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Abstract

This paper addresses the difficulties in evaluating the impact of choice-based reforms in
education by developing an agent-based model that captures the dynamic processes related to
moving from a neighborhood-based to choice-based system. Using data from Chicago Public
Schools to estimate and set initial conditions of the model, we illustrate how differences in
participation rates and capacity constraints can result in uneven treatment effects across school
choice programs, and suggest an approach of indexing results across contexts. Simulations
also reveal how a high emphasis on school achievement by individuals choosing schools can
paradoxically constrain district-level achievement by limiting the number of new schools that
survive in a district.

1 Introduction

Much controversy surrounds choice-based reforms in education. On one hand, proponents of choice-

based reforms claim that giving parents the ability to choose the school their children attend

provides both access to better schooling for disadvantaged populations as well as the incentives

necessary for school reform (Chubb & Moe, 1990). On the other hand, opponents of school choice

claim that choice-based programs will not bring about the hoped for improvements in schools, but

instead only drain resources from troubled schools that can least afford to lose them (Fiske & Ladd,

2000).

Unfortunately, empirical research on the causal effect of choice programs has yet to resolve the

controversy. One line of research investigates whether the students who attend “choice” schools

(e.g, private schools, public magnet schools, charter schools) are better off than those who do not.
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Observational studies using a variety of approaches to account for selection bias have resulted in

disputed findings, with some finding better educational outcomes for students who attend magnet

(Gamoran, 1996) or Catholic schools (Bryk et al., 1993; Coleman et al., 1982; Evans & Schwab,

1995; Morgan, 2001); others finding little to no effect on academic achievement (Alexander & Pallas,

1983; Goldhaber, 1996; Neal, 1997); and yet others raising serious concerns about the approach

used to deal with selection bias (Altonji et al., 2002).

Perhaps even more surprisingly, field studies taking advantage of the lotteries put in place to deal

with oversubscription to choice programs have not yielded conclusive evidence on the “treatment

effect” for choosers. Randomized field trials of pilot voucher programs in Milwaukee (Greene et

al., 1997; Rouse, 1998; Witte et al., 1995), New York City, Dayton, and Washington, DC. (Howell

et al., 2002), have resulted in effect sizes ranging from small to modest, with debates around

methodological issues pertaining to selective attrition in Milwaukee (Witte, 1997), and subgroup

definition in New York City (Krueger & Zhu, 2004). Cullen et al. (2006) find that lottery winners

in Chicago’s public choice program experience improvements in nontraditional outcomes such as

reduction in disciplinary incidents, but not in more traditional measures such as test scores and

drop-out rates.

Of course, even if one could establish a clear causal relationship between attending choice schools

and academic performance, the findings would have to come with the caveat that they are not an

evaluation of the systemic effect of choice programs. Improvement could arise from a number of

mechanisms that go beyond students sorting themselves into better schools1, particularly through

the competition induced by household choice (e.g., Hoxby, 2003). Indeed, embedded in the logic of

school choice reform is a dynamic causal story, which can be stated roughly as follows:

More choice leads to the movement of students. Schools losing students feel pressure
to change in order to attract and keep students, which in turn creates pressure for all
schools to change. Choice also creates the opportunity for new schools to enter the
market, providing students with a wider range of options, and further increasing the
competitive pressure on existing schools. Bad or undesirable schools improve or close;
good or desirable ones survive; and new, stable levels of enrollments, school types, and
student achievement are reached. If the subsequent resorting of students does not lead
to clusters of low achieving students, or if the effects of that clustering are not large,
the mean level of student achievement will be higher than before.

1A school can be “better” either in an absolute sense, or in the sense that it is a more appropriate match for a
given student.
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Work attempting to pinpoint the “treatment effect” of choice for choosers provides a valuable

input to the causal story – an indication of the extent to which schools differ in their ability to

increase student achievement – but it does not address the entire story. Moreover, even on this

narrower question of whether current choice schools do a better job of educating students, only

by understanding the dynamics that lead to the observed estimates can one reasonably synthesize

results from treatment effects studies. For example, one cannot make a valid comparison of the effect

size of choice on participants estimated from a large scale choice program like the one in Chicago

to the effect size estimated on participants in a small, pilot program like the one in Milwaukee,

without knowing the nature and extent of schools’ competitive response in each; i.e., it is quite

possible that the experience of the control group changed over time in one, narrowing the gap

between choosers and non-choosers, but not in the other.

A second line of school choice research attempts to identify a causal effect on system-level per-

formance by exploiting variation in competition across metropolitan areas. These studies typically

investigate the association between indicators of competition levels such as market concentration

ratios or private school enrollments, and academic outcomes such as test scores and graduation

rates. Belfield & Levin (2002) review this literature and find results ranging from no statistical

significance to modestly sized associations. The potentially endogenous nature of the competition

measures used in this work, however, make pinpointing the causal effect difficult, and have led to

substantial controversy over the techniques used to ameliorate such concerns (e.g., Hoxby, 2005;

Rothstein, 2005). But again, even with greater confidence in the magnitude of the association

between system-level outcomes and competition measures, we would still need to know more about

the mechanisms responsible for the association in order to evaluate the entire causal story. For in-

stance, is the aggregate relationship a consequence of threatened schools improving, new and better

entrants displacing poor performing schools, students sorting more beneficially across schools, or

some combination? Since different choice-based policy prescriptions address each of these mecha-

nisms to a different degree, the answer to this question is at least as important as the estimation

of a causal effect.

In this paper, we take a step towards directly investigating the dynamic processes related to

school choice reform through the use of agent-based modeling (ABM) – a computational approach

often used in complex systems research to study the system-level patterns that emerge over time
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from the interactions of heterogeneous agents (Epstein & Axtell, 1996; Miller & Page, 2007; Wilen-

sky, 2001). Though more common in the traditional sciences, agent-based modeling cuts across

disciplinary boundaries and is becoming increasingly used in social science (e.g., Miller & Page,

2007; Axelrod, 1984; Epstein & Axtell, 1996; Tesfatsion & Judd, 2006). Typically, agent-based mod-

els are comprised of three components: agents, environment, and rules (see Introduction, Epstein

& Axtell, 1996; Wilensky & Rand, 2009). In the context of a social system, agents represent people

with heterogeneous attributes. The attributes can be fixed characteristics like race and gender, or

attributes that can change over time such as wealth and economic preferences. The environment

often takes the form of a lattice of geographic sites, or patches; a set of links between agents repre-

senting social relations; or both. For example, a patch might represent a geographic census block

and have an attribute that captures the economic resources of that block. A link might represent a

friendship that exists between two people and have an attribute that denotes the strength of that

friendship. Rules govern the behavior of the agents and the environment. An example of an agent

rule might be something like “always purchase the bundle of goods that maximizes your utility.”

For a patch, a rule might govern some underlying rate of growth or decay of the resources at that

site. Rules can also govern the interaction between agents and their environment (e.g., “move to

the patch with the best schools”), as well as the formation of new links (e.g., “form a friendship

with a friend of a friend”).

By varying the rules of the agents and the environment, such a framework can be used to study

a large range of questions related to school choice reform. In this paper, we focus on gaining a better

understanding of (i) the factors that give rise to different treatment effects between chooser and

non-choosers, and (ii) the sensitivity of district-level outcomes to differences in student preferences.

More specifically, we develop a model of a school district’s transition from a catchment area system

to a common form of school choice known as “open enrollment”, where households can choose

among existing public schools in the district, but do not receive vouchers to go outside of the public

system. The agents in our model are schools and students. Students vary in ability and background.

Schools vary in quality and building capacity. Students rank schools by using a preference function

based on the mean achievement and geographic proximity of a school. Their academic achievement

results from a combination of individual traits and the “value-added” parameter of the school they

attended.
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We use data from Chicago Public Schools to initialize the model in a plausible manner.2 Analysis

of the model reveals how differences in participation rates and capacity constraints can result in

uneven treatment effects across school choice programs. Simulations also reveal how a high emphasis

on school achievement at the household-level can constrain district-level achievement by limiting

the number of new schools that can survive in a district – a paradoxical mismatch between micro-

and macro-levels of behavior.

While not in the same modeling tradition, our study is related to computational general equi-

librium (CGE) models of school finance (Epple & Romano, 1998; Nechyba, 2000; Fernandez &

Rogerson, 2003; Ferreyra, 2007) This literature emphasizes that individual reactions to school

choice policies can aggregate in ways that impact the larger economic environment (through the

housing market, for example), and uses computation to better understand the possible consequences

of that aggregation (for review, see Nechyba, 2003). Our study can be viewed as a complement

to this work in two broad ways. First, we focus on public school choice – a common variant of

school choice reform not directly addressed by most of this work.3 Second, even beyond the focus

on public choice, we tackle a different set of questions than is usually asked in CGE models. CGE

models typically calibrate school and student behavior to values consistent to aggregate data, then

ask questions about how different school financing systems would impact the level and distribution

of school quality. In our model, we initialize students and schools with micro-level data and then

ask how educational outcomes under a choice program might differ if the students or schools were

to behave differently.

The paper proceeds in four main sections. The first section presents a highly stylized agent-

based model of the transition from a catchment area to open enrollment system to illustrate and

further motivate the approach. The second section develops a more detailed model of the transition

to school choice, using data from Chicago Public School’s open enrollment program to initialize

parameters, and uses the model to conduct computational experiments similar to the work using

randomized lotteries to isolate achievement differences between choosers and non-choosers that can

be attributed to the existence of a choice program. The third section extends the previous model by

2Although we use data from a particular district, our goal is not to test the outcomes of a specific program or
school choice approach.

3A notable exception is Epple & Romano (2003), who develop a model where households can choose public schools
without changing neighborhoods, and investigate the role of “friction” in that choice (such as transportation costs)
in determining the distribution of quality across schools.
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allowing new entrants to the district (which one can think of as in a public choice context as charter

schools), and then examines the emergence of two district-level outcomes – market concentration

and mean achievement. The final section concludes and outlines areas of future work.

2 Model I: An Illustrative Example

In this section, we present a highly simplified agent-based model of a school district which will

be elaborated as the paper progresses. Model I (Figure 1) presents a hypothetical school district

with two types of agents – schools and students. This hypothetical district is comprised of nine

neighborhoods each containing one school, and students residing in a particular neighborhood can

only attend their neighborhood school. The goal of Model I is to examine the dynamics of changing

from this typical catchment system, to a system where households have choice among all public

schools in the district. To provide a simple starting point, Model I leaves out complicating factors

such as capacity constraints and heterogeneity in household decision-making and simply asks: What

if we could change the world in a way where, from this point forward, all new students were able

to attend the school with the highest mean achievement?

2.1 Model Description

The district and its agents. The simulation takes place on a grid of 18 x 18 sites (patches)

that represents the geography of the school district.4 This hypothetical district is divided into nine

6 x 6 neighborhoods, as shown in Figure 2. One school is set in each of the nine neighborhoods

of the district, and each school is comprised of four grades, with an equal number of students in

each grade. The district is conceived as a public school district, so all schools are tuition-free to all

students in model.

In Model I, the district is compromised of 150 total students whose location is determined by

a random draw from a uniform distribution of all locations on the grid. In the initial state of

the model, all students were required to attend their respective neighborhood school. If given the

opportunity to chose, students have perfect information about the mean achievement of each school

4All models in this paper were created using the NetLogo Programmable Modeling Environment (Wilensky,
1999). NetLogo comes with an interface to the Mathematica scientific computing environment (Wolfram Research
Inc., 2007) which was used to collect and analyze batches of simulation runs under different parameter settings
(Bakshy & Wilensky, 2007).
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Figure 1: NetLogo Model of School Choice (Model I)

and no mobility constraints.

Each neighborhood differs in its mean level of socioeconomic status. Model I reflects this

difference in neighborhoods by initializing students that reside in each neighborhood with differing

levels of achievement. The students residing in Neighborhood 9 have the highest mean achievement

and the students in Neighborhood 1 have the lowest, with a linear decrease in mean achievement

between Neighborhoods 9 and 1. Achievement across students is distributed normally within each

neighborhood, allowing for some overlap in distributions between neighborhoods.

A single time period. The simulation takes place in discrete steps, which can be thought of as

a time period of one year. Each time period of the model proceeds as follows:

1. New, incoming students to the system must choose a school in the district to attend; one
interpretation is that they are 8th graders choosing a high school to attend.

2. The incoming students always choose to attend the school with the highest mean achievement
from the last period; they use no other selection criteria are are no longer required to attend
their neighborhood school.

3. All schools must accept all students who apply; there are no capacity constraints.

4. Schools update their mean achievement and total enrollment given their new students.
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Figure 2: District Geography of Model I

1 2

4

7 9

5

3

6

8

Increasing SES

In
crea

sin
g
 S

E
S

5. Any school whose enrollment drops below three students, permanently closes.

6. Students who have been at a particular school for four years “graduate” or leave the system.
They are replaced with an equal number of incoming students who must enroll in one of the
nine schools, and whose residence is also distributed randomly across the nine neighborhoods.
Students already attending a particular school and not graduated must stay enrolled in the
same school.

2.2 Who Survives?

One might think that the results of such a simulation are trivial: if everyone chooses based on

achievement, and there is perfect information and mobility, then the school with the highest mean

achievement (School 9), will end up with all the students in a just a few time periods. However,

Figure 3 shows the frequency of survival by school across 100 simulations. Since there are no

capacity constraints, as expected, only one school survives in each run of the simulation. However,

aside from Schools 1-5 that never survive, despite being the school with the highest initial mean

achievement, School 9 is the school that survives the fewest number of times.

The explanation for School 9’s failure to win on every run is simple, but only after investigating

the dynamics of how the results emerge. In a world of perfect information and perfect mobility

where everyone chooses, all the new incoming students – including the low achieving ones – rush to

the highest achieving school. This lowers the mean achievement of School 9, often enough to give

one of the other schools a chance to take the lead. In the next time step, all new incoming students
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Figure 3: Frequency of Survival By School (Model I, 100 total runs)
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rush to the new leader, producing the same dynamic. Consequently, none of the “top schools are

guaranteed a victory.

2.3 Adding School Effects

Currently schools in Model I do nothing to improve the achievement of their students – they simply

report the mean of the achievement of the students; there are no “school effects” in the model. An

alternative assumption is that schools help produce achievement gains for the students who attend

their schools, and differ in their ability to do so. Model I incorporates this notion by giving a school

an additional attribute: value-added.

The value-added of a school in Model I is defined as the amount (in standard deviation units)

that a student’s achievement increases each year they attend a particular school. Like achievement,

value-added varies across the neighborhoods; School 9 in Neighborhood 9 is given the highest value-

added and School 1 in Neighborhood 1 the lowest, with a linear decrease in between. So now, School

9 is not only the school initialized with the highest achieving students, but it is also that one that

indisputably has the highest value-added of any school in the district.

Figure 4 illustrates what happens to school enrollments on a typical run of the simulation with

otherwise the exact same rules as before. The lowest achieving schools, Schools 1-6, die out quickly,
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Figure 4: Student Enrollments by School (School Effects “On”)
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and School 7 remains for approximately 40 time periods. The two highest achieving and highest

value-added schools – Schools 8 and 9 – survive and their enrollments fluctuate from year to year.5

School 9 has a higher initial mean achievement, a higher value-added, and can grow instantly to

accommodate all the students in the district. Yet still in one year School 8 has more students, the

next few years School 9, then School 8 again, and so on. The reason for this oscillation is the exact

same dynamic identified above when there were no school effects – the school with the highest mean

achievement draws students that lower its mean achievement, making another school the “best” in

the following year. The addition of school effects simply slows down the process enough for one

additional school to survive, and biases it towards the higher value-added schools.6

In summary, although Model I clearly lacks many mechanisms that operate in a real world

school choice program, it nicely illustrates a common occurrence in the study of complex systems

that motivates an agent-based modeling approach: even when micro-level behavior is simple and

perfectly understood, the emergent macro-level results are still often highly surprising.

5Occasionally, School 7 survives and School 8 does not.
6 In fact, other types of “friction” in the system, like running the simulation with imperfect information about

school achievement, would do the same thing.
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3 Model II: Initializing with Chicago Public School Data

In Model II, we made two changes important for trying to understand the outcomes that emerge

in public choice programs. First, we introduced a constraint on individual school growth. Second,

we ensured that the initialization of the model parameters, such as student achievement and school

value-added, corresponded with a set of reasonable, real world values – in this case, data on students

and schools from Chicago Public Schools open enrollment program during the years of 2000 - 2003.

We then used the model to conduct computational experiments comparing the differences between

student “choosers” and “non-choosers,” in a manner similar to current literature evaluating pilot

choice programs.

3.1 Model Description

Model II builds on the same basic idea as Model I: There are two set of agents – students and

schools – who operate on a landscape that represents the geography of the district. The simulation

begins in a state where all students attended their assigned neighborhood school, and the first time

period of the simulation represents the first year when students can choose. Although the model

could represent the school choice decision at any level, we treat the schools as high schools, and the

students as 8th graders choosing among the schools. An overview of the model is presented first,

followed by the precise specification of the agent rules in subsequent sections.

Each time period of the simulation proceeds as follows:

1. The model is populated with 5000 incoming students, and a fraction of them are randomly
designated as “choosers”; the fraction is determined by the tunable parameter, pctChoosers

2. The “choosers” rank schools in accordance to their preferences, and in random order at-
tempt to attend their top choice school; the remainder of the students attend their assigned
neighborhood school.

3. If there are no available spaces at the student’s top choice, the student attempts to attend
the next school on their ranked-list, and continues to try schools until finding one with room.
Regardless of availability, a student’s assigned neighborhood school must accept them.

4. Students update their achievement level; the updated achievement depends both on the stu-
dent’s individual-level attributes and the value-added of the school they attend.

5. Schools update their aggregate enrollment and achievement values; they also estimate the
number of spaces available for new students next year.
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6. Schools that do not meet a minimum threshold of enrollment are permanently closed.

7. Students completing their fourth year in a school, graduate from the system; a student stays
at the same high school all four years.

3.2 Student Attributes and Initialization

To populate the model with new incoming students in each time period, Model II samples from a

set of 17,131 incoming high school students identified from data made available by Chicago Public

Schools (CPS).7 The goal was to create initial conditions that resembled a district where students

attended assigned, neighborhood schools so students who attended magnet and selective schools

where not included.

A given student i in the simulation has the following attributes, corresponding to the actual

CPS student data:

• {xcori, ycori}: the geographic location based on the student’s home census block

• achiev1i: incoming achievement taken from the student’s 8th grade score on the math portion
of the Iowa Test of Basic Skills; the scores were standardized across all students in the district.

• achiev2i: current achievement as determined in the simulation

• povertyi: the concentration of poverty in the student’s home census block

• assignedi: neighborhood school assigned to the student by CPS

• attendedi: actual school attended by the student as determined by the simulation

• whitei: 1 = white, 0 = other race

• malei: 1 = male, 0 = female

3.3 School Attributes and Initialization

The simulated district consists of 43 neighborhood schools, all of whom had students that were a

part of the 17,131 student sample. A given school j in the simulation has the following attributes,

corresponding to the actual CPS data:

7To enter the set of 17,13, a student had to a) attend 9th grade at a CPS high school between the years of 2000
and 2003, b) attend a CPS school in the 8th grade, c) remain in the same home census block between 8th and 9th
grade, and d) have valid and non-missing 8th and 11th grade standardized test scores. As it will be made clear below,
the fact that students get re-used in this process is not a problem since the key attributes – current achievement and
attended school – are determined by the simulation.
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• {xcorj , ycorj}: the geographic location based on the school’s address

• enrollj : the total number of students enrolled in the school

• maj : the mean achievement of all the students that attend the school

• vaj : the value-added of the school; a fixed value estimated from the CPS data

• dcj : the design capacity of the school’s building8

• maxcapj : the maximum enrollment capacity of the school; it equals the design capacity
multiplied an exogeneous parameter, expansion

• expassgnj : the expected number of students assigned to the school expected to actually
attend the school in the following time period; it equals the mean of enrollj from the last
four time periods

• availspj : the number of available spaces

• closedj : 1 = permanently closed, not accepting new students; 0 = open and accepting new
students

• newj : 1 = school created after time 0, 0 = initial school

An approximate value-added of each school was obtained from the CPS data by using the

school-level residuals of a hierarchical linear model estimated for the sample of students used in

the simulation, as described in more detail in Appendix A. Schools were otherwise initialized by

running the model for five time periods, under the condition that students were forced to attend

their assigned school. A representative initialization of the district is presented in Figure 5.9

3.4 Student Rules

Achievement growth. Current achievement is updated only once for each student, at the com-

pletion of the first year at the school, and remains constant after the initial update. The current

achievement for student i attending school j is determined using the following equation estimated

from CPS data as described in Appendix A:

achiev2ij =

−0.0956 + 0.6794 ∗ achiev1i + 0.1567 ∗ whitei + 0.1151 ∗malei − 0.0629 ∗ povertyi + vaj + rij ,

8Several schools were missing design capacities in the data. In those cases design capacity of the school was
estimated as five times the size of the average incoming freshman class to that school.

9In 2000 CPS had already had an open enrollment program for quite some time. Consequently, our value-added
estimates would reflect improvements made by schools up to that point in response to the program.
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Figure 5: Representative Initialization for Models II and III. A circle represents a
school. The circle’s size is proportional to the school’s enrollment, and its color
indicates the mean achievement of the school (green = high, red = low). Schools
are placed at the geographic location of their address. The small dots represent
students, who are placed within their home census block and attend their assigned
school.
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rij ∼ N(0, 0.3921)

School choice. Incoming students select a school to attend and remain at the school for four

years. Students who are not choosers attend their assigned neighborhood school. Students who are

randomly designated as choosers, rank schools using a utility function that trades off between the

mean achievement of the school, and its geographic proximity to the student, given by:

Uij(maj , proximityij) = maαj ∗ proximity
(1−α)
ij

where α is a tunable parameter that alters the weight given to the mean achievement of the school

relative to the geographic proximity of the school to the student. Proximity is a function of distij ,

the euclidian distance between a student and a school, and is normalized with respect to distmax,

the maximum distance between two points in the district:

proximityij =
distmax−distij

distmax

After ranking their schools the choosers “apply” to their top choice school. Students apply to

schools in random order each time period. If the school accepts them, it decrements the available

spaces at that school. If the school does not accept them, students apply to the next school on

their utility-ranked list. Regardless of availability, a student’s assigned neighborhood school must

accept them.

3.5 School Rules

School acceptance policy. Schools must accept students that are assigned to them. Students

assigned to other neighborhood schools who apply are accepted on a first come, first served basis,

as long as there is space available in the 9th grade. Space is limited by the design capacity of

the school, dc, which can be scaled by expansion. Additionally, since there is only one round

of application and acceptance in each time period, schools must forecast the number of students

assigned to them that will actually attend their school. They do so based on the mean of the number

of incoming assigned students that attended their school in the previous four years, expassgn. The
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available space at the beginning of any given time period is then given by:

availspj =
expansion ∗ dcj

4
− expassgnj

No other selection criteria are used.

School closure. Schools permanently close if their total enrollment in all grades drops below

exogenously determined fraction of their design capacity, ct. The only exception to this is for new

schools, who are given a four year “incubation” period during which they do not have to meet the

minimum enrollment threshold. Incoming students who are assigned to a closed incoming school,

are reassigned randomly to one of the two geographically nearest schools.10 Unless otherwise noted,

for all the results presented in this paper, ct = 0.05.

3.6 Computational Experiments and Analysis

In the computational experiments presented in this section, we examined the “treatment effect”

of a public choice program – i.e., the difference in achievement between choosers and non-choosers

attributable to the being able to attend a school of their own choosing – varied depending on a)

the school choice decision rule used by the choosers, and b) the percentage of students who take

advantage of the ability to choose. Data were generated by running the Model II for twenty time

periods under various combinations of α and pctChoosers. The model represents a stochastic pro-

cess, so each unique combination of parameters was repeated twenty times to create a distribution

of outcomes. Unlike Model I, the introduction of capacity constraints stabilizes the year-over-year

enrollment levels. Consequently, the achievement comparisons at the end of twenty time periods

represent steady-state comparisons.

Figure 6 plots the final mean achievement across all students versus the percent of them who

10School closure also creates a situation where a number of existing, upper-class students are left without a school
to attend. One could create a rule for reassignment of those students, but in the results presented in this paper those
students are assumed to leave the system. For the small closing threshold used in this simulation, this typically results
in a very small number of students who leave the system, and subsequently does not alter the results. Additionally,
losing the students does not impact the capacity of the system since each school determines available space only with
respect to the 9th grade (i.e., only incoming, and not existing, students are used in the available space calculation.)
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Figure 6: Mean Achievement vs. Percent Choosers
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Figure 7: Treatment Effect vs. Percent Choosers
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choose, at several different values of α. Figure 7 plots the treatment effect at the completion of the

simulation given the same conditions. Since choosers are randomly selected, the treatment effect for

any given run of the model can simply be calculated by taking the difference in mean achievement

between choosers and non-choosers at the completions of the run. Each point represents the average

across the twenty runs for that particular combination of parameters, and mean achievement is

measured in standard deviations.11

The first thing to note is that the overall change across runs in Figure 6 is rather small. Even

in the best case scenario, the difference between the initial mean achievement and the final mean

achievement after giving students choice is not greater than 0.05 standard deviations. The reason

for this is that for the sample of CPS students used to initialize the model, school effects are only

responsible for a small fraction of the overall variance achievement (approximately 5% - 8%, see

Appendix A). Stated differently, given the current distribution of value-added across schools – and

in particularly the current values at the high end of the distribution – a school’s value-added makes

a relatively small contribution to a student achievement growth.

When comparing the mean achievement in each of the scenarios in Figure 6, there were no

surprises. The more that individual students favored achievement relative to geographic proximity

(i.e., high α), the higher the mean achievement. Since mean achievement and value-added are

positively correlated, the gain comes straightforwardly from student attending higher value-added

schools. Also, with the exception of the case where students heavily favor geographic proximity

(α = 0.2), the more people who choose, the higher the mean achievement.

However, when comparing the treatment effects across scenarios (Figure 7) notice that the treat-

ment effect often goes down when there is greater participation – the exact opposite relationship

than what is observed when one calculated the overall mean achievement of the students under each

counterfactual condition.12 There are two reasons for this, both of which highlight the importance

of considering the underlying dynamics of a system when estimating causal effects. The first is that

the experience of the control group – the non-choosers – changed. In the simulation, when there is

11The test scores where standardized across all students for a particular year of the test, and not only the students
included in this sample. The fact that the mean across students in the simulation is slightly less than zero, reflects
the fact that their incoming test scores are on average lower than students who attended selective schools, but were
not included in the sample.

12We also ran the experiment using simulations where students choose schools based on the true value-added of the
school, as opposed to the emergent mean achievement. The results presented here are even more pronounced under
this condition.
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high participation, a few of the low value-added schools close. This necessitates a reassignment of

8th grade students that would have attended the closed schools to new, higher value-added neigh-

borhood schools, making the mean among non-choosers higher. The second reason is less often

discussed, but perhaps a more likely real world situation – capacity constraint. More specifically,

when there is very low participation and some excess capacity at the better schools, all partici-

pants looking for a new school find a spot at one of the highest value-added schools. As more and

more people take advantage of the open enrollment option, and the top schools reach capacity, the

choosers necessarily have to go to schools that do not have as high value-added (but likely still

better than the schools from which they came). Consequently, the mean achievement value of the

choosers is lower when more students choose.

To verify the latter reason, we run the Model II 200 times, each time randomly assigning the

percentage of students who choose (pctChoosers), and the amount of initial excess capacity in the

system (governed by the expansion variable). These two factors together determine the number of

better “seats” available to participants in a choice program, which we capture by creating a measure

called better available capacity, or bac. More specifically, bac is calculated by asking every student

who is a chooser to calculate the quantity, betterSpacesPerSchool, the number of spaces per school

available to them at a schools with a higher value-added. bac is the mean of betterSpacesPerSchool

across all choosers in the initial time period. As expected, Figure 8 illustrates a clear relationship

between bac and treatment effects (as measured at the end of each run), with higher levels of

better available capacity corresponding to larger differences in achievement between choosers and

non-choosers.

4 Model III: Allowing New Entrants

Although Model II presents an environment useful for comparing choosers to non-choosers, such

a comparison can only partially inform the larger question of whether increased choice would lead

to better district-level outcomes. Two additional mechanisms are key to the causal story. The

first is that choice may prompt existing schools implement new and improved ways of educating

their students in response to competitive pressures. The second is that choice could enable the

entry of new schools in the district with more effective ways of educating students. Indeed, some
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Figure 8: Mean Achievement vs. Better Available Capacity
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public choice programs – like the one in Chicago – are accompanied by a parallel effort to open

charter schools with more freedom to operate their school in a manner the founders see fit. In

Model III we introduced the latter mechanism by allowing for new, higher value-added schools to

enter the district in each time period (leaving existing-school improvement for future work). Two

outcomes are of particular interest. The first is market concentration, which often serves as a

proxy for competition in educational markets (Borland & Howson, 1992); the second is the mean

achievement of all students in the district.

4.1 Model Description

Model III built on Model II by introducing a “new schools” option. If the new schools option was

specified, two new schools tried to open in randomly chosen locations at the end of each time period.

Since these schools had no student achievement history, they were initialized with the median value

of achievement of all open schools. In subsequent periods, the mean achievement equaled the

mean of the students who chose to attend that school. In order to introduce a mechanism for

improvement, the underlying value-added of the school was higher on average. More specifically,

the value-added for each new school was a random draw from a normal distribution with a mean

equal to the mean of the top decile of value-addeds from currently open schools, and a standard
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deviation equal to the standard deviation of value-addeds across the set of initial schools. One

way to interpret this is that the new schools attempt to “copy” the best schools. Sometimes they

“innovate” by doing even better than those they copy; sometimes they cannot do as good a job.

4.2 Computational Experiments and Analysis

As in the analysis of Model II, we were primarily interested in how district-level outcomes might

vary depending on the school choice decision rule used by the choosers. More specifically, one

might expect that an increasing emphasis by students on academic quality (increasing alpha)

would have a positive impact on both the competitive structure and mean achievement of a school

district. Additionally, as Model II illustrates, the amount of better available capacity should play

an important role in determining outcomes. Therefore, data were then generated by running the

model for thirty time periods under various combinations of α and bac. To increase the possibility

that new schools will remain open, Model III was run using a relatively high percentage of choosers

(80%). Each unique combination of parameters was repeated twenty times to create a distribution

of outcomes.

Figure 9 plots the final market concentration in the district against α, across various levels

of bac. Market concentration is measured using a Herfindahl Index of the sum of the squares of

per-school enrollment proportions. Perhaps somewhat unexpectedly, for all levels of bac the more a

student emphasizes achievement relative to geographic proximity, the higher the resulting market

concentration of the district. In the case of plentiful better capacity (bac = 0.5), the concentration

increases much more than in the case of very little better supply (bac = 0.1).

Figure 10 plots the mean achievement of all students in the district against α, across various

levels of bac. For low levels of α the mean achievement behaves as might be expected – the more

a student emphasizes achievement relative to geographic proximity, the higher the resulting mean

achievement of the district. As in Model II, this improvement is in part due to students moving to

higher value-added, existing schools. In this model, part of the improvement can also be attributed

to students attending new schools. However note that again, an increasing emphasis on academic

achievement at the individual-level leads to unexpected results at the macro-level. That is, for all

levels of bac, after a certain point, the more the population of students emphasizes achievement in

their decision-making process, the lower the mean achievement of the district.
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Figure 9: Market Concentration vs. Emphasis on School Achievement
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Figure 10: Mean Achievement vs. Emphasis on School Achievement
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Figure 11 points to the reason for this somewhat surprising behavior in both outcomes: a very

high α constrains the number of new schools that can survive. In the left panel, the number of

new schools over time for a typical run of the simulation using a relatively low emphasis on school

achievement (α = 0.2), and the right panel using the maximum emphasis (α = 1). For the low α

condition, the number of new schools keeps climbing over time, with the opening of each new school

bringing about a new opportunity for improvement, as decreasing the concentration of the market

structure. However, for the high α condition, the number of new schools grows in the initial time

periods, and then levels off.

The reason for this can be understood by contemplating the decision of an individual student, S,

when a new school, N, is introduced. Let’s suppose that the student’s top available choice, School

A, is currently a school with an above median mean achievement. Let’s further suppose that School

N is both geographically closer than School A, and has a much higher value-added (keeping in mind

that since the school has no achievement history, in the first time period of its life, School N’s mean

achievement is perceived as equal to the median achievement of all schools). In the extreme case

where α = 1, there is no chance that Student S attends the School N over SchoolA even though it

is closer and has a higher value-added – i.e., if all that matters in the utility function is the mean

achievement of the target schools, Student S will only attend School B if her next best choice is

below the median mean-achievement. In subsequent periods, it is possible that School B’s mean

achievement will rise (especially given the school’s higher value-added), and that students with a

similar decision may instead choose it over School A. But initially School N has a handicap when

compared to incumbent, high mean achievement schools. Moreover, depending on the amount of

better available capacity in the district, that handicap may very well lead to its extinction at the

end of its initial incubation period. As α decreases, however, School N’s attractiveness to Student

S and others like her increases, along with the chances for School N’s survival. In a sense, lower α

makes the demand more “local,” leading to more opportunities for the new, better schools. This

dynamic occurs regardless of the amount of better available capacity of the district, with the better

available capacity influencing exact point at which increasing α begins to lower district achievement

(i.e., the peak of each of the curves is different for each level of bac).
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Figure 11: Number of Schools over Time
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5 DISCUSSION

By developing an agent-based model of public school choice, this paper contributes to our under-

standing of the dynamic processes that lead to district-level outcomes, and illustrates how such

models can help set expectations for typically measured outcomes in school choice research. More

specifically, analysis of the model results in two key findings. First, treatment effects calculated

by comparing choosers to non-choosers are highly dependent on both the household participation

rates in the program and the distribution of available capacity across schools. In particular, as

participation rates rise, the magnitude of the treatment effect falls, because capacity constraints

increasingly limit the amount of choosers who are able to attend the highest value-added schools.

The most direct implication of this finding is that one must account for the amount of “better”

capacity available to choosers when using treatment effects estimated from existing programs to

either a) project the impact of a larger scale program, or b) synthesize effect sizes estimated across

programs. The measure we developed to characterize the better available capacity of the district

in the model, bac, could be applied to program data to aid with both these purposes.

Second, to the extent one were willing to believe that improvement comes largely from new

entrants (as opposed to incumbents), and that the quality of the new entrants is initially unknown,

our model shows that too much emphasis on academic achievement at an individual-level can con-

strain district-level improvement by limiting the number of new schools that survive. Furthermore,

this dynamic is moderated by the better available capacity in a district. One implication is that

districts with a with rather limited amount of better available capacity and a population that places

a low to moderate emphasis on academic achievement when choosing schools (relative to geographic
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proximity), will be helped the most by a public choice program that allows new entrants; and a

district with a fair amount of better available capacity and a population that places a very high

value on academic achievement, the least. A second implication is that the existence of diverse

preferences among households in a district is potentially more important in getting public choice

to “work” than a singular emphasis on academic achievement.

Although this study highlights several important implications of taking a more agent-based and

dynamic perspective on school choice reform, several limitations of the model must be addressed in

order to make more than suggestive statements about the potential impact of a choice program on

a given district. First, a much more refined understanding of student preferences is required. More

specifically, the current model only partially addresses heterogeneity in the decision-making rules

of households. Additional heterogeneity could come in the form of categories of agents weighing

elements of the existing preference function differently, or in the form of additional and varied cri-

teria on which to judge schools that go beyond mean achievement and geographic proximity, some

perhaps only offered by private schools (e.g., religious education). Second, the model does not yet

address the possibility of within-school improvement; educational innovation in the current model

comes only from new entrants. A mechanism for within-school improvement could be incorporated

in the current model by introducing rule that enabled schools losing students to respond by increas-

ing their value-added, potentially calibrated to be consistent with work attempting to estimate the

magnitude of the competitive response (e.g., Figlio & Rouse, 2006). Third, one should be careful in

extrapolating results to voucher-based systems in which schools are allowed to price differentially.

One implication of incorporating prices is that the role currently served by capacity constraint in

the model – namely, providing negative feedback to help equilibrate the system – would be shared

by a mechanism that allowed for school-specific pricing. This would likely diminish the importance

of the capacity constraints in the current findings. Future work should more carefully address these

limitations.
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APPENDIX A: ESTIMATING ACHIEVEMENT GROWTH BY SCHOOL

To obtain an estimate of achievement growth for a student attending a particular school in the

simulation, I estimate a hierarchical linear model of student achievement that nests students inside

of schools. More specifically, I estimated the following model that predicts 11th Prarie State

Achievement Examination scores for the all students used in the simulation, using the 8th grade

Iowa Test of Basic Skills scores and student-level demographics of those students as the independent

variables:

achiev2ij = β0j + β1jachiev1i + β2jwhitei + β3jmalei + β4jpovertyi + vaj + rij (A.1)

β0j = γ00 + u0j (A.2)

where rij ∼ N(0, σ2) and u0j ∼ N(0, τ00)

Table A-1 presents the results of the HLM estimate for both math and reading scores. Substi-

tuting Equation A.2 into Equation A.1, and replacing the βs with the estimated coefficients, yields

the following equation used as the achievement growth rule in the simulation:

achiev2ij =

−0.0956 + 0.6794 ∗ achiev1i + 0.1567 ∗ whitei + 0.1151 ∗malei − 0.0629 ∗ povertyi + vaj + rij

For each school j, the school-level residual u0j , is used as an estimate of the value-added, vaj ; rij

is a random draw from N(0, 0.3921) every time the achievement growth equation is calculated.

Such an approach assumes that the value-added for each school is relatively stable year over

year. To evaluate the stability of the value-added estimates, I also estimate the model separately

for each incoming cohort of 8th grade students, and examine the year over year association between

the school-level residuals (as opposed to Table A-1 which generates the estimate by using all the

cohorts). Figure A-1 shows the that all the year-over-year correlations are strong and positive.
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Table A-1: HLM Estimates of 11th Grade Test Scores
(17,131 students in 43 schools)

Math Reading

Estimate S.E. Estimate S.E.

Fixed Effects

Intercept (γ00) -0.0956 0.0301 -0.0025 0.0247
8th Grade Iowa Score (β1j) 0.6794 0.0053 0.5951 0.0062
White (β2j) 0.1567 0.0183 0.1798 0.0211
Male (β3j) 0.1151 0.0097 -0.1180 0.0112
Poverty (β4j) -0.0629 0.0080 -0.0159 0.0091

Random Effects

School-level residual variance (τ00) 0.0363 0.0230
Student-level residual variance (σ2) 0.3921 0.5252

Figure A-1: Association Matrix of School Level Residuals. The upper half of the
matrix contains Spearman rank correlation coefficients between the school-level
residuals estimated for each cohort of incoming freshman; the lower half of the
matrix shows the same association as a scatterplot; the diagonal contains the
distribution of school-level residuals in a given year.

!0.2 0 0.2 0.4

2
4
6
8
10
12

2000

0.511779 0.460888 0.532166

!0.2!0.1 0.1 0.2 0.3 0.4
!0.2
!0.1

0.1
0.2
0.3
0.4

!0.2 0 0.2 0.4

2
4
6
8
10
12
14

2001

0.615524 0.618242

!0.2!0.1 0.1 0.2 0.3 0.4
!0.2
!0.1

0.1
0.2
0.3
0.4

!0.2!0.1 0.1 0.2 0.3 0.4
!0.2
!0.1

0.1
0.2
0.3
0.4

!0.2 0 0.2 0.4

2
4
6
8
10
12

2002

0.511628

!0.2!0.1 0.1 0.2 0.3 0.4
!0.2
!0.1

0.1
0.2
0.3
0.4

!0.2!0.1 0.1 0.2 0.3 0.4
!0.2
!0.1

0.1
0.2
0.3
0.4

!0.2!0.1 0.1 0.2 0.3 0.4
!0.2
!0.1

0.1
0.2
0.3
0.4

!0.2 0 0.2 0.4

5

10

15
2003

27



References

Alexander, K. L., & Pallas, A. M. (1983). School sector and cognitive performance: When is a
little a little? Sociology of Education, 58 (2), 115-128.

Altonji, J., Elder, T., & Taber, C. (2002). An evaluation of instrumental variable strategies for
estimating the effect of catholic schools (No. 9358). National Bureau of Economic Research.

Axelrod, R. M. (1984). The evolution of cooperation. Basic Books.

Bakshy, E., & Wilensky, U. (2007). Turtle histories and alternative universes: Exploratory modeling
with netlogo and mathematica. In Paper presented at agent2007, chicago, november 15-17.

Belfield, C. R., & Levin, H. M. (2002). The effects of competition between schools on educational
outcomes: A review for the united states. Review of Educational Research, 72 (2), 279-341.

Borland, M., & Howson, R. (1992). Students’ academic achievement and the degree of market
concentration in education. Economics of Education Review , 11 , 31-39.

Bryk, A. S., Lee, V. E., & Holland, P. B. (1993). Catholic schools and the common good. Cambridge:
Harvard University Press.

Chubb, J., & Moe, T. (1990). Politics, markets, and america’s schools. The Brookings Institution.

Coleman, J. S., Hoffer, T., & Kilgore, S. (1982). High school achievement: Public, catholic, and
private schools compared. New York: Basic Books.

Cullen, J. B., Jacob, B. A., & Levitt, S. (2006). The effect of school choice on participants:
Evidence from randomized lotteries. Econometrica, 74 (5), 1191-1230.

Epple, D., & Romano, R. (1998). Competition between private and public schools, vouchers, and
peer-group effects. American Economic Review , 88 (1), 33-62.

Epple, D., & Romano, R. (2003). Neighborhood schools, choice, and the distribution of educational
benefits. In C. M. Hoxby (Ed.), Economics of school choice (p. 227-286). Chicago University
Press.

Epstein, J., & Axtell, R. (1996). Growing artificial societies. MIT Press.

Evans, W. N., & Schwab, R. M. (1995). Finishing high school and starting college: Do catholic
schools make a difference? The Quarterly Journal of Economics, 110 , 941-974.

Fernandez, R., & Rogerson, R. (2003). Equity and resources: An analysis of education finance
systems. Journal of Political Economy , 111 (4), 858-897.

Ferreyra, M. (2007). Estimating the effects of private school vouchers in multidistrict economies.
American Economic Review , 93 (3), 789-817.

Figlio, D., & Rouse, C. E. (2006). Do accountability and voucher threats improve low-performing
schools? Journal of Public Economics, 90 (1-2), 239-255.

Fiske, E. B., & Ladd, H. F. (2000). When schools compete: A cautionary tale. Washington, DC:
Brookings Institution.

28



Gamoran, A. (1996). Student achievement in public magnet, public comprehensive, and private
city high schools. Educational Evaluation and Policy Analysis, 14 (3), 185-204.

Goldhaber, D. D. (1996). Public and private high schools: Is school choice an answer to the
productivity problem? Economics of Education Review , 15 (2), 93-109.

Greene, J. P., Peterson, P., & Du, J. (1997). Effectiveness of school choice: The milwaukee
experiment.

Howell, W., Wolfe, P., Campbell, D., & Peterson, P. (2002). School vouchers and academic perfor-
mance: Results from three randomized field trials. Journal of Policy Analysis and Management ,
21 (2), 191-217.

Hoxby, C. M. (2003). School choice and school productivity: Could school choice be a tide that
lifts all boats? In C. M. Hoxby (Ed.), The economics of school choice. Chicago: The University
of Chicago Press.

Hoxby, C. M. (2005). Competition among public schools: A reply to rothstein (2004) (No. 11216).
National Bureau of Economic Research.

Krueger, A., & Zhu, P. (2004). Another look at the new york city school voucher experiment.
American Behavioral Scientist , 47 (5), 658-698.

Miller, J. H., & Page, S. E. (2007). Complex adaptive systems: An introduction to computational
models of social life. Princeton, NJ: Princeton University Press.

Morgan, S. L. (2001). Counterfactuals, causal effect heterogeneity, and the catholic school effect
on learning. Sociology of Education, 74 , 341-374.

Neal, D. (1997). The effects of catholic secondary schooling on educational achievement. Journal
of Labor Economics, 15 (1), 98-123.

Nechyba, T. (2000). Mobility, targeting, and private-school vouchers. The American Economic
Review , 90 (1), 130-146.

Nechyba, T. (2003). What can be (and what has been) learned from general equilibrium simulation
models of school finance? National Tax Journal , 56 (2).

Rothstein, J. (2005). Does competition among public schools benefit students and taxpayers? a
comment on hoxby (2000) (No. 11215). National Bureau of Economic Research.

Rouse, C. E. (1998). Private school vouchers and student achievement: An evaluation of the
milwaukee parental choice program. Quarterly Journal of Economics, 113 , 553-602.

Tesfatsion, L., & Judd, K. L. (2006). Handbook of computational economics (Vol. 13). Amsterdam
; Oxford: Elsevier.

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo. Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Wilensky, U. (2001). Modeling nature’s emergent patterns with multi-agent languages. In Eurologo
2001. Linz, Austria.

29

http://ccl.northwestern.edu/netlogo


Wilensky, U., & Rand, W. (2009). Introduction to Agent-Based Modeling: Modeling Natural, Social,
and Engineered Systems with NetLogo. MIT Press.

Witte, J. F. (1997). Achievement effects of the milwaukee voucher program. In American economics
association annual meeting. New Orleans.

Witte, J. F., Sterr, T., & Thorne, C. (1995). Fifth-year report: Milwaukee parental choice program.

Wolfram Research Inc. (2007). Mathematica, version 6.0.

30


	Introduction
	Model I: An Illustrative Example
	Model Description
	Who Survives?
	Adding School Effects

	Model II: Initializing with Chicago Public School Data
	Model Description
	Student Attributes and Initialization
	School Attributes and Initialization
	Student Rules
	School Rules
	Computational Experiments and Analysis

	Model III: Allowing New Entrants
	Model Description
	Computational Experiments and Analysis

	DISCUSSION
	References

