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Abstract

Using the well-known Artificial Anasazi simulation for
a case study, we investigate the use of genetic algo-
rithms (GAs) for performing two common tasks related
to robustness checking of agent-based models: parame-
ter calibration and sensitivity analysis. In the calibration
task, we demonstrate that a GA approach is able to find
parameters that are equally good or better at minimiz-
ing error versus historical data, compared to a previous
factorial grid-based approach. The GA approach also
allows us to explore a wider range of parameters and
parameter settings. Previous univariate sensitivity anal-
ysis on the Artificial Anasazi model did not consider
potentially complex/nonlinear interactions between pa-
rameters. With the GA-based approach, we perform
multivariate sensitivity analysis to discover how greatly
the model can diverge from historical data, while the
parameters are constrained within a close range of pre-
viously calibrated values. We show that by varying
multiple parameters within a 10% range, the model can
produce dramatically and qualitatively different results,
and further demonstrate the utility of sensitivity analy-
sis for model testing, by the discovery of a small cod-
ing error. Through this case study, we discuss some of
the issues that can arise with calibration and sensitivity
analysis of agent-based models.

Motivation
Agent-based modeling1 is a technique that is becoming in-
creasingly popular for many scientific endeavors, due to
the power it has to simulate complex adaptive systems in
a variety of natural and social environments (Bankes 2002;
Bryson, Ando, and Lehmann 2007; Goldstone and Janssen
2005; Wilensky and Rand in press). In an agent-based model
(ABM), there are many agents operating according to sim-
ple rules, but the resulting interactions between agents lead
to the emergence of complex aggregate-level behavior. The
resulting aggregate behavior of an ABM (especially one that
aims at high fidelity to real-world systems), is often depen-
dent on a large number of controlling parameters. How-
ever, because of the complex nature of the emergent pat-
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1Sometimes also referred to as multi-agent modeling, multi-
agent based simulation, or individual-based modeling

terns, and the nonlinear interactions between these param-
eters, the outputs of ABMs can rarely be characterized by
simple mathematical functions, and formal analytic methods
usually prove insufficient (Edmonds and Bryson 2004). Fur-
thermore, the computational time required to run an ABM,
together with the large number of parameters often makes it
infeasible to exhaustively compare all combinations of pa-
rameter settings. Additionally, ABMs are predominantly
stochastic in nature, leading to variability of results, even
when run multiple times with identical simulation parame-
ters. As a result, the rigorous analysis of agent-based models
remains a challenging task, and proper methodology for ef-
ficient analysis is still at a formative stage. In this work,
we offer a case study about the use of one particular ap-
proach, genetic algorithms (GAs), to accomplish two com-
mon model analysis tasks: parameter calibration, and sensi-
tivity analysis. For this case study, we chose to examine the
Artificial Anasazi model (Dean et al. 2000), which is a well-
known agent-based simulation from the field of archeology.

Background and Related Work
Artificial Anasazi model background
The Artificial Anasazi model (Dean et al. 2000; Axtell et
al. 2002; Gumerman et al. 2003) simulates the rise and
fall of the prehistoric Kayenta Anasazi population living in
Long House Valley, in northeastern Arizona from the years
800-1350 AD. This agent-based model simulated the resi-
dential and agricultural practices of an artificial society at the
unit of individual households. It used geographic, rainfall,
and various forms of archaeological survey data to achieve a
high degree of verisimilitude with respect to historical real-
ity. Moreover, after calibrating their model, the researchers
found a reasonably good correspondence between the model
and the real history, for both qualitative spatial settlement
patterns, and population over time (Axtell et al. 2002).

A particular inspiration for the Artificial Anasazi model
is to help understand the “fall.” Archaeological records
demonstrate that the Kayenta Anasazi abandoned the region
around 1300 AD. However, the reason for this departure has
been debated. One of the primary findings from the Artifi-
cial Anasazi model is that environmental factors alone were
not sufficient reason for a complete exodus; the valley could
have continued to support a modest population (Axtell et



Figure 1: Graphical interface of Janssen’s Artificial Anasazi
model (implemented in NetLogo).

al. 2002). However, for a full discussion of the Artificial
Anasazi model, we refer the reader to the original sources.

In this work, we analyze the replication of this model2
by Janssen (2009), which was implemented in the NetLogo
modeling environment (Wilensky 1999). The model param-
eters were hard-coded in Janssen’s replication, so we con-
verted these variables into “explicit” model parameters that
are controllable via the model’s graphical interface (see Fig-
ure 1), as well as making a few minor compatibility changes
so the model would run in NetLogo 4.1.3

Several reasons motivate our choice of the Artificial
Anasazi model for this case study. First, whereas many
agent-based models are “abstract” models, that demon-
strate qualitative trends or emergent phenomena, Artificial
Anasazi is an example of a “facsimile” model in the ty-
pology of agent-based models, which attempts to closely
match historical data (Gilbert 2008). Second, it is a par-
ticularly well-known ABM that has received considerable
attention, both in the press (e.g. (Kohler, Gumerman, and
Reynolds 2005)), and from the agent-based modeling com-
munity in general. Third, there have been several previ-
ous calibration efforts using this model (Dean et al. 2000;
Janssen 2009), as well as published (univariate) sensitivity
analysis (Janssen 2009). We will compare with these prior
analyses as we discuss results in the sections below.

Kohler et al. (2000) developed a similar ABM of the
nearby Mesa Verde region during this time period, and fur-
ther elaboration of this model used the Cultural Algorithm
framework to embed (and evolve) social intelligence within
the system (Reynolds et al. 2005; Kobti, Reynolds, and
Kohler 2006). Despite the commonality of using evolution-
ary algorithms, our work differs in that we are performing
model analysis tasks externally to the model, rather than in-
corporating evolution as a mechanism within the ABM.

2Download available: http://www.openabm.org/
site/model-archive/ArtificialAnasazi

3The exact model file we used is available at: http://ccl.
northwestern.edu/ALIAS/LHV_robustness.nlogo.

Related methodological research
There are many ways of analyzing and checking for robust-
ness in ABMs, including a variety of approaches for cali-
brating model parameters and performing sensitivity anal-
ysis. (Gilbert 2008; Wilensky and Rand in press; Chattoe,
Saam, and Möhring 1997). However, our present work fo-
cuses on the use of genetic algorithms for these tasks.

This is not the first time that genetic algorithms have been
proposed for parameter calibration and sensitivity analysis
of computer simulations. In particular, Miller’s (1998) sem-
inal work on active nonlinear testing (ANT) proposed the
use of metaheuristic search algorithms for a range of tasks
for computer simulations. Specifically, Miller demonstrated
how both calibration and a form of multivariate sensitivity
analysis could be achieved on the well-known World3 sys-
tem dynamics (SD) model (Meadows et al. 1974), using
either genetic algorithms or a hill-climbing approach. SD
models share several features with ABMs, such as nonlin-
ear interactions between parameters. However, SD models
tend to model change of aggregate (macro-level) quantities,
whereas in ABMs macro-level dynamics emerge from in-
teractions between agents at the micro-level. Additionally,
SD models are often deterministic, whereas ABMs are al-
most always stochastic in nature, requiring the examination
of a number of “trials” to evaluate the model’s behavior. As
we will discuss later, the stochasticity of model run results
brings up several important questions about what it means
to perform robustness checking on an ABM. Moreover, we
believe that the concepts of active nonlinear testing deserve
further investigation within the context of agent-based mod-
els of complex adaptive systems.

Little work has been done in this area, with a few no-
table exceptions. Calvez and Hutzler (2005) proposed the
use of genetic algorithms for tuning the ABM parameters,
and demonstrated several parameter tuning tasks on a model
of ant foraging (Wilensky 1997). One of these tasks was a
mock calibration task, which sought parameters that would
yield model output closest to data which had already been
generated by the model. In contrast, the Artificial Anasazi
model represents a real calibration task, attempting to match
real historical data. Other cases of using genetic algorithms
to search the parameter-space of ABMs include: finding op-
timal seeding strategies for viral marketing in a social net-
work ABM (Stonedahl, Rand, and Wilensky 2010), and dis-
covering various forms of emergent collective behavior in
flocking ABMs (Stonedahl and Wilensky 2010b). We are
not aware of previous instances of using genetic algorithms
to perform sensitivity analysis on an agent-based model.

Calibration Task
Task description & prior work
Broadly construed, the calibration of an ABM may refer to
any process by which changes are made to the model or its
model parameters, such that the behavior of the resulting
model is closer to a desired behavior. In this paper, we will
more narrowly define calibration to be the common case
of searching for model parameter settings that yield output



that is closest to a specified reference pattern. (We will as-
sume that only the model’s parameters may be varied, and
the model’s code is a fixed entity.) In the case of the Ar-
tificial Anasazi model, we are following two previous cal-
ibration efforts (Dean et al. 2000; Janssen 2009), though
we will primarily compare with Janssen (2009) because dif-
ferences could exist between Janssen’s replication and the
original model, and also because the original authors’ cali-
bration process was not well documented.

Both previous calibration efforts chose the target refer-
ence pattern to be the time-series of historical population
data (number of households), and sought to minimize an er-
ror measure, which defined the “distance” between the simu-
lated population history and the real population history. Fol-
lowing (Dean et al. 2000), we will denote the historical pop-
ulation data with a vector of length 550, Xh

t ), where t is the
number of years since 800 AD, and similarly denote simu-
lated data with vector Xs

t .
Previous calibration efforts used multiple error measures

of the difference between Xs
t and Xh

t , specifically the three
Lp norms (L1, L2, and L∞). However, prior work found
little difference between the choices of error function, and
Janssen (2009) specifically found that both the L1 and L2

measures yielded the exact same optimal calibrated settings.
For simplicity our work focuses on the L2 measure, which
is also called the Euclidean distance between the vectorsXs

t
and Xh

t . Furthermore, minimizing the L2 measure yields
the same result as minimizing the mean squared error when
comparing two sequences (the absolute magnitude of the er-
ror measures will differ, but finding parameters that mini-
mize f(x) is equivalent to finding parameters that minimize√
f(x), for f(x) positive).
Janssen (2009) used a factorial experiment (grid-based

sweep) for performing the calibration. Due to computational
constraints, Janssen varied only 5 parameters, with 7 to 9
choices for each parameter. In contrast, using a genetic algo-
rithm (or other search-based) approach to calibration makes
it feasible to explore a much larger parameter space. Our cal-
ibration effort explores a 12-dimensional parameter space,
with a wider range of parameter values, and with higher
resolution. For a comparison of the parameter calibration
ranges we used with the prior calibration effort by Janssen,
see Table 1. Of course, there is no magic bullet; the model
can only be run so many times within a finite time limit.
Given a the same amount of computational time, the GA ap-
proach can only run the model with the same number of dif-
ferent parameter-settings that the grid-based approach can.
However, the GA is a heuristic method that can adaptively
explore more advantageous portions of a larger parameter
space. The intuition is that by harnessing the biologically-
inspired mechanisms of mutation, recombination, and natu-
ral selection, the GA will be able to evolve parameter set-
tings that minimize the error measure, and thus calibrate the
model. Pragmatically, it is often infeasible to perform cal-
ibration with fine resolution on a medium-to-large number
of parameters with a grid-based approach. For instance, an
exhaustive grid-based search on the parameter space defined
for the GA in Table 1 would involve 6.5 × 1016 combina-
tions of parameters, and would require a million processors

Janssen Range GA Range
Parameter low-high (inc) low-high (inc)
HarvestAdjustment 0.54-0.7 (0.02) 0.5-1.5 (0.01)
HarvestVarianceLocation 0-0.7 (0.1)∗ 0-0.5 (0.01)
HarvestVarianceYear 0-0.7 (0.1)∗ 0-0.5 (0.01)
BaseNutritionNeed 160 100-200 (5)
MinDeathAge 26-40 (2) 26-40 (1)
DeathAgeSpan 0 (const) 0-10 (1)
MinFertilityEndsAge 26-40 (2) 26-40 (1)
FertilityEndsAgeSpan 0 (const) 0-10 (1)
MinFertility .095-.185 (.015) 0.0-0.2 (0.01)
FertilitySpan 0 (const) 0-0.1 (0.01)
MaizeGiftToChild 0.33 (const) 0-0.5 (0.01)
WaterSourceDistance 16 (const) 6-24 (0.5)
∗varied in lock-step, as a single variance parameter

Table 1: Parameter ranges (low, high, and increment) for
the GA calibration task, compared with ranges explored in a
previous grid-based calibration by Janssen (2009).

each running for over a million years to complete.

Search Method
The GA we employed was a standard generational genetic
algorithm (Holland 1975), with a population size of 30, a
crossover rate of 0.7, and a mutation rate of 0.05, using tour-
nament selection with tournament size 3.

The value to be assigned to each model parameter was
individually encoded in binary using a Gray code.4 The
concatenation of binary sequences for all model parameters
forms the genome for an individual in the GA.

Full generational replacement is used, meaning that from
each generation of 30 individuals, 30 children are created
to replace the parent generation. Each child is created by
first using tournament selection to preferentially choose one
or two parents with better fitness values, and then perform-
ing either sexual or asexual reproduction with the parent(s),
followed by per-bit mutation.

To evaluate fitness, the individual is decoded into the
component parameter values, the model is run 15 times
with those parameters, and fitness function is calculated
as the average L2 error value from these replicate runs.
During tournament selection, individuals with lower fitness
function values (lower average error) are preferred. The
choice to minimize the average 15 replicate runs follows
from the previous calibration efforts (Axtell et al. 2002;
Janssen 2009), although we also examine the alternative of
searching for the single best run in a second follow-up cali-
bration experiment.

To monitor/verify the progress of the GA, for each new
“best-so-far” model parameter values that the GA found, an
additional 30 independent replicate runs were performed and
logged, providing an unbiased (and more confident) estimate
of the average L2 error for those parameter settings. We
will refer to this process as best-checking, and the verified

4Gray codes create a smoother mapping between numeric val-
ues and binary strings than traditional “high-order” bit encodings.
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Figure 2: GA performance for the calibration-15 task.

value as the checked fitness. (The GA does not make use of
checked fitness information; rather, this monitoring is extrin-
sic to the search process.)

Our GA implementation employed BehaviorSearch5,
which is a tool we have developed that interfaces with Net-
Logo to automate the exploration of ABM parameter-spaces
using genetic algorithms or other meta-heuristic search tech-
niques (Stonedahl and Wilensky 2010a; 2010b).

Calibration15 experiment
Using the setup described above, we performed 5 GA
searches for parameter settings that yield the best average
of 15 model runs. We will refer to this as the calibration-
15 experiment. Each search went for 100 GA generations,
corresponding to running the simulation a total of 45,000
times, with a small number of additional runs used for the
extrinsic best-checking process. A single GA search re-
quired approximately 16.5% of the 272,160 runs required by
the factorial-sweep approach employed by Janssen (2009),
so the five searches together still required less computation
than the grid-base approach. To provide an idea of computa-
tional running time, in total these searches required approx-
imately 2500 CPU-hours (≈ 104 CPU-days). Search time
is dominated by the time required to run the model and the
time spent on genetic operations is inconsequential. Thus,
in this paper we will report computational effort in terms of
the number of simulation runs performed.

An examination of search performance of the five
calibration-15 searches shows that one of the five prema-
turely converged to a suboptimal solution, whereas four
of the five reached reasonably good levels of calibration
(see Figure 2). The best parameter settings found from
calibration-15 experiment (as well as results from later ex-
periments) are given in Table 2. These parameter settings
yielded a mean L2 error value of 891.4 (σ = 65.8) from
running the model 30 times, which was lower than the mean

5Download available: www.behaviorsearch.org

L2 error of 945.3 (σ = 80.0) for the Janssen calibrated
settings. Both distributions of error appeared normally dis-
tributed (Shapiro-Wilkes test, p < 0.01), and the finding that
the GA’s mean error was less than for the Janssen settings
appeared statistically significant (Student’s t-test, p < 0.01).
However, we happened to decide to run the simulation 100
times with each of these settings, and the picture suddenly
changed.6 With 100 replicate runs, the mean L2 error for
the GA parameters was 943.1 (σ = 324.5), and the mean
L2 error for the Janssen settings was 930.6 (σ = 194.4);
the GA now appeared to have found worse (less calibrated)
parameters.

This led us to examine the distribution of error among
the 100-replicates for each case (see Figure 3), which turned
out to be non-normal. In general, the GA-provided settings
usually offer a (slightly) better match with historical data,
but there are a few high-error outliers (that raise the mean
error value), and these outliers appear more likely with the
GA’s settings than with Janssen’s. These outliers are ap-
parent in the visual comparison of the 100 GA and Janssen
simulated histories against the historical data (Figure 4). The
median L2 error for the GA was 860.4, compared to 893.8
for the Janssen settings, and a randomly chosen run with the
GA settings is almost twice as likely to have better perfor-
mance than one chosen from the Janssen settings (65.9% vs.
34.1%).

The trade-off present here may be described in terms
of confidence versus accuracy. Given three hypotheti-
cal choices, which of the following represents the best-
calibrated parameter settings for an ABM?

1. simulated results are always somewhat close to historical

2. simulations are often quite close, but occasionally far off

3. simulated results occasionally match historical data per-
fectly, but are usually far off

Answering this question is difficult, particularly in
facsimile-type models of historical events, since there is
only one recorded version of history to compare against (and
even for that, the data may be uncertain). We believe that this
question warrants explicit consideration whenever a model
calibration is performed, and that the choice of distributional
comparison may require estimates of the likelihood of his-
tory having unfolded in the way that it did, and consideration
of plausible alternative histories. For the most part, these es-
timates and theories will be subjective in nature, which is
why it is especially important that they are explicitly ad-
dressed during the calibration process. The choice of dis-
tributional comparison for calibration will also depend par-
tially on the goals for building the model.

In some cases, one distribution of error may dominate an-
other, in the sense that every error value in one distribution is
lower than some corresponding error value in the other dis-
tribution. In this situation, choosing the “better calibrated”
settings is simple, and comparing the mean values is suffi-
cient. However, we would like to emphasize that because

6We include this vignette partially as a reminder that statistics
must be interpreted with care, and that the distributions of variables
resulting from multi-agent-based simulations may be irregular.
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Figure 3: A histogram displaying the distribution of error values across multiple runs, comparing the GA calibrated settings
with the calibrated settings previously found by Janssen (2009).
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Figure 4: Simulated population histories from 100 model runs, showing both Janssen’s calibrated settings (a) and the GA’s
calibrated settings from the calibration-15 experiment (b), plotted in comparison to the historical data. The flat tops of the
simulated trajectories are artifacts of populations reaching simulated carrying capacity, as discussed further in (Janssen 2009).



of model stochasticity, calibrating ABMs requires compar-
ing one distribution with another, rather than a single result.
The issues we have preliminarily touched on here are part of
a potentially much deeper discussion, which is outside the
scope of this case study; in future work we plan to formulate
a more rigorous and general framework for addressing both
calibration and sensitivity analysis in ABM.

In the case of the Artificial Anasazi model, the GA’s distri-
bution of error seems slightly superior to us than Janssen’s,
given that it usually provides a closer match, and it seems
reasonable that in some alternate histories an unlikely ad-
verse chains of events (e.g., poor harvests for many years
in succession) could have caused the population’s trajectory
to be significantly lower (as seen in Figure 4). However,
the differences in error values are generally slight, and one
could easily argue that both the GA’s as Janssen’s settings
are equally calibrated; both recreate some features of the
historical trajectory while failing to produce others. The fact
that GA was searching a significantly wider range of param-
eters than Janssen’s grid-based approach, yet was not able to
find substantially better calibration, suggests that previous
calibration efforts on this model were not missing important
fruitful areas of the parameter space. However, as the 5 GA
searches only covered a small region of the extremely vast
search space, this conclusion is somewhat speculative.

Calibration-1 experiment
The results of the previous experiment led us to wonder how
different the results of model calibration would be if we were
instead seeking parameters that yielded the single best run,
rather than the smallest average error. Investigating this is
interesting for several reasons. First, it might discover set-
tings that occasionally match the historical data, even if av-
erage error is poor. Second, running the model once is much
quicker than running the model 15 times, and although it
gives a noisier signal about calibration error, the GA might
be able to use this faster noisier fitness function to lead to
parameters that provide good average performance as well.
Because the calibration-1 experiment requires fewer model
runs than the calibration-15 experiment to evaluate fitness,
we were able to increase our genetic algorithm settings to
use a population of 90, running for 200 generations, for a
total of 18000 simulation runs. We also increased the mu-
tation rate to 3%, as a larger population can generally sup-
port a larger mutation rate. Similar to before, we used a
best-checking routine, this time recording the minimum er-
ror from 30 independent replicate runs, each time the GA
discovered a new “best.” Again we ran 5 searches with these
settings, to reduce the risk of reporting anomalous results.

We took the parameter settings corresponding to the low-
est checked fitness L2 error (see Table 2), and ran the sim-
ulation 100 times with those settings. The lowest L2 error
obtained from this was 733.6, which is substantially lower
than the 823.5 error that was the best from the 100 runs with
Janssen-calibrated settings. These single best runs are com-
pared in Figure 5. However, the average error for these pa-
rameter settings was 962.4, which is somewhat larger than
the mean error for Janssen or calibration-15. Essentially,
the best calibration-1 parameters cause more variation in
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Figure 5: The single best runs found from 100 replicate
runs with the settings from Janssen (L2 error = 823.5) and
the calibration-1 experiment (L2 error = 733.6), compared
with historical data.

model run results (compare Figure 6 with Figure 4), which
can sometimes lead to a better historical fit, but provides a
worse fit if averaged.

This contrast highlights a potential problem with cali-
brating to get the lowest average error. In order to obtain
the absolute lowest average error, every model run would
have to be identically equal to the historical data. In gen-
eral, such a result would indicate a very unrealistic model,
where only one path through history is possible. Over the
past century, our increased recognition of chaos theory and
the effects of path dependence in the social science domain
(e.g., (Brown et al. 2005; Batty 2007)) strongly suggests
that small changes in the initial conditions, or chance events
early in the process, should significantly influence the histor-
ical trajectory. In other words, while a well-calibrated model
should be able to produce something resembling the histor-
ical data, at least some variation in outcomes is a desirable
trait for model credibility. Accordingly, one could argue that
the calibrate-1 experiment provides the best calibrated set-
tings.

Sensitivity Analysis Task
Sensitivity analysis is a particularly important task, since the
robustness (or lack of robustness) of a model with respect to
changes in model parameters provides considerable infor-
mation about the complex system being modeled. However,
despite its importance, it is also a practice that is too of-
ten neglected by ABM practitioners; if it is performed at
all, it often covers only a few parameters, or neglects po-
tentially nonlinear interactions between parameters. Some
form of sensitivity analysis is a necessary part of ABM veri-
fication and validation (Gilbert 2008), as well as replication
(Wilensky and Rand 2007). However, the term “sensitiv-
ity analysis”, does not refer to a single precise technique or



Janssen GA GA GA GA
Parameter calibration calibration-15 calibration-1 sensitivity-15 sensitivity-corr
HarvestAdjustment 0.56 0.67 0.64 0.6104 0.5264
HarvestVarianceLocation 0.4 0.47 0.44 0.436 0.436
HarvestVarianceYear 0.4 0.23 0.5 0.424 0.408
BaseNutritionNeed 160 200 185 144 164.8
MinDeathAge 38 37 40 40 41
DeathAgeSpan 0 3 10 1 1
MinFertilityEndsAge 34 36 29 37 31
FertilityEndsAgeSpan 0 9 5 3 0
MinFertility 0.155 0.13 0.17 0.16585 0.14105
FertilitySpan 0 0.09 0.03 0.0155 0.0031
MaizeGiftToChild 0.33 0.31 0.47 0.3102 0.35310
WaterSourceDistance 16 10 11.5 17.44 16

Table 2: Optimal parameters found by the genetic algorithm for both the calibration and sensitivity analysis tasks, compared
with the parameter settings from the previous grid-based calibration by Janssen (2009).
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Figure 6: Simulated population histories from 100 model
runs with the best calibration-1 parameters, plotted against
historical data.

methodology; rather, the term is broadly applied to class of
related techniques that share the goal of determining what
factors cause model results to change, and with what mag-
nitude (Chattoe, Saam, and Möhring 1997). In this paper,
we focus only on the specific approach of varying model
parameters in the vicinity of some “default” parameter set-
tings. In the case of the Artificial Anasazi model, a partial
univariate sensitivity analysis has already been performed.
Specifically, Janssen (2009) examined the effect of singly
varying each of the five variable parameters from their cal-
ibration (HarvestAdjustment, HarvestVariance, MinDeathAge, MinFertili-

tyEndsAge, MinFertility) while holding all other parameters con-
stant (fixed at the previously calibrated values). While this
approach does provide insight into the model dynamics near
the calibrated point, we are interested in the related ques-
tion of how robust the model is to changes in multiple pa-
rameters simultaneously. Specifically, if model parameters
are each constrained to be within a relatively small range
of the calibrated values, how far “off” can the model’s out-

put be? Exploring this question is one form of multivariate
sensitivity analysis, as discussed in Miller’s (1998) work on
Active Nonlinear Testing. Similar to Janssen’s calibration
approach, a grid-based factorial parameter-sweep could be
employed for small numbers of parameters being swept at
low-resolution. However, again we propose an alternative
approach of using a genetic algorithm to evolve parameter
settings that yield results that are significantly different from
the model’s desired outcome (i.e. the historical data).

Sensitivity-15 experiment
Our first sensitivity analysis experiment was to search for
parameter settings, within a small margin of the calibrated
settings from Janssen (2009), that would yield the highest
average L2 error measure across 15 runs. Following Miller
(1998), we chose to allow each parameter to range within
±10% of its calibrated value. Notice that we only have to
change two small things in order to switch from perform-
ing model calibration to sensitivity analysis: we restrict the
search space to a narrower range for each parameter, and we
attempt to maximize (rather than minimize) the same error
function (L2 distance) used for calibration.

Mirroring the calibrate-15 experiment, we used the same
GA settings, and performed 5 searches, each of which ran
the model a total of 45000 times7. All five of these searches
found parameter settings yielding L2 error values that were
more than 4 times greater than the calibrated Janssen set-
tings error (930.6). For the best settings found (again, listed
in Table 2), the average L2 error was 3918.6 (σ = 249.7);
Figure 7(a) visually displays 100 simulated histories with
these settings. While our experiment differs in flavor from
that of Janssen (2009), it is still instructive to compare our
results with that of the univariate sensitivity analysis pre-
viously performed. Specifically, we note that when vary-
ing each of 5 parameters singly, the highest relative L2 er-
ror gain was 50% (within the ±10% parameter range), and
even the sum of the highest errors for each parameter is
only around 150%, which is still small compared with the

7However, running time in hours was over 80% longer, as these
runs tended to create a much greater number of agents



> 300% increase in error discovered through the GA’s mul-
tivariate search. This disparity is due in part to the GA ma-
nipulating more parameters to which the model is sensitive
(such as BaseNutritionNeed), and also to the nonlinear interac-
tions between parameters.

Figure 8 displays the distribution of best parameter val-
ues found by the GA in each of the 5 searches that cause
such a dramatic discrepancy from historical data. The dif-
ferent GA searches sometimes found different settings from
one another, but there are still some clear trends. In partic-
ular, they consistently discovered high values for HarvestAd-

justment, HarvestVarianceLocation, MinFertility, and MinFertilityEndsAge,
while they unanimously selected the lowest possible BaseNu-

tritionNeed value in the range. In other words, the model is
particularly sensitive to these parameters. For the most part,
these parameter settings match our intuitions. In order to
achieve the an extremely large population, there should be
more bountiful harvests, a higher reproduction rate for creat-
ing households, and low nutritional requirements per house-
hold. The other parameters’ values are relatively scattered
throughout the range, and it is apparent that it is not nec-
essary for them to be assigned a specific value in order to
achieve large error.

There was, however, a curious trend regarding the two
HarvestVarianceX parameters, which raised two questions:

1. Why does more variation in the crop yield from different
fields (HarvestVarianceLocation) result in larger populations?

2. Why is yield variation over time (HarvestVarianceYear) not
similarly correlated?

Addressing question 1, we first confirmed this was not
a fluke by running the model 100 times with the best
sensitivity-15 settings, except using the lowest HarvestVariance-

Location value in the±10% range (0.36), and we found a more
than 10% decline in L2 error (t-test, p < 0.01). Next, we
examined the model code, and discovered that the HarvestVari-

anceLocation was affecting agricultural quality as the variance
of a normal distribution centered around 1.0, but that agri-
cultural value was not allowed to be negative, so was thus
truncated at 0. As a result, increasing the variance also in-
creases the distribution’s mean value. The relevant excerpt
from the NetLogo model code is as follows:
ask patches [
;...
set quality ((random-normal 0 1)

* harvestVarianceLocation) + 1.0
if (quality < 0) [set quality 0]

]

This explains question 1 from above, and it stems from
a reasonable modeling choice, although the outcome shows
that one must take care in the interpretation of model pa-
rameters. To answer question 2, we looked for where
(HarvestVarianceYear) was used in the code, only to find that
it wasn’t. Instead, HarvestVarianceLocation was also affecting
variation over time; whereas HarvestVarianceYear was initialized
and then never referred to again. This was clearly a bug in
the Artificial Anasazi model,8 which we had uncovered as

8We reported this issue in personal correspondence with the
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Figure 8: Distribution of “best” parameter settings found in
each of the 5 GA searches of the sensitivity-15 experiment.
Actual parameter values are displayed as solid circles, while
the boxes and whiskers display the middle 3 runs, and full
extent of the data, respectively. The center x-value in each
plot corresponds to the Janssen calibrated settings.

a result of performing this sensitivity analysis. Admittedly,
a careful code audit, or other forms of analysis, could also
have helped find this bug. Nonetheless, our GA-based multi-
variate sensitivity analysis provided the information that led
to the discovery of the bug in this published model, which
lends further support for the utility of this approach.

From the results, it seems possible that it would be suffi-
cient to only test the extreme settings (+10%, and −10%),
rather than checking all values in between. With 12 param-
eters, this would only require 212 = 4196 combinations of
parameter settings, which is a feasible number to enumer-
ate. This may often be the case, but in general one cannot be
sure that nonlinear interactions between parameters would
not cause the optimal/extreme results to fall elsewhere in the
viable range. For models with very large numbers of param-
eters, and small viable ranges for each parameter, allowing
only 2 or 3 choices for each parameter may be prudent, to-
gether with a genetic algorithm approach.

We also performed a sensitivity-1 experiment, using sim-
ilar settings as the calibration-1 experiment, searching for
parameters that would cause the largest L2 error for a sin-
gle model run. However, the results were very similar to the
sensitivity-15 experiment, and are thus omitted for the sake
of brevity.

model author. We also note that this minor error did not affect
any of the results previously obtained in (Janssen 2009).
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Figure 7: Simulated histories from 100 runs with the best sensitivity experiment settings, compared with historical data.

Sensitivity-corr experiment
Although the sensitivity-15 experiment produced results of a
different quantitative magnitude than results from calibrated
values, they were still qualitatively similar (see Figure 7(a)).
We were interested in whether we could use a different error
measure for a sensitivity analysis to find simulated histories
with a different general shape. As a measure for qualitative
difference, we chose the Pearson product-moment correla-
tion coefficient (r) between the simulated (Xs

t ) and histor-
ical (Xh

t ) population sequences. As an example, the sin-
gle run with the largest L2 error value (4524.3) from the
sensitivity-15 experiment still had a quite high positive cor-
relation (r = 0.83) compared with the historical data.

Using a genetic algorithm with the same settings as the
sensitivity-1 experiment (population 90, 200 generations,
3% mutation), we ran 5 searches for parameters (within the
±10% range) that would yield the smallest correlation co-
efficient (r) value. The best (lowest correlation) parameter
settings are listed in Table 2, yielding an average correlation
of r = −0.18. Whereas the largest L2 error measure was
achieved by an unrealistically large Anasazi population, the
smallest correlation was achieved by population decline and
extinction, which are also consistently achievable within the
±10% range of calibrated values. Of 100 runs (shown in
Figure 7(b)) using the best parameters for non-correlation,
the lowest correlation for a single run was −0.6, which had
a relatively long lingering decline with the population reach-
ing 0 in the year 994 AD. Interestingly, because of our cho-
sen measure, slow population declines cause greater nega-
tive correlation with the data than when the population dies
out almost immediately. This led the GA to find runs that
were on the brink of extinction, and thus out of the 100 runs,
there are a few runs that are still highly correlated with the
historical data (the closest matches in 7(b)). Though the
Pearson correlation-coefficient was reasonably effective in
this case for finding qualitatively different runs, it is worth
emphasizing that it may not always be appropriate. Develop-

ing a variety of error measures for search-based sensitivity
analysis that correspond well with human intuitions about
what constitutes qualitatively different behavior of a system
is a ripe area for future work.

Conclusions
To summarize, we have presented a series of 5 experi-
ments using genetic algorithms to perform tasks relating to
ABM calibration and sensitivity. In the calibration tasks, we
demonstrated that the genetic algorithm could find calibrated
parameters that were better (in some respects) than parame-
ters previously discovered in a grid-based sweep. This pro-
cess brought up important aspects of calibration (judging
distributions of error, rather than simply mean error), which
researchers should attend to during model analysis. In the
sensitivity tasks, we demonstrated that the genetic algorithm
approach can consistently find parameter settings that yield
both dramatically and qualitatively different results. Addi-
tionally, the multivariate sensitivity analysis highlighted sev-
eral instances of anomalous model behavior, leading us to
discover a bug in the Artificial Anasazi model’s code. This
emphasizes the utility of sensitivity analysis as a technique
for model testing and verification. Several of the general is-
sues about search-based robustness-checking that arose as
a result of this case study deserve further consideration be-
yond the preliminary discussion we presented here; in future
work we plan to develop a methodological framework which
will discuss trade-offs between different error measures, dis-
tributional comparisons, spatial and temporal data, and ap-
proaches for analysis. Future work should also include a
comparison of genetic algorithms with other metaheuristic
search algorithms (e.g. hill climbing, particle swarm opti-
mization), for ABM robustness checking tasks. However,
the results of the present study are both thought-provoking
and promising, and it is our hope that ABM practitioners
will adopt methods like these to improve the rigor of model
analysis.
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