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Abstract

Biological phenomena can be investigated at multiple levels, from the molecular to the cellular to the

organismic to the ecological. In typical biology instruction, these levels have been segregated. Yet, it

is by examining the connections between such levels that many phenomena in biology, and complex

systems in general, are best explained. We describe a computation-based approach that enables

students to investigate the connections between different biological levels. Using agent-based,

embodied modeling tools, students model the micro-rules underlying a biological phenomenon, and

observe the resultant aggregate dynamics. We describe two cases in which this approach was

employed. In both cases, students frame hypotheses, construct multi-agent models that incorporate

these hypotheses, and test these by running their models and observing the outcomes. Contrasting

these cases against traditionally employed, classical equations-based approaches, we argue that the

embodied modeling approach connects more directly to students’ experience, enables extended

investigations as well as deeper understanding, and enables “advanced” topics to be productively

introduced into the high school curriculum.
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Thinking Like a Wolf, a Sheep, or a Firefly:

Learning Biology Through Constructing and Testing

Computational Theories--an Embodied Modeling Approach

"When I observed phenomena in the laboratory that I did not understand, I would also ask

questions as if interrogating myself: "Why would I do that if I were a virus or a cancer cell, or the

immune system" Before long, this internal dialogue became second nature to me; I found that my

mind worked this way all the time." (Salk, 1983, p. 7)

There is a sharp contrast between the picture of the field of biology as studied in school

settings and the picture that emerges from the practice of current biology research.

While the two pictures are linked by similar content and the objects of study are recognizably the

same, the processes involved in the two activities are quite different.

In school settings, typical instruction emphasizes the memorization of classification

schemas and established theories. In middle school, classification may take the form of learning the

names of the bones of the body, the names and shapes of different plant leaves or the phyla in the

animal kingdom. In high school and early undergraduate studies, the content broadens to include

unseen phenomena such as parts of the cell or types of protozoa, but the processes of memorizing

classifications remains essentially the same. Similarly, students study biological explanation by

absorbing established theories about the process of photosynthesis, the Krebs cycle or the

succession of evolutionary ancestors. Even in cases where the theories are not yet established, such

as the extinction of the dinosaurs, the alternative theories are presented as competing stories to be

memorized. And even when students are exposed to research techniques in laboratory work, the

emphasis is on following a prescribed procedure rather than reasoning from the evidence gathered

in the procedure.

This picture contrasts sharply with the picture that emerges from the recent biology research

literature (e.g., Keeling & Gilligan, 2000; Marion, Renshaw, & Gibson, 2000). In this picture, the



Thinking Like a Wolf      4

participants are active theorizers. They devise new evidence and gather methods to test their theories.

Instead of accepting classifications as given, they are seen as provisional theories that are constantly

reassessed and reconstructed in light of the dialogue between theory and evidence. Participants also

reason both forwards, by constructing theories that are consistent with the known evidence, and

backwards, by deducing consequences of theories and searching for confirming/disconfirming

evidence. In constructing or assessing an account of a biological phenomenon, they focus on the

plausibility of the mechanism proposed – can it achieve the task assigned it in a biologically feasible

manner? This assessment of the mechanism often involves reasoning across a range of levels; thus,

participants ask: is the mechanism constrained by the structure at the molecular, the cellular, the

organismic and/or the ecological level?

The contrast between the processes in which these two communities are engaged leads

biology students to form a misleading picture of the biological research enterprise. Students form

beliefs that biology is a discipline in which observation and classification dominate and reasoning

about theories is rare. Furthermore, they believe that learning biology consists of absorbing the

theories of experts and that constructing and testing their own theories is out of reach1.

In this paper, we present an approach that attempts to narrow the gap between school

biology and research biology. The approach centers on the use of innovative computer modeling

tools that enable students2 to learn biology through processes of constructing and testing theories.

In recent years, a number of educational research projects (Feurzeig & Roberts, 1999;

Gobert, Horwitz, Tinker, Buckley, Wilensky, Levy,  et al, 2004; White & Horwitz , 1988; Jackson,

Stratford, Krajcik, & Soloway, 1996; Jacobson & Kozma, 2000; Jungck & Calley, 1985; Lehrer &

Schauble, 2000; Ogborn, 1999; Roberts & Barclay, 1988) have employed computer-modeling tools

in science instruction. The approach taken herein differs from these approaches in its use of agent-

based modeling languages (aka object-based parallel) that enable students to model biological

elements at the level of the individual (e.g., individual wolf/sheep) as opposed to aggregate

                                                
1 For a similar and much fuller account of the gap between school and research physics, see (Hammer, 1994).
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(differential-equation based) modeling languages that model at the level of the population

(wolf/sheep populations). This technical advance in modeling languages enables students to employ

their knowledge of the behavior of individual organisms (or molecules, cells, genes…) in the

construction of theories about the behavior of populations of organisms. Furthermore, the ability to

model individual behavior enables students to employ their personal experience with sensing and

locomoting in the world as initial elements in their models of other organisms. In this way, the well

known tendency of children to explain biological behavior through personification (see Carey,

1986; Hatano & Inagaki, 1987), instead of being seen as a misconception or a limitation to be

overcome, becomes a building block towards the construction and refinement of plausible biological

explanations3.

In previous work, the authors and other agent-based modeling designers (Repenning, 1994;

Resnick, 1994; Smith, Cypher, & Spohrer, 1994; Wilensky, 1995, 2001); Wilensky & Resnick,

1999) have described the approach in a broad inter-disciplinary context. In this paper, we explore

the use of this approach, specifically, in biology instruction.

Mathematical Biology and Computer-Based Modeling – In the Field and in the Classroom

The gap between school biology and research biology can be partially explained by a lag in

the transfer of newer biological methods to the school setting. Indeed, at all levels from the

molecular to the ecological, the science of biology has undergone an important shift over the last

century. As biologists have increasingly availed themselves of the language of dynamic systems to

model natural phenomena, biology – once an entirely qualitative discipline – has become more

quantitative4.

Mathematical models have added precision to biological theories, have increased their

predictive power, and have been important sources of explanations and hypotheses. The generation

and refinement of such models has become a pervasive element of modern biological inquiry. Yet,

                                                                                                                                                            
2 Elsewhere (Tisue & Wilensky, 2004; Wilensky, 2001) we have argued that the availability and ease of use of
agent-based modeling environments have also enabled scientists to conduct experimental research that was difficult or
impossible to do with traditional methods.
3 For a detailed discussion on misconceptions reconceived, see (Smith, diSessa, and Roschelle, 1994)
4 For an illuminating discussion of this transformation of the biological field, see (Allen, 1975)
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despite this virtual revolution in biology practice, the high school and undergraduate biology

curriculum have scarcely noticed. For most secondary and post-secondary biology students, the

study of biology remains primarily an exercise in memorization. Due to the formidable

mathematical prerequisites that quantitative models of biological change have traditionally imposed,

students below the advanced undergraduate level are given little or no exposure either to dynamic

models or to the process of modeling biological change. The computational approach presented

here enables us to give students this exposure, while sidestepping the traditional mathematical

roadblocks.

We begin, in the following section, by describing our “embodied” approach to biological

modeling and the agent-based modeling languages, StarLogoT (Wilensky, 1997b) and NetLogo

(Wilensky, 1999b), in which the models are constructed. In section three, we illustrate this approach

and contrast it with classical modeling techniques by developing both embodied and classical

models of predator-prey population fluctuations. We follow a high school student, Talia, in her

efforts to create embodied models of wolf-sheep predation. In section four, we follow another

student, Paul, as he develops a computational model of synchronously flashing fireflies (these

species of fireflies are prevalent in the far east, especially Thailand). In contrast to the topic of

predator-prey population dynamics, the firefly flash synchronization problem does not easily admit

classical approaches and is, thus, unfamiliar to students. We use this example to frame a discussion

of the student modeling process and the relationship of this process to modeling within science.

Finally, in our concluding remarks we respond to criticism of our approach and summarize the

major points of the paper.

Research Settings

The student modelers described below were participants in the “Connected Mathematics”

(Wilensky, 1993, 1995) and, principally, the “Making sense of Complex Phenomena” (MSCP)

(Wilensky, 1997a, 2001) projects in which students learn about complex systems through

construction of agent-based models of these systems. The goals of the MSCP project are to

construct computational toolkits that enable students to model complex systems, to study students
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engaged in using these toolkits and to make sense of their behavioral dynamics. Research has

documented the difficulties people have in making sense of emergent phenomena, global patterns

that arise from distributed interactions, central to the study of complex systems. We have labeled

the constellation of difficulties in understanding emergent phenomena and constructing distributed

explanations of such phenomena the deterministic/centralized mindset (Resnick, 1996, Resnick &

Wilensky, 1993; Wilensky & Resnick, 1995, 1999). In the MSCP project we have worked with a

wide variety of students, ranging from middle school students to graduate student researchers as

well as both pre-service and in-service teachers, on moving beyond this mindset to a richer

understanding of the dynamics of complex systems. The primary research sites are two urban

Boston high schools. Students from these schools participated in the project as part of their

classroom work. Undergraduates and pre-service teachers participated in the context of teacher

education courses at Tufts University. Some students participated through informal contexts,

pursuing modeling investigations in after-school settings or at the laboratory, housed at the project

site, the Center for Connected Learning and Computer-Based Modeling (then at Tufts University,

now moved to Northwestern University). In the classroom context, students, typically, were involved

in an extended classroom modeling project led by the classroom teacher and assisted by project

researchers. The role of the researchers was to document student work through videotaping and

field notes and to support students and teachers in the use of project materials and modeling

languages. Examples of such support included bringing in books and websites that might be useful

to the modelers and disseminating interesting cases as potential sources of models. Project

researchers also engaged students in structured activities (including participatory simulations not

involving the computer (Resnick & Wilensky, 1998)) that would foster reflection on the concept of

emergence. They also provided support to students and teachers on the syntax of the modeling

language. The computational models described in this paper were built in an agent-based (aka

multi-agent or object-based parallel) modeling language called StarLogoT (Wilensky, 1997b).5

                                                
5 StarLogoT is one of several variants of the StarLogo modeling language (Resnick, 1994, 1996; Resnick &
Wilensky, 1993; Wilensky & Resnick, 1999) – an extended version of MacStarLogo. StarLogoT and the models
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Recently, the first author has developed another agent-based modeling language, NetLogo

(Wilensky, 1999b), that is a (more sophisticated) successor to StarLogoT. The models described

herein have been converted to NetLogo.6 As NetLogo is the more recent and more powerful

environment, for the remainder of this paper we refer to NetLogo and not to StarLogoT. In the next

section, we describe the workings of the NetLogo language and its advantages for modeling

biological phenomena.

The NetLogo Modeling Language

NetLogo derives from, and has contributed to, recent work in the field of complex systems.

This field studies the dynamics of systems that are constituted by many interacting elements. Taken

as a whole, the behavior of these systems can be extremely complex and difficult to predict, though

their individual elements may be quite simple. Examples can be found in many fields, from physics

and chemistry to economics and political science. Biology has been a particularly fertile domain of

complex systems oriented research (Langton, 1994; Kauffman, 1995). Indeed, though much of the

early work in complex systems theory originated in physics, (and to this day, the primary echo of

this research in classrooms is in physics classes), in our view, the paradigmatic area for studying

complexity lies in the study of complex biological systems. Though the brain, the immune system,

and the behavior of organisms such as ants or bees are all oft-cited examples, in fact, nearly all of

biology can be considered from a complex systems perspective. Genetic and cellular processes can

be viewed as the complex outcomes from molecular interactions; organisms and their organs can be

viewed as the complex outcomes from cellular and genetic level interactions, and ecological systems

can be viewed as the complex outcomes of interactions between individual organisms. Of course,

there is causality in the other direction as well; organism behavior can affect cellular and genetic

level activity, and ecological circumstances can affect the behavior of individuals. Indeed, one reason

                                                                                                                                                            
described in this paper can be downloaded from ccl.northwestern.edu/cm/. Updated NetLogo versions of these models
can be downloaded from ccl.northwestern.edu/netlogo/models.
6 NetLogo and all the models described here can be downloaded from the NetLogo site at
ccl.northwestern.edu/netlogo/.
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complex systems can be so difficult to study is that aggregate level structures can have feedback

effects on the behavior of the elements of which they are composed.

NetLogo is a general-purpose (domain independent) modeling language that facilitates the

modeling of complex systems. It works by providing the modeler with a framework to represent the

basic elements – the smallest constituents – of a system, and then provides a way to simulate the

interactions between these elements. With NetLogo, students write rules for hundreds or thousands

of these basic elements specifying how they should behave and interact with one another. These

individual elements are referred to as “turtles.” (NetLogo owes the “turtle” object to the Logo

computer language7). Turtles are situated on a two dimensional grid on which they can move

around. Each cell on the grid is called a “patch,” and patches may also execute instructions and

interact with turtles and other patches. Some typical commands for a turtle are: move in a given

direction, change color, set a variable according to some value, “hatch” new turtles, or look at the

properties (variables) of other turtles. Turtles can also generate random values, so that they can, for

example, execute a sequence of commands with a fixed probability. Patches can execute similar

commands, though they cannot change location. The wide range of commands executable by turtles

and patches makes it possible to use them to represent many different systems. For example, turtles

can be made to represent molecules, cells, or individual organisms, while patches can represent the

medium (whatever it may be) in which they interact.

Dynamic modeling tools, such as NetLogo, are used to represent changes in the states of

systems over time. In NetLogo, time is represented as a discrete sequence of “clock-ticks.” At each

clock-tick, each turtle and patch is called upon to execute the rules that have been written for it.

Students need not write separate rules for each turtle (or patch) – the power of NetLogo comes

from the fact that all turtles can execute the very same set of rules at each clock-tick. If all turtles are

executing the same rules, will their collective behavior not be repetitive and uninteresting? To see

why this is not the case, it is important to take note of the fact that even though two turtles might be

following the same rules, their behavior could be markedly different. This possibility exists because
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the two turtles may have quite different internal properties and may be situated in dissimilar

environments. For example, the turtles may be following the rule “If you smell food ahead, move

forward a distance equal to your body length. Otherwise, turn around.” If one turtle is in the

vicinity of food, it will move forward, the other turtle, far from the food, will turn around. Even if

they are both in the vicinity of food, and even in the exact same location, if they have different body

measurements, they will move to different locations. It is this diversity in internal states and in

surrounding environs that enables the collective turtle behaviors to admit a surprising degree of

variance.

The modeling approach we describe – instantiating the individual elements of a system and

simulating their interactions – is not unique to NetLogo. Such models have been used across a wide

variety of domains and have been referred to by many different labels such as: object-based parallel

models (Wilensky, 1995, 1996a) agent-based models (Beer, 1990; Epstein & Axtell, 1996; Maes,

1990; Repenning, 1993), multi-agent models (Jacobson, Brecher, Clemens, Farrell, Kaput,

Reisman & Wilensky 1998; Wilensky, 2001), individual-based models (Huston, DeAngelis, &

Post, 1988; Judson, 1994), and particle simulations (Buneman, Barnes, Green, & Nielsen, 1980).

These "new wave" modeling approaches have transformed biology research practice8 and enabled

researchers to model increasingly complex multi-leveled biological systems (Forrest, 1989;

Langton, 1994; Keen & Spain, 1992; Taylor, Jefferson, Turner, & Goldman, 1989). For the

remainder of this paper, we will employ the term “embodied modeling” to refer to this general

approach. While the other terms described above, which we have used in the past, are perhaps a

more accurate description of the technical workings of NetLogo, the “embodied modeling” label

more closely matches the experience of a biology modeler who is actively engaged in understanding

and embodying the behavior of individual biological elements.

In the following two sections of the paper, we will illustrate the embodied modeling

approach in biology with two extended examples of modeling biological phenomena. We intend

                                                                                                                                                            
7 In Logo (Feurzeig, 1984; Papert, 1980), children type commands to a graphical turtle and the turtle draws
geometric figures on the computer screen.
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these examples to illustrate both how such an approach can 1) facilitate the creation and verification

of predictive multi-level models in biology and 2) enable biology students to create more powerful

explanations of and deepen their understanding of biological phenomena.

Modeling Predator-Prey Population Dynamics9

The dynamics of interacting populations of predators and their prey have long been a topic

of interest in population biology. Comparisons of a number of case studies have revealed similar

dynamics between such populations, regardless of the specific species under study and the details

of their interactions. (Elton, 1966). Notably, when the sizes of the predator and prey populations are

compared over many generations, we tend to find regular oscillations in these sizes that are out of

phase; where one increases, the other tends to decline, and vice-versa (see figure 1). Numerous

mathematical models have been proposed to explain these oscillations. In this section, we will

examine several NetLogo models that are at considerable variance from classical versions. Along

with providing a first-hand glimpse of our approach to modeling systems, the example will also

allow us to contrast the different perspectives promoted by embodied versus classical tools. We

begin with a look at a well-known classical model.

                                                                                                                                                            
8 In biology, the term most often used for this kind of modeling is “individual-based” modeling.
9 The predator-prey model and numerous other models (collectively known as “Connected Models” (Wilensky, 1998)
can be downloaded from http://ccl.northwestern.edu/netlogo/models.
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Figure 1. Fluctuations of the sizes of predatory lynx and prey hare populations in Northern
Canada from 1845-1935 (from Purves, Orian, & Heller, 1992).

The Classical Approach

For many years, models of predation were based on the Lotka-Volterra (Lotka, 1925;

Volterra, 1926) model10. Alfred Lotka and Vito Volterra (working independently from each other)

were among the first to carry over to biology differential equation models, previously employed

principally in physics and chemistry. The Lotka-Volterra model of predation works by specifying

interactions between the predator and prey populations framed as a set of coupled differential

equations. Each such equation describes the rate at which a given variable (e.g., the density of the

prey population) changes over time. Here we present the Lotka-Volterra predation equations, which

describe changes in the densities of the prey population (N1) and the predator population (N2).

Keep in mind that population size and population density are proportional to one another.

dN1/dt = b1N1 - k1N1N2 (1)

dN2/dt = k2N1N2 - d2 N2 (2)

In these equations b1 is the birth rate of the prey, d2 is the death rate of the predators, and k1 and

k2 are constants.

Let us briefly analyze (1). There are two terms in the equation. In the first term (b1N1), the

prey birth rate is multiplied by the density of the prey population, yielding the increase in density

due to new prey births. In the second term (k1N1N2), the frequency of interaction between the prey

and predator populations is determined, yielding the decrease in prey density due to consumption of

prey by predators. The rate of change in the density of the prey population is thus computed by

subtracting the total effect of prey deaths from the total effect of prey births. (2) can be analyzed

                                                
10 For some recent predation models, as well as some other classical biological models see (Murray, 1998).
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along similar lines, although in this equation predator births are dependent on the frequency of

predator-prey interactions, while predator deaths are not – a reversal from (1).

It is important to notice that (1), which describes the prey population, contains N2, the

variable describing the density of the predator population, and vice-versa. The equations thus

specify how the density (and so size) of each population depends on the density of the other.

Specifically, increases in the prey population will cause the predator birth rate to rise, and increases

in the predator population cause the prey death rate to rise. A typical plot produced from these

equations is shown in figure 2. Indeed, we see here the characteristic cyclical fluctuations between

the predator and prey populations.

Figure 2. Results of Lotka-Volterra predation model for Lynx and Hare with respective initial
populations of 1250 and 50,000.

We need not go into further depth about these equations. The point to notice for now is that

the classical approach describes the cyclical fluctuations between predator and prey populations by

specifying relationships between population-level properties, such as birth rate, frequency of

interaction, and overall density.

The Embodied Approach
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Using embodied tools, such as NetLogo, we approach this problem from a different angle.

Rather than describe relationships between properties of populations, we are concerned primarily

with specifying the behavior of individuals. The relevant question here is: what kinds of actions

must an individual predator or individual prey follow so that populations of such individuals will

exhibit the characteristic oscillations? Another way to think about the actions of individuals — the

method behind NetLogo modeling — is to consider the rules that each organism might follow in

order for the given population-level patterns to result.

There are a number of paths that a modeler might take towards finding such a set of rules

(indeed, there are often a number of equally effective solutions). It may seem to readers that one

would need to be highly familiar with the phenomenon being modeled and with current theories in

order to make meaningful progress, but our experience indicates otherwise. In the Making Sense of

Complex Phenomena project, we have found that students are often able to develop solid

explanatory models of various phenomena, with only a small amount of background knowledge.

We generally encourage modelers to try and make sense of a problem on their own before seeking

external resources, and often they are quite surprised at how far they are able to get. Rather than

quickly reaching for the “facts,” students undertake something akin to a scientific inquiry, and

generally learn much more than if someone had simply given them the solution. Of course, the

body of existing research is quite important to the development of a model, and NetLogo modelers

will often go back and forth between developing new hypotheses and researching existing

solutions. To help convey a sense of this process, we will describe the development of a NetLogo

predation model from the standpoint of two students, Talia and Benny. These students were fairly

typical of the secondary student modelers that participated in the Making Sense of Complex

Phenomena project.

Finding Rules for Wolves--An Initial Model

Talia’s task was to formulate a plausible set of rules for a predator and a prey. Recall that

the characteristic properties of predator-prey population dynamics have been observed to be

strongly similar across many species and many different conditions. Rather then be specific, then,
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these rules needed to point to general behaviors that all such species perform in one way or another.

In her first attempt, she described a predator (say, a wolf) as moving about in the NetLogo world

and looking for prey (say, sheep). As a real wolf needs energy to live, she decided that each step in

the world should cost the model wolf energy. Running out of energy will cause the wolf to die, and

the only way to gain energy is by eating sheep. In this way, Talia was, also, like the Lotka-Volterra

model above, describing a dependency between predators and prey: wolves are likely to persist

when sheep are abundant (because they are unlikely to run out of food/energy), and sheep are

expected to die when wolves are abundant (because they will eventually be eaten). Here, then, is a

simple rule-set for a wolf based on Talia’s initial description11:

Rule-set W1: wolf

at each clock-tick:

1. move randomly to an adjacent patch and decrease energy by E1

2. if on the same patch as one or more sheep, then eat a sheep and increase energy by E2

3. if energy < 0 then die

4. with probability R1 reproduce

Talia decided on a simpler rule-set for the sheep. They only move about and reproduce, though they

risk being eaten by the wolves:

Rule-set S1: sheep

at each clock-tick:

1. move randomly to an adjacent patch

2. with a probability of R2, reproduce

                                                
11 The rule-sets are stated in summary form here. For the actual NetLogo code, please visit
http://ccl.northwestern.edu/netlogo/models/predation/.
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Notice that the mechanism for reproduction in Talia’s model is blind probability; any wolf or sheep

may reproduce at a given clock-tick if the numbers come up right. This may seem like she was

cheating, for surely this is an unrealistic way to portray behavior at the individual level. Talia had a

firm justification for this though. She reasoned that there are many different ways in which various

organisms reproduce, and yet, similar dynamics tend to arise in populations regardless of the

specific reproductive mechanisms. To keep the model as general as possible, she adopted a

probabilistic rule that effectively says "reproduce every now and then.” This rule allowed her to

achieve the desired behavior without being specific about mechanisms.

Of course, mechanisms are important to embodied models, and they generally are specified.

The rules governing death in this model, for example, are more specific than those for reproduction:

prey die specifically when they are eaten by predators, and predators die specifically by running out

of food. Wherever the particular mechanism is relevant to the model it should be included;

otherwise, details in the model can be minimized using probabilistic rules.

To be sure, there are many simplifications made by Talia’s model that are questionable. A

quick list includes: only a single factor limiting the growth of predators (starvation), only a single

factor limiting the growth of prey (they are eaten), random movement, no limit on number of

organisms on a single patch, only two dimensions, etc. It is certainly possible, even likely, that these

are not just simplifications, but oversimplifications. There is no quick way to determine where such

abstractions are valid and where they are mistaken. This uncertainty, though, is an integral part of

the process of modeling – not only with embodied models, but with any scientific modeling

process. The modeler must carefully consider which kinds of simplifications are plausible, and,

even then, it is often only repeated testing of the model and revision of the assumptions that may

ultimately lead to a valid model.

Once Talia had completed the coding of her model in the NetLogo language, she selected

values for each of the parameters in the model (i.e., the E1, E2, R1, R2 parameters of Rule-set 1 as

well as the initial number of wolves and sheep, and the length and width of the patch world). The

values of model parameters, initially set by intuition, will often have a significant effect on the
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outcome of a NetLogo simulation. The modeler may induce what kind of effects, if any, each

parameter has on the outcome by repeatedly altering these parameters and observing the result.

Since the relation between the various parameters of a model can be non-linear, this can be, not

surprisingly, a difficult task.

After Talia ran her model several times under various parameter configurations, she noted

that one of two general outcomes would always result. Most often, the populations oscillated until

all the sheep were eaten, whereupon the wolves died from starvation (figure 3a). Sometimes –

usually under low density parameters (e.g., small population size or narrow screen width) – there

were oscillations until the number of sheep dipped too low and the wolves all died off, at which

point the sheep population increased at an exponential rate (figure 3b). Thus, Talia's rule-set

successfully produced population oscillations, but this pattern was consistently transient and

unstable. These results were clearly not in line with the sustained population oscillations observed

in nature and those of the Lotka-Volterra model. The next logical step in the modeling process was

for her to revise her thinking.

     
Figures 3a (left) and 3b (right). Two different outcomes from rule-sets W1 + S1. In figure 3a,

both populations go extinct. In figure 3b, the wolves go extinct and so the sheep “inherit the
earth.”

Revising the Model

Talia was initially disturbed to find that her model did not meet her expectations. Still, she

was determined to create a version that exhibited a stable relationship between the wolf and sheep

populations. That is, one where the two populations would continue to coexist, despite ongoing
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fluctuations in size. To generate such a version, she put great effort into understanding the behavior

of her existing model. She asked herself: Why did the populations crash? What factors might be

missing or misrepresented? From analyzing plots such as figures 3a and 3b, she was led to several

observations concerning the stability of her model. (1) The peaks of the wolves follow peaks of the

sheep. (2) The higher the peaks of the sheep, the higher the peaks of the wolves. (3) The higher the

peak, the deeper the following crash. Instability in the model appeared to manifest itself in the ever-

increasing amplitude of the population oscillations. The peaks get higher and the crashes get deeper

over time, until zero is reached and the cycle ends altogether. What she decided to search for, then,

were factors to help limit the amplitude. That is, factors to help contain both uncontrolled growth

and uncontrolled decline in the sizes of the populations. In the course of further examining the

model and its behavior, Talia devised a number of theories about the reason for the observed

instability. She tested her theories through a process of successive revision, where she would

repeatedly devise a corresponding variation to her rule-set, instantiate it in NetLogo, and observe its

effects.

Discussion: The danger of curve-fitting. This activity of successive model revision is useful

in that it allows students experience in developing original hypotheses, in formalizing them, and, to

some degree, in testing them out. Modelers engaged in the process of model revision need to be

aware of a potential danger: In attempting to alter a model in order to achieve a certain desired result,

they run the risk of “curve-fitting.” That is, they may end up with a model that bears superficial

similarity to the system that they are trying to model, but achieves this using an unrelated

mechanism. This danger occurs whenever there is a target behavior for a model, and once the target

behavior is achieved, the model is not subjected to further testing in order to assure a genuine

correspondence. In general, embodied models are less prone to this danger than classical models,

for they model systems at two levels (underlying mechanisms, and global behavior), rather than just

one (global behavior). This two-tier approach is safer, because there are more constraints that the

modeler must satisfy (we will elaborate on this below in Discussion: Contrasting embodied versus

classical assumptions). However, when modelers are not critical of the plausibility of their
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assumptions, the problem of superficial correspondence remains an acute danger. To avoid this

hazard, students should always focus on the plausibility of the model as a whole rather than only on

its behavior. For example, when the results of a model are not in line with expectations, a student

should ask, “what have I missed about the behavior of the components?" – not simply, "how can I

change my model to make it behave the way I want it to?"

Researching the relevant biological literature. Research into scientific literature is often a

part of the debugging process. This research can help amend any errors in a student’s knowledge

of the phenomenon or reveal any important facts that she might be overlooking. After experiencing

difficulty devising a rule-set that would lead to stable oscillations, Talia decided to do some research

to determine the source of the problem. She discovered a substantial base of scientific literature

addressing experimental evidence and theory of two species predator-prey systems. Notably, she

read that when such systems were first created in the laboratory by G. F. Gause (1934), the

findings were just as with her NetLogo model: either the predators ate all the prey and then starved,

or, under certain conditions, the predators first died, and then the prey multiplied to the carrying

capacity of the environment (Gause, 1934). Gause was surprised at this result. Based on the work

of Lotka and Volterra, he fully expected such two-species systems to be inherently stable. Talia thus

learned, to her surprise, that her model wasn’t necessarily wrong at all — it was the classical Lotka-

Volterra model that was mistaken!

Talia’s model failed to reproduce the dynamics of predator-prey systems found in nature,

but it succeeded in predicting the dynamics that have been observed in the laboratory. Her research

uncovered two important differences between the natural and experimental settings to account for

this discrepancy. The first is the lack of constraints on the growth of the prey population in the

experimental settings. In nature, the size and rate of growth of the prey population are constrained

by several factors, including limits on the food resources available to prey and limits on their

maximum density. The laboratory experiments, however, included abundant food for the prey, and

no other adversities in the system but the possibility of predation (Luckinbill, 1973). The second

difference is the lack of environmental complexity – the models and the experiments leave no place
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for the prey to seek refuge and evade the predators, thus preempting the possibility of having some

sub-populations of prey surviving in different regions (Huffaker, 1958).

Discussion: Contrasting embodied versus classical assumptions. Talia’s model did not

produce the expected results, but it turns out that this is only because her expectations were

mistaken. The model omits any rules pertaining to environmental conditions or limits on food for

prey, and thus it correctly predicts the outcome of the laboratory situation, which also omits these

factors. The Lotka-Volterra model does not include these factors either, and given this, we would

expect it to offer predictions for the experimental condition, not the natural condition. Indeed, Lotka

and Volterra thought that their equations constituted a mathematical proof that such two species

predator-prey systems are inherently stable. Instead, this prediction has been shown false. Why

might the two models differ in this way?

One might initially think that the different predictions offered by these two models can be

attributed solely to skill (or luck) on Talia’s part. In fact, neither skill nor luck can explain this alone

– she tried very hard to achieve Lotka-Volterra-like behavior using NetLogo, but was unable to do

so without significant changes to her assumptions. These circumstances suggest that the factor that

best accounts for her success versus Lotka’s and Volterra’s failure in this particular case was her

use of embodied modeling tools.

Classical tools prevail in modern scientific practice because they provide, in many cases, an

extremely concise and accurate representation of a system. Nevertheless, these tools need to be

applied with great care. Compared with embodied tools, classical tools make it much easier to model

aggregate-level outcomes that are biologically implausible. Recall that classical and embodied tools

each incorporate assumptions at different levels — the former at the aggregate level, and the latter at

the individual level. This is no small point. While classical tools allow us to make any aggregate-

level assumptions we want, embodied tools make it natural not to make any aggregate assumptions

at all. Instead, we must code our assumptions at the individual level, and wait to see what the

aggregate-level consequences of these are. Depending on the outcome we have in mind, it may be

that a reasonable individual level rule-set with this outcome simply does not exist.
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It is still possible to make mistaken assumptions at the individual level, but there are two

reasons why these may be easier to detect in embodied models than in classical ones. First,

embodied models offer more feedback to the modeler; there are two levels at which to “debug”

them, rather than only one level at which to debug classical models. We can scrutinize both the

plausibility of the individual-level assumptions as well as the plausibility of the resulting aggregate-

level outcomes. If either seem suspicious, then we have a hint that we may be on the wrong track.

With classical tools, the only assumptions are, generally speaking, aggregate-level assumptions, so

new information is not typically gained from observing a model’s outcome.

The second reason why mistaken assumptions may be easier to detect in embodied models

is that they take the form of rules for action. We have found that most students are already

accustomed to thinking in terms of such rules, simply by analogy to their own experience. Hence,

they come equipped with intuitive strategies for understanding and developing embodied models.

For example, students will often try to make sense of a given rule-set by assuming the perspective

of the individuals within the model and using their imaginations. Classical models, in contrast,

require students to think in terms of more abstract quantities, such as rates and population densities.

While thinking in this mode may be comfortable for professional mathematicians, it is quite foreign

to most students (see Stroup, 1996).

Discussion: Contrasting embodied versus classical explanations. Embodied models have

another advantage over classical models that is particularly relevant in an educational setting. This

advantage is that embodied models not only represent processes, but also the mechanisms that

underlie them. A classical model describes no more than a quantitative pattern: the Lotka-Volterra

model describes a set of two curves. The explanation that it offers for these curves could be called a

shallow one. It accounts for them by explaining that the birth rate of the predators is proportional to

the number of prey, and that the death rate of the prey is proportional to the number of predators.

We use the term shallow because it is never actually specified how this explanation relates to actual

organisms. In fact, this explanation can be induced just from looking at the population plots

themselves — the very same plots we are trying to explain! Often when we ask for an explanation,
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though, we are looking for an underlying cause. That is, not an account of the pattern itself, but an

account of the mechanism that gives rise to it. This deep kind of explanation, often more satisfying

to students, is precisely what embodied models provide (Reisman, 1998; Wilensky, 1997a, 1999a).

By bridging events with their underlying causes, deep explanations enable students to form

powerful conceptual connections between their understanding of phenomena at different levels (see

Wilensky & Resnick, 1999). Currently, most topics in biology (and in science, in general) are

taught only at a single level. Be it the molecular, cellular, anatomic, organismic or ecological levels,

these topics tend to be conveyed and understood in isolation from one another. It is unfortunate that

the relations between these levels are not typically emphasized, given the possibility for topics at

each level to provide deep, mechanistic explanations for topics at adjacent levels up. For example,

students can apply their knowledge of molecules in order to make better sense of cellular processes,

and apply their knowledge of organisms in order to make better sense of ecological processes. Not

only do these applications provide a stronger intuitive basis for students to understand each topic;

they may unify students’ understanding of biology as a whole. Though computer tools are certainly

not required in order to emphasize these conceptual connections between topics – many teachers

already stress such connections to great effect in their lectures – our experience has shown

NetLogo modeling to be a particularly effective means.

Adding grass – greater complexity can promote stability. Both the classical and embodied

models presented above require emendation to account for the experimental findings. Many

accurate classical models of predation have been developed since the work of Lotka and Volterra,

but their mathematical complexity is beyond the scope of this paper, and surely beyond the reach of

most undergraduates (let alone high-school students). We now turn to an alternative rule-set that

Talia devised in order to prevent her NetLogo ecosystem from destabilizing.

Talia learned that a major disparity between Gause's experimental setup and the natural case

studies was the lack of constraints on the growth of the prey population. In natural systems, the

prey population is generally constrained by the amount of resources available in the environment

(e.g., food and living space) so that there is effectively a carrying capacity – a maximum number of
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organisms that can be supported – that limits the growth of the population. Gause’s experimental

setup and Talia’s model both overlook this, and instead include no such limits to growth. Prey

within both systems have, at all times, ample food and ample space in which to live. As it turns out,

surprisingly perhaps, this condition makes a significant difference to the stability of the system.

In order to impose a carrying capacity on the sheep population, Talia decided to modify her

model so that sheep would now be required to consume some limited resource in order to survive.

The new model would now include not only wolves and sheep, but also grass, which would "grow"

back once eaten. She represented the grass by means of patches that could either be green (i.e.,

grass available for consumption) or brown (i.e., grass has already been consumed). Once a patch

would turn brown, it would begin a countdown and only revert to green after some fixed interval of

time. There were then two ways the prey could die – either by being eaten or by starving. These

decisions resulted in an updated rule-set for sheep and a new rule-set for grass:

Rule-set S2: sheep

at each clock-tick:

1. move randomly to an adjacent patch and decrease energy by E3

2. if on grassy patch, then eat “grass” and increase energy by E4

3. if energy < 0 then die

4. with probability R1 reproduce

Rule-set P1: patches

at each clock-tick:

1. If green, then do nothing

2. If brown, then wait X1 clock-ticks and turn green

After selecting appropriate parameters and running her revised model, Talia found that her

modifications had indeed brought about stable oscillations among the wolf and sheep populations.
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In addition, the level of grass in the model would oscillate as well. In examining plots of the

population sizes over time, Talia noticed that changes in the sizes of the wolf population and in the

level of grass would be roughly correlated, both varying as the approximate inverse of the number

of sheep (figure 4).

Figure 4. A typical outcome from rule-sets W1+ S2 + P1.

In one sense Talia was surprised to find this model much more stable than the last, since she

had given sheep more ways in which to die. Oddly enough, by limiting the resources of the sheep

she had actually increased their chances of survival. On further reflection, Talia found this result –

known in the literature as the “paradox of enrichment” (Rosenzweig, 1971) – entirely reasonable.

By not controlling the amount of food available to the prey, the prey population can grow without

limit. This increase in prey eventually causes the predator population to grow to unusually large

levels, ultimately leading to a rapid and precipitous decimation of the prey. This effect is known to

occur in the natural world just as it does in the NetLogo world. Accordingly, those involved in

wildlife conservation efforts now know that providing endangered species with an excess of

resources may have the counterintuitive effect of decreasing their numbers.

A further surprise for Talia was that the introduction of grass – an increase in the

complexity of the model – actually contributes to stability. This model, with its multiple fluctuating
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and interdependent populations, is more reminiscent of an ecosystem than the previous version.

Contrary to engineering logic, the logic of this model suggests that complexity and noise in a

system can result in greater stability, not greater “chaos.” Modelers in biology, both amateur and

professional, are sometimes quick to abstract biological phenomena from the environments in which

they occur. Talia’s surprising result, however, urges us to remember that environmental and

ecological context can play a significant role.

Spread out the Sheep

Talia’s revised model contains three species (wolves, sheep and grass), while she originally

set out to build a model of predation between only two (wolves and sheep). She wondered whether

she could find other rule-sets that would achieve the same effect as the grass, without including any

additional species. She considered the role of grass in her revised model: it appears to assure that

only a finite number of sheep can inhabit a given area. If there are too many sheep then the grass

will run out and the sheep will starve, unless they move to another area that contains grass. Thus,

she conjectured, the role of the grass is to limit the sheep population by placing a maximum density

at which they can survive. Talia contemplated ways in which to impose such a density restriction on

her model, without adding a third species. Another student, Benny, suggested that she could

eliminate the grass and instead include a rule that explicitly restricts any patch from being occupied

by more than one animal of a given species:

Rule-set S3: sheep

at each clock-tick:

1. move randomly to an adjacent patch which contains no sheep. If all adjacent patches

contain sheep, remain in place.

2. if there is an unoccupied adjacent patch, then reproduce with probability R1 and place the

“offspring” into an unoccupied patch
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Rule-set W2: wolves

at each clock-tick:

1. move randomly to an adjacent patch which contains no wolves. If all adjacent patches

contain wolves, remain in place

2. decrease energy by E1

3. if on the same patch as a sheep, then eat the sheep and increase energy by E2

4. if energy < 0 then die

5. with probability R1 reproduce

Benny and Talia hypothesized that the resulting dynamics of rules W2 + S3 should look

very similar to those of Talia’s three species model, only without the grass. In fact, when they first

ran the model they found its dynamics to be more similar to the first model Talia had built. The

behavior was unstable, inevitably leading to the extinction of one or both of the two species, though

it went through more oscillations before doing so. It was only after they spent considerable time

varying the parameters of the model that they discovered an additional condition that promoted

stability. They found that, by increasing the birth-rates of the wolves and sheep to high levels, the

sizes of the two populations would, indeed, continue to oscillate indefinitely.

Figure 4a. A typical outcome from rule-set S3 + W2.
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Although this rule-set results in stable behavior as the previous one did, a plot reveals that its

dynamics are actually quite different (figure 4a). Compared with the curves in the previous plot

(figure 4), the two curves representing wolves and sheep in this plot are much more regular, are of

far greater amplitude, and appear to have a different regular displacement from each other. It also

shows, unlike the previous plot, that the wolf and sheep populations are regenerated at each cycle

from only a small number of individuals. Attention to the graphic window provides a dramatic

manifestation of these differences; where the individuals in the previous model tend to be evenly

dispersed and generally consistent in number, individuals in this model tend be more clustered in

various regions of the window and subject to dramatic changes in number.

These two models are different, yet Talia could think of arguments in favor of each. The

latter could be favored for its relative simplicity, as it contains only two different organisms (wolves

and sheep) rather than three (wolves, sheep and grass). Furthermore, its requirement that only one

organism of a kind should be allowed per patch could be considered more realistic – why should an

infinite number of organisms be allowed in a finite space? With the former model, Talia could

respond that the patches do not represent small spaces, but larger areas into which many organisms

may fit. Additionally, she could argue that this model’s lack of dependence on a specific, and

possibly unfeasible, range of birth-rates makes it a more plausible alternative.

How should Talia have chosen between these competing rule-sets? Which one should she

have deemed correct? Her answer was that one cannot choose between equally plausible rule-sets so

long as they both yield equally plausible results. She came to see that her difficulty choosing was

not specific to this example nor to NetLogo modeling – indeed, it is inherent in the process of

scientific modeling. When multiple theories are equally compatible with existing knowledge, and

neither theory is more predictive than the other (as in this case), then there will be no direct way to

arbitrate between them (Quine, 1960).

Discussion: Answers versus theories. Some teachers within the MSCP project were

initially uncomfortable with this indeterminacy and sought to hide it from students. In our

discussions with these teachers, we encouraged them to “dive into” the indeterminacy. Not only is
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such indeterminacy fundamental to scientific inquiry, but it may be valuable to students as part of

their own thought processes. The modeling-oriented approach to learning biology shifts their goal

from finding the correct theory, to finding a theory that is compatible with all the available evidence.

The significance of this shift is that students need no longer search only for unique answers, which

may be true or false in themselves. They can spend their time trying to compare theories against

other theories. This shift of focus for the student – from learning answers, to assessing theories for

themselves – is just the kind of high-level skill called for by educational policymakers and industry

leaders at a time in which the turnover of scientific knowledge is so rapid (Chen, 1999; Murname &

Levy, 1996). While content knowledge, or many of the "answers" in today’s textbooks are already

out of date, the skill of assessing the validity and plausibility of answers is not so easily made

obsolete.

Before we move on to the next example, it is worth noting that the methods and tools we

have presented here are not only useful to students, but to professional scientists as well. The

embodied approach, known to population biologists as Individual-Based Modeling, has become an

accepted methodology within the field. Current individual-based models of predation are actually

rather similar to the one we have developed in this section. In some cases, these models offer greater

predictive accuracy than their classical counterparts ( Huston, DeAngelis, & Post, 1988; Judson

1994).

Modeling Synchronized Fireflies

In the previous section, we showed how students can use NetLogo as a tool to model and

explore biological systems. In this section, we will elaborate on the ways in which students can,

through the process of modeling, both learn about specific topics within biology, and use the

NetLogo modeling language as a laboratory for exploring biological mechanisms. Our example

follows the inquiry of an undergraduate student, Paul, whose formal biology instruction consisted

solely of high school biology courses. Through his involvement with the Making Sense of

Complex Phenomena project, Paul learned of the phenomena of synchronously flashing fireflies

and was intrigued. The following paragraph will provide some background.
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For centuries, travelers along Thailand’s Chao Phraya River have returned with stories of

the astonishing mangrove trees that line its banks. Come nightfall, these trees have been seen to

flash brilliantly, on and off, intermittently illuminating the surrounding woods and the water below.

A closer look at this display, though, reveals that the sources of these rhythmic flashes are not the

trees at all. Rather, it the effect of thousands of individual fireflies inhabiting the trees, all pulsing

their lights in unison. Several species of firefly are known to do this, such as the Southeast Asian

Pteroptyx Malacae and Pteroptyx Cribellata. When one such firefly is isolated, it will typically emit

flashes at regular intervals. When two or more such fireflies are placed together, they entrain to

each other – that is, they gradually converge upon the same rhythm, until the group is flashing in

synchrony (Buck, 1988).

How do the fireflies achieve this coordinated behavior? When we think about how behavior

is coordinated in our daily lives, we tend to think of schedules and elaborate plans. Paul was

perplexed at how creatures that seem to have little capacity for such intelligent planning are

nonetheless capable of such coordination. It was Paul’s suspicion that there must be a simple

mechanism behind the feat of the synchronizing fireflies. His goal was to try to understand this

mechanism by building a model of it in NetLogo. Paul decided not to begin his inquiry by doing an

extensive literature search. Instead, he was determined to see if, perhaps, he could find a solution on

his own. He began his task with no more than the above description.

Approaching the Problem – Initial Assumptions

To begin, Paul made several working assumptions about these fireflies – he was prepared to

revise them later if necessary. First, he decided that the mechanism of coordination was almost

certainly a distributed mechanism. That is, the fireflies were not all looking to a leader firefly for

“flashing orders,” but rather were achieving their coordination through passing and/or receiving

messages from other fireflies. From his previous experience with NetLogo, he had learned that not

all coordinated group behavior requires a purposeful leader to direct the group (see Resnick, 1996;

Wilensky & Resnick, 1999). Examples such as the food-seeking behavior of ants and the V-

flocking of birds, implied that some forms of group organization could arise on their own. That is,
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as long as each organism follows a certain set of rules, then the whole group would be likely to

organize itself. Paul’s seeking out of a distributed mechanism to explain firefly synchronization

represents no small achievement12. Elsewhere (Resnick, 1996; Resnick & Wilensky, 1993;

Wilensky & Resnick, 1995, 1999), we have described a “deterministic/centralized mindset” – a

tendency of most people to describe global patterns as being orchestrated by a leader giving

deterministic orders to his/her followers. Paul’s experience in the MSCP project allowed him to

overcome this tendency and consider leaderless non-deterministic mechanisms for firefly

synchronization. Given the limited intelligence of individual fireflies, Paul surmised that just such a

mechanism probably underlies firefly synchronization behavior. A second assumption, following

the first, was that the system could be modeled with only one set of firefly rules– that is, with every

firefly in the system following the same set of rules. Although he recognized that this assumption

might have been too strong, just as ant and bee populations do divide roles among their groups, he

decided to first try out the simpler hypothesis of undifferentiated fireflies. Yet a third assumption

Paul made concerned the movement of the fireflies – that it was not necessary to model this

movement as coordinated or governed by deterministic rules, but rather it could be modeled as

random flights and turns. From experience with other NetLogo models, he had come to appreciate

the role of randomness in enabling coordination (Wilensky, 1997a, 1999a). In a wide variety of

domains, ranging from the movements of particles in a gas, to the schooling of fish and the growth

of plant roots, Paul had seen how stable organization could emerge from non-deterministic

underlying rules. A final assumption was that the behavior of the fireflies could be modeled in two

dimensions13.

Beginning With a Simple Model

These assumptions left Paul with the task of finding a plausible set of rules for a typical

firefly. Rather than tackle this problem all at once, he decided it would be easier to begin with a

                                                
12 It is interesting to note that some of the first theories proposed to explain synchronously flashing fireflies were, in
fact, “leader” theories (Morse, 1916; Hudson, 1918).
13 While the first three assumptions were derived, to a great extent, from Paul’s understanding of plausible biological
mechanisms, this last assumption was primarily driven by the limitations of computer displays and of the NetLogo
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simpler version. He started by modeling a flashing firefly that does not synchronize. Paul

contemplated how to represent a flash using a NetLogo turtle. The solution came naturally: the

turtle would change its color (say, to yellow) and then change it back. Now he needed a mechanism

to regulate when the flash would occur. He knew that if left alone, a firefly would continue to emit

flashes at a constant rate. Paul considered how to represent this simple behavior within his model

firefly; the behavior meant that every several clock-ticks, the model should flash (change its color).

For the flash to be seen, it would have to last at least one clock-tick. To accomplish this goal, Paul

decided to give the model firefly a timer that would count down from a predefined reset-value (R) –

once the timer reached zero, the firefly would flash and reset the timer. In addition to the flash-timer,

Paul also included a rule to cause the model firefly to "fly" around the screen. He assumed

provisionally that a randomly generated flight path would be sufficient. He wrote the following rule-

set:

Rule-set F1: firefly

to initialize:

0. set timer with random value between 0 and R

at each clock-tick:

1. if color is yellow (flash is on), then change color to black (flash is off)

2. if timer is zero, then change color to yellow and reset timer to R

3. decrement countdown timer by one

4. move randomly to an adjacent patch

After Paul debugged his NetLogo code, his simple model worked. The fireflies would move around

the screen and flash regularly, though of course they did not yet synchronize their patterns.

Thinking Like a Firefly

                                                                                                                                                            
language itself. Since building a three-dimensional model is more difficult in NetLogo, Paul was, essentially,
hoping that the three dimensionality of the firefly world was the not the key factor in enabling their coordination.
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Paul was left to ponder what sort of additional rules might cause the fireflies to synchronize

with each other. He considered the nature of coordination in general: could it ever be possible for

distinct entities to coordinate their behaviors if they were unable to communicate with each other?

No – it seemed communication at some level would always be necessary for any coordinated

behavior to occur consistently. He wondered what kind of communication mechanism might be

used.

Often when building a model, students find it helpful to identify with the individuals within

the model, and to view phenomenon from their perspective. At this point, Paul began to “think like

a firefly.” He reasoned along the following lines: If I were a firefly in that situation, what

information would I have to go on? It would be dark, and I probably would not be able to see the

other fireflies. I probably would not have much capacity for hearing or sensing the other fireflies

either. I would, however, be able to see their flashes. Perhaps, then, I could look to see who else is

flashing and then use this information to adjust my own flashing pattern. 

Sorting Through Design Options

Paul concluded that the flashes themselves could serve to communicate the necessary

information, and he wanted to make this possibility more concrete within the context of the

NetLogo environment. He had already decided that in order to flash, a firefly changes its color from

black to yellow, and back to black again. A firefly must, then, be searching for other yellow fireflies.

There are many ways that such a search might be carried out in NetLogo, and Paul found that he

had some choices to make. The process of formalizing his model forced Paul to confront questions

that he had not already considered: How many other fireflies should a firefly look at? At what

distance could it detect a flash? How many flashes should it be allowed to take into account?

Paul saw that there did not have to be any strictly correct answers to these questions, since

they were, questions about simulated fireflies not actual fireflies. For example, it would make little

sense to ask how many patches away actual fireflies can see! Still, Paul thought that at least the

issue of whether a model firefly should survey the flashes of all or only a part of the population

should have a clear answer. For it would be possible to allow a model firefly to detect all flashes in
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the population at a given clock-tick, but this would surely be granting the firefly too much

information; model fireflies shouldn’t be much more intelligent or perceptive than real ones. Since a

real firefly would only be able to perceive a subset of the flashes in the population, Paul decided that

the model firefly should scan only adjacent patches in order to look for yellow fireflies. He began

with a rule that allows a firefly to sense other flashes within a radius of one patch. This decision

only partly simplified the question of what a firefly senses. Consider some statistics that a firefly

might collect about observed flashes: overall brightness (i.e. the combined light of all observed

flashes) during a given clock-tick, the number of distinct flashes observed during a clock-tick, the

number of clock-ticks between observed flashes, increases in relative brightness from clock-tick to

clock-tick, simply whether or not any flash had been observed at all at a given clock-tick, etc. At this

time, Paul did not have any principled way of choosing amongst these data collecting options, so he

decided to proceed without committing to any of them.

Given that a firefly has some mechanism for perceiving flashes, and perhaps for analyzing

this information in some way, the next question that Paul faced was what to do with this

information. In what way would a firefly alter its flashing behavior in response to whatever had

been observed? Paul tried to think of a simple situation in order to make sense of the problem.

Once again, he took the perspective of a firefly: Suppose I perceive a clear pattern among the other

fireflies – for example, everyone else is already synchronized. Then, as long as we all have timers of

the same duration, it would be simple to match this pattern. Upon seeing everyone flash, I would

reset my timer as if I had flashed as well. Then my next flash would coincide with everyone else’s.

Having understood what to do at one extreme, Paul tried to work backwards: At some point,

before everyone else is synchronized, I must be confronted by a multitude of unsynchronized

flashes. Then what would I look at? To what would I reset my timer? Paul thought again of all the

different ways that a firefly might analyze observed flashes, and all the different timer-reset rules

that must be possible. Paul had many ideas, but he felt that he needed more information to continue.

Researching the Relevant Biological Literature
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Notice how far Paul was able to get without reference to detailed information about the real-

world phenomenon. From his initial goal to model “whatever” was going on, by “thinking like a

firefly,” he was able to reason to this point where he was seeking a very particular sort of

algorithm. It might have been possible for someone to take this line further, but in order to decide

among some of the options he had left open, Paul felt a need to gather information about the

behavior of real fireflies. For example: does the interval between successive flashes vary from

firefly to firefly, how far can an actual firefly see, how many flashes can it take into account, what is

the timer-reset rule.

At this point, Paul did some research into the scientific literature. His own investigation had

not answered all his questions, but it had given him a sound context from which to understand and

interpret the existing research. In looking through the literature he was not reading a teacher’s

assigned material, but rather engaging in his own research to answer questions of his own devising.

Paul located several journal articles in order to help answer his questions. He found out the

following (Buck, 1988; Buck & Buck, 1968, 1976; Carlson & Copeland, 1985):

1. Fireflies do indeed have internal “timers” to regulate the period of flashing, and are

known to entrain their timers to observed rhythms.

2. The only information needed for entrainment is that of other flashes.

3. There are many species of synchronizing fireflies, all with different entrainment and

oscillation characteristics.

4. Some species are able to adjust the period of oscillation; others are not. For the latter,

the period of oscillation tends to remain highly constant across a population.

5. Different methods of synchronization are seen across species. Two main mechanisms

are phase delay and phase advance synchronization:

a. Phase-delay: when a firefly perceives any flash, it delays its next flash so that it will

occur one period after the perceived flash. This strategy is known to be employed by

the Southeast Asian fireflies of the Pteroptyx genus.
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b. Phase-advance: when a firefly perceives any flash during a short window of time

before flashing, it flashes immediately and starts a new period immediately

thereafter. This strategy is known to be used among species that tend to synchronize

only rarely and transiently, such as the American Photinus Pyralis.

Paul was pleased to discover that many of his design decisions were biologically plausible,

such as his focus on a distributed synchronization mechanism, his use of timers to control flashing,

and his decision to allow timers of the same duration across the population. The synchronization

mechanism he had thought of earlier appeared to correspond to the phase-delay mechanism from

the text, although he was surprised to learn that a firefly needs to see only one flash, any flash, in

order to react. His next step was to extend his existing model in order to determine whether this

would really work.

Modeling Phase-Delay Synchronization

Paul decided to model the phase-delay mechanism first. The research did not turn up any

information on the maximum distance within which a firefly can perceive other flashes, and so Paul

had to decide on this matter on his own. For representational simplicity, he chose to allow fireflies

to sense other fireflies within a radius of one patch. Incorporating this information in his earlier

model resulted in the following rule-set:

Rule-set F2: phase-delay firefly

0–4. Identical to rule-set F1

5. if there is a yellow firefly within one patch, then reset the timer to R

Paul ran rule-set F2 using 1000 fireflies and was amazed to see the model fireflies converge upon a

single rhythm before his eyes. He also set up a plot to display the number of fireflies flashing at a

given time (figure 5).
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Figure 5. Typical plot of the number of flashes in a firefly population at a given time under rule-set
F2.

Modeling Phase-Advance Synchronization

Next, Paul wanted to try out the phase-advance strategy. This attempt required more

sophistication, since a phase-advance firefly will only adjust its timer during a short window before

its flash. Paul amended F2 to account for this time window:

Rule-set F3: phase-advance firefly

0–4. Identical to rule-set F1

5. if there is a yellow firefly in a neighboring patch, and I am within W clock-ticks of my

next flash, then reset the timer to R

Indeed, Paul found that this strategy was not as effective as phase-delay synchronization – when he

ran this rule-set (figure 6), he did not observe synchronization at all! It was only after much

experimenting that he discovered a variant of this rule-set (see F4 below) that did produce

synchrony, although the synchrony took much longer to develop and was not as precise as with

rule-set F2 (figure 7). Rather than flash in perfect unison, the fireflies would all flash within an

interval of two or three clock-ticks.
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Rule-set F4: phase-advance firefly

0–4. Identical to rule-set F1

5. if there are at least two yellow fireflies within one patch, and I am within W clock-ticks of my next

flash, then reset the timer to R

Figure 6. A typical result of running rule-set F3. Even after 20000 clock-ticks, no synchrony emerges. 

Figure 7. A typical result of running rule-set F4. Fireflies eventually synchronize, but not with the same

speed1 or precision as in rule-set F3.
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While he had managed to achieve synchronization using a phase-advance mechanism, Paul

was uncomfortable with this result since he had done so by means of an ad hoc change to his

model. He wondered whether, perhaps, this result predicted the behavior of actual fireflies, or

whether it was a just an artifact of the representational decisions he had made.

Paul tried a number of further variants to rule-set F4 to investigate other possible flash-reset

mechanisms. Among them was one where he omitted the requirement for a flash-window (W). He

quickly discovered why this window was necessary: without it, the fireflies would persistently reset

each other’s timers, and there would be no interval between flashes.

Further Questions for Research

Paul was encouraged by the initial results of his research and was left with new questions to

investigate. For example, he was intrigued by the ability of some fireflies to adapt not only the

timing of their flash, but also the duration between flashes. The papers he had looked at gave no

complete theory of how this could be done. He was also interested in customizing his model to

reflect the idiosyncrasies (e.g., multiple consecutive flashes, responses to irregular stimuli) of

particular species, such as Pteropox Malacae and Photinus Pyralis. Though he began his inquiry

with only a single question in mind, he found that his questions multiplied as his research

continued.

Discussion: The Model Testing Process

What makes a model a scientific model is that it has been tested against whatever system it

was designed to represent. At this point, Paul’s phase-delay model was successful in having the

model fireflies collectively synchronize their flashing patterns, but the correspondence between this

model and reality still needed to be tested. Indeed, Paul went through such a process of testing, and

eventually was convinced of the soundness of his modeling decisions. In this section we will

remark upon his experience in order to frame a discussion about the process of testing and

evaluating NetLogo models in general.

Why bother testing at all? In one sense we know that Paul's model works, for the model

fireflies do indeed synchronize. However, we have already discussed the dangers of models that
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bear only a superficial correspondence to the phenomena being modeled, and in Paul’s case there is

certainly such a danger. Perhaps there are many different algorithms that will lead to

synchronization. How do we know that Paul’s model corresponds in a meaningful way to the

behavior of real fireflies? We have some indication, since journal articles have confirmed many of

Paul’s assumptions. Still, Paul may have made errors in coding his model, he may have

misinterpreted the literature, and, of course, the literature itself may have been incorrect. Ideally then,

we would like more evidence that the model is sound. In order to evaluate a model, a modeler must

critically analyze the content and output of the model along several dimensions. These include the

soundness of the model’s underlying assumptions, the robustness of its output, and its predictive

capacity. Let us consider each of these in turn with respect to Paul’s model.

Continually evaluating the plausibility of the background assumptions is a modeler’s first

line of defense against specious models. Whenever design decisions are made, the modeler should

be aware of the ways in which these decisions may detract from the realism of the model. He/She

may then make a deliberate choice to stay with these decisions, reject them, or, perhaps, to wait until

later to choose. For example, when Paul decided that all fireflies would follow the same rules or that

the relevant behavior could be adequately modeled in two dimensions, he made these decisions

provisionally. He was aware of the conceptual jump he had made, and was prepared to retract these

assumptions if necessary. Any model will take representational liberties. The important thing is to

be aware of these, and to try and discern whether and how they affect the plausibility of the model.

Another way to evaluate a model is to consider its “robustness.” A robust model will yield

consistent results, even when we introduce noise, adjust the parameters, or even effect small changes

to the background assumptions. If we do obtain consistent results under these conditions, we have

evidence that our model is not overly sensitive to our assumptions or chosen parameters – some of

which may be arbitrary or mistaken. We may reasonably suspect a non-robust model of being

implausibly contrived, or curve-fitted (see, above, Discussion: the danger of curve-fitting). It was on

these grounds that Paul had been suspicious of his phase-advance model. He wanted to further test

his phase-delay model along the same line. Paul figured that a robust solution to the
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synchronization problem should be able to hold up under non-ideal, or “noisy,” conditions, where

other factors might interfere with the phase-delay algorithm. One way that he tested his solution

was to introduce several “blind” fireflies that would not synchronize with the rest, but would still

flash. When he tried this, he found that the population took much longer to settle into a stable

pattern of synchronization. Initially, only small clusters of synchronization would transiently form

and then break up again within the population (figure 8). Paul was pleased to find that the algorithm

did hold up under this test condition. He then found in the literature that this local clustering had

even been observed in natural Pteroptyx populations (Buck, 1988).

Figure 8: Clusters of synchronization within a population of 1000 fireflies.

Of course, the principal way that scientific models are evaluated is by determining how well

they can be used for prediction. By this, we mean that the model anticipates some result that is

approximately true of the system being modeled, and that did not itself factor into the development

of the model. New data against which to compare a model might be collected in the laboratory or

from nature, though research in journals and other texts will often provide enough data for the

purposes of students. The predictions that student models may offer for this data are typically of a

qualitative rather than quantitative nature. In Paul’s case, for example, there was the unexpected

result from the “noisy” fireflies. His later discovery that this is actually in accord with real firefly
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behavior constitutes an item of predictive evidence in favor of his model. Ideally, a student would

attempt to find and amass as much such evidence as possible.

Testing can take place after students have developed their initial models, or, often, it will be

concurrent with the process of development. All along, students always have the options of either

concluding the modeling process, or going back and revising their models in light of what they have

discovered. In the end, even after students have critically evaluated their models, they must (once

again) confront the inevitable indeterminacy that surrounds the testing of scientific theories.

Theories are never conclusively proved (Popper, 1959). Accordingly, students should not walk

away from the modeling process believing to have found the correct solution. Rather, they should

leave with an awareness of the ways that their model both does and does not reflect the system they

set out to capture.

Critical thinking about modeling does not come easily to many students. In the Making

Sense of Complex Phenomena project, we have observed that for many students NetLogo modeling

is their first experience where such thinking – the sort that underlies experimental science – is

demanded. We have found that students engaged in NetLogo modeling, through revising, assessing

and successively refining their models do, indeed, develop a propensity for critically evaluating their

models. This propensity, however, is hard won. Typically, it is only after a good deal of guidance

that students will become critical of the representational decisions they have made. Further research

is needed on how to help students to move beyond good model building to good model critique. In

our concluding remarks, we will argue that significant learning occurs even when students do relax

the requirement of criticality.

Further Reflections: Learning Through Building

Let us call this the engineer’s dictum: if you can’t build it then you don’t understand it. Our

approach of modeling underlying mechanisms takes the engineer’s dictum seriously. In order to

model a system, it is not sufficient to understand only a handful of isolated facts about it. Rather,

one must understand many facts and concepts about the system and, most importantly, how these
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relate to each other. The process of modeling is inherently about developing such conceptual

relations, and seeking out new facts and concepts when a gap in one’s knowledge is discovered.

We have seen how Paul came, through building, to understand the concept of a simple

circuit capable of entrainment. In science and mathematics, such circuits are known as oscillators,

and networks of such circuits are known as coupled-oscillators. As it turns out, such oscillators do

not only underlie firefly synchronization, but a wide-range of phenomena throughout biology that

exhibit synchronization behavior without any centralized control. Among other phenomena,

oscillators are involved in acoustic synchronization between crickets, the pacemaker cells of the

heart, neural networks responsible for circadian rhythms, insulin secreting cells of the pancreas, and

groups of women whose menstrual periods become mutually synchronized (Mirollo & Strogatz,

1990). Though Paul’s goal was to learn about fireflies, he had come to understand a concept that

has applications far beyond.

Concluding Remarks

The embodied modeling approach we have presented and illustrated herein makes practical

a modeling-centered biology curriculum in secondary and post-secondary contexts. By removing

the barriers of formal mathematical requirements, it enables students to meaningfully engage the

dynamics of complex biological systems14. They are able to construct models of such systems,

reason about the mechanisms that underlie them and predict their future behavior. Because they are

able to use their knowledge of the individual elements in the system to construct their model, they

are provided with an incremental path to constructing robust models. When their knowledge of the

individual biological elements is combined with their knowledge of their own embodiment, their

own point of view, they are enabled to think like a wolf, a sheep or a firefly.

Thinking Like a Scientist

The above examples have, we hope, demonstrated the power of the embodied modeling

approach to enable students to construct robust models and engage in exciting scientific inquiry. For

                                                
14 Elsewhere (Wilensky, 1995; 2000) we have argued that computational modeling approaches are a new alternative
form of mathematics – a new mathematics for a new way of describing, representing and investigating scientific
theory (see also, Abelson and diSessa, 1981; Noss, 1988; Noss and Hoyles, 1996; Papert, 1972, 1980).
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some readers, there may still remain the question of why any kind of modeling approach should be

given a significant share of classroom time. We conclude by mounting a defense of a general

modeling approach in the science and mathematics classroom.

The modeling-based classroom is dramatically different from most venues of classroom

practice. Rather than passively receiving an authority’s explanation of science and mathematics

concepts, students seek out and consider these concepts on their own. Rather than carry out the

directions for predetermined lab studies, students engage in new investigations. What underlies this

approach is our deep conviction of the value of reasoning about scientific order. In both the

predation and firefly examples presented above, students were encouraged to reason through a

problem, creating and testing their own theories and hypotheses, before reaching for the established

literature.

A critic of our approach might argue that students may be prompted to develop and teach

themselves false models. We have already emphasized the importance of encouraging a critical

analysis of all models in order to avoid such false solutions. However, we acknowledge that given

the theoretical level at which we encourage students to consider problems, it is not unlikely that

students will indeed develop models that are at variance with natural systems. It is important to note

that we do not believe that this is a problem. Let us explain.

Methodology aside, educators differ about the goals of secondary and undergraduate

science education. Some common views are: (1) to convey knowledge of specific scientific facts

and techniques, (2) to foster in students a general understanding of and appreciation for the world

around them, (3) to train students in tools and approaches which will prepare them to learn about

and assess scientific theories they haven’t previously encountered, (4) to prepare students to

develop their own theories and conduct their own scientific research. No doubt, educators may value

several or all of these objectives; indeed, we believe they are all important. The distinctive form of

our approach, which emphasizes independent consideration of scientific topics, responds to our

belief that none of the above objectives are adequately met by the standard science curriculum alone.
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Very often, science classes effectively amount to tests of students’ abilities to memorize

large numbers of facts. Sometimes, the classes manage to emphasize an intuitive understanding of

these facts within a larger context. But rarely are the other two objectives even attempted, let alone

emphasized; general scientific methods and processes of thinking are generally overlooked. This

omission is due to many different factors, including: the difficulty to construct tests that assess such

processes, the pressure to achieve broad coverage of the curricular topics and the discomfiture

caused to teachers and school administrators by the change in teacher and student role in a

modeling-centered curriculum. In our view, teaching scientific facts without placing these within a

larger context – which includes conveying how this knowledge was established and how new

scientific information comes to light – misses the point. This miss is why, above all, the modeling

approach we have presented here emphasizes a process rather than a result. Regardless of one’s

educational priorities, it is a mistake to assume that one can achieve the first objective listed above

while dropping the last three of these objectives. Particular facts and theories need a context of

processes and beliefs in order to be integrated with existing knowledge and retained. This sense-

making context is all the more important for those students who will not continue in the study of

science and, for whom, the isolated facts remain “one-night-stands.”15

                                                
15 Deanna Kuhn makes this point eloquently: “Scientific thinking tends to be compartmentalized, viewed as relevant
and accessible only to the narrow segment of the population who pursue scientific careers. If science education is to
be successful, it is essential to counter this view and establish the place that scientific thinking has in the lives of all
students. A typical approach to this objective has been to try to connect the content of science to phenomena
familiar in students’ everyday lives. An ultimately more powerful approach may be to connect the process of science
to thinking processes that figure in ordinary people’s lives” (Kuhn, 1993, p. 333).
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We can now return to our assertion that we do not take the possibility of students teaching

themselves false models to be a major problem. We have argued above that it is more important to

convey to students general methods, notions, and processes of thinking, than it is to emphasize

specific theories — at least at the secondary and early undergraduate levels. A consequence of this

decision is that we have to relax (not drop) our insistence on correct answers. Students will not

learn to be rigorous scientists overnight. They will generally need to go through a process of

exploring and experimenting with the techniques and ideas we have discussed before these become

natural to them. Yet, if we penalize them each time they express ideas that are strictly incorrect, we

are sure to stifle their motivation for such creative exploration.

Our approach promotes several processes of reasoning that are central to science:

developing original hypotheses, formalizing ideas, researching existing solutions, and critical

analysis of results. We believe that experience with these processes will be of significant advantage

to all students as they seek to understand science and, more generally, the world around them. Few

students will go on to become scientists. To the ones that do not, we owe more than just an

introductory glimpse of current theories — we owe them the tools with which to appreciate

scientific evidence and to engage in scientific inquiry for themselves. To the ones that do, we owe a

framework within which they will be better prepared to absorb and appreciate the myriad facts they

will encounter for years to come. Thus, it is our hope that the approach we are developing will serve

as a framework for all students. We believe it is critically vital for both future scientist and future

non-scientists/citizens to be able to work and think like scientists.
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