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In this study, we adopt the notion of dense connection in the understanding of 
mathematics, and trace the development of these connections over time as 
participants make sense of an unfamiliar proof. By representing participants’ 
verbalized sensemaking with a network of ideas and resources that changes over 
time, we can investigate what features of a mathematical proof play more or less 
central roles in one’s developing understanding of that proof. Preliminary 
results indicate that though all participants in the study were at a graduate level 
of study or above, different participants revealed different aspects of the proof 
(a formal definition, a specific example, or a specific property or component of 
the focal mathematical idea) to be central to their developing understanding. 
INTRODUCTION 
One of the most important aspects of mathematical proof is the relationship 
between a reader and a proof as a disciplinary tool – that is, how does one use a 
proof to learn and make sense of the mathematical ideas contained within? In 
this project, we provide expert mathematicians (graduate students and university 
professors) with an unfamiliar mathematical proof, and ask them to think aloud 
as they make sense of it. We use these interviews to trace how experts construct 
their own understandings of the mathematical ideas contained within the proof, 
and identify which aspects of the proof serve as hubs or remain on the periphery 
of this developing understanding. 
Unlike several studies of expert mathematical knowledge and expert 
mathematicians’ proof practices, this study concentrates specifically on experts 
as they interact with an unfamiliar mathematical idea. We believe that such an 
approach may begin to address the discrepancies often cited between novice and 
expert practitioners of mathematics – namely, that novices rely on empirical and 
informal knowledge, whereas experts rely on coherent, formal definitions when 
thinking about mathematics (Vinner, 1991; Schoenfeld, 1985; Tall, 1991; Sfard, 
1992; Dubinsky 1992). While certainly experts are able to describe their well-
established mathematical understandings in such a way, this does not necessarily 
suggest that experts learn about new mathematics this way. As such, we believe 
that a deeper look into how individuals with a deep mathematical knowledge 
base construct such knowledge may yield different implications for secondary 
and tertiary mathematics education than expert/novice studies that focus on 
mathematical ideas that experts already understand well.    



 
ANALYTIC FRAMEWORK 
In both the formulation and the analysis of this study we relied heavily on the 
notion of knowledge as dense connection (Skemp, 1976; Papert, 1993), and were 
interested to investigate the extent to which expert knowledge, and particularly 
the development of this knowledge, can be described in the context of new and 
unknown mathematical content. The notion of mathematical knowledge as 
connected elements accounts for a number of aspects of expertise – for example, 
one of the identifying aspects of expertise is the ability one has to deconstruct 
and reconstruct mathematical knowledge in new and different ways (Tall, 2001); 
and it is certainly expected that different participants, with their varied 
experiences and backgrounds, may have different ways of “slicing up” the 
elements of the proof in order to construct their own understanding (Wilensky, 
1991). As such, the coding system described below was developed using a 
bottom-up iterative process (Clement, 2000), though connections to existing 
literature were made when these relationships became apparent during 
development of the codes.   
Our coding scheme consists of two levels – ways of understanding and 
resources for understanding – that closely mirror Sierpinska’s (1994) distinction 
between acts of understanding and resources for understanding.  
Ways of understanding include questions, solutions, and explanations, and align 
well with Duffin and Simpson’s (2000) descriptions of building, enacting, and 
having understanding.  
Resources for understanding include parents, definitions, fragments, and 
instantiations (examples provided by the proof itself, introduced by the reader, 
and so forth). Several resources for understanding can be identified within a 
question, solution, or explanation: for example, if a participant questions how 
two definitions presented within a proof are related to one another the statement 
would be coded as a question involving two definitions; if a participant makes 
sense of a definition by enacting it on an example provided within the proof, this 
would be coded as a solution involving a definition and an instantiation. The 
coding system is described in much more depth in Wilkerson and Wilensky 
(2008). 
Research Questions 
In keeping with the themes of the ICMI Study as outlined in the Discussion 
Document, we believe that this study (a) begins to address questions of 
individual differences in how one understands and makes sense of proofs, (b) 
identifies what aspects of proof (definition statements, examples, detailed 
description of processes and machinery) serve as central components of one’s 
understanding, and (c) provides a language with which to investigate how 
learners interact with disciplinary materials in order to make sense of new and 
unfamiliar mathematical ideas. For this paper, our research questions include: 



 
1) What aspects of a proof play a more central role in one’s developing 

understanding of the mathematical ideas contained within? 
2) What are the similarities and differences between different individuals and 

the proof elements that find more or less central to their understanding? 
METHODS AND DATA 
Participants 
10 participants, including 8 professors (assistant, associate, and full) and 2 
advanced graduate students from a variety of 4-year universities in the Midwest 
participated. Participants were identified primarily through university directory 
listings, and contacted via email to see if they would agree to be interviewed.  
Protocol 
Students and professors who wished to participate were given semi-structured 
clinical interviews using a think-aloud protocol (Ericsson & Simon 1993). Each 
was provided with the same mathematics research paper (Stanford, 1998; see 
below), selected for its accessibility in terms of topic and vocabulary. They were 
asked to read the paper aloud and try to understand it such that they would be 
able to teach it to a colleague. Interview data was videotaped, transcribed, and 
coded using the TAMSAnalyzer software (2008). 
Proof 
The research paper provided to participants (Stanford, 1998) concerns links, 
which can be thought of informally as arrangements of circles of rope that are 
entwined with one another, and the conditions under which those circles can be 
pulled apart. If a link has the property that when any single circle is removed 
from the arrangement, the rest can be pulled apart, that link is said to be 
Brunnian. If in a given two-dimensional representation of a given link, there are 
n distinct collections of over- and underpasses that, when switched, make the 
loops fall apart, the link is said to be n-trivial. The proof establishes a systematic 
relationship between the properties that make a link Brunnian and n-trivial, such 
that any Brunnian link can be described as (n-1)-trivial.  
Analysis 
For the construction of each experts’ network, each participant’s resources for 
understanding were converted into network nodes and ways of understanding 
into links between those nodes. For example, when a participant asks how two 
definitions (say, the definitions of trivial and of Brunnian) are related, this is 
reflected in the network by establishing a question link between trivial and 
Brunnian. If later the participant tries to find out how the two aforementioned 
definitions are related by manipulating the Borromean Rings as a specific 
example of a Brunnian link, this is reflected in the network by establishing a 
solution link between Brunnian, trivial, and the Borromean Rings. 



 
After the network is built, it can be analyzed to determine which nodes, or 
mathematical resources presented in the proof, served a more central role in 
each experts’ sensemaking. Network measures were computed using the statnet 
package (Handcock, et al, 2003) in the R statistical computing environment. The 
measure used in this report, betweenness1, is a measure of the extent to which a 
given network node (or element of the proof) serves as a “bridge” between other 
nodes. In other words, a proof element with high betweenness is one that 
enables the participant to form many connections between other elements of the 
proof. 
RESULTS 
At the time of this proposal, data is in the process of being analyzed. Preliminary 
findings, however, suggest that while there is relative consistency in experts’ 
ways of understanding, they use very different resources for understanding 
introduced by the proof while making sense of the ideas presented within. In 
other words, while experts seem to be relatively consistent in the number of 
questions, solutions, and explanations they discuss as they read through the 
proof, the specific aspects of the proof discussed within each of these questions, 
solutions, and explanations differ greatly. For some experts, specific 
instantiations of the mathematical object being explored serve a central role in 
building a densely-connected description of the proof; while for others a formal 
definition or several small components of the mathematical object serve this 
purpose.    

Figure 1. Network representations of two participants’ coded interviews 

In the graphic above, the network produced from each participant’s entire coded 
interview is featured. The darkness of links between any two elements 
represents the frequency with which those elements were mentioned together. 
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The color of elements indicates which code each element belongs to; the most 
visible here are fragments, that is, smaller pieces of the main idea to be proved 
(green), formal definitions (red), parents or background knowledge introduced 
by the participant (white). The graphs indicate that Joe’s network is more dense, 
but that Ana more frequently linked the same elements together. Furthermore, 
definitions, background knowledge, and pieces of the larger proof all played a 
much more important role for Joe’s developing understanding, while Ana made 
sense of the proof mostly in terms of its smaller pieces only. 

(average 
betweenness2) Joe Ana Mark 

Fragments .28 .05 ~0 

Parents ~0 .09 ~0 

Definitions .02 .09 ~0 

Examples .43 .05 ~0 

Constructions .25 .71 1 

Table 1: Betweenness of different types of proof elements for Joe, Ana, and Mark 

In addition to exploring how different individuals might utilize different 
components of a proof in order to make sense of it and the mathematical ideas 
contained within, it is interesting to consider what elements are important for all 
participants, regardless of their “proof style”. The table above shows that while 
Joe, Ana, and Mark relied on different types of proof elements to very different 
degrees (Joe heavily relied on fragments and examples; Ana had a more 
distributed focus and used her background knowledge more), constructions – 
that is, examples that were constructed by the participant on-the-fly to illustrate, 
test, or otherwise investigate the claims laid forth in the proof – served as an 
important bridging element for all three participants.  
CONCLUSION 
In order to access the aspects of expertise that might best inform educational 
practice; it is important to recognize that the mechanism by which experts come 
to know mathematics should be investigated in addition to the structure of that 
knowledge they already have. In this paper, we outline a method for 
representing experts’ active sensemaking while reading a proof, and some 
analytical tools for evaluating what parts of a proof serve central roles in 
individuals’ developing understanding of that proof and the ideas associated 

                                         
2 Betweenness was averaged across all elements of each type, and across total betweenness of 
each element for each individual.  



 
with it. Although our results are still in the preliminary stages, we believe that 
we are able to capture patterns in experts’ developing understandings that might 
reflect different ways of coming to understand a proof, as well as other patterns 
that hold constant across participants.  
REFERENCES 
Clement, J. (2000). Analysis of clinical interviews: Foundations & model 

viability. In R. K. Lesh, A. (Ed.), Handbook of research methodologies for 
science and mathematics education (pp. 341-385). Hillsdale, NJ: Lawrence 
Erlbaum. 

Dubinsky, E. (1992). Reflective abstraction in advanced mathematical thinking. 
In D. Tall (Ed.), Advanced Mathematical Thinking. Holland: Kluwer. 

Duffin, J. M. & Simpson, A. P. (2000). A search for understanding. The Journal 
of Mathematical Behavior, 18(4), 415-427. 

Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. & Morris, M. 
(2003). statnet: Software tools for the Statistical Modeling of Network Data. 
URL http://statnetproject.org 

Schoenfeld, A. H. (1985). Mathematical Problem Solving. Orlando, FL: 
Academic Press, Inc. 

Sfard, A. (1992). On the dual nature of mathematical conceptions: Reflections 
on processes and objects as different sides of the same coin. Educational 
Studies in Mathematics, 22, 1-36. 

Sierpinska, A. (1994). Understanding in mathematics. Basingstoke: Burgess 
Science Press. 

Skemp, Richard R., 1976. Relational understanding and instrumental 
understanding. Mathematics Teaching 77, pp. 20–26. 

Stanford, T. (1998). Four observations of n-triviality and brunnian links. 
Retrieved 19 July 2006 from http://arxiv.org/abs/math/9807161. 

Tall, D. (2005). The transition from embodied thought experiment and symbolic 
manipulation to formal proof. Paper presented at the Delta Conference. 

Vinner, S. (1991). The role of definitions in the teaching and learning of 
mathematics. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 65-81). 
Hingham, MA: Kluwer Academic Publishers. 

Weinstein, M. (2008). TAMSAnalyzer. 
Wilensky, U. (1991). Abstract meditations on the concrete and concrete 

implications for mathematics education. In I. P. Harel, S. (Ed.), 
Constructionism (pp. 193-203). Norwood, NJ: Ablex Publishing. 

Wilkerson, M. & Wilensky, U. (2008). How Do Mathematicians Learn 
Mathematics? In Proceedings of the Joint Meeting of PME 32 and PME-NA 
XXX, July 17-21. 


