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Abstract: We have been exploring the potential of agent-based modeling methodology for social-
science research and, specifically, for illuminating theoretical complementarities of cognitive and 
socio-constructivist conceptualizations of learning (e.g., Abrahamson & Wilensky, 2005a). The 
current study advances our research by applying our methodology to pedagogy research: we 
investigate individual and social factors underlying outcomes of implementing collaborative-
inquiry classroom practice. Using bifocal modeling (Blikstein & Wilensky, 2006a), we juxtapose 
agent-based simulations of collaborative problem solving with real-classroom data of students’ 
collaboration in a demographically diverse middle-school mathematics classroom (Abrahamson & 
Wilensky, 2005b). We validate the computer model by comparing outcomes from running the 
simulation with outcomes of the real intervention. Findings are that collaboration pedagogy 
emphasizing group performance may forsake individual learning, because stable division-of-labor 
patterns emerge due to utilitarian preference of short-term production over long-term learning 
(Axelrod, 1997). The study may inform professional development and pedagogical policy (see 
interactive applet: http://ccl.northwestern.edu/research/conferences/CSCL2007/CSCL2007.html). 

 
Background and Objective 

We present a new methodology for developing and critiquing education theory, agent-based modeling. 
Agent-based modeling (hence ABM) has been increasingly used by natural scientists to study a wide range of 
phenomena such as the interactions of species in an ecosystem, the interactions of molecules in a chemical reaction, 
the percolation of oil through a substrate, and the food-gathering behavior of insects (e.g., Bonabeau, Dorigo, & 
Théraulaz. 1999; Wilensky & Reisman, 1998, 2006). Such phenomena, in which the elements within the system 
(molecules, or ants) have multiple behaviors and a large number of interaction patterns, have been termed complex 
and are collectively studied in a relatively young interdisciplinary field called complex systems or complexity studies 
(e.g., Holland, 1995). Typical of complex phenomena is that they lend themselves to two or more layers of 
description—e.g., collisions of particles in a gas chamber are the “micro” events, and pressure is the “macro” 
event— and the cumulative (‘aggregate’) patterns or behaviors at the macro level are not premeditated or directly 
actuated by any of the “lower-level” micro elements. For example, flocking birds do not intend to construct an 
arrow-shaped structure. Rather, each element (“agent”) follows its “local” rules, and the overall pattern arises as 
epiphenomenal to these multiple local behaviors—the overall pattern emerges.  

 
Specialized computer-based environments (Collier & Sallach, 2001; Langton & Burkhardt, 1997; 

Wilensky, 1999) have been developed as research tools for investigating complex phenomena (North et al., 2002; 
Wilensky, 2001; Wilensky & Reisman, 2006). The agents can be instantiated in the form of a computer program that 
specifies their rule-based behaviors. ABM is thus particularly powerful for studying complex phenomena, because 
once the modeler assigns agents their local rules, the modeler can set these virtual agents into motion and watch for 
any overall patterns that arise from the agents’ interactions. E.g., the modeler might assign a group of virtual birds a 
set of rules and then watch their interactions to see whether typical flock structures emerge (Reynolds, 1987).  
 

Whereas initially complex-systems methods and perspectives arose from the natural sciences, complexity, 
emergence, and micro- and macro levels of description of phenomena are all highly relevant to research in the social 
sciences. Indeed, the recent decades have seen a surge in social-science studies employing ABM (Axelrod, 1997; 
Diermeier, 2000; Epstein & Axtell, 1996). Learning, too, we argue, can be construed as a complex phenomenon, 
and thus ABM is a potentially powerful research tool conducive to the investigation of patterns, including structures 
and rules, underlying the emergence of learning. Specifically, we are proposing to use ABM in investigating the 
social dynamics underlying participation patterns observed when students interact around collaborative classroom 
assignments, such as construction projects. Thus, whereas our paper deals squarely with ‘mice, minds, and 
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societies’—the theme of the CSCL 2007 conference—we are not so much dealing with computer-supported 
collaborative learning as such, as much as with computer-supported inquiry into collaborative learning (CSiiCL). 
Nevertheless, we hope to lay out agenda and methodology to facilitate synergies between the CSCL and complexity-
studies communities—synergies that increase understanding, within education research, of mechanisms and practice 
pertaining to individual learning within social contexts. Thus, armed with computers as methodological tools for 
ultimately improving collaborative learning, this paper is about computer-supported collaborative learning. 
 

We have been working with the NetLogo (Wilensky, 1999) multi-agent modeling-and-simulation 
environment. A vision of the NetLogo development effort is that building simulations will become common practice 
of natural/social-sciences scholars investigating complex phenomena: the scholars themselves—not hired 
programmers—build, run, and interpret the simulations (Tisue & Wilensky, 2004; Wilensky, 2003). The new lenses 
of ABM, we believe, will enable education researchers to explore, articulate, develop, and share an intuition we 
have struggled to study rigorously and express coherently: the intuition that individuals and communities are 
interdependent through myriad dynamic reciprocities (Cole & Wertsch, 1996; Greeno, 1998).  
 

In the remaining sections of this paper, we: (1) introduce the case study—a collaborative construction 
project in a demographically diverse middle-school mathematics classroom studying combinatorial analysis 
(Abrahamson, Janusz, & Wilensky, 2006; Abrahamson & Wilensky, 2005b); (2) discuss the rationale, design, and 
implementation of a complexity-based analysis of the case-study’s participation patterns, i.e., an agent-based model 
that purports to simulate this phenomenon; (3) introduce ‘bifocal modeling’ (Blikstein, Abrahamson, & Wilensky, 
2006), a computer-assisted research technique for juxtaposing real and simulated data toward calibrating the 
simulation such that it emulates the real data—we demonstrate this juxtaposition by aligning participation patterns in 
our classroom data with simulated patterns emerging in the ABM; (4) report findings; and (5) offer concluding 
remarks on the implications of this study and the limitations of ABM and suggest directions for further research.  
 
Case Study: Emergence of a Stratified Learning Zone in a Collaborative Project in 
a Demographically Diverse Mathematics Classroom 

Complexity-studies methodology is particularly suitable for understanding student learning in pedagogical 
frameworks that support individual agency. When such classrooms engage in collaborative construction projects, 
participation patterns emerge, some that may be undesirable, from the educator’s perspective. As we explain, below, 
these patterns emerge through iterative student-to-student negotiation of roles vis-à-vis students’ skills and their 
interpretation of the overall classroom objectives. When these objectives are taken to be production rather than 
learning, inequitable participation patterns may emerge, because students are rewarded for their contribution to 
production rather than for their learning. The interactions of these two reward systems (the first, indexing students’ 
contribution toward successful completion of a group project; the second, indexing students’ own learning) is a 
complex system—ABM enables us to study the nature of students’ iterative negotiations that give rise to the 
inequitable participation patterns. Thus, simulating participation patterns could provide designers and teachers 
valuable tools for running equitable classrooms. In particular, understanding the emergence of inequitable 
participation may help educators formulate responses that temper production to the benefit of learning. We now 
explain the case study that we investigated using ABM. 
 
The Combinations tower: A Combinatorial-Analysis Collaborative Project 

The current investigation uses data from a design-based research study of middle-school students’ 
mathematical cognition pertaining to the topic of combinatorial analysis (Abrahamson, Janusz, &  Wilensky, 2006; 
Abrahamson & Wilensky, 2005a). Central to the study was an implementation of a challenging classroom 
collaborative project—the construction of the combinations tower, the exhaustive sample space of a 3-by-3 grid of 
nine squares that can each be either green or blue (for a total of 512 distinct “9-blocks”). The classroom, working in 
groups, created all the 9-blocks and assembled them into a very tall “histogram.” This histogram consisted of 10 
columns running from “no-green” through “9-green” (the columns’ heights were, respectively, 1, 9, 36, 84, 126, 
126, 84, 36, 9, 1—coefficients in the binomial function [a + b]9). 
 
The Stratified Learning Zone: Group Dynamics From an Emergence Perspective 

Data analysis revealed unanticipated participation patterns. Namely, individual students operating within 
groups assumed by-and-large restricted roles that we named: (a) “number crunchers”; (b) designers; (c) producers; 
(d) implementers; (e) checkers; and (f) assemblers; and in addition, some students operated between groups as (g) 
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ambassadors. We demonstrated the descending mathematical challenge of the a-through-f roles, e.g., the designers 
initiate combinatorial-analysis strategies, the implementers carry out these strategies, and the assemblers glue the 9-
blocks onto a poster. We demonstrated that students’ individual roles were related both to their mathematical 
achievement, as reported by the teacher, and their demographics. We argued that these roles were emergent and that 
they affected the students’ learning opportunities and self image and that therefore it is important to understand how 
some students landed up on the lower rungs of the production line—how a stratified learning zone emerged. 
 

A stratified learning zone is a design-engendered hierarchy of students’ potential learning trajectories along 
problem-solving skill sets, each delimited in its conceptual scope, and all simultaneously occurring within a 
classroom. In comparison, the term continuous learning zone depicts a space wherein students can each embark 
from a core problem, sustain engagement in working on this problem, and build a set of skills wherein each 
accomplishment suggests, contextualizes, and supports the exploration and learning of the successive skill, so that a 
solution path is learned as a meaningful continuum. 
 
Validation Through Feedback From the Students and Teacher 

Based on interviews with the teacher and the students, we formulated the following agent-based 
explanation of the emergence of student task distribution. Students’ roles emerged as a function of individual student 
interactions: Within a group, once a student realized that he had reached his limit in terms of mathematical problem 
solving as compared to another student within that group, the first student would often capitulate to his group-mate 
the task of pursuing that mathematical problem, and then she would take over, relegating to him a necessary task 
that was within his zone of achievement, thus freeing herself to focus on the problem he had abandoned. A network 
of symbiotic relationships crystallized as the more advanced students assumed leadership of their groups and as the 
emergent task specifications were articulated in terms of student roles and student-to-student and group-to-group 
negotiated partnerships. The likelihood of an individual student dominating another was affected by personality 
traits: of the mathematically advanced students, those who were less socially fluent preferred to work individually, 
whereas “bossier” students were more likely to assign tasks to other group members.  
 
Exploration Vs. Exploitation: A Perennial Tradeoff of Collaborative Inquiry? 

When a classroom that is engaged in collaborative project-based activity progresses towards successful 
completion of the project, could there be any justification to tamper with this progress? And yet, is a facilitator 
ethically permitted to sacrifice individual students’ learning so as ensure the completion of the project? To address 
this design-and-facilitation dilemma, we will now turn to a complexity-studies perspective on organizations. One 
could arguably model the study classroom as an organization, a collective of individuals with some shared objective 
and a modus operandi for working towards this objective. There are no monetary stakes involved, but certain roles 
enable some students to gain knowledge capital, whereas other roles do not. Our motivation to model the classroom 
as an organization is that construction projects may tacitly import to the learning space ethics, ethos, and praxis of 
working spaces that may not be entirely beneficial for all students. 
 

Axelrod and M. D. Cohen (1999) discuss exploration versus exploitation, a tradeoff inherent in complex 
adaptive systems, such as organizations. For instance, in allocating resources, an organization must determine which 
strategy will maximize its benefits—“mutating” to check for better fits with the changing environment or stagnating 
and cashing in on a proven model of success. Typically, “the testing of new types comes at some expense to 
realizing benefits of those already available” (Axelrod & M. D. Cohen, 1999, p. 44). We submit that a classroom can 
be seen as a complex adaptive system (Hurford, 2004), at least in terms of students’ within-group free-range agency 
in problem solving and the interactions that shape these agencies. Initially, all students are explorative. Yet, once a 
functioning coordination scheme has evolved that is apparently well adapted to the environment, i.e. the classroom-
as-a-whole is apparently progressing along a trajectory towards successfully completing a prescribed task and 
positive sanctioning is received from the forces that be (the facilitators), an implicit quietus is set on any further 
exploration, and the group achieves dynamic stability. From that point on, the individual cogs in the production 
mechanism hone their skills and produce (see Durkheim, 1947, for a social critique of the division of labor). 
 
Finding: Some Answers, New Questions 

When students are given the freedom to explore a problem collaboratively, both remarkable and 
undesirable group behaviors may emerge. It is not a zero-sum game—these “pros and woes” need not cancel each 
other out. An experienced and able teacher who anticipates this emergence and is sensitive to unforeseen behavior 
can steer this sensitive dependence so as to optimize student sharing and learning opportunities. The proposed 
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methodology introduced in this paper may provide education researchers, designers, and practitioners tools for 
understanding classroom dynamics such that they can identify points of leverage for working with students’ natural 
behavioral inclinations to achieve equitable participation. The next section explores this possibility. 
 
Implementing a Theoretical Model of the Case-Study Emergent Classroom 
Participation Pattern in the Form of “Runnable” Agent-Based Procedures 

In this section, we demonstrate the applicability of ABM methodology for the investigation of pedagogical 
practice by explaining our design rationale for simulating the emergence of a stratified learning zone in a virtual 
classroom. Also, we demonstrate the iterative nature of this methodology by describing some of our key 
understandings, along the modeling process, that informed the improvement of the model. Whereas this paper is 
primarily methodological—we use particular research content so as to demonstrate an investigation technique—the 
reader may disagree with our theoretical model of the causes of stratification. We welcome such disagreement, 
because we regard it as manifesting a strength of the ABM methodology: scholars from across the disciplines, who 
may not share literature, constructs, or methodologies, can nevertheless critique each other’s work pointedly—ABM 
is an interdisciplinary lingua franca (Abrahamson & Wilensky, 2005a). In fact, readers are welcome to download 
the model file and modify or replace the procedures so as to express their own hypotheses. 
 
Rationale of the Stratified Learning Zone model: Selection of Key Parameters, 
Hypothesizing Behavior Rules, and Authoring the Rules Within the NetLogo Environment 

Any model, regardless of the medium in which it is expressed, e.g., text, diagram, or agent-based model, is 
per force an attenuation of the “objective” reality. Initially, the modeler must use circumspection in answering the 
question, “What is the nature of the phenomenon we are attempting to model?” For example, we asked ourselves 
whether we are modeling: (a) a specific activity, i.e., “students collaborating on constructing the sample space of the 
binomial stochastic generator that has 9 variables each with the values “green” and “blue” that are glued onto purple 
construction paper”; or (b) “students collaborating on a task that demands a variety of roles that range by the content 
knowledge they foster.” We chose the latter option. Next, in building an agent-based model, one defines the agents 
(e.g., students, teacher) and any other objects at play (e.g., portable artifacts), and assigns the agents properties 
evaluated as relevant to the phenomenon under investigation, including constants (e.g., gender) and variables (e.g., 
role in collaborative activity). The modeler’s selection of these agents and properties is informed by a general 
rationale of the model, which the modeler articulates, e.g.: 

• Classroom objectives are mandated by a curriculum  
• A total of n individual students cluster in m groups of variable size; whom they group with is a mixture of 

student and teacher choice (teachers may opt to create either homogeneous or heterogeneous groups)  
• Individuals are reinforced by their group-mates for contributing toward a group’s objective, where 

‘contribution’ is measured vis-à-vis the project specifications 
 

For the stratified learning zone (SLZ) model, we chose a puzzle task (see Figure 1, below). This linear 
puzzle consists of set of pieces that need to be concatenated according to a logical sequence. Necessary activities 
within this task are retrieving pieces (simplest task), connecting pieces (most demanding task), and verifying 
(intermediate demand). Thus, the roles that students might specialize in are piece-retrievers, piece-connectors, and 
puzzle-verifiers. Puzzle pieces are scattered all over the classroom. Retrievers wander around and, when they find a 
piece that they evaluate as useful (it may in fact be incorrect), they go back to their group’s table, deliver the piece to 
the connector and then return to retrieve more puzzle pieces. Upon receiving a piece, the piece-connector evaluates 
its fit to the puzzle in its current state. If the piece is not suitable, the piece-connector orders the piece-retriever to 
drop the piece somewhere else and bring a new one. If the piece is suitable, the piece-connector takes it and tries to 
add it to the puzzle. Once the puzzle is completed, the puzzle-verifiers check it. If one piece is out of place, the 
group has to re-assemble parts of the puzzle. For each task, students increase their skill (faster and/or more 
accurate). Overall group performance is evaluated by the correctness of the puzzles and time-to-completion. Our 
independent variables are: (a) pedagogical style (with or without mandated role rotation); (b) students’ initial skill 
level for each task and distribution of skill levels within student; and (c) task difficulty. Note: As a measure of 
achieving initial “reliability”—evaluating whether the model rationale indeed expresses what it purports to 
express—the modelers first worked individually and only then shared notes. We could thus partially validate our 
conjectures through inter-modeler triangulation. 
 



Abrahamson, Blikstein, & Wilensky (2007) 

dor@berkeley.edu 

 
Figure 1. Design rationale for the Stratified Learning Zone agent-based model. 

 
Once the model rationale has been articulated, as above, the modeler couches the agents’ rules of 

interacting with each other and the environment in IF–THEN couplets and packages each topical set of rules in a 
procedure. These procedures express the researcher’s conceptual model. For example, the following procedure 
(simplified for rhetorical clarity) is for the retriever–connector interaction, and delineates the agent’s commands—
retrievers gather pieces, connectors receive and evaluate pieces, and retrievers drop unfitting pieces. 

to retrieve pieces 
ask retrievers 
  [ 
   find-piece-around 
   create-link-with chosen-piece 
   go-back-to-group 

 
    if any? connectors around me 

[ 
        if (chosen-piece fits puzzle) 

               [ 
                unlink-piece-from-retriever 
                deliver-piece-to-connector 
                 update-skill-retriever 

    update-skill-connector 
               ] 
              if (chosen-piece does-not-fit puzzle) 
              [ 
                     go-far-and-drop-piece 
                     update-skill-retriever 
                     update-skill-connector 

             ] 
]] 

end 
 

See http://ccl.northwestern.edu/research/conferences/CSCL2007/CSCL2007.html for an interactive applet 
of the NetLogo simulation. 
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Bifocal Modeling: Juxtaposing Real and Simulated Data as a Research 
Methodology for Iteratively Improving and Evaluating a Conceptual Model  

In creating the SLZ model, we worked with videotaped data from the original study. To facilitate the 
modeling and to iteratively evaluate its “curve fit” to the classroom data, we employed bifocal modeling. We now 
introduce this methodology and then demonstrate its application to our case study. 
 
Introduction of bifocal modeling 
 

 
Figure 2. Bifocal modeling: A ‘linked’ (hybrid) system for real-time physical/virtual investigating of heat transfer.  

 
Bifocal modeling (Blikstein & Wilensky, 2006a; Blikstein, Abrahamson, & Wilensky, 2006) combines two 

ostensibly disparate research practices that are in fact methodologically complementary: agent-based modeling and 
enhanced visualization. Side by side on a split computer screen (see Figure 2, above, on the right) run the real and 
the virtual: (a) a movie or graphical representation of a phenomenon under inquiry (whether directly captured by 
cameras/sensors or enhanced through micro/macro or slow/fast-motion treatment), e.g., crystallization, heat transfer, 
or clinical interviews with preschoolers engaged in mathematical inquiry (see Figure 2, the physical model on the 
left, with sensor connecting into the computer and visualized in the ‘Real-World’ image); and (b) a multi-agent 
model simulating the same phenomenon in the form of a procedurally expressed and “runnable” scientific model, 
e.g., myriad interacting avatars representing elements in the conjectured process of annealing or cognitive elements 
of students’ conceptual construction in classroom argumentation. Because the computer models have been carefully 
constructed to imitate the phenomenon’s visual language, the bifocal methodology minimizes interpretive challenges 
typical of multi-media research. That is, the seen and the hypothesized are displayed such that their perceptual 
differences are backgrounded and, therefore, their procedural differences are more likely to be revealed. By thus 
utilizing the power of computation and representation, bifocal modeling constitutes a multi-disciplinary research 
tool that offloads aspects of both the interpretive and menial burden of scientific practice, freeing cognitive, 
discursive, and material resources that can thus be allocated toward validation of the hypotheses. The adaptable 
quality of the NetLogo multi-agent modeling-and-simulation environment enables users to keep calibrating their 
proceduralized hypotheses until their visualization reaches compelling micro/macro similarity to the real-data, such 
that there are grounds to assume that the proceduralized model indeed emulates this phenomenon.  
 
A Bifocal Model of Emergent Collaboration Practices in a Mathematics Classroom 

Figure 3, below, shows three examples of real-data (on the right) and simulated data (on the left). Note that 
our choice to model a generic collaborative activity, rather than modeling the precise activity, makes for surface 
differences between the real and the simulated data. The comparison is thus analogical: the real sample space 
corresponds with the linear puzzle, and eight roles in the original data have been simplified to three. In introducing 
such simplification, one must adopt a skeptical stance, because in any act of modeling lies the inherent possibility 
that some critical aspect of a situation has been overlooked. And yet, this challenge of modeling is certainly not 
unique to agent-based modeling but is typical of any scientific endeavor in which a researcher seeks to articulate 
patterns and mechanisms underlying phenomena under inquiry. 
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Onset of group work: before the assignment of individual roles emerge. 

  

  
Student (standing) whose role is to help other groups improve on a specific skill. 

  

  
Students whose emergent role involves conducting a mathematically trivial skill 

 

Figure 3. Bifocal modeling of collaborative learning: Three samples of paired states in student collaborative 
practice—computer simulation (left) and classroom data (right). 

 
Findings From the Agent-Based Inquiry Into the SLZ Participation Pattern 

We succeeded in simulating the emergence of a stratified learning zone. Furthermore, the model plausibly 
demonstrates relations between pedagogical practice and student learning, as follows: 

 
a) When student–agents are reinforced for group production rather than individual learning, students 

become entrenched within skills reflecting their initial within-student skill-level distribution and increase 
their personal level in those skills. 

b) However, when role rotation is mandated, production slows down yet more learning occurs, per student, 
in both levels (high- and low-level skills). 

c) A careful analysis of the impact of each task performance on group performance is necessary to build a 
causal explanation of our numerical results. Indeed, different tasks have diverse impact on overall group 
performance. Increasing a low-level task skill (i.e., increasing the number of puzzle pieces a retriever–
student can bring to the group per time tick) appears to improve group performance linearly (see red line 
in Figure 4, next page). On the other hand, increasing the high-level task skill (i.e., increasing the 
probability of the connector–student choosing a correct piece for the puzzle) effects a non-linear trend 
(see the blue line, in Figure 4). 

 



Abrahamson, Blikstein, & Wilensky (2007) 

dor@berkeley.edu 

 
Figure 4. Comparison between initial skill levels for retrievers and connectors. Each data point represents the 

average of 20 runs of the model with the same initial parameters. 
 
 Interaction between different effects of low- and high-level tasks might indicate that the multidimensional 

combinatorial space of all possible skills levels and types is not a linear n-dimensional surface, but might contain 
discontinuities and multiple local minima and maxima. Specialized functionality of the agent-based environment 
(BehaviorSpace, Tisue & Wilensky, 2004), combined with the bifocaling technique, enable researchers to sketch the 
topography of this territory, locate minima and maxima, and connect them to real classroom scenarios. For example, 
the non-linear behavior of connector skills, concurrent with the linear behavior of retriever skills, describe a “hilly” 
3-D surface (see Figure 5, below). In some region, slight improvement in connecting skills may significantly impact 
group performance. Within the same region, improvement in low-level skills renders negligible impact on group 
performance. This could correspond to a classroom scenario in which one heterogeneous group of students suddenly 
improves its performance, while other groups, perhaps more homogeneous, still struggle to solve the task at hand. 
The gain in performance could be attributed to a single student who advanced on a high-level task. Group mates 
may not have learned the new skill at all, but the group performance, as observed by the teacher, would have 
improved greatly. 

 

 
Figure 5. A multivariable experiment, in which both connecting and retrieving skills varied from 1 to 10 (10 runs per 

data point, for a total of 1000 runs). While still in exploratory stages, this kind of visualization can reveal local 
minima and maxima, as well as different patterns of performance gains for the combinatorial space of skills. 



Abrahamson, Blikstein, & Wilensky (2007) 

dor@berkeley.edu 

 
We are improving the model so as to further examine relations between pedagogy and equity. We are 

particularly interested to simulate pedagogical practices (e.g., Aaronson, Blaney, Srephan, Sikes, & Snapp, 1978; E. 
G. Cohen, 1986) so as to understand their underlying mechanisms and gauge their potential. 

 
Conclusions 

We have presented a computer-based methodology for conducting research into collaborative learning. To 
demonstrate the methodology, we described the design and implementation of an agent-based model for studying 
the emergence of inequitable participation patterns observed in a middle-school implementation of a collaborative-
inquiry activity. Based on the functional resemblance of the simulated and real behaviors, on interviews with the 
teacher and students, and on inter-modeler reliability, we conclude that the model constitutes a viable, if not 
complete, explanation for the emergence of the observed patterns. We submit that our case study is sufficiently 
generic so as to shed light on behavior patterns observed in a range of classroom interactions around collaborative 
projects. We end this paper with remarks on the applicability and limitations of ABM methodology.  
 
Applicability of Agent-Based Modeling to Educational Research  

The current study extends our previous modeling-based inquiry into the dynamics of individual learning in 
social contexts. The inquiry encompasses different “levels” of learning: individual cognition is viewed as arising 
from distributed dynamics of cognitive elements, and group learning is viewed as arising from distributed dynamics 
of human elements. An ambitious goal of this work is to combine these two levels of modeling. Such cognitive–
social modeling would advance the cause of an integrated learning-sciences theory (Cole & Wertsch, 1996). 
 
Strengths and Limitations 

Papert (1980) has demonstrated the intrinsic power of modeling—by virtue of creating a procedure-based 
model of a phenomenon under inquiry, one has occasion to hone and critique one’s own conceptual model of the 
phenomenon. The application of agent-based modeling to research in the social sciences is still young, and the 
specific application of this mode of inquiry in the learning sciences is only nascent. Yet we believe in the potential 
of this methodology. The caveat of proceduralization that agent-based methodology imposes on the researcher can 
be a humbling experience, because it imperviously demands such clarity and precision as are quite uncommon to the 
social sciences. Yet once the model appears to plausibly simulate a complex system, it enables powerful exploration. 
In particular for the social science, where human-subjects issues naturally limit the scope of research, agent-based 
modeling provides opportunities to investigate the ‘what ifs’ that are key to fostering change. This study has 
illuminated for us regions of potentiality that are exciting in their prospects. Of course, in order to validate our 
findings from the virtual medium, we will have eventually to return to the source phenomenon, where we will 
evaluate whether the classroom model indeed helps us create a model classroom. 

 
Regardless of the medium in which it is implemented, any model is still just a model—it is an embodiment 

of a system of conjectures held together through theoretical plausibility, sensed coherence, and empirical support. 
One must be especially wary in the case of models embodied in dynamic visual media, because the superficial 
features might divert the researcher from attending to the deep mechanisms (‘seduction of sim,’ Starr, 1994). It 
might look and smell like a duck but still be a rabbit. Also, our source study was not designed with a focus on 
participation patterns within groups, so our video data do not track any one particular group over the entire duration 
of the implementation, but rather sample from the groups. We can only conjecture as to the group dynamics that 
transpired in that classroom during the data gaps. In future studies, we will work with data that cover the entire 
evolution of group dynamics. Finally, student interactions are vastly richer than we have portrayed in our case-study 
model. A possibly provocative statement is that any theoretical lacuna detected in the current model could be 
covered by further procedures, such that one could plausibly build agent-based models that capture, if not exhaust, 
the wealth of learning-sciences theory. 
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