
Multi-Agent Systems for
Education and Interactive
Entertainment:
Design, Use and Experience

Martin Beer
Sheffield Hallam University, UK

Maria Fasli
University of Essex, UK

Debbie Richards
Macquarie University, Australia

Hershey • New York
INFORMATION SCIENCE REFERENCE

Director of Editorial Content: Kristin Klinger
Director of Book Publications: Julia Mosemann
Acquisitions Editor: Lindsay Johnston
Development Editor: Michael Killian
Typesetter: Michael Brehm
Production Editor: Jamie Snavely
Cover Design: Lisa Tosheff

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or com-
panies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

Multi-agent systems for education and interactive entertainment : design, use
and experience / Martin Beer, Maria Fasli, and Debbie Richards, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book presents readers with a rich collection of ideas from
researchers who are exploring the complex tradeoffs that must be made in
designing agent systems for education and interactive entertainment"--Provided
by publisher.
 ISBN 978-1-60960-080-8 (hardcover) -- ISBN 978-1-60960-082-2 (ebook) 1.
Multiagent systems--Congresses. 2. Instructional systems--Congresses. 3.
Computer science--Study and teaching--Congresses. I. Beer, M. D. (Martin D.)
II. Fasli, Maria. III. Richards, Debbie.
 QA76.76.I58.M863 2011
 006.3--dc22
 2010049832

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

1

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-60960-080-8.ch001

Chapter 1

MAgICS:
Toward a Multi-Agent Introduction

to Computer Science

Forrest Stonedahl
Northwestern University, USA

Michelle Wilkerson-Jerde
Northwestern University, USA

Uri Wilensky
Northwestern University, USA

IntroductIon and MotIvatIon

Two years ago, Rick Rashid, a senior vice presi-
dent for research at Microsoft, asked the rhetorical

question of whether computer science is a dying
profession (Rashid, 2008). Indeed, shrinking
undergraduate computer science enrollment and
concern about the underrepresentation of both
women and minorities in computer science has
been the subject of much debate, particularly in

abstract

The authors present a preliminary version of the MAgICS (Multi-Agent Introduction to Computer Science)
framework, which is a new approach for revitalizing introductory undergraduate or high school computer
science curricula through the deep integration of agent-based modeling (ABM) and multi-agent systems
(MAS) perspectives. The authors discuss the merits of using multi-agent systems as a lens for conceptual
understanding across disciplines, compare multi-agent approaches to traditional serial ones, and explore
how this approach can bring together disparate topics in computer science through the common focus
on emergent systems to promote a broader view of the field as a whole. To exemplify this approach, they
have developed a suite of curricular models for topics spanning from searching and sorting to machine
learning and networks and security. By introducing these topics with a focus on parallel, distributed,
and stochastic methods, they can make traditionally upper-level topics both motivating and accessible
to introductory-level students. The authors review findings from a short implementation of several ele-
ments of MAgICS in an introductory computer science classroom with regard to student motivation and
evidence of learning of distributed design strategies.

2

MAgICS

North America (Denning & McGettrick, 2005;
Goode, 2007; Katz, Allbritton, Aronis, Wilson,
& Soffa, 2006). Diversifying the introductory
curriculum is one method for reaching a broader
audience (see, e.g., Cushing, Weiss, & Moritani,
2007; Denning & McGettrick, 2005; Downey
& Stein, 2006), which has met with some suc-
cess. In this chapter, we present the MAgICS
(Multi-Agent Introduction to Computer Science)
framework as a new and powerful approach to
diversifying the introductory computer science
curriculum. Through the MAgICS framework,
we demonstrate the potential to address many
conventional topics of computer science (such
as searching, sorting, optimization, graphics,
machine learning, networks/security) through an
agent-based modeling (ABM) and multi-agent
systems (MAS) perspective.

Agent-based modeling (Epstein & Axtell,
1996; Wilensky & Resnick, 1999) is a form of
computational modeling whereby a population
of individual (“micro-level”) computational
agents are given simple rules to govern their
behavior: for example, traffic flow can be mod-
eled by programming a number of “car” agents
to speed up and slow down under different local
conditions. The models are then run so that the
aggregate (“macro-level”) results of those agent
behaviors can be investigated (e.g. traffic patterns;
(Wilensky, 1997b)). The ABM/MAS paradigm
has become increasingly popular within computer
science (Davidsson, 2002; Panait & Luke, 2005;
Wilensky & Rand, in press), and has proven to
be a powerful computational modeling tool for
the natural and social sciences (NRC, 2003).
Because many systems in the world can be pro-
ductively conceptualized as a collection of agents
contributing to some macro-level phenomenon
(atoms and molecules comprise matter, individual
consumers comprise markets), it is conducive to
interdisciplinary integration and applications. For
instance, one particularly powerful interdisciplin-
ary idea that can be explored using the agent-based
paradigm is that of emergence – the notion that

interactions between simple individual agents can
result in surprising and complex aggregate-level
phenomena that appears to be “more than the sum
of its parts” (Johnson, 2001; Wilensky, 2001).
For instance, an emergent outcome of a traffic
system is that traffic jams move backward, even
though the individual cars that comprise the jam
each move forward (Wilensky & Resnick, 1999).

The benefits of an agent-based approach for
understanding complex systems, emergence,
and notions of parallelism and decentralization
– topics that are typically very difficult – are
well-established. Wilensky and Resnick (1999)
have found that a number of difficulties that
students have in understanding complex systems
stem from a deterministic/centralized (or DC)
mindset – for instance, they are likely to attribute
the emergent behavior of a system of entities
(such as the formation of a flock of birds; or the
evolution of a species) to some single cause or
intention, rather than as the result of a collection
of behaviors and interactions in a distributed
system. Agent-based modeling enables students
to explore how the behaviors of individual agents
can lead to unintended outcomes, and better un-
derstand why those outcomes occur in a multitude
of disciplines (including chemistry, Levy, Novak,
& Wilensky, 2006; materials science, Blikstein &
Wilensky, 2006; physics, Sengupta & Wilensky,
2008; Wilensky, 2003; and biology Wilensky &
Reisman, 2006).

We believe it is equally important for an
ABM/MAS perspective to be an ingredient in
computer science education – especially because
understanding system-level behavior, emergence,
and unintended outcomes is not only important
for understanding, but also for designing systems
of the future (Guckenheimer & Ottino, 2008).
The MAgICS framework uses agent-based
modeling and notions of emergence to focus on
a variety of upper-level topics while encouraging
connections to a wide array of interdisciplinary
endeavors and real-world applications. As such,
we refer to ABM/MAS as a “lens for conceptual

3

MAgICS

understanding” in computer science. Often, sub-
jects such as neural networks, particle systems,
genetic algorithms, or sorting and searching are
organized topically within the computer science
curriculum, and are thus taught separately, without
making conceptual connections between them. In
contrast, an ABM paradigm uses concepts such
as agents and micro/macro level phenomena to
highlight the similarities and differences between
the mechanisms at work. For example, later in
this paper we discuss how algorithms for solving
very different problems (such as sorting colored
objects, or ranking the relevancy of web pages)
can be similarly explained in terms of agents
interacting with each other or with their environ-
ment according to simple rules.

This work is motivated by two central goals.
First, MAgICS seeks to enrich early (“low-level”)
computer science courses by engaging students
with motivating and conceptually rich “high-level”
topics. Second, it seeks to emphasize distributed,
decentralized systemic thinking – a skill that is
becoming increasingly relevant both within and
beyond the domain of computer science. The MAg-
ICS framework aims to address the first goal (mo-
tivation and engagement) by building a curriculum
around a series of dynamic agent-based models and
modeling activities, coupled with compelling and
interactive visualizations. This model suite offers
a survey of several conventionally upper-level
topics, and gives introductory students a broader
intellectual taste for what computer science has to
offer. Concepts of elementary programming can be
covered through experimenting with the provided
source code, extending the models, and writing
new agent-based models from scratch. The suite
of curricular models is central to our approach,
and we will elaborate on the constituent models
of the suite in a later part of this chapter.

The second goal (distributed, decentralized
thinking) is the result of the evolving technical
content of computer science education and the fu-
ture of computing. In recent years, computing has
undergone an important shift toward parallelism.

This includes the current prevalence of multiple
and multi-core processors, the ubiquity of high
performance computing clusters in academia and
industry alike, cloud computing, massive peer-to-
peer networks, social networking and Web 2.0
applications, increased deployment of massively
parallel supercomputers for research, and parallel
languages and language features that accompany
these developments. We are not advocating that
CS101 students should be forced to learn the
intricacies of mutual exclusion semaphores for
accessing shared memory. The point is a broader
one: that it is time to re-examine whether the
prevalent focus in contemporary introductory
computer science courses on centralized, deter-
ministic, serial algorithms is best at preparing
our students for a world of computation that is
ubiquitously distributed, potentially stochastic,
and increasingly parallel. This view is supported
by previous work by Stein (1999), who challenged
the current centralized computational metaphor
with an alternative view of computation as a
community of interacting entities. Our approach
is further motivated by the goal of providing
universal instruction in “computational think-
ing,” as described by Wing (2006), and Papert
and diSessa’s call for a widespread literacy and
fluency in computational methods and models
(diSessa, 2001; Papert, 1980).

The remainder of this chapter is structured
as follows. We first discuss related research in
computer science education, and argue for the
merits of using agent-based modeling (ABM)
as a “lens for conceptual understanding” when
exploring topics that computer science educa-
tors might not traditionally consider to be in the
domain of ABM or MAS (or even in the domain
of introductory computer science!). Next, we
explore three example curricular models in some
detail, and discuss how they may be used to pro-
mote understanding of multi-agent systems while
learning about computer science topics. We also
offer a brief overview of each of the other models
in the suite. The remainder of the chapter is dedi-

4

MAgICS

cated to discussion of a preliminary pilot study
that we implemented to test out some of the ideas
and models included in the MAgICS framework,
and offer empirical support for the feasibility of
our approach. We conclude with some remarks
about potential implementation considerations
and possibilities for future work.

related Work

There have been many suggested approaches for
revitalizing computer science education. In this
review we discuss only a few, for comparison
to our own approach (for further coverage, we
recommend readers to a recent survey paper on
introductory computer science education; Pears et
al., 2007). Specifically, we argue that integrating
agent-based modeling into introductory computer
science curriculum addresses many calls in the
computer science education literature to engage
students in motivating consequential tasks and to
highlight the interdisciplinary nature of computer
science and its applications.

Efforts to improve learning, motivation, rel-
evance, and student retention in the introductory
computer science sequence may be loosely clas-
sified into two categories (although much work
falls at least partially into both categories): reforms
based on pedagogy (i.e., how CS should be taught),
and reforms based on content (i.e. what should
be taught). Pedagogy-based reforms include, for
example, the integration of design-first program-
ming (Moritz, Wei, Parvez, & Blank, 2005), pair
programming (Carver, Henderson, He, Hodges,
& Reese, 2007), and non-computer-based activi-
ties focusing on computer science concepts (Bell,
Witten, & Fellows, 1999). Content-based reforms
include introducing computer science with a focus
on robotics (Becker, 2001; Blank, 2006; Fagin &
Merkle, 2003; Flowers & Gossett, 2002), game
design (Overmars, 2004), multimedia such as
sounds, images, and movies (Guzdial, 2003), or
specific languages or language paradigms (Flow-

ers & Gossett, 2002; Howland, 1997; Radenski,
2006). Our MAgICS framework also falls into
this latter category, as it is largely a content-based
reform yet it also has pedagogical entailments such
as promoting the use of simple code fragments
as behaviors, the importance of multiple solution
paths and visual feedback. Another approach that
is particularly relevant to our present work is that
of Stein (1999), who designed a CS101 course
centered around the paradigm of “interactions
between entities”, including a significant focus
on issues of concurrency. Our approach differs
from the broader work of Stein in that we specifi-
cally focus on the use of agent-based models as
a cohesive thematic element to draw together a
variety of interesting and challenging computer
science topics, and make them accessible at an
introductory level.

Rather than focusing on changes to the con-
tent within the introductory course, Cushing et
al. (2007) suggested broadening introductory
CS by offering interdisciplinary courses with
math and science (such as ecology) as a means
to improve retention and increase interest in the
field. Although not described here, an interdis-
ciplinary approach can also be easily employed
using agent-based modeling, which is something
we have productively done in other work (Levy
& Wilensky, 2009; Sengupta & Wilensky, 2009;
Wilensky & Reisman, 2006). Meanwhile, Buck-
ley et al. (2008) advocate for the integration of
socially relevant projects into early computer
science education, and Denning and McGettrick
(2005) call for a “recentering” of computer science,
expanding the public’s view of computer science
as programming, and suggest an introductory CS
sequence with a theme of technological innovation.

While there are a considerable variety of ap-
proaches to and opinions about how the current
state of computer science education might be
improved, we argue that agent-based modeling
offers a possibility for addressing issues that many
of these reforms are concerned with. As we hope
to show, creating agent-based models provides a

5

MAgICS

natural opening to innovation and design of com-
plex systems and simulations, as well as fertile
ground for socially relevant projects. Further-
more, a curriculum designed around the ideas of
ABM/MAS can provide an effective coupling of
advances in computer science education methods
(e.g., visualization technology) with the more
general goals of active engagement and intellectual
inquiry on the part of students. Learning the art of
computer programming remains a central piece of
our educational framework (students will simply
be programming multi-agent simulations, rather
than, for example, writing programs for counting
prime numbers). However, we do agree that early
computer science courses often provide too narrow
a view of what it means to be a computer scientist,
and suggest that our approach will offer broader
exposure to “upper level” topics.

Finally, while most introductory sequences
in computer science are offered at the college or
university level and we present this framework
primarily in that context, we also acknowledge
the important role of computer science educa-
tion at the pre-collegiate level (Patterson, 2005).
Just as in college, enrollment in high school
computer science courses is low, and there have
been calls for a more diverse, integrated computer
science curriculum (Goode, 2007). We suggest
that an ABM/MAS paradigm, and the MAgICS
framework specifically, is also a powerful way
to introduce computer science to a younger au-
dience. In support of this assertion, we note that
the NetLogo modeling environment (Wilensky,
1999), and even several of the agent-based models
discussed specifically in this chapter, have been
successfully used with a wide range of students
including in educational interventions as early as
primary school.

centralized vs. decentralized
approaches

While there are many real-world problems which
call for decentralized thinking and are amenable to

agent-based approaches, there are also many for
which traditional serial deterministic algorithms
are better suited. Therefore, at least a brief discus-
sion is in order regarding the relative merits of
agent-based approaches versus more traditional
centralized approaches.

For us, one vital learning goal is that students
will able to use decentralized thinking to approach
problems when there may be a benefit to doing so,
and to understand the trade-offs between decentral-
ized and centralized approaches. Another is that
students are able to consider issues of parallelism
and distribution in not only programming, but in
the conceptual design of systems. However, in
order to make such decisions, students must be
able to “think in both styles” – something that is
notably difficult (Wilensky & Resnick, 1999).
In other words, we do not argue that ABM/MAS
is always the best approach for every problem.
However, in a field where distributed thinking and
parallelism are becoming increasingly important,
an awareness of the variety of approaches one
could take toward designing a project or solving
a problem is a fundamental issue. Futhermore, the
applications for which MAS/ABM are particularly
well-suited – such as computational simulation
and modeling – also emphasize the relevance of
computer science to other fields of study, as well
as for real-world applications and problem solv-
ing. We hope that the following section, which
introduces some core MAgICS models, illustrates
how incorporating MAS/ABM into introductory
computer science can bring both of these issues
to the forefront.

Fortunately, the distinction between central-
ized and decentralized programming approaches
need not be couched in absolute terms, and in the
MAgICS framework we do not wish to enforce
a false dichotomy. In our view, distributed pro-
gramming almost always incorporates elements
of serial programming as well. Specifically, when
programming multi-agent systems, the code that
controls the behavior of an individual agent is
often written as a serial program, sequential

6

MAgICS

flow and logic, using standard procedural or
functional components. Thus, as students learn
to work with distributed multi-agent systems,
they will concurrently be learning traditional
programming techniques as well (such as loops,
conditionals, variable assignment, functions, etc).
This is especially important, as it also helps to
address the potential concern about how students
will handle the transition from MAgICS back to
more traditional languages and curricula, as they
progress in the CS sequence. Because the concepts
of sequential programming will be included in the
design of agent-based simulations, this transition
is not as dramatic as it might appear.

While students will subsequently need to learn
different languages after NetLogo, such a language
change is not uncommon in many current com-
puter science sequences (e.g. Scheme, then C++).
Furthermore, we consider a computer science
education that contains only a single program-
ming language to be incomplete; students should
be exposed to multiple languages and paradigms.
As NetLogo contains both procedural and func-
tional language features, this should facilitate the
transition to other languages in later CS courses.

the MagIcs FraMeWork

The MAgICS framework is designed to address
several goals, including the enrichment of early
CS courses with a broader range of content, im-
proving students’ understanding of parallel,
non-deterministic, and distributed systems, and
offering a more motivational and applications-
oriented introduction to the field.

MagIcs curricular Model suite

We have developed a wide collection of agent-
based models (available for download from the
NetLogo Models Library (http://ccl.northwestern.
edu/netlogo/models/), and for the purposes of this
chapter we include a cross-section of those models

that relate to important or motivating topics in
computer science (Kornhauser & Wilensky, 2007;
Rand & Wilensky, 2006; Stonedahl & Wilensky,
2008a, 2008b, 2008c, 2009; Wilensky, 1997a,
1998, 2003). The suite of models we describe
consists of nine models spanning seven topics,
as shown in Table 1. Some of these models have
been used with great success in short workshops
and introductory courses on multi-agent model-
ing. We present here a cohesive framework for
introductory computer science that we hope will
be refined through trial, as well as feedback from
others working in this area.

These models are all implemented using the
NetLogo agent-based language and integrated
modeling environment, which permits interactive
modification of a model’s parameters as well as
of the code itself. The NetLogo language, follow-
ing the Logo tradition (Papert, 1980), has also
been designed to be easy to read and easy to learn,
and the integrated modeling environment contrib-
utes to a low barrier for entry (Tisue & Wilensky,
2004). Equally important, NetLogo is not a “toy
language”; it is a full programming language
currently being used by researchers across the
globe, offering a wide range of control structures
and data types, and it is extensible via the Java
programming language if access to additional

Table 1. MAgICS suite models and related com-
puter science topics, listed by order of appearance
in this chapter

Model Name Topic

PageRank Searching

Painted Desert Challenge Sorting

Virus on a Network Network Security

Simple Genetic Algorithm Optimization

Particle Swarm Optimization Optimization

Artificial Neural Net Machine Learning

Particle Systems Flame Computer Graphics

Flocking 3D Computer Graphics

Dining Philosophers Operating Systems

7

MAgICS

libraries is required. We also wish to emphasize
the “glass box” nature of the suite of models:
besides the visual interfaces (shown in figures
below), each model comes complete with educa-
tional documentation and full source code that
students can easily edit and run within the Net-
Logo modeling environment.

This is certainly not intended to be a compre-
hensive list of topics in computer science that could
benefit from re-examination from an agent-based
perspective. Instead, we seek to highlight several
examples where parallel, distributed, stochastic,
and emergent methods can be fruitfully incor-
porated into early computer science curricula.
Furthermore, this list contains only fully imple-
mented and documented models that are presently
ready for educational use. More models could be
added to this list, highlighting other important
ideas. Some of these topics (such as searching
and sorting) are similar to those traditionally cov-
ered in an introductory CS sequence while others
(such as particle swarm optimization) are more
typically found in upper-level undergraduate or
even graduate-level courses. We will discuss only
the first three example models in detail, and then
briefly explain the scope and purpose of the six
remaining models. For all models, the provided
source code is clear and concise (less than 100
lines), and the accompanying visualizations serve
to enhance the accessibility of the content.

searching: Pagerank Model

Traditional computer science curricula invariably
include discussions of searching, often starting
with students learning to do a sequential search
in an array of numbers of strings. Later on, they
are taught how to perform a binary search of
sorted data, and to search other data structures
such as trees or graphs, perhaps using depth-first
search, breadth-first search (or perhaps Dijkstra’s
algorithm). While we have no desire to debate the
merit of these venerable and classic algorithms,
we note that they are all designed to run deter-

ministically on a single processor accessing an
unchanging data set.

Another approach to searching is to use a
decentralized algorithm, which is especially
useful for searching massive quantities of con-
stantly changing data, i.e. the World Wide Web.
Furthermore, we suspect students may be more
motivated to learn about how Google “magically”
returns relevant search results about their favorite
curling team, as opposed to discovering how to
find the position of “milk” in an alphabetized
grocery list. The PageRank model (Stonedahl &
Wilensky, 2009; see Figure 1), is based on the
now famous PageRank algorithm developed by
the founders of the Google search engine in the
late 1990s (Brin & Page, 1998). PageRank is not
technically a search algorithm, but rather a ranking
algorithm, which provides a basis for ranking the
information on one page as being more useful/
important/relevant than the information on another
page. The algorithm assigns a PageRank score to
each web page, based on its relationship to other
pages determined by the hyperlink structure of the
web. Our PageRank model actually demonstrates
two distinct agent-based methods for calculating
the PageRank of a directed network (such as the
web), though the two methods result in the same
limiting behavior, and ultimately would assign
the same PageRank scores to each page.

Method 1: Random Web Surfers

In this case, we assume there are “page” agents
which are connected to each other in a directed
network of hyperlinks, and there are also “web
surfer” agents, which operate using these simple
rules: Web surfer agents start at a random web
page, and begin wandering the web. To wander,
they either navigate a link from the current page
to a new page, or they may jump directly to a
random page somewhere on the web. If they run
into a dead end page, they also jump to a random
page. The probability with which they follow an
existing link versus jump to a random page is

8

MAgICS

controlled by a parameter called “damping factor”
(typically set at 85% chance of link-following).
As these agents, move, the model records the
number of times a web surfer has visited each
page. One definition for the PageRank metric is
given by the probability of a single random web
surfer being at that page at a given instant. Using
the random web surfers model, this can be easily
calculated by dividing the number of visits for
each page by the total number of visits. In more
formal mathematical terminology, this can be
viewed as finding the stationary distribution for a
certain Markov Chain, where each page is a state,
and there are transitional probabilities specified
between each pair of states. However, introduc-
tory CS students do not need to have acquired this
level of mathematical formalism to appreciate
the emergent behavior of the agent-based model.

Method 2: Diffusion of
PageRank Scores

In this case, the primary agents in the model are
the web pages themselves. Each page starts off
with an equal amount of PageRank score. At each
time step, pages divide equally and transfer their
own PageRank value to each web page that they
link to. (Pages with no out-bound hyperlinks are
treated as if they linked to every single other page
in the web.) Each page then sums the PageRank
value received from each of the pages that link
to it. Also, each page receives a certain amount
of PageRank, just for existing (determined by the
“damping-factor” parameter). This redistribution
of PageRank via diffusion is carried out repeatedly,
and over time the PageRanks converge toward
the correct PageRank value. Mathematically,
this method is related to the “power method” for

Figure 1. A screenshot from the PageRank model: Larger nodes represent higher PageRanks

9

MAgICS

finding the dominant eigenvector of a modified
adjacency matrix for the directed graph formed
by the hyperlinks.

Beyond the clear benefits of exploring and
understanding this classic algorithm that is so
instrumental in making information accessible on
the web, our PageRank model also provides an
excellent launching point for students to experi-
ment by creating their own distributed link analysis
and/or ranking algorithms. For example, students
could endow the “random surfer” agents with
more sophisticated behavior (use of the “back”
button, bookmarks) and see how the rankings
would be affected. A broader discussion about
emergent search techniques could also encompass
ant foraging mechanisms, or the search of fitness
landscapes performed by genetic algorithms (mak-
ing a connection to the Simple Genetic Algorithm
model also included in our suite).

sorting: Painted desert
challenge Model

Sorting algorithms are another staple of early
computer science education, inevitably including
at least several of the following collection: bubble
sort, selection sort, insertion sort, merge sort, quick
sort, heap sort, bucket sort, shell sort, and radix
sort. Again, a common theme is the deterministic
single-threaded and serial aspects of sorting (al-
though many of these algorithms can be at least
partially parallelized). As a counterpoint, we wish
to present a messier, distributed, and stochastic
view of sorting, in the Painted Desert Challenge
model (Resnick & Wilensky, 1992; Wilensky,
1997a; see Figure 2). While it may strike some as
an inefficient approach to sorting, one should note
that it is intrinsically parallel, reasonably robust,
and could be applied in situations where the data
is shifting during the sorting process, as a result
of noise. However, it is important to keep in mind
that we are not interested here in arguing for the
merits of this particular sorting algorithm, but
instead we are arguing for the merits of the ideas

that students will be exposed to by exploring this
model. The Painted Desert Challenge model offers
insight into emergent systems, and in particular
ant colony and other problem solving techniques
inspired by nature.

The inspiration for this model goes back to a
problem posed both at the Artificial Life III con-
ference and to participants in a study on decentral-
ized thinking (Resnick & Wilensky, 1998), where
it was prefaced by a short whimsical vignette
about insects that live in a painted desert and want
to sort out each of the colors of sand after a wind-
storm mixed all the sand together. In this model,
each termite follows the same set of very simple
rules. It wanders in a 2D grid, wherein each grain
of sand occupies one grid square. If it runs into a
grain of sand, and it isn’t already holding one, it
picks it up. It continues to wander. If it runs into
a grain of sand that is the same color as the one
it is carrying, it drops its grain in an adjacent
location. The emergent result of this random
wandering and picking up and dropping is shown
in Figure 2. This is, however, just one possible
set of rules.

We do not expect students to learn computer
science only by passive observation, any more than
we expect people to learn to bicycle by watching
the Tour de France on television. It is imperative
that they get their hands dirty in the code, take
the model apart and put it together again. For
instance, a simple extension would be to have the
sand shifting while the termites are working, and
measure the rate of entropy-reduction the termites
are capable of. A more complicated extension
would be to give the termites greater vision and
more intelligence, and test if more complicated
rules yield more efficient sorting. On the more
theoretical side, we might ask students to try to
prove that the algorithm will eventually yield a
complete separation of each of the different colors.
It is worth noting that there are other emergent
sorting algorithms, such as Brueckner’s sorting
networks (Brueckner, 2000), that could also be

10

MAgICS

discussed in class and/or implemented as student
projects.

security: virus on a network Model

Discussions about computer networks and security
are not particularly common in introductory CS
classes, which often focus more on programming
and data structures. However, many computer
science graduates go on to pursue careers in infor-
mation technology where security is of paramount
concern, which provides motivation for bringing
this type of material into earlier coursework.

Rather than focusing on lower-level details
of security, such as open ports or overrun buffer
exploits, the Virus on a Network model (Stonedahl
& Wilensky, 2008c) is concerned with security on
a grander scale. In particular, worms and viruses
that self-propagate from computer to computer
through the Internet form a grave risk for today’s
society due in part to the creation of large “botnets”
capable of acting in unison to carry out destruc-
tive distributed denial-of-service attacks, or other
illicit activities. Virus on a Network is an abstract

model, based on the SIR (Susceptible, Infected,
Removed) models found in epidemiology (e.g.,
Hethcote, 1989). The setup consists of nodes
(i.e. computers) on a network, and links between
them, which could represent a variety of different
connections depending on the attack vector of the
virus (e.g., email contacts, shared network drives,
shared USB keys, external hard drives, or floppy
disks, etc). Nodes start as susceptible, except for
some specified number that are infected with the
virus. With some probability (which is controlled
by an adjustable model parameter), a node that is
infected by the virus can spread that virus to each
of its neighboring nodes. Infected nodes also have
a chance of recovering (e.g., an antivirus program
removed the virus but didn’t close up the vulner-
ability), and they have a chance of recovering
and becoming resistant to future attacks (e.g., an
antivirus program inoculated the computer against
this virus). (see Figure 3)

Through exploration of the model, students
can learn about how parameters such as number
of nodes or average number of connections affect
how quickly the virus moves through the network,

Figure 2. “Before” and “after” from the Painted Desert Challenge model, demonstrating the reduction
in entropy caused by the agents’ behavior

11

MAgICS

as well as the lifetime of the virus, and the extent
to which vaccination of a few nodes can or cannot
prevent a widespread epidemic. The Virus on a
Network model also has potential connections to
other disciplines (such as medicine, marketing,
or sociology), and promotes high-level discussions
about computer security practices, the structure
of social and computer networks, and the Internet.
This also leads naturally to student projects and
extensions of the model. For instance, the default
network structure found in this model is based on
spatial proximity of the nodes, with nodes that
are closer together in the 2D plane having a high
probability of being linked, whereas there are no
long-distance links. Students can discuss wheth-
er such a configuration is plausible for virus
contagion1 and write code to generate other types
of network. A few other possible extensions in-
clude allowing the virus to mutate and evolve,
and thus be able to re-infect computers which had
become immune to a previous version of the virus,

or to allow for coordinated (botnet) attacks by
groups of infected nodes, or two have multiple
different viruses present in the network. There are
always opportunities for ambitious students to
take this type of work further, and spin it off into
summer research projects.

 remaining Model suite overview

 The remaining six models in our model suite (see
Figure 4) cover topics from an additional four
areas of computer science. The Simple Genetic
Algorithm and Particle Swarm Optimization mod-
els (Stonedahl & Wilensky, 2008a, 2008b) both
offer an introduction to stochastic optimization
algorithms by illustrating how agents, acting with
limited intelligence and information, can move
toward a goal. In the Simple Genetic Algorithm
model illustrates an evolutionary search process
in which fitness and diversity levels of a popu-
lation change over time. In the Particle Swarm

 Figure 3. A screenshot from the virus on a network model

12

MAgICS

Optimization, the progress towards a goal can be
viewed as agents traverse a 2D fitness landscape,
searching for a global optimum. While these top-
ics are not usually covered until much later in a
traditional computer science curriculum (probably
an upper-level elective course), we believe they
are thoroughly accessible to introductory-level
students from an ABM/MAS perspective. Addi-
tionally, they allow interdisciplinary connections
to evolutionary biology and particle physics.

Artificial neural networks can also be produc-
tively understood from an agent-based perspective,
as we hope to demonstrate to students through
exploration of the Artificial Neural Net model
(Rand & Wilensky, 2006). Each perceptron (sim-
plified virtual neuron) can be conceived as an
agent, which follows certain rules during the
training phase, and then another set of rules when
it is being tested. This is another fairly advanced
topic, which admittedly may take some effort for
students to understand and appreciate. However,

it is not necessary for students to understand
every detail of the back-propagation training al-
gorithm or what the nice mathematical properties
of a sigmoid function are — this can wait. The
important thing is for students to gain an intuitive
understanding of how the agents are activating
each other, and that by automatically modifying
the weights of connections between agents, it is
possible for the system as a whole to “learn” pat-
tern recognition skills. A classroom discussion
comparing and contrasting this agent-based
model with biological neural networks should
also prove provocative and educational.

Agent-based modeling is useful in computer
graphics as well, and is being increasingly explored
as a means of automatically creating realistic
procedural animations of systems with many in-
teracting creatures or objects. Through the Particle
System models2 (Kornhauser & Wilensky, 2007)
students can get a taste of the classic “particle
systems” approach sometimes used in cinematic

Figure 4. Model screenshots. Top row: Simple genetic algorithm, particle swarm optimization, artificial
neural betwork; Bottom row: Particle system flame, flocking 3D, dining philosophers

13

MAgICS

animation to create the illusion of water, fire, or
smoke. While each particle is fairly passive, being
pushed or pulled by an externally imposed force
field, it is still useful to think of each particle as
one agent of a distributed multi-agent system, and
it is not difficult to modify the code to make the
agents take a more active and/or intelligent role
in their movement patterns. For instance, more
sophisticated agent behavior is exhibited in the
“Boids” algorithm (Reynolds, 1987) for creating
realistic-looking flocks of animated creatures,
which is the inspiration for our Flocking model
(Wilensky, 1998). As the Flocking screenshot in
Figure 4 shows, the NetLogo modeling environ-
ment also provides facilities for the development
and visualization of three-dimensional models,
which opens more possibilities for students to
extend, modify, or create their own multi-agent
computer animations.

The Dining Philosophers model (Wilensky,
2003) introduces a classic case study in the
synchronization of concurrent processes, posed
as a puzzle about philosophers sitting around
a table eating spaghetti that requires two forks
to eat with, but having to share forks between
them. Through this metaphor, concepts such as
deadlock and resource starvation are explained.
We mentioned above that part of the motivation
for the MAgICS framework was the increasingly
parallel nature of computing, such as the shift to
multi-core and multi-processor machines. In reac-
tion, multi-threaded and multi-process program-
ming will become more pervasive, and it seems
quite appropriate to include in the curriculum
an agent-based model that addresses issues of
resource sharing.

IMPleMentIng MagIcs:
a PIlot study

Our hypothesis is that using an ABM/MAS
perspective in introductory-level computer sci-
ence courses, as the MAgICS framework does,

offers some potential advantages over traditional
computer science curricula: specifically, that it
provides students with an early, but applicable
background in concepts such as distributed com-
puting and multi agent systems, and that the
subject matter is more engaging than that found
in many typical introductory computer science. In
preparation for a complete implementation of the
MAgICS framework in the future, we conducted a
preliminary pilot study, which we describe below.
It is important to note that while student modifi-
cation and creation of agent-based models is an
important component of the MAgICS framework,
it was not a component of the pilot implementa-
tion. As such, this study addresses broad-scale
questions regarding the feasibility of integrating
ABM/MAS into classrooms sessions, students’
enjoyment and the perceived relevance of the ap-
proach, and students’ very general take-up and use
of distributed and decentralized techniques when
thinking about problems. Our primary intentions
are to provide support for the ongoing development
of the MAgICS framework, additional pedagogical
support, and curricular materials (assignments,
lecture notes, etc.).

study design

The pilot study was a 50-minute classroom-based
implementation of several elements of the MAg-
ICS framework, roughly two-thirds of the way
through an introductory level computer science
course at a private research university in the United
States. The course is the first in the standard se-
quence for CS majors at this university, and draws
students from both the school of engineering and
the college of arts and sciences. The students were
informed several days in advance that their usual
professor would be out of town, and that a guest
lecturer would be teaching the class instead. The
total enrollment for the class was 39 students; 25
students attended class that day and all of those
took part in the study. The class was learning
(primarily functional) computer programming

14

MAgICS

using a variant of the Scheme language. Although
the course does incorporate several contemporary
pedagogical elements, such as the use of images
and animation, in addition to standard numeric
and string manipulation routines, it does not have
any focus on distributed or decentralized topics
or approaches.

The format of the study consisted of four parts:
a pre-quiz (7-8 minutes), a period of lecture (35
minutes), a post-quiz (7-8 minutes), and a follow-
up survey soliciting student feedback. The lecture
component consisted of the following sequence:
(1) a few introductory remarks contrasting central-
ized and decentralized approaches to designing
computational systems, and recent technological
shift toward more distributed/parallel systems
in the real-world; (2) a demonstration of how
multiple agents could be programmed to move
simultaneously, using the NetLogo language; (3) a
discussion/demo of the Painted Desert Challenge
model discussed above (preceded by a simpler
“Termites” model, which only involves one color);
(4) a discussion/demo of the PageRank model,
and Google’s PageRank™ algorithm to rank the
relevancy of web search results. In a semester-
length implementation of the MAgICS curricula,
the topics discussed in this compact lecture would
be spread across at least three sessions, which
would allow for more elaboration, class discus-
sion, extension and production of models, and
in-depth treatment. However, for this pilot study,
we chose to give students a broader taste of the
MAgICS curriculum by exposing them to at least
two distinct multi-agent systems topics.

research Questions,
data and results

We are not arguing that the brief quiz responses
obtained during a single class session exploring
components of MAgICS are enough to illuminate
whether or how students learned specific concepts
or approaches in distributed computing. Instead,
we view this study as a preliminary look into

the feasibility and potential for an ABM/MAS
perspective to present decentralized thinking as
a relevant approach for addressing problems in
computing. In this sense, our research questions
related to this pilot implementation are:

• R1: Prior to the class session, did students
have exposure to topics in parallel com-
puting, such as distributed/decentralized
design and multi-agent systems? Did they
consider issues of distribution and decen-
tralization when solving computational
problems?

• R2: Can a brief presentation of topics from
a multi-agent perspective using agent-
based models influence how students think
about, and design solutions for, computa-
tional problems?

• R3: Do students find the MAgICS ap-
proach relevant and engaging?

Pre/Post Quizzes

Before and after the class session, quizzes were
distributed to students. Both groups were given
the same first question on the pre-quiz and the
post-quiz, but two versions of question 2 were
included from the pre- to post quiz: so that roughly
half of the students answered question 2A on the
pre-quiz and 2B on the post-quiz, and the other
half question 2B, then 2A. By having students
answer a different question on the pre-quiz than
the post-quiz, we hoped to give them a new context
to apply the ideas explored in class, By making
sure we had some pre- and post- responses for
both questions via different groups, we hoped
to disentangle whether differences in students
responses were a result of the question itself (2A
versus 2B), or the class session. Three students
who attended the class did not complete both the
pre-quiz and post-quiz, and were thus omitted
from our analysis, leaving a sample size of 22
students that answered all 4 questions (2 before
the lecture and 2 after).

15

MAgICS

Due to the time constraints of the implemen-
tation and quizzes, our analysis focuses on very
coarse-level outcomes: namely, the presence of
decentralized thinking and knowledge of the Pag-
eRank algorithm in question 1, and presence or
absence of design elements that reflect different
dimensions of decentralized computing in question
2 (we focus on the specific coding schematics in
each respective section). Because students were
not provided much time to complete the quizzes,
and quiz performance is not considered for stu-
dents’ grades, it is likely that student responses
were shorter and less complete than they might
have otherwise been. This suggests that our results
are, if anything, an underestimate of their adop-
tion of decentralized design strategies after being
presented with MAgICS activities.

Each question, our motivation for including it,
and the coding schemes used to determine results
are described in detail below. For our analysis,
question responses were first anonymized and
organized such that their status as pre- or post-quiz
responses was not apparent to coders. The authors
then coded these responses, and a subportion
(~32%, split evenly among each question) were
also coded by an independent interrater with ex-
pertise in agent-based modeling and multi agent
systems. Interrater agreement on question 1 was
100%, and on question 2 was 97%.

Question 1

Pre Question: If you perform a Google™ search
for the word “turtle”, there are over 5 million
results. Describe how the Google search engine
might choose to order the search results for you
to view, so that the most useful/relevant web pages
appear at the top.

Post Question: Briefly describe how Google’s
PageRank™ algorithm assigns scores to rank
sites according to their general importance in
the world wide web.

Students’ brief responses were coded for refer-
ences to distributed/decentralized approaches
to web page searching, across the following
categories. At times, “partial credit” was given to
responses, these are identified separately as the
grey components of the histogram bars:

• Decentralized. Do student answers in-
clude discussion of any decentralized/
multi-agent factors? Specifically, did they
mention ranking a web page by using fea-
tures of the web page that are not contained
within the page itself, but result from the
interaction with other web pages or human
agents.

• Links. Do the students mention using in-
bound links (that point to the page being
ranked) as a factor (partial credit), and do
they also take into consideration the impor-
tance of the page from which the inbound
links originate (full credit)?

• Surfing Algorithm. Do students mention
the use of automated surfer bots (partial
credit), and general algorithms by which
those bots can be used to calculate the
PageRank scores (full credit)?

• Diffusion Algorithm. Do students men-
tion the use of diffusion or value sharing
(partial credit) that is repeated until an
equilibrium is reached (full credit) to cal-
culate the PageRank scores?

• Either Algorithm. This category is de-
rived from the codes for the Surfing and
Diffusion Algorithms, and features the
number of students that mentioned either
search algorithm (if they mentioned both,
the highest level of credit is included).

As shown in Figure 5, more student responses
fell into each of the coding categories across
the board after the PageRank demonstration in
class. These results are not particularly surpris-
ing, since one would hope that students should
have a better understanding of the topic after

16

MAgICS

it has been discussed in the lecture. However,
the data do offer support for several arguments.
First, when confronted with a problem that is
situated in a distributed context (such as the
world wide web), even without prior exposure/
discussion about multi-agent systems, students
often consider distributed ideas or approaches
(this is in contrast with the results for question
2B, discussed below). Second, given only a very
brief lecture (10-15 minutes) on this topic, many
students were able to understand the basic ideas of
PageRank (91% explicitly mentioned some form
of hyperlink analysis), and a substantial fraction
(32%) were able to give a reasonably complete
(“full”) description of at least one of the two al-
gorithmic processes by which PageRank can be
calculated. These preliminary results suggest that
the subject matter is within reach of students, and
offer support for the feasibility of our approach for
teaching “upper-level” topics from a multi-agent
systems perspective.

In our pilot implementation, the final lecture
segment (discussing the PageRank algorithm)
ended up being somewhat rushed, especially with
regard to the rules of the two featured algorithms
(“Random Surfer” and “Diffusion”) for comput-
ing PageRank. Given ample class time to discuss,

explain, and elaborate on the PageRank model,
we would expect to see considerably greater
improvement in the algorithmic understanding
categories.

Question 2

2A. Planting: (Adapted from Kolikant 2001) Sup-
pose you are hired by Automagical Landscaping
to design a robotic system for the very specific
task of planting 1000 trees in an open field as
efficiently as possible. (The planting sites will
be designated by visual markers that are easy
for robots to detect.) Planting one tree consists
of three sub-tasks: digging a hole, dropping a
seed in the hole, and filling in a hole. In order to
keep costs down, robot physical capabilities and
“intelligence” should be kept as simple as pos-
sible. Describe your approach.

2B. Sorting: (Adapted from Wilensky, 1997a)
Suppose you are hired by the GWYPF (Get-What-
You-Pay-For) Agricultural Cooperative to design
a robotic system for sorting grain based on its
quality. Some grain is harvested too early, too
late, or didn’t get as many nutrients as other grain,
and GWYPF wants to differentiate between grain

Figure 5. Student pre- and post-quiz results for question 1, separated by coding category

17

MAgICS

that’s grade A, grade C, grade M, or grade Z! Your
laboratory has already developed a hyperspectral
imaging sensor that can measure the quality of
a single kernel from close-range. However, now
you are faced with a vast warehouse, with kernels
of corn spread thinly (and randomly) across the
floor. Your robotic system should (roughly) sort
the grain from worst to best from East to West.
Describe a possible design for this system.

For question 2, responses were coded for the
presence or absence of evidence of decentral-
ized/distributed approaches along a number of
dimensions. If the proposed solution involved any
of the following elements, we coded that dimen-
sion as “D”: in some cases, specific variants of
these elements were identified separately as gray
components of the histogram bars.

• Multi-Agent: Does the designed system
involve multiple agents? (D signifies yes,
while Df signifies only insofar as agents
exist for different functions – for example,
in the case of the gardening problem, a sin-
gle “digger”, “planter”, and “burier”.)

• Division of Labor: Does the designed sys-
tem exhibit a division of labor whereby
different types of agents perform specific
tasks?

• Concurrency: Can the designed system be
executed concurrently such that the same or
different tasks can be executed at the same
time? (Ds signifies that only the same task
can be executed concurrently: for instance,
if multiple robots can dig simultaneously,
but planting cannot also occur at the same
time; Dd signifies that only different tasks
can be executed at the same time; Db sig-
nifies that both the same or different tasks
can occur at the same time.)

• Randomness: Does the designed system
involve elements of randomness in its
behavior?

• Locality: Does the designed system in-
volved updating and acting upon local
information, rather than a prespecified
knowledge of the entire system state?

Additionally, since the “sorting” question (2B)
shares a lot of surface resemblance to the Termites/
Painted Desert model that was presented in class,
many students suggested a solution that involved
that very same algorithm, without considering
the additional constraints imposed by the quiz
problem (namely the need to sort grain East to
West by quality). We identify these solutions in
our plotted results by grey bars, and solutions that
explicitly adapted the Termites example to address
the East/West constraint, or introduced a different
solution that could be coded for the presence of
those components, by the black components of
the bars. The results all coding categories for each
of the questions are shown in Figure 6.

We would first like to make a point about the
effect of task selection on the differences in results
between 2A and 2B. It is clear (and expected) that
question type and reasonableness play an impor-
tant role in students’ application of decentralized
approaches. Along these lines, it is not clear that
specializing function in the case of sorting grain
(question 2B), or randomizing the motion of robots
rather than having them engage in more directed
search and detection methods for finding markers
in a garden (question 2A), are reasonably adding
efficiency or other benefits a student’s designed
system. This is reflected in student responses:
they did not apply every decentralized technique
they were presented during the lecture “across
the board”, but rather suggested techniques that
were appropriate to the problem statement. Fur-
thermore, while it is established that students
often adopt a deterministic/centralized mindset
even toward phenomena that may not be well
understood using this mindset and that such ways
of thinking are difficult to change, we saw that
(a) some students did use such reasoning even
before the class period for the gardening tasks,

18

MAgICS

and (b) introducing agent-based models as com-
putational problem solving techniques did appear
to prompt these students to consider decentralized
solutions. In other words, task selection might be
one way to provide students with a “primer” to
distributed thinking.

 Our two main arguments given this very cur-
sory data is that students did apply techniques
that are characteristic of decentralized solutions
to problems more often after the class session
than they did before, and that in least in the case
of question 2A, they sometimes did even before
an explicit introduction to those techniques. We
consider these findings to be quite promising, with

regard to whether students possess an intuitive
ability to think about issues of distribution as well
whether students can learn the general concepts
of distributed/decentralized computing at an
early stage in their computer science education.
It appears that students are considering issues of
 parallelism, and these considerations are brought
to the forefront for consideration in issues of de-
sign by even a brief introduction to multi-agent
systems in applied contexts. Although this study
cannot speak to students’ ability to productively
integrate these concepts into instantiated designs,
it certainly supports our claim that agent-based
modeling and issues of distributed and decentral-

 Figure 6. Student pre- and post-quiz results for questions 2A and 2B, presented separately by coding
category

19

MAgICS

ized thinking are not only motivating and relevant,
but accessible for students at an introductory level
in a way that addresses problems of algorithm
design and problem solving.

student survey

The student survey consisted of eight questions,
with responses based on a 1-5 Likert scale, with
1 representing the most negative response and 5
representing the most positive, plus one open-
response question which requested “any other
comments about the lecture, topics discussed, or
materials used?” Seventeen students responded
to this voluntary anonymous survey, and the re-
sults are tabulated in Table 2. The eight category
names correspond to the actual survey questions
as follows.

• Familiarity. Prior to this guest lecture,
how familiar were you with distributed and
multi-agent systems?

• Learning. How much do you feel you
learned from this class?

• Quiz. How appropriate were the quiz
questions for the topics presented and your
level of knowledge?

• Applicability. How applicable do you
think the discussed topics are to real prob-
lems in engineering and computing?

• Interest. How interesting and engaging
was the class session?

• Termites. How much did you enjoy the
“multi agent sorting with termites” topic?

• PageRank. How much did you enjoy the
“Google PageRank” topic?

• Future Interest. How interested would
you be in learning more about multi-agent
systems?

All the results should be interpreted with the
standard limitations that apply to any self-reported
survey data. That said, they mostly served to sup-
port/confirm our prior intuitions and hypotheses.

However, several points are worth highlighting.
First, on average students reported only a small
amount of prior familiarity with distributed and
multi-agent systems; more than half of the students
reported a score of 2 or lower. Second, the results
are generally quite positive, with over half of
the class reporting either 4 or 5 (positive or very
positive) for every question relating to how much
they learned from the class, enjoyed particular
subject matter, viewed the material as appropri-
ate or applicable, etc. Third, more than half of
the students responded that the topics discussed
in class were “very applicable” (5) to real-world
problems in engineering and computing. While
it is the authors’ view that the world is becoming
increasingly distributed, and that decentralized
thinking and the design of multi-agent systems are
becoming a key skill for the next-generation of
computational problem solvers, it was not evident
to us (before administering the survey) whether or
not students would share this view. When judging
student motivation and engagement, it is difficult
to disentangle characteristics of the curriculum/
subject matter from style in which it is taught; a
good lecturer can make even the driest material
engaging. Accordingly, we must limit our findings
to conclude only that the study provides evidence
that the topics/ideas can be presented in a manner
that students consider enjoyable and relevant.

Table 2. Anonymous online student feedback
survey results

Mean Median

1 Familiarity 2.1 2

Learning 3.8 4

Quiz 3.7 4

2 Applicability 4.4 5

3 Interest 4.2 4

Termites 4.4 4

PageRank 4.1 4

Future Interest 4.3 4

20

MAgICS

Seven students responded to the free-form
question soliciting any additional comments:
several students commented on the quality of the
lecture, or that the topics discussed were “very
interesting”. For instance, one student wrote “This
lecture was interesting and although not exactly
relevant to the course, I think I learned a lot that
I can apply to my life. Well done!”, and another
wrote “It was a very educational and interesting
experience. Being a sort of beginning program-
mer I didn’t understand a lot of what was going
on, but I had a great appreciation for the pro-
gram and interaction and everything. Very very
interesting stuff. Thank you for the experience!”
These comments bring up a number of important
points, both about the strengths and limitations
of this pilot excursion toward implementing the
MAgICS framework. The first response didn’t
judge the topic was “relevant to the course”, and
the second expressed difficulty understanding
the computer programming aspects. These both
speak to the fact that within the time constraints
of a single class period, we were unable to delve
deeply into learning the programming language,
or have students write their own code to achieve
a deeper understanding of programming multi-
agent systems, instead of merely observing
them and learning about the rules/algorithms in
English language. We believe that this is an im-
portant component that needs to receive further
consideration when implementing the MAgICS
framework. In any case, these responses do show
a clear indication of interest and enthusiasm for
these topics and/or an appreciation for applying
the ideas learned during this brief class period to
real life issues.

limitations

We would like to stress that this pilot implementa-
tion of the MAgICS framework was not intended
as a rigorous test of its efficacy – indeed, many
aspects and activities that we would consider
essential components of the framework, such as

students designing and constructing agent-based
models, were absent from our pilot. Instead, we
view the pilot as providing support for the feasibil-
ity of introducing these topics at an introductory
level in the context of introductory computer
science, as well as for our claims regarding the
motivational potential relevance to real world
topics. In other words, we believe this supports
our claims that MAgICS to be a successful com-
ponent of introductory computer science because
it provides evidence that students’ strategies,
motivations, and ways of thinking are consistent
with and responsive to the MAgICS approach.

On the other hand, this study does not illumi-
nate very much about how or how much students
learn. The short student quiz responses did not
provide nearly enough information to draw any
conclusions along these lines; a more intensive
study would be required. Furthermore, the fact
that attendance of the class session and completion
of the online student survey were optional may
have led to a sampling bias favoring individuals
who were more academically motivated than the
average student, which could have impacted our
study results.

dIscussIon and Future
research dIrectIons

Our intention in this work is to offer a window
into an alternative introductory computer science
curriculum. In practice, we would not expect this
approach to be used to the complete exclusion
of other curricula or approaches. We emphasize
that in many cases it would be most beneficial to
compare and contrast centralized and decentral-
ized approaches to the same topic. Furthermore,
the introductory course should still have a strong
emphasis on learning to write computer programs.
However, starting with existing programs (in this
case, agent-based models) provides an opportunity
for students to explore, modify, and learn to read
the language while they are learning to write it.

21

MAgICS

The MAgICS framework permits the integra-
tion of a number of other techniques shown to be
beneficial for computer science education. There is
no reason, for example, that the pair programming
approach (Carver, et al., 2007) or the integration
of robotics (Blank, 2006) cannot be implemented
successfully within the context of MAgICS.
Indeed, the NetLogo programming environment
includes interfaces to various physical devices
and a variety of “bifocal modeling” (Blikstein &
Wilensky, 2007) activities, which allow users in
a variety of contexts to compare computational
agent-based models with real-world data col-
lected using robotic sensors and actuators. Also,
the VBot materials (Berland & Wilensky, 2005),
designed primarily for middle school students,
engage users in programming independent robot
agents, which can then interact with one another
in a shared context (such as a robot soccer arena).
Some inclusion of physical robotics would be very
natural addition to an introductory course themed
around ABM/MAS.

Our present work on the MAgICS framework
serves as a starting place for future investigations
about reinventing introductory computer science
education with a focus on multi-agent systems. We
plan to engage in more substantial research that
includes more aspects of the MAgICS framework,
such as having students design and program their
own agent-based models tasks and performing
more in-depth analyses (through interviews and
detailed analyses of student work) of understand-
ing of both the specific computer science topics
explored, as well as overarching themes such as
emergence, distributed/decentralized approaches
to design and problem solving, etc. Such studies
will help us to determine which topics and student
activities are most appropriate for an introduc-
tory curriculum, and will contribute toward our
continued refinement and development of the
framework.

conclusIon

Through the MAgICS framework we are offering
a first attempt at producing a coherent introductory
CS curriculum centered on a series of agent-based
models spanning a variety of computer science
topics. We believe that this framework addresses
recent calls by computer science educators to
introduce widely applicable, engaging curricula
early in the computer science sequence with a
focus on the notion of “computational thinking”,
rather than specific algorithms and techniques.
There unquestionably remains considerable
room for improvement in this framework, and we
hope that this work leads to expanded conversa-
tion and academic discourse about the fusion of
multi-agent systems approaches with computer
science education.

acknoWledgMent

We wish to thank Josh Unterman for helping to
refine our ideas and his contributions supporting
our work on the pilot study, and Ian Horswill, for
providing a context for the study. We also owe a
debt of gratitude to the participants of the EduMAS
2009 workshop, all of our colleagues in the CCL
research group, and several anonymous review-
ers for their constructive feedback. This work
was supported in part by NSF grant IIS-0713619.

reFerences

Becker, B. (2001). Teaching CS1 with karel the
robot in Java. ACM SIGCSE Bulletin, 33(1), 50–54.
doi:10.1145/366413.364536

Bell, T., Witten, I. H., & Fellows, M. (1999).
Computer science unplugged: Off-line activities
and games for all ages.

22

MAgICS

Berland, M., & Wilensky, U. (2005). Complex play
systems: Results from a classroom implementation
of Vbot. Paper presented at the annual meeting of
the American Educational Research Association,
Montreal, Canada.

Blank, D. (2006). Robots make computer science
personal. Communications of the ACM, 49(12),
25–27. doi:10.1145/1183236.1183254

Blikstein, P., & Wilensky, U. (2006). An atom is
known by the company it keeps: A construction-
ist learning environment for materials science
using multi-agent simulation. Paper presented at
the Annual Meeting of the American Educational
Research Association, San Francisco, CA.

Blikstein, P., & Wilensky, U. (2007). Bifocal
modeling: a framework for combining computer
modeling, robotics and real-world sensing. Paper
presented at the annual meeting of the American
Educational Research Association, Chicago, IL.

Brin, S., & Page, L. (1998). The anatomy of a large-
scale hypertextual Web search engine. Computer
Networks and ISDN Systems, 30(1-7), 107 - 117.

Brueckner, S. (2000). Emergent Sorting: Software
Demonstration at the Fourth International Con-
ference on Autonomous Agents (Agents 2000),
Barcelona, Spain.

Buckley, M., Nordlinger, J., & Subramanian, D.
(2008, March 12-15). Socially Relevant Com-
puting. Paper presented at the Proceedings of
the 2008 Annual Meeting of the Special Interest
Group in Computer Science Education, Portland,
Oregon, USA.

Carver, J. C., Henderson, L., He, L., Hodges, J.,
& Reese, D. (2007). Increased Retention of Early
Computer Science and Software Engineering
Students using Pair Programming, Proceedings
of the 20th Conference on Software Engineering
Education \& Training (pp. 115-122).

Cushing, J. B., Weiss, R., & Moritani, Y. (2007).
CS0++ broadening computer science at the entry
level: interdisciplinary science and computer sci-
ence. J. Comput. Small Coll., 23(2), 51–57.

Davidsson, P. (2002). Agent based social simula-
tion: A computer science view. Journal of Artificial
Societies and Social Simulation, 5(1), 7.

Denning, P. J., & McGettrick, A. (2005). Recenter-
ing computer science. Communications of the ACM,
48(11), 15–19. doi:10.1145/1096000.1096018

diSessa, A. (2001). Changing minds: Comput-
ers, learning, and literacy. Cambridge, MA: The
MIT Press.

Downey, A. B., & Stein, L. A. (2006). Designing
a small-footprint curriculum in computer science,
Proceedings of the 36th ASEE/IEEE Frontiers in
Education Conference.

Epstein, J., & Axtell, R. (1996). Growing artifi-
cial societies: Social science from the bottom up.
Washington, DC: Brookings Institution Press.

Fagin, B., & Merkle, L. (2003). Measuring the ef-
fectiveness of robots in teaching computer science.

Flowers, T., & Gossett, K. (2002). Teaching
problem solving, computing, and information
technology with robots. Journal of Computing
Sciences in Colleges, 17(6), 45–55.

Goode, J. (2007). If You Build Teachers, Will
Students Come? The Role of Teachers in Broad-
ening Computer Science Learning for Urban
Youth. Journal of Educational Computing Re-
search, 36(1), 65–88. doi:10.2190/2102-5G77-
QL77-5506

Guckenheimer, J., & Ottino, J. M. (2008). Foun-
dations for Complex Systems Research in the
Physical Sciences and Engineering. National
Science Foundation.

23

MAgICS

Guzdial, M. (2003). A media computation course
for non-majors. SIGCSE Bulletin, 35(3), 104–108.
doi:10.1145/961290.961542

Hethcote, H. (1989). Three basic epidemiological
models. Applied Mathematical Ecology, 119–144.

Howland, J. (1997). It’s all in the language (yet
another look at the choice of programming lan-
guage for teaching computer science). Journal
of Computing in Small Colleges, 12(4), 58–74.

Johnson, S. (2001). Emergence: The Connected
Lives of Ants, Brains, Cities and Software. Allen
Lane.

Katz, S., Allbritton, D., Aronis, J., Wilson, C., &
Soffa, M. L. (2006). Gender, achievement, and
persistence in an undergraduate computer sci-
ence program. SIGMIS Database, 37(4), 42–57.
doi:10.1145/1185335.1185344

Kolikant, Y. B.-D. (2001). Gardeners and cinema
tickets: High school students’ preconceptions of
concurrency. Computer Science Education, 11(3),
221–245. doi:10.1076/csed.11.3.221.3831

Levy, S. T., Novak, M., & Wilensky, U. (2006).
Students’ foraging through the complexities of the
particulate world: Scaffolding for independent
inquiry in the connected chemistry (MAC) cur-
riculum. Paper presented at the annual meeting of
the American Educational Research Association,
San Francisco, CA.

Levy, S. T., & Wilensky, U. (2009). Crossing levels
and representations: The Connected Chemistry
(CC1) curriculum. Journal of Science Education
and Technology, 18(3), 224–242. doi:10.1007/
s10956-009-9152-8

Moritz, S. H., Wei, F., Parvez, S. M., & Blank,
G. D. (2005, June 27-29). From objects-first to
design-first with multimedia and intelligent tutor-
ing. Paper presented at the Proceedings of the 10th
annual conference on Innovation and techology in
computer science education, Caparica, Portugal.

NRC. (2003). BIO2020: Transforming under-
graduate education for future research biologists.
Washington, DC.

Overmars, M. (2004). Teaching computer sci-
ence through game design. Computer, 81–83.
doi:10.1109/MC.2004.1297314

Panait, L., & Luke, S. (2005). Cooperative multi-
agent learning: The state of the art. Autonomous
Agents and Multi-Agent Systems, 11(3), 387–434.
doi:10.1007/s10458-005-2631-2

Papert, S. (1980). Mindstorms: children, com-
puters, and powerful ideas. New York: Basic
Books, Inc.

Patterson, D. A. (2005). Restoring the Popularity of
Computer Science. Communications of the ACM,
48(9), 25–28. doi:10.1145/1081992.1082011

Pears, A., Seidman, S., Malmi, L., Mannila, L.,
Adams, E., Bennedsen, J., et al. (2007). A survey
of literature on the teaching of introductory pro-
gramming. Paper presented at the Working group
reports on ITiCSE on Innovation and technology
in computer science education.

Radenski, A. (2006). “Python first”: a lab-
based digital introduction to computer sci-
ence. SIGCSE Bulletin, 38(3), 197–201.
doi:10.1145/1140123.1140177

Rashid, R. (2008). Image Crisis: Inspir-
ing a new generation of computer scientists.
Communications of the ACM, 51(7), 33–34.
doi:10.1145/1364782.1364793

Resnick, M., & Wilensky, U. (1992). StarLogo
workshop. Paper presented at the Artificial Life III.

Resnick, M., & Wilensky, U. (1998). Diving Into
Complexity: Developing Probabilistic Decentral-
ized Thinking Through Role-Playing Activities.
Journal of the Learning Sciences, 7(2), 153–172.
doi:10.1207/s15327809jls0702_1

24

MAgICS

Reynolds, C. W. (1987). Flocks, herds and schools:
A distributed behavioral model. Paper presented
at the SIGGRAPH ‘87: Proceedings of the 14th
annual conference on Computer graphics and
interactive techniques, New York, NY, USA.

Sengupta, P., & Wilensky, U. (2008). On Learning
Electricity with Multi-agent Based Computational
Models (NIELS). Paper presented at the Proceed-
ings of the International Conference of the Learn-
ing Sciences (ICLS), Utrecht, The Netherlands.

Stein, L. (1999). Challenging the computa-
tional metaphor: Implications for how we think.
Cybernetics and Systems, 30(6), 473–507.
doi:10.1080/019697299125073

Tisue, S., & Wilensky, U. (2004). NetLogo: A
Simple Environment for Modeling Complexity,
Proceedings of the International Conference on
Complex Systems.

Wilensky, U., & Rand, W. (in press). An introduc-
tion to agent-based modeling: Modeling natural,
social and engineered complex systems with
NetLogo. Cambridge, MA: MIT Press.

Wilensky, U., & Reisman, K. (2006). Think-
ing Like a Wolf, a Sheep, or a Firefly: Learn-
ing Biology Through Constructing and Testing
Computational Theories-An Embodied Model-
ing Approach. Cognition and Instruction, 24(2),
171–209. doi:10.1207/s1532690xci2402_1

Wilensky, U., & Resnick, M. (1999). Think-
ing in Levels: A Dynamic Systems Approach
to Making Sense of the World. Journal of Sci-
ence Education and Technology, 8(1), 3–19.
doi:10.1023/A:1009421303064

Wing, J., M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33–35.
doi:10.1145/1118178.1118215

addItIonal readIng

Kornhauser, D., & Wilensky, U. (2007). NetLogo
Particle System Flame model: Center for Con-
nected Learning and Computer-Based Modeling.
Evanston, IL: Northwestern University.

Rand, W., & Wilensky, U. (2006). NetLogo Ar-
tificial Neural Net model: Center for Connected
Learning and Computer-Based Modeling. Evan-
ston, IL: Northwestern University.

Stonedahl, F., & Wilensky, U. (2008a). NetLogo
Particle Swarm Optimization model: Center for
Connected Learning and Computer-Based Mod-
eling. Evanston, IL: Northwestern University.

Stonedahl, F., & Wilensky, U. (2008b). NetLogo
Simple Genetic Algorithm model: Center for Con-
nected Learning and Computer-Based Modeling.
Evanston, IL: Northwestern University.

Stonedahl, F., & Wilensky, U. (2008c). NetLogo
Virus on a Network model: Center for Connected
Learning and Computer-Based Modeling. Evan-
ston, IL: Northwestern University.

Stonedahl, F., & Wilensky, U. (2009). NetLogo
PageRank model: Center for Connected Learning
and Computer-Based Modeling. Evanston, IL:
Northwestern University.

Wilensky, U. (1997a). NetLogo Painted Desert
Challenge model: Center for Connected Learning
and Computer-Based Modeling. Evanston, IL:
Northwestern University.

Wilensky, U. (1997b). NetLogo Traffic Basic
model: Center for Connected Learning and
Computer-Based Modeling. Evanston, IL: North-
western University.

Wilensky, U. (1998). NetLogo Flocking 3D model:
Center for Connected Learning and Computer-
Based Modeling. Evanston, IL: Northwestern
University.

25

MAgICS

Wilensky, U. (1999). NetLogo: Center for Con-
nected Learning and Computer-Based Modeling.
Evanston, IL: Northwestern University.

Wilensky, U. (2003). NetLogo Dining Philoso-
phers model: Center for Connected Learning
and Computer-Based Modeling. Evanston, IL:
Northwestern University.

endnotes

1 Generally speaking, it is not. Real-world
networks usually display a power-law degree

distribution and “small-world” structure
which includes the presence of long-distance
links. However, we consciously chose this
spatially-restricted network structure to
support clear visualization of the contagion
process.

2 The Particle Systems model is technically
divided into four distinct NetLogo model
files — Basic, Flame, Fountain, and Wa-
terfall — but they are all grouped together
because they express the same fundamental
idea.

