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Introduction

For the past two decades, the engineering education community has started to come 
to terms with an unfortunate paradox: despite a view of engineering as the ultimate 
design profession, very little actual experience in design is incorporated into under-
graduate engineering curricula. Recently, pressured by decreasing enrollment, 
unmotivated students, and an avalanche of new demands from the job market, several 
engineering schools have started to roll out ambitious reform programs, trying to 
infuse engineering design into the undergraduate curriculum. A common element 
in those programs is to introduce courses in which students design products and 
solutions for real-world problems, engaging in actual engineering projects. These 
initiatives have met with some success and are proliferating into many engineering 
schools. Despite their success, they have not addressed one key issue in transform-
ing engineering education: extending the pedagogical and motivational advantages 
of design-based courses to theory-based engineering courses, which constitute the 
majority of the coursework in a typical engineering degree, and in which traditional 
pedagogical approaches are still predominant.

In this chapter, we describe and analyze a series of studies designed to address 
this exact issue, in which we investigate undergraduate students’ learning of 
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theoretical content in materials science through designing (i.e., programming) their 
own computer models of scientific phenomena. Our research design emerged from 
extensive classroom observations followed by a literature review of engineering 
and materials science education, as well as analysis of class materials, and inter-
views with students. Our observations (consistent with the literature review) 
indicated that students’ understanding of the subject matter was problematic, and 
that the teaching was not up to the challenge of the sophistication of the content. 
Based on this diagnosis, we have iteratively designed constructionist (Papert, 1980) 
model-based activities for materials science  - MaterialSim (Blikstein & Wilensky, 
2004a; 2004b, 2005a; 2005b; 2006a; 2008)  - a suite of computer models, learning 
activities, and supporting materials designed within the approach of the complexity 
sciences and agent-based modeling. The activities were built within the NetLogo 
(Wilensky, 1999b) modeling platform, enabling students to build models, and 
investigate common college-level topics such as crystallization, solidification, crystal 
growth, and annealing.

The studies consist of both design research and empirical evaluation. Over 3 
years, we conducted an empirical investigation of an undergraduate engineering 
course using MaterialSim, in which we investigated: (a) The learning outcomes of 
students engaging in scientific inquiry through interacting with MaterialSim;  
(b) The effects of students programming their own models as opposed to only inter-
acting with preprogrammed ones; (c) The characteristics, advantages, and trajecto-
ries of scientific content knowledge that is articulated in epistemic forms and 
representational infrastructures unique to complexity sciences; and (d) The design 
principles for MaterialSim: what principles govern the design of agent-based 
learning environments in general and for materials science in particular? Twenty-
one undergraduates enrolled in a sophomore-level materials science course partici-
pated in three studies in 2004, 2005, and 2006, each comprised of a survey, 
preinterview, interaction with the prebuilt computer models, students’ construction of 
new models, and a postinterview.

2.5 Min per Equation

Our classroom observations suggested that the ever-growing sophistication and 
extent of college-level content in engineering (and, in particular, materials science) 
pose a difficult challenge to current teaching approaches. One reason is that the 
important equations and mathematical models taught in undergraduate materials 
science courses are not only complex, but are connected in nontrivial ways to mul-
tiple sets of other theories, concepts, and equations. Teachers end up resorting to 
multiple equations and models to derive and explain a single canonical phenome-
non, and those equations and formulas are oftentimes located in a different areas of 
mathematical modeling (statistical mechanics and geometrical modeling, for 
example). What is more, many “engineering theories” are combinations of empirical 
models or approximations, and not pristine, rigorous, and easy-to-describe theories. 
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As a result, what takes place in a typical engineering theory course lecture is not a 
linear progression of equations, from simple to complex. Conversely, when a new 
phenomenon is taught to students, a very large number of new connections with 
previously learned topics will likely arise on multiple levels, generating even more 
specialized equations to account for those connections. The sheer number of equa-
tions generated makes a comprehensive exploration infeasible in the classroom. 
Our classroom observations revealed that, in a typical 30-minute period, students 
would be exposed to as many as 12 unique equations with 65 variables in total (not 
counting intermediate steps in a derivation) – or approximately 2.5 minutes for each 
equation and 45 seconds for each variable!

This overloading with equations and variables seems a likely candidate for 
explaining the students’ difficulties described above. We decided to investigate this 
hypothesis and investigate: what kind of understanding did this multiplicity of 
explanation levels and the “overloading” of equations foster in students? In addition 
to understanding the consequences of the traditional pedagogical approaches, 
we wanted to explore possibilities of an alternate approach, and examine the 
consequences of using agent-based models (Collier & Sallach, 2001; Wilensky, 
1999a; Wilensky & Resnick, 1999) enacted as microworlds (Edwards, 1995; Papert, 
1980) for students’ understanding of materials science content since our previous 
research suggested that using such a modeling approach might be a better match of 
content to student cognition.

The agent-based modeling approach, as we will explain in detail, enables modelers 
to employ simple individual-level rules to generate complex collective behaviors. 
These simple rules capture fundamental causality structures underlying complex 
behaviors within a domain. Wilensky, Resnick, and colleagues (Wilensky, 1999a; 
Wilensky & Reisman, 2006; Wilensky & Resnick, 1999) have pointed out that 
such rules could be more accessible to students than many of the equations 
describing the overall, macroscopic behaviors of a system. The agent-based 
approach is also a better fit with the constructionist pedagogical framework (Papert, 
1991). The history of constructionist pedagogy has included three principal modes 
of learner activity: (a) designing and programming computational artifacts (pro-
gramming-based constructionist activities – PBC); (b) exploring computer-based 
microworlds (microworlds-based constructionist activities – MBC); and (c) engag-
ing in the first two modes with computationally augmented physical structures 
(tangible-based constructionist activities – TBC). Agent-based modeling can be 
used in any of these three modes. In the second mode, models can function as 
constructionist microworlds, as agent-based models can represent the underlying 
logic of a system, enabling students to investigate and modify features of that structure 
and explore the consequences of those changes, and through that exploration and 
investigation come to understand the domain. In the first mode, students design 
and program their own agent-based models and gain a deep sense of the design 
space of domain models. In the third mode, students can connect physical sensors 
and motors to agent-based models and let the models take input from real world 
data and drive real world action (bifocal modeling, Blikstein & Wilensky, 2007). 
In the MaterialSim project, we have designed artifacts and activities to engage 



20 P. Blikstein and U. Wilensky

students in each of these three modes. In this chapter, we will explore the first two 
modes, i.e., microworlds-based (MBC) and programming-based constructionist 
activities (PBC).

The conjecture that using agent-based modeling (ABM) would be a better cognitive 
match for students is based on research that suggests that this approach fosters more 
generative and extensible understanding of the relevant scientific phenomena. In 
the case of materials science, instead of multiple models or numerous equations, this 
framework focuses on a small number of elementary behaviors that can be applied 
to a variety of phenomena. Instead of a many-to-one approach (many equations to 
explain one phenomenon), we attempt here a one-to-many approach (one set of local 
rules to explain many phenomena), through which students would see diverse mate-
rials science phenomena not as disconnected one from the other, but rather as closely 
related emergent properties of the same set of simple atomic or molecular rules. A 
second major focus of our study was to determine: What kind of understanding do 
students develop of the materials science content when they study it from this agent-
based, one-to-many perspective?

In addition to those two driving questions, we wish to explore one further dimen-
sion of this pedagogical approach. There have been several recent studies of students 
using ABM to learn science; in many of these studies the approach taken was to 
design sequences of models and microworlds for students to explore (e.g., Levy, 
Kim, & Wilensky, 2004; Stieff & Wilensky, 2003). We extend this approach to the 
domain of materials science but mainly we wish to find out what the effect will be 
from moving beyond microworlds and enabling students to choose phenomena of 
interest to them and construct their own models in the domain of material science 
(for another such approach, see Wilensky & Reisman, 2006).

In this chapter we are focusing on the interviews and laboratory studies prior to 
the classroom implementation (subsequent design experiments on classroom 
implementations are reported in Blikstein, 2009). We report on a particular peda-
gogical design and present evidence in the form of excerpts and samples of students’ 
work, which demonstrates that the experience with MaterialSim enabled students 
to identify and more deeply understand unifying scientific principles in materials 
science, and use those principles to effectively construct new models.

Materials science is one of the oldest forms of engineering, having its origins in 
ceramics and metallurgy. In the nineteenth century, the field made a major advance 
when Gibbs found that the physical properties of a material are related to its thermo-
dynamic properties. In the early twentieth century, the field of materials science 
concentrated on metals and university departments were often called “metallurgical 
engineering departments.” The field has since broadened to include polymers, 
magnetic materials, semiconductors, and biological materials and since the 1960s has 
been called materials science. Today, with the explosion of research in nanotechnology, 
alternative energy, and new materials, it has gained a very significant role in the 
realm of technological innovation. However, the teaching of materials science has 
not kept up with the rapid advances in the field. Therefore, before diving in to the 
study, we step back and contextualize the teaching of materials science within the 
landscape of engineering education, its recent critique, and calls for reform.
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A New Scenario in Engineering Education

In 2007, approximately 400,000 students took college-level engineering courses 
in the United States alone (American Society for Engineering Education, 2007). 
As early as the 1960s, education researchers (Brown, 1961; Committee on the 
Education and Utilization of the Engineering, 1985; Jerath, 1983; MIT Center for 
Policy Alternatives, 1975; Panel on Undergraduate Engineering Education, 1986) 
have pointed out that engineering education lags behind in its adoption of newer 
approaches to teaching and learning. In recent years, there have been numerous 
calls for reform from the engineering education community and several schools 
have implemented reform initiatives (Einstein, 2002; Haghighi, 2005; Russell & 
Stouffer, 2005). The driving force behind engineering education reform pro-
grams were both new societal needs (Dym, Agogino, Eris, Frey, & Leifer, 2005; 
Committee on the Education and Utilization of the Engineering, 1985; Katehi 
et al., 2004; Tryggvason & Apelian, 2006) and technical advances. As basic sci-
ence and engineering become increasingly intertwined in fields such as nanotech-
nology, molecular electronics, and microbiological synthesis (Roco, 2002), 
students and professionals have to deal with time scales from the nanosecond to 
hundreds of years, and sizes from the atomic scale to thousands of kilometers 
(Kulov & Slin’ko, 2004). This wide range of subjects and problems makes it 
prudent not to try to cover all the relevant knowledge so that students master the 
knowledge in each domain, but instead to help students develop adaptive expertise 
(Bransford & Schwartz, 1999; Hatano & Oura, 2003) that they can apply to new 
problems and situations.

However, most engineering curricula remain in coverage mode – curricula are 
still so overloaded with transient or excessively detailed knowledge that there is no 
time for fostering students’ fundamental understanding of content matter (Hurst, 
1995). This phenomenon of curricular overloading is not exclusive to higher educa-
tion. Tyack and Cuban (1995) identified the “course adding” phenomenon in most 
of twentieth century reform initiatives across all levels of education – new courses 
are regularly added to the curriculum to satisfy new societal needs. However, the 
situation becomes more problematic as we envision engineering schools in two or 
three decades from now. At some point the limit is reached and if courses need to 
be added, others must be removed – but can we afford to exclude anything from the 
curriculum? A major challenge is in how to go about deciding what courses can be 
dispensed with (and what knowledge).

A common approach in many universities has been to add hands-on engineering 
design courses to the curriculum. Design-based courses represented one attempted 
solution to the overcrowding of courses as they enable multiple content domains to 
be taught together. Design courses have been highly successful (Colgate, McKenna, 
& Ankenman, 2004; Dym, 1999; Dym et al., 2005; Lamley, 1996; Martin, 1996; 
Newstetter & McCracken, 2000), but they are not the universal answer for all 
problems afflicting engineering education. First, a significant part of engine
ering education consists of basic science (physics, chemistry), engineering  



22 P. Blikstein and U. Wilensky

science (fluid mechanics, thermodynamics), and mathematics (calculus, linear 
algebra). It is challenging for design-based courses to focus on the core conceptual 
elements of these highly theoretical knowledge domains as the physicality of  
students’ projects can be an obstacle for learning invisible or microscopic phenom-
ena such as chemical reactions, pure mathematics, or quantum physics. Secondly, 
the technological tools used in those reform initiatives (such as modeling and 
design software) are the same employed by professional engineers in their every-
day practice and not especially designed for learning. Using professional-based 
tools might be tempting as they enable students to achieve more rapidly the desired 
engineering design. In the specific case of materials science, however, this might 
not be the best choice. Most software tools used in engineering courses do not 
afford insight into the computation underlying their design and functioning. For 
engineering practice, indeed, a tool has to yield reliable and fast results – under-
standing what’s “under the hood” is not necessarily useful. However, in materials 
science, this could be disadvantageous for learners. The computational procedures 
might embody an essential, perhaps crucial, aspect of the subject matter – how the 
conventional formulas and representations capture the phenomena they purport to 
model. Manifestly, no computer-modeling environment can uncover all of its com-
putational procedures – it would be impractical example, to have students wire 
thousands of transistors to understand the underlying logic of the modeling envi-
ronment. Nevertheless, we believe that most of these environments could be made 
profitably more transparent to students. However, the epistemological issues 
regarding the tools and knowledge representations in traditional engineering teach-
ing run deeper.

First, in materials science, many of the traditional formulas themselves are 
opaque – they embody so many layers of accumulated scientific knowledge into such 
a complex and concise set of symbols that they do not afford common-sense insight 
and grounding of the causal mechanisms underlying the phenomena they purport to 
capture. Different from the basic sciences, engineering knowledge is a complex matrix 
of empirical “engineering laws,” theories derived from fundamental mathematical or 
physical models, approximations, and rules of thumb. Making sense of this complex 
matrix is challenging for novices. Although using formulas and conventional engi-
neering representations is perhaps conducive to successful doing (designing a new 
alloy, for example) it does not necessarily lead to principled understanding (know-
ing how each of the chemical elements interact and alter the properties of the 
alloy.1) Particularly, we are interested in “extensible” understanding – learning prin-
ciples from one phenomenon that could be applied to other related phenomena.

Secondly, there is an important distinction to be made in how representations 
relate to the phenomena they purport to describe. We are not arguing that aggregate 
equational representations are intrinsically ill suited for learning engineering or 
science as there are many cases in which equational representations are fruitful for 

1 For more on design for learning versus design for use see, for example, Soloway, Guzdial, 
& Hay, 1994.



232  MaterialSim: A Constructionist Agent-Based Modeling Approach to Engineering

learning. Sherin (2001), for example, showed how the symbolic manipulation of 
formulas could lead to a gain in conceptual understanding in physics.

We are arguing that in some cases aggregate equations can hide important infor-
mation needed for learning. In some areas of science, equations are directly postu-
lated at the macro level, i.e., they are not necessarily an aggregation of simpler, local 
behaviors, or the microscopic behaviors are not relevant to the phenomenon under 
scrutiny. For example, in simple Newtonian motion, we are interested in predicting 
the motion of bodies, but looking at the individual atoms of the body might not offer 
additional insight into the phenomenon – the macroscopic and microscopic behav-
iors could be analogous, i.e., the body and its atoms would be moving in the same 
fashion. In such areas, aggregate equations reveal most of the needed information. 
In other domains, however, the opposite is true: equations are an aggregation of 
microscopic behaviors, and those offer fundamental insights into the phenomenon, 
and are not analogous to the aggregate equations (for example, statistical mechanics, 
or diffusion). Therefore, for the latter categories of phenomena, aggregate equational 
representations might generate an epistemological gap (Blikstein, 2009) – the math-
ematical machinery needed to derive macro behaviors from microbehaviors is intri-
cate, and rigorous mathematical frameworks to guide such work are still being 
developed (see, for example, Parunak, Savit, & Riolo, 1998; Yamins, 2005; 
Wilkerson-Jerde & Wilensky, 2009). This epistemological gap makes it difficult to 
keep track of how micro- and macro-level parameters are related and influence each 
other, or to understand how intuitive, simple microbehaviors are represented in 
aggregate analytical forms. Our research, indeed, suggests that an exclusive use of 
equational representations for those types of phenomena can constitute an obstacle 
for students in acquiring conceptual understanding in domains of engineering in 
which the interaction of microscopic entities is at the core of the content matter. For 
those phenomena, in which equational representations show an aggregation of 
microbehaviors, it seems to be especially beneficial to unpack and deconstruct the 
traditional aggregate representations, restructuring domains of knowledge around 
the study of local, individual, “nonaggregated” phenomena (Wilensky et al., 2005; 
Wilensky & Papert, in preparation; diSessa, 2000).

For the most part, however, professional engineering tools whose main goal is 
arriving at results rather than uncovering processes emphasize aggregate-level 
simulation to predict macroscopic variables (Wilensky, 1999a; 2003). However, the 
focus on microbehaviors could make such content intrinsically more learnable and 
accessible. For example, temperature is a macroscopic, aggregate description of a 
microscopic state of individual molecules (their speed or energy), just as pressure 
is an aggregation of the number of collisions between gas molecules and the walls 
of the container. At an aggregate level, those variables are dependent on a number 
of different events and phenomena, and thus numerous equations and models have 
to be employed to predict them, oftentimes “mixing-and-matching” different levels 
of explanation and mathematical modeling approaches. On the other hand, at the 
microscopic level, the number of events and phenomena influencing a local interac-
tion is dramatically lower than at an aggregate level, because many of the variables 
observed macroscopically are emergent properties of the local behaviors.
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In this chapter, we describe a learning design framework that benefits from this 
fact, focusing on simple agent-level behaviors (i.e., atomic- and molecular-level 
interactions) from which complex macroscopic behaviors emerge. We believe that 
this framework is especially useful in a scenario of increasing technological com-
plexity and specialization. Materials science has transformed itself considerably 
over the last decade, with the advent of nano- and biomaterials, as well as the explo-
sion of computational materials science as a core research strand. The number of 
materials, alloying elements, fabrications techniques, and industrial applications 
has grown so quickly and vastly that “covering” all the knowledge by simply add-
ing new information to the curriculum would be infeasible. Additionally, the high 
level of abstraction that the new advances in materials science are bringing makes 
it increasingly difficult to give students any real world “feel” for the ideas learned 
in the classroom, as well as clear connections with their previous knowledge. While 
many archetypal problems in introductory physics would involve one falling body 
or two colliding objects, typical undergraduate problems in materials science 
involve simultaneous interactions of billions of atoms. Those interactions generate 
cascading effects that are hard to predict or understand with conventional mathe-
matical equations, or any real-world intuitions. We posit that the microbehaviors 
are easier to understand and model, and could be connected to previous knowledge 
and intuitions about how individual people or physical bodies behave (Wilensky, 
1999a). Thus, unifying, behaviors embedded in agent-based models are helpful for 
acquiring solid understanding of these principles, which bridge the micro- and 
macrolevels (Wilensky & Resnick, 1999). Consequently, we argue that the new 
computational tools should not be simple add-ons to the present curriculum, but 
part of their backbone – eventually restructuring the encoding of the content matter 
itself. In this, we follow the framework of Wilensky and Papert and their coinage 
of the word “restructuration,” (Wilensky et al., 2005; Wilensky, 2006; Wilensky & 
Papert, in preparation) to refer to the reencoding of knowledge in an alternate rep-
resentational system.

Our approach is one attempt in this direction. It builds up from previous 
research on the use of multiagent simulation tools in schools to investigate a wide 
range of phenomena. Wilensky and Resnick (1999) first noted the need to pay 
attention to “levels” and possible “slippages” between them, and highlighted the 
importance of the understanding of emergent behaviors for learning science. 
Wilensky, Papert, and colleagues have argued that computational representations 
have reached a point of development where we can embark on a program of radi-
cal “restructuration” of the science curriculum using these representations 
(Wilensky et  al., 2005; Wilensky & Papert, in preparation). Goldstone and 
Wilensky (2008) have called for such a restructuration of science curricula using 
common transdisciplinary “patterns” such as energy minimization, positive feed-
back, and simulated annealing. In terms of implementation in school and univer-
sities, over the past decade and a half, educators have successfully employed 
agent-based modeling in undergraduate chemistry (Stieff & Wilensky, 2003), 
high-school chemistry (Levy et al., 2004; Levy, Novak, & Wilensky, 2006), prob-
ability, and statistics (Abrahamson & Wilensky, 2005; Wilensky, 1995), robotics 
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(Berland & Wilensky, 2004, 2005), physics (Sengupta & Wilensky, 2008; 
Wilensky, 1993; 1999a; 2003), evolution, population dynamics, and mathematics 
(Centola, Wilensky, & McKenzie, 2000; Wilensky, Hazzard, & Longenecker, 
2000; Wolfram, 2002). Ironically, despite the widespread use of agent-based 
modeling in materials science, we have not found significant research investigat-
ing the use of such models for learning and teaching materials science.

We will present and discuss a series of three laboratory studies of a computer-
based learning environment which addresses the aforementioned challenges by 
offering students opportunities to build their knowledge by designing computer 
models based on simple computational behaviors. The user studies were comprised 
of classroom observations, pre/post interviews, pre/post surveys, and data analysis 
from individual sessions with students using the designed materials.

Before diving into the study, some background information on materials science 
content and teaching is necessary to illustrate the differences between traditional 
and the agent-based representations. As the divergences in representation are at the 
core of this study, the next section will be dedicated to describing these two repre-
sentations and how they differ. This will prepare the way for the description of our 
design and data analysis.

Equational vs. Agent-Based Methods in Materials Science

Grain Growth: A Central Phenomenon in Materials Science

Most materials are composed of microscopic “crystals.” Even though we commonly 
associate the term “crystal” with the material used in glassware manufacturing, its 
scientific use is different. A crystal is an orderly arrangement of atoms, a regular 
tridimensional grid in which each site is occupied by an atom. In materials science, 
scientists use the term “grain” to refer to such an arrangement. Most materials are 
composed of millions of these microscopic grains, and their average size is one of 
the most important characteristics of a material, contributing to, among other 
properties, strength, toughness, and corrosion resistance. For example, a car built 
with steel with a wrong grain size could just break apart during normal use, or be 
destroyed even in a minor accident. However, grain size can change, too – high 
temperature is the main driving force. This phenomenon, known as grain growth, 
is exhaustively studied in materials science: small grains disappear while bigger 
ones grow (the overall volume is maintained). Airplanes turbines, for instance, can 
reach very high temperatures in flight – an incorrectly designed material could 
undergo grain growth and simply break apart. The photographs in Fig. 2.1 (magni-
fied 850×) show typical results after 20 h under 900ºC.

Because grain growth is such a central phenomenon in materials science, 
and since it is an excellent example of how the same phenomena can have two 
different – and correct – representations, in what follows we will describe in detail 
these two representations.



26 P. Blikstein and U. Wilensky

Equational Representation of Grain Growth

In this section we describe the classical approach to modeling grain growth in 
materials science. This approach primarily employs mathematical equations. For 
those who want to skip over the mathematical details, it is sufficient to note that the 
classical approach makes use of several non-trivial equations to describe the 
phenomenon.

Burke (1949) was one of the first to introduce a law to calculate grain growth 
and proposed that the growth rate would be inversely proportional to the average 
curvature radius of the grains:

R = ktn

where R is the mean grain size of the grains at a given time, t is time, k is a constant 
that varies with temperature, and n depends on the purity and composition of the 
material, as well as other initial conditions.2

In other words, Burke’s law states that large grains (lower curvature radius) 
grow faster, while small grains (high curvature) have slower growth, or shrink. 
The mathematical formulation of Burke’s law also reveals that, as grains  
grow, the growth rate decreases. A system composed of numerous small grains 
(see Fig. 2.1, left) would have a very fast growth rate, while a system with just a 
few grains (see Fig. 2.1, right) would change very slowly. One of Burke’s approxi-
mations was to consider grains as spheres with just one parameter to describe their 
size (the radius). For most practical engineering purposes, this approximation yields 
acceptable results – however, as we previously discussed, its practical efficacy does 
not necessarily mean that this approach is the best way to understand the phenomenon. 
Due to the applied and integrative aspect of engineering research and practice, 
oftentimes explanations are drawn from a variety of sources: empirical equations, 
geometrical proof, thermodynamics, algebraic deductions, or statistical mechanics. 

2  Its theoretical value is 0.5 for pure materials under ideal conditions.

Fig. 2.1  Metallic sample before and after grain growth (Blikstein & Tschiptschin, 1999)
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Our classroom observations revealed that, for example, when explaining grain 
growth and deriving Burke’s law, at least three sources were employed during the 
classes covering the phenomenon:

The •	 Laplace–Young equation for pressure, which is commonly used in fluid 
dynamics to calculate surface tension in liquid–gas interfaces.

•	 The flux equation, based on statistical mechanics, which calculates the probability 
of atoms to move around the material.
Geometrical approximations, which makes it possible to assume that grains or •	
impurities in the materials are perfect spheres.

A detailed account of these equations is given elsewhere (Blikstein, 2009). We 
refer to this pedagogical approach as “many-to-one”: many models and equations 
to describe one phenomenon. Our research suggests that although the many-to-one 
modeling approach in useful in the hands of experienced engineers in real-world 
situations, or very skilled researchers with high mathematical skills, this multitude 
of models can be an obstacle to student understanding. The mathematical machinery 
needed to weave together the geometrical approximations, the Laplace–Young 
equation, and the flux equation is very elaborate, and to achieve the simplicity and 
elegance of Burke’s law, many assumptions and simplifications were made by the 
instructor. What is more, the resulting derivations and equations are specific to 
canonical cases, and the introduction of additional variables (for example, impurities, 
or temperature gradients) requires an even greater mathematical sophistication.

Agent-Based Representation of Grain Growth

Apart from equational models, heuristics (engineering “rules of thumb”) are also 
important instruments for engineering practice. For example, when explaining grain 
growth, teachers commonly resort to a classic rule of thumb: large grains grow and 
small grains shrink. However, despite the usefulness of such heuristics to help students 
gain intuition into particular topics, they are not very generalizable, do not have a 
formal representation, and are usually domain-specific. The “large grains grow, small 
grains shrink” rule of thumb, for example, was shown to be particularly inaccurate 
when, in the early eighties, scientists started to use computer simulation as a research 
tools in materials science. Anderson, Srolovitz, Grest, & Sahni (1984) proposed the 
widely known theory for computer modeling of grain growth using a multiagent-
based approach (then referred to as the “Monte Carlo method”). This kind of simula-
tion not only made predictions faster and more accurate, but also allowed for a 
completely new range of applications. Researchers were no longer constrained by 
approximations or general equations, but could make use of actual atomic behaviors 
and realistic geometries. As stated by Srolovitz, Anderson, Sahni, and Grest (1984):

While it is generally observed that large grains grow and small grains shrink, instances 
where the opposite is true can be found. [...] The results indicate the validity of a random 
walk description of grain growth kinetics for large grains, and curvature driven kinetics for 
small grains. (p. 796)
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In other words, Srolovitz et al. state that the classic rule of thumb for grain growth 
(“large grains grow, small grains shrink”) is not always valid, and that randomness 
plays an important role. Given the microscopic dimensions and small time scale of 
the phenomenon, practically the only way to visualize this new finding is through 
computer simulation. In contrast, the traditional methods for investigating grain size 
and growth reflect the tools (and visualization techniques) that were available in the 
1950s: mathematical abstractions, geometrical modeling, approximations, and 
empirical data. These traditional methods and techniques, having become the methods 
of choice to explain the phenomena, made their way to textbooks and classrooms, 
and thus were established as the mainstream path to study grain growth.

Agent-based simulation of grain growth offers a different perspective. Its principle 
is the thermodynamics of atomic interactions, which is a simple and powerful model 
with explanatory power covering a wide range of phenomena. The first step is to 
represent the material as a 2D matrix, in which each site corresponds to an atom 
and contains a numerical value representing its crystallographic orientation (the 
angle of orientation of the atomic planes in one particular grain compared to an 
arbitrary fixed plane). Contiguous regions (with the same orientation) represent the 
grains. The grain boundaries are fictitious surfaces that separate volumes with  
different orientations. The stability of each atom is the matrix depends on the 
number of different neighbors around it. The more different neighbors one atom 
has, the more unstable it is, and more likely to migrate to a different location. 
The algorithm is comprised of the following steps:

Each atom of the matrix has its energy•	 3 calculated based on its present 
crystallographic orientation (2) and the crystallographic orientation of its 
neighborhood – the more neighbors of differing orientation, the higher the 
atom’s energy. Figure 2.2 (left side) shows the central atom with four different 
neighbors, hence the value of its initial energy is 4.

Fig.  2.2  Initial and final free-energy calculations. Black and white arrows denote different or 
equal neighbors

3 Although the technical term would be “free energy,” for simplicity we will use “energy.”
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One new random crystallographic orientation is chosen for that atom among the •	
orientations of its neighbors. In this case, as observable in Fig. 2.2, the current 
value of the central atom is 2, and the attempted new value is 1.
The atom’s energy is calculated again, with the new proposed crystallographic •	
orientation (1). Fig.  2.2 (right side) shows that there are only two different 
neighbors in the new scenario, thus the final energy decreases to 2.
The two states are compared. The value that minimizes the energy is chosen. •	
In this case, the initial energy was 4 and the new energy is 2, so the latter value 
is lower and constitutes a state of greater stability. Therefore, the more different 
neighbors one has, the less stable one is, and thus more inclined to switching to 
a different orientation.

The agent-based approach captures the intricacy of the phenomenon with a single 
parsimonious model. In addition to the elegant simplicity of this model, it embodies 
the one-to-many modeling framework as it may also be used generatively to 
understand other phenomena as well, such as diffusion or recrystallization. 
The agent-based model of grain growth has been extensively tested and verified, 
and shown to achieve the same results as its aggregate, equational counterpart 
(Anderson et al., 1984; Srolovitz et al., 1984).

Unfortunately, even though new computational research tools are enabling 
researchers in materials science to accelerate scientific discovery and explore 
uncharted territory, computational methods have not yet reached mainstream engi-
neering classrooms. Thornton and Asta (2005) conducted a comprehensive survey 
about the state of computational materials science in undergraduate and graduate 
courses at the 20 leading programs in the United States. Whereas many universities 
are creating or planning to initiate computational materials science courses, the 
prevailing mindset is that students should learn modeling after learning the “science.” 
In other words, computer modeling is regarded as “icing in the cake” to take place 
after the “real” scientific understanding is achieved. Our work, in contrast, evaluates 
the usefulness of a different approach: learning the science by modeling.

Grain growth is a prototypical example. In the previous sections, we described 
how it is common practice to teach students to consider grains as spheres (which 
they are not), grain boundaries as real entities (whereas they are just imaginary lines 
between grains), and to make use of numerous metaphors and rules of thumb  
(e.g., “big grains swallow small grains,” “particles hold boundaries,” etc.) to describe 
and predict changes in the material.

Both traditional methods and computer-based methods of investigating grain 
growth rely on modeling. The scientific enterprise is the process of creating useful 
approximations to help us understand critical or interesting properties of reality 
(see, for example, Pagels, 1988). Models from each historical period reflect the 
tools available at that time. The example of grain growth is illustrative of a common 
practice in many fields of academic research, in particular engineering. The avail-
ability of certain technologies for research shapes how researchers approach a 
certain problem, and the subsequent “encoding” of the knowledge is heavily influ-
enced by those technologies. As the initially empirical or exploratory hypothesis 
gradually transitions to becoming a full-blown theory, they transmit much of those 
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influences to the theories themselves, and consequently to the curricula. In this 
chapter, we argue that the current “encoding” of the knowledge about grain growth, 
and materials science in general, is a function of the available research technology, 
and the state of the field, and not an intrinsically superior way of encoding know
ledge. In the following section, we describe the software infrastructure used in the 
project, and the design of the MaterialSim models.

Software Design: NetLogo and MaterialSim

NetLogo

NetLogo (Wilensky, 1999b) is a direct descendant of the Logo language (Papert, 
1980). It is a freely available, integrated multiagent modeling environment, 
designed and developed by the second author at Northwestern University’s Center 
for Connected Learning and Computer-Based Modeling. It includes a graphical 
user interface for exploring, experimenting with, and visualizing models, as well as 
a multiagent modeling language (MAML) used for authoring models (see Fig. 2.3). 
Such languages enable users to easily create and manipulate numerous compu-
tational entities (“agents”) and define simple rules that govern their behavior. 
For example, to create 100 agents (or “turtles,” in NetLogo’s lingo) on the computer 
screen, the user has to simply type:

create-turtles 100

To make all of those 100 turtles move 10 units forward, users would type:

ask turtles [forward 10]

Users can also define simple rules that govern the behavior of the agents. NetLogo 
agents can perform simple rule-based behaviors, such as to seek being surrounded 
by agents with similar properties, or to avoid areas already occupied by other 
agents. For example, to ask all turtles to check for neighbors (within a one-patch4 
radius) and move backwards 10 units in case there are at least four neighbors 
around, we would use the following command:

ask        turtles   [if (count neighbors in-radius 1) > 4 [back 10]]

Such simple agent rules, however, may give rise to complex emergent aggregate 
phenomena, many of which are congruent with their traditional macroscopic 
formula-based descriptions. In addition to the modeling language itself, NetLogo 
includes a graphical user interface with advanced visualization features, such as 
multiple topologies and 3D representations. It also includes some specialized tools 
such as BehaviorSpace (Wilensky & Shargel, 2002), which enables users to explore 

4 The NetLogo world (or screen) is divided into a grid of square cells called patches. The size of 
the patches can be defined by the user.
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a wide parameter space by running multiple experiments, and automatically logging 
the data. NetLogo comes with a large library of sample models as well as model-
based curricula.

MaterialSim

We chose the NetLogo modeling-and-simulation environment as a platform as it 
is well adapted to the activities of the studies, in particular, NetLogo’s “low-
threshold, no-ceiling” (Papert, 1980; Tisue & Wilensky, 2004; Wilensky & Rand, 

Fig. 2.3  The NetLogo modeling environment, with a “Solid Diffusion” model
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2009) design enables learners to achieve sophisticated results within a relatively 
short period of time, and its built-in visualization tools allow dynamic, flexible, 
and customizable views. MaterialSim is a set of models and activities built by the 
authors within the NetLogo environment, for investigating materials science 
phenomena such as crystallization, solidification, casting, grain growth, and 
annealing. MaterialSim’s design is different from many other curriculum projects 
where instructional designers often prepare a series of models for students. 
MaterialSim, instead, focuses on students programming models. This design 
choice was based on previous research and on the learning goals of the project. For 
example, previous studies on students programming their own agent-based models 
report that participants were able to infer behaviors based on incomplete or sparse 
information, as well as gain deep understanding of how changes in microbehaviors 
can alter a given system (e.g. Berland & Wilensky, 2004; Centola et al., 2000). In 
contrast, scripted curricula (e.g., Gobert et al., 2004; Horwitz, Gobert, Wilensky, 
& Dede, 2003) start out with well-defined content coverage. Whereas studies of 
the scripted curricula report positive learning results, they do not necessarily 
afford insights into areas outside of their target phenomena in their more “conver-
gent” approaches, nor allot sufficient time for a deeper examination of elementary 
“under-the-hood” behaviors. Since these curricula do not make use of program-
ming or modeling, it is understandable that students’ familiarity with the behaviors 
and rules may not be as well-developed as in PBC modeling activities. In addition, 
since one key goal of MaterialSim is to train students to see commonalities across 
materials science phenomena, having a strong programming and modeling compo-
nent was a key design principle.

Creating models is not foreign to undergraduate engineering – it is common for 
engineering students to have modeling assignments and learn several programming 
languages while obtaining their degree. However, traditional model-based 
activities in engineering oftentimes do not afford understanding of microscopic 
behaviors or elementary physical/chemical principles. Therefore, another key 
design principle is to build activities which foreground these microbehaviors, and 
in which students develop a high level of familiarity with the language and the 
ABM paradigm. In this study, the design foci are:

•	 Programming exemplars (solidification and grain growth) as to present students 
with the important algorithms and coding examples which could be useful in the 
process of building other models.

•	 Support materials to help students in learning how to program in NetLogo.
•	 Easily transportable code examples, which students could easily reuse across 

models.
•	 Readily-available validation tools, as to enable students to verify the validity of 

their models.
A •	 persistent library of student-generated models from previous years, from 
which students can reuse code and get inspiration for their models.

MaterialSim’s grain growth model, the main exemplar model of the suite (Fig. 2.4), 
was conceived to enable four kinds of activities:
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•	 One-dimensional exploration: Users can change variables, draw microstructures 
using the cursor, and observe their behavior over time.

•	 Multidimensional exploration: Students can run experiments sweeping entire 
parameter spaces, to determine critical points, system rules, mathematical rela-
tionships, and patterns.

•	 Bifocal exploration (Blikstein & Wilensky, 2006b): Students can connect real-world 
and virtual experiments, importing digital pictures from real experiments, and 
observing their “virtual” evolution. “Bifocal” refers to the simultaneous focus on 
the model and on the physical phenomenon.

•	 Model building: Students can change, create, or extend the system by coding 
their own procedures, modifying existing ones, or creating whole new models 
from scratch, by using the NetLogo modeling language.

In addition, the grain growth model offers a number of learning-oriented features, 
summarized in Table 2.1

Fig. 2.4  MaterialSim’s grain growth model
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Research Design and Methods

The research took place during three spring quarters at the materials science 
department of a midwestern research university, with sophomore students enrolled in the 
“Microstructural Dynamics” undergraduate course. In the first year (2004), six 
undergraduate students (volunteers) participated in the study. In the second year 
(2005), 11 students volunteered to participate, and 4 students participated in the 
third year (2006), with 21 participants over 3 years. The average class size was 15 
students. Each student participated in two individual sessions. The first, 75-minute 
long, was comprised of the following parts:

Short Likert-scale/open-ended presurvey to assess students’ familiarity with •	
computers and their attitudes about the course.
Preinterview about grain growth and related phenomena, in which students •	
were asked the content questions during a semistructured interview. These 
questions were based on exams and assignments used in the course  
(for example, “What is a grain?” “What is grain growth?” “What is the driving 
force for grain growth?” “What is the effect on grain growth of dispersed 
precipitates?”)
General presentation of the NetLogo programming environment.•	
Demonstration of five canonical agent-based models from the NetLogo models •	
library (fire spread, virus contamination, racial segregation, gas molecules in a 
container, and a chemical reaction).
Hands-on interaction with one MaterialSim model: grain growth (with simultaneous •	
interview). This included running the model with different values for matrix 
size, temperature, composition, as well as recording and plotting experiments 
sweeping the whole parameter space of one variable.

As homework, participants were asked to choose a challenging and/or interesting 
topic from the course and think of a model to build, which would be implemented 
during the next session. Students also had the option of extending the functionality 
of the existing grain growth model.

The second session (150 minutes) was dedicated to:

Introduction to the basic commands of the NetLogo modeling language.•	
Implementation (i.e., coding) of the new model. Participants were always in •	
front of the computer and in control of the task. The first author would help 
students as needed with language commands and general programming 
issues.
Final interview.•	

We scheduled the sessions approximately one week after students’ exposure 
to the topic of grain growth in their regular classes. All sessions were video-
taped, and students’ computer interactions were recorded using real-time con-
tinuous screen-capture software. Approximately 65 hours of video were captured, 
which were selectively transcribed and analyzed. Experiments conducted by 
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students, as well as the models they built, were saved and analyzed. The first 
author attended the Microstructural Dynamics course 2004, 2005, and 2006, and 
analyzed the class materials and related literature. The classroom observations 
also generated data about the number of equations, variables, drawings, and 
plots explained during the class periods (and time spent in each item). Finally, 
participants were asked to fill up an anonymous web-based postsurvey, as to 
assess their (self-reported) interest and motivation doing the study, as well as 
usefulness of computer simulation for understanding certain topics in 
Microstructural Dynamics.

Data Analysis

Preinterview Explanations

The preinterviews were semistructured, following the questions listed in the 
Research Design section. At times the interviewer would ask additional ques-
tions to further explore one aspect of the responses. Students could also draw 
pictures to illustrate their explanations, which were all scanned. It was an open-
book interview so that students could use any class materials, books, or websites 
to answer the questions. For the analysis, we randomly selected six students 
from the first two studies (2004 and 2005). The goal of the preinterviews was to 
evaluate students’ explanations of core content in materials science, to which 
they were exposed during their regular classes one or two weeks before the 
interview. For the analysis, we compared explanations for the same phenomenon 
across different students, and also parsed and coded each explanation as to 
understand in detail the materials science concepts present in each, as well as 
how they were connected. In what follows, we will summarize results which 
were more comprehensively analyzed elsewhere (see Blikstein, 2009, and 
Blikstein and Wilensky, 2009).

The data shows that even for basic topics, such as describing what a grain is, 
students explanations were surprisingly dissimilar. Students resorted to a variety of 
metaphors and models for characterizing a grain: Betty,5 for example, based her 
explanation on the visual appearance of a grain seen under the microscope. Liz 
tried to base her explanation on the appearance of a grain of rice. Ken tried to 
explain grains using another topic in the course, dislocation theory, which deals 
with the atomic structure of a material. As the interview progressed and questions 
started to deal with more complex and dynamic phenomena, the diversity of 
explanations just increased.

5  All names were changed for anonymity.
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When explaining what grain growth was, Bob used the metaphor of free will 
(“molecules come into the grain and line up”), and employed ideas about diffusion 
and impurities in contradictory ways. He did not resort to the Laplace–Young 
equation to explain the process of decreasing free energy by simply increasing the 
curvature radius. He incorrectly associates excess free energy to impurities or 
imperfections in the crystal structure, taking purity as a synonym for low energy, 
and grain growth as a cleansing mechanism by which grain boundaries would 
“sweep” impurities out. However, the Laplace–Young equation (studied in class) 
states a very different idea. Namely, the driving force is the curvature or pressure 
difference – impurities are not eliminated by grain growth, and growth can exist 
in pure materials. Betty, when trying to answer the question, mistakes grain 
growth for another phenomenon, recrystallization, which was taught in a previous 
section of the course. In recrystallization, similarly, crystals grow, but the 
mechanism and the kinetics are quite different. Ken, departing from yet another 
idea (rules of thumb about curvature), stated that “curvature is not good, so they 
will want to shrink.”

When asked about the effect of impurities on grain growth, again, students tried 
to employ a variety of micromodels: a force-feedback model, where impurities 
particles pull boundaries away, slowing grain growth; a classical mechanics 
model, in which grain boundaries can “hit” a particle and slow down, models 
based on atomic movement inside the material, or purely geometrical models, in 
which the shapes of grain would change with no impact on the behavior of the 
material. As an example of a prototypical response, let us observe an excerpt of 
Ken’s interview:

Interviewer: What is the effect of dispersed particles?

Ken: if you have two precipitations and if you have a dislocation line, you need to exert a 
force Tau on it, to move the dislocation line, but once it gets to the precipitation, it has to 
bow out and that will cost more energy, so if you have precipitations it will strengthen the 
material and that depends on the density of precipitations.

Interviewer: So grain growth slows down or not?

Ken: That I am not very sure.

Ken knew how to recite back pieces of the theory (even mentioning the name 
of a variable, “a force Tau”), but could not articulate its physical significance, 
and failed to identify the overall effect of impurities in grain growth. Indeed, our 
classroom observations showed that instructors overloaded students with a mul-
titude of equations and models without necessarily making a clear distinction 
between the atomic behaviors themselves and the mathematical descriptions of 
those microbehaviors. In the interview, the consequences of the myriad of frag-
mented pieces of information and models to which students were exposed dur-
ing class were apparent. Students’ explanations, sewn together on-the-fly, 
employed incomplete fragments of variety of models, erroneously blended dif-
ferent topics (recrystallization, dislocations, grain growth), and often mistak-
enly used the standard vocabulary and rules of thumb of the field. What is more, 
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none of the students (even considering the entire group of 21 students partici-
pating in the study) even tried to use the standard mathematical equations to 
explain the phenomena. The data suggests, therefore, that the “many-to-one” 
approach used in class had detrimental consequences for student learning, i.e., 
the representational infrastructure of aggregate equations was not a good match 
to the content.

First Session of the User Study: Introduction  
and Model Exploration

The first session was dedicated to the exploration of the grain growth model. 
The first activity was simple: observe and reflect on curvature as a driving force for 
grain growth. Most of the students knew, from their previous classroom instruction, 
that large grains “consume” small ones, growing toward their center of curvature, 
and high-curvature boundaries tend to disappear. However, those concepts appeared 
to be isolated ideas, separate phenomena, and hardly connected to the Laplace–Young 
equation, which was supposed to be the mathematical evidence for the aforemen-
tioned phenomenon.

The goal of this activity was twofold. First, assess students’ preexisting under-
standing of the phenomenon. Secondly, we carefully observed the cognitive 
shift as the simulation progressed (Siegler & Crowley, 1991). This activity 
consisted in drawing two grains divided by a curved surface and observing their 
behavior. The pictures below are snapshots of the dynamic simulation that students 
observed (Fig. 2.5).

Before the simulation, most students were unsure of what would happen. 
Approximately half thought that the larger grain would grow at the expense of 
the smaller, regardless of the curvature of the boundary separating them, while 
the other half considered concavity, rather than size, as the main criterion. 
As they started the simulation, and saw grains growing toward their centers of 
curvature, they observed that the movement was not smooth or unidirectional, 
but that there was intense activity on both grains with random flipping of atoms. 

Fig. 2.5  The evolution of a curved grain boundary
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The following excerpt suggests that visualizing this progression sparked some 
changes in Liz’s understanding:

Interviewer: Can you describe what you see?

Liz: Just because one grain has a concave side and the other has a convex side, so it comes 
in towards the concave, because... [pause] does line tension applies in this situation?

Interviewer: Line tension?

Liz: That might be from dislocations... I might be mixing them up. Just because... when 
you have something... part of the grain is like, curving in, mostly likely other parts of the 
grain are curving in, so the tension of the grain boundary lines, so the force outside is 
greater than the force inside, so it will like shrink, it looks like that probably be like straight 
in the middle, rather than entirely red... just because if the red part also has some concave 
thing that is off the screen it will just like go together.

Liz is apparently mentioning ideas derived from the Laplace–Young equation, 
which relates surface tension and curvature. However, she cannot yet think at the 
“micro” level: To visualize what is happening on the computer screen, she has to 
imagine a large circle going off-screen, which is probably a consequence of what 
she remembers from class, where grains were always approximated as spheres. 
She does not yet construe the local interactions along the curved interface as a 
driving force, but only the “macro,” aggregate-level effect of curvature.

The next activity was to draw a microstructure with many grains, but with one 
of them a lot smaller than the others, as we can see in Fig. 2.6.

Watching the evolution of this new microstructure was a crucial experience for Liz. 
She started to transition from memorized rules of thumb and topic-specific models to 
micro-level reasoning, which would lead her to generate hypothesis about the grain 
growth law by herself. This excerpt took place when she was observing a triple 
point – a region where three grains meet and the probability of an atom to flip to 

Fig. 2.6  Four large grains surround a small grain (left), and a zoomed-in view of the structure 
showing a triple point (right)
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any of the surrounding grains is the same, as there are two atoms of each grain 
around the central element (see Fig. 2.6.) While observing this phenomenon, Liz 
was told to zoom in and out the simulation, to also see what was happening at the 
microlevel (following a single atom).

Liz: Right here there is an equal position for red, yellow, and blue, but it just happens to 
be that blue won, it keeps winning.

Interviewer: How would you explain that?

Liz: Because... if you look at one of those points, either of the three colors, they all have the 
same number of other colors around it, so it is not favorable to choose one or the other...

Interviewer: What angle is here?

Liz: Oh, so this is the 120-degree angle between the... [pause]

Interviewer: Did you talk about it in class?

Liz: Briefly. He [the professor] said that when you reach a triple junction, it will become 
120 degrees.

Interviewer: So are you saying that there is an equal probability?

Liz: Well, I just don’t understand why blue is doing so much better, in general. Eventually 
just one has to become bigger, because this is the most energetically favorable thing, so 
maybe... blue was bigger, but now yellow is coming back, so maybe next time blue gets 
bigger again, and they will just keep going. Maybe it will just be like that for a long time.

Interviewer: So what happens to growth speed?

Liz: Eventually they will get like... two big ones... and then it will take forever.

Interviewer: So what could be the law?

Liz: It will eventually taper off... to some point... because if you have a lot or grains then 
you will... the rate of increase will be faster, but when average grain size increases it gets 
harder and harder to increase the rest of them, so it just goes...

Interviewer: Why is it harder and harder?

Liz: Just because there isn’t a distinct... [pause] being in this orientation is more favorable 
than this other one so you have to pick and choose... the grains are doing that, but it is not 
happening quickly just because you know, either one can happen.

In this very short time watching the model, Liz was able to understand and generate 
hypotheses about two essential ideas: triple points and logarithmic laws (the literature 
refers to these ideas as particularly hard to understand (e.g., Krause & Tasooji, 2007)). 
Rather than trying to assemble statements pulled from regular instruction, Liz 
departed from what she knew about other phenomena and what she was actually 
seeing in the computer model. Even without formally mathematizing the time 
dependency of grain growth, she understood the reason for the triple point to be 
considered a “low-mobility” point in a microstructure. The central atom has two atoms 
(out of six) of each of the surrounding grains as neighbors, so the switch probability 
is the same (1/3), and there is no preferred growth direction. She also realized that 
the time law would not be linear: growth speed decreases over time and eventually 
“tapers off.” Rather than being told, Liz arrived at this conclusion on her own, 
by drawing microstructures, changing variables, and observing the dynamics of the 
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simulation. Particularly, when asked about the fundamental reason for the “tapering 
off” of grain growth, she affirmed that “[…] because there isn’t a distinct orientation 
[which] is more favorable” – in other words, she got at the core of the explanation, 
the fundamental atomistic principle. This same idea could be useful to explain other 
phenomena in materials science, and we will see how students applied such gen-
erative ideas to other phenomena in the next section.

Similarly, Peter and Elise, notwithstanding their initial difficulties in explaining 
grain growth during the preinterviews, understood the logarithmic nature of the 
grain growth law:

Interviewer: What could be the rule for grain growth speed?

Peter: As the grains get bigger, each grain is increasingly hard to take away from because it’s 
bigger, so the interfaces start to be between two large grains, instead of small grains, so an 
interface between a large grain and a large grain is less likely to have a lot of movement because 
both grains are large and they are already in a state where they don’t want to shrink.

Interviewer: What will happen to this surface [between two grains]?

Elise: [It’ll] shift up to be vertical. [Looking at the computer model.] Yes, it’s just getting 
flatter.

Interviewer: Why do you think it wants to get flat?

Elise: It’s like the nearest-neighbor thing, these want the most nearest green neighbors, the 
red ones want the most red ones.

Interviewer: [some minutes later, she is looking a triple point] What’s happening here?

Elise: It has the same number around each other, so, the red, the angles are all at equilibrium, 
they are all a stable formation.

Interviewer: And what’s that angle there?

Elise: It’s a hexagon, I guess it’s 360 divided by three, 120.

Generally, most students knew that the small red grain in Fig. 2.6 was going to 
disappear. From their reactions while observing the simulation, they seemed to be 
expecting a unidirectional “animation” of the grain being “eaten” by the surrounding 
ones, and eventually disappearing. This was consistent both with the heuristics and 
the types of results of aggregate tools, animations, and equations commonly seen 
in class, which are processes that happen unidirectionally and deterministically. 
However, what students observed was different: behaviors emerging from local 
interactions, which take place with some degree of randomness. At times, the small 
grain would grow, but most of the times it would shrink. Some of the students wanted 
to slow down the simulation and use the “zoom” tool to see the process in more detail, 
which meant they could only see the microlevel phenomenon (atoms flipping to 
different orientations). By zooming out again, they could observe the emergent 
behavior: curved surfaces disappearing as the Laplace–Young equation would predict. 
Thus, there is a qualitative difference between traditional learning tools and agent-
based modeling: not only are students observing an expected outcome, but also they 
are able to see the process unfolding at various levels. The simulation was visually 
similar to the phenomenon, but, most importantly, its algorithm loyally emulates 
the micro-level processes underlying it. This is different from purely numeric 
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simulations in which students are able to compare only outputs, and not the pro-
cesses as they unfold. In addition, words commonly used in the classroom, such as 
“shrink,” “consume,” and “growth” acquired a new meaning. Those metaphorical 
terms, as our preinterview data suggested, can mislead students to interpret literally 
their meaning – working with MaterialSim, students realized that grains were not 
actually being “consumed” or shrinking: atoms were just switching places, and the 
metaphors were just describing the net, aggregate effect of such behavior. This was 
a central element of the whole experience and, as we will observe, deepened as 
students progressed in the study.

The last activity of the first day was to run automated experiments using NetLogo’s 
“BehaviorSpace” module. This NetLogo feature enables users to automatically run 
hundreds of simulations, each under different parameter settings, sweeping entire 
parameter spaces. Students ran at least one set of experiments, plotted the data, and 
came up with theories to describe the phenomenon. Most students chose to model 
the influence of dispersed impurities on grain growth. The textbook explanation of 
this phenomenon takes approximately four pages. It begins with an account of how 
a force P appears when a grain boundary attempts to go through a particle, and then 
calculates the drag force by means of geometrical approximations (see Fig. 2.7).

Departing from those geometrical approximations (for example, all particles 
are considered to be perfect spheres), the formula is obtained with a series of 

Fig.  2.7  The textbook picture explaining how dispersed particles affect boundary migration 
(Porter & Easterling, 1992, pp. 141)
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derivations (Porter & Easterling, 1992, pp. 141), which relates the fraction of dis-
persed particles (f), the mean radius of the particles (r), and the maximum particle 
size after grain growth (D

max
):
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However, the NetLogo algorithm is not based on this formula, or its geometrical 
approximations. Before running his experiments, Bob was asked if the model could 
actually match the “official” equation, since they departed from very different ideas, 
and he was skeptical. Thus he programmed NetLogo to run a series of simulations with 
percentages of particles varying from 0 to 8% (see screenshots and individual plots 
of grain growth speed in Fig. 2.8). He also constructed a plot to aggregate the 
results across all experiments, and subsequently tried to compare their own curve 
with the theoretical data (dotted line in Fig. 2.8’s lower plot). To his surprise, the two 
curves had a very reasonable match. Other students, with slight variations, undertook 
the same project, or selected different aspects of the phenomenon. By exploring 
entire parameter spaces, and having not only the dynamic visualization but also 
actual numerical data to base their explanations on, these students were able to 
further generate original hypotheses and find meaningful correlations.

Fig. 2.8  Sequence of screenshots from Bob’s experiment
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Second Session: Building Their Own Models

The second session was the model construction part of the study. Students had 2½ 
hours to learn the basics of the NetLogo language and program a new model of a 
materials science phenomenon. For this session, which took place 2–3 days after 
the first session, students were asked to bring one idea of their own for a new 
model. They pursued questions of their interest or problems that they did not under-
stand during regular instruction. By authoring new models or new features for the 
existing models, they could elaborate on answers to their research questions. 
Student achievement was impressive. A comparison between the preinterview data, 
when students relied on ready-made statements about the phenomena, and their 
performance on the last day of the study, when they built their own models relying 
just on fundamental atomic behaviors, suggests that student contact with an agent-
based environment effected conceptual gain. Even more than exploring the existing 
models, constructing their own models was a transformative experience for most. 
In this section we will narrate and analyze some of those learning trajectories. The 
models chosen for this analysis represent typical student work, and the particular 
choice of which students to include in the data analysis attempted to provide repre-
sentative examples of the various affordances of ABM employed by students.

Betty’s Model

Betty built a model to investigate grain growth with a new and important feature: 
taking into consideration the misalignment between grains (see Fig.  2.9). In her 
innovative model, the more misalignment across the boundary of two grains, the 
harder it would be for an atom to jump from one grain to another. The construction of 
this model presented Betty with many challenges. The first was to convert the grain 
orientation’s angle, which could lie in any of the four quadrants, to a normalized 
quadrant-independent measure that would be easier to compute. Betty’s solution, 

Fig. 2.9  Betty’s sketches about angles, sine and arcsine
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after much thinking, sketching, and trying out different trigonometric functions, 
was to use the arcsine function. The following picture shows some of her reasoning. 
From her drawing, we can observe that she was using geometrical analysis from a 
“micro” level, examining individual atoms, and trying to design an algorithm to 
account for the trigonometric issues in calculating their misorientation.

She considered that the probability for an atom to jump to the next grain should 
be dependent not only on the number of different atoms around it, but also on the 
average misorientation between the two grains. Low misorientation would promote 
easier migration, thus she needed a function to calculate the misorientation, and then 
to add a misorientation factor to the previous grain growth algorithm. Apart from the 
initial difficulty in figuring out the best trigonometric function for the angle compari-
son, Betty knew what she needed to do, without resorting to any of the textbook 
formulas. For her, at the microlevel, adding the misorientation effect was quite easy.6 
Therefore, she simply added one command to the original grain growth model to 
implement her change. Previously, in the traditional aggregate equation-based 
approach, making such a change would require long and mathematically demanding 
derivations. The resulting code of her misorientation calculating function was:

;;calculates the absolute value of the arcsin7

to-report misorientation [angle]
  report asin (abs (sin (angle)))
end
;;calculates the absolute value of the sum of the two 
arcsins
to-report calculate-misorientation [angle1 angle2]
  report abs (misorientation (angle1) + misorientation 
(angle2))
end
;;reports the average misorientation for a given atom
to-report compare-misorientation 

let i 0

ask neighbors6
    [

;;calculates the misorientation between the current 
atom and each of its 6 neighbors
set total-misorientation (total-misorientation + 
calculate-misorientation heading (heading-     of 
neighbors6))
set i i + 1 ;update counter

    ]

6 On a more advanced level, similar research was undertook and published by researchers, such as  
Ono, Kimura and Watanabe (1999)
7 In the Netlogo programming language, semicolons mark the start of a comment line. Programmers 
use comments to clarify and annotate their code.
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;;returns the average misorientation
report (total-misorientation / i)

end

Then, having her reporter agents calculate how much each given atom would 
differ from its neighbors angle-wise, she changed the original grain growth procedure, 
adding one extra simple “if” statement:

;;OLD PROCEDURE
  if future-free-energy <= present-free-energy
     [set heading (future-heading)]

;;BETTY’S NEW PROCEDURE
  if future-free-energy <= present-free-energy
        [
         if (present-heading - ([heading] of one-of 

neighbors6) < misorientation)
            [set heading (future-heading)]

]

Yet, aggregate and macroscopic models do not afford such insights as well. The 
agent-based approach, conversely, provided a “low-threshold” entry point for Betty 
to implement her ideas by constructing models. Her model was very consistent with 
known theory, even though she was not cognizant of this theory prior to the inter-
ventional study. Betty’s model illustrates one of the main affordances of the agent-
based representation: at the micro level, the mathematical machinery required to 
add new phenomena or parameters to an existing algorithm is much simpler than 
in traditional representations. Instead of employing numerous equations to add her 
misorientation effect, just a few lines of code, at the microlevel, were sufficient.

Jim’s Model: Polymer Chains

Jim was taking a polymer science course at the time, and in previous classes he had 
learned about polymer chains and how they moved. Polymer chains can move and 
expand, but in most cases not if that process ends up breaking the chain itself. When 
he was choosing the idea for his authored model, he very quickly realized that the 
neighborhood based grain growth algorithm could be a good start for a polymer 
model. Very quickly Jim computationally modeled atoms for his polymer chains in 
this way:

Atoms are:

Moving randomly in all four directions (0, 90, 180, and 270 degrees)
But
Not breaking the chain
Not crossing the chain

His NetLogo implementation followed these three simple steps.
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to move
;; choose a heading, and before moving the atom 
(monomer),
;; checks if the move would break or cross the chain
set heading 90 * random 4
if not breaking-chain? and not crossing-chain?
   [forward 1]

end

To check if the monomer movement would break the chain, he wrote a proce-
dure that searched atoms at the four orthogonal directions. In case there were any 
atoms there, the procedure returned “false” and that atom did not move. A similar 
reporter was done for crossing chain, but with a different set of neighborhood 
points. The model’s interface (and typical initial setup) can be seen in Fig. 2.10.

Fig. 2.10  Jim’s “Polymer Chains” model
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But the model worked only in a very limited way, because if there were too 
many atoms “clumped” together, they would never get a chance to move, since any 
movement would either break or cross the chain. One reason for this problem is 
that it failed to incorporate the attractive and repulsive forces between atoms. 
Therefore, even though some atoms could move, the chain would not greatly 
expand because most atoms were within a “one” radius of each other. Jim needed 
a spring-like repulsive force activated at particular time steps to relax the system, 
and an attractive force to keep the atoms close to each other. His answer was to 
create the one extra procedure with just a single line of code using NetLogo’s 
layout-spring command, which applies to spring-like force to the links between 
the agents:

;; makes links act as springs (the number after the com-
mands are parameters of the spring)
layout-spring atoms links .4 1 0.1

By blending two algorithms, Jim got his model to work exactly as the animation 
shown in class by the professor – but in a short program of about 15 lines of code. 
In Fig. 2.11 we have a typical evolution of a polymeric chain. On the last frame 
(bottom, right), the atomic “movement” procedure was turned off, so just the 
spring-like forces were in place, generating a smoother chain.

Jim’s model is another example of two important affordances of ABM: the easy 
blending of algorithms (in this case, he was able to easily “blend” two typical ABM 

Fig. 2.11  The evolution of a polymer chain in Jim’s model
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algorithms, spring-behavior and restricted movement), and the one-to-many genera-
tivity (again, similarly to grain growth, a neighborhood-checking mechanism was at 
the core of the model). After understanding in detail the principles and algorithm 
behind the grain growth model, he was able to identify other opportunities to employ 
the same principles to model and understand other seemingly unrelated phenomena.

Peter’s Model

Peter’s model was another example of the one-to-many, transferable affordance 
of the agent-based representation. In the pre-survey, he identified diffusion and 
interface-controlled reactions as some of the hardest topics in the course. In the 
second session, he chose these topics for building a model. In materials science, 
it is particularly important to distinguish transformations that are interface-
controlled (i.e., the slowest phase happens at the interface of the two materials) 
from diffusion-controlled (the slowest part is for atoms to “travel” to the inter-
face, where the actual reaction is fast). Knowing the slowest phase of a given 
process, engineers can greatly optimize it. Peter’s purpose was to build a model 
to investigate this phenomenon. Its textbook explanation is a five-page narrative 
with five different equations, which are put together to show that the driving 
force (referred to as Dm

B
i) is proportional to the temperature and the difference 

in concentration:
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 and X

e
 are the chemical compositions of the two materials, T is the 

temperature, and R is the gas constant (Porter & Easterling, 1992, pp. 177).
Peter ignored the existence of this long sequence of equations. He started his 

model from scratch, and his first step was to identify the basic atomic behaviors 
needed for implementing his idea. In his model, there were two types of materials 
in liquid form, and one type of solid material. Therefore, he needed one mecha-
nism for atoms in the liquid to move, and one mechanism for liquid atoms to 
become solid. He concentrated in the microrules concerning the phenomenon, 
and realized that the rules he needed were not very different from the rules pres-
ent in other models. After all, liquid atoms were just moving randomly and 
“bumping” into a solid, sticking to it according to a certain probability. The Solid 
Diffusion model, present in NetLogo’s models library, had an efficient algorithm 
for making atoms move around in a material. The Grain Growth model provided 
Peter with the idea for the liquid-to-solid transformation. Even though those two 
models (Solid Diffusion and Grain Growth) had significant differences compared 
to the model Peter wanted to build, he managed to identify the common useful 
microrules, copy the code from one model to the other and, very importantly, 
make the necessary adaptations.
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Peter’s algorithm was straightforward: if the atoms are in the liquid, and they 
bump into a solid, they become solid (with a certain probability, dependent on their 
chemical properties), hence:

if ((breed = element1-liquid) and ;;if you are an atom 
in the liquid
   (neighbor-breed = solid) and ;; and one neighbor of 
yours is in the solid
    (element1-probability > random-float 100)) ;; and 
depending on your diffusion speed
       [

 �set color neighbor-color ;; switch the atom’s 
color

 �set breed neighbor-breed ;; switch the atom’s 
breed

          ]

If the atom is in the liquid (breed different than solid, or “!=solid” in NetLogo 
language), and it meets an atom different than itself, the atoms switch places – in 
other words, diffusion is taking place:

if ((breed != solid) and ;;if you are in the liquid
    �(neighbor-breed != solid) and  ;;and one neighbor
      of yours is also in the liquid
     �(diffusion-speed > random-float 100)) ;; and depending
      on your diffusion speed
      [

se�t [color] of random-neighbor color ;;switch 
the neighbor’s color

se�t [breed] of random-neighbor breed ;;switch 
the neighbor’s breeds

se�t color neighbor-color ;; switch the atom’s 
color

se�t breed neighbor-breed ;; switch the atom’s 
breed

      ]

Note that the idea of asking atoms to check their near neighborhood came from 
the Grain Growth model, whereas the idea of atoms switching places as a way to 
diffuse through a material came from the Solid Diffusion model. In two dozen lines 
of code, and less than 2 hours, Peter was able to model both diffusion and solidifi
cation, manipulating exclusively local rules, and had a model the complexity of 
which was far beyond what is expected from the Microstructural Dynamics course, 
considering the classroom observations and analysis of class materials. Nevertheless, 
just as other students, he was concerned with the correctness of his work. He generated 
a series of plots and screenshots to match his data with the textbook plots, part of 
which are shown in Fig. 2.12.
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At the end of the session, the first author asked Peter about the next steps in 
his model’s implementation, had he more time to work on it. Again, he demon-
strated a solid understanding of how to easily manipulate those basic rules to 
generate new models, for example, how to invert a process by simply changing the 
probability of its microevents:

Peter: I did a liquid to solid model, now I want to be able to invert it, do a solid to liquid 
algorithm.

Interviewer: And how would you implement it?

Peter: It’s simple: I’ll just invert the probability. It’s just the opposite probability. I don’t 
have to change much.

[…]

Interviewer: And how would you implement, for example, dispersed particles in a grain 
growth model?

Peter: I would put in molecules that have zero probability to change to anything else, and 
zero probability of another molecule to change into them.

Peter’s response demonstrated a deep understanding of the process and was in 
great contrast with his preinterview data, in which although he correctly identified 
and explained some phenomena, he failed to see how those principles and knowl-
edge could be put to use to further his own knowledge about a particular topic or 
other phenomena.

Discussion

Computer modeling is posing a serious challenge to extant knowledge encoding 
schemes in engineering and materials science. Researchers have already detected 
this trend – computer modeling in materials science has more than doubled in the 

Fig. 2.12  Results of Peter’s model with diffusion control (top, with diffusion speed = 100), interface 
control (bottom, with diffusion speed = 20), and the chart from the textbook, where we can identify a 
similar same shape for the two concentration curves. (Note that this last chart was rotated for clarity)
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last 10 years (Thornton & Asta, 2005). However, materials science students are 
still obliged to master hundreds of equations and isolated facts. Even if students 
were to somehow try to connect those equations into a coherent corpus, the 
mathematical machinery required to accomplish that would be too demanding for 
most to succeed.

The examples of students’ model building we have described were implemented 
in less than 3 hours, including the time dedicated to learning the basics of the 
NetLogo language. The relative ease with which students developed their own 
models, even within such a short timeframe, shows that model building is an 
approachable task for undergraduate students and supports one of our main 
claims: agent-based modeling, for some fields of engineering, offers a more prin-
cipled understanding of the natural phenomena, which, in turn, grants more auton-
omy for students in learning new content or deriving new theories on their own. 
Participant students had previous knowledge of the phenomenon from their class 
work. Nevertheless, during the preinterview, they demonstrated difficulty in explain-
ing related phenomena in a coherent fashion, resorting to a range of fragmented 
models and metaphors. The implementation of their own model within an agent-
based modeling environment provided students with fewer, simpler rules that were 
closely related to the physical phenomenon, thus enabling them to better under-
stand and extend the model by adding new proximal rules for the agents.

We compiled evidence suggesting that the agent-based encoding is a good fit to 
content in materials science. First, the undergraduate courses are overloaded with 
highly specialized information. Secondly, students demonstrated difficulty in 
explaining even the most basic concepts in the field, with frequent “slippage” 
between levels. Thirdly, throughout the classrooms observations and the interviews, 
one striking revelation was that the agent-based approach was not a total unknown 
for textbook authors, teachers, and students. The textbook oftentimes makes use of 
microbehaviors, simple rules, and agent-based heuristics. When explaining grain 
growth, the textbook authors use an agent-based approach:

[…] A similar effect occurs in metal grains. In this case the atoms in the shrinking grain 
detach themselves from the lattice on the high pressure side of the boundary and relocate 
themselves on a lattice site on the growing grain. (Porter & Easterling, 1992)

However, the agent-based representation was in this context a mere illustration 
of the “real” content that would come after, encoded as equations. Arguably, even 
though the agent-based representations could be easier for students to understand, 
there was no technological infrastructure to “run” those models – the activities and 
software that we developed could provide this infrastructure. The availability of 
an expressive tool and an empowering learning environment were crucial elements. 
As a computational tool, NetLogo and its agent-based approach was a good fit 
for capturing students’ intuitions and ideas at the appropriate level. In addition, 
the constructionist nature of students’ interaction with the tool enabled them to 
build fluency with this new tool, and perceive themselves as scientists in their 
own right, transforming seemingly simple ideas and local rules into powerful 
kernels for scientific modeling. To further understand the cognitive model which 
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8 For elaboration on the idea of organizing layers, see “Papert’s principle” in Minsky’s Society of 
Mind (1996).

the ABM perspective might foster, let us consider again, for example, Bob’s 
explanation of grain growth:

Bob: Well, grains grow through diffusion, through vacancy diffusion, and atomic 
diffusion, for one, it is all over the place, temperature increases, molecules move 
around faster […].

His statement reveals a one-level description of the phenomena, which is 
compatible with our analysis of the current sparse and linear encoding of know
ledge in materials science. Ideas such as “vacancy diffusion” and “increase of 
temperature” are connected to “grain growth” without a clear hierarchy (Fig. 2.13).

During the work with MaterialSim, students developed an extra “organizing” 
layer which grouped some of the surface manifestations on the phenomena under 
one unifying principle8 (Fig. 2.14). Let us observe Liz’s statement:

Liz: It is because, it wants to be more energetically stable, or have less energy in 
the crystal, so it will grow, just to form one big grain, because that’s the least energy 
configuration […]

Liz identified one unifying principle, “lowering free energy,” from which many of 
those external manifestations derive. An agent-based modeling environment offers 
low-threshold tools to code and formalize this principle algorithmically, enabling her 
to “mobilize” this idea that was previously just a vague mental model. Finally, after the 
model building, students were able to mobilize these generalizable principles, 
encoded as computer code, to explain other phenomena that shared the same 
mechanism (Fig. 2.15).

Fig. 2.13  Bob’s one-level explanation
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Conclusion

Design courses have become fashionable in many engineering schools. Robotics 
and engineering design competitions are common in various universities and even 
high schools. One question explored in this study was: can we extend the powerful 

Fig. 2.15  A two-level structure with multiple phenomena

Fig. 2.14  Liz’s two-level structure
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ideas about engineering design, constructionism, and project-based approaches to 
theoretical engineering courses in fields such as materials science, in which students’ 
projects would be quite different from robots?

Rich, motivating learning is often achieved through an approach of learning-
by-doing. In areas such as mechanical engineering, doing and understanding 
could be tightly connected. When students are building a gearing system, all 
the components are clearly visible. In areas such as chemistry, atmospheric science, 
biology, and materials science, this is not usually the case. Learners might observe 
overall effects while having little understanding of the underlying causality or 
the fundamental components of the system, since the actual phenomenon it too 
removed from human size or time scale. Moreover, teaching tools in those disciplines 
often have relied on “aggregate,” formulaic descriptions. This study suggests that the 
fragmentation and opaqueness of such descriptions could constitute an obstacle to 
learning. First, the traditional aggregate equational descriptions are more phenomenon 
and context-specific, and do not enable students to make broader inferences about 
phenomena with similar micromechanisms. The mathematical machinery required 
to manipulate and combine aggregate equations is highly complex and constitutes an 
obstacle for many students. Second, these descriptions often lead to heuristics that 
generate overgeneralizations – students often had memorized ideas about phenomena 
in materials science about which they had no deep understanding. Third, the tradi-
tional descriptions are formally detached from representations of the actual physical 
phenomena, i.e., the aggregate formulaic descriptions don’t inform students, at first 
glance, much about the atomistic mechanism of the phenomenon under scrutiny.

On the other hand, agent-based modeling seems to provide phenomenally 
isomorphic representations that can lead to deep conceptual insights about the 
content areas discussed in this chapter, for three reasons:

1.	 Students’ experience interacting with the MaterialSim models, and building their 
own models, foregrounded the fundamental physical processes taking place in 
the material, namely atomic movement and free-energy minimization. Not only 
were most of the algorithms exclusively based on those processes, but also the 
design of the visualization schemes enabled students to see them unfolding in 
real-time. Students observed both favorable and unfavorable atomic jumps, 
grains growing and shrinking, expected and unexpected results.

2.	 A core feature of this design is that students can apply a small number of kernel 
models to capture fundamental causal structures underlying behaviors in apparently 
disparate phenomena within a domain. For example, a free-energy minimization 
algorithm could enable students to understand not only grain growth, but also 
annealing, interfacial energy, recrystallization, diffusion, and phase transformations, 
which are traditionally taught as separate topics with their own models and 
equations. Most students were able to create their own models by transferring some 
“kernel” algorithms from one model to another, making the needed adaptations.

3.	 One of the pillars of constructionist theory is the importance of students 
conducting personally meaningful projects. Even though students had significant 
insights about the phenomena by interacting with predesigned models, our data 
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suggest that coding their own models was a particularly valuable learning 
experience. It was during the model-building process – writing code, testing and 
debugging their theories, and reconciling them with previous knowledge – that 
students had a deeper and more intense exposure to the tools and methods of 
agent-based modeling, being able to develop enough fluency with the computa-
tional representations. In addition, we have shown that learning a low threshold 
programming language such as NetLogo and coding a model can be done in 
short enough time to be feasible in actual university classrooms.

In conclusion, the research reported here suggests that less is more. Specifically, 
our findings suggest that agent-based approaches to representing knowledge offer 
a radically different avenue for students to engage in scientific inquiry. Exploring 
and learning about just a few simple underlying rules of natural phenomena, given 
the availability of a computational medium to manipulate, represent, combine, and 
analyze them, appears to be more generative for students than the current teaching 
approaches in materials science and engineering that employ numerous aggregate, 
equation-based representations. We hope these findings inform future research and 
development in STEM education in so far as extending to theoretical science and 
engineering courses the principles of student-centered, constructionist pedagogies 
– in particular, using the tools and approaches derived from the complexity sciences 
and agent-based modeling.
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