students’ intuitive understanding of the fundamental axioms of geometry: “The
student’s clear apprehension of the truth of these is a condition of the possibility of
his pursuing the reasoning on which he is invited to enter” (Whewell 1837/1989,
p- 40). Learning, according to Whewell, is the process of an individual student
grounding formalisms in her intuition, and this learning process is fostered through
discourse (see also Schon 1981, on learning as synthesizing the intuitive and the
formal). Following Whewell, we attempt to help students ground formal constructs
and symbolical inscriptions in their perception and understanding-in-action intuition
(Wilensky 1991, 1993; Abrahamson 2004).

The idea of understanding-in-action that is a hallmark of constructivist pedagogy
(e.g., von Glasersfeld 1987) can be seen as rooted in phenomenological philosophy
(e.g., Heidegger 1927/1962; Merleau-Ponty 1945/1962) and in Gibson’s (1977) con-
struct ‘affordance’ that is widely used in the learning-sciences literature. We wish to
extend the idea of learning as reconciliation by submitting that reconciliation or
synthesis can transpire not only between intuition and formalism but also between
two intuitions grounded in one and the same object—the learning occurs as con-
structions when learners attempt to reconcile two competing interpretations of a
phenomenon in the context of some designed activity (see Poincaré 1897/2003,
Polanyi 1967, and Steiner 2001, on the “mental combinatorics” of mathematics
creativity; see Piaget 1952, on how the idea of volume arises in conservation tasks;
see Minsky 1985, on hierarchies in mental structures; see Case and Okamoto 1996,
on central conceptual structures; see Forman and Pufall 1988, on epistemic conflict,
see Fauconnier and Turner 2002, on conceptual blends).

Finally, note that not every ambiguous figure is a bridging tool in the sense that
we have been using it to discuss design for mathematics-learning environments (see
Fig. 4, below). If T say “duck” and you say “rabbit” (Fig. 4a), we might learn
something about visual perception. But if I say “2 rows of 3 X’s” and you say ““3
columns of 2 X’s”” (Fig. 4b), let’s not call the whole thing off—rather, we might learn
something about mathematics.

Having discussed the proposed design framework as well as its application, the-
oretical constructs, and foundations, we will now turn to the case of a design used in
our empirical study with middle school students studying probability and statistics.
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Fig. 4 Not every ambiguous figure is a bridging tool

2 Design

This section introduces the ProbLab experimental unit for middle-school probability
and statistics (Abrahamson and Wilensky 2002). We explain the initial design
problem and how we treated it using the learning-axes-and-bridging-tools design
framework. Next, we support our choice of media for implementing the design. The
bulk of this section is a description of parts of ProbLab relevant to the empirical
study discussed in this paper.

2.1 Design problem and domain analysis toward design rationale

The Connected Probability project (Wilensky 1997) and its current research unit,
ProbLab (Abrahamson and Wilensky 2002), are an attempt to respond to a century
of theoretical and empirical studies reporting and analyzing student difficulty in the
domain of probability and statistics (von Mises 1928/1957; Piaget 1952; Fischbein
1975; Hacking 1975, 2001; Simon and Bruce 1991; Konold 1989; Shaughnessy 1992;
Wilensky 1993, 1995, 1997; Biehler 1995; Papert 1996; Gigerenzer 1998; Maher et al.
1998; Metz 1998; Henry 2001; Jones et al. 2007). Authors have critiqued as detri-
mental to student learning the symbolical notation of the domain (Gigerenzer 1998),
embedded assumptions in learning environments regarding randomness (e.g., Henry
2001; Maher et al. 1998), and a general disconnect in most mathematics curricula
between student real-world experiences and formal mathematical expressions
(Wilensky 1997; Pratt 2000). Our reading of this body of literature is that there are
pairs of juxtaposed subconstructs, or idea elements, inherent in the domain, such as
theoretical- versus empirical probability (Hacking 2001), dependent- versus inde-
pendent events (Abrahamson et al. 2006), exploratory data analysis versus proba-
bility (Biehler 1995), single trials versus expected values (von Mises 1928/1957;
Hacking 2001), and the ultimate tenuousness of statistical measurement versus
“true”” population properties (Abrahamson and Wilensky 2004a; Liu and Thompson
2002).

We propose that student difficulty with these juxtaposed subconstructs could be
treated not as confusions indicating poor learning but as tensions that could be
generative of inquiry, reflection, discussion, and deep understanding. That is, we
regard these juxtaposed subconstructs as potentially framing powerful learning
experiences. We interpret each pair of juxtaposed subconstructs as inter-defining
through dialectical semiosis: “‘theoretical probability” has little if any meaning
without some understanding of “‘empirical probability,”” and vice versa. Our approach
is to decompose the domain constructs, e.g., distribution, into idea components (the
poles of the learning axis) and create bridging tools and activities that elicit students’
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intuitive and analytic resources for each component and help students recompose the
target constructs as capstones bridging the conceptual semiosis (on students’ intuitive
probability, see Fischbein 1975; Piaget and Inhelder 1975).

2.2 ProbLab: implementing the design rationale in the form
of bridging tools

The promise of the computer as a medium for mathematics-learning environments, in
general (e.g., Noyles and Noss 1992), and for probability and statistics, in particular,
has long been discussed by Papert (1980, 1996) and others (e.g., Finzer 2000; Konold
2004; Wilensky 1993, 1995). Oft-cited advantages of the computer environment are
high-speed errorless data processing, dynamic-visualization capabilities, and interac-
tive facilities that can support exploration and the testing of conjecture (e.g., Pratt
2004; Pratt et al. 2006). The design used in this study was part of ProbLab
(Abrahamson and Wilensky 2002), a computer-based experimental unit that extends
the Connected Probability project (Wilensky 1997). Technology employed included
NetLogo a multi-agent modeling-and-simulation environment for researching, teach-
ing, and learning science, social science, and other phenomena, and HubNet, a tech-
nological infrastructure built on NetLogo that enables participatory simulation
activities (Resnick and Wilensky 1998; Wilensky and Stroup 1999b, 2000) in a net-
worked classroom. A participatory simulation is a form of collaborative inquiry-based
activity that is distinguished from regular group learning by virtue of having the
learners play the roles of elements in a complex system that they are collectively
studying. For example, each student plays the role of an animal in a herd through which
a contagious disease is being propagated—thus students investigate the complex
dynamics of epidemics. The learners interact one with another according to individual
“rules” while monitoring for group-level transformation along focal dimensions (see
also Berland and Wilensky 2004; Collela et al. 1998; Klopfer et al. 2005).

We chose to work in the NetLogo environment due its authoring functionalities,
multi-agent structure, and topology, as follows. The NetLogo authoring function-
alities enabled us to create original interactive modules and modify them iteratively
in between implementation cycles, even during a classroom intervention. The
NetLogo multi-agent structure enabled us to construct probability experiments in
which multiple computer avatars simultaneously select between two properties (as
though one were tossing many coins at once). The NetLogo topology enabled us to
structure the unit so as to establish relations between probability and statistics
activities—namely the same visual metaphors constituted either a stochastic device
or a population, as we now explain.

The NetLogo view, the interface area where the simulated phenomena are
visually represented, is a reticulated matrix of patches, which are square-shaped
independent computational agents with fixed positions on the Cartesian plane and
properties such as color. The environment supports assigning rule-based procedures
to these independent agents, “‘running’’ these procedures, and monitoring group-
level outcomes, e.g., ratios in color distribution resulting from hundreds of patches
each choosing randomly between being green or blue, all with the same p value.
Over numerous trials, the user witnesses the emergence of distributions, at the
macro level, that converge on the p value (of the micro decisions). In a statistics
simulation, the user samples squares from a matrix of thousands of the identical
green/blue patches.
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These features of the NetLogo modeling environment were all aligned with our
design rationale. First, the colorful tessellation of the view supports users in engaging
perceptual judgment of color proportions so as to explore relations between micro
and macro aspects of stochastic phenomena. For example, when thousands of pat-
ches choose independently between green and blue with equal likelihoods, the
overall “‘mosaic” appears about half green and half blue. Second, the shared visual
language of the probability and statistics modules enable nuanced differentiation
between procedures associated with both concepts, such as sampling, and investi-
gation of epistemological aspects of these concepts, such as the realness of sample
spaces (Abrahamson 2006b).

2.3 Overview of ProbLab bridging tools and activities

The unit revolves around the 9-Block, a mathematical object embodied in three
different activities: theoretical probability, empirical probability, and statistics.
A 9-Block is a 3-by-3 matrix in which each of the nine squares can be either green or
blue. The unit begins with a collaborative construction project in which the classroom
builds the combinatorial sample space of the 9-block (the combinations tower). Next,
students work with computer microworlds in which the 9-Block is embodied in the
form of a stochastic device, where each of the nine squares independently chooses
between green and blue. Students analyze outcome distributions from running these
simulations. Finally, students work in S.A.M.P.L.E.R., a statistics activity, in which
they take and analyze 9-block samples from a hidden population of thousands of
green and blue squares (for other objects, a suite of over 20 models, and activities, see
Abrahamson and Wilensky 2002; Abrahamson 2006a; Abrahamson et al. 2006).

2.3.1 The combinations tower

To build the combinatorial sample space of all possible green/blue 9-blocks, students
use paper, crayons, scissors, and glue (see Fig. Sa—c, below). Abrahamson et al.
(2006) report on how a 6th-grade classroom self organized to engineer, strategize,
and produce this challenging mathematical object comprised of 512 distinct ele-
ments. Students create collections of 9-blocks (Fig. 5a), with particular attention to
avoiding duplicates. Students are then guided to construct this sample in the form of
a histogram, according to the number of green squares in the 9-blocks (see Fig. 5d,
for a sketch of this histogram). The heights of the histogram columns correspond to
the coefficients of the binomial function (a + b)9, 1,9, 36, 84, 126, 126, 84, 36, 9, and
1. For example, there is only a single, 1, combination with no green squares, there
are 9 different combinations with exactly one green square, 36 with exactly two
green squares, and so on. Students notice the symmetry and general emerging shape
of the distribution and use this knowledge to inform their search for new combi-
nations. Students paste the 9-blocks they have created onto a poster, grouped
according to the number of green squares in each column and without duplicates
(Fig. 5b). This histogram—the combinations tower—grows into a narrow and very
tall chart that begins near the floor and extends up to the ceiling (Fig. Sc). Impor-
tantly, the activity of constructing the combinations tower is not framed as relating
to probability. Nevertheless, as we will discuss in a later section, the classroom refers
to this display as such in subsequent probability activities.
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Fig. 5 The “combinations tower” ProbLab activity

2.3.2 9-Blocks—a NetLogo simulation

The NetLogo model 9-Blocks(Abrahamson and Wilensky 2004b; see Fig. 6a, next
page) was designed to help students understand outcome distributions obtained in
empirical-probability experiments in terms of theoretical probability. Nine patches
independently select between green or blue (in the default version of the model,
p =.5). The procedure then counts up how many green squares are in the 9-block
outcome and records this number in a histogram. For instance, if the 9-block has 6
green squares in it (see Fig. 6a), the 7th column from the left will rise up one unit
(the left-most column corresponds to zero greens). From trial to trial, the histogram
grows incrementally, progressively taking on a stable shape similar to the combi-
nations tower (compare Fig. 6a and b). Classroom discussion focuses on explaining
how a random procedure could possibly produce a distribution identical in shape to
an artifact that had been derived through meticulous combinatorial analysis.

233 S AM.P.L.E.R.: a HubNet participatory-simulation activity

S.A.M.P.L.E.R., Statistics As Multi-Participant Learning-Environment Resource
(Abrahamson and Wilensky 2002), is a participatory-simulation activity built in
NetLogo and enabled by the HubNet technological infrastructure.
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Fig. 6 Interface of ProbLab interactive simulation ““9-Blocks”

In SSAM.P.LE.R. (see Fig. 7, next page), students each take individual samples
from a population and use these samples to estimate a target property of this popu-
lation. The “population” is a matrix of thousands of green or blue squares (Fig. 7a),
and the target property being measured is the population’s greenness, i.e., the
proportion of green in the population. A feature of the activity is that population
squares can be “‘organized”—all green to the left, all blue to the right (Fig. 7b). This
“organizing’’ indexes the proportion of green as a part-to-whole linear extension that
maps onto scales both in a slider (above it) and in a histogram of students’ collective
guesses (below it). Students participate through clients (in the current version of
S.A.M.P.L.E.R., these clients run on students’ personal computers). These clients are
hooked up to the facilitator’s server. Students take individual samples from the
population (Fig. 7c), and analyze these samples so as to establish their best guess for
the population’s target property. (Note that whereas all students sample from the
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Fig. 7 Selected features of the S.A.M.P.L.E.R. computer-based learning environment

same population, by default each student only sees their own samples, unless these are
“pooled” on the server.) Students input their individual guesses and these guesses are
processed through the central server and displayed as a histogram on the server’s
interface that is projected onto a classroom overhead screen (Fig. 7d).

The histogram shows all student guesses and the classroom mean guess and
interfaces with the contour of the self-indexing green-blue population immediately
above it. Note the small gap (Fig. 7d, middle) between the classroom mean guess
and the true population index. Because a classroom-full of students takes different
samples from the same population, the histogram of collective student input typically
approximates a normal distribution, and the mean approximates the true greenness
value. The students identify with the data points they have created on the plot (I
am the 37”... “So am I!”... “Oh no... who is the 81?!”"). So students can reflect both
on their individual guesses as compared to their classmates’ guesses and on the
classroom guess as compared to the population’s true value of greenness. Such
reflection and the discussion it stimulates is conducive to understanding distribution.

Students each have a limited ‘“‘sampling allowance,” so they must sample stra-
tegically. The allowance is replenished at the beginning of each sampling round. For
each new hidden population, students each receive 100 points. At each guess, as
many points are deducted from individual students as their guess is off from the true
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value, e.g., a “60%”’ guess for a 50% green population causes a 10-point deduction.
However, before the results are revealed, students are required to choose whether to
link their bet to their own input or the classroom average, e.g., a “60%”’ guess for a
50% green population would cause a deduction of only 2 points, if the student
committed to the group guess and this guess is “52%” (Abrahamson et al. 2006;
Abrahamson and Wilensky 2004a; see Surowiecki 2004, on the power of group
guessing; for detailed explanation of the S.A.M.P.L.E.R. activity, see the NetLogo
Participatory-Simulation Guide, Wilensky and Stroup 2005).

3 Methodology

The implementations were opportunities to study students’ reasoning on problem-
solving tasks involving situations that pertain to the study of probability and sta-
tistics. These situations and framing activity contexts were designed so as to support
students’ invention and practice of mathematical constructs initially experienced as
personally innovative solution procedures. Because we are interested both in student
cognition and in developing learning tools, these interventions were opportunities
both for eliciting students’ reasoning and for evaluating the instructional design.
Specifically, analysis of students’ spontaneous behavior—their actions and utter-
ances—was to inform modification of the emerging theory and design rationale as
well as the objects and activities. Thus, subsequent studies would use improved
materials, and the activity facilitation would be informed by a better understanding
of how the theoretical model should be implemented so as to optimize students’
opportunities for discovery learning. Ultimately, the goal of these iterated studies is
to achieve resonance between the theoretical model and the pedagogical practice; to
articulate emergent findings and integrate them into the model; to create a coherent
design-for-learning framework that will guide other educational researchers and
practitioners in the development, implementation, and study of mathematics-
learning.

3.1 Participants

S.AMP.LE.R. was enacted in two 6th-grade classrooms (n =20; n =18) in a
middle school in a very heterogeneous urban/suburban district (school demo-
graphics: 48% White; 35% African-American; 15% Hispanic; 2% Asian; 29% free/
reduced lunch; 5% ESL). The teacher was a White female teacher in her 3rd year
as a teacher. The rotating research team on site also included four graduate stu-
dents completing their doctoral studies in the Learning Sciences. The first author,
who was also the lead designer of the ProbLab activities, took an active role in
co-facilitating the lessons with the teacher. The other team-member roles included
collecting video data and field notes, eliciting student ideas through on-the-fly
interviews during classroom activities, and addressing software and hardware issues
that often occur in technology-based pilot studies. The second author (the PI)
monitored the study through daily debriefing meetings, in which we consulted on
the objectives and methodology such that the underlying pedagogical philosophy is
implemented.
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3.2 Procedure

The intervention spanned 2 weeks: first week—2*80 min periods work on the
combinations tower interspersed with work on NetLogo models; second
week—3*80 min periods work on S.A.M.P.L.E.R., for a total of five double-period
lessons per classroom. In these implementations, NetL.ogo models were operated by
the teacher and discussed by the students.’

Activity introductions and summaries were facilitated by the lead researcher or
the teacher. Otherwise, lesson time was dominated by individual and group work,
with occasional classroom discussions, some of which were spontaneous and others
initiated by the facilitators. Students were encouraged to lead discussion from the
front of the classroom, by referring to the computer interfaces projected on the
overhead screen and calling on other participating students.

A posttest was administered as another measure of students’ understanding and
so as to elicit students’ feedback on the experimental unit.

3.3 Materials

The classroom was arranged for this implementation in a horseshoe shape (see
Fig. 8a, next page). Twenty students seated at individual laptop computers were
connected through a switch to the facilitator’s computer. The facilitator’s laptop
computer was wired via a 24-port switch to all students’ laptop computers, Macin-
toshes running OS9 operating system. We ran S.A.M.P.L.E.R. in NetLogo 1.3.1.>
The facilitator, whether teacher, researcher, or student, often stood at the opening of
the horseshoe to present the overhead projection (Fig. 8b). During the lesson, the
facilitator had access to all students, and they could consult each other (Fig. 8c).

The posttest consisted of items that required students to address sampling
strategies—both their personal strategies and group strategies. Specifically, students
were asked to explain their favorite sampling strategy, to comment on whether it is
better to commit to one’s own guess or to commit to the group guess, and whether
the group should first input individual guesses and only then discuss the input or first
discuss and then guess (for results of these posttests, see Abrahamson et al. 2006;
Abrahamson and Wilensky 2005, where we describe the range in student responses
as well as some fluency limitations in implementing their correct intuitions; this
paper focuses on analyzing selected episodes from the classroom data from the
perspective of the emergent framework).

3.4 Data collected

Two video cameras filmed all lessons: one was carried by a researcher to capture
student work and discussion and the other one was typically positioned on a tripod at
the back of the classroom as a backup but occasionally carried by another
researcher. During individual work, the researchers interacted with students, asking
them to explain their strategies, actions, and thoughts. Thus, the bulk of the data are
either of classroom discussion or on-the-fly interviews. Because the researchers were

! In later implementations of ProbLab, students operated the NetLogo models individually.

2 The current NetLogo environment that is in its 4.x generation does not support Macintosh
computers that predate OSX.
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Fig. 8 Optional classroom layout in S.A.M.P.L.E.R.

consistent in interacting with all students, the data sample the classroom activity.
Every day, the design team wrote extensive field notes during and immediately after
the lessons and during a first run through the video data. Verbal and electronic
communications within the design team and with the teacher were recorded to track
the rationale of day-to-day modifications of the design. Finally, we collected
students’ posttest responses.

3.5 Data analysis

The researchers individually examined the videotaped classroom data and the daily
field notes. Researchers each marked in the tapes episodes they sensed could be of
significance for understanding and improving the learning potential of students
participating in the classroom activities. In research meetings, we discussed our
selected episodes, many of which were chosen by more than a single researcher.
These episodes tended to portray students who either had difficulty understanding
the activities or made insightful comments about the meaning of mathematical
representations (on collaborative microgenetic-analysis methodology, see Schoenfeld
et al. 1991). Our discussions resulted in the delineation of required modifications of
the learning tools and necessary emphases in the facilitation (see Abrahamson and
Cendak 2006, for a subsequent study that applied these conclusions). Also, we
evaluated whether the emergent theoretical model generates productive insights into
the data, i.e., whether the model sensitizes us to nuances of student actions and
utterance such that we understand these better. In particular, we attempted to
articulate students’ conceptual learning as action-based negotiation and resolution of
competing meanings embedded in the learning tools.

4 Results and discussion: analysis of student learning through the analytical
lenses of the learning axes and bridging tools framework

In earlier sections, we have demonstrated our use of the learning-axes-and-bridging-
tools framework in the analysis of mathematical domains and how this analysis, in
turn, informs our design of bridging tools for classroom activities. In this section we
demonstrate how the framework can be used also as analytic lenses on classroom
data. Using the same lenses for domain analysis, design, facilitation, and data
analysis helps us evaluate the efficacy of our materials, activities, and facilitation in

@ Springer



42 D. Abrahamson, U. Wilensky

implementing the design philosophy. In particular, we select episodes in the data
that, to our judgment, demonstrate student insight and inventiveness, and we work
to articulate this insight in terms of the bridging tools the student was working with,
the activity that contextualized the student’s work, the underlying learning axis
apparently stimulated in this activity, and the invented statistical construct, where
the axis cohered as an articulated reconciliation of cognitive conflict.

We now examine five brief classroom episodes so as to explain five of the learning
axes and statistical constructs that are enfolded in the bridging tools and emerge
through student participation in classroom problem-solving activities. In these
episodes, the learning axis, bridging tool, and construct are, respectively: (a) local-
versus-global interpretation of the S.A.M.P.L.E.R. population stimulates the
construction of ‘sample’; (b) theoretical-probability-versus-statistical interpretation
of a collection of 9-blocks stimulates the construction of “‘sample distribution in the
population”; (c) theoretical-versus-empirical-probability interpretation of the com-
bination tower stimulates the construction of ‘“‘sample space’; (d) range-versus-
cluster interpretation of a histogram stimulates the construction of “‘variance” and
“balance”; and (e) individual-versus-social interpretation of a histogram stimu-
lates the construction of ‘“‘sample mean” and “‘distribution.” For each learning axis,
we demonstrate through classroom data students’ negotiation between the poles of
the axis. The section ends with a summary of the structural elements of these
episodes.

4.1 Episode one: the local-global learning axis coheres as a sample

Within the design sequence, an introductory activity engages students in determining
the greenness of a population that is completely revealed (students see all of the tiny
squares in the green-blue mosaic). This activity occurs at a point before students
have discussed sampling and before the facilitator has enabled students to sample.
Nevertheless, students performed quasi-sampling actions. Namely, close attention to
students’ verbal descriptions and gestures reveals that their guesses were informed
both by counting tiny squares in selected spatial locations (“local” actions) and by
eyeballing the greenness value of the entire population (‘‘global” actions). So stu-
dents were using two different methods: local enumeration actions and a global
perceptual judgment. Importantly, students did not appear, initially, to be aware that
they were using two different methods, nor did they appear to coordinate these
methods as complementary. Yet, through discussion with their peers and the facil-
itator, students had opportunities to connect between these strategies, as the
following transcription demonstrates.

Researcher: [standing by the student, Devvy, who is working on his individual
laptop computer] What are you doing here?

Devvy: [gazing at the S.A.M.P.L.E.R. population, index finger hopping rapidly
along adjacent locations in the population; see Fig. 9, below] Counting the
squares.

Res: What did you come up with?

Dev: [hands off screen, gazing at screen; mumbles, hesitates] Around 60 percent
or 59 percent.

Res: Sorry ... so, show me exactly what you’re counting here.
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Fig. 9 Devvy explaining
how he determined a value
for the population greenness

Dev: Green squares, [right index on screen, swirls in one location, then hops to
another location, unfurling fingers] ‘cause it says, ‘“‘Find the percentage of the
green squares.”

Res: Uhm’hmm

Dev: So if you were to look at it [left hand, fingers splayed, brushes down the
whole population and off the screen] and sort of average it out, [touches the
‘input’ button] it’d probably equ... [index on population, rubbing up and down
at center, using rapid little motions and wandering off to the left and then down]
it’d probably go to 59 or 60.

Res: And how did you get that number?

Dev: [index strokes population along diagonal back and forth] Because it’s almost
even, but I think there’s a little bit more green than blue.

Devvy’s actions are not statistically rigorous—he is not taking equally sized
samples, nor is he systematically counting the number of green squares in each
sample or methodically averaging values from these counts. But his actions are
proto-statistical (see Resnick 1992)—without any formal background in statistical
analysis, Devvy is going through the motions of this practice, if qualitatively:
skimming the population, attending to selected locations, comparing impressions
from these locations, and determining a global value. Albeit, Devvy appears to
acknowledge the tenuousness of his methods or their execution in qualifying his
suggested strategy as “sort of average it out.”

Whereas Devvy’s spontaneous local and global methods are as yet disconnected,
both methods are grounded in the same object, the S.A.M.P.L.E.R. population. This
common grounds constitutes the platform or arena upon which Devvy may negotiate
the competing mental resources. Devvy may have already begun building a micro-to-
macro continuum by attending to mid-level clusters of tiny squares, i.e. “samples”
(see Levy and Wilensky 2004, in press, on the role of the mid-level constructions in
student reasoning about multi-agent phenomena). Through participating in the
S.AM.P.L.E.R. activities, Devvy’s proportional judgments could possibly be con-
nected to his acts of counting. Yet, at this point in the classroom activities, this
student’s limited fluency in applying proportional constructs does not enable him to
quantify his proportional judgment in terms of the local data. Therefore, he begins
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a

Fig. 10 Students can learn about distributions by coordinating between a ‘‘population” of green-or-
blue squares (on left) and a related combinatorial sample space (on right)

with a local narrative but, when pressed for an exact answer, he switches to a global
approximation.

In summary of this episode, 6th-grade students have personal resources that are
relevant to statistical reasoning (Devvy had been identified by the teacher as the
lowest achieving student in the class). Specifically, in the context of determining the
greenness of the S.A.M.P.L.E.R. population—the bridging tool in this episode—
students have structured opportunities to invent sampling as an action that reconciles
enumeration and perceptual judgment.

4.2 Episode two: the theoretical-statistical learning axis
coheres as a distribution

Luke is seated to Devvy’s right.* He, too, is looking at the S.A.M.P.L.E.R. popu-
lation (see Fig. 10a). Luke responds to Devvy’s guess of 59%. In his own observa-
tion, Luke refers to the combinations tower that students had built during the
previous week and is now attached to the wall nearby him (see Fig. 10b):

Luke: Ok, the reason I think “50 percent” is ‘cause when you make that tower
[turns in his seat to face the combinations tower], it’s gonna be equal for green
and blue [equal total numbers of green and blue squares]. So if this [the
S.A.M.P.L.E.R. population] were to be all of the combinations, it’ll be equal
green and blue—50%. [The correct answer was indeed 50%. We had not
informed students of this value.]

The S.A.M.P.L.E.R. population and the combinations tower are physically distinct
objects in the classroom. Luke’s insight is that we can couch the S.A.M.P.L.EE.R.

3 We chose to discuss two episodes that are consecutive in our video data so as to demonstrate
variability in student mathematical fluency coming in to the design. Also, the episode shows the
flexibility of the design in engaging and stimulating understanding at different levels.
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Fig. 11 A student explaining
why a probability experiment
(on the left) produces

a histogram that resembles
the combinations tower (in
center), which had been
produced through analysis

=

I

population of thousands of squares as a collection of discrete 9-blocks. The connection
that Luke builds between these objects is not associated with any particular new object
(compare to Devvy’s invention of a sample). It is grounded in and facilitated by the
bridging tool “9-block,” yet it is essentially not about 9-blocks per se but about the
distribution of 9-blocks in the population. This, at a point in the unit where ‘distribution’
had not been named or otherwise symbolized. So combinatorics-based construal of a
population may provide basic tools for statistical analysis.* If Luke had not participated
in constructing the combinations tower, he may not have been able to use it as a
resource for his insight (see the project-before-problem design principle, Papert 1996).

4.3 Episode three: the theoretical-versus-empirical-probability axis
coheres as a sample space

On the last day of our intervention, we asked students to address a fundamental
principle of probability—that a distribution emerging from randomly generated
outcomes gradually comes to resemble the anticipated distribution produced through
theoretical analysis. Figure 11 (above) features the 9-Block model (on the left) and a
computer-generated picture of the combinations tower (center). While the 9-Blocks
experiment was running, Emma volunteered to explain why one of the central
columns in its outcome distribution was growing taller than most other columns.’

Emma: “Maybe because there’s more of that kind of combination. Just basically,
because if there’s 512 different combinations, and we know that there’s more
[possible combinations] in the middle columns, [then] even though there’re
duplicates, there’s still going to be more combinations in the middle columns.
[The student is now using a pointer to explain what the class is watching on the
screen] Even though these patterns [in the empirical live run, on left] may have
duplicates in this [the combinations tower, center], it’s still counting all the

4 Luke’s combinatorial-statistical link could work also for populations of unequal green-to-blue
ratios. For example, Luke could speak of a 73%-green population as being “from the green side” of
the combinations tower.

> This specific episode from the implementation of ProbLab does not directly describe a
S.A.M.P.L.E.R. activity but is relevant to the discussion of learning axes and bridging tools.

@ Springer



46 D. Abrahamson, U. Wilensky

patterns, so it’s going to have the same shape. ... It’s going to be the same shape,
because it’s basically the same thing. Because in the world there are more
patterns of these than there are of the other ones.”

Emma notices that the tower and the distribution are alike in shape. Moreover, she
explains why these two representations should be alike in shape. This, despite the
possibly confusing fact that the empirically generated histogram records many more
samples than just the five-hundered-and-twelve 9-blocks in the static combinations
tower. Emma’s assertion that “in the world” there are relatively more of one type of
pattern as compared to the other suggests that she is attending to the proportions
between counts and not (only) to the absolute difference between them. That is, by
virtue of comparing between the representations, Emma first came to think of the
combinations tower as a theoretical-probability tool. The combinations tower is not
just the collection of all combinations and permutations. Rather, it represents pro-
pensity—it is a template for gauging relative frequencies through multiplicative
comparison. Due to its unique histogram-like configuration, the combinations tower
constitutes a bridging tool for grounding the idea of a sample space.

4.4 Episode four: the range-versus-cluster learning axis
coheres as variance

For the last day of enacting S.A.M.P.L.E.R., we designed a competitive game be-
tween the two study classrooms. A monitor on the screen tracked students’ average
score from round to round (the classroom’s points), and the classroom with the
highest score at the end of five rounds was to be the winner. Also, we disabled
students’ choice between committing to their own guess or the group guess—all
students had to go with the group guess. These combined circumstances engendered
a higher-than-usual collaboration in the classroom. The following episode occurred
during the third round in one of the classrooms.

All students had taken their full quota of samples and were discussing how to
process the collective classroom data. Becky has been walking around the classroom,
observing her classmates’ screens and adding up the total green squares on all of
these screens. Now, she has just rushed to the teacher, with the following idea: (1)
students should each call out their personal guess for the population greenness, but
they should not input that guess; (2) someone should calculate the average of these
guesses; and (3) all students should input this average. This way, Becky contends, the
class as a whole would minimize the error, which she describes as the collective
distances from the true value in the population, and would thus minimize the loss of
points. Jerry replies that this strategy is redundant and error prone—that all students
should just input their own guess and let the computer calculate the mean auto-
matically. (Technically speaking, Jerry is correct—that is precisely what the com-
puter procedure does.) Becky disagrees. Now she is vehemently pensive. It is as
though Becky is worried about the variance of the distribution, whereas Jerry
reckons that the variance is irrelevant for the task at hand. Becky would like a strong
guess, whereas Jerry is comfortable to ignore the guess density.

Becky: If we’re closer to the average, won’t the average be closer and we’ll [lose
less points?]

Jerry: It’s the same thing, because this is just like adding up the whole
classroom—we’re adding it up on the computer.
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Becky: If we get this [= if we first calculate the class average independently of the
computer] and then people change their guess to be closer to the average...

Jer: [Change] our guess?

Becky: Yeah.

Jer: No, [points to screen] [inaudible]

Becky: I'm adding up how many [blue] they have [and then subtracting to
determine how many green they have]

Jer: T know, but [the computer is finding the average], so it will be the same
answer. It will be more precise, though.

Becky: I'm adding up how many blues.

Jer: I know, but still, then we reverse it. [because the proportion of green and blue
complements 100%]

Becky: And then if they... and people can change their answer closer [to the
average]

Jer: But then, well, if we all just put it in [= input our guesses], then since we’re all
going with the group guess, it’ll all... we’ll all go with the average, so it’ll be the
same thing. It’ll be a precise average, down to the decimal.

Becky: Yes, but couldn’t we get less points taken off if people changed their guesses
so it’s closer to the average, since the average will be more precise?

Jer: It won’t matter, ’cause we’re going with the group guess, so they’ll
automatically guess the average. We all are guessing the average, no matter
what. We have no choice—we’re guessing the average, since we’re going with
the group guess, and the group guess is the average. We’re all guessing the
average. We're all guessing exactly the average, down to the millionth.

Becky: Ok, José got only 4 blue. His average will be really high up, won’t that
change the average?

Jer: Yeah, but still, it still takes the average. [Becky rushes back to her seat]

What’s in a mean? Should it reflect the range of the sampling distribution? If both
the mean and the range are important in some activity, perhaps some new mathe-
matical construct is needed that captures both ideas? The context of the guessing
game and in particular the high stakes invested in the classroom mean created an
opportunity to ground in the histogram the idea of variance—an index of sampling
distribution that had not been previously discussed in the classroom forum. Becky
naively assumed that the tighter the cluster of a set of guesses, the higher its accu-
racy. Whereas this intuition is sensible and is reflected in statistical measures of
confidence, a dense and a sparse cluster of guesses may be as accurate as a whole,
and in fact a sparse set of guesses may be more accurate than a dense one. Even if
these issues are not resolved immediately, the issues are raised through argumen-
tation grounded in personally meaningful mathematical reasoning—the conven-
tional tools are problematized and the domain is complexified.

4.5 Episode five: the personal-social learning axis coheres
around the histogram mean

During the second day of implementing S.AM.P.L.E.R., a unique moment of
potential learning occurred at a point where students had all input their guesses for
the population’s greenness (see Fig. 12, below). Whereas most of the students’
guesses clustered around the classroom mean of 47.2% (the tall thin line), there was
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Fig. 12 Histogram of students’
guesses for the greenness
of a population

a lone guess of 81% far off to the right. The true value of the population was 50%
green, as indicated by the contour between the colored areas immediately above and
to the right of the mean. So the outlying guess was instrumental in “pulling” the
classroom mean up, to the benefit of the many students who had committed to the
group guess. As it turned out, many students assumed that the outlying guess was
perforce detrimental to the precision of the group guess (‘‘How can it be good if it’s
so way off?”’). This moment of potential learning is delicate—the facilitator must
assess whether exposing the outlying student may be conducive to classroom
learning and to improving that student’s peer esteem as a mathematician.

Teacher: Do we know whoever that is for sure? [who guessed 81%]

Researcher: We can figure out. [walks over to facilitator’s computer to determine
the value of that guess—it turns out to be 81 %, and Jade identifies herself as the
guesser|

Teacher: Oh, it was Jade. Ok. [Jade had been identified by the teacher as low
achieving in mathematics]

Res: [to Jade] Ok, you put in 81. Now, this is something very interesting. This is
really really interesting. Now, on the one hand... so... ok, so... [addresses
classroom] What do you think of Jade’s guess? ... More hands—what do you
think of that guess?

Jade: Terrible. [laughing, somewhat uncomfortably, preempting anticipated
ridicule]

Riv: She probably just uncovered a lot of... more green than blue when she was
clicking.

Res: Ok, TI'’ll... let’s get some more input... Jonathan?

Jonathan: I think that it’s a good thing that she guessed so high, because otherwise
the average would have been lower.

Res: Could you come up and explain that? [Jonathan walks over to the screen,
uses a pointer, see Fig. 12, above]

Jon: Uhhm... because the average includes everyone’s guess, so that, say she
guessed, like, down here [on the far left side of the distribution] like in the 40’s
or the 30’s, well then the average would have been lower, and the average would
have been farther away from the actual thing. So like...’cause... if she moved it
[her guess] like down here [to the 40’s], the average would have been lower,
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because the total before you divide would have been lower. So, the lower the
total before you divide, the lower the number would be. The average would be,
like, more down here—it would be farther away from the actual... from the
actual guess... from the actual answer.

Res: So, so Jonathan, people who went with the group guess, what should they
think about Jade’s guess?

Jon: They should, like, thank her for guessing so high, ’cause that’s what got
them—that’s what got them close enough to the actual answer.

Students: Thank you Jade, thank you Jade.

Jade’s episode is an example of how a facilitator working in a networked class-
room can tap the classroom’s social dynamics to ground mathematical understanding
in a shared experience. The histogram serves as a bridging tool between Jade’s
individual guess, which she constructed within her computer environment, and the
classroom distribution and mean. If it were not for the entire distribution of guesses
being available as a shared display—if, for example, we had been working only with
monitors showing various central-tendency outputs—this moment could not have
been spun through social tension into learning and new esteem for a student who,
apparently, struggles in mathematics. Also, based on students’ evidently limited
understanding of ““‘mean,” coming into this design, Jade’s episode may have afforded
the classroom an opportunity to construe the mean in a new way that was more
meaningful than the algorithm for computing it.

4.6 Summary

We have discussed five classroom episodes that we have interpreted as cases
of student and/or classroom negotiation between some pair of affordances of a
designed object within some activity context (see Table 1, below). In each case, a
different object in the design constituted a bridging tool between these affordance
antipodes. Student interaction with this bridging tool within the classroom forum
supported coordination of idea elements, was instrumental in achieving the design-
facilitated classroom tasks, and reflects common domain-specific practices. The
design fosters opportunities for students to tap, shape, and coordinate their
implicit skills by providing artifacts around which conceptual structures—concepts-
in-action—cohere as useful bits of knowledge.

Table 1 Learning axes, bridging tools, activity contexts, and statistical constructs in S.A.M.P.L.E.R.

Episode  Learning axis Bridging tool Context Statistics construct
1 Local versus global Population Determine the Sample
greenness
2 Theoretical probability 9-Blocks Determine the Sample distribution
versus statistics greenness in the population
3 Theoretical-versus- Combinations ~ Explain similarity =~ Sample space
empirical-probability tower
4 Range versus cluster Histogram Engineer group Variance, balance
guess
5 Individual versus Histogram Judge outlying Sample-mean
collective guess distribution
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5 Conclusion

We have presented a proposed mathematics-education design-for-learning frame-
work that provides a set of tools for coherently conducting domain analysis, design,
instructional facilitation, data collection, and analysis of student multimodal rea-
soning, in researching student learning. The framework is grounded in phenome-
nological philosophy, genetic epistemology, artificial-intelligence research, creativity
studies, and cognitive-science perspectives on mathematics-education. We demon-
strated an implementation of this framework in a middle-school experimental unit
on probability and statistics that was embodied in mixed media, including traditional
tools, computer-based simulations, and a networked-classroom participatory simu-
lation activity. In particular, we presented five episodes from classroom data that
showed students tackling core constructs of the target domain by way of negotiating
conflicting interpretations of mathematical artifacts. We conclude that the frame-
work is suitable for implementing the intended pedagogical vision that students learn
through personally re-constructing historical mathematical concepts.

5.1 Implications for mathematics-education pedagogy and design

If necessity be the mother of all invention, ambiguity is the father of all re-invention.
Ambiguity plays a central role in the design-for-learning framework presented in this
paper. We position ambiguity halfway between confusion and clarity, and we value
ambiguity as a catalyst of generative cognitive conflict toward insight. Accordingly,
our design framework lays out principles for crafting ambiguous mathematical
objects, objects that give rise to two disambiguations. These dual interpretations of a
single referent “‘are stimulus-synonymous without having the same meaning in any
acceptable defined sense of ‘meaning’ (Quine 1960, p. 46). By affording two
activities that are phenomenologically disparate yet mathematically complementary,
the bridging tool anchors intrasubjective stimulus synonymy. By embedding these
tools in classroom collaborative activities, the synonymy becomes intersubjective.

Learning mathematics is a process of coordinating mental action models into new
schemas. On these new schemas ride mathematical terminology, symbolical nota-
tion, and solution procedures. The action models do not become coordinated hap-
hazardly. Rather, the coordinating is grounded in objects in the learning
environment and stimulated by some task that problematizes the object. von Gla-
sersfeld (1992) clarifies that radical constructivism is not about letting students dwell
benignly in their blooming buzzing confusion as much as it isn’t about dictating
clarity. Rather, the idea is to create learning environments that foster opportunities
for students to construct mathematical understanding. It is the objective of the
learning-axes-and-bridging-tools design framework to create sufficient constraints so
as to land students halfway between confusion and clarity—this is achieved by
providing crafted objects and activities that encourage student appropriation of
mathematical constructs as personally invented problem-solving tools.

A set of guidelines follows from the work reported herein for designers of
mathematics learning environments:

(a) analyze the target mathematical domain to identify its key constructs and
representations;
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(b) determine and isolate the action models inherent to making sense of these
constructs and representations;

(c) formulate hypotheses as to the learning challenges inherent to reconciling the
isolated action models as complementary;

(d) identify or create ambiguous (hybrid) objects affording these competing
action models;

(e) embed these objects in activities that bring out the ambiguity; and

(f) design a learning environment that stimulates individual students to struggle
with the ambiguity and facilitates student argumentation.

5.2 Limitations and future work

We do not claim that LA & BT (learning axes and bridging tools framework) is a
design-for-learning panacea for mathematics education. The theoretical model ad-
dresses a certain class of mathematical topics each structured as a pair of conceptual
building blocks that needs to be fit together and that both can, in turn, be embedded
as perceptions of a single artifact (object, computer-based simulation, etc.). At this
point, we cannot fathom the proportion of mathematical topics that can be fashioned
as abiding with these necessary constraints (but see Abrahamson 2006¢, for appli-
cation of the framework to other mathematical concepts). Some of the numerous
questions we are still asking are:

e Why may it be challenging to conjoin complementary bits of knowledge? For
instance, are these conceptual components initially construed as contradictory?

e Are the axis components by necessity dialectically co-defining within each
conceptual composite?

e What of learning systems, rather than axes?: Does learning advance as a gradual
pairing of stable-enough concepts, or can several bits of knowledge come
together all at once?

e Are some learning axes in principle unbridgeable?

e What is the nature of the relationship between intuitive and formal mathematical
knowledge?: Do intuitive perceptual judgments ever become articulated or are
they essentially only validated through appropriation of formal procedures
(see Abrahamson and Cendak 2006)?

e Might “simple” concepts, e.g., multiplication, also be, in fact, opaque composites
in need of bridging?

Both the design of ProbLab and its associated research of students’ cognition of
probability and statistics continue. In particular, conclusions from the previous
implementations of ProbLab have now been applied toward honing the bridging
tools, and these improved tools are being researched, beginning with individual
students and then scaling up to classrooms, where we will attempt to capture learning
gains (Abrahamson and Cendak 2006). LA & BT will be developed along three
tracts: The framework will be: (a) further refined vis-a-vis cognitive-sciences models
of learning; (b) couched and packaged in forms that may be useful for mathematics
teachers, including the accumulated repertory of students’ ideas and suggestions for
nurturing these ideas; and (c) applied to other mathematical and, potentially, scien-
tific concepts. Ultimately, the perspective could help practitioners of mathematics
education—teachers, designers, and researchers alike—gain insight into students’
difficulty with mathematical concepts and respond effectively to this difficulty.
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