
A Wireless Software Architecture for Fast 3D
Rendering of Agent-Based Multimedia Simulations

on Portable Devices

S. Cacciaguerra, M. Roccetti, M. Roffilli
Department of Computer Science

University of Bologna
Mura A. Zamboni 7, 40127 Bologna, Italy

E-mail:{scacciag, roccetti, roffilli}@cs.unibo.it

A. Lomi
Institute of Advanced Studies

University of Bologna
Piazza Scaravilli 1, 40127 Bologna, Italy

E-mail: alx@economia.unibo.it

Abstract— New technological developments in wireless networks
and location-based information systems are greatly affecting the
prominent scenarios represented by mobile markets, commercial
and industrial organizations, and cooperative social
environments. To model and control such complex organizational
systems, the use of scientific methodologies, such as participatory
simulation and agent-based modeling is becoming increasingly
common. Further, users of these collaborative systems demand
the availability of sophisticated tools that are able to present
visually the results of cooperative simulation activities on the
screen of handheld devices. In this context, we have designed and
developed a software architecture able to support the execution
of agent-based participatory simulation activities, and to render
them in a 3D virtual world over wireless devices. We report on
several experiments, gathered on the field, showing that the
architecture we have developed is able to render, in a timely
fashion, on a wireless device, the results of cooperative simulation
activities performed by agent-based programming platforms.

Smart services; 3D rendering on handheld devices; Multimedia
technologies; Wireless scientific visualization; Participatory
simulation; Agent-based modeling; Mobile business games

I. INTRODUCTION
The wireless revolution has started with Internet phones

and continued with many kinds of wireless handheld devices
that allow users to access the Internet. Thanks to the technical
developments in high speed chips, mobile networks and
software protocols, the wireless technology is enabling a wide
range of exciting possibilities, including, for example, wireless
sensors networks, wearable computers, ubiquitous computing
and innovative use of Web phones.

In this context, it is easy to envisage that future mobile
users will enjoy a near ubiquitous access to the vast storehouse
of technical and intellectual resources offered by high
bandwidth (wireless) networks. For example, in social
organizations, or in collaborative human environments,
workers are starting to exploit wireless technologies to connect
to colleagues and carry out different kinds of cooperative tasks,
including brainstorming, task planning, resources sharing,
instant messaging, and waving the Internet together. In essence,
due to the use of these new technologies, secure virtual spaces

(or environments) may be created where workers, after been
identified, may cooperate to accomplish common tasks. In this
challenging scenario, a great popularity has been gained by a
modern form of “semi-automatic” collaborative scheme,
termed participatory simulation [1, 2]. With the term
participatory simulation Wilensky and Stroup [3] refer to such
role-playing cooperative activities aimed at exploring how
complex dynamic systems evolve over time. As an example of
participatory simulation, consider that of a virtual stock
exchange, where each player (investor) could play the role of a
virtual buyer or of a seller who engages in the activities of the
resulting share exchange dynamics.

Obviously, we have just mentioned only a simple example,
but a wide set of possible content areas for participatory
simulation include different scientific and technical fields,
ranging from the spread of a disease, to the flow of energy in
an electric network, to the diffusion of innovation, to the
distribution of goods in an inventory system [5].

From a scientific standpoint, participatory simulation
typically employs some form of Agent Based Modeling
Simulation (ABMS) technology. Simply put, an ABMS
platform is a programmable modeling environment for
simulating complex systems where programmers can give
instructions to several independent agents working in parallel.
In essence, in an ABMS the global state of the system emerges
as a result of the interaction of hundreds, or thousands, of
elementary agents engaged in a variety of local processes such
as exchange, cooperation and competition. These agents (which
may be either completely controlled by humans or
automatically programmed) can play their moves based on an
intrinsic capability of local investigation and local action.

Perhaps the most common way to present the simulation
results produced by the complex interactions of an ABMS-
based virtual world is visual display. A prominent example of
using visual representation to display the results of ABMS-
based simulation is reported in Figure 1, where the graphical
interface of the Massive system is reported from [4]. The
problem here is that the actual ABMS-based software
platforms only provide for limited graphical functionalities.

Figure 1. Massive simulator: 2D graphical display (reported from [4])

For example, well known ABMS platforms such as
Netlogo, Swarm, Jas, and Repast only render their agent based
models through a 2D raster graphics visualization methodology
[6, 7, 8, 9].

In this context, the main contribution of our work is the
design of a 3D visualization engine that can be used to
represent visually simulation results of ABMS-based virtual
environments on mobile devices, such as laptops, PDAs and
smart phones. From a graphical standpoint, it is worth
mentioning that, as typical 3D rendering problems are here
exacerbated by the need to display virtual worlds on wireless
(possibly handheld) devices, we resorted to special rendering
techniques based on triangular meshes that guarantee an
optimal trade off between fast visual reproduction and device
compatibility. Alongside a detailed description of the
architecture of our visualization engine, we report a set of
experimental results which confirm that an appropriate
integration of our visualizer with the software architecture of
the ABMS system enables a fast 3D representation on wireless
devices.

Figure 2. ABMS rendering on different devices

The reminder of this paper is organized as follows. In
Section 2, we illustrate the main features of the software
architecture of the system we developed. In Section 3, we
present a set of empirical results we obtained with a prototype
implementation of our system. Finally, Section 4 concludes our
work with some hints for future developments of our work.

II. SYSTEM ARCHITECTURE

We have designed a (client-server) software architecture
able to support the execution of ABMS-based virtual worlds
and their 3D rendering on wireless devices (see Figure 2). The
three main software components of our architecture are the
following: i) the ABMS platform, ii) the 3D visualizer and, iii)
the wireless network communication subsystem. As shown in
Figure 3, a complete “execute and visualize” session of our
system works as follows. Initially, a user from his/her device
issues an order to his/her set of controlled agents in a virtual
world.

This order is intercepted by a dedicated user process,
termed Agent Manager (AM). After collecting orders from a
given user, the AM sends them to its software counterpart on
the ABMS platform, called the Request Manager (RM). Apart
from the RM, the ABMS platform (hosted on a wired
machine) is comprised of a State Updater (SU) and a Snapshot
Creator (SC). In essence, the SU computes, on a periodical
basis, a new state of the virtual world, based on the
interactions with the system users. After that a new state has
been computed, the SC constructs a text-based image of the
newly calculated state. Upon reception of these data, the
visualizer displays them on the screen of the wireless device.
It is worth pointing out that all the above mentioned
communications are carried out by the wireless network
communication subsystem based on a TCP/IP stack.

Figure 3. An “execute and visualize” session

State
Updater

Request
Manager

Snapshot
Creator

AM

Visualizer

AMBS
platform

Wireless
devices

AM

Visualizer

Figure 4. System architecture

The next Subsections are devoted to examine, in turn, the

two main software components (i.e., the ABM platform and the
visualizer of Figure 4) of our system, along with a number of
relevant design and implementation details.

A. The ABMS Platform
The AMBS platform, on the top of which our system is

built, is partially based on the Netlogo software environment
[6]. In particular, the RM and the SU are technologies provided
by Netlogo; instead, we developed a Snapshot Creator (SC)
that is able to capture the states of the system generated by
Netlogo, and to transform them into input parameters for our
visualizer.

As to the functions provided by Netlogo, it is important to
notice that all the most complex models produced by Netlogo
may be built based on three different types of agents, namely:
observers, turtles and patches. In substance, each model has
only one observer that represents the most general framework
where all other agents live and cooperate. Turtles, in turn, are
the most active types of agents which can be defined in a
Netlogo model: they can perform several types of actions, on a
local basis, ranging from spatial movements, to visual
interpretation of other agents actions, and generic data
exchange. Finally, patches are agents which are typically used,
within the Netlogo framework, to represent static pieces of
information, such as background colors and spatial landscapes,
for example. Patches may also represent “resources” that turtles
produce and/or consume. Hence, within Netlogo, agents are
able to perceive their environment and respond to changes in a
timely fashion, further they are able to interact with each other
to perform cooperative activities.

Our contribution to the Netlogo platform, here, has been
that of developing a software module which captures, on a
periodical basis, all the data which refer to a given model and
inputs them into a FIFO queue. Subsequently, following the
order given by the queue, the data are fetched and sent to the

visualizer for 3D rendering, as described in the following
Subsection.

B. The 3D Visualizer
The main obstacles that need to be tackled for the

development of the visual engine for an ABMS system concern
the choice of the most appropriate structuring of the
hardware/software architecture. This architecture must be able
to render visually on a wireless device the states of the 3D
virtual worlds generated by the simulative platform. To this
aim, we have developed a visual engine, based on open source
graphical libraries, whose architecture is depicted in Figure 4.
The main software components of our 3D visualizer are the
Snapshot Manager (SM), the Virtual World Creator (VWC)
and the Rendering Engine (RE). Upon receiving data into a
FIFO queue from the ABMS through a wireless connection, the
SM manages the subsequent activity of data decompression,
and checks for their integrity. In turn, the VWC extracts data
from the FIFO queue and creates the 3D virtual world based on
a scene graph model which exploits triangular meshes as basic
3D objects [10, 11, 12]. This is accomplished by following an
augmented reality strategy, where real images, captured with a
camera, can be attached to the virtual world generated by
Netlogo. The final activity is performed by the RE which
renders in 3D on the wireless screen the virtual world generated
by the VWC. It is important to mention that our RE is able to
support the introduction of graphical optimizations (such as the
use of textures) without affecting the rendered data. In addition,
it has the capability to sustain dynamically the display of a
given frame rate (on the wireless device) while scaling down
with respect to the graphical quality of the rendered 3D objects.
Further, this software module allows for frame skipping, when
a too large transmission delay is experienced at the client side.
Finally, it is worth mentioning that our RE displays the virtual
world generated by the VWC based on the OpenRM/OpenGL
graphical libraries [13, 14], the main advantage of this
graphical library being its portability across different operating
systems. (Thus, our visualizer may run on different hardware
equipments, such as laptops, tablet PCs and PDAs.)

III. SYSTEM ARCHITECTURE

To test the efficacy of our visualizer, we developed an
experimental study based on the use of the following prototype
implementation of our system.

We run the Netlogo-based ABMS platform (RM+SU+SC)
on a server equipped with a Windows 2000 Pentium III,
working at 900 MHz and with 512 MB RAM. The client,
instead, was running on either a laptop machine (a Dell
Inspiron 8200 equipped with a NVIDIA GeForce4 Go 440 with
64Mb of RAM) or on a PDA (iPAQ 3970). The laptop
mounted a Windows 2000 OS, while the PDA mounted the
Familiar Linux OS equipped with the GPE x-Windows
graphical interface [15, 16]. Both clients where connected to
the server through a TCP/IP wireless connection on a Wi-Fi
802.11b network.

We wish to illustrate now the results we obtained both on a
visual and on a numerical standpoint. To this aim, in Figure 5
we present the 3D results we have obtained by rendering, on

VI

II

III

I

IV

V

Requests Manager

State Updater

Snapshot Creator

Snapshot Manager

Virtual World Creator

Rendering Engine

ABMS
PLATFORM

M

3D
VISUALIZER

the wireless device, the virtual model termed “Climb-the-Hill”
produced by the Netlogo engine. Several considerations are in
order here. First, we wish to point out that our 3D models are
rendered dynamically, following the evolution of the simulative
models produced by Netlogo. In the example above, turtles are
rendered, in a timely fashion, that climb the hill, looking for the
highest patch in their neighborhoods (local maximum).

Second, it is easy to understand that the observer may
manipulate dynamically the virtual world, for example by
changing the perspective under which the world is considered,
or by zooming on a detail, or by highlighting (using wireframe
techniques) the lattice over which the turtles play their moves.
This final characteristic is of particular interest when the
observer wants to verify if the visual representation rendered
by our 3D engine matches the underlying numerical data.

Based on the consideration that our 3D engine guarantees

that the correctness of the numerical data is maintained in the
visual representation, it is easy to understand that local visual
manipulations of the virtual world are made possible, without
affecting the integrity of the performed operations.

As a final consideration, with respect to the discussion
above, we wish to encourage the reader to note that a great
visual difference exists between the graphical 3D
representation which our system is able to produce and the
standard 2D graphical representation generated by the Netlogo
platform, shown in Figure 6 as an alternative display strategy.

Besides the visual results, it is also important to provide
quantitative measurements that capture the performance of our
designed system. To this aim we carried out two different sets
of experiments. The former set (30 experiments) refers to the
ability of the ABMS platform to update the virtual state of the
virtual world, as a function of the number of agents. In Figure
7, we plotted the average number of states, on a logarithmic
scale, that our ABMS platform is able to generate per each
second, depending on the number of agents involved in the
simulation.

In particular, the lower curve accounts for the performance
of the ABMS system including the data export activities
performed by the Snapshot Creator (SC) we have developed. It
is easy to deduce from an analysis of Figure 7 that the larger
the number of agents, the lower the number of the states of the
virtual world that can be updated per each second. For
example, Figure 7 shows that with a thousand of cooperating
agents the ABMS platform is able to provide state updates at
the very low frequency of 1.5 states per second.

The latter set of experiments aims at highlighting the
number of frames per second that may be displayed by our
visualizer on the wireless client device, yet again depending on
the number of agents involved and on the quality of the 3D
rendered graphical objects. In particular, in Figure 8, the
number of the frames per second are plotted which were
obtained, on average, over thirty different experiments carried
out on wireless devices, as a function of the number of agents
involved in the simulation.

Figure 5. 3D visual representation produced by our visualizer

Figure 6. Netlogo-generated visual representation of the same world of
Figure 5

Precisely, three different curves are plotted, denoted as low,
middle and high, respectively. The curve denoted as low
represents a situation where the quality of the rendered image
was obtained with 8 triangular-meshed faces per each graphical
object. The quality of the curve denoted as middle was
obtained by exploiting 32 faces per each rendered object. The
quality of the high curve was, instead, obtained with 128 faces.
As shown in the Figure, the larger the number of agents, the
lower the number of frames which may be created and
visualized per each second. Further, the higher the graphical
quality of the rendered 3D object, the lower the number of
frames that can be displayed per each second. From a
comparative analysis of Figures 7 and 8, it is easy to
understand that our visualizer has been tuned to sustain a rate

of rendered frames which is attuned with the frequency
according to which the ABMS platform provides updates of the
virtual world state. In other words, from a communication
viewpoint it suffices that our wireless communication
subsystem be able to transport, over the air, per each second the
same number of state updates produced by the ABMS
platform. This would guarantee a perfect synchronization
between the producer (the ABMS platform) and the consumer
(the visualizer).

Following this consideration, our experiments with an
iPAQ 3970 PDA, equipped with the pocketGL graphical
library, show that an average rate of 10-15 frames per second
may be safely tolerated over a Wi-Fi connection with a
hundred of agents.

Figure 7. Performances of the ABMS (server-side)

Figure 8. Performances of the visualizer (wireless device)

IV. CONCLUSIONS

We have designed and developed a software architecture
able to support the execution of agent-based participatory
simulation activities and to render them in a 3D virtual world
over wireless devices. We have conducted several empirical
trials (both visual and numerical) that confirm that the
structuring of the software architecture we have devised is able
to guarantee the visual delivery of ABMS-based virtual worlds
on wireless devices in a timely fashion. We wish to point out
here that the visual aspect of the 3D virtual worlds we are able
to reproduce with our system is very realistic, as our current
implementation permits us to manage textures and other
augmented reality-based objects in a sophisticated fashion. As
an example of the use of texture-based 3D virtual worlds we
report in Figure 9 a landscape where the photos of the four
authors of this paper are mounted on the represented surfaces.
Further, two visual examples of the use of 3D augmented
reality-based worlds are depicted in Figures 10 and 11. We
wish to conclude by mentioning that possible future
developments of our system may foster new applications
relevant to the fields of participatory simulation, mobile
business, digital cinema, edutainment, multiplayer games and
pervasive computing on wireless devices [17, 18, 19, 20, 21,
22, 23, 24, 25].

Figure 9. A virtual world with textures representing the faces of this paper’s
authors

Figure 10. A virtual world generated by real geospatial data with minotaurs as
characters

Figure 11. A virtual world generated by real geospatial data with sonics as
characters

ACKNOWLEDGMENT

This research has been partially funded by the Italian
M.I.U.R. (Interlink project), by Microsoft Research (UK) and
by European FP5 RTD project (IST-2001-34069). We wish to
thank the anonymous referees for their helpful suggestion about
an earlier version of this paper.

REFERENCES
[1] Profit from Peer-to-Peer, Economist, June 21, 2001.
[2] T. G. Kanter, “Attaching Context-Aware Services to Moving

Locations”, IEEE Internet Computing, March - April 2003, Vol. 7, No.
2, 43-51.

[3] U. Wilensky, W. Stroup, “Networked Gridlock: Students Enacting
Complex Dynamic Phenomena with the HubNet Architecture”,
Proceedings of the Fourth Annual International Conference of the
Learning Sciences, Ann Arbor, MI, June 2000.

[4] Lord of the Rings http://www.lordoftherings.net/effects/index.html.
[5] A. Lomi, E. R. Larsen, “Learning with Simulation: Understanding the

Strategic Implications of Deregulation and Competition in the Electricity
Industry”, Proceedings of the Workshop on Agent Simulation:
Applications, Models, and Tools, Chicago, IL, October 1999, 73-95.

[6] Netlogo, http://www.ccl.sesp.northwestern.edu/netlogo.
[7] Swarm, http://www.swarm.org.
[8] Jas, http://sourceforge.net/projects/jaslibrary/.
[9] Repast, http://repast.sourceforge.net/.
[10] S. Clarke-Wilson, “the Design of Virtual Environments – Value Added

Entertainment”, Computer Graphics, Vol. 28, N. 2, 1994.
[11] W. Bethel, R. Frank, J. D. Brederson, “Combining a Multithreaded

Scene Graph System with a Tiled Display Environment”, Proceedings of
the 2002 IS&T/SPIE Conference on Electronic Imaging and
Technology, San Jose, CA, January 2002.

[12] J. Clark, “Hierarchical Geometric Models for Visible Surface
Algorithms”, Communications of the ACM, October 1976, 547- 554.

[13] W. Bethel, RM Scene Graph, White Paper, December 1999,
http://www.r3vis.com/RMSceneGraph.

[14] M. Segal, K. Akeley, The OpenGL Graphics System: A Specification
(Version 1.4), http://www.opengl.org.

[15] Familiar Linux distribution web site, http://familiar.handhelds.org.
[16] GPE, The GPE Palmtop Environment web site, http://gpe.handhelds.org.
[17] G. Camponovo, Y. Pigneur, “Analyzing The Actor Game In M-

Business”, Annals of Telecommunications, January - February 2003,
Vol. 58.

[18] S. Ferretti, S. Cacciaguerra, “A Design for Networked Multiplayer
Games: an Architectural Proposal”, Proceedings of the Euromedia 2003,
Plymouth (UK), April 2003.

[19] S. Ferretti, M. Roccetti, “On Designing an Event Delivery Service for
Multiplayer Networked Games: An Approach based on Obsolescence”,
Proceedings of the 7th International Conference on Internet, Multimedia
Systems and Applications, Hawaii, Honolulu, August 2003.

[20] F. Espinoza, P. Persson, A. Sandin, H. Nyström, E. Cacciatore, M.
Bylund, “GeoNotes: Social and Navigational Aspects of Location-Based
Information Systems”, Proceedings of the Ubiquitous Computing
International Conference, Atlanta, GA, September- October 2001, 2-17.

[21] J. Bates, M. D. Spiteri, D. Halls, J. Bacon, “Integrating Real-World and
Computer-Supported Collaboration in the Presence of Mobility”,
Proceedings of the IEEE 7th International Workshops in Enabling
Technologies: Infrastructure for Collaborative Enterprises, Stanford,
CA, June 1998, 256-261.

[22] G. Iacucci, K. Kuutti, M. Ranta, “On the Move with a Magic Thing:
Role Playing in Concept Design of Mobile Services and Devices”,
Proceedings of the ACM Symposium on Designing Interactive Systems,
Brooklin, NY, 2000, 193-202.

[23] D. Chen and W. Stroup, “General Systems Theory: Toward a
Conceptual Framework for Science and Technology Education for All”,
Journal for Science Education and Technology, 1993.

[24] V. Colella, R. Borovoy, and M. Resnick, “Participatory Simulations:
Using Computational Objects to Learn about Dynamic Systems”.
Proceedings of the Computer Human Interface (CHI) '98 Conference,
Los Angeles, April 1998.

[25] M. Resnick, and U. Wilensky, “Diving into Complexity: Developing
Probabilistic Decentralized Thinking through Role-Playing Activities”,
Journal of the Learning Sciences, 1998, 7(2), 153-171.

