
See discussions, stats, and author profiles for this publication at:

https://www.researchgate.net/publication/221056024

Analysis of Learning Types in an Artificial Market

Conference Paper · July 2004

DOI: 10.1007/978-3-540-32243-6_12 · Source: DBLP

CITATIONS

4

READS

266

3 authors:

Some of the authors of this publication are also working on these related projects:

CASSIA View project

Social System Simulation View project

Kiyoshi Izumi

The University of Tokyo

83 PUBLICATIONS 539 CITATIONS

SEE PROFILE

Tomohisa Yamashita

National Institute of Advanced Industrial Scien…

38 PUBLICATIONS 150 CITATIONS

SEE PROFILE

Koichi Kurumatani

National Institute of Advanced Industrial Scien…

99 PUBLICATIONS 634 CITATIONS

SEE PROFILE

All content following this page was uploaded by Kiyoshi Izumi on 25 April 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221056024_Analysis_of_Learning_Types_in_an_Artificial_Market?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221056024_Analysis_of_Learning_Types_in_an_Artificial_Market?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CASSIA?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Social-System-Simulation?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kiyoshi_Izumi?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kiyoshi_Izumi?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Tokyo?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kiyoshi_Izumi?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tomohisa_Yamashita2?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tomohisa_Yamashita2?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Institute_of_Advanced_Industrial_Science_and_Technology?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tomohisa_Yamashita2?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Koichi_Kurumatani?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Koichi_Kurumatani?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Institute_of_Advanced_Industrial_Science_and_Technology?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Koichi_Kurumatani?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kiyoshi_Izumi?enrichId=rgreq-be6647daaad7407120e33fad1c7db549-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA1NjAyNDtBUzo5ODgyNjM1MDIzNTY1MkAxNDAwNTczNDQ2MTU0&el=1_x_10&_esc=publicationCoverPdf

Lecture Notes in Artificial Intelligence 3415
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Paul Davidsson Brian Logan
Keiki Takadama (Eds.)

Multi-Agent and
Multi-Agent-Based
Simulation

Joint Workshop MABS 2004
New York, NY, USA, July 19, 2004
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Paul Davidsson
Blekinge Institute of Technology
Department of Systems and Software Engineering
37225 Ronneby, Sweden
E-mail: Paul.Davidsson@bth.se

Brian Logan
University of Nottingham
School of Computer Science and IT
Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
E-mail: bsl@cs.nott.ac.uk

Keiki Takadama
Tokyo Institute of Technology
Interdisciplinary Graduate School of Science and Engineering
Dept. of Computational Intelligence and Systems Science
4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502 Japan
E-mail: keiki@dis.titech.ac.jp

Library of Congress Control Number: 2005921644

CR Subject Classification (1998): I.2.11, I.2, I.6, C.2.4, J.4, H.4

ISSN 0302-9743
ISBN 3-540-25262-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11404668 06/3142 5 4 3 2 1 0

Preface

This volume presents revised and extended versions of selected papers presented
at the Joint Workshop on Multi-Agent and Multi-Agent-Based Simulation, a
workshop federated with the 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), which was held in New York
City, USA, July 19–23, 2004. The workshop was in part a continuation of the
International Workshop on Multi-Agent-Based Simulation (MABS) series. Re-
vised versions of papers presented at the four previous MABS workshops have
been published as volumes 1534, 1979, 2581, and 2927 in the Lecture Notes in
Artificial Intelligence series.

The aim of the workshop was to provide a forum for work in both applica-
tions of multi-agent-based simulation and the technical challenges of simulating
large multi-agent systems (MAS). There has been considerable recent progress
in modelling and analyzing multi-agent systems, and in techniques that apply
MAS models to complex real-world systems such as social systems and organiza-
tions. Simulation is an increasingly important strand that weaves together this
work. In high-risk, high-cost situations, simulations provide critical cost/benefit
leverage, and make possible explorations that cannot be carried out in situ:

– Multi-agent approaches to simulating complex systems are key tools in inter-
disciplinary studies of social systems. Agent-based social simulation (ABSS)
research simulates and synthesizes social behavior in order to understand real
social systems with properties of self-organization, scalability, robustness,
and openness.

– In the MAS community, simulation has been applied to a wide range of MAS
research and design problems, from models of complex individual agents em-
ploying sophisticated internal mechanisms to models of large-scale societies
of relatively simple agents which focus more on the interactions between
agents.

– For the simulation community, MAS-based approaches provide a new way
of organizing and managing large-scale simulations, e.g., Grid-based simula-
tions, and agent simulation presents a challenging new domain requiring the
development of new theory and techniques.

The workshop concerned agent simulation construed broadly, from multi-
agent approaches to simulating complex systems, to the simulation of part or
all of a multi-agent system and the hard technical issues of multi-agent simula-
tion itself. Contemporary directions in both MABS and MAS research present
significant challenges to existing simulation tools and methods, such as concepts
and tools for modelling complex social systems and environments; scalability (to
thousands or millions of large-grain agents); heterogeneity of simulation com-
ponents and modelled agents; visualization and steering of simulation behavior;

VI Preface

validation of models and results; human-in-the-loop issues; and more. The work-
shop provided a forum for social scientists, agent researchers and developers, and
simulation researchers to assess the current state of the art in the modelling and
simulation of social systems and MAS, identify where existing approaches can
be successfully applied, learn about new approaches, and explore future research
challenges.

We are very grateful to the workshop participants who engaged enthusiasti-
cally in the discussions at the workshop, as well as to the authors’ engagement
in the second round of review and revision of the papers. We would like to thank
Franco Zambonelli, the AAMAS 2004 workshop chair, for having selected the
workshop among a large number of high-class proposals. We are also grateful to
Nick Jennings and Milind Tambe, the AAMAS 2004 general chairs, for having
organized such an excellent conference. Particularly, we would like to express
our gratitude to Simon Parsons and Elizabeth Sklar, the AAMAS 2004 local
organization chairs, for arranging the infrastructure of the workshop.

Finally, we thank Alfred Hofmann and his team at Springer for giving us the
opportunity to continue to disseminate the results of the workshop to a broader
audience.

Paul Davidsson, Brian Logan, and Keiki Takadama

Organization

Program Committee

Gul Agha (University of Illinois at Urbana-Champaign, USA)
John Anderson (University of Manitoba, Canada)
Robert Axtell (Brookings Institution, USA)
Rafael Bordini (University of Liverpool, UK)
Francois Bousquet (CIRAD/IRRI, Thailand)
Christopher D. Carothers (Rensselaer Polytechnic Institute, USA)
Shu-Heng Chen (National Chengchi University, Taiwan)
Claudio Cioffi-Revilla (George Mason University, USA)
Helder Coelho (University of Lisbon, Portugal)
Paul Cohen (USC Information Sciences Institute, USA)
Rosaria Conte (IP/CNR Rome, Italy)
Nick Collier (PantaRei LLC/Argonne National Lab, USA)
Daniel Corkill (University of Massachusetts, USA)
Nuno David (ISCTE, Lisbon, Portugal)
Bruce Edmonds (Manchester Metropolitan University, UK)
Richard Fujimoto (Georgia Institute of Technology, USA)
Nigel Gilbert (University of Surrey, UK)
Nick Gotts (Macaulay Institute, UK)
David Hales (University of Bologna, Italy)
Matt Hare (University of Zurich, Switzerland)
Rainer Hegselmann (University of Bayreuth, Germany)
Wander Jager (University of Groningen, Netherlands)
Marco Janssen (Indiana University, USA)
Christophe Le Page (CIRAD, France)
Scott Moss (University of Manchester, UK)
Emma Norling (University of Melbourne, Australia)
Michael North (Argonne National Laboratory, USA)
Mario Paolucci (IP/CNR Rome, Italy)
Alexander Pretschner (Technische Universität M nchen, Germany)
Patrick Riley (Carnegie Mellon University, USA)
Juliette Rouchier (GREQAM (CNRS), France)
Keith Sawyer (Washington University in St. Louis, USA)
Matthias Scheutz (University of Notre Dame, USA)
Jaime Sichman (University of Sao Paulo, Brazil)
Liz Sonenberg (University of Melbourne, Australia)
Takao Terano (University of Tsukuba, Japan)
Georgios Theodoropoulos (University of Birmingham, UK)
Klaus Troitzsch (University of Koblenz, Germany)

ü

VIII Organization

Carl Tropper (McGill University, Canada)
Stephen Turner (Nanyang Technological University, Singapore)
Lin Uhrmacher (University of Rostock, Germany)
Harko Verhagen (Stockholm University, Sweden)
Manuela M. Veloso (Carnegie Mellon University, USA)
Regis Vincent (SRI International, USA)
Philip A. Wilsey (University of Cincinnati, USA)

Organizing Committee

Paul Davidsson (Blekinge Institute of Technology, Sweden)
Les Gasser (University of Illinois at Urbana-Champaign, USA)
Brian Logan (University of Nottingham, UK)
Keiki Takadama (Tokyo Institute of Technology, Japan)

Table of Contents

Simulation of Multi-agent Systems

Smooth Scaling Ahead: Progressive MAS Simulation from Single PCs
to Grids

Les Gasser, Kelvin Kakugawa, Brant Chee, Marc Esteva 1

Agent Communication in Distributed Simulations
Fang Wang, Stephen John Turner, Lihua Wang 11

Distributed Simulation of MAS
Michael Lees, Brian Logan, Rob Minson, Ton Oguara,
Georgios Theodoropoulos . 25

Extending Time Management Support for Multi-agent Systems
Alexander Helleboogh, Tom Holvoet, Danny Weyns,
Yolande Berbers . 37

Designing and Implementing MABS in AKIRA
Giovanni Pezzulo, Gianguglielmo Calvi . 49

Technique and Technology

Work-Environment Analysis: Environment Centric Multi-agent
Simulation for Design of Socio-technical Systems

Anuj P. Shah, Amy R. Pritchett . 65

Layering Social Interaction Scenarios on Environmental Simulation
Daisuke Torii, Toru Ishida, Stéphane Bonneaud, Alexis Drogoul 78

Change Your Tags Fast! – A Necessary Condition for Cooperation?
David Hales . 89

Users Matter: A Multi-agent Systems Model of High Performance
Computing Cluster Users

Michael J. North, Cynthia S. Hood . 99

Formal Analysis of Meeting Protocols
Catholijn M. Jonker, Martijn Schut, Jan Treur, Pınar Yolum 114

X Table of Contents

Methodology and Modelling

From KISS to KIDS – An ‘Anti-simplistic’ Modelling Approach
Bruce Edmonds, Scott Moss . 130

Analysis of Learning Types in an Artificial Market
Kiyoshi Izumi, Tomohisa Yamashita, Koichi Kurumatani 145

Toward Guidelines for Modeling Learning Agents in Multiagent-Based
Simulation: Implications from Q-Learning and Sarsa Agents

Keiki Takadama, Hironori Fujita . 159

Social Dynamics

Agent-Based Modelling of Forces in Crowds
Colin M. Henein, Tony White . 173

An Investigation into the Use of Group Dynamics for Solving Social
Dilemmas

Tomohisa Yamashita, Kiyoshi Izumi, Koichi Kurumatani 185

Applications

ASAP: Agent-Based Simulator for Amusement Park — Toward Eluding
Social Congestions Through Ubiquitous Scheduling

Kazuo Miyashita . 195

Patchiness and Prosociality: An Agent-Based Model of Plio/Pleistocene
Hominid Food Sharing

L. S. Premo . 210

Plant Disease Incursion Management
Lisa Elliston, Ray Hinde, Alasebu Yainshet . 225

A Hybrid Micro-Simulator for Determining the Effects of Governmental
Control Policies on Transport Chains

Markus Bergkvist, Paul Davidsson, Jan A. Persson,
Linda Ramstedt . 236

Simulation and Analysis of Shared Extended Mind
Tibor Bosse, Catholijn M. Jonker, Martijn C. Schut, Jan Treur 248

Author Index . 265

Smooth Scaling Ahead: Progressive MAS
Simulation from Single PCs to Grids�

Les Gasser, Kelvin Kakugawa, Brant Chee, and Marc Esteva

Graduate School of Library and Information Science,
University of Illinois at Urbana-Champaign

{gasser, kakugawa, chee, esteva}@uiuc.edu

Abstract. The emerging ”Computational Grid” infrastructure poses
many new opportunities for the developing science of large scale multi-
agent simulation. The ability to migrate agent experiments seamlessly
from simple, local single-processor development tools to large-scale dis-
tributed simulation environments provides valuable new models for ex-
perimentation and software engineering: first develop local, flexible pro-
totypes, then as they become more stable progressively deploy and ex-
periment with them at larger scales. Currently this kind of progressive
scalability is hard for both practical and theoretical reasons: Practically,
most agent platforms are designed for just one environment of operation.
Smooth scalability is more than a matter of increasing agent numbers.
Smooth scaling requires clear integration and consistent alignment be-
tween a variety of MAS system and simulation architectures and differing
underlying infrastructures. This paper reports on recent progress with
our experimental platform MACE3J, which now simulates MAS models
seamlessly across a variety of scales and architecture types, from single
PCs, to Single System Image (SSI) multicomputers, to heterogeneous
distributed Grid environments.

1 Introduction

The emerging ”Computational Grid” infrastructure [1, 2] poses many new op-
portunities for the developing science of large scale multi-agent systems. The
ability to migrate agent simulations and software seamlessly from simple, local
single-processor development tools to large-scale distributed experimental envi-
ronments will provide valuable new software engineering models for agent-based
systems. These new models will couple incremental development of agent simu-
lations with controlled testing and execution. The issue of controlling test and
execution is critical because of the complexity of agents as “software engineering
units” [3] and because of the need for robustness as experiments are scaled up:
the control gained through deterministic simulation is a key engineering tech-

� Work supported by NSF Grant 0208937 and by Fulbright/MECD postdoctoral schol-
arship FU2003-0569.

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 1–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 L. Gasser et al.

nique for validating large-scale distributed multi-agent systems and simulations
whose behavior can’t be easily captured analytically for reasons of complexity.

Scalability is often approached as a problem of size—number of agents, for
example. Size is a dominant dimension for some types of large distributed sys-
tems. For instance, typical program structures used in large-scale distributed
scientific computing—a principal target of the Grid initiatives—employ homo-
geneous, non-interacting components, such as the typical, regularly-structured
“data-parallel” codes found in many data analysis packages, and the assump-
tion that software decision logic is stable while data changes from run to run.
In these cases, more processing resources translates directly into the ability to
process more data and solve “larger” problems.

For large systems with dynamic, heterogeneous, interacting components such
as MAS simulations, scalability raises several other issues. First, scalability re-
quires having appropriate programming models and tools for building and/or
integrating many heterogeneous agents. These tools must manage distributed
execution resources and timelines, enforce full encapsulation of agents, and offer
tight control over message-based multi-agent interactions. The most useful and
general programming tools meeting these requirements are based on distributed
object models such as the actor model [4]. However, in their pure form distributed
object programming models introduce subtle constraints on agent and system
construction and operation, which create some difficulties for developing scalable,
controllable heterogeneous agent simulations. We detail many of these below.

Second, making simulations smoothly scalable requires aligning simulation
models to a variety of programming infrastructures and to a different variety of
execution system architectures so that it is possible to conveniently deploy, man-
age, and control large collections of heterogeneous simulated agents across the
different resource pools. For example, simulations designed and run on individual
PCs will not have truly concurrent execution, since any single processor neces-
sarily serializes behaviors (see below). In contrast, the so-called Single System
Image (SSI) cluster technique binds together a collection of resources to create
an abstraction of a distributed system as a unified, single-point-of-access pool
of concurrent execution resources or threads. At first, this seems like an almost
ideal programming abstraction for concurrent agents, because it hides details of
resource allocation and agent deployment. However, there are critical tensions
between the monolithic sequential programming approach offered by the single
PC environment, and the actual affordances of other distributed platforms across
which multi-agent simulations must be developed and deployed to achieve large
scales, such as the monolithic concurrent programming approach offered by SSI,
and the heterogeneous, distributed, concurrent environment of actual deployed
Grids. Grids in existence (e.g., Teragrid [5]) are large and diverse collections of
execution resources, with heterogeneous, not regular architecture. Care must be
taken to align models based on PC and SSI environments to heterogeneous and
fully-distributed environments.

Finally, issues such as infrastructure reliability, functional completeness, and
the state of documentation for some kinds of environments including SSI and

Smooth Scaling Ahead: Progressive MAS Simulation 3

Grids can be problematic—Grid services and technologies are a case in point,
and this state-of-the-art must be accommodated for realistic agent systems.

In the light of these issues, this paper reports on current developments in
our MACE3J experimental platform [6]. The principal innovation reported is
the ability to abstract away many of these underlying issues of heterogeneity.
This abstraction is accomplished with tools that support seamless deployment of
large-grain simulation-based multi-agent systems progressively across a variety
of system architectures, ranging from single PCs through SSI clusters to fully
distributed Grid environments (in our case based on the Globus Toolkit and the
Open Grid Services Initiative) [7, 8]. Below we report on the general structure
of the MACE3J system that accomplishes this goal. We next introduce several
key dimensions across which multi-agent system simulations need to adapt, and
we use these as the basis of a taxonomy of progressively scalable architectures
that support MACE3J. We illustrate our progress with reference to several de-
ployed experiments that run across all architectures, and show how making these
experiments led to insights about the necessary abstractions.

2 MACE Overview and Design Philosophy

MACE3J is a scientifically oriented multi-agent testbed whose design philosophy
is driven by three objectives [6]. We state these here because they are strongly
impacted by the need for smooth scalability across architectures.

1. Repeatability and control: MACE3J should support control and ran-
domized repeatability in simulations, which is useful for both development and
experimentation.

2. Transitionable models: Agents should be built of components that can
be transistioned from simulated implementations or environments to real ones.

3. Generation of knowledge about behavior and structure: MACE3J
should support instrumentation that gathers and analyzes data generated by
agents and system behaviors.

2.1 Understanding Simulation

A significant focus of MACE3J is simulation support. We view simulation sup-
port as the provision of four interlocking types of facilities. MACE3J provides
all four of these.

1. Modeling facilities capture characteristics of modeled systems such as
agents or environments in codes that integrate easily with the activation,
coordination, and data-gathering services below. MACE3J generalizes the
concept of “agents” to ActiveObjects, which are defined in MACE3J with
a set of interfaces. The ActiveObjects concept captures core functionality
that allows for implementation of many different types of “agents”, so we
use the term to denote the foundations for a range of typical agent types.
MACE3J modeling facilities include reusable components for constructing

4 L. Gasser et al.

ActiveObjects, environments, and experiments, coupled with the ability to
flexibly import these components and models from other projects.

2. Coordination facilities provide coherence and synchronization for the dis-
tributed objects that make up the MAS model. This includes a selectable
combination of deterministic (simulation-driven), user-driven, environment-
driven, and/or probabilistic control of simulation events, which allow simula-
tions to be re-run exactly, while supporting probabilistic control of behavioral
and timing aspects of simulations such as message delay and system failure
(e.g., failure of message delivery or of execution). In MACE3J the funda-
mental coordination object is called ActivationGroup. ActivationGroup
holds a timeline and a set of coordination routines that control the overall
execution profile of a simulation.

3. Activation services that provide enactment (computing) resources for the
distributed objects that make up the model. (Of course, these activation
services assume an underlying infrastructure such as a single processor PC
and SSI cluster, or a Grid environment.) This includes flexible control and
steering of simulations through active user involvement in changing simu-
lation parameters at run-time (blurring the distinction between simulation
and enactment and facilitating agent transitions to application).

4. Flexible data gathering, management, analysis, and presentation
is done through user-defined and system-defined probes and data streams.

As a simulation development environment, a key objective of MACE3J has
been seamless transitioning of models across execution environments. This kind
of model retargeting is valuable as an implementation technology and as a soft-
ware engineering approach: start simple, validate, and expand to more sophisti-
cated environments while exploiting new capabilities. The single processor (pos-
sibly threaded) PC platform is stable, well understood, and controllable, but
limited in resources. Agent systems can be developed and prototyped rapidly on
the single-processor PC platform because it is highly controllable and accepts
heterogeneous, changing codes. In contrast, the Grid is less well understood, less
flexible, and works best with more homogeneous and stable codes because of the
overhead of distribution, startup, and coordination and because of the underly-
ing heterogeneity of the Grid resources. Thus, we need a progression of different
development environments and the ability to link them together in a rational,
exploratory development process.

The aims of the tools that support such a progressive development approach
are these:

1. Provide a simple, direct system model and API to enable maximum flexibility
in Agent styles and granularity.

2. Minimize work for users by providing facilities for distributing, deploying,
and controlling agent models.

3. Make coordination lightweight, by abstracting the simulation coordination
to simple message patterns implemented in infrastructure.

Smooth Scaling Ahead: Progressive MAS Simulation 5

4. Exploit features of existing platforms such as Grid toolkit services to provide
agent simulation layer services, to the extent possible. Current examples
include deployment services, directory services and communication services.

3 Managing Uncertainty in Scalable MAS Simulations

Here we introduce and develop two main sources of uncertainty for managing
design and development of large-scale MAS simulations, with greatest relevance
in situations where scale and complexity are related: concurrency and distribu-
tion. Concurrency and distribution are inherent properties of MAS, and they
introduce several kinds of uncertainty into MAS behaviors.

Concurrency introduces event-ordering uncertainty because concurrently run-
ning agents execute at arbitrary rates relative to each other. For a MAS with
interactions, increasing scale can increase uncertainty in the ordering of impor-
tant (interactive) events.

Distribution across space and/or time1 introduces two types of uncertainty.
Decision uncertainty occurs when information about the states of remote
entities (other agents or environments) that could influence local decisions are
inaccessible because those states are distributed. Semantic uncertainty occurs
when distribution causes agents to translate communicated references or objects
into local interpretations that may vary by local context (e.g., [10]). These kinds
of uncertainty are fundamental to MAS. Design tools and processes that help
control and incrementally modulate distribution- and concurrency-induced un-
certainty ease the complexity of engineering and simulating multi-agent systems.

One aim of deployed MAS is to be able to operate in the presence of these
types of uncertainty. However, verification of this is hard to do. Our approach
is to manage these types of uncertainty by building into middleware support for
strategies of progressive, incremental relaxation of control over uncertainty, to
gain confidence and experience.

Incremental Management of Event-Ordering Uncertainty: Concurrent
execution of agent programs introduces uncertainty about the ordering of in-
teractive agent events such as communications. Event ordering can significantly
impact computation results in general, so this uncertainty can have large effects
on system reliability, traceability, verifiability, and understandability. Thus, one
approach to managing design complexity and improving confidence in MAS be-
havior is to first eliminate uncertainty in the ordering of events by making events
completely repeatable and deterministic. This strict control can then be progres-
sively released to explore system behavior and build confidence under increasing
levels of event-ordering uncertainty. In this way, as a MAS experiment is devel-
oped, it can be moved to progressively more complex execution environments
with progressively greater degrees of freedom in event ordering due to concur-
rent execution. MACE3J has two ways for exploiting this progressive approach

1 Other dimensions of distribution beyond space and time are also introduced in [9].

6 L. Gasser et al.

to temporal control. First, time- and event-coordinating middleware combines
explicit event control with the ability to change architectures. Second, the archi-
tectural abstractions of MACE3J allow designers to shift models to progressively
more distributed underlying computational architectures that can supply pro-
gressively more concurrent resources (such as more processors), and that exhibit
behavior closer and closer to the uncertainty of ’real’ environments.

Incremental Management of Distribution Uncertainty: Under true distri-
bution, agents may not be able to access information about the internal states of
other agents or of their environments. Hewitt called this the problem of “arms-
length relationships” [11], and Lesser and colleagues represented it explicitly
using partitioned global system models in the TAEMS modeling and simulation
approach [12]. A TAEMS model holds an omniscient global view of a problem
space and its constraints, while individual agents hold only partial local views.
By contrasting the content and accuracy of partial local views with the om-
niscient global view, an experimenter can measure precisely where her agent
control and information sharing strategies have succeeded or failed. Some sim-
ulation infrastructures—namely, shared-memory ones—make it far easier than
others to model global shared knowledge and partial access to it. However real
agent systems, as well as simulations whose aim is to explore actual runtime
conditions of distributed agents, cannot rely on shared infrastructure variables.
Specifically, multi-agent implementations that rely at all on pointers and/or
shared data/variables rather than pure messages for agent interactions will not
transfer to truly distributed cases. In this sense, a distributed infrastructure acts
as a validation tool for the distributability of agent architectures and agent inter-
actions, keeping them “honest.” Thus we can use MACE3J’s ability to smoothly
scale across multiple infrastructures as a tool for exploring and validating a
system’s ability to manage distribution-caused uncertainty.

4 Progressive Scaling

In MACE3J we combining support for these two approaches in one middleware
layer, allowing designers and experimenters to move a MAS across a following
spectrum of environments and control regimes that vary in their degree of actual
or apparent concurrency and their degree of distribution. There are six cases:

a) Deterministic single processor, single threaded, shared-memory
testbeds which strictly control all temporal progress and inter-agent interac-
tions for completely repeatable performance. In this case, MAS application level
coordination mechanisms can be explored, tuned, and verified deterministically
against global states, at a cost of realism and the challenge of real variance.

b) Randomized deterministic single processor, single threaded, sha-
red-memory testbeds which, again, control all temporal progress and inter-
agent interactions for completely repeatable performance. By randomizing sched-
ules and interaction order, some useful aspects of true concurrency can be
achieved statistically. MAS application level coordination mechanisms can again

Smooth Scaling Ahead: Progressive MAS Simulation 7

be explored, tuned, and verified deterministically against global states, at a cost
of realism and the challenge of real variance.

c) Synchronized multiprocessor, multi-threaded, shared-memory
testbeds, in which time and interaction are controlled explicitly and flexibly.
In this case, some aspects of time and concurrency (e.g. specific event and in-
teraction types) can be left uncontrolled in MACE3J. Processing concurrency
can be exploited to speed up development and testing as needed. The shared-
memory aspect still allows for arbitrarily complete control and measurement of
any interaction or temporal step that is desired.

d) Unsynchronized multiprocessor, multi-threaded, shared-memory
testbeds, in which time and interaction are controlled explicitly and flexibly,
and in which MAS application level coordination mechanisms can be explored
and verified. In this case, all aspects of time and concurrency must be left uncon-
trolled. Processing concurrency can be exploited to speed up development and
testing as needed. The shared-memory aspect still allows for arbitrarily complete
control and measurement of any interaction or temporal step that is desired.

e) Synchronized multi-threaded, distributed processor, distributed
memory testbeds (e.g., Grid) in which time and interaction are controlled ex-
plicitly and flexibly. In this case also, some aspects of time and concurrency can
be left uncontrolled. However, the distributed-memory, message-passing aspect
adds the requirement of “purer” distributed object techniques (e.g., eliminating
shared variables, distilling communications contents to serializable media such
as strings). The appropriate middleware infrastructure still allows for arbitrar-
ily complete and repeatable control of any interaction or temporal step, so as
to verify behavior and results while approaching realistic execution (temporal,
representational, and resource) environments.

f) Unsynchronized multi-threaded, multiprocessor, distributed me-
mory testbeds (Grid) in which time and interactions are controlled only through
MAS application level coordination mechanisms. (This is the desired end-state
for MAS.)

5 Experiences and Discussion

We have used MACE3J in each of the settings mentioned above for a variety
of simulation studies, controlling and progressively releasing various aspects of
execution and interaction as described above. Details of some of the sample
problem scenarios used can be found in [6]. Currently our most sophisticated
agent simulation is the TaskModel experiment. TaskModel takes an arbitrary
graph of interdependent tasks (a workflow) and maps them to an arbitrary set
of agents for execution. Simulation drives an arbitrarily-timed set of problem-
instances through the task network. Agents use a base of local organizational
knowledge to reason about task interdependencies, and dynamically reallocates
tasks to agents following specifiable task migration and task allocation policies.
Varying any of these dimensions modulates the complexity, difficulty, and scale
of the experiment.

8 L. Gasser et al.

Below we discuss several of the key problems that have emerged in using
MACE3J across these scenarios and environments, and how we handled and
learned from them. For reasons of length, here we focus only on the Grid infras-
tructure case as it is the most sophisticated of the environments we’ve explored.

5.1 Grid Rationale and Experiments

Grid services are a new technology for Internet-scale distributed computing [1].
While Grid services are based on the concept of Web services, Web services
are stateless and non-transient, and this makes them ill-suited as hosts for dis-
tributed object simulation components such as agents. Grid services, do, how-
ever, have several important features that make them particularly suited for dis-
tributed computing, including service factories and lifecycle management, which
allow distributed objects (agents) to be instantiated and have a controllable
level of persistence. Other key advantages of Grid services are their platform-
and language-independence, which have always been important considerations
in the MACE3J system.

We use Grid services as a distributed computing technology to expose and
connect MACE3J ActivationGroup and Agent objects through the Internet.
There are many advantages to this approach. In particular, the toolkit we are
using (Globus’ GT3 [7]) employs the standardized Grid service specification that
covers a wide array of features, including security, indexing, and management
of services. In addition, GT3 allows rapid construction of services without the
complexity of handling WSDL service descriptions. GT3 encompasses the pro-
gramming and hosting environment for Grid services, which allows services to
be built and deployed in a relatively seamless fashion.

A high-level overview of the mechanics of running an agent experiment can
be broken down into three phases. The first phase involves setting up the Grid
hosting environment, by deploying the MACE3J services to the Grid instal-
lation. The next phase is running the hosting environment and exposing the
ActivationGroup and Agent services on the Internet. The final phase is to ini-
tialize and run a simulation experiment.

5.2 Implementing Agents as ”Pure” Distributed Objects

Perhaps the most significant problems we encountered in moving across single PC
environments, shared-memory SSI clusters, and distributed Grid environments
were failures arising from incomplete or “impure” distributed object models.
These led to significant reimplementations in both simulation and middleware
components. Four areas of concern arose in our experiments: object identity,
inter-object communication, replication, and enforcement of encapsulation.

Identity for Distributed Grid-Based Objects: In the Grid, local objects
contain proxy objects that “stand in” for remote partners. Local proxies translate
local method calls to remote communications and translate results back. This
one-step removal from direct interaction yields a disjointed and asynchronous
view of remote agents in the system, fostering difficulties in low-level areas like
creation and destruction of agents.

Smooth Scaling Ahead: Progressive MAS Simulation 9

Inter-agent Communication: Inter-agent communication problems arose be-
cause of the structure of Messages in original versions of MACE3J. Originally
a Message object encapsulated both pertinent metadata (sender, receiver, time)
and message content objects. Using message content objects makes message man-
agement much simpler in the local-memory (PC or SSI) infrastructure, and it
has the advantage of being able to transfer arbitrary objects—e.g., documents or
programs—directly in messages. However, local objects are not communicable
in Grid messages, for two reasons. First, message content objects may have arbi-
trary and context-dependent boundaries (e.g., hash tables with runtime-loaded
objects as contents; method or field definitions inherited at runtime) so a message
sender must incorporate a dynamic theory of object “edges”, and the context
for an object is hard or impossible to package and communicate remotely. This
means objects sent to remote contexts have uncertain interpretation (execution)
semantics when they arrive2. The solution is to reduce context by restricting
messages to be strings. Abstractly speaking, strings are also freighted with con-
textual baggage, but the problem of string interpretation is a user-level issue,
not a system-level one. Thus we reworked the communication protocol to be
more ”pure” and use only Strings as media.

Information Replication: The third problem was information replication. In
MACE3J, the central axis of coordination for simulation is an object called the
ActivationGroup. Initially, the single PC version of MACE3J used a static
Configuration object that was referenced directly by every part of the system
for global configuration values. However, early experiments soon showed this
approach to be incompatible with remotely distributed objects that would not
share the same program space for configuration. The distributed nature of the
Grid system led us to rework how configuration values were accessed by having
agents use messages to query the central ActivationGroup for configuration
values. This in turn led to two types of messages: those for system coordination
and those for inter-agent communication.

Encapsulation: Finally, programming support is needed for enforcing encap-
sulation of agents across all platforms types. This is perhaps the key issue for
smooth transitioning of agent types across execution environments. With current
widely-used object-based programming environments it is too easy to overlook
pointers and object references that extend beyond the encapsulation boundaries
of an agent. The instance of context for objects passed in messages, detailed
above, is one such encapsulation failure, but the problem is a general one. In
the progressive development model, proper encapsulation can be verified at the
single-processor environment level so that transitions to the truly distributed
environment of the Grid is smooth and seamless.

The limitations these types of problem place on the development of scalable
agent systems is that many cross-platform issues have to be taken into consider-

2 C.f., the fundamental issue of distributed semantics mentioned above and treated
in [10].

10 L. Gasser et al.

ation early in the experiment development process. The result is that transitions
to future environment platforms are more easily facilitated with ”purer” encap-
sulation of agents and agent services throughout the system.

6 Conclusions

In conclusion, we find that smooth scalability for multi-agent simulations is not
just a size problem—it is also a problem of system architecture style, manag-
ing degrees of distribution, and managing degrees of concurrency. The dream of
seamless integration across multiple infrastructure scales and programming mod-
els is achievable, though current technologies to achieve it are only just emerging
and need much more work to be robust. Leading-edge infrastructure like the Grid
are still too hard to use, under-documented, and error-prone, but their advan-
tages are becoming clear. The ability to migrate MAS simulations from simple
but resource-poor environments to complex, realistic ones, maintaining progres-
sive control over development parameters and building confidence in behavior,
can be a valuable strategy for experimentation at large scales.

References

1. Foster, I., Kesselman, C., eds.: The Grid 2: Blueprint for a New Computing In-
frastructure. Morgan Kaufmann, Menlo Park, CA (2003)

2. Berman, F., Fox, G., Hey, T.: Grid Computing: Making the Global Infrastructure
a Reality. Wiley (2003)

3. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117
(2000) 277–296

4. Agha, G.A.: ACTORS: A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press, Cambridge, MA (1986)

5. Teragrid: http://teragrid.org/ (2004)
6. Gasser, L., Kakugawa, K.: MACE3J: Fast flexible distributed simulation of large,

large-grain multi-agent systems. In: Proceedings of AAMAS. (2002) 745–752
7. Globus: The globus toolkit 3 programmer’s tutorial (2003) Version 0.2.2,

http://www.casa-sotomayor.net/gt3-tutorial/index.html.
8. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Maguire,

T., Sandholm, T., Vanderbilt, P., Snelling, D.: Open grid services infrastructure
(OGSI) version 1.0. Technical report, Global Grid Forum (2003) Global Grid
Forum Draft Recommendation.

9. Bond, A.H., Gasser, L.: An analysis of problems and research in DAI. In Bond,
A.H., Gasser, L., eds.: Readings in Distributed Artificial Intelligence. Morgan
Kaufmann Publishers Inc., Menlo Park, CA (1988) 3–35

10. Gasser, L.: Boundaries, identity and aggregation: Plurality issues in multi-agent
systems. In Demazeau, Y., Werner, E., eds.: Decentralized Artificial Intelligence
III. Elsevier (1992) 199–212

11. Hewitt, C.: The challenge of open systems. Byte Magazine 10 (1985) 223–242
12. Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman,

D., Podorozhny, R., NagendraPrasad, M., Raja, A., Vincent, R., Xuan, P., Zhang,
X.: Evolution of the GPGP/TAEMS domain-independent coordination framework.
Autonomous Agents and Multi-Agent Systems 9 (2004) 87–143

Agent Communication in Distributed Simulations

Fang Wang, Stephen John Turner, and Lihua Wang

Parallel & Distributed Computing Centre,
School of Computer Engineering, Nanyang Technological University,

639798 Singapore

Abstract. Multi-Agent Systems (MASs) provide a valuable tool for handling in-
creasing software complexity and supporting rapid and accurate decision making.
Various environments for testing, analyzing and developing MASs have been de-
veloped. This paper describes an approach to integrating agents into distributed
simulations. Using the JADE toolkit and the HLA (High Level Architecture), a
general architecture is obtained, where both the high level agent specific services
and the underlying middleware comply with international standards. In this paper,
we show how an MAS may be used to represent entities in a simulation, focusing
on the issue of agent to agent communication, as this is one of the key character-
istics of MASs. The causality problem in agent communication is described, and
conditions for ensuring consistency are identified. A prototype system has been
implemented to demonstrate the feasibility of our solution and some experimental
results are presented.

Keywords: Multi-agent systems, distributed simulation, high level architecture,
communication, causality, synchronization.

1 Introduction

Today’s software applications are mainly characterized by their component-based struc-
tures which are usually heterogeneous and distributed. Agent technology provides a
method for handling increasing software complexity and supporting rapid and accurate
decision making. A number of different approaches have emerged as candidates for the
agent architecture, and at the same time, dozens of environments for modelling, testing
and finally implementing agent-based systems have been developed.

An evaluation comparing many systems for developing software agents can be found
in [1]. Jennings et al. [2] provide a good overview of research and development in the field
of autonomous agents and Multi-Agent Systems (MASs). They summarize some agent
applications covering areas including industry, commerce, entertainment and medicine.
Since the concept of agent has become widely used during the last few years, it has
already become involved with simulations.

Distributed simulation enables participants located in different geographical loca-
tions to share a common virtual world, which is called a Distributed Virtual Environment
(DVE). The HLA (High Level Architecture) [3] is an industry (IEEE-1516) standard for
modelling and simulation. It can reduce the cost and development time of simulation
systems and increase their capabilities by facilitating the reusability and interoperabil-
ity of component simulators. It is increasingly being used in various simulation areas,

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 11–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

12 F. Wang, S.J. Turner, and L. Wang

including education, training, analysis, engineering, entertainment and games. In the
HLA, a distributed simulation is called a federation, and each individual simulator is
referred to as a federate, one point of attachment to the RunTime Infrastructure (RTI).
A federate can be a computer simulation, it can also be a physical device, a passive data
viewer or an interface to a human participant.

There are three main research areas in the cross field of combining MASs with
simulations, namely:

– to simulate an agent system in order to learn more about its behavior or to investigate
the implications of alternative architectures,

– to use agents as entities in a simulation or virtual environment,
– to utilize agents as a way of controlling simulations and providing services.

Most of the current research in using parallel and distributed simulation techniques
in multi-agent and multi-agent-based simulation is addressed to the first area. For ex-
ample, Uhrmacher and Gugler [4] claim that testing MASs requires distributed parallel
simulation techniques that take the dynamic pattern of composition and interaction of
MASs into account.

Our work is concerned with the second area, namely to develop autonomous agents
for representing entities in distributed simulations. The novelty of our project comes
from the way in which autonomous agents are integrated into a distributed simulation,
with particular attention being given to the efficient use of HLA services [5]. There are
many applications such as battlefield simulations, interactive games, etc. that provide
the motivation for this integration.

In this paper, we focus on the issue of agent to agent communication, as this is one
of the key characteristics of MASs. The causality problem in agent communication is
described, and conditions for ensuring consistency are identified. The rest of the paper is
organized as follows: Section 2 describes the benefits of combining MASs and the HLA.
Section 3 presents our architecture and classifies the different forms of communication
in the system. Causality and message ordering problems are discussed in Section 4.
Section 5 illustrates how agent to agent communication can be enabled via the HLA.
Section 6 introduces a prototype system, and Section 7 gives some experimental results.
Finally, conclusions are given in Section 8.

2 Multi-agent Systems and the HLA

The High LevelArchitecture (HLA) is an industry (IEEE-1516) standard that is designed
to promote the reusability and interoperability of component simulators. The standard
comprises three components: the HLA interface specification, the rules, and the ob-
ject model template (OMT). The interface specification, implemented by the Runtime
Infrastructure (RTI), defines how federates interact with the federation, and with one an-
other. The responsibilities of federates and their relationship with the RTI are described
by the rules. Using the object model template, each federate defines in its simulation
object model (SOM) the objects and interactions that are shared. The Federation Ob-
ject Model (FOM) defines the overall data to be exchanged between federates during a
simulation execution.

Agent Communication in Distributed Simulations 13

The RTI provides facilities for allowing federates to interact with each other, as
well as to control and manage the simulation. These facilities are classified into six
categories [3]:

– Federation Management: allows federates to create and destroy federation execu-
tions, and join or resign from an existing federation.

– Declaration Management: allows federates to establish their intent to publish object
attributes and interactions, and to subscribe to updates and interactions produced by
other federates.

– Object Management: allows federates to create and delete object instances, and
produce and receive individual attribute updates and interactions.

– Ownership Management: allows federates to transfer the ownership of object at-
tributes during the federation execution.

– Time Management: coordinates the advancement of logical time of the federates,
and (if appropriate) its relationship to wallclock time.

– Data Distribution Management (DDM): reduces unnecessary information to be
transferred between the federates by filtering out irrelevant data.

In Section 1, three main research areas were identified in the cross field of combining
MASs with simulations. In the first area, simulation of MASs, the HLA not only sup-
ports the reusability of MASs, but also facilitates their interoperability. Developers may
implement the components of a simulation as distinct federates, some of which may
be useful in future simulations. Moreover, an application may require different kinds
of agent architecture, with different properties. Connecting them together becomes a
critical problem. However, using the HLA, it can be achieved by linking the federates
together via the RTI to form a single federation.

Andersson and Löf investigated some of the benefits of using the HLA as a con-
ceptual basis for a multi-agent environment [6]. They extended the HLA/RTI with
KQML (Knowledge and Query Manipulation Language), an Agent Communication
Language (ACL). They developed an air combat scenario to test the environment which
can host agents and support communication and information distribution. Logan and
Theodoropoulos also discuss the application of distributed techniques to the simula-
tion of multi-agent systems [7]. They present an approach to the distributed simulation
of agent systems using the SIM AGENT toolkit and the HLA interoperability frame-
work [8].

In the second area of agent-based simulation, it is not difficult to understand why
distributed simulations need to utilize agent technology. Agents make it possible for dis-
tributed simulations to achieve rapid and accurate decision making. With the properties
of autonomy, social ability, reactivity and pro-activeness, agents can be used to represent
entities in DVEs [9]. Here, the HLA can be used to support component-based develop-
ment of simulation models. This is even more attractive when using MAS technology,
because multi-agent systems are inherently distributed and structured. Moreover, “situ-
ated” agents may need to interact with another existing simulator that is not an agent. In
this case, the agent federates and the enviroment in which they are situated may be linked
easily with the RTI. In other words, combining MAS technology and the HLA provides
distributed simulations with intelligence and decreases the complexity of simulation
development.

14 F. Wang, S.J. Turner, and L. Wang

In the third area of utilizing agents as a way of controlling simulations and providing
services, agents may be used to control a system [10] or provide some of the services of
the RTI, such as the Data Distribution Management services [11].

3 Integration of Agents into Distributed Simulations

Multi-Agent Systems (MASs) have both the traditional advantages of distributed and
concurrent problem solving, and the additional advantage of sophisticated patterns of
interactions [12]. Some characteristics of MASs that distinguish them from traditional
programs are [2]: (1) each agent has only partial information about the environment,
i.e., a limited viewpoint; (2) no global system control exists; (3) data is decentralized;
(4) computation is asynchronous. To integrate agents into an HLA simulation, different
approaches have been made toward building up the overall architecture [6]. For a common
and widely adoptable architecture, a fundamental concern is an appropriate middleware
constructed between the agents and the RTI.

As shown in Figure 1, we have proposed an architecture to build up a prototype
system. JADE [13] is a well-known MAS development kit supporting the FIPA specifi-
cations [14], an internationally agreed agent standard. So we selected it to support the
agents and their communication using ACL. This standard agent platform also contains
some agents including theAgent Management Service (AMS), Directory Facilitator (DF)
and Remote Monitoring Agent (RMA) that support general agent specific services for
all the other agent entities. A gateway federate is developed to allow the agents to be
connected via the RTI. The federates are built upon the RTI and they can access the RTI
interactively.

In the architecture, every agent is attached to a gateway federate. We can have several
agents in a group attached to the same gateway federate or a single agent attached to
a separate gateway federate. At the same time, different federates can also be placed
in the same machine or different machines. Our agents may be regarded as “situated”

environment

federate
federate

Non-agent Federates

agent

gateway federate

agent
agent

agent

Runtime Infrastructure

agent container with
multiple agents

agent container
with single agents

main container

RMA

DFAMS

gateway federate
Agent Federates

Agent Platform

interfaces

Fig. 1. An architecture for an MAS in an HLA-based simulation

Agent Communication in Distributed Simulations 15

RTI

Agent Federate Environment Federate

Agent

(1)

(2)

GUI

(3)

Agent Federate Agent Federate

AgentAgent
(4)

Fig. 2. Classification of communication

or “embedded” agents, that interact with an environment represented by a non-agent
federate. In order to enable such interaction, we develop two interfaces to play the role
of interaction channels between the gateway federate and the agent, namely, a sensor
object and an effector object. A sensor enables an agent to perceive the environment
within which it is situated and an effector enables it to act upon the environment as a
response. Both of them are transferred via the Object-to-Agent (O2A) communication
channel provided by the agent toolkit [13]. With these facilities, a complete interaction
mechanism for a situated agent comes into being, and a three-phased (sense-deliberate-
react) agent architecture can be achieved.

Figure 2 provides a conceptual classification of communication in the distributed
simulation:

1. Between different federates: This includes sending interactions between federates,
and producing and receiving individual attribute updates. (e.g. (1) in Figure 2).

2. Between agent federate and agent: This includes the sensor and effector interfaces
that are developed for agents to perceive and react. (e.g. (2) in Figure 2).

3. Between environment federate and GUI: This provides a way for observers to inter-
act with the virtual environment during the simulation execution, for example, by
slowing down or speeding up the simulation, or adding or deleting objects in the
environment (e.g. (3) in Figure 2).

4. Between different agents: This includes sending information in specific formats that
can be understood by intelligent agents, such as ACL mesages. (e.g. (4) in Figure 2).

In this paper, we focus on the last form of communication, between different agents
in the simulation. However, one of the HLA rules (rule 3) states, “During a federation
execution, all exchange of FOM data among federates shall occur via the RTI” [15].
Thus to satisfy the requirements of the HLA and to guarantee the consistency of an

16 F. Wang, S.J. Turner, and L. Wang

a gold bar is discovered

the gold bar is picked up

Wallclock Time

Simulator C
(observer o)

correct perception

Simulator B
(picker b)

Simulator A
(detector a)

still a gold bar there? conflict

Fig. 3. A scenario of distributed simulation leading to a violation of causality

Agent

Agent Communication Channel

Agent
Platform

Agent

HLA/RTI

Agent Communication Channel

Agent
Agent

Platform

ACL Message sent over
Message Transport Service

Mailbox

Agent Agent
Platform

ACL Message
sent over RTI

(a) (b)

Gateway Federate

Gateway Federate

Agent
Mailbox

Agent Agent
Platform

Fig. 4. Agent communication route: (a) agents communicate directly via the communication chan-
nel provided by the agent platform (b) agents communicate indirectly via the RTI

application when it is distributed, we must make the communication between agents in
different federates indirect via the RTI instead of direct via the communication channel
provided by the agent platform (Figure 4). This will be further discussed in Section 5.

As we see, a good agent specific services middleware is obtained by combining
the agent platform with the gateway federates. Using the JADE toolkit and the HLA, a
general architecture is obtained, where both the high level agent specific services and the
underlying middleware comply with international standards. Different agent behaviours
may be described, making it possible to apply the overall architecture in many other
simulations.

Agent Communication in Distributed Simulations 17

4 Causality and Message Ordering

As we know, a basic requirement of a distributed simulation is to ensure that the individual
simulators (federates) perceive a common view of the virtual environment. For example,
it is important that any pair of participants should perceive a set of messages/events in
the same sequence.

Considering a collection of simulators interconnected via a network, it is not difficult
to give a scenario leading to a problem of consistency violation without an effective time
management system. Suppose that a treasure detector agent a discovers a gold bar, and
sends a message to other agents including a picker named b and an observer named
o, causing b to pick up this gold bar as a consequence. In the distributed simulation,
the messages about the gold bar are as follows: the simulator of a generates a message
indicating where the gold bar is.This message is sent to all the other participant simulators
including b and o. Upon receiving this message, the gold bar will then be picked up in the
simulator of the picker b. Another agent o receives both the messages about the finding
from the detector a and the picking up from the picker b. The message about the finding
may possibly arrive later than the message about the picking up action, delayed in the
network. This causes the observer o to perceive the picking up action first before he
knows some gold bar has been discovered. It must be very strange for o that he gets to
know a gold bar’s location when it has actually been taken away. So is the gold bar still
there? This gives rise to a conflict. Thus to keep the causality of the system, messages
should arrive in the correct order, that is, the message of discovering a gold bar must
arrive before the message of picking up the gold bar. Figure 3 illustrates a scenario about
this problem.

This kind of problem is very common in simulations especially when they are dis-
tributed. Computer simulations can be classified into discrete models and continuous
models, and the most common types of discrete simulations are called time-stepped
and event-driven simulations [3]. They are distinguished by the mechanism used by the
simulation to advance simulation time:

– Time-stepped simulation: simulation time is subdivided as a sequence of equal-sized
time steps, and the simulation advances from one time step to the next.

– Event-driven simulation: each event has a time stamp associated with it that indicates
the point in simulation time when the event occurs, and the simulation time is
advanced to the time of the next event.

Causality can be always kept naturally in the physical world, while in the distributed
simulation, it might be affected by many factors such as the latency a message encounters
as it is transmitted through the network. Accordingly, a time management mechanism is
required to control a distributed simulation to avoid violations of causality. It can also
ensure that repeated executions of the simulation with the same initial state and external
inputs produce entirely the same result.

The principal types of time management mechanisms are enumerated in [16]. The
HLA has a time-stamp order message delivery service. All federates in a federation
should explicitly request an advance in their local virtual times. A time advancement
request is granted only if no events containing a smaller time-stamp will later arrive at this
federate. Furthermore, in a time-stepped simulation, the local virtual time vt advances

18 F. Wang, S.J. Turner, and L. Wang

with a fixed time increment ∆vt. Generally, in this case, we need some additional
conditions from the agent’s point of view, such as:

– An agent should have received all the messages of the last time step before it can
process them and advance to another time step.

– All the messages that are sent at the same time step vt should also arrive at the same
time step vt + ∆vt.

In this way, as the global time advances, the system’s consistency can be well kept
between different federates and agents.

5 How Agents Communicate Using HLA

For delivering ACL messages between agents, one possible way is to send them directly
to those specified agents listed in the receiver slot, with the facility of the agent toolkit (see
Figure 4 (a)). This can be achieved easily no matter whether those agents are in the same
physical machine or not. But according to the rule in Section 3 and the discussions in
Section 4, this way may cause some consistency violation and is obviously inappropriate.

An alternative way is to send ACL messages indirectly via the RTI utilizing some
mechanism (see Figure 4 (b)). In this case, each ACL message can be represented by an
interaction sent between federates, and every gateway federate needs a mailbox (MB) as
an accessory to take charge of the ACL message transmissions. We develop the mailbox
using the JADE agent toolkit and equip it with all the agent specific services. In this
sense, we refer to it as a mailbox agent although it is very simple and has only one
behavior.

Two constraints need to be made on agent to agent communication, they are:

1. all outgoing ACL messages of an agent are passed to the local mailbox agent to be
processed, and

2. a mailbox agent can only send ACL messages directly to local agents that are located
in the same federate.

Those agents in different federates use mailbox agents as communication middle-
men and they do not interact with each other directly. These constraints ensure that all
exchange of FOM data among federates occurs via the RTI.

5.1 The Mailbox Agent

The mailbox agent has two interfaces connected with its federate. One is mailboxIN
that contains the received interactions from remote gateway federates, and the other is
mailboxOUT that contains the interactions to be sent to remote gateway federates.We can
see that this is very similar to autonomous agents that have sensor and effector interfaces
with their gateway federates. All the incoming messages collected by a mailbox agent
from local agents can be divided into three categories to be processed (Table 1). Here
the term local indicates that the receivers are in the same gateway federate and the term
remote indicates the opposite. It is possible that an ACL message is sent to both local
and remote agents.

Agent Communication in Distributed Simulations 19

Table 1. Behavior of Mailbox Agent

Receivers Category Sent to agent Sent as interactions
local agents isLocal yes no

remote agents isRemote no yes
local and remote agents isLocal & isRemote yes yes

In summary, when an agent needs to send ACL messages to other agents, a complete
transmission procedure consists of following steps:

1. The agent passes the messages to the local mailbox agent (MB).
2. The MB collects all the messages from local agents.

(a) If the messages are sent to some local agents, the MB sends them accordingly.
(b) Otherwise,

i. the MB packs the ACL messages into the mailboxOUT, and passes it to the
gateway federate.

ii. The gateway federate reads the mailboxOUT, and encodes each ACL mes-
sage into a byte sequence which is then sent to all the other federates as a
time-stamped interaction.

iii. Another gateway federate receives these interactions, decodes them into
ACL messages and packs these messages again into the mailboxIN prepar-
ing for the subsequent transmission to its MB.

iv. The MB receives the the mailboxIN, and unpacks it into the original ACL
messages. The MB then delivers these messages to the local agents that the
receiver lists may include.

3. Finally all the destination agents receive the ACL messages.

In this approach, we ensure a federation does not exchange data representing state
changes of shared object instances or interactions outside of the RTI service, thus the
consistency of the distributed application is not violated.

5.2 Synchronization Between Federates and Agents

In our prototype, the RTI plays the role of the communication system for all the feder-
ates, providing the possibility for them to exchange data, and also to synchronize their
activities. But the gateway federate and the agent entities still have different threads that
proceed concurrently. Thus a problem arises of how to synchronize the threads of the
gateway federate, the mailbox agent and the autonomous agents.

For this purpose, a condition variable called latch is introduced here, both between
the mailbox agent and the gateway federate, and between the autonomous agent and the
gateway federate. Every latch is an object shared by an agent entity and its gateway
federate. We let the gateway federate wait on the latch until the agent thread signals
it, so that some synchronization points for concurrency are established. Figure 5 shows
how a gateway federate synchronizes with its mailbox agent and autonomous agents.
The arrows show time dependency, for example, m3 → f3 means tm3 < tf3, i.e., there
exists a time dependency between them. To ensure that all the sent ACL messages have
reached the agents before the agents start to process them, we make a restriction, that is,
to let the mailbox agent wait until it gets a return receipt for each sent message.

20 F. Wang, S.J. Turner, and L. Wang

m1. read mailboxIN

m2. send ACLs

wait for return receipts

m3. clear sendList

signal LatchMB

m4. handle mailboxOUT

signal LatchMB

Mailbox Agent

a1. read sensor

a3. handle effector

a2. deliberate

receive ACLs

send return receipts

a4. pass ACLs to mailboxOUT

signal Latch

Autonomous Agent

f1. receive interactions
pass mailboxIN

wait on LatchMB

f3. pass sensors

f4. pass effectors

wait on Latches

f5. pass mailboxOUT

wait on LatchMB

f6. send interactions

f7. request time advanced

Gateway Federate

Fig. 5. Synchronization points

6 The Prototype System

Currently a prototype system named MSG (Mine Sweeping Game) has been imple-
mented, in which several soldiers roam to detect and clear all mines out of an area
so as to keep the area away from danger [9]. Figure 6 gives a snapshot of this game.
After picking up a mine, if the soldier’s hands become full, he starts to approach the
border to discard the mines. If he is still free to collect more, he can continue to detect
and pick up other mines. A soldier with free hands is able to accept tasks assigned by
other busy soldiers who discover new mines but whose hands are already full at that
time.

The soldiers and the environment are represented by different federates distributed
in a local area network. We can have a group of soldiers executing in the same federate
or make each soldier execute in a separate federate. Different federates may also be in
the same machine or different machines. The federates are connected by the RTI, and
they execute synchronously with each other, controlled by the HLA time management
services. None of the federates can advance its local time until the other federates advance
too. In other words, the present simulation is a synchronous, distributed, time-stepped
system where the simulation advances in equal-sized time steps.

Agent Communication in Distributed Simulations 21

free soldier

busy soldier

mine

obstacles

Fig. 6. Six soldiers move in a shared environment avoiding obstacles

The game’s main objective is to demonstrate how the architecture enables distributed
agents to move in a shared environment performing tasks and to communicate with each
other freely. Interaction patterns such as cooperation and collaboration can be adopted
in this game too. For cooperation, soldier agents can perform tasks individually and
concurrently, each one detecting mines and trying to clear them out. Their common aim
is to sweep as many as mines out of the area to reach the final goal that no mine is left,
although during this procedure they do not exchange information with each other. This
case consists of agents simply working together and no communication exists between
agents.

Since communication is one of the key capabilities which distinguishes MASs from
other forms of software and provides the underlying power of the paradigm, our soldier
agents have been enabled to communicate using identified templates of messages for
collaboration. In the current application, soldier agents utilizeACL messages to exchange
information. In our MSG policy, we allow a soldier to carry only one mine at a time.
That means, after a soldier has discovered and picked up a mine, his task is to reach
the border to clear the mine out of the safe area. During this period, he is able to detect
another mine, however his hands are full at that time, thus he cannot pick it up. What he
is able to do then is just inform the other roaming soldiers to come and clear the mine
away. In this case, an ACL message carrying the information about the detected mine
needs to be sent indicating the position. Obviously, to achieve better performance, the
message need only be sent to those soldiers with free hands. Five kinds of ACL templates
are utilized by the soldier agents (Table 2).

Table 2. ACL templates applied in the MSG

Template Implication State of soldier
informPosition inform about the position of himself. unspecified

informPick inform that he has picked up a mine. busy
informDiscard inform about clearing a mine away completed. free

informMine inform another soldier about a detected mine’s position. busy
informAck a return receipt to an informMine free

22 F. Wang, S.J. Turner, and L. Wang

50000

70000

90000

110000

130000

150000

170000

190000

210000

1 5 10 50 100

ACLs' amount / time-step (totally 500 time-steps)

E
x
c
u
ti
o
n
 t
im
e
 i
n
 m
il
li
s
e
c
o
n
d
s

send ACLs to an agent in the same federate

send ACLs to an agent in a different federate but the same machine

send ACLs to an agent in a different federate and also a different machine

exchange ACLs between two agents in the same federate

exchange ACLs between two agents in different federates but the same machine

exchange ACLs between two agents in different federates and also different machines

when no ACL is transmitted

Fig. 7. ACL messages’ transmission time

No doubt a certain level of coordination provides a larger viewpoint for every individ-
ual agent that has only limited information about the environment, and this always brings
a better working efficiency than the situation where no ACL messages and coordination
are applied. These issues are discused in further detail in [17].

7 Experimental Results

We have measured the execution times where a number ofACL messages are transmitted
between agents in each time step of the simulation. These are tested using three PCs
connected via the network. All are of the same type of machine with 2.20GHz Pen-
tium 4 processor and 1.00GB RAM. One of them builds a shared environment for four
agents, and the other two support these agents which are located in two different gate-
way federates. As shown in Figure 7, three situations are investigated for both one-way
transmission and two-way transmission.

The execution time does not change much when 1, 5 or 10 ACL messages per time
step are transmitted from an agent to another or in both directions at the same time.
These results remain stable and are very close to the situation when there is no message
transmitted. When the number of messages reaches a large value, such as 50 and 100
messages per time step, the difference among the execution time of the three situations
becomes distinct. It should be noted that sending messages to an agent located in the same
federate always keeps a stable value of execution time. This is because the messages

Agent Communication in Distributed Simulations 23

transmitted between federates need to be converted to/from a byte sequence, before the
gateway federate can send them as interactions and after receiving them. The encoding
and decoding are time-consuming processes that cost computing resources. This also
explains why the time of sending messages to an agent in a different federate and also
a different machine is less than the time of sending messages to an agent in a different
federate but the same machine. The former one does not increase significantly because
the encoding and decoding can be carried out in parallel, whereas the latter requires
the encoding and decoding to take place on the same machine. For the results, a factor
should also be taken into account that messages may encounter network delays when
transmitted, however this is not crucial for a local area network.

In all these cases, the gateway federates and the mailbox agents work correctly,
according to the conditions for consistency described in Section 4. We can see the
transmission of ACL messages is also efficient unless the number of messages sent by
an agent is very large, which is not a general case. Actually agents do not need to send
messages in each time step of the simulation. Commonly they only communicate if
necessary, thus sending ten or even more messages in one time step is unlikely for an
agent in practice. However, those cases are still tested as upper bounds. They can also
demonstrate that our synchronization mechanisms are quite effective.

8 Conclusions

Although there has been a lot of work on multi-agent and multi-agent based simulation,
little has been done on using an MAS to represent entities in a distributed simulation. In
this paper, we address the issues of how to integrate agents into an HLA-based distributed
simulation with its focus on communication between agents in distinct simulators. We
have proposed a general architecture for integrating an MAS in an HLA-based simula-
tion. Both the high level agent platform and the low level infrastructure are standard,
thus the overall architecture can be applied in many other agent-based distributed simu-
lations. Adherence to common standards can facilitate the reuse and interoperability of
component simulators.

In our approach, a solution is adopted to agent communication using agent gateway
federates and mailbox agents to meet the requirements of consistency and causality.
A detailed mechanism to provided synchronization between federates and agents is
illustrated. A prototype system has been developed to demonstrate the feasibility of this
architecture.

So far, we have tested the mechanism and measured the performance. The experi-
mental results show the transmission of ACL messages in the architecture is efficient.
In the near future, we plan to investigate more scenarios to advance the proposed agent
architecture, and further demonstrate its flexibility and extensibility.

References

1. Eiter, T., Mascardi,V.: Comparing environments for developing software agents. INFSYS Re-
search Report 1843-01-02, Institut und Ludwig Wittgenstein Labor für Informationssysteme,
Austria (2001)

24 F. Wang, S.J. Turner, and L. Wang

2. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and development.
In: Autonomous Agents and Multi-Agent Systems. Volume 1., Kluwer Academic Publishers,
Boston (1998) 7–38

3. Fujimoto, R.M., ed.: Parallel and Distributed Simulation Systems. John Wiley & Sons, Inc.,
Wiley (2000)

4. Uhrmacher,A.M., Gugler, K.: Distributed, parallel simulation of multiple, deliberative agents.
In: Proceedings of the 14th Parallel and Distributed Simulation Conferenc (PADS’2000),
Bologna (2000) 101–110

5. Wang, L., Turner, S.J., Wang, F.: Interest Management in Agent-Based Distributed Sim-
ulations. In: 7th IEEE International Workshop on Distributed Simulation and Real-Time
Application (DS-RT 2003), Delft, The Netherlands (2003) 20–27

6. Andersson, J., Löf, S.: HLA as Conceptual Basis for a Multi-Agent Environment. Technical
Report 8th-CGF-033, Pitch Kunskapsutveckling AB (1999)

7. Logan, B., Theodoropoulos, G.: The distributed simulation of multi-agent systems. Vol-
ume 89. (2001) 174–186

8. Lees, M., Logan, B., Theodoropoulos, G., Oguara, T.: Simulating Agent-Based Systems
with HLA: The Case of SIM AGENT — Part II. In: European Simulation Interoperability
Workshop (Euro-SIW), 03E-SIW-076, UK (2003)

9. Wang, F., Turner, S.J., Wang, L.: Integrating Agents into HLA-based Distributed Virtual
Environments. In: 4thWorkshop onAgent-Based Simulation (ABS2003), Montpellier, France
(2003) 9–14

10. Gyurjyan, V., Abbott, D., Heyes, G., Jastrzembski, E., Timmer, C., Wolin, E.: FIPA agent
based network distributed control system. In: Computing in High Energy and Nuclear Physics,
La Jolla, California (2003)

11. Tan, G., Xu, L.: An Agent-based DDM Filtering Mechanism for HLA. Special Issue on
Software Agents and Simulation, Simulation 76 (2001) 329–344

12. Jennings, N.R., Wooldridge, M.J., eds.: Agent Technology: foundations, applications, and
markets. Springer. UNICOM, Berlin, Heidelberg and New York (1998)

13. Bellifemine, F., Poggi, A., Rimassa, G.: JADE – A FIPA-compliant agent framework, London
(1999) 97–108

14. FIPA: FIPA Agent Management Spacification. Technical Report SC00023J (2002)
http://www.fipa.org/.

15. DoD: High-Level Architecture Rules Version 1.3. Technical Report IEEE P1516/D1, U.S.
Department of Defense, New York, NY 10017, USA (1998)

16. Fujimoto, R.M.: Time Management in The High Level Architecture. Simulation 71 (1998)
388–400

17. Wang, F., Turner, S.J., Wang, L.: Multi-Agent Interactions in Distributed Virtual Worlds. In:
IEEE TENCON 2004. Volume B., Chiang Mai, Thailand (2004) 345–348

Distributed Simulation of MAS

Michael Lees1, Brian Logan1, Rob Minson2, Ton Oguara2,
and Georgios Theodoropoulos2

1 School of Computer Science and IT,
University of Nottingham, UK

{mhl, bsl}@cs.nott.ac.uk
2 School of Computer Science,
University of Birmingham, UK

{txo, rzm, gkt}@cs.bham.ac.uk

Abstract. The efficient simulation of multi-agent systems presents particular
challenges which are not addressed by current parallel discrete event simulation
(PDES) models and techniques. While the modelling and simulation of agents,
at least at a coarse grain, is relatively straightforward, it is harder to apply PDES
approaches to the simulation of the agents’ environment. In conventional PDES
approaches a system is modelled as a set of logical processes (LPs). Each LP
maintains its own portion of the state of the simulation and interacts with a small
number of other LPs. The interaction between the LPs is assumed to be known in
advance and does not change during the simulation. In contrast, the environment of
a MAS is read and updated by agent and environment LPs in ways which depend
on the evolution of the simulation. As a result, MAS simulations typically have a
large shared state which is not associated with any particular agent or environment
LP. In [1] we proposed a new approach to the distributed simulation of MAS in
which the shared state is maintained by a tree of additional logical processes called
Communication Logical Processes (CLP). In this paper we refine this model by
giving precise definitions of a set of operations which allow agent and environ-
ment LPs to interact with the shared state and briefly outline how these operations
could be implemented by a CLP.

1 Introduction

Simulation has traditionally played an important role in multi-agent system (MAS)
research and development. It allows a degree of control over experimental conditions
and facilitates the replication of results in a way that is difficult or impossible with a
prototype or fielded system, freeing the agent designer or researcher to focus on key
aspects of a system. As researchers have attempted to simulate larger and more complex
MAS, distributed approaches to simulation have become more attractive [2, 3, 4]. Such
approaches simplify the integration of heterogeneous agents and exploit the natural
parallelism of a MAS, allowing simulation components to be distributed so as to make
best use of the available computational resources.

However the efficient simulation of a multi-agent system presents particular chal-
lenges which are not addressed by current parallel discrete event simulation (PDES)

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 25–36, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

26 M. Lees et al.

models and techniques. While the modelling and simulation of agents, at least at a coarse
grain, is relatively straightforward, it is harder to apply conventional PDES approaches to
the simulation of the agents’ environment. Parallel discrete event simulation approaches
based on the logical process paradigm assume a fixed decomposition into processes,
each of which maintains its own portion of the state of the simulation. The interaction
between the processes is assumed to be known in advance and does not change during
the simulation. In contrast, simulations of MAS typically have a large shared state, the
agents’ environment, which is only loosely associated with any particular process. The
efficient simulation of systems with a large shared state is therefore a key problem in
the distributed simulation of MAS.

In [1] we proposed a new approach to the distributed simulation of MAS in which the
shared state is maintained by a tree of additional logical processes called Communication
Logical Processes (CLP). In this paper we refine this model by giving precise definitions
of a set of operations which allow agent and environment logical processes to interact
with the shared state and briefly outline how these operations could be implemented by
a CLP. In section 2, we present a model of a MAS as a set of logical processes and argue
that MAS simulations naturally result in systems with a large shared state. In section 3
we briefly describe our approach to the efficient distribution of the shared state across a
tree of CLPs and define a set of operations which allow agent and environment logical
processes to access and update the shared state maintained by the CLPs. We then sketch
how these operations could be implemented by a CLP, paying particular attention to
the problems of efficient sensing, parallel actions and action conflicts. In section 4 we
discuss related work and in section 5 we conclude with a brief outline of future work.

2 Modelling a MAS

We adopt a standard parallel discrete event approach with optimistic synchronisation [5,
6]. Decentralised, event-driven distributed simulation is particularly suitable for mod-
elling systems with inherent asynchronous parallelism, such as agent-based systems.
This approach seeks to divide the simulation model into a network of concurrent Log-
ical Processes (LPs), each maintaining and processing a disjoint portion of the state
space of the system. State changes are modelled as timestamped events. Internal events
have a causal impact only on the state variables of the LP, whereas external events may
also have an impact on the states of other LPs. External events are typically realised as
timestamped messages exchanged between the LPs involved.

Agents are autonomous. The actions performed by an agent are not solely a function
of events in its environment: in the absence of input events, an agent can still produce
output events in response to autonomous processes within the agent. As a result, agent
simulations have zero lookahead [7]. We therefore adopt an optimistic synchronisation
strategy as this theoretically gives the greatest speedup and avoids the problem of looka-
head. With optimistic synchronisation, LPs run asynchronously and each has its own
local notion of time within the simulation, referred to as its Local Virtual Time (LVT).
In distributing the simulation across multiple processes a key problem is ensuring that
there are no causality violations. An LP is said adhere to the local causality constraint
(LCC) if it processes all events in nondecreasing time stamp order. If a message arrives

Distributed Simulation of MAS 27

in an LP’s past (as determined by its LVT) it must rollback its state to the timestamp
of the straggler event, and resume processing from that point. It must also cancel any
messages it sent with timestamps greater than that of the straggler event, which may in
turn initiate rollbacks on other LPs.

We model agents and their environment as Logical Processes. Each agent in the sys-
tem is modelled as a single Agent Logical Process (ALP). Similarly, the properties and
behaviour of the objects comprising the agents’ environment, e.g., walls, doors, light
switches, clocks, etc. and processes not associated with any particular object in the en-
vironment, e.g., weather, are modelled as one or more Environment Logical Processes
(ELP). For example, in a simple Tileworld simulation [8], each Tileworld agent would be
simulated by an ALP and the objects in the Tileworld environment (tiles, holes, obstacles
etc.) by one or more ELPs.1 In addition to creating the objects in the environment at
simulation startup, the ELP(s) would also be responsible for the creation and deletion
of tiles and holes during the simulation. ALPs and ELPs are typically wrappers around
existing simulation components. They map to and from the sensor and action interfaces
of the agent and environment models to a common representation of the environment
expressed in terms of entities and attributes, and also provide support for rollback pro-
cessing. In what follows we shall use the generic term ‘LP’ to refer to both ALPs and
ELPs, since, unless otherwise noted, their behaviour is very similar.

Each LP has both public data and private data. Private data is data which is not
accessible to other LPs in the simulation, e.g., an agent’s model of the environment, its
current goals, plans etc. or the internal state of a complex object. Public data is data which
can, in principle, be accessed or updated by other LPs in the simulation, e.g., the colour,
size, shape, position etc. of an agent or object. Public data is held in globally accessible
locations or state variables, while private data is local to a particular LP. Access to
public data and/or the ability to update it may be restricted particular groups of LPs.
For example, it may be impossible for any LP to change the size or colour of objects in
the environment or for ALPs to update the position of some objects such as obstacles.
We model the public data of the LPs in terms of entities and attributes. We assume each
entity in the simulation (agent or object) has a type, and each entity type is associated
with a number of attributes. For example, a Tileworld simulation might contain entity
types such as agent, tile, hole and obstacle and attributes such as x-position, y-position
etc. The shared state of the simulation would therefore consist of a variable number of
entities (agents, tiles, holes obstacles etc.) whose properties are defined by the value of
their attributes.

In a conventional decentralised event-driven distributed simulation each LP maintains
its own portion of the simulation state and LPs interact with each other in a small number
of well defined ways. The topology of the simulation is determined by the topology of the
simulated system and its decomposition into LPs, and is largely static. In contrast, with
multi-agent systems, public data is updated by many LPs and is not logically associated

1 Tileworld is a well established testbed for agents. It consists of an environment consisting
of tiles, holes and obstacles, and one or more agents whose goal is to score as many points
as possible by pushing tiles to fill in the holes. The environment is dynamic: tiles, holes and
obstacles appear and disappear at rates controlled by the simulation developer.

28 M. Lees et al.

with any of them. Different kinds of agent and environment processes have differing
degrees of access to different parts of the environment at different times. In the case
of agents, the degree of access is dependent on the range of the agent’s sensors (read
access) and the actions it can perform (write access). Moreover, in many cases, an agent
can effectively change the topology of the simulation, for example, by moving from one
part of the environment to another. It is therefore difficult to determine an appropriate
topology for a MAS simulation a priori, and such simulations typically require a (very)
large set of shared variables which could, in principle, be accessed or updated by the
ALPs and ELPs.

3 Distributing the Shared State

We therefore propose an approach in which the shared state is loosely associated with
a group of special LPs, namely Communication Logical Processes (CLPs), and the
distribution of state (i.e., its allocation to CLPs) changes at run-time, in response to the
events generated by theALPs and ELPs during the simulation. Both the allocation of state
to CLPs and the synchronisation window are driven by an underlying characteristic of
the agent simulation, which we call the sphere of influence [1]. In the Tileworld example
above, public data such as the positions of the agents and objects in the environment
(tiles, holes and obstacles), the height of the tilestacks, depth of the holes, etc. would be
maintained by the CLPs.

ALPs and ELPs interact with the shared state maintained by the CLPs via events,
implemented as timestamped messages. The purpose of this interaction is to exchange
information regarding the values of those shared state variables which can be accessed
or updated by the agent’s sensors and actions or by environment processes. Different
types of events will typically have different effects on the shared state, and, in general,
events of a given type will affect only certain types of state variables (all other things
being equal). The ‘sphere of influence’ of an event is the set of state variables read or
updated as a consequence of the event. We can use the spheres of influence of the events
generated by each LP to derive an idealised decomposition of the shared state into logical
processes (see [1] for details).

3.1 CLPs

The CLPs form a tree with the ALPs and ELPs as the leaves and each CLP maintains
a subset of the shared state which is associated with the ALPs/ELPs which are below
it in the tree (see Figure 1). CLPs also hold partial information on attributes of entities
maintained by other CLPs in the tree, to allow routing of events to the appropriate CLP.

ALPs and ELPs interact with CLPs by exchanging messages. There are 5 message
types:

add one or more attributes (and their initial values) at a given timestamp;
remove one or more attributes from a given timestamp;
read the value of one or more attributes at a given timestamp;
write the value of one or more attributes at a given timestamp; and
rollback and resume processing from a given timestamp.

Distributed Simulation of MAS 29

CLP

CLP

CLP

CLP

CLP

v
j

v
k

v
i

v
y

v
z

Start Time: 4 End Time:

Read List: [(Ag2,9),(Ag3,6),(Ag4,5)]

Value: 38

Start Time: 2 End Time:

Read List: [(Ag1,21),(Ag3,31)]

Value: 3

Start Time: 2 End Time: 5

Read List: [(Ag1,2),(Ag2,3)]

Value: 30
Start Time: 5 End Time:

Read List: [(Ag1,2),(Ag2,3)]

Value: 39
Start Time: 1 End Time: 2

Read List: [(Ag1,2)]

Value: 26

Start Time: 1 End Time: 4

Read List: [(Ag1,2),(Ag2,3)]

Value: 34

State V
ariables

Agent: Ag1 Agent: Ag1

Agent: Ag1

Agent: Ag1 Agent: Ag1 Agent: Ag1

Write Periods

Port

Po
rt

Por
t

ALP ELP

Shared State

Fig. 1. The tree of CLPs

add, remove, write and rollback are non-blocking. A read blocks until the requested
values are returned. Add, remove, read and write messages originate with an ALP or
ELP, while rollbacks are initiated by a CLP. All operations on the shared state occur
asynchronously and at the specified simulation time. We assume that the operations are
atomic and may be arbitrarily interleaved.2

In the remainder of this subsection, we consider each message type in turn and briefly
describe their arguments, possible reply messages and any side-effects on the shared state
and the state of other LPs. We consider first the case in which the message argument(s)
are maintained by theALP’s/ELP’s parent CLP. In section 3.2 we describe how messages
which can’t be handled by the parent CLP are propagated through the tree.

Add Messages. When an ALP or ELP creates a new entity in the simulation its parent
CLP adds a new variable to the shared state to hold the value of the attribute. The
timestamp indicates the simulation time at which the attribute of the new entity acquired
the specified value. Adding the first attribute to an entity instance implicitly creates the
entity in the shared state. For simplicity, we assume that entities are only ever created
in their entirety, i.e., we cannot create an entity without specifying all values for all its
attributes.

Remove Messages. Removing an attribute of an entity in effect deletes the attribute from
the specified time forward. Subsequent read and write operations on the attribute with
timestamps prior to the specified timestamp proceed as normal. Reads with timestamps

2 The distinction between read and write operations is similar to the query event tagging proposed
in [9] and should have similar advantages in reducing both the frequency and depth of rollback
and the state saving overhead.

30 M. Lees et al.

later than the specified timestamp give rise an empty list of values. Attempting to add a
new attribute with a timestamp greater than the specified timestamp has no effect (i.e.,
it is not possible to recreate an attribute after it has been removed from the simulation).
As with creation, we assume that entities are only ever deleted in their entirety.

Read Messages. To sense the environment an ALP or ELP it must issue a state query.
A state query is either a range query (query by attribute value) or an id query (query by
attribute id). A range query is a list of 4-tuples of the form:

< entity-type, attribute-type, value-range, timestamp >

where the value-range indicates the attribute values which are of interest (i.e., that match
the query). Range queries allow sensing such as ‘all tile x-positions within 5 squares’.
For example, in a Tileworld simulation, an ALP simulating an agent may issue a range
query to discover which tiles are within the sensor range of the agent. Similarly, an ELP
responsible for the creation of tiles within a particular region of the Tileworld may issue
a range query to check that the cell in which a new tile is to be placed is not currently
occupied by an agent (or by a tile created by another ELP and pushed into this region of
the Tileworld by an agent).

An id query is a list of 2-tuples of the form:

< attribute-id , timestamp >

Id queries allow query by reference, for example, it allows an ALP or ELP to obtain
the current value of one of its own public attributes or the current value of an attribute
returned by a range query. They are provided as an optimisation for those cases where
the attribute in question is guaranteed to persist until after the timestamp of the query.

Reads give rise to a read-response message containing a (possibly empty) set of values
(in the case of range queries), or, in the case of an attribute query, a single value. The
values returned are those which were valid at the time denoted by the query timestamp.
If there is no value with a timestamp equal to that of the query, for example, if the query
timestamp lies between the timestamps of two values or is greater than the timestamp
of any matching attribute, the read returns the value with the greatest timestamp prior to
the timestamp of the query.

Write Messages. When an ALP or ELP updates an attribute of an existing entity, it
sends a write message to its parent CLP with a new value and timestamp, indicating
the simulation time at which the attribute acquired the specified value. Attribute values
are stored in write periods of the appropriate state variable. A write period is a logical
time interval during which an attribute maintains a particular value. Each write period
stores its start and end time, the value of the attribute over that time period, the LP which
performed the write and the timestamp of the most recent read by each LP which read
the attribute over the time period.3 New write periods are created when an LP updates
the value of an attribute. This splits an existing write period, and triggers a rollback on

3 In practice, not all write periods need to be stored in state variables, e.g., if a write period has
a timestamp lower the LVT of any LP it is inaccessible within the simulation and can be fossil
collected.

Distributed Simulation of MAS 31

any LPs which read the previous value of the variable at a logical time between the start
and end times of the new write period (see below).

In general, there will be a delay between an agent’s sensing and action. It is therefore
impossible for an LP to know that the state of the environment it sensed before performing
an action still holds when the write is performed. We therefore allow write operations
to be guarded. A guard is a predicate on the shared state in the form of a list of attribute
values which must evaluate to true (i.e., the attributes must have the specified values at
the timestamp of the write) for the operation to be performed. A guard functions as the
precondition for the successful execution of an action in the environment. If the guard
evaluates to false, the write is not performed (with the exception that we ignore violations
of the precondition due to writes performed by the same agent at the same timestamp).
For example, to prevent two (or more) agents pushing the same tile at the same time in
Tileworld, we can require that the tile is still where the agent sensed it (e.g., directly in
front of the agent) before allowing the agent to update the position of the tile. All writes
also have an additional implicit guard, namely that the attribute being updated has not
been removed at a timestamp prior to the write.

We distinguish different categories of attributes depending on the types of updates
they admit [10]. Static attributes are set once, e.g., when an entity is created, and can’t
be changed during the simulation. Attributes which can be updated at most once at a
given timestamp are termed mutually exclusive attributes. For example, in Tileworld,
we may wish to prohibit two agents picking up a tile at the same time. Cumulative
attributes can be updated at most n times by different LPs at the same timestamp. For
example, in the Tileworld, several agents may be able to drop a tile into a hole at the
‘same’ time, with each operation decreasing the depth of the hole by one. All updates of
static attributes are ignored. If two or more LPs attempt to perform conflicting updates,
e.g., attempt to specify different values for a mutually exclusive attribute at the same
timestamp or attempt to drop a tile into a hole that has already been filled by other agents
at the same timestamp, we apply the update of the LP with the highest rank. The rank of
an LP determines it’s priority when attribute updates conflict. Ranks may reflect some
property of the LP which is relevant to the simulation, but in general are simply a way
of ensuring repeatability. If both LPs have the same rank then we choose an update
arbitrarily (saving the random seed to preserve repeatability). If the attribute has already
been updated at this timestamp by an LP with lower rank, this value is over-written and
any LPs which read the previous value are rolled back (see below).

More complex environment models can be implemented using combinations of these
features. For example, with an appropriate choice of guard on a cumulative attribute, we
can allow several agents to push a tile at the same time to give motion which is, e.g., the
vector sum of the motion imparted by each agent. Alternatively, an entity’s motion can
be computed by the ALP or ELP responsible for maintaining the entity in the simulation,
with each agent and object updating an input force vector represented as a cumulative
attribute.

Rollback Messages. Some sequences of operations by the LPs give rise to further
processing of the shared state and the private state of one or more LPs.

An add, remove or write operation with timestamp t which is processed in real time
after a read with timestamp tr, where t < tr, invalidates the read, and triggers a roll-

32 M. Lees et al.

back on all LPs which read the previous (interpolated) value of the attribute. A rollback
indicates that the set of values returned in response to the read was incorrect, and that
the LP should rollback its processing to the timestamp of the read and restart.4 Rolling
back an LP undoes all the updates to the LP’s private state which have a timestamp
> tr and resets the LP’s LVT to tr. The effect is as if the LP had just returned from
the original read (at timestamp tr), but this time with the ‘correct’ values of the at-
tributes. (A subsequent add, remove or write with timestamp t′, where t′ < t < tr
can of course cause further rollbacks on the LP.) Rolling back an LP also cancels any
add, remove or write operations on the shared state performed by the LP which have
a timestamp > tr. This may in turn invalidate reads by other LPs, requiring them to
rollback too.

Note that the presence of rollback obviates the need for coarse-grain atomic opera-
tions, i.e., each attribute update can be processed independently of any others and may
be arbitrarily interleaved with other operations such as read operations. It is therefore
possible for an LP to ‘see’ an inconsistent version of the shared state or for the guard
conditions of a write to evaluate to true for some orderings of operations on the shared
state and false for others. When all the updates are finally made, the inconsistency will
be detected and any affected LPs rolled back.

3.2 Ports

Each CLP holds only part of the shared state. Read and write operations on shared state
variables not maintained by a CLP are forwarded through the tree to the relevant CLP(s).

CLPs communicate with their neighbours in the tree via ports. Each port holds
information about the ranges of attribute values maintained by CLPs beyond the port in
the form of 4-tuples:

< entity-type, attribute-type, value-range timestamp-range >

For example, in a Tileworld simulation, a port tagged with entity-type tile, attribute-
type x-position value-range 10–20 and timestamp-range 50–100 would indicate that state
variables holding x positions of tiles with values in the range 10 to 20 and timestamps
between 50 and 100 are held in CLPs beyond this port. (Where the port leads to an ALP
or an ELP, the port information is empty, since all public information in the simulation
is held in the CLPs).

In the case of range queries, the query is compared against the range information for
each port. If the ranges overlap the CLP forwards the query to the CLP beyond the port.
This process proceeds recursively until a CLP with no ports (as opposed to maintained
state variables) that match the query is reached. Each CLP waits until it receives replies
from all CLPs to which it forwarded the query, appends the value of any state variables it
manages that match the query and sends a reply to the originating CLP. When the replies

4 Note that a write with timestamp tw which arrives in real time after a write with timestamp
t′
w, where tw < t′

w and there are no intervening reads, does not trigger a rollback. In contrast
to standard optimistic synchronisation approaches which rollback on every straggler event,
or which only avoid rollbacks on straggler reads [9], this optimisation results in a significant
reduction in the number of rollbacks [11].

Distributed Simulation of MAS 33

reach the root CLP for this query, the sensing is complete and the values matching the
query can be returned to the requesting ALP/ELP.

Initially, the value-range for each entity and attribute type at each port is “all values”
for all timestamp ranges and all queries are forwarded to all neighbouring CLPs. By
analysing the responses to range queries by the neighbouring CLPs, a CLP acquires
information about the kinds of attributes (and their ids) that lie beyond each port. This
provides a simple form of ‘lazy’ interest management, and avoids repeated traversal the
whole tree when sensing the environment. In addition, each port also holds information
about the attribute instances maintained by other CLPs that can be reached via the port.
This routing information allows a CLP to forward reads and writes of particular attributes
that it does not maintain to the appropriate CLP.

Updating the value of an attribute may involve updating the range information of
the ports leading to the CLP which manages the associated state variable. Each CLP
keeps a record of all queries it has received together with the port through which
the query arrived at the CLP. All add operations are checked against this query his-
tory, and, if the new attribute value matches a previously evaluated query, the add is
propagated back along the path of the query to update the port information. When the
traversal reaches the ALP that initiated the query this triggers a rollback, as the first
time the query was evaluated, it returned too few values. Conversely, if an attribute
value matches no query in the query record, then no ALP has ever queried this attribute
value at this timestamp, and there is no need to propagate the value beyond the current
CLP.

3.3 Load Balancing

As well as storing state variables and enabling communication via ports, CLPs also
facilitate load balancing. As the number of instances of each event type generated by
an ALP or ELP varies, so the partial order over the spheres of influence changes, and
the contents of the CLPs must change accordingly to reflect the LPs’ current behaviour
and keep the communication and computational load balanced. This may be achieved
in two ways, namely by swapping pairs of ALPs/ELPs, and by moving subsets of state
variables from one CLP to another. In general, it is easier to move state than LPs, and
our strategy is to bring the environment close (in a computational sense) to the LPs
within whose sphere of influence the corresponding portion of the shared state lies. For
example, in a Tileworld simulation, the state associated with entities currently being
sensed or manipulated by an agent would ideally be located on the parent CLP of the
ALP responsible for simulating the agent. As the agent moves around the Tileworld, the
state maintained by the ALP’s parent CLP (and its parent CLPs in turn) should change
to reflect the agent’s changing sphere of influence.

Periodically, the CLPs offer to swap state variables with their neighbours. A CLP
will offer to swap a state variable if doing so will reduce the total cost of access. In order
to calculate the cost, each query carries with it the ‘distance’ it travelled through the
tree before reaching the CLP. The hop counts for queries arriving through each of the
CLP’s ports are totalled for each variable maintained by the CLP, and this information
is used to determine which port (i.e., neighbouring CLP) to swap with. For example, if
the majority of accesses to a state variable arrive through a particular port, a CLP may
offer to swap the variable with the CLP which can be reached via the port.

34 M. Lees et al.

4 Related Work

There is a considerable amount of work in the simulation literature on the efficient
distribution of updates, particularly in the context of large scale real-time simulations
where it is termed Interest Management. Interest Management techniques utilise filtering
mechanisms based on interest expressions (IEs) to provide the processes in the simulation
with only that subset of information which is relevant to them (e.g., based on their location
or other application-specific attributes). Special entities in the simulation, referred to as
Interest Managers, are responsible for filtering generated data and forwarding it to the
interested processes based on their IEs [12].

In most existing systems, Interest Management is realised via the use of IP multi-
cast addressing, whereby data is sent to a selected subnet of all potential receivers. A
multicast group is defined for each message type, grid cell (spatial location) or region
in a multidimensional parameter space in the simulation. Typically, the definition of the
multicast groups of receivers is static, based on a priori knowledge of communication
patterns between the processes in the simulation [13]. For example, the High Level Ar-
chitecture (HLA) utilises the routing space construct, a multi-dimensional coordinate
system whereby simulation federates express their interest in receiving data (subscrip-
tion regions) or declare their responsibility for publishing data (update regions) [14]. In
existing HLA implementations, the routing space is subdivided into a predefined array
of fixed size cells and each grid cell is assigned a multicast group which remains fixed
throughout the simulation; a process joins those multicast groups whose associated grid
cells overlap the process subscription region.

Static, grid-based Interest Management schemes have the disadvantage that they do
not adapt to the dynamic changes in the communication patterns between the processes
during the simulation and are therefore incapable of balancing the communication and
computational load when the communication patterns change, with the result that per-
formance is often poor. Furthermore, in order to filter out all irrelevant data, grid-based
filtering requires a small cell size, which in turn implies an increase in the number of
multicast groups, a limited resource with high management overhead.

In contrast, our approach is not confined to grids and rectangular regions of multi-
dimensional parameter space and does not rely on the support provided by the TCP/IP
protocols. Rather, the shared state is distributed dynamically based on the spheres of
influence of the ALPs and ELPs in the simulation. In addition, our approach exploits
this decomposition in order to perform load balancing.

5 Conclusion and Further Work

In this paper we have argued that the efficient simulation of the environment of a multi-
agent system is a key problem in the distributed simulation of MAS. Building on work
in [1], we proposed an approach in which the shared state of a simulation is loosely
associated with a group of special logical processes called Communication Logical Pro-
cesses, and the distribution of state (i.e., its allocation to CLPs) is performed dynamically
in response to the events generated by the agent and environment processes during the
simulation. We defined a set of operations on the shared state which allow the interaction

Distributed Simulation of MAS 35

of agent and environment logical processes and sketched how these operations could
be implemented by a CLP. Our approach addresses the problems of efficient sensing,
parallel actions and action conflicts, and integrates an efficient approach to state saving
which minimises the number of rollbacks with a simple load balancing scheme.

The work reported is still at a preliminary stage. To date, we have implemented the
core of the CLPs including the rollback mechanism and calculation of virtual time [15]
and load balancing [16] and are currently working on the implementation of interest
management. Initial experiments with the rollback mechanism are encouraging, and
show a reduction in the number of rollbacks compared to other approaches in the literature
which rollback on every straggler event [11].

Acknowledgements

This work is part of the PDES-MAS project5 and is supported by EPSRC research grant
No. GR/R45338/01.

References

1. Logan, B., Theodoropoulos, G.: The distributed simulation of multi-agent systems. Proceed-
ings of the IEEE 89 (2001) 174–186

2. Anderson, J.: A generic distributed simulation system for intelligent agent design and evalu-
ation. In Sarjoughian, H.S., Cellier, F.E., Marefat, M.M., Rozenblit, J.W., eds.: Proceedings
of the Tenth Conference on AI, Simulation and Planning, AIS-2000, Society for Computer
Simulation International (2000) 36–44

3. Schattenberg, B., Uhrmacher, A.M.: Planning agents in JAMES. Proceedings of the IEEE
89 (2001) 158–173

4. Gasser, L., Kakugawa, K.: MACE3J: Fast flexible distributed simulation of large, large-grain
multi-agent systems. In: Proceedings of AAMAS-2002, Bologna (2002)

5. Ferscha, A., Tripathi, S.K.: Parallel and distributed simulation of discrete event systems.
Technical Report CS.TR.3336, University of Maryland (1994)

6. Fujimoto, R.: Parallel discrete event simulation. Communications of the ACM 33 (1990)
31–53

7. Uhrmacher, A., Gugler, K.: Distributed, parallel simulation of multiple, deliberative agents.
In: Proceedings of Parallel and Distributed Simulation Conference (PADS’2000). (2000)
101–110

8. Pollack, M.E., Ringuette, M.: Introducing the Tileworld: Experimentally evaluating agent
architectures. In: National Conference on Artificial Intelligence. (1990) 183–189

9. Sokol, L.M., Briscoe, D.P.,Wieland,A.P.: MTW:A strategy for scheduling discrete simulation
events for concurrent simulation. In: Proceedings of the SCS Multiconference on Distributed
Simulation. SCS Simulation Series, Society for Computer Simulation (1988) 34–42

10. Minson, R., Theodoropoulos, G.: Distributing RePast agent-based simulations with HLA.
In: Proceedings of the 2004 European Simulation Interoperability Workshop, Edinburgh,
Simulation Interoperability Standards Organisation and Society for Computer Simulation
International (2004) (to appear).

5 http://www.cs.bham.ac.uk/research/pdesmas

36 M. Lees et al.

11. Lees, M., Logan, B., Theodoropoulos, G.: Time windows in multi-agent distributed simu-
lation. In: Proceedings of the 5th EUROSIM Congress on Modelling and Simulation (Eu-
roSim’04). (2004)

12. Morse, K.L.: Interest management in large-scale distributed simulations. Technical Report
ICS-TR-96-27 (1996)

13. Morse, K.L.: An Adaptive, Distributed Algorithm for Interest Management. Ph.D. thesis,
University of California, Irvine (2000)

14. Defence Modeling and Simulation Office: High Level Architecture RTI Interface Specifica-
tion, Version 1.3. (1998)

15. Lees, M., Logan, B., Theodoropoulos, G.: Adaptive optimistic synchronisation for multi-
agent simulation. In Al-Dabass, D., ed.: Proceedings of the 17th European Simulation Mul-
ticonference (ESM 2003), Delft, Society for Modelling and Simulation International and
Arbeitsgemeinschaft Simulation, Society for Modelling and Simulation International (2003)
77–82

16. Oguara, T.: Load balancing in distributed simulation of agents. Thesis Report 5, School of
Computer Science, University of Birmimgham (2004)

Extending Time Management Support for
Multi-agent Systems

Alexander Helleboogh, Tom Holvoet, Danny Weyns, and Yolande Berbers

AgentWise, DistriNet, Department of Computer Science K.U.Leuven, Belgium
{Alexander.Helleboogh, Tom.Holvoet, Danny.Weyns,

Yolande.Berbers}@cs.kuleuven.ac.be

Abstract. Time management is essential when simulating multi-agent
systems (MASs) as it allows consistent and repeatable simulation runs.
So far, time management lacks support to express the timing require-
ments of a simulation explicitly and at an abstraction level appropriate
for MAS developers. Moreover, integrating time management into a MAS
requires the developer to alter the design of the MAS. In this paper, we
first propose semantic duration models to capture timing requirements
that reflect the semantics of MAS activities in an explicit model. Second,
we present a time management infrastructure that starts from a semantic
duration model description to integrate all time management function-
ality into a MAS transparently, i.e. without requiring the developer to
alter the design of the MAS. We use aspect-oriented programming tech-
nology as it allows separation of concerns, a crucial software engineering
requirement. As a case, we apply our approach to the Packet-World.

1 Introduction and Problem Statement

Simulation platforms enable multi-agent systems (MASs) to be tested before
they are deployed in the real world. An important requirement for such platforms
is that a MAS can easily be integrated with the simulation infrastructure. The
developers have to be relieved from the low-level technical issues associated with
simulations [1]. This allows the developer to concentrate his or her efforts on the
relevant domain application logic.

An essential technical issue which has to be provided by a simulation platform
is time management [2]. Time management ensures that all temporal character-
istics of the problem domain are correctly reproduced in the simulation. Time
management is required in simulation platforms to allow controlled and repeat-
able simulation runs.

Currently, time management is generally supported by means of time man-
agement mechanisms [2, 3, 4] which are built into the simulation platforms. Time
management mechanisms are necessary to enforce all simulation events to be
processed in time-stamp order, irrespective of arbitrary and variable delays in
the execution platform. Examples of time management mechanisms are time-
stepped execution and conservative or optimistic event synchronization mech-
anisms. When time management mechanisms prevent the execution platform

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 37–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

38 A. Helleboogh et al.

from introducing causality errors, the consistency and repeatability of a simula-
tion can be guaranteed.

Time management is also essential in the context of simulating MASs [5],
because timing delays introduced by the underlying execution platform may
otherwise affect the simulation results. For example, in [6, 7, 8] it is shown that
alterations in the execution platform of the agents can have a severe impact on
the simulation behavior of the MAS as a whole, possibly introducing unexpected
and unwanted behavior.

MASs allow a system to be modeled at a high level of abstraction. Therefore,
it is essential that the support for time management in simulation platforms is
raised to an abstraction level appropriate for MAS developers. Currently, time
management mechanisms are built into the simulation platforms to hide the
technical issues related to maintaining logical time consistency. Nevertheless, a
MAS developer is still confronted with a number of unsupported time manage-
ment issues when simulating a MAS. First, there is a lack of support to express
the relation between the activity within a MAS and logical time in an explicit
way. Outside a simulation context, the concept of logical time is hardly ever em-
ployed: agents are generally not designed as entities maintaining a logical clock
and generating time-stamped events. If such systems are simulated, the mapping
to logical time has to be tackled by the developer without any support, since
time management mechanisms require that the time stamps are already assigned
to the events, and only provide support for time stamp ordering. A second prob-
lem is the lack of support to integrate all time management functionality into
a MAS. Currently, this integration requires the developer (1) to reimplement
each agent’s actions on the environment to transform them into time stamped
events and (2) to direct these events to the simulation platform [9, 10]. Besides
the fact that this requires a fair understanding of the simulation platform and
its interfaces, it also forces developers to alter the design of the MAS.

This paper describes a way to extend time management support for simu-
lating MASs in order to deal with the problems mentioned above. We give a
high-level overview of our approach, based on Fig.1. First, we employ Semantic
Duration Models to provide support for the developer to make the timing require-
ments for the simulation of a MAS explicit. Semantic duration models enable the
developer to express the mapping of the activity within a MAS to logical time at
a high level of abstraction, allowing the semantic meaning of MAS activities to
be taken into account. Second, we describe the Time Management Infrastructure
we developed. Our prototype allows time management to be integrated in a MAS
transparently, i.e. without requiring the developer to make design changes in the
MAS or to have any knowledge from the simulation platform and its interfaces.
Our approach employs aspect-oriented programming to achieve separation of
concerns. Separation of concerns is important from a software engineering point
of view, as this allows all time management functionality needed for simulation
purposes to be decoupled from the MAS’s functional structure. Based on the
description of a semantic duration model, aspect-oriented programming allows
time management functionality to be “woven” into a MAS.

Extending Time Management Support for Multi-agent Systems 39

Time Management
Infrastructure

Time Management
Integration

Semantic
Duration Model

MAS
Time Management

Mechanism

MAS
+

Integrated
Time Management

Input from developer Simulated MAS

Fig. 1. Overview of the Time Management Infrastructure for simulating MASs

This paper is structured as follows. We first elaborate on semantic duration
models in Sect.2 and present a basic formalism based on set theory to describe se-
mantic duration models. Next, the time management infrastructure is described
in Sect.3. Section 4 demonstrates our approach using the Packet-World as a case,
after which we draw conclusions in Sect.5.

2 Semantic Duration Models

To obtain meaningful simulation results, it is essential that the timing require-
ments for a simulation reflect the timing characteristics of the MAS’s problem
domain. We describe how semantic duration models can support a developer to
capture all timing requirements of a MAS simulation in an explicit way and at
the semantic level of a MAS.

Semantic duration models capture the timing characteristics for simulating a
MAS in an explicit way, using the technique of duration modeling at a semantic
level. The idea of duration modeling is to maintain a logical clock for each agent
and advance that clock for each “primitive” that is executed by the agent. The
duration of a “primitive” performed by an agent is the (logical) time period it
takes until the effects of that “primitive” are noticeable. The developer has to
describe all timing characteristics by means of assigning logical durations to each
of the “primitives”. Advancing the logical clock in a way that is independent of
computer loads and processor speeds, enables repeatable simulation results.

Duration modeling was first described by Anderson and Cohen in [11, 12],
where it was applied in the context of the agent’s deliberation activity. Ander-
son distinguishes between low-level and high-level duration models. In low-level
models, durations are assigned to individual programming language instructions.
However, this results in timing characteristics of a MAS simulation that are de-
scribed in terms of low-level implementation issues. Because in a problem domain
it is the semantics of what the agent is actually doing that determines the timing
characteristics, Anderson emphasizes high-level duration models. For example,
“evaluating a board position” for a chess playing agent, or “generating an in-
ternal plan to reach a particular destination” can be considered as primitives
with semantic meaning for duration modeling in a high-level model. However,
Anderson’s approach is limited to modeling the agent’s deliberation activity, and
does not take into account other forms of activity within a MAS.

40 A. Helleboogh et al.

Duration modeling is also addressed in the SPADES system by Riley and
Riley [13]. Their approach is not limited to modeling the duration of agent de-
liberation, but also incorporates the agent’s sensing and acting activities. This
allows the duration of perception and agent actions to be taken into account.
However, in contrast to Anderson’s work, the logical thinking time of the agents
is now based on the measurement of CPU-time. Moreover, the approach can
only be applied to agents whose architecture supports a rigid sense-think-act
cycle.

Our notion of semantic duration models combines the best ideas of both ap-
proaches described above. First, analogous to the high-level models of Anderson,
we consider the “primitives” of duration modeling at the level of activities with
a semantic meaning in the behavior of an agent. As a consequence, the duration
of each of the activities depends upon the semantic meaning within the context
of the simulation only, and is irrespective of the programming language and im-
plementation. Second, analogous to the SPADES system, we extend duration
modeling from agent activities employed for deliberation purposes, to activities
an agent can perform on the environment. In our semantic duration models, we
make a distinction between the agent’s internal and external activities. Inter-
nal activities are typically related to deliberation and do not cross the agent’s
boundaries. External activities on the other hand cross the boundaries of an
agent and typically include perception of the environment, sending or receiving
communication messages and performing actions on the environment. In con-
trast to the sense-think-act cycle employed in the SPADES system, we impose
no order on the agent’s internal and external activities.

In our current model, we assume that an agent is the unit of concurrency.
As such, each agent can only perform one activity at the same time. However,
activities performed by different agents can of course be concurrent.

We describe semantic duration models using a basic form of set theory:

A = {a1, a2, . . . , an}, the set of all agents in the MAS:
∀ai ∈ A :

Di = {di
1, d

i
2, . . . , d

i
ni

}, the set of all internal activities of agent ai

Ei = {ei
1, e

i
2, . . . , e

i
mi

}, the set of external activities that agent ai

Di ∩ Ei = φ

By combining sets Di and Ei we obtain:

∀ai ∈ A :
Ci = Ei ∪Di = {ei

1, e
i
2, . . . , e

i
mi

, di
1, d

i
2, . . . , d

i
ni

}, the set of all activities of ai

or Ci = {ci
1, c

i
2, . . . , c

i
ui

} with |Ci| = ui = mi + ni, the cardinality of Ci

To obtain a semantic duration model for an agent, the duration of all its
activities is expressed in terms of logical time. Formally this is equivalent to a
function assigning a logical duration to each activity:

Extending Time Management Support for Multi-agent Systems 41

Durationi : Ci × Si × W → �
Durationi(ci

j , si, w) = ri
j

where Si is the set of all states of agent ai, W is the set of all states of the
environment, � is the set of real numbers and Durationi is the semantic du-
ration function for agent ai. Durationi defines the logical time period it takes
until the effects of activity ci

j performed by agent ai are noticeable, given that
the state of agent ai is si and the state of the world is w. In general, the duration
of a particular activity for an agent not only depends on the kind of activity,
but also on the state of the agent as well as on the state of the environment.

3 Time Management Transparency

In order to integrate time management into a MAS transparently, the following
requirements have to be fulfilled. First, explicit and developer-friendly support
for describing semantic duration models must be provided to the developer. The
developer should only describe the internal and external activities and their se-
mantic durations (see Sect.2). Based on this, the platform should be able to
enforce the time mapping without further intervention from the developer. Sec-
ond, it must be possible to simulate a MAS without requiring the developer
to perform changes in the design of the MAS. However, because time manage-
ment requires monitoring and controlling the activities of all agents according to
user-defined timing characteristics, it requires introducing code in many places
across the system. We could refactor all the code and perform the appropriate
insertions, but in a large MAS, this would be a time-consuming and error-prone
job, which we would like to avoid.

3.1 Aspect-Oriented Programming

Time management is a crosscutting concern, i.e. the time management func-
tionality cross-cuts the MAS’s basic functionality. The problem of crosscutting
concerns is that they can not be modularized with traditional OO-techniques.
This forces the implementation of time management to be scattered through-
out the code of the MAS, resulting in “tangled code” that is excessively dif-
ficult to develop and maintain. Aspect-oriented programming [14, 15] handles
crosscutting concerns by providing aspects for expressing these concerns in a
modularized way. An aspect is a modular unit of crosscutting implementation.
Aspect-oriented programming does not replace existing programming paradigms
and languages, but instead, it can be seen as a co-existing, complementary tech-
nique that can improve the utility and expressiveness of existing languages. It
enhances the ability to express the separation of concerns which is necessary for
well-designed, maintainable software systems.

A language extension to Java which supports aspect-oriented programming, is
AspectJ. In AspectJ, defining an aspect is based on two main concepts: pointcuts
and advice. A pointcut is a language construct in AspectJ that selects particular

42 A. Helleboogh et al.

join points, based on well-defined criteria. Each join point represents a particular
point in the execution flow of a program where the aspect can interfere, e.g. a
point in the flow when a particular method is called. As such, pointcuts are a
means to express the crosscutting nature of an aspect. Advice on the other hand
is a language construct in AspectJ that defines additional code that runs at join
points specified by an associated pointcut. An aspect encapsulates a particular
crosscutting concern and can contain several pointcut and advice definitions.
The process of inserting all crosscutting code of an aspect at the appropriate
join points within the original program code, is called aspect weaving. Aspect
weaving is performed at compile-time in AspectJ.

3.2 The Prototype

According to the requirements above, we developed a prototype in Java which
uses AspectJ to integrate time management as a separate concern. We illustrate
its working using Fig.2.

To be able to use time management support, the developer composes a partic-
ular Semantic Duration Model Configuration which describes a semantic dura-
tion model for each agent within the MAS (see Fig.2). Currently, in our prototype
abstraction is made from the state dependency in semantic duration models. As
a consequence, Durationi is simplified to:

Durationi : Ci → �
Durationi(ci

j) = ri
j

This allows Durationi to be described in terms of a list of (ci
j , r

i
j)-tuples

for each agent ai, with ci
j mapping to a Java method that the agent executes to

perform a particular activity with semantic meaning, and ri
j a constant denoting

the logical duration of that activity.
After a semantic duration model has been defined for each agent in the MAS,

the prototype generates an Aspect and a Time Monitor for each agent. The
Time Monitor of agent ai contains a logical clock for the agent, together with
the time mapping as described by Durationi of that agent (which maps ci

j to
ri
j). The goal of a Time Monitor is to keep the agent’s logical clock up-to-date

by advancing it according to the activities the agent decides to perform. When
the Time Monitor is notified of the execution of activity ci

j , it advances its clock
by ri

j . The goal of the Aspect on the other hand is to notify the Time Monitor
of all activities the agent executes. Therefore, the Aspect weaves code into all
methods that are defined as activities ci

j of the agent. The goal of the inserted
code is to intercept the execution of the agent as soon as it decides to perform
an activity and to notify the Time Monitor, such that the agent’s logical clock
is advanced appropriately. The notification of the Time Monitor by the inserted
code is represented graphically by the arrowed lines in Fig.2.

The combination of Aspects and Time Monitors allows the logical clock of all
agents to advance according to all executed activities. A MAS Time Synchronizer
prevents the occurrence of causality errors. The developer can specify a subset

Extending Time Management Support for Multi-agent Systems 43

Agent a1

Agent a
2
 Aspect

Semantic Duration Model
Configuration

Environment

//notify Time Monitor

//notify Time Monitor

Agent a2

(plan, 2)
(read, 7)
(…)

Agent a2

Time Monitor
Agent a 1

Time Monitor
Agent a 2

Agent a
1

(...)
…
void plan(){

//agent plan code
}

W
ea

ve

...
void read(Message m){

//message interpreting
code
}
...

Notify

Notify

Not
if y

 &
 B

lo
ck

Unblock
MAS Time

Synchronizer

Simulation Infrastructure

Weave

 W
eave

Notify
 & Block

Fig. 2. Time Management Infrastructure for MASs: the gray shaded parts have to be
provided by the developer. All white parts are hidden from the developer

of activities that can introduce causality errors and hence have to be controlled
by the MAS Time Synchronizer to ensure that these activities are not executed
out of logical clock order. By default, the set of activities for which causality
has to be preserved contains all external activities, because these activities cross
the agent’s boundaries (see Sect.2). In Fig.2, the gray arrows between the agent
and the environment represent external activities the agent can perform on the
environment.

We explain the approach employed for synchronization by using an example.
Suppose that a particular agent decides to perceive its neighboring environment
and triggers an external perception activity. The code inserted by the Aspect
intercepts the execution of the agent right before the chosen activity is actually
executed, notifies that agent’s Time Monitor, which advances that agent’s logical
clock with the appropriate duration and then blocks that agent’s execution. Un-
blocking can only be done by the MAS Time Synchronizer, which monitors the
logical clocks of all agents and employs a conservative time management mech-
anism [3] to prevent causality errors. The specific way of interception ensures
that the logical clocks of the agents are already updated before the correspond-
ing activities are actually executed. This enables the MAS Time Synchronizer
to have prior knowledge of the time stamp of the next activity a particular agent
will perform. As a consequence, the synchronization approach applied here does
not rely on a lookahead to prevent starvation. In our example, the perception
activity of the agent will be unblocked as soon as the MAS Time Synchronizer
can guarantee that all external activities the other agents will perform, have
a higher logical time stamp than the perception activity of the former agent.

44 A. Helleboogh et al.

As such, the former agent perceives the environment in correspondence to the
causal order that arises from the semantic duration models.

4 Time Management Applied in the Packet-World

In this section, we illustrate our approach by means of the Packet-World ap-
plication we have developed [16]. We describe a semantic duration model and
demonstrate how time management functionality is integrated transparently.

4.1 The Packet-World

The Packet-World consists of a number of differently colored packets that are
scattered over a rectangular grid. Agents that live in this virtual world have to
collect those packets and bring them to the correspondingly colored destination.
The grid contains one destination for each color. Figure 3 shows an example of
a Packet-World with size 10 wherein 5 agents are situated. Squares symbolize
packets and circles are delivery points.

In the Packet-World, agents can interact with the environment in a number
of ways. We allow agents to perform a number of basic actions. First, an agent
can make a step to one of the free neighboring fields around it. Second, if an
agent is not carrying any packet, it can pick one up from one of its neighboring
fields. Third, an agent can put down the packet it carries on one of the free
neighboring fields around it, which could of course be the destination field of
that particular packet. It is important to notice that each agent of the Packet-
World has only a limited view on the world. This view only covers a small part of
the environment around the agent (see Fig.3). Furthermore, agents can interact
with other agents too. We allow agents to communicate with other agents by
sending messages. In this way, agents can inform each other about the position
of packets and destinations. All action and message handling is performed by
the environment.

Fig. 3. The Packet-World: global screenshot (left) and view range of agent nr.4 (right)

Extending Time Management Support for Multi-agent Systems 45

4.2 Timing Requirements for the Simulation

In the Packet-World, each agent is an autonomous and pro-active entity which
continuously deliberates and invokes actions in the environment. Neither time-
stamps, nor events are employed in the agents’ design. However, for our simu-
lation, we would like the agents to behave according to specific timing charac-
teristics. Suppose we impose the following timing requirements on the agents:
first, picking up or putting down a packet only takes half the time for an agent
than performing a step. On the other hand, obtaining perception of the environ-
ment or retrieving messages which have arrived, can be done instantaneously.
The time it takes for an agent to analyze its perception cannot be neglected.
Searching for a destination field based on the input obtained from perception
takes as long for an agent as performing a pick up packet action, while finding
the nearest packet based on its perception only takes half as long. The time it
takes for an agent to select its next action is equal to that of performing a move.
Finally, sending a message is twice as costly as performing a step.

4.3 Defining a Semantic Duration Model

We identify all agents’ activities in the Packet-World simulation. Using the de-
scription above, we can distinguish the following external activities on the envi-
ronment: an agent can (1) look to perceive its surroundings, (2) move, (3) pick
up a packet, (4) put down a packet, (5) send a message, and (6) receive messages
that have arrived. Formally (see Sect.2):

∀ai ∈ A :
Ei = {look, move, pick, put, send, receive}

With respect to the internal activities of the agents, in our simulation a dis-
tinction is made between (1) detecting a destination, (2) finding the nearest
packet and (3) selecting the next action. Formally:

∀ai ∈ A :
Di = {detectdest, findpacket, selectaction}
and Ci = {look, move, pick, put, send, receive, detectdest, findpacket,

selectaction}

To define a semantic duration model, we have to assign a duration to each
of the activities of an agent, according to the timing requirements of the simu-
lation. We get:

∀ai ∈ A :
Durationi(move) = Durationi(selectaction) = 1
Durationi(pick) = Durationi(put) = Durationi(detectdest) = 0.5
Durationi(look) = Durationi(receive) = 0
Durationi(findpacket) = 0.25
Durationi(send) = 2

46 A. Helleboogh et al.

Note that the absolute values of the durations are of no importance, only the
relative values are significant.

4.4 Integrating Timing Management Code

For each activity described in the semantic duration model of the Packet-World
agents, time management code has to be inserted. As an example, we consider
the findpacket internal activity of an agent (see Fig.4). Based on the semantic
duration model described above, an aspect is generated for the findpacket activ-
ity. The pointcut of the aspect refers to the location of the findpacket activity
in the agent’s code. At this location, the aspect’s advice is woven which notifies
the agent’s time monitor each time the activity is performed.

public aspect FindPacketAspect {
pointcut findpacket(Agent a) : call (* Agent.findpacket()) && target(a);

before(Agent a): findpacket(a) {

TimeManagement.instance().getTimeMonitor(a).advanceClock(“findpacket”);
 }
}

public class Agent {
 ...
 public Coordinate findpacket() {

 Vector packetlocations = getAllPacketLocations(percept);
 return getNearestPacket(packetlocations);
 }
}

2: W
eave C

ode

1: Locate Join Point

Fig. 4. Aspect weaving for the internal activity findpacket

5 Conclusions and Future Work

In this paper, we described a way to extend time management support for sim-
ulating MASs. Our contribution consists of two parts.

First, semantic duration models allow the timing requirements of a simulation
to be described in an explicit way by means of a user-friendly formalism based on
set theory. Semantic duration models employ the technique of duration modeling
at a semantic rather than syntactic level and allow timing requirements to be
expressed for the internal as well as the external activities of an agent.

Second, we described a time management infrastructure that allows all time
management functionality to be integrated transparently in a MAS. The devel-
oper describes all timing requirements by means of semantic duration models. To
achieve separation of concerns, which is important for well-designed and main-
tainable software systems, aspect-oriented programming is used. Our prototype

Extending Time Management Support for Multi-agent Systems 47

allows all time management code necessary for the simulation to be incorporated
in the MAS without requiring the developer to change the design of the MAS.

In the paper, we demonstrated our approach in the Packet-World. It was
shown that it is possible to control the execution of the simulation according to
specific timing requirements and to integrate time management functionality in
a transparent way.

Although the approach presented here is promising, a number of issues re-
quires further research and will be addressed in detail in future work.

– With respect to the semantic duration models, we exclusively elaborated
upon agent activities, both internal and external. However, activities can also
originate from the environment of the MAS, independent of the agents. An
example are digital pheromones [17] that propagate and evaporate over time.
Pheromones are used for indirect communication in MASs. Our approach
requires further investigation with respect to such environmental activities
in general.

– In the current model, there is no support to allow overlap of activities, as
described in [13]. All activities of an individual agent happen sequentially.
An important issue we are currently working on is extending the seman-
tic duration model of an agent such that activities can be specified to be
potentially overlapping.

– In our prototype, the current support for semantic duration models is useful
but still rather limited, since only constant logical durations can be assigned
to activities. Extensions to more complex dependencies are planned in the
future.

– Finally, there is no clean duration semantics for hierarchical activities. Sup-
pose agent ai has two activities: activity ci

j with a duration of ri
j and activity

ci
k with a duration of ri

k, and suppose ci
j calls ci

k. If agent ai then executes
activity ci

j , it is unclear whether agent ai has to be assigned a logical delay of
ri
j as defined earlier, or ri

j +ri
k (which is currently the case in our prototype).

Acknowledgements

This research is partially funded by the KULeuven research project AgCo2
(Agents for Coordination and Control).

References

1. Maria Bruno Marietto, Nuno David, J.S.S.H.C.: Requirements analysis of agent-
based simulation platforms: State of the art and new prospects. In: Multi-Agent-
Based Simulation, Third International Workshop, MABS 2002. Lecture Notes in
Computer Science, Springer-Verlag (2002)

2. Fujimoto, R.: Time management in the high level architecture. Simulation, Special
Issue on High Level Architecture 71 (1998) 388–400

3. Chandy, K.M., Misra, J.: Asynchronous distributed simulation via a sequence of
parallel computations. Communications of the ACM 24 (1981) 198–205

48 A. Helleboogh et al.

4. Jefferson, D., Sowizral, H.: Fast concurrent simulation using the time warp mech-
anism. In: Proceedings of the SCS Multiconference on Distributed simulation.
(1985) 63–69

5. Helleboogh, A., Holvoet, T., Weyns, D.: Towards time management adaptability in
multi-agent systems. In Kudenko, D., Alonso, E., Kazakov, D., eds.: Proceedings of
the AISB 2004 Fourth Symposium on Adaptive Agents and Multi-Agent Systems.
(2004) 20–30

6. Axtell, R.: Effects of interaction topology and activation regime in several multi-
agent systems. In: MABS. (2000) 33–48

7. Page, S.: On incentives and updating in agent based models. Journal of Compu-
tational Economics 10 (1997) 67–87

8. Cornforth, D., Green, D.G., Newth, D., Kirley, M.: Do artificial ants march in
step? Ordered asynchronous processes and modularity in biological systems. In:
Proceedings of the eighth international conference on Artificial life, MIT Press
(2003) 28–32

9. Uhrmacher, A., Kullick, B.: Plug and test software agents in virtual environments.
In: Winter Simulation Conference - WSC’2000. (2000)

10. Himmelspach, J., Rhl, M., Uhrmacher, A.: Simulation for testing software agents
- an exploration based on JAMES. In: Proc. of the 2003 Winter Simulation Con-
ference, New Orleans, USA. (2003)

11. Anderson, S.D., Cohen, P.R.: Timed Common Lisp: the duration of deliberation.
SIGART Bull. 7 (1996) 11–15

12. Anderson, S.D.: Simulation of multiple time-pressured agents. In: Winter Simula-
tion Conference. (1997) 397–404

13. Riley, P., Riley, G.: SPADES — a distributed agent simulation environment with
software-in-the-loop execution. In Chick, S., Sánchez, P.J., Ferrin, D., Morrice,
D.J., eds.: Winter Simulation Conference Proceedings. Volume 1. (2003) 817–825

14. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In Akşit, M., Matsuoka, S., eds.: Pro-
ceedings European Conference on Object-Oriented Programming. Volume 1241.
Springer-Verlag, Berlin, Heidelberg, and New York (1997) 220–242

15. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: Get-
ting started with AspectJ. Commun. ACM 44 (2001) 59–65

16. Weyns, D., Holvoet, T.: The Packet-World as a case to study sociality in multi-
agent systems. In: Autonomous Agents and Multi-Agent Systems, AAMAS 2002,
Bologna, Italy. (2002)

17. Sauter, J.A., Matthews, R., Parunak, H.V.D.: Evolving adaptive pheromone path
planning mechanisms. The First International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2002 (2002)

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 49–64, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Designing and Implementing MABS in AKIRA

Giovanni Pezzulo and Gianguglielmo Calvi

ISTC-CNR viale Marx, 15 – 00137 Roma Italy
g.pezzulo@istc.cnr.it, calvi@noze.it

Abstract. Here we present AKIRA, a framework for Agent-based cognitive and
social simulations. AKIRA is an open-source project, currently developed
mainly at ISTC-CNR, that exploits state-of-the-art techniques and tools. It gives
to the programmer a number of facilities for building Agents at different levels
of complexity (e.g. reactive, deliberative, layered). Here we describe the main
architectural features (i.e. Hybridism of the Agents and the Energy Model) and
the theoretical assumptions that motivate it. We also present some simulations.

1 Introduction

AKIRA is an open source [16] framework for social and cognitive Agent Based
simulations. Many existing platforms for social simulation [17, 18] allow developers
to build complex simulations using only very simple Agents. On the contrary, the aim
of the Artificial Intelligence Group at ISTC-CNR is to perform social simulations that
take advantage of more complex Agents: a theoretical major claim of the Group is
that many socio-cognitive phenomena (e.g. involving trust [1] and reputation [2]) can
be modeled only with Agents having a certain set of cognitive features (e.g. BDI-like
Agents [12]). Another current issue of the Group is to implement and test a range of
single-Agent cognitive models (e.g. about beliefs and goals dynamics, expectations,
epistemic actions) that were developed in the Institute throughout the years [1, 2, 11].

So, our first requirement for a platform is representing and implementing in the
same framework both the cognitive components of single cognitive Agents and their
social dynamics, as well as a dynamical environment. AKIRA allows developers to
design agents at different levels of complexity: each single cognitive Agent can be
implemented either as a simple-Agent, e.g. using a single daemon (and a single thread
of execution); or as a complex-Agent, using many daemons, representing cooperating
and concurrent sub-cognitive unities, e.g. goals, beliefs, etc. Simple and complex-
Agents can take a part in a social simulation within the same framework. Moreover,
the environment, with its rules and dynamics, can be modeled as an Agent, too,
interacting in a transparent way with the other Agents. Some related requirements are:
allow both turn-based and real-time (parallel) simulations; furnish utilities for rapid
prototyping of different agent based architectures (e.g. reactive, deliberative, layered,
modular) models and mechanisms (e.g. BDI, Behavior Networks). At the same time,
AKIRA has some built-in properties: Agents can form Coalitions; there is integration
of top-down control and emerging behavior; each active Agent introduces a pressure
over the whole computation; Agents compete for a limited pool of resources.

50 G. Pezzulo and G. Calvi

2 Desiderata and Theoretical Assumptions

Our desiderata go beyond the typical MAS platforms; in particular, AKIRA is
inspired by Minsky’s Society of Mind [8], especially with respect to cooperation and
coordination of simple Agents. AKIRA borrows many ideas (e.g. micro-level
hybridization, coalitions organization, variable speed of the parallel processors) from
DUAL [6, 28], that is the main source of inspiration, as well as from Copycat [4] and
Boltzmann Machine [26]; however, it is more focused on goal-directness and action-
oriented representations, integrating e.g. BDI and Behavior Networks constructs [11].

In recent years many interesting cognitive architectures and models have emerged
that try to integrate symbolic and connectionist aspects; moreover, there is an
increasing focus on the architectural level [20] (how processes and mechanisms are
integrated; how the control is distributed between modules and layers; which
information is available to the different processes) rather than on single mechanisms.

AKIRA’s high-level features can realize the functionalities of many interesting
paradigms, ranging from “monolithic” to modular (e.g. the agents are modules that
can compete or exchange resources), layered (with different layers performing tasks
at different levels of abstraction) and hybrid systems (e.g. DUAL). At the same time,
many different architectures, involving symbolic and connectionist concepts, can be
modeled and possibly hybridized: in the last chapter we discuss some examples, such
as a modular fuzzy system (e.g. each agent represents a rule or a rule set; many agents
can fire together), and a hybrid BDI-Behavior Network controller.

General Overview. AKIRA uses hybrid agents (Daemons) having both symbolic and
connectionist features; they compete for shared resources and can exchange messages.
AKIRA’s computational model (sketched in Fig. 1) can be defined as: a set of
concurrent and related processes that incorporate procedures allowing to manipulate
shared messages via a Blackboard. Their resources are modifiable at run-time.

Fig. 1. AKIRA run time: the computational resources of each Agent can change during the
computation depending on the energetic dynamics within the system (spreading, tapping)

Resources are not only computational features: they are an index of the contextual
relevance/salience of an Agent and quantifies the pressures it can introduce in the

 Designing and Implementing MABS in AKIRA 51

system, e.g. activating or inhibiting some other Agents. Agents can form more
complex structures called Coalitions, especially for collaborative and composite tasks.
AKIRA furnishes a custom energy model (AKIRA Energetic Model, AEM), that
involves all the energetic exchanges between the Daemons and with the Energy Pool,
allowing developers to exploit the connectionist dynamics of the whole MAS for
agent modeling. Its main architectural features are: Hybridism; the Energetic and
Physical Work Metaphors; the Locality Principle. As explained, all these features are
tools for cognitive modeling: they have to be considered not only as computational
choices, but have the status of theoretical assumptions. For this reason, developers can
deactivate them (totally or partially). Here we describe the main features.

Hybridism. AKIRA Agents have both a symbolic and a connectionist component (as
in [6]). The symbolic component involves the set of operations an Agent can perform.
Depending on the specific simulation, the symbolic operations can range from simple
operations to very complex ones (e.g. involving reasoning). However, accordingly to
the underlying distributed and MAS approach, complex tasks should be performed by
complex-Agents or by Coalitions of cooperating Agents. Hybridism allows
developers to perform a continuum of computation styles, ranging from centralized,
hierarchical control to distributed, emergent computation. The connectionist
component involves the activation level of the Agents as well as their energetic
exchanges via the Energetic Network. A major difference exists with many neural-
like architectures: the whole system is homeostatic and there are limited resources
shared by all the Agents, stored into the Energy Pool; the Agents tap or release energy
from it. Spreading energy means losing it (as in the Behavior Networks, [7]).

Two Metaphors. The priority of the Agents is ruled by the Energetic Metaphor (see
Kokinov, [6]): greater activation corresponds to a greater computational power, i.e.
speed. Each Agent has an amount of computational resources (energy) that is
proportional to its activation level (and is a measure of its relevance in the current
context): more active Agents have more priority in their symbolic operations and their
energetic exchange, and more frequent access to the Energetic Pool. As a
consequence of the Energetic Metaphor, there is intrinsic concurrency in the
Pandemonium, even without inhibitory links. Moreover, active Agents introduce a
pressure over the computation, activating some other related Agents, of forcing the
system to follow a certain dynamic. As shown in [6], the pressure mechanism make it
possible to model a range of cognitive phenomena, e.g. context and priming effects.

The system implements also a Physical Work Metaphor: performing symbolic
operations has a cost in energy, that is paid by the performing Agent to the Energetic
Pool: this keeps the system conservative. Energetic and Physical Work Metaphors
model also the interesting concept of Temperature in Boltzmann Machine [26] as an
emergent property of the system. Temperature of the system is represented by the
currently used energy, that increases and decreases over time. It shows also how much
“structure” and “stability” the system has; and it can be manipulated: for example, it
can be raised in order to inhibit Coalitions of Daemons. In Copycat [4] Temperature is
proportional to how far it is from a “solution”: a hot system is “far from stabilization”
and endorses quick-and-dirty calculus; while a cold system is “close to stabilization”
and endorses accurate calculus. [3] suggests the interpretation of local dynamics, too;

52 G. Pezzulo and G. Calvi

e.g. high (local) Temperature of a Coalition (and more Agents joining it) can be
interpreted as “interesting problem requiring more effort”, or attentional focus.

3 The Framework

The multi-Agent framework AKIRA is a run-time C++ multithreading environment
for building and executing Agents and a web/system development platform to model
their behavior and their interaction, as well as for interacting with the environment.
AKIRA is conceived and developed using state-of-the-art tools and design: this
allows to build applications that are scalable and solid. The AKIRA Macro Language
and many automated scripts give facilities and templates for building Agents of
different complexity (e.g. reactive, BDI-like). The whole system is written in C++ and
integrates many different open source libraries1, implementing various aspects of the
framework. AKIRA is also a Toolkit of resources and algorithms: e.g. many soft
computing technologies (Fuzzy Logic and FCMs [13], a versatile Network library)
ACLS [23], BDI [12] and Behavior Networks [7] constructs are embedded within the
framework as libraries. A solid multithread model ensures parallel computation.

AKIRA follows the Pandemonium metaphor [5]; its components are: the
Pandemonium (kernel), the Daemons (Agents) and the Coalitions, the Blackboard
(XML stream); the Energy Pool (an abstraction for the computational resources).

The Pandemonium. The Pandemonium is the system kernel, the main process that
instances the threads that are necessary to execute the Daemons (Agents) and that
executes all the monitoring and control operations over the single components. Its
parameters are configurable at start-up through an XML configuration file; it contains
an XML description of: available memory; max number of executable threads; some
features for Agents execution (e.g. priority, lifetime, resources); other system
properties (garbage collecting, facilities for system and Agents debugging). The
Pandemonium Cycle monitors the activity of all the Daemons (including exceptions)
and is responsible for many system procedures, e.g. garbage collecting, showing the
statistics for Agents, XML stream and system energy. The Pandemonium can also act
as a server, collecting and managing requests from many client instances: in this way
it is possible to have many kernels implementing multiple societies (using clusters).

The Daemons. The Daemons are the atomic computational elements, each having its
own thread and carrying its own code, that are instantiated and executed by the
Pandemonium during the system lifetime. They are hybrid [4], having both a symbolic
component (the carried operation) and a connectionist one (activation, tap power).
User-defined Agents inherit from an abstract Daemon declaration as well as from
many pre-defined prototypes and models. Fig. 2 shows the Agents generation process:
the programmer extends some Daemon models; the Agents are dynamically managed

1 Zthread library (threads creation and management); Matrix Template Library (linear

algebra); FLIP++/StarFLIP (fuzzy logic); EXPAT (parsing XML); Mersenne Twister
(pseudocasual numbers, probability distribution); ACE (networking, patterns for concurrent
communication); Doxygen (documentation); Kdevelop (development); Loki (patterns) [27].

 Designing and Implementing MABS in AKIRA 53

by the Pandemonium and start their lifecycle as threads. The semantic imposed by the
programmer to the Agents is specified in the init() and execute() functions. They are
called by the framework as part of the run method and used as entry point for each
Agent thread. Exiting from run means a regular termination of the current thread with
the destruction of everything in its local space.

Fig. 2. Agents Generation

The Daemons have some features: a priority (set by the programmer), that gives a
measure of absolute relevance; a current activation level (updated at each cycle),
that gives a measure of contingent, contextual relevance; a tap power, that sets the
access to the concurrent resources (for modeling more or less demanding Agents); a
symbolic operation, that is the functional body; a network manager, manages e.g.
spreading activation between the Daemons (but can also load different spreading
policies, e.g. the Slipnet [4]: a link is “more conductive” if the concept associated to
its label is more active, because it is more contextually relevant). The whole network,
associating all the Daemons, is called Energetic Network.

The Agents spend all their lifetime within the run() functional block, involving:

- init() executes some framework initialization steps: setting of Agent state, ID,
name into the global names string, timestamp of starting and stop; execution of the
user-defined initialization function in the prototype. The Daemon cycle iterates
indefinitely until one of the calls to a function cannot be fulfilled. This mechanism is
independent from the exception throwing into the blocks and allows a two-layer
policy to manage and to monitor failures.

- tap() starts the main operative cycle. It allows daemons to tap the Energetic Pool
a certain amount of energy as specified in a configuration file (modifiable at run-
time). The tapped energy is summed to the base, a-priori Agent energy (Priority) and
it is used in order to exploit a proportional amount of computational resources. Tap
manages the decay operations, too, using a customizable policy.

54 G. Pezzulo and G. Calvi

- execute() carries on the symbolic operation of the Agent. It is a wrapper around a
function containing externally programmed code (that can be inherited or extended).

- pay() is related to the execution of a symbolic operation: each operation has a
cost, i.e. the Agent has to release some energy to the Energy Pool.

- shout() notifies the results of an execute(); it can be used as a monitoring utility
for external analysis. Since the notified information resides within the system, it can
be even exploited by the other Agents, allowing introspection and meta-level
operations, that are highly suitable for cognitive architectures.

 - spread() gives energy to the neighbors Agents (as defined in a private list); it is
the main connectionist function.

- join() builds higher-level structures, the Coalitions, that will be presented later.
- reproduce() duplicates the Agents in order to obtain more resources, as well as to

implement evolutionary computation (this topic goes beyond the scope of this paper).

The custom spreading mechanism can be recapitulated as follows: spreading means
“giving energy to the other Daemons, and losing it”; tapping is “taking energy from
the (limited) Energy Pool”; paying means “giving energy to the Energy Pool”. Of
course, this mechanism can be replaced by the usual “spreading activation” one [25].

The Coalitions. The Coalitions [6] are communities of cooperating daemons that can
be created on-the-fly (differently from complex-Agents as previously introduced).
Their purpose is to solve together complex, non atomic tasks. For example, in a
composite pattern matching problem, each Daemon carries the code for matching a
part (e.g. the subject, the sender and the address of an email). Differently from pure
connectionist dynamics, Coalitions can cooperate and coordinate exchanging
messages (e.g. for interactive tasks requiring explicit coordination). Coalitions arise
and die in a dynamic way during computation when Daemons join and leave them.

There are two kinds of Coalitions: Bands and Hordes.

- Bands. Bands arise as the result of an auto-organization process, e.g. in order to
find help for a non atomic problem, in which its single symbolic operation is a non
sufficient part. Their semantic is mainly driven from similarity and proximity (via the
Link List) and concomitant activation (only active Daemons can join Coalitions).

- Hordes. Hordes arise in a more top-down way and have a more structured,
hierarchical shape. Special purpose Demons, Archons, try to recruit other Daemons,
spreading them some energy, and take advantage of the symbolic operations they
perform. Archons are not directly executers: they carry on a non-atomic Structure, in
which specific Roles to be played by appropriate Demons. For example, the structure
can be a set of successive operations to be performed (as in a Plan); in this case the
Archon will activate (e.g. sequentially) a number of Daemons (e.g. actions) that play
the role of performers of those operations. While in Bands the aggregation starts to
build a structure in a “blind” way, in Hordes the prototypal skeleton of the structure is
carried on by Archons. Another example is a complex pattern matching operation for
recognizing the words “THE CAT” even if “H” and “A” are graphically identical (as
shown in Fig. 3). This operation can be performed using a “layered-like” structure:
the Daemons in the first “layer” (the clouds) are feature-recognizers; but at this level

 Designing and Implementing MABS in AKIRA 55

the “H” and the “A” can not be discriminated. The Daemons at the second “layer” are
Archons, carrying on the prototypical structure of a “H” and of a “A”; they are linked
“at a different level” that involves word-level and syntactic knowledge, i.e. the words
“THE” and “CAT”, represented by the Archons in the third layer.

Bands and Hordes can of course interplay and shift within the same system: for
example, the pattern matching process can start in a bottom-up way, e.g. some
feature-recognizer Daemons arise and start to form a Band (the clouds in Fig. 3); their
operations can be noticed by letter-recognizer Archons, that continue the operation by
sending activation the other (possibly) relevant Daemons that could be not jet active.

Fig. 3. Bands and Hordes for a complex pattern matching operation

Message Passing. In AKIRA three message passing mechanisms are available.

• The Blackboard (XML Stream) is a shared data structure divided into blocks
containing AXL (AKIRA XML Language, a custom KQML-like data exchange
language) packets, where the messages are concurrently written and read.

• AkiraGenericObjectFactory allows developers to create, set, get and destroy on the
fly shared objects of any kind; it is the slower mechanism.

• AkiraGlobalVariableFactory is limited to shared variables of scalar type.

All the mechanisms have a templatized mutual exclusion policy to guarantee thread
safe and consistent access to all data.

Energy Pool and Energy Dynamics. Energy is not a component; however, its
dynamics are central in explaining the functionalities of the system. A global variable,
energy, shared by all the Agents, gives an upper bound of the available computational
resources. The access is regulated by a private templatized mutual exclusion policy.
The energetic level of the system, summing up all the priorities for all the Agents,
their tap power and the Pandemonium energy, gives an upper bound to the possible
activation sequences of the single threads during the AKIRA lifetime. For each
Agent, more energy means more resources (e.g. more computational time). Energy is
spread by the Agents through the Energetic Network, driving the sequences of
activation of the threads, without violating the energy conservation law.

56 G. Pezzulo and G. Calvi

Summary of the Operations. The Pandemonium is the “father process”: in the start-
up phase it identifies the Agents to load (accordingly to the constraints in the initial
configuration); during the execution it monitors the content of the Stream and of the
single Agents. The Agents, whose resources may change dynamically, execute the
code in their body if it fits the situation (like productions); they run for a given (even
indefinite) amount of time.

In synthesis, this is the procedural scheme of an execution of AKIRA: (1) Start:
static structures are loaded and objects are initialized for the Pandemonium and the
XML Stream. (2) System Initialization. Configuration of the system parameters and
searching for external Agent classes. (3) Instantiation and initialization of the
Agents: creation and storing of the Agent instances associated to the external classes
and setting of their parameters. (4) Agent execution: each Agent is executed by the
Pandemonium with an associated thread. (5) Control cycle: (a) Analysis of the state
of the Agents and garbage collection of non executing Agents; (b) Analysis of XML
Stream and garbage collection of old packets. (c) Print Agent state. (d) Print the
content of the XML Stream. (e) Print the available energy of the system. (f) Suspend
for a given amount of milliseconds (depending from the priority).

Fig. 4 sketches the interplay between the main components: the Pandemonium, the
Daemons and the Blackboard. Daemons share a limited amount of energy, too.

Fig. 4. schema of interaction of the components in AKIRA

All the operations follow the Locality Principle: Every interaction between Agents
is implemented by a local rule; the only global operation is the energetic exchange
with the Energy Pool. The medium for all the operations is the Blackboard, that is
however only a functional abstraction and not a serial bottleneck. The connectionist
side of AKIRA endorses many emergent properties, implemented in a MAS
perspective, allowing computational units to be complex and autonomous. Moreover,

 Designing and Implementing MABS in AKIRA 57

simple local interactions between Agents can lead to complex group dynamics (e.g.
Coalitions); as shown in [14], many coordination and cooperation tasks can be
achieved in a distributed way, without centralized control.

4 A Society of Functions

A strong motivation behind AKIRA is having a framework solid enough to build real-
world and scalable applications, and allowing agent designers to have a number of
cognitive functions implemented by different underlying mechanisms. While in AI
and agent technology there are a number of interesting problems that are well
understood and solved using a specific, successful mechanism, it is at least
questionable if there is (at the moment) a mechanism that is scalable enough to be
successfully applied to a number of diverse applications. At the same time, an
interesting feature of MAS is that different agents can solve the same (or related)
problems, or even coordinate and collaborate, without implementing the same
function or mechanism; moreover, they are not even supposed to know or to
understand each one the functioning of the others. It is the core idea of the Society of
Mind by Minsky (1986): a number of narrow-minded ‘specialists’ that learn how to
coordinate and to exploit one another in order to fulfill a selfish or a common goal.

AKIRA is also a Toolkit of resources: the AKIRA Macro Language contains many
of state-of-the-art facilities, algorithms and mechanisms (including fuzzy calculus,
neural networks, belief networks, behavior networks, anticipatory classifiers, BDI
constructs, genetic algorithms, etc). At the same time, we are building interfaces with
a graphic engine, developing a number of architectural facilities (web based
programming interfaces, integrated analysis tools), and writing an interface to a
descriptive ontology (DOLCE, [15]).

In the cognitive science perspective, we use AKIRA as an “experimental
laboratory”, for exploring a range of models and mechanisms, in order to see how
they interact, collaborate and exploit one other in order to manifest higher-level
cognition. In the agent design perspective, AKIRA allows developers to implement
and test many agent models, in order to exploit the best “design level” for each kind
of application and to focus on the architectural level.

Designing at the Functional Level. We made an effort to keep separate in AKIRA
the functional and the implementation levels. As cognitive scientists, we are interested
in designing and modeling functions rather than mechanisms; this means that a
designer should be allowed to build and test his architectural model e.g. goal oriented
behavior, independently from its physical and computational realization.

For this reason, AKIRA allows to design agents both as simple and complex; while
for a simple agent a single Daemon is used, complex agents are modeled using many
Daemons that compete for resources, collaborate and exchange messages and
activation. This means that, whichever it is the selected agent model, it is possible to
realize the same logic at different level of detail and with different computational
resources, involving one or more interacting daemons. For example, a BDI
architecture can be implemented either in the body of a single daemon (e.g. with a
central interpreter) or as the emergent activity of a set of related daemons (e.g. each

58 G. Pezzulo and G. Calvi

representing a goal, a belief, etc). It is possible for the programmer to design the
abstract architecture, and then choose the level of representation granularity for the
agents (and even for the environment). At the same time, AKIRA provides a set of
computational facilities and mechanisms (e.g. fuzzy logic, neural networks) that can
potentially realize the same functions. The programmer can make experiments with
the different tools and try to implement its functions in different ways.

It is worth pointing out that these choices do not only involve computational
power and resources: in some cases the mechanism and functional levels are not
totally independent, so the behavior and the capabilities of the same architectural
scheme may vary according to the underlying model. Thus, a choice involves a
theoretical commitment towards different kinds of models (serial vs. parallel and
distributed) and mechanisms (e.g. a certain kind of logic). We think that using
AKIRA as an experimental laboratory can help to answer to some interesting question
such as: which mechanisms can realize the same functions? Which functions strongly
rely upon their physical or computational infrastructure? Which ones are
untranslatable?2

Exploiting the Coalitions. The concept of Coalition is abstract and their behavior is
highly customizable: the Coalitions can be realized and exploited in different ways,
depending from the application. The Coalitions are one of the more interesting
features, still under-explored, that can be exploited by MAS in order e.g. to model
collective behavior at different level of complexity and with different level of
computational and cognitive involvement. There can be Coalitions that arise for
bottom-up dynamics of the system, allowing to characterize e.g. emergent phenomena
and auto-organization. Many biologically inspired systems can be simulated in this
way (at the same time, their dynamics can provide a valuable source of inspiration for
realizing complex tasks with few resources). Coalitions can also be used for more
structured, hierarchical and organized tasks: they can arise in a more top-down
oriented way, because of the pressure of specific Daemons (Archons), specialized in
recruiting other Daemons in order to build complex structures or procedures. Of
course, there is a functional continuum and an interplay between all these modalities.

While Daemons can take advantage of many forms of pure connectionist learning
(e.g. involving the Link List), the Coalitions allow also to perform symbolic learning.
For example, a new Archon can be created by to bottom-up pressures (e.g. if a Band

2 The Functional Level Design approach is, in a certain sense, the opposite of the Unified

Theory of Cognition (e.g. Soar, [21]), where it is not clear if the mechanism (e.g. production
rules) or the function it realizes is assumed to be universal (but we are induced to assume that
the mechanisms are). A reduction of the theory to the implementation underlies also many
works in the neural network field, where the cognitive models are directly mapped into the
NN mechanisms; in other terms, the NNs as such are presented as the model, not the
information processing structure that they realize. In this way, the NN computational features
(e.g. their dynamics, decay and fire rate) become implicitly part of the models and constrain
the theory, sometimes acritically. Moreover, it is impossible to conceive interesting questions
such as: Which are the influences (and side effects) of the specific mechanisms over the
functions and models? Does it heuristically suggest something new? Is there a certain feature
necessary for a specific function? Or are the cognitive functions mechanism-independent?
Designing at the level of functions means choosing the better mechanism and level of detail
of implement them.

 Designing and Implementing MABS in AKIRA 59

shows persistence) or by top-down motivational pressures (e.g. via analogy). The
prototypical structure of an Archon can also be modified e.g. learning new exemplars
of situations, as in Case Based Reasoning. There are many facilities at the framework
level for implementing, testing, and using Bands and Hordes; their implementation
(and their semantic) is application-specific. However, for many typical and interesting
MAS tasks (e.g. involving coordination and cooperation) it is extremely useful to
have elaborated tools to design at a non-atomic level, i.e. at the Coalition level.

Resources, Urgency and Pressures. A Demon or a Coalition can act (i.e. execute)
only if it has sufficient energy, because each symbolic operation has a cost. The cost
can be seen as inverse to urgency of the behavior: less cost means more easily
activated. So, urgent behaviors, like stimulus-response behaviors (as well as alarms
[20]), can be represented with very low-cost operations; more complex cognitive
operations are slower: they need to recruit a lot of energy, or exploit operations by
other Daemons, or wait for one or more join.

As a consequence of system dynamics, each Daemon introduces a pressure over
the computation in virtue of its presence. The system shows also implicit, contextual
forces and pressures (e.g. set points) that may lead to Coalitions.

Daemons and Coalitions introduce contextual pressures in many ways: perceptual,
goal-driven, cultural, conceptual, memory contexts are among those possible. As an
effect of the Archons work, Demons that are somewhat related to the contexts are able
to recruit more energy; this is true even if they are not able to join the Horde. But this
is also true of Bands, where the pre-existing link topology is assumed to embed, in an
implicit way, a “similarity” or “categorical” semantic (much like SOMs, [24]).

4.1 Simulation Models in AKIRA

The consequence of hybridism and of the other global properties is that AKIRA
allows to implement an homeostatic MAS, endorsing concurrence for the resources
between the Agents. What kind of Agent Societies can be implemented in AKIRA?

We define an AKIRA Agent Society as a set of Agents working under a common
Energetic Pool and competing for its limited resources; an AKIRA Agent is the unity
which has a single, concurrent access to the Pool, proportionally to its
activation/salience (absolute and contextual). All the energetic exchanges are local
between the Agents; all the symbolic operations have a cost in energy. The system is
conservative and it allows emergent phenomena.

AKIRA is open enough to allow many kinds of agent models and societies; it fits
the general MABS requirements as individuated in the Introduction (perform
simulation with Agents having different level of complexity, interacting within
dynamic environments, etc.). However, some of its features (e.g. the Energy Pool),
are especially conceived for a certain kind of Agent design, constraining the kind of
simulations it can endorse. For example, in many social simulations, resources
management involves manipulating some “environmental variables”; in AKIRA it can
be delegated to the built-in energetic dynamics, assuming that the underlying
metaphors are accepted. There is always an influence of the architectural mechanisms
over the models they support; we have tried to make all the assumptions and
implementation choices transparent enough to be adopted or deactivated.

60 G. Pezzulo and G. Calvi

Here we shortly present some social and socio-cognitive simulations we have
performed; even if their complete discussion is beyond the scope of the present paper,
describing them may help to understand the unique features of AKIRA.

4.2 AKIRA at Work

The Vampire Bats Scenario [19] involves very simple Agents. It is an (ecologically
plausible) predator-prey variant, that includes altruism and reciprocity: bats can give
some food to unnourished ones, increasing kinship survival rate. Bats are very simple
Agents, implemented with a single Daemon. The internal motivational state of the
bats is modeled with a Fuzzy Cognitive Map, while their behavior is governed by
fuzzy production rules. The environment is a single Daemon, too, responsible for
some global variables such as simulation time (clock), night and day succession, and
food resources. For this simulation we deactivated the energetic network (because
bats do not exchange energy). There is also a roost formation and migration
mechanism implemented using the Coalitions: bats exchange food only within a roost.
We studied the survival dynamics as a function of roost number and dimensions,
performing both turn-based and real-time, parallel simulations (for model-to-model
comparison). In real-time, we modeled the resources (the available food) as the
energy into the Energy Pool; the bats were implemented as Daemons concurring in
parallel for limited resources, and each operation (move, chase) had a certain
energetic cost. The compared results show that it is possible to perform this kind of
simulations exploiting the built-in mechanisms of AKIRA, without extra variables.

We have also implemented a number of other social scenarios with Agents having
more complex cognitive features (e.g. contract nets; societies with reputation and trust
dynamics [11]). Even in this case each Agent is a single Daemon; however, each
Agent is able to perform complex decisions, building representations of other Agents’
features (e.g. ability, reputation, reliability). These simulations exploit many soft
computing facilities embedded in the framework, e.g. fuzzy logic. Moreover, even if
the Agents are self-motivated, they can form Coalitions in order to better achieve their
own goals (e.g. purchase at a better price in a market, collaborating in a task).

The Watchdog Agent Scenario involves many interacting Daemons for each
Agent (e.g. one for each BDI and behavior network component). The Watchdog, that
has to patrol a house, is composed of many Daemons, including: a Norm: stay always
close to the house, and some Goals: #1 walk around the house; #2 bark if you see an
intruder; #3 chase and follow the intruders. Goals inhibit each other via the Energetic
Network. The architecture is hybrid, using BDI, ACLS, Behavior Networks.

In order to fulfill goal #1 respecting the Norm, the Watchdog follows circular
trajectories around the house, standing always close (in fuzzy terms) to it. When it
individuates as intruder, in order to fulfill goal #2, the Watchdog will bark; if the
intruder tries to fly out, in order to fulfill goal #3 the Watchdog has a pressure to
follow it. In this case the Norm and goal #3 are two contrasting pressures: the first to
stay close to the house, the second to leave the house.

The Watchdog trajectory results from a mix of those factors; more, the internal
dynamic of the system will follow some built-in rules for Goals and Norms: the goal
becomes stronger the closer it is from its realization; the norm becomes stronger the

 Designing and Implementing MABS in AKIRA 61

farther it is from its realization; both become stronger as the Watchdog follows the
intruder. So, assuming a slightly higher priority for the Norm, the Watchdog will
follow the intruder, until: either the dog reaches him, or it goes too far from the house
and the pressure of the Norm becomes stronger.

The behavior of the Watchdog simply results from diverging pressures: the
trajectory as well as the exact point where it comes back home are not pre-calculated.
However, the effect can be magnified by a symbolic operation; e.g. after a while
(when its clause is far from realization) the Norm can activate another goal: #4 come
back to the house. Or there can be the contribute of explicitly planned activities: a
Goal can activate a Plan involving a rigid “sentinel routine” e.g. follow a certain
trajectory that includes each corner, bark each ten minutes, etc.

The Watchdog behavior thus emerges from the interplay between top-down and
bottom-up components and pressures. It can start as a reactive, stimuli-driven action,
be modulated by contextual pressures, activate a Goal and shift to a proactive, top-
down control sequence regulated by a Plan; or it can go the other way.

Exploiting Opportunities. Having many concurrent processes active at the same
time means that some of them can exploit the opportunities offered by the others, i.e.
profit of operations performed for other purposes. This is the other side of the concept
of pressure: the activity of a Daemon or Coalition not only influences the others and
“demands attention”, but can also be exploited by others.

For example, in goal processing this means that the system needs not to plan
everything in advance; at the contrary, a process can exploit the (results of the)
actions performed by other processes for their own purposes. E.g. in the Watchdog
example, the goal “eating” can exploit the “movement towards the house” produced
by the Norm (if some food is in the house). In a slightly different case, two processes
can both contribute to the activation of the same action for different purposes.

This property accounts also for many evidences in cross-modal interaction, e.g.
the results of a visual process can be exploited to prime and facilitate an acoustic one.
This is impossible in a modular architecture where each sub-process is realized in a
completely independent way and is not influenced by the pressures of the others.

Current Projects. Currently we are exploiting AKIRA for many other cognitive
modeling tasks, implementing Goal Oriented, BDI-like constructs in a parallel and
dynamic fashion, and extending the formalism to many fields in which ISTC-CNR is
concerned (e.g. expectations, epistemic actions, constructive perception, monitoring
and control) [9]. In the frame of the MindRACES European Funded Project, focused
on anticipation, we are exploiting AKIRA in order to model and implement within
the same framework a number of different forms and functions of anticipations,
situated at different levels of cognitive complexity, and possibly exploiting and
comparing different mechanisms.

For example, the Watchdog will be enhanced with the capability of performing
epistemic actions [22], e.g. “look at the world”, “control if”; in this way it is
proactively driven by its expectations instead of merely reacting to input data.

62 G. Pezzulo and G. Calvi

5 Conclusions

We have described AKIRA, a MAS platform for cognitive and socio-cognitive agent
modeling and implementation. AKIRA couples the MAS and the Pandemonium
metaphors. The Pandemonium is the system kernel, that runs and monitors the agents.
The main actors are the Daemons, that communicate through a Blackboard and
exchange energy through an Energy Network and a common Energy Pool. Daemons
are hybrid: they have both a symbolic and a connectionist side. With respect to their
symbolic side, they can: execute the symbolic action they carry on, that can be
performed if the contextual conditions are met (like productions) and if the energy is
sufficient; shout, notifying their current activity and status to the other Daemons via
the Blackboard. With respect to their connectionist side, they can tap energy from the
Energy Pool; spread, giving it to linked Daemons; release it to the Energy Pool; join
other agents in order to form complex structures called Coalitions. Using the
Daemons it is possible to implement simple and complex Agents, i.e. Agents having
one or more Daemons as constituents. In order to allow rapid prototyping of Agents at
different level of complexity (reactive, deliberative, layered) we have included in the
framework the AKIRA Macro Language, that furnishes a number of facilities and
tools for agent programming, including many soft computing technologies (e.g. Fuzzy
Logic and FCMs) and many BDI constructs (beliefs, goals, desires).

We have also described some theoretical constraints that make AKIRA unique
with respect to the MAS: mainly Hybridism of the Agents (symbolic and
connectionist) and a set of System Properties (the Energetic and Physical Work
Metaphors; the Locality Principle). We have discussed what kinds of simulations are
better performed using AKIRA, and presented some examples.

AKIRA is in pre-alpha 2 stable version at SourceForge [16], running under Linux
platforms, both in serial and parallel processors. With respect to some well known
simulative [17, 18] and Agent [10] platforms, AKIRA still lacks some facilities, such
as user-friendly programming and monitoring interfaces; support for data analysis.
However, it has proven to be suitable both for MABS and as an Agent design tool.

In the technological perspective AKIRA shows state-of-the-art design and
implementation that makes it highly suitable for software engineering; this includes a
solid thread model (based on Zthread API and POSIX underlying features) that allows
real parallel computation. The Pandemonium can also act as a server object, accepting
incoming connections from clients via AXP Protocol. Many Pandemonium instances
can link each other in a cluster-like way.

In the application-specific perspective, some high-level features (e.g. Hybridism,
the Energetic Metaphor) allow developers to model complex system dynamics, such
as Coalition formation, interplay between top-down control and bottom-up, emerging
behavior. It does not imply committing to a specific Agent model, because many
models can be implemented (and all the built-in features can be deactivated).
However, the strengths of the framework better emerge using a certain kind of Agent
design, i.e. exploiting the Coalitions and the Energetic Network for concurrency and
cooperation; using the Energy Pool for managing limited resources.

 Designing and Implementing MABS in AKIRA 63

Acknowledgements

The SourceForge open-source community [16] is an invaluable resource for this
project, providing state-of-the-art methodologies and development, insightful
discussion and strong motivation. This work is supported by the EU project
“MindRACES: from Reactive to Anticipatory Cognitive Embodied Systems”.

References

1. Castelfranchi, C; Falcone, R., Principles of trust for MAS: Cognitive anatomy, social
importance, and quantification. Proceedings of the Third International Conference on
Multi-Agent Systems, Paris 1998.

2. Conte, R. Emergent (Info)Institutions, Cognitive Systems Research, , 2001, Vol. 2, Iss. 2
3. B. J. Baars. A Cognitive Theory of Consciousness. Cambridge University Press,

Cambridge, MA, (1988).
4. D. R. Hofstadter and FARG, Fluid Concepts and Creative Analogies: Computer Models of

the Fundamental Mechanisms of Thought, Basic Books, New York, (1995).
5. J. V. Jackson, Idea for a Mind. Siggart Newsettler, 181:23-26, (1987).
6. B. N. Kokinov, The context-sensitive cognitive architecture DUAL, in Proceedings of the

Sixteenth Annual Conference of the Cognitive Science Society, Lawrence Erlbaum
Associates, (1994).

7. P. Maes, Situated Agents Can Have Goals. Robotics and Autonomous Systems, 6 (1990).
8. M. Minsky. The Society of Mind. Simon and Schuster, New York, (1986).
9. G. Pezzulo, E. Lorini. G. Calvi. How do I Know how much I don’t Know? A cognitive

approach about Uncertainty and Ignorance. Proceedings of COGSCI 2004.
10. F. Bellifemine, A. Poggi, G. Rimassa. JADE – A FIPA-compliant Agent framework.

CSELT internal technical report. 1999
11. R. Falcone, G. Pezzulo, C. Castelfranchi, G. Calvi. Why a cognitive trustier performs

better: Simulating trust-based Contract Nets. Proceedings of AAMAS 2004.
12. A. Rao, M. Georgeff, BDI Agents from Theory to Practice, Tech. Note 56, AAII,1995.
13. Kosko, B. Fuzzy cognitive maps. International Journal of Man-Machine Studies. 1986 (24)
14. Mataric, M. J. (1995). Designing and understanding adaptive group behavior. Adaptive

Behavior, 4(1).
15. Gangemi A., Guarino N., Masolo C., Oltramari, A., Schneider L. Sweetening Ontologies

with DOLCE. Proceedings of EKAW 2002. Siguenza, Spain.
16. http://www.akira-project.org/ and http://sourceforge.net/projects/a-k-i-r-a/
17. Minar N., Murkhart R., Langton C., Askenazi M., The Swarm Simulation System: A Toolkit

for Building Multi-Agent Simulations, http://www.santafe.edu/projects/swarm/, 1996.
18. CORMAS - User Guide http://cormas.cirad.fr, 2001
19. G. di Tosto, M. Paolucci, R. Conte (2003) Altruism Among Simple and Smart Vampires

Proceedings of ABM2003
20. Sloman A. What sort of architecture is required for a human-like agent? In M. Wooldridge.

A. Rao (eds). Foundations of Rational Agency, Kluwer Academic Publishers, 1999.
21. Rosenbloom, P. S., Laird, J. E. & Newell, A. (1992) The Soar Papers: Research on

Integrated Intelligence. Volumes 1 and 2. Cambridge, MA: MIT Press.
22. Kirsh, D. & Maglio, P. (1994). On distinguishing epistemic from pragmatic action.

Cognitive Science, 18, 513–549.

64 G. Pezzulo and G. Calvi

23. Butz, Martin V. (2002) Anticipatory Learning classifier systems. Boston, MA. Kluwer
Academic Publishers.

24. Kohonen, T., Self-Organizating Maps, New York : Springer-Verlag, 1997.
25. Collins, AM, and EF Loftus (1975) A spreading-activation theory of semantic processing,

Psychological Review 82, 407-428.
26. McClelland, J. L. & Rumelhart, D. E. (1988). Explorations in Paralell Distributed

Processing: A Handbook of Modles, Programs and Exercises. MIT Press, Cambridge, MA.
27. A. Alexandrescu (2001), Modern C++ Design: Generic Programming and Design

Patterns Applied. Addison Wesley Professional
28. Kokinov, B. (1997). Micro-level hybridization in the cognitive architecture DUAL. In R.

Sun & F. Alexander (Eds.), Connectionist-symbolic integration: From unified to hybrid
approaches (pp. 197-208). Hilsdale, NJ: Lawrence Erlbaum Associates.

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 65 – 77, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Work-Environment Analysis: Environment Centric
Multi-agent Simulation for Design of Socio-technical

Systems

Anuj P. Shah and Amy R. Pritchett

School of Industrial and Systems Engineering,
Georgia Institute of Technology,

Atlanta, GA – 30332, USA
{ashah, amy.pritchett}@isye.gatech.edu

Abstract. This paper presents a multi-agent based simulation framework for
cognitive systems engineering of socio-technical systems. Comprehensive
design analysis of socio-technical systems requires modeling of various aspects
of the work environment and of behavior and performance of humans. This
framework provides a distinct focus on the work-environment, specifying it as a
coherent collection of declarative models spanning its multiple aspects.
Compared to traditional methods in cognitive systems engineering, aggregating
multiple aspects allows greater detail and scale in modeling socio-technical
systems. This also addresses design issues that cut across individual aspects,
thus enabling a comprehensive what-if analysis of the system. Humans are
computationally modeled as proactive and interactive agents operating within
their work-environment. Emergent behavior of the system in response to design
changes in both humans and their work environment can thus be simulated. The
framework is illustrated through an example in air traffic control. The
framework can be applied to problems in enterprise re-engineering,
organizational structuring, etc.

1 Introduction

When designing large-scale systems that constitute humans, technologies, processes,
organizational structures, etc. one is concerned with how changes in each of these
elements may affect the system’s overall performance. Whether these changes are
novel or whether they are incremental, a priori analysis of their system level effect is
very important, especially when the changes are too expensive to alter after
implementation.

As the scale and/or the number of design variables increase, the complexity of
behaviors within the system can rise to levels unmanageable with current systems
engineering models. Current models are often specified through the use of natural
language, rendering them impracticable for complex system analysis. Concrete
representations for computer simulations are needed for complex system analysis.

This paper describes a framework for a priori analysis of system design variables
such as technology, processes, etc. The framework is computational for design

66 A.P. Shah and A.R. Pritchett

analysis of large-scale and complex systems such as transportation systems, military
organizations, and enterprises.

The following section introduces the research issues in complex socio-technical
systems design. After summarizing the research issues, the Work-Environment
Analysis framework is described with respect to these research issues. The framework
is then illustrated through an example in control-procedures analysis for airport
approach control. The paper concludes with a discussion of the contributions of this
framework, with respect to the field of multi-agent simulations and its applications.

2 Design Issues in Socio-technical Systems

Socio-technical systems (STS) are the building blocks of everyday life. The term has
traditionally been used to identify technology in its social settings, but now it
identifies systems that comprise people, technologies, physical surroundings,
processes and information [1]. Examples include transportation systems, military
organizations and corporate enterprises.

STS function by local action and interaction of entities that make up the system.
These entities include the humans working in the system and their environment that
affects and shapes their cognitive choices and the output of their work [1, 2]. The
macro-level behavior and thus the measured performance of the STS emerge from the
local (micro-level) actions of humans and their interactions with each other and with
their work-environment. Emergent is defined here as a system property in which
system behaviors at a higher level of abstraction are caused by behaviors at a lower
level of abstraction which could not be predicted or estimated at that lower level.
Thus one could model the entities that make up the system and simulate them to see
what system behavior comes out or emerges.

Thus, firstly, due to its emergent properties a STS is essentially a multi-agent
system, the system level behavior of which emerges from the micro-level properties
and behaviors of the proactive and interactive humans (modeled as agents) and their
interaction with the environmental elements [3, 4]. Secondly, the design variables in
the system (i.e., the aspects of the system that can typically be specifically changed)
are the humans, elements of the work-environment, and their interrelationships; all
affect system performance in a manner that can be difficult to estimate a priori.
The second observation calls for a comprehensive approach to system design and
analysis, i.e. an approach that aggregates design factors both in humans and in their
work-environment, thus considering all system design variables. Work-
Environment Analysis (WEA) framework presented in this paper evolves from
these basic observations.

In the following the two design variables, i.e. the work-environment and human
behavior within STS are further discussed to build up the motivation for the WEA
framework. Technological issues in engineering large-scale STS through simulation
are then discussed.

 Work-Environment Analysis: Environment Centric Multi-agent Simulation 67

2.1 The Work-Environment

All objects, technologies, processes and information that surround the people in STS
make up their environment. These environmental elements relate to each other in
context of the work being performed in the system in several ways. For example,
objects and technologies that can be employed for accomplishing system tasks are
related through task-resource relations. Similarly there could be aspects that identify
with processes, organizational structure, and data and information.

These aspects can be modeled to approximate the environment in a manner
suitable for STS design analysis. However, by limiting the models of the work-
environment to a selected few of its specific aspects, one cannot answer the questions
that go beyond those aspects and that range through multiple aspects. The interplay
between the aspects may lead to emergence of dynamics that may not be manifested
through exclusive examination of each one of them. For example, STS designers may
be faced with questions such as:

1. What mix of technologies and processes provides a more efficient and
safer system?,

2. How well do the system technologies and processes generalize to a
different mix of workers or organizational setups?

3. What aspects of the environment should the agents be trained on to meet
system objectives?,

4. Which design of the work-environment exhibits universality in system
performance for given range of variation in human behavior?, etc.

The first question requires the designer to consider not just a mapping of tasks to
the resources in the system, but also the processes that apply on the agents in the
system. Similarly the second question adds an aspect of organizational setup that may
be specified in terms of roles and responsibilities.

Many cognitive systems engineering approaches are intended to examine the third
and fourth questions. However, so far they have considered at most one or two
aspects of the work environment. For example, Cognitive Work Analysis (CWA)
works with functional and parts-whole hierarchies in the work-environment [1]. These
aspects can primarily be employed to solve design problems that efficiently and
effectively employ system resources in individual, team or organizational settings.
Cognitive Triad (CT) employs goal structures and task-resource maps in the work-
environment for design of decision support systems for strategy and tactics selection
[5]. CWA or CT cannot answer questions one and two. To answer those questions,
they require consideration of other aspects such as the organizational aspect along
with the aspects they support. Moreover, they are limited in detail for answering the
third and the fourth questions.

Detailed STS design requires a mix of environmental aspects. A comprehensive
approach that can aggregate multiple aspects including resources, functions, goals and
processes is therefore needed. The designer should be able to pick and apply multiple
aspects of the work-environment to address the design question(s) being answered.
But, it is important to maintain a parsimonious approach that considers only the
necessary and sufficient aspects.

68 A.P. Shah and A.R. Pritchett

2.2 The Agents

As previously discussed, the behavior and performance of a STS emerges from the
interaction of its agents with each other and with its work-environment. Naturally,
when the work-environment changes, human behaviors need to be tailored
appropriately. For example, when automating manual work, workers need to be
trained to use this new technology using new processes. Thus, for each new design of
an STS’s work-environment, agents tuned to these changes have to be generated to
comprehensively model the important system behaviors.

2.3 Engineering Issues

Design complexity becomes significant when considering multiple aspects of the
work-environment, with corresponding agent designs. This complexity tends to scale
non-linearly with the design’s scope and detail, quickly becoming unmanageable.
Since most of the design problems concern large and complex real world systems,
there is an unmet need for a design framework that manages this complexity while
providing the insight required by designers.

A structure preserving modeling framework is one method to help reduce design
complexity. System properties are not understood at the system level, but design
changes typically only occur at the component level. When the structure of system
components is preserved during modeling, design and analysis activities, designers
can easily translate between the real world and the design models. Preserving the
structure also helps keep the interactions between components realistic.

A structure-preserving framework also aids when examining emergent
phenomenon within the STS. By maintaining the correct component-level structures,
their impact on system-wide emergent behavior can be specifically examined, even to
the point of investigating the causality of decrements to system performance.

The designers should not have to create the implementation for design analysis of
each design intervention/iteration. The design should be used to generate all
executables to be directly run in the design analysis engine. Thus the framework
should be design driven, i.e. each design variable should be concretely specified to the
level that it can be directly employed for the analysis activity.

Appropriate data capture and measurement utilities should also be created to
capture data for design evaluation, irrespective of the domain or scope of the design
problem. This should be done at the level of abstraction of the design components
(micro-level) as well as that of the system (macro-level) for offline or online analysis.

Other major technological issue is that the framework should fit to any domain
and to systems of any scale. Thus the system should be re-configurable to different
kind of work-environment and agent models. These designs should not be limited in
number of components that can be used, or size of components that can be used.

3 Work-Environment Analysis

The Work-Environment Analysis (WEA) framework employs multi-agent simulations
to perform what-if analysis on system models. It enables modeling of multiple useful
aspects of the work environment into one coherent environment model, thus

 Work-Environment Analysis: Environment Centric Multi-agent Simulation 69

significantly enhancing the scope of system analysis and design. It employs
computational agent models together with declarative and extensible models of the
work environment in large-scale simulations for what-if analysis of socio-technical
systems. It also enables designers to directly manipulate the design variables without
having to recode the agents with each change.

Uniqueness of WEA lies in its feature that it can be dynamically configured to
accommodate any number of different cognitive environment models that can be
concretely specified in a declarative fashion with the use of XML. But each
declarative element should have a (set of) corresponding executable component(s)
that can be employed to configure agents with environment-aware capabilities.

Figure 1 shows the WEA framework. The framework follows a very simple
simulation and analysis architecture, where the inputs to the simulation engine include
models of the agents and the work environment, operating scenarios and the system
performance metrics. The simulation engine runs the multi-agent simulations and logs
it’s the system performance that emerges. The following details the components of the
WEA simulation framework.

Fig. 1. The Work-Environment Analysis simulation framework

3.1 Models of the Work-Environment

A designer starts with modeling of necessary aspects of the work-environment. Each
aspect relates the elements in the work-environment through specific work oriented
relations. Since there could be many work-oriented relations between the same
environmental elements, the same environmental element could be represented in
multiple environmental aspects. Therefore, it was chosen to model each element as a
container of declarative components, each of which represents it in different
environmental aspects. Each environmental aspect is represented as a connected
graph, each node of which is one of these declarative components of the elements
(refer Fig. 2). The arcs of the graph specify the work-oriented relations. That is, each

70 A.P. Shah and A.R. Pritchett

environmental aspect is defined by a set of semantic relationships that link the
environmental elements into an environmental aspect. The container model of the
environmental element also enables addressing coherency between the different
aspects by maintaining each element’s identity is maintained across the aspects.

Fig. 2. Modeling environmental elements and multiple aspects of the work-environment. The
figure shows three different environmental aspects (represented by connected nodes), with
environmental elements (box shaped nodes) connected in graphs

This architecture helps preserve the structure of the system with respect to the
design variables, i.e. each element in the environment, its components and the
work-oriented relationships. Each of these entities can possibly be altered towards
system level design, and each of them represents a tangible design intervention in
the real world.

The fidelity of these models depends, obviously, on the fidelity of each of the
components, the fidelity of the container model and that of a graph model for each
aspect. In theory, these principles can be applied to a number of known cognitive
engineering models such as the Abstraction Hierarchy [1], Task-Knowledge
Structures [6, 7], Functional Abstraction Hierarchy [5], Goal Trees [5], Context-
Process Structures (devised in this research) etc. Context-Process structure will be
explained as an example, with the example design problem in section §4.

3.2 Environment-Aware Agent Generation

Once the environmental aspects have been modeled, agents aware of this environment
are modeled. These models are used to automatically generate agents for the
simulation. The basis of these generative models could be an organizational chart, or
an attempt to fit the available agents (defined by a set of capabilities and objectives)
to the current work-environment. Currently, the designer manually performs this
modeling activity. This activity could later be automated to search through a space of
agent configurations to derive the best fit of agents to the environment.

 Work-Environment Analysis: Environment Centric Multi-agent Simulation 71

Fig. 3. Generating a Pilot agent based on environmental processes that it needs to be aware of,
that in turn dictate the agent’s required capabilities

Figure 3 shows the architecture for generating agents. This architecture is closely
related to the environment models. An executable component is attached to each of
the declarative components of the environmental elements. These executable
components can be directly plugged into the agent models to construct an agent
capable of working with the respective environmental elements. Each of these
components can work with all related components in the environmental aspect. That
is, the interface definitions of these components are specified to the level of detail
needed for operation with other elements in the work environment.

Consistency and completeness checks can be done at the model level. The agent
capability-components can build up on each other. These components can have any
internal architecture and thus the agent model is open to any cognitive architecture.
Each component perceives the environment and acts upon the environment through
standard interfaces of variables and methods. In the constructed agent model these
methods and variables are all added to the context of the agent. The agent’s internals
are thus hidden from all external components. That is, an agent interacting with the
other agent does not have to know the internal capability it is dealing with. This
makes the architecture dynamically re-configurable and highly extensible.

3.3 Other Architectural Issues

In the previous sections, we have primarily been discussing the modeling related
aspects of the framework and the software architecture corresponding to those. Here
we briefly discuss a number of issues that generally relate to any simulation
architecture. These issues include, timing and synchronization, event management,
object and agent lifecycle management, message passing, visualization, simulation
scenario-run management, distributed simulation management, and measurement and
data logging.

All these issues significantly affect the fidelity and performance of the simulation
and are very important aspects of any simulation tool. WEA has borrowed most of
this infrastructure from an existing multi-agent simulation tool, i.e. the Re-

72 A.P. Shah and A.R. Pritchett

configurable Flight Simulator (RFS) [8, 9]. WEA builds on this existing architecture,
and its primary contribution is the architecture for comprehensively accommodating
cognitive engineering models of the environment and the agents for multi-agent
simulation. Except for timing and synchronization, all other utilities have been
enhanced at different scales to accommodate for the environment and agent models
proposed by WEA.

Timing and synchronization are key to the operation of this framework. The RFS
and hence the WEA simulation uses three modes of timing, which includes uniform
time step, asynchronous and asynchronous with resynchronization. The last mode is
used for the highest fidelity simulations. In this mode, each agent informs the timing
management unit about the next time when it would be best for the agent to updated.
For example, while making a complex maneuver the aircraft agent may decide to user
smaller time steps then when flying straight and level. The resynchronization utility
maintains the fidelity relationship with all other agents that are affected by the
presence of a particular agent in the system. This includes maintaining dependence
lists for agents that should be updated before and after each update of any agent.

In the previous section, it was briefly stated that an agent could be following
intelligent goals or just reacting to requests. Well, the timing module becomes critical
here. That is, the simulation timing module calls a specific function in each agent, and
when pursuing some intelligent goal, each intelligent agent will evaluate its context
and knowledgebase on this call. And, if it wants to increase time-based fidelity of its
behavior, it will reduce the update time span for the timing module.

To provide brief insights into other aspects of the simulation, there is an Object
Data/Method Exchange utility at the simulation level that is used to set insight into
each agents capabilities and its context. Distributed simulation management is done
with the use of the High Level Architecture (HLA) [10]. Visualization is done
through the provision of display modules that can either simply trace values of system
variables, or provide complex displays such as the Air Traffic Control Display shown
later in figure 5.

A measurement and analysis utility logs metric data in each design component and
at the system performance level.

3.4 Summary of WEA Framework

WEA can computationally model and simulate large-scale and complex multi-agent
socio-technical systems. WEA is a tool for engineering such systems through
declarative manipulation of system design variables such as procedures, regulations
and technologies in the work environment.

The framework provides a three-step process, which starts with modeling the work
environment, generation of agent models, and simulation of usage scenarios for
system analysis. Multiple aspects of the work environment such as its physical,
functional and social aspects are represented as declarative and extensible structures.
These declarative structures, together with environment aware agent models of
proactive entities in the system, are employed in multi-agent simulations.

The design driven architecture of WEA enables system designers to directly tailor
the design variables, without having to recode each agent for each system design
change. System simulations of multiple agents interacting with each other and the
models of the environment with embedded data collection for arbitrarily configured

 Work-Environment Analysis: Environment Centric Multi-agent Simulation 73

performance metrics enables detailed analysis of system design. Due to the structure
and interaction preserving nature of these multi-agent simulations, the resulting
designs can be easily applied to real world work environments and training of agents.

4 An Illustrative Example in Air Traffic Control

A systems procedure evaluation problem in air traffic control is being shown here to
illustrate the WEA. When controlling the approach of aircraft to busy airports, the
controllers may employ either Time Based Metering (TBM) or Miles In Trail
Metering (MITM). TBM refers to procedures in which aircraft are instructed to reach
a metering arc by a specific time. A metering arc is a hypothetical arc at a specific
distance from a navigation fix, generally the fix that identifies the airport. MITM
refers to procedures that line up aircraft in a trail behind each other as they approach
the airport. In MITM aircraft follow a specific route, but there could be several of
these routes approaching the airport and they may intersect each other. Only one of
these procedures is in operation at one time.

Fig. 4. The eastern approach sectors of the Los Angeles airport (LAX)

Controllers are continuously observing their displays and vectoring aircrafts to
reduce congestion and to avoid any air hazards, while complying with these
procedures. Pilots have to be able to follow instructions with regards to the
procedures being used. When such a system is being evaluated for safety, the
controller workload, the density of aircraft in airspace, air space violations and
number and severity of vectoring commands for controlling aircraft are used to
measure performance. Weather conditions, number and spatial configuration of
aircraft in the airspace, their routes and their size are the independent variables that
define the system operation scenarios.

To model and simulate such a system, human models of the pilots and controllers
have to be created. These models should be able to comply with different procedures.
They should possess different capabilities representing their training on specific

74 A.P. Shah and A.R. Pritchett

procedures. The environment’s physical aspects should be well represented.
Dynamics of all equipment and technology should be modeled to significant fidelity.
The procedures and regulations in the work-environment should also be modeled.

As can be easily deciphered, this problem calls for modeling multiple aspects of
the work-environment and it requires modeling agents that are aware of this
environment. Moreover, the environment design will change, and the agents should
change correspondingly.

This domain problem was modeled and simulated using WEA. The simulation
utilized real world scenarios from the eastern approach of the Los Angeles airport
(LAX) (refer figure 4). The controllers in six control sectors were simulated (only
three are shown in figure 4). Physical and Context-Process aspects of the work-
environment were modeled. The following discusses these models.

4.1 Physical Environment

The physical environment in this domain consists of navigational data, weather
models, terrain database and earth axis definitions. Navigational data consists of
spatial data on airports, fixes, airspace definitions and navigational aids. Weather data
consists of winds and turbulence, and so on. Each of these elements comes with a
behavioral model that specifies how these affect the behavior of agents in this
physical environment. For example the navigation aids are represented in specific
ways in the Air Traffic Control Display as shown in Figure 5. All this data is specified
declaratively to represent the physical aspects of the environment.

Fig. 5. The physical environment of the design problem. This figure shows the navigation aids
and the simulated aircraft in the WEA simulation. This figure is a cut out of the Air Traffic
Controller’s display as simulated in WEA

 Work-Environment Analysis: Environment Centric Multi-agent Simulation 75

4.2 Context-Process Structure

Since the domain problem involved evaluating procedures and regulations in different
contexts, a context-process structure had to be devised as a new cognitive-engineering
model for the work environment. Existing models were limited to task structures, but
these could not used for this problem. The domain problem is not concerned with
strategy, tactics formation or coordination on part of the agents [11], rather the
problem is about designing procedures and regulations in the work environment
applicable in specific contexts.

Thus a context-process structure had to be devised, each node of which specifies a
process (procedure, action, or regulation) in the context in which it is applicable. The
context is defined by the perceivable situation that should be fully understood for the
application of the process. The objective of the agent at the time of applicability, i.e.
the intention of the agent, is also needed to completely specify the context of the
respective process.

Figure 6 illustrates a process node applicable for radar separation in the air traffic
control domain. It specifies a restricted action or a regulation, where radar separation
is prohibited for aircrafts in a specific range of air traffic controller’s radar display
(available in FAA regulations [12]). But this regulation is only applicable if the
situational context is as defined in the node, i.e. positions of aircrafts in the display,
the kinds of displays and the identification of each aircraft. The context is further
made complete by the specification of the intention of the air traffic controller, i.e.
radar separation. Note that this process node only restricts radar separation for the
given situational context. The controller could apply visual separation for that
situational context if there is no other process in the work environment restricting
him/her from doing so.

Intention: Lateral Radar Separation
Type of Radar Display Primary Radar Targets, ASR-9/Full Digital Radar
First Aircraft Radar
Identification

Not Radar Identified

First Aircraft Position {x: x < 40} x => distance from antenna
Second Aircraft Radar
Identification

Radar Identified

World
State:

Second Aircraft
Position

{x: x < 40} x => distance from antenna

Restricted Action: Radar Separation in y, {y: y < 6} y => distance of
airspace in miles from the edge of display

Fig. 6. Air traffic control regulation for lateral radar separation showing restricting conditions.
The intention and the world state together specify the context for this regulation

Each of these nodes is connected with other nodes through relations amongst
intentions and the situational context of the processes. For example, a process
applicable in a particular situation is still applicable in a situation, which may be
better defined through additional variables or better defined range of values against
which the situation is being evaluated. Similarly if the objective is to apply radar

76 A.P. Shah and A.R. Pritchett

separation between aircraft, the processes applicable here are also applicable for
vertical or lateral radar separation. Such relations between the process nodes construct
the context-process environmental aspect to be used for the given design problem.

4.3 Models of Agents

As discussed in section §3.2, agents for this problem are generated based on
generative models that specify parts of the environment visible to each agent. In this
problem all physical elements are fully accessible to each agent through their
technological equipment, i.e. the instruments in their aircraft. For example, an air
traffic controller observes aircraft through radar displays and communicates with
pilots only through specific channel frequencies. Therefore, if the radar cannot track
an aircraft, the aircraft is not visible to the air traffic controller. Or if a pilot is not on a
controller’s frequency, the pilot and the controller cannot communicate.

The main issue here is the configuration of the environment for the applicable
process, i.e. TBM or MITM, and the distribution of process nodes among the agents.
As shown in figure 3, the pilot picks up capabilities from the environments
description of the processes and the agent generative model that specifies what
process the pilot should know. Thus the capability of flying a hold pattern is put into
the pilot because one of the processes in the environment requires that the pilot should
be able to fly a hold pattern when commanded to do so by the controller.

The hold pattern capability builds up on other capabilities such as flying straight
and level and making standard rate turns. These capabilities are therefore also put into
the Pilot agent. All agents, controllers and pilots, are created based on such
environment aware agent generation models.

4.4 Simulation and Analysis

The simulations were run based on real-world scenarios from the LAX airport, based
on the independent variables described in §4. These simulations are being validated
for aircraft tracks and communication and maneuver events that actually took place in
the real world.

5 Conclusion

This paper described the Work-Environment Analysis simulation framework. WEA
computationally models large-scale and complex multi-agent socio-technical systems
using multi-agent simulations. It is a framework for engineering such systems through
design variables such as procedures, regulations and technologies in the work
environment, as well as changes in the capabilities of their individual agents (usually
human). The authors are currently demonstrating, through case studies, the utility of
simulations and analysis done using WEA.

Even though this framework primarily contributes to the field of systems
engineering by enabling detailed analysis of socio-technical systems, this paper
demonstrates one major application of multi-agent based simulations.

 Work-Environment Analysis: Environment Centric Multi-agent Simulation 77

To the field of multi-agent based simulation, the primary theoretical contribution
is in the use of the container model for elements of the agents’ environment and for
the agents. This model can span multiple aspects of the work environment and
enables dynamically generation of corresponding environment aware agents. This
model also enables dynamically changing the scope of a simulation by employing a
re-configurable set of models.

Amongst the major technological contributions is the provision of a versatile,
scalable and extensible simulation toolkit that can be used to evaluate design changes
to socio-technical systems. The framework is structure preserving to facilitate
translation between the actual system being studied and agent-based simulation of its
behavior, significantly decreasing the complexity of the design problem.

References

1. Vicente, K.M.: Cognitive work analysis: towards safe, productive and healthy computer
based work. Lawrence Erlbaum Associates. (1999)

2. Simon, H.A.: Models of bounded rationality. The MIT Press, Cambridge, MA, (1982). Vol. 2
3. Davidsson, P.: Multi agent based simulation: beyond social simulation. In: Multi Agent

Based Simulation. Springer Verlag LNCS series. (2000)
4. Hayes, C.C., Agents in a nutshell - a very brief introduction. IEEE Transactions on

Knowledge and Data Engineering, (1999) 11(1).
5. McNeese, M.D., Vidulich, M.A. (eds.): Cognitive systems engineering in military aviation

environments: avoiding cogminutia fragmentosa!. In: State of the Art Reports, Human
Systems Information Analysis Center. (2002)

6. Annett, J., Stanton, N.A. (eds.): Task Analysis. First edition. Taylor and Francis. New
York. (2001)

7. Johnson, H., Johnson, P.: Task knowledge structures: psychological basis and integration
into system design. In: Acta Psychologica. Vol 78: 3 – 24. (1991)

8. Ippolito, C. A., Pritchett, A. R.: Sabo: A self-assembling architecture for complex
system simulation. In: Proceedings of AIAA Aerospace Sciences Meeting and Exhibit,
Reno, NV, (2000).

9. Pritchett, A. R., Lee, S. M., Corker, K. M., Abkin, M. A., Reynolds, T. R., Gosling, G., et
al.: Examining air transportation safety issues through agent-based simulation
incorporating human performance models. In: Proceedings of IEEE/AIAA 21st Digital
Avionics Systems Conference, Irvine, CA, (2002).

10. High Level Architecture. Defense Modeling and Simulation Office, United State
Department of Defense. https://www.dmso.mil/public/transition/hla/

11. Decker, K.S.: Environment centered analysis and design of coordination mechanisms. PhD
Thesis. Department of Computer Science. University of Massachusetts, Amherst. (1994)

12. Air Traffic Control. Chapter 5, Section 5, Order 7110.65P. Federal Aviation Authority.
http://www.faa.gov/atpubs/ATC/Chp5/atc0505.html#5-5-1

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 78 – 88, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Layering Social Interaction Scenarios on Environmental
Simulation

Daisuke Torii1, Toru Ishida12, Stéphane Bonneaud3, and Alexis Drogoul3

1 Department of Social Informatics, Kyoto University,
Kyoto, 606-8501, Japan

torii@kuis.kyoto-u.ac.jp, ishida@i.kyoto-u.ac.jp
2 JST CREST Digital City Project,

3 LIP6, Université Paris 6 8 rue du Capitaine Scott 75015, Paris, France
stephane.bonneaud@free.fr, Alexis.Drogoul@lip6.fr

Abstract. For an integrated simulation such as the natural environment affected
by human society, it is indispensable to provide an integrated simulator that
incorporates multiple computational models. We proposed a multi-layer socio-
environmental simulation by layering the social interaction scenario on
environmental simulation. For this simulation, we connect two different
systems. One is a scenario description language Q, which is suitable for
describing social interactions. Another is CORMAS, which models interactions
between a natural environment and humans. The key idea is to realize a
mapping between agents in different systems. This integration becomes
possible by the salient feature of Q: users can write scenarios for controlling
legacy agents in other systems. Moreover, we find that controlling the flow of
information between the two systems can create various types of simulations.
We also confirm the capability of CORMAS/Q, in the well-known Fire-Fighter
domain.

1 Introduction

Global warming, acid rain, forest fire, earthquake disaster, etc. are the big topics of
environment and disaster in the world, and information technology is expected to
solve these problems. For example, an integrated simulation of human societies and
natural environments, named Socio-Environmental Simulation, is able to help with
policy and training for these problems. Some systems for MABS do not give specific
computational models of agents for general uses. For example, CORMAS [3] is one
of the well-known systems for socio-environmental simulation. For realizing social
interactions of agents, users have to construct models from scratch.

There are two streams for coping with this problem. One is the connection of
computational models, which is called “Docking” [1]. This aims to compare two
computational models and confirm its adequacy, and to explore the possibility of
combined models. Another is construction of multi-layer architectures. A simulation
for some purpose is flexibly realized by connecting two different systems which have
different features. For example, the RoboCup simulator gives protocols for

 Layering Social Interaction Scenarios on Environmental Simulation 79

connecting various agent models to the soccer server [9]. Q is a language for
designing social interactions of agents by attaching Q to already existing agent
systems. This language provides a description for non-computer professionals and has
generality for connecting every agent system in any domain. This has been confirmed
by connection with FreeWalk and Microsoft Agents [5, 7, 8].

In this paper, we propose a multi-layer socio-environmental simulation. As a
comprehensive example, we connect CORMAS, intended for describing interactions
between natural environment and humans, and Q, developed for describing social
interactions. CORMAS is widely used to simulate natural resource management [2, 10].
A natural environment is simulated using cellular automata and observations/actions of
humans are defined as agents. Q is a language to express extended finite state automata,
which are often used for describing protocols among agents or interaction scenarios. Q
has been applied to several social psychological simulations [7, 8].

This connection is not only an integration of two computational models, but also a
construction of a multi-layer architecture by integrating two different legacy systems.
In this case, not only cellular automaton is connected with extended finite state
automaton, but also IPC (see 2.1) is available and participatory simulation is easily
realized by Q on CORMAS. This connection is made possible by the salient feature of
Q: users can write scenarios for controlling legacy agents in other systems. Moreover,
we propose a method that various types of simulation can be generated by controlling
the flow of information in the channel connecting the two systems. To connect Q and
CORMAS, we had to address the following two issues.

Functional Distribution
It is necessary to define a mapping of corresponding agents in both systems. In the
case of CORMAS/Q, observations and actions in the natural environments are
executed within the CORMAS module while the interaction scenarios are performed
in the Q module. Mapping is made possible by the salient feature of Q: users can
write scenarios for controlling legacy agents in other systems (like CORMAS).

Time Management
Ensuring time consistency in both modules is a challenge. In the case of CORMAS/Q,
to ensure time consistency, we took the approach that only CORMAS manages time.
Q has no responsibility for time management. To make this possible, we assume that
Q interprets scenarios far more rapidly than CORMAS simulates observations/actions
of agents (see Section 4.1 for details)

The following sections explain CORMAS/Q, and show how the well-known Fire-
Fighter example (Cohen [4]) validates a socio-environmental simulation of
CORMAS/Q.

2 Background

2.1 Q1

Q is suitable for describing complex social interactions and has been applied to social
psychological simulations in a virtual space [8] such as evacuation simulations. Q can

1 Q is available from http://www.digitalcity.jst.go.jp/Q/index.html

80 D. Torii et al.

describe interaction scenarios between (legacy) agents (See Table 1). This feature
makes it possible to control the scenario execution of a large number of agents by
attaching Q to already existing agent systems. The computational model behind a Q
scenario is an extended finite state automaton, which is commonly used for describing
communication protocols. By using Q, users can directly create scenario descriptions
from extended finite state automata.

In Q scenarios, we can use sensing functions (cues) and acting functions (actions)
provided by already existing agent systems. Scenarios are interpreted by Q, while
cues and actions are executed by the legacy agent systems. The mapping between
cues/actions in the Q scenarios and those in agent systems is given by the Q Agent
Adapter. Moreover, Q provides an end user language called Interaction Pattern Card
(IPC). Since IPC is domain dependent and implemented using Excel, it enables non-
computer professionals to create scenarios easily. Scenarios described in IPC are
translated into Q by the IPC translator.

It is possible to replace Q controlled software agents by user controlled avatars, i.e.
participatory simulation is easily realized by replacing some of the agents by humans.
Simulations are carried out in an event driven fashion. The Q interpreter has no
responsibility for time management: time is controlled by the agent systems that
execute the bodies of cues and actions.

Table 1. Q and CORMAS

 Q CORMAS
Goal • A language for describing interaction

scenarios among (legacy) agents
• A large number of agents can be

controlled by attaching Q to already
existing agent systems.

• System for simulation whose models of
coordination modes between individuals and
groups who jointly exploit the resources

• The changes of natural environment and the
observations/actions of agents are defined

Computational
Model

• Extended finite state automaton • Cellular automaton

Description • Scenarios are described, using sensing
functions (cues) and acting functions
(actions).

• Interaction Pattern Card (IPC)
enables non-computer professionals
to create scenarios.

• Participatory simulation is easily
realized by replacing a part of
software agents by human controlled
avatars.

• At every step (unit time), the simulation is
executed by describing functions of each
cell and agent.

• Modeling tools (space, agent,
communication between agents), a
management tool (simulation) and
visualization tools (communication between
agents, statistical information) are available.

• It is optionally possible to import the spatial
map from GIS (Geographic Information
Systems) like MapInfo, ArcView.

System • Event driven.
• The Q interpreter has no responsibility

on time management.

• Time driven.
• At every step (a unit time), the diffusion

between neighboring agents is calculated.
• Time management is done by allocating

appropriate time length to each step.
Application • Social psychological simulation.

• Evacuation simulation.
• Resource management of water, wood and

pasture.
• Multiple uses of land and resources.

Implementation
Language

• Scheme • Smalltalk

 Layering Social Interaction Scenarios on Environmental Simulation 81

Q is an extension of Scheme, a Lisp programming language dialect. Concurrent
execution of scenarios of multiple agents is realized easily by using Scheme’s
continuation for controlling process switching.

2.2 CORMAS2

The goal of CORMAS (COmmon pool Resources and Multi-Agents Systems) is to
build `simulation models of coordination modes between individuals and groups who
jointly exploit the (same) resources [3]. In CORMAS, users can define the diffusion
of environmental changes, and agents' observations/actions with regard to the
environment (see Table 1). The computational model behind CORMAS simulations is
a cellular automaton. A natural environment is modeled as a two dimensional mesh,
and the diffusion between neighboring cells is calculated at each unit time (called a
step). Modeling tools for space, agent and communication, a simulation management
tool, and visualization tools are available. It is possible to import map information
from GIS (Geographical Information Systems) like MapInfo 3 and ArcView 4 .
CORMAS has been applied to renewable resource management of water, wood and
pasture [10], natural resources marketing systems, and multiple uses of land and
resources [2].

The CORMAS system is time-driven. At every step, the diffusion from
neighboring cells is calculated, and agents' observations/actions are performed. Time
management is done by allocating the appropriate step duration. CORMAS provides
two types of simulations. In synchronous simulations, changes of all entities (cells,
agents) are committed at the end of each step. In asynchronous simulations, on the
other hand, the changes are immediately reflected in ongoing calculations. Users can
construct a model of agents and natural environments by using prepared Smalltalk
classes. Users can add new classes as necessary.

3 Multi-layer Socio-environmental Simulation

3.1 Architecture

The basic idea of multi-layer socio-environmental simulation is combining social
simulation with environmental simulation. This simulator consists of two layers:
social and environmental simulation layers. Social simulation offers decision making,
negotiation, and collaboration. Environmental simulation realizes the diffusion of
environmental changes and agents' reactions.

Social interaction and environmental diffusions are executed as follows. A scenario
of social interaction (ex. decision making process) is executed in the social simulation
layer, but communication acts, like messaging, are performed by agents in the
environmental simulation layer. This approach is needed since all real world actions
must be performed in one layer to solve the time synchronization problem. If the

2 CORMAS is available from http://cormas.cirad.fr/indexeng.htm
3 http://www.mapinfo.com/
4 http://www.esri.com/software/arcview/

82 D. Torii et al.

social simulation runs much faster than the environmental simulation, it is possible for
the environmental simulator to manage time.

The environmental diffusions are calculated in the environmental simulation layer,
while agents' observations/actions to natural environments are controlled in the social
simulation layer. If agents execute actions in natural environments, the diffusion of
the influence of the actions is also calculated in the environmental layer. The agents in
the social simulation layer then acquire the results of the environmental diffusion.

Request of
observation / action
for interaction with
environment

Request of
communication with
other agents

Observation of
environmental
diffusion

Q (Social Simulation)

CORMAS (Environmental Simulation)

Result of
request

Change the
status of a
particular cell

Change an
agent’s location

Fireboss
(FB)Fire Fighter 1

(FF1)

Fire Fighter 2
(FF2)

Cellular Automata

CORMAS Space

Interaction
with
neighboring
cells

Communication

Observation of
environmental
diffusion

(defscenario
(scene1

((……
(scene2

(……

(defscenario
(scene1

((……
(scene2

(……

(defscenario
(scene1

((……
(scene2

(……

Agent in CORMASAgent in Q Agent in CORMASAgent in Q

Fig. 1. Fire Fighting Simulation by CORMAS/Q

3.2 Connection Control

Various types of simulation can be realized by controlling the flow of information
through the channel connecting the different layers; the legacy systems do not need to
be altered. For example, there are three types of information flowing through the
connection channel as follows:

A) observation of environment
B) action to environment
C) communication with other agents

The following two operations can be performed on the above information.

I) to lose information (accuracy)
II) to delay information transmission (delay)

These operations are defined by the simulation user in the connection description
as follows:

 Layering Social Interaction Scenarios on Environmental Simulation 83

Communication Channel
The accuracy and timeliness of information flow in organization needs to be defined
if the simulation is to be realistic. In the example of the fire fighter model (see Fig.1.),
several fire fighters work under the command of the fireboss. It is possible to control
the flow of information between the fireboss and the fire fighter and between fire
fighters.
For example, when the accuracy of the flow of information from the fireboss to a fire
fighter is set to 0.8 and the delay is set to 3, one in five messages from the fireboss to
the fire fighter is lost and all messages are delayed for 3 unit times. For another
example, the accuracy with which the fire fighter acquires environmental information
could be set to 0.5 to reflect the difficulty of gathering such information.

Efficiency of Information Gathering
The organizational ability of information gathering is defined. In the fire fighter
model, the fireboss might have much lower accuracy and timeliness than the fire
fighters.

Efficiency of Environmental Actions
Organizational efficiency of environmental actions is also defined in terms of
accuracy and delay. In the fire fighter model, the efficiency of fire fighting (the
action) in the environment might be only 70%.

What we want to stress here is that the connection between the two modules (social
simulation and environmental simulation) can be realized without modifying the
connected simulators. All that is needed is to create a connection description and
applying a few simple operations.

4 Connecting Q and CORMAS

4.1 Q and CORMAS

To put the architecture shown in the previous section into practical use, we actually
connected Q to CORMAS and applied the resulting ensemble.

Q scenarios are used to describe sensing (Cue) and acting (Action) acts in the
environment. Simultaneously, the receiving (Cue) and sending (Action) of messages
between agents are described. The agents in Q are used only for the interpretation of
Q scenarios; the corresponding agents in CORMAS actually execute the body of Cue
and Action. Therefore, the body of Cue and Action should be defined in the
CORMAS module. When the execution of Cue and Action is required, the request
should be transferred from Q to CORMAS and the execution result should be
transferred from CORMAS to Q.

What should be considered in this connection is time management. The obvious
approach is to manage time independently in Q and CORMAS and require the
Connection Control Module to establish time consistency. However, since Q
scenarios are carried out in an event driven fashion while CORMAS simulations are
carried out in steps, control would be needlessly complicated and CORMAS/Q would
have to be modified extensively. Our approach is for CORMAS to manage time
completely, and all observations/acts that take actual time are requested from Q to
CORMAS. This means that Q is oblivious of the time management performed by

84 D. Torii et al.

CORMAS under the assumption that CORMAS operations proceed smoothly because
Q operations are far faster than those in CORMAS

In CORMAS, spatial diffusion and observations/actions are calculated at every
step. For example, when an action requested by a Q scenario is executed, the spatial
diffusion is calculated at the following step in CORMAS. After this, the observation
requested by the Q scenario triggers feedback from CORMAS to Q.

4.2 Connection Control Module

For connecting Q and CORMAS, we implemented the Connection Control Module
which consists of the Q Connector/CORMAS Connector to extend the Q
module/CORMAS module. Q Connector has two roles. One is to write execution
requests of Cue/Action to CORMAS side. The other is to receive the execution results
and return them to the Q interpreter. The CORMAS Connector also has two roles.
One is to receive execution requests from the Q module and call the corresponding
CORMAS method. The other is to return the execution results to Q side.

5 Fire Fighter Domain

5.1 Problem

To validate our approach, we ran a simulation using the model of a forest fire in
Yellowstone National Park developed by the Phoenix Project at the University of
Massachusetts Amherst in 1989 [4].

In this problem, two types of agents exist. One is a fireboss who gives a direction
based on the overall environmental information. The other is a fire fighter who follows
the fireboss's direction and moves in the environment. The fire fighter is a bulldozer and
builds a line around continuously burning fires to prevent the fires from spreading.

In the environment, each cell has a type such as a river, a plain, a road, wood, and
fire. Fires spread in irregular shapes and at variable rates, determined by ground
cover, elevation, moisture content, wind speed and direction, and natural boundaries.

This simulation starts when the fireboss is alerted to a new fire and dispatches two
fire fighters to a rendezvous point which is determined by a calculation based on to
the location of the fire and wind speed/direction. Next, the fireboss calculates a route
for the fire fighters and instructs them to follow the given path and encircle the fire.
They are given clockwise and counterclockwise encircling directions. When they find
a fire on their route, they can change their route by themselves. If the fire threatens
them due to an abrupt environmental change, they move away from the fire. When
such a route change is reported to the fireboss, he sends back a better route plan
calculated from the location of the fire fighter and overall environmental information.
The fire fighter changes his own route plan as suggested by the fireboss when the
difference between his own plan and the fireboss's plan is large. When a fire fighter
encounters a natural boundary like a river or a fire line created by the other fire
fighter, he asks the fireboss for the next action. If a fire leaps outside the fire circle,
the fireboss gives the fire fighters a new route plan. When the fire is enclosed and
flying sparks are insignificant, the fireboss concludes that the mission is finished and
stands down the fire fighters. In this way, the fire is controlled by the interaction of
the fireboss and the fire fighters.

 Layering Social Interaction Scenarios on Environmental Simulation 85

I: Arrive at the goal of his route.
O: Report this to the FB

I: Receive a new
route from the FB.
O: Change his route
as ordered by the FB

I: Encounter a
natural boundary.
O: Report this to
the FB.

I: Receive a
notice of
mission
complete from
the FB

I: Difference is large.
O: Change his route as
suggested by the FB.

I: Difference is small.
O: Keep going on his route.

I: Receive a modified
route from the FB.
O: Compare it with
his route.

I: Recognize
an exceptional
route change
O: Report this
to the FB

I: No observation.
O: Move one step
on the planned
route.

I: Encounter fire on
the route.
O: Re-calculate his
route and report
this to the FB.

Observing
surroundings

Comparing
routes

Waiting
a notice

from the FB

O: Move to the start
point of his route

start

end

Fig. 2. State Transition Diagram of Fire Fighter

I: Other fire areas in
the environment.
O: Re-calculate the
FF’s route and send it
back to him. I: No more fire in the

environment.
O: Tell the FF that the
mission is completed

I: Receive a FF’s report
on reaching his goal.

I: Firelines are not encircled.
O: Re-calculate the FF’s route
and send it back to him.

I: Receive a FF’s report
on encountering
a natural boundary.
O: Gather current states
on fire and firelines.

I: Receive a FF’s report on
his route change.
O: Search a better FF’s
route and send it back to him.

Waiting
a FF’s
report

Investigating
firelines

Searching
other fire

areas

O: Send a route
to each FF

start

I: Firelines are
encircled.

Fig. 3. State Transition Diagram of Fireboss

86 D. Torii et al.

Fig. 4. Q Scenario for Fireboss

Cormas Connector (c)
Q Connector

(b)

Q scenario

Q Interpreter,
Agent Adapter

(a)-1

(a)-2

Cormas Agent Program

(d)

Cormas Space (e)

Fig. 5. Screenshot of Fire Fighter Simulation

(defscenario fireboss (&pattern ($FF_name "") ($FF_info "") ($env_info "") ($route ""))
 (Waiting-FF-report

((?route_change_report :from $FF_name :info $FF_info)
 (!get_env_info :info $env_info)
 (!calculate_route :info $FF_info :info $env_info :result $route)
 (!send_route :to $FF_name :result $route) (go Waiting-FF-report))
((?natural_boundary_report :from $FF_name :info $FF_info)
 (!get_env_info :info $env_info) (go Investigating-firelines))
((?goal_arrival_report :from $FF_name :info $FF_info) (go Searching-other-fire)))

(Investigating-firelines
((?firelines_encircled :info $env_info) (go Searching-other-fire))
((?firelines_not_encircled :info $env_info)
 (!calculate_route :info $FF_info :info $env_info :result $route)
 (!send_route :to $FF_name :result $route) (go Waiting-FF-report)))

(Searching-other-fire
((?no_more_fire :info $env_info)
 (!send_mission-complete :to $FF_name) (go Watching-FF-report))
((?other_fire :info $env_info)
 (!calculate_route :info $FF_info :info $env_info :result $route)
 (!send_route :to $FF_name :result $route) (go Waiting-FF-report))))

 Layering Social Interaction Scenarios on Environmental Simulation 87

5.2 Scenario

Fig. 1 illustrates the implementation of this problem in CORMAS/Q. In CORMAS,
we implemented a simulation in which fires spread minute by minute, using a model
that contains ground information like wood, a fire line and a river and weather
information of wind speed and direction. On the other hand, the agents of the fireboss
and the fire fighters are placed in both Q and CORMAS; Q controls agent execution
in CORMAS. There are two types of interaction in the Q scenario. One is social
interaction between the agents. The other is environmental interaction between the
fire fighters and the environment.

The behavioral plans of the fire fighter and fireboss, already mentioned, are
expressed in a state transition diagram (see Fig. 2, Fig. 3). Fig. 4 shows the Q scenario
of the fireboss. The Q scenario was directly coded from the state transition diagram. It
is easy to understand the correspondence between the problem explanation of Section
5.1 and the state transition diagram of Fig. 2 and Fig. 3, and the scenario description
of Fig. 4.

5.3 Result

Fig. 5 shows a screenshot of this simulation. In the simulation, a small fire is started
in the middle of the space and the fire is driven by a north wind. The initial location of
the fire fighter is the north of the fire. We could have the result that the model intends
with various strength of the north wind. The fire slowly spreads with weak wind (each
cell changes its state to fire with less than 30% when its north cell is fire and with less
than 15% when its north-east and north-west are fire. The possibility that a cell
catches fire from the north fire was set to double of the north-east and the north-west
fire.), which brings a result that the fire is encircled by only the fire line. To the
contrary, the fire quickly spreads with strong wind (in many cases, the probability is
more than the one of the weak wind), which brings a result that the fire is encircled by
the fire line and the natural boundary (river). The CORMAS map (Fig. 5 (e)) shows
the latter result. Fig. 5 (a) and (b) show the execution logs of Q, and Fig. 5 (c) and (d)
show the execution logs of CORMAS.

In any strength of the wind, the fire was contained as desired by the scenario. It is
necessary to try the other types of simulation except this fire fighter model (as noticed
in the conclusion), but we consider that this result verifies the design of the scenario
and the capability of multi-layer socio-environmental simulation.

6 Conclusion

In this paper, we proposed a multi-layer socio-environmental simulation by layering
social interaction scenario on environmental simulation. As a concrete example of this
idea, we combined two multiagent systems. One is Q, whose computational model is
an extended finite state automaton for modeling of agents’ social interaction. The
other is CORMAS, whose computational model is a cellular automaton for modeling
of an environment.

In the integrated simulation system, all observations/actions that take time to
complete are executed in CORMAS. As a result, time management is performed only

88 D. Torii et al.

in CORMAS. This integration has been made possible by the feature of Q: users can
write social interactions to control legacy agents. Moreover, various types of
simulation can be generated by controlling flow of information in the channel
connecting the two systems. By combining Q and CORMAS, we can integrate social
and environmental simulations. We implemented a well-known fire fighter example
in CORMAS/Q, and confirmed its ability to handle fairly complex simulations.

We are currently planning two socio-environmental simulations with CORMAS/
Q. One is a joint project with Disaster Prevention Research Institute of Kyoto
University to apply CORMAS/Q to participatory simulations of rescue activity under
a flood situation. Since it is possible to replace Q controlled agents by user controlled
avatars, CORMAS/Q has the ability to support participatory simulations (simulations
involving collaboration between software agents and humans). Another is a joint
project with IRRI (International Rice Research Institute) Thailand Office and CIRAD
to apply CORMAS/Q to participatory simulations of agricultural economics.
Furthermore, since Q scenarios are based on extended finite state automata, machine
learning can, by applying the data from participatory simulations, improve the
scenarios. The results will be reported in the near future.

Reference

1. Axtell, R. L, Epstein, J. M. and Cohen, M. D.: Aligning Simulation Models: A Case Study
and Results. Computational and Mathematical Organization Theory, vol. 1, 123-141, 1996.

2. Bah, A., Touré, I. and Le Page, Ch.: An Agent-Based Model tool for multi-agent simulation
for Understanding the Multiple Uses of space Land and Resources around a Drilling Sites
in the Sahel. In Proceedings of Modsim 2003 International Congress on Modeling and
Simulation, 1060-1065, 2003.

3. Bousquet, F., Bakam, I., Proton, H. and Le Page, C.: Cormas: common-pool resources and
multi-agent Systems. Lecture Notes in Artificial Intelligence 1416, 826-838, 1998

4. Cohen, P. R., Greenberg M. L., Hart, D. M. and Howe, A. E.: Trial by fire: Understanding
the design requirements for agents in complex environments. AI Magazine, Vol. 10 No. 3,
32-48, Fall 1989.

5. Ishida, T.: Digital City Kyoto: Social Information Infrastructure for Everyday Life.
Communications of the ACM (CACM), Vol. 45, No. 7, 76-81, 2002.

6. Ishida, T.: Q: A Scenario Description Language for Interactive Agents. IEEE Computer,
Vol.35, No. 11, 54-59, 2002.

7. Murakami, Y., Ishida, T., Kawasoe, T. and Hishiyama, R.: Scenario Description for Multi-
Agent Simulation. In Proceedings of International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-03), 369-376, 2003.

8. Nakanishi, H., Nakazawa, S., Ishida, T., Takanashi, K. and Isbister, K.: Can Software
Agents Influence Human Relations? Balance Theory in Agent-mediated Communities. In
Proceedings of International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-03), 717-724, 2003.

9. Noda, I. and Stone, P.: RoboCup Soccer Server and CMUnited: Implemented Infrastructure
for MAS Research, Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-
Agent Systems, Wagner, T., Rana, O., ed., 94-101, 2001.

10. Perez, P. and Ardlie, N., Kuneepong, P., Dietrich, C., Merritt, W. S.: CATCHCROP:
modeling crop yield and water demand for integrated catchment assessment in Northern
Thailand. Environmental Modelling and Software, Vol. 17, No. 3, 251-259, 2002.

s

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 89 – 98, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Change Your Tags Fast! – A Necessary Condition for
Cooperation?1

David Hales

Department of Computer Science, University of Bologna, Italy
dave@davidhales.com

Abstract. Several tag models with intriguing properties have been advanced
recently. But currently there is little detailed understanding of the underlying
processes. Specifically it is not know what (if any) are the necessary
conditions for tag systems to produce high levels of cooperation. We identify,
for the first time, what appears to be a necessary condition that previous tag
models implicitly contained. It appears that, in general, for tag-based systems
to support high levels of cooperation tags must mutate faster than strategies
because cooperative tag groups need to spread (by mutation of tags) before
free riders (by mutation on strategies) invade the group. We test this theory
with simulation.

1 Introduction

Tags are markings or social cues that are attached to individuals (agents) and are
observable by others [11]. They evolve like any other trait in a given evolutionary
model. The key point is that the tags have no direct behavioural implication for the
agents that carry them. Through indirect effects, however, they can evolve from
initially random values into complex ever changing patterns that serve to structure
interactions between individuals.

In the computational models discussed here tags are modelled using some number
(either a binary bit string, a real number or an integer). When agents interact they
preferentially interact with agents possessing the same (or similar) tag value. One way
to visualize this is to consider a population of agents partitioned between different
colours. Each agent carries a single colour. In a system with only 3 different possible
tag values we could think of this as each agent carrying a flag of red, green or blue.
Agents then preferentially interact with agents carrying the same colour (forming
“interaction groups”). When agents evolve (using some form of evolutionary
algorithm) they may mutate their tag (colour). This equates to moving between
interaction groups.

In the models presented here, tags take on many possible unique values (by say
using a real number, there are many possible unique tags rather than just 3 colours)

1 This work partially supported by the EU within the 6th Framework Programme under contract

001907 (DELIS).

90 D. Hales

however, the basic process is the same – agents with the same tags preferentially
interact and tags evolve like any other genotypic trait.

Another way to think of tags is that some portion of the genotype of an agent is
visible directly in the phenotype but the other agents.

Hales [3] advanced a model, using binary tag strings that demonstrated the
evolution of cooperative interactions in the single round Prisoners Dilemma (PD).
Further work [17] showed the emergence of altruistic giving behaviour and the
evolution of cooperation and specialization [5]2.

These latter models are important because they advance a novel mechanism for
evolving coordinated and cooperative interactions between unrelated agents that have
no knowledge of each other and have never met previously. This obviates the need for
repeated interactions [20], "genetic" relatedness [10], "image scoring" [15] or strict
spatial relationships [14] in the production of cooperation. Tag mechanisms therefore
have potential engineering applications where these other methods are not applicable
(see below).

Although the general mechanism by which tags produce these results appears to
be the result of a dynamic group formation and dissolution process [3, 16, 19] with
selection appearing to occur at the group-level, there has been little analytical or
empirical exploration of this hypothesis.

2 Some Previous Tag Models

There have been a number of tag models implemented previously. All generally show
how higher-than-expected levels of cooperation and altruism are produced when tags
are employed. In all cases the models implement evolutionary systems with
assumptions along the lines of the replicator dynamics (i.e. reproduction into the next
generation proportional to utility in the current generation, no “genetic-style” cross-
over operations but low probability mutations on tags and strategies during
reproduction).

Riolo [16] gave results of expansive and detailed studies applying tags in a
scenario where agents played dyadic (pair wise) Iterated Prisoner’s Dilemma games
(IPD). Tags (represented as a single real number) allowed agents to bias their partner
selection to those with similar tags (probabilistically). He found that even small biases
stimulated high levels of cooperation when there were enough iterations of the game
with each pairing.

In Hales [3] a tag model was applied to a single round PD. Again interaction was
dyadic. Tags were represented as binary strings. Pairing was strongly biased by tag
identity (rather than probabilistic similarity). In this model very high levels of
cooperation were produced between strangers in the one shot game.

In Riolo et al [17] a tag model was applied to a resource-sharing scenario in which
altruistic giving was shown to emerge. Agents were randomly paired (some number

2 It should be noted that the conclusions of these further studies have been questioned [18, 2].

Essentially the scenarios do not bear too close a comparison to a PD because there is no
dilemma.

 Change Your Tags Fast! – A Necessary Condition for Cooperation? 91

of times) and decided if to give resources or not. The decision to give was based on
tag similarity mediated by a “tolerance gene” as well as the “tag gene” (both
represented as real numbers). The utility to the receiving agent of any given resource
was greater than to that of the giving agent. It was shown that if each agent was paired
enough times in each generation and the cost / benefit ratio was low enough then high
levels of cooperation were found.

In Hales and Edmonds [6, 7] tags were applied to a simulated robot coordination
scenario, originally given by Kalenka and Jennings [13], producing high levels of
cooperative help giving.

2.1 Mutation in the Models

We will now describe in, a little detail, how mutation was applied to the agents in
each of the above models. We will not discuss the specific details of the reproduction
process since we do not consider this relevant to the focus of this paper (variants of
“roulette wheel” selection and “tournament selection” were used, and these produced
probabilistic selection into the next generation following the replicator dynamics
assumptions stated earlier). Neither will we focus on the interactions or specific
payoffs applied in each model, suffice to say all models capture some kind of
collective coordination / cooperation problem in which cheating or free riding is
possible.

In order to examine and compare mutation schemes we make a distinction
between the mutation rate applied to the tag and that applied to the strategy. In all
cases agents are represented in the models using sets of artificial “genes” (some set of
data types) that are mutated when copied into the next generation.

The descriptions of the models all explicitly state that the mutation rate applied to
the tag and the strategy is the same (some probability). We label this rate m.
However, models vary in the mutation operation applied with probability m and in
the way they represent tags and strategies. It is this variation of mutation operation
and tag / strategy representation that can hide what is best understood as a variation in
mutation rate.

2.1.1 Bit String Representation of Tags with Simple Strategies
In Hales [3] tags are represented as fixed length bit strings and strategies as a single
bit (either to cooperation in the single-round PD or to defect). The mutation rate is m
= 0.001 and the population size is p = 100. Since each agent is completely represented
by a binary string the mutation operation is simply to flip each bit with probability m
(both tag and strategy bits). It would superficially appear that strategy and tag are
therefore mutated at the same rate and in the same way. However the results of the
paper show that high cooperation only occurred when the number of tag bits L was
large (L = 32 or more). In these cases the tag is more prone to mutation than the
strategy because it contains more bits. Any change in the tag effectively creates a new
distinct tag because pairing in the model is based on tag identity not similarity. So the
effective mutation rate on the tag as a whole is 1-(1-m)L ≈ 0.0315 (more than 30
times that on the strategy).

92 D. Hales

2.1.2 Real Number Representation of Tags with Simple Strategies
In Riolo et al [17] each agent is composed of two real numbers - one representing its
tag and one representing a so-called “tolerance”. The tolerance is a kind of “proxy
strategy”. Essentially (simplifying) a smaller tolerance value means a less cooperative
agent. Mutation is applied to bother the tag and tolerance with probability m = 0.1.
Again it appears that both are being mutated with the same rate. However, the
mutation operation applied to the tag is to replace it with a random value drawn
informally from the range but the tolerance has Gausian noise (of mean 0 and
standard deviation 0.01) added to it. So tags, when mutated, get new values chosen
randomly from the range but tolerances get modified by small values. Simplifying the
analysis somewhat, we could expect the absolute average tag change amount to be ≈
0.333 when mutation is applied. Since m = 0.1 we might characterize the average
overall tag change amount to be ≈ 0.0333. In the case of tolerance we can see that the
absolute average change would be almost two orders of magnitude lower (≈ 0.0008).

2.1.3 More Complex Strategies
In both Riolo [16] and Hales and Edmonds [6] our analysis becomes slightly less
straightforward. In both cases strategies are composed of multiple “genes” which do
not relate to simple strategies of unconditional cooperation or selfish behaviour. This
is in part due to the scenarios. In [16] agents play the IPD with agents having similar
tags for a number of rounds. The level of cooperation produced is not high and
constant but fluctuates into periods of high and low cooperation. Tags are represented
by single real values [0..1], strategies by triples of real values <i, p, q> each a
probability capturing a probabilistic IPD strategy space (i is the probability of
cooperation for the first round, p the probability of cooperation if in the previous
round the other agent cooperated, q the probability of cooperation if the other agent
defected on the previous round). So a space comprising tit-for-tat as well as pure
defection and pure cooperation is formed (along with probabilistic variants). The
mutation rate m = 0.1 is the same for each trait as is the operation (adding Gaussian
noise with mean 0 and standard deviation 0.5). Here we have an interesting counter-
point to the previous model [3] where we stated (above) that because the tag was split
in several parts the effective mutation rate was higher than the strategy. Here, we have
the reverse, so surely this suggests that the mutation rate applied to the tag is lower
than that applied to the strategy? In one sense this is true. However, what is important
is not the representation as such, the stored value, but how that value relates to
behaviour. Since the strategy is a triple, in which pure cooperation is represented as
all values being 1 and pure defection all values being 0, the relationship between
mutation and the resultant change in strategy is not simple. However we can note that
the probability of going from a triple of zeros to a triple of ones (from pure defection
to pure cooperation) in a single mutation event is approaching zero. However, since
we are talking about IPD not just a single round interaction the situation is more
complex and we leave detailed treatment to a future paper3.

3 The cooperation found here [16] was not for the single interaction kind given in [3] and [17].

Indeed one of the findings of the paper was that the given model did not produce cooperation
in the single round game.

 Change Your Tags Fast! – A Necessary Condition for Cooperation? 93

In Hales and Edmonds [6] simulated robots work in teams to unload trucks in a
warehouse. Here again we have a strategy composed of multiple parts. In the model
tags are represented as single cardinal values [1..500] and strategies as pairs of binary
values. Again the way the strategy effects behaviour is complex and moderated by the
scenario. However, to simplify, a strategy represented by bit values “11” represents
full cooperation whereas a value of “00” represents completely selfish behaviour.
Mutation is applied to the triple of traits with rate m = 0.1. The mutation operation is
to replace the existing value with another value chosen uniformly randomly over the
space. Again simplifying things a little we can say that the probability of a strategy
changing from 11 to 00 (or vice versa) is the probability that two bits are replaced
with their compliment 0.25(m2) = 0.0025. The probability of a completely new tag
(again tags are distinct, matching on identity) is 0.998(m) = 0.0998.

2.1.4 Summary
So in all these cases it appears tags change more quickly than strategies under an
algorithm that presents a uniform mutation rate. Of importance (as stated before) is
the representation of tags and strategies and mutation operators taken together with
the mutation rate. Only by considering all these factors can an underlying average
relative rate of change be estimated between the two entities (tag and strategy). In
each case when we do this we find that the tag changes much more quickly than the
strategy. Next we advance a hypothesis based on this.

3 Hypothesis and Theory

From our analysis of the mutation schemes in the previous tag models we now
advance a qualitative hypothesis concerning a necessary condition for tag models to
produce high cooperation in one-time interactions: In general for tag based systems to
support high levels of cooperation tags must mutate faster than strategies. We can also
state a qualitative “mini-theory” to explain this: Cooperative tag groups need to
spread (by mutation of tags) before free riders (by mutation on strategies) invade the
group4.

We don’t have a quantitative complement to these two statements. It would appear
that in order to determine the specific numbers in a specific scenario (model) we
would need to consider the nature of the tag space, the nature of the strategy space
and the way agents specifically interacted (the game). This is an aspect of on-going
work.

3.1 Testing the Hypothesis

In order to test our hypothesis we implemented a new (minimal) tag model in which
agents play single rounds of PD. We consider the result of high cooperation in the
single round PD to be the most significant result so far advance for tags. Additionally
the scenario is well understood and there are many existing models that allow for

4 For an illustration of the tag-group process. We refer interested readers to [3].

94 D. Hales

comparison. The singe-round PD captures, in a minimal way, many of the essential
features of the problems of cooperation in collective interactions. In our new model
we varied the relative mutation rate between the tag and strategy to examine if this
had an effect on the amount of cooperation produced. The model and results are
described below but firstly we briefly outline the single-round PD.

3.2 The Prisoner’s Dilemma

The Prisoner's Dilemma (PD) game captures a scenario in which there is a
contradiction between collective and self-interest. Two players interact by selecting
one of two choices: Either to "cooperate" (C) or "defect" (D). For the four possible
outcomes of the game players receive specified payoffs. Both players receive a
reward payoff (R) and a punishment payoff (P) for mutual cooperation and mutual
defection respectively. However, when individuals select different moves, differential
payoffs of temptation (T) and sucker (S) are awarded to the defector and the
cooperator respectively. Assuming that neither player can know in advance which
move the other will make and wishes the maximize her own payoff, the dilemma is
evident in the ranking of payoffs: T > R > P > S and the constraint that 2R > T + S.
Although both players would prefer T, only one can attain it. No player wants S. No
matter what the other player does, by selecting a D move a player ensures she gets
either a better or equal payoff to her partner. In this sense a D move can't be bettered
since playing D ensures that the defector cannot be suckered. This is the so-called
"Nash" equilibrium for the single round game. It is also an evolutionary stable
strategy for a population of randomly paired individuals playing the game where
reproduction fitness is based on payoff. So the dilemma is that if both individuals
selected a cooperative move they would both be better off but both evolutionary
pressure and game theoretical “rationality” selected defection.

3.3 The TagWorld Model

Our TagWorld model is a variation on [3]. We use a single real number to represent
tags rather than a binary string. What is new is that we explicitly vary the mutation
rate applied to the tag while keeping the rate constant for the strategy. Agents are
represented by a single binary (the strategy bit) and a single real number in the range
[0..1] (the tag). The strategy bit represents a pure strategy: either unconditional
cooperation or unconditional defection. Initially the population have their strategy and
tag values set to randomly with uniform probability over the space of all possible
values. The following evolutionary algorithm is then applied.

In each generation each agent (a) is selected from the population in turn. A game
partner is then selected. Partner selection entails the random selection of another agent
(b) from the population such that (a) ≠ (b) but the tags of (a) and (b) are identical. If
no agent exists with identical tags to (a) then (b) is selected at random from the entire
population regardless of tag value. Consequently (a) will always find a partner even if
its tag does not match any other agent in the population. During game interaction (a)
and (b) invoke their strategies and receive the appropriate payoff. After all agents
have been selected in turn and played a game a new population is asexually

 Change Your Tags Fast! – A Necessary Condition for Cooperation? 95

reproduced. Reproductive success is proportional to average payoff. The entire
population of agents is replaced using a “roulette wheel” selection method [1]5.

3.3.1 Parameters Used in the Model
For the results presented here we used similar parameters to [3], though here we did
not execute a scan over the parameter space. The population size was N = 100 and the
number of generations for each run of the model was 1000. The PD payoffs were T =
1.9, R = 1, P = S = 0.0001. These values were selected to give a very high incentive to
cheat (T is high and P and S are low). P and S were selected as a small value but
greater than zero (indicating a very small chance for agents, with Sucker or
Punishment payoffs, of reproduction). If a small value is added to P (enforcing T > R
> P > S) results are not significantly changed.

For the strategy bit the mutation rate was fixed constant at m = 0.001 (a low
value). But for the tag a mutation factor f was applied to m changing the mutation
rate. We varied f from [0..10] in increments of 2. Mutation of the strategy involved
flipping the bit value. Mutation of the tag involved replacing the real tag value with
another uniformly randomly selected tag from the range [0..1]. To summarize, when
an agent is selected for reproduction into the next generation, mutation is applied to
the strategy bit (resulting in the bit being flipped with probability m) and to the tag
(resulting in it being replaced with a new randomly selected tag with probability mf).

Fig. 1. Results from each simulation run plotting mutation factor (f) against cooperation

3.3.2 Results
The results are given in figure 1. Cooperation increases as the mutation factor is
increased. For each value of the mutation factor (f) given on the x-axis are plotted 20
points from 20 individual runs (to 1000 generations). Cooperation given on the y-axis
represents the proportion of all game interactions in a run that were mutually

5 Using this method the probability that an agent will be reproduced into the next generation is

probabilistically proportional to average payoff.

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

Mutation Factor (f)

C
o

o
p

er
at

io
n

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

Mutation Factor (f)

C
o

o
p

er
at

io
n

96 D. Hales

cooperative. Since we have 100 agents, with one game each per generation and 1000
generations per run, each point represents a proportion of mutual cooperation over 105
games. Each run had the same parameters but was initialized with different pseudo-
random number seeds. The (smoothed) line joins the plotted average of the 20 points.
The average is therefore over 2 x 106 individual games. To improve readability noise
has been added to the x-coordinate of each point (+/-0.5). There are a number of
interesting characteristics presented in figure 1. Firstly, we do indeed see an increase
(on average) of cooperation when we increase the relative mutation rate of the tag
with respect to the strategy. Given this we have a little more confidence that our
hypothesis may be correct since it allowed us to predict this property.

The increase is non-linear, the average curve, appears, to approximate a sigmoid
shape with three zones: A first zone with convergence to low value, a zone where it is
unpredictable and a zone with convergence to high value. Where f < 4 we find
convergence to low cooperation (no results above 0.2 cooperation6). For f > 6,
cooperation converges to a high value (no results below 0.8 – note points that appear
to violate this statement are a result of the added noise as mentioned above. In the
“unpredictable area” 4 ≤ f ≤ 6 we get high variance of results – indicating both high
and low cooperation outcomes. Here, it would seem, results become unpredictable
and chaotic (i.e. influenced by random variations due to the different pseudo-random
number seed used in each run). When we ran the same experiments with larger agent
populations (up to 1000) and for a larger number of generations (up to 10,000) we
obtained broadly similar results.

4 Conclusions

From a detailed analysis of existing tag models we identified an implicit assumption –
the mutation rate of the tags was higher than that applied to the strategies. We tested
this hypothesis in a new tag model by varying the mutation rate of the tag while
keeping the rate applied to strategies constant. We found that there was a non-linear
relationship between amount of cooperation and the ratio of tag to strategy mutation
rate. High cooperation was only produced when tag mutation was much higher than
the strategy mutation rate. However, more work needs to be done in order to predict,
for given scenarios, what the tag / strategy mutation ratio threshold value would be7.

The results we present here are based on runs from a particular simulation model.
However, we have (since the presentation of this paper and the preparation of this
final publication draft) tested a number of models and found the general condition to
hold [8, 9, 21, 22]. In addition, others have since confirmed our results [23].

The status of conclusions draw from empirical analysis of computer simulations
is, as we have pointed out elsewhere [2], similar to those drawn from experimentation
in the natural sciences. Without a deductive proof, results can always be challenged in
the future by contradictory experiments or results from a sound deductive model. In

6 Points that appear to violate this are a result of the added noise as mentioned previously.
7 This will depend on a number of factors and a discussion is beyond the scope of, and space

allowed for, this paper. See previous work [3, 4] for more on this.

 Change Your Tags Fast! – A Necessary Condition for Cooperation? 97

this sense we tend to become more confident as more models reproduce the same or
similar results but it should always be kept in mind that results based on simulation
are not proofs.

We believe that the single-round PD potentially captures many kinds of
engineering problem. One area we are currently exploring is a peer-to-peer
engineering problem. If we can get nodes to cooperate in the PD then we believe we
can use a similar technique to get them to share bandwidth and processing time,
altruistically, in real systems. Recent work with network-like peer-to-peer simulation
scenarios [8, 9] has shown that a high mutation rates on tags (or network links in these
cases) are important in maintaining high cooperation and scalability. Our long-term
aim is to produce a deployable service following a modular approach [12].

Acknowledgements

Thanks go to the anonymous reviewers who genuinely helped to make the paper a
little more readable (all existing awkward phrasing and lack of clarity are of course
the fault of the author who really should get his act together). Thanks go to Bruce
Edmonds and Scott Moss from the CPM at Manchester Metropolitan University
where the initial part of the work was supported. We are also grateful to Sendip Sen,
Department of Mathematics & Computer Science, University of Tulsa, for sending a
version of the paper presented at the AAAI Symposium [23].

References

1. Davis, L. (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.
2. Edmonds, B. and Hales, D. (2003) Replication, Replication and Replication - Some Hard

Lessons from Model Alignment. Journal of Artificial Societies and Social Simulation 6(4).
3. Hales, D. (2000), Cooperation without Space or Memory: Tags, Groups and the Prisoner's

Dilemma. In Moss, S., Davidsson, P. (Eds.) Multi-Agent-Based Simulation. Lecture Notes
in Artificial Intelligence, 1979:157-166. Berlin: Springer-Verlag.

4. Hales, D. (2001) Tag Based Cooperation in Artificial Societies. PhD Thesis (Dept. Of
Computer Science, University of Essex, U.K. 2001).

5. Hales, D. (2002) Evolving Specialisation, Altruism and Group-Level Optimisation Using
Tags. In Sichman, J. S., Bousquet, F. Davidsson, P. (Eds.) Multi-Agent-Based Simulation
II. Lecture Notes in Artificial Intelligence 2581:26-35 Berlin: Springer Verlag.

6. Hales, D. and Edmonds, B. (2003) Evolving Social Rationality for MAS using "Tags", In
Rosenschein, J. S., et al. (eds.) Proceedings of the 2nd International Conference on
Autonomous Agents and Multiagent Systems, Melbourne, July 2003 (AAMAS03), ACM
Press, 497-503

7. Hales, D. and Edmonds, B. (2004) Can Tags Build Working Systems? - From MABS to
ESOA. In Di Marzo Serugendo, G.; Karageorgos, A.; Rana, O.F.; Zambonelli (eds.)
Engineering Self-Organising Systems - Nature-Inspired Approaches to Software
Engineering. Lecture Notes in Artificial Intelligence 2977, Springer, Berlin.

8. Hales, D. (2004b) Self-Organizing, Open and Cooperative P2P Societies – From Tags to
Networks. Presented at the 2nd Workshop on Engineering Self-Organizing Applications
(ESOA) at AAMAS 2004, July 2004, New York.

98 D. Hales

9. Hales, D. (2004c) From Selfish Nodes to Cooperative Networks - Emergent Link-based
Incentives in Peer-to-Peer Networks. Proceedings of the Fourth IEEE International
Conference on Peer-to-Peer Computing (p2p2004), held 25-27 August 2004, Zurich,
Switzerland. IEEE Press.

10. Hamilton, W. D. (1964) The genetical evolution of social behaviours, I and II.
J.Theor.Biol.7,1-52.

11. Holland, J. (1993) The Effect of Lables (Tags) on Social Interactions. Santa Fe Institute
Working Paper 93-10-064. Santa Fe, NM.

12. Jelasity, M., Montresor,A., and Babaoglu, O. (2004) A modular paradigm for building
self-organizing peer-to-peer applications. Proceedings of the 1st International Workshop on
Engineering Self-Organising Applications (ESOA 2003), Springer.

13. Kalenka, S., and Jennings, N.R. (1999) Socially Responsible Decision Making by
Autonomous Agents. Cognition, Agency and Rationality (eds. Korta, K., Sosa, E.,
Arrazola, X.) Kluwer 135-149.

14. Nowak, M. & May, R. (1992) Evolutionary Games and Spatial Chaos. Nature, 359, 532-554.
15. Nowak, M. & Sigmund, K..(1998) Evolution of indirect reciprocity by image scoring.

Nature, 393, 573-557.
16. Riolo, R. (1997) The Effects of Tag-Mediated Selection of Partners in Evolving

Populations Playing the Iterated Prisoner's Dilemma. Santa Fe Institute Working Paper 97-
02-016. Santa Fe, NM.

17. Riolo, R. L., Cohen, M. D. & Axelrod, R. (2001) Evolution of cooperation without
reciprocity. Nature 414, 441-443

18. Roberts, G. & Sherratt, T. N. (2002) Nature 418, 449-500
19. Sigmund, K. and Nowak, A, M. (2001) Tides of Tolerance. Nature 414, 403-405.
20. Trivers, R. (1971) The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35-57.
21. Hales, D. (in press) Understanding Tag Systems by Comparing Tag Models. Presented at

the Second Model-to-Model Workshop (M2M2) co-located with the Second European
Social Simulation Association Conference (ESSA'04) at Valladolid, Spain 16-19th of Sept
2004. Available at www.davidhales.com.

22. Edmonds, B & Hales, D. (in press) Computational Simulation as Theoretical Experiment.
Journal of Mathematical Sociology. Available at www.davidhales.com.

23. McDonald, A and Sen, S. (in press) Analyzing the Effects of Tags on Promoting
Cooperation in Prisoner’s Dilemma. Presented at the AAAI 2004 Fall Symposium on
Artificial Multi-agent Learning Symposium, October 21-24, 2004, Washington D.C.

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 99 – 113, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Users Matter: A Multi-agent Systems Model of High
Performance Computing Cluster Users

Michael J. North1 and Cynthia S. Hood2

1 Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL
north@anl.gov

2 Illinois Institute of Technology, Chicago, IL USA
hood@iit.edu

Abstract. High performance computing clusters have been a critical resource
for computational science for over a decade and have more recently become
integral to large-scale industrial analysis. Despite their well-specified
components, the aggregate behavior of clusters is poorly understood. The
difficulties arise from complicated interactions between cluster components
during operation. These interactions have been studied by many researchers,
some of whom have identified the need for holistic multi-scale modeling that
simultaneously includes network level, operating system level, process level,
and user level behaviors. Each of these levels presents its own modeling
challenges, but the user level is the most complex due to the adaptability of
human beings. In this vein, there are several major user modeling goals, namely
descriptive modeling, predictive modeling and automated weakness discovery.
This study shows how multi-agent techniques were used to simulate a large-
scale computing cluster at each of these levels.

1 Introduction

High performance computing clusters (HPCC) have been a critical resource for
computational science for over a decade and have more recently become integral to
large-scale industrial analysis [1][2]. In addition, HPCC often provide the main
processing capabilities for the emerging computational grids. In isolation, individual
cluster components such as computing nodes, network cards and scheduling
algorithms generally either perform as designed or have explainable failure modes.
Despite both their long history and their well-specified components, the overall
aggregate behavior of HPCC is poorly understood. The difficulties arise from
complicated interactions between cluster components during actual operation.

The interactions within clusters have been studied by a variety of researchers
using both real systems and models. These studies are reviewed in the following
sections. While successful in many ways, the studies of real systems have been
hindered by difficulties with properly controlling experiments and accurately
observing the resulting metrics. The modeling research has also yielded substantial
insights but has been limited to relatively simple cluster topologies or has focused on

100 M.J. North and C.S. Hood

major, but isolated, cluster subsystems such as an individual network layer or
scheduler. Several researchers have identified the need for more comprehensive
multi-scale modeling of high performance clusters. In particular, Downey and
Feitelson have suggested the unrealized but “intriguing possibility” of models
extensive enough to reach all the way to the user level and Dowdy et al. have called
for a parsimonious and “holistic view” of HPCC [3][4]. This paper presents a multi-
scale modeling framework that addresses these needs by supporting the simultaneous
simulation of user process workloads, the Maui cluster scheduler and two network
layers, namely Myricom Myrinet and Ethernet. Results from the simulation provide
new evidence for substantial inefficiencies in the HPCC routing tables generated by
the widely used Myrinet Mapper algorithm.

2 Related Work

A large number of studies of real HPCC systems have been completed in recent years.
These studies complement the substantial body of existing work on related network
and operating system issues. The direct study of HPPC systems has been successful in
many ways. However, these studies have been hindered by difficulties with properly
controlling experiments and difficulties accurately observing the resulting metrics.
The examples reviewed below emphasize studies of the HPCC components that will
be discussed later in this paper, namely Ethernet, Myrinet and backfilling schedulers.

Observational studies are analyses of existing data. These studies have covered
topics ranging from transient job scheduling patterns to long-range correlations in
user behavior. Representative examples include the observational studies completed
by Feitelson and Nitzberg and Downey and Feitelson [5][3]. Observational studies of
the type discussed above can provide definitive characterizations of selected HPCC
performance issues. However, these studies are limited to available workloads and not
all of the interesting variables can be observed.

Experimental studies are controlled comparisons of two or more distinct
alternatives. Many experimental studies of real systems have been done covering
topics ranging from transient job scheduling patterns to long-range correlations in
user behavior. A representative example includes the experiments with backfilling
performed by Feitelson [6]. As with observational studies, experimental studies are
useful but difficulties in controlling cluster performance constrains the achievable
experimental designs and not all of the interesting variables can be observed.

There exists a large body of work on the analytical modeling of HPCC and HPCC
related issues. For example, Draper and Ghosh as well as others have created
analytical models of wormhole routing. Kim and Lee created analytical models of
Myrinet communication delays in a single Myrinet network switch [7][8]. These
analytical studies have shed light on many critical features of cluster performance.
However, these studies usually require simplifications such as limited topologies.

A large number of other simulations have been developed. For example, OPNET is a
powerful commercial product that has many features for network and systems modeling.
Chang reviews OPNET and compares it to a variety of other simulators [9]. Kang and

 Users Matter: A Multi-agent Systems Model of High Performance Computing 101

Cha built a simulation for evaluating the performance of Myrinet routers. Lawson and
Smirni investigated multiple-queue backfilling scheduling using a model they
developed. Many other simulators also exist [10][11]. Chang provides a survey [9].

3 The ClusterMod Framework

While successful for their purposes, the simulations discussed above do not include
the full spectrum of HPCC interactions from the network protocol level all the way up
to the cluster user level. Dowdy et al. have called for a parsimonious and “holistic
view” while Downey and Feitelson have said the modeling all the way up to the user
level is an “intriguing possibility” [4][3]. This is the focus of the ClusterMod
framework.

3.1 Design Goals

All models are necessarily approximations. A given model can be used to answer a
specific question if its approximations are consistent with the assumptions inherent in
the question. A clear range of questions is therefore important for model design. The
ClusterMod modeling framework has been developed to help address several general
classes of questions. The motivation for these questions is detailed in the introduction
and related work sections. The questions are as follows:

1. What factors influence high performance cluster process execution times?
What effects do these factors have?

2. What performance results can be expected from a specific cluster
structure executing chosen classes of workloads? What are the major
causes and sources of variation?

3. How will alternative scheduling algorithms tend to behave given a
specific cluster structure and chosen classes of work? Again, what are the
major causes and sources of variation? Are there weaknesses in the
scheduling algorithms that can be exploited by adaptive users?

4. How will alternative network routing protocols tend to behave given a
specific cluster structure and chosen classes of work? As before, what are
the major causes and sources of variation?

5. How will combinations of scheduling algorithms, network routing
protocols, cluster structures, workloads and user behavior interact across
the various implied scales of operation?

Naturally, these are broad questions. As was shown in the review of the related
work, even beginning to answer these questions involves considerable amounts of
work. The goal of the ClusterMod effort is not to immediately answer all of these
questions. Neither is the goal to be a complete prepackaged solution for finding the
answers. Rather, the goal is to provide an extensible framework that can be used by
researchers investigating these questions. This paper presents the context of the
framework, the framework itself and several example applications.

102 M.J. North and C.S. Hood

The ClusterMod modeling framework has been developed using a set of specific
design goals that were derived from the questions detailed above. The goals help
insure that models developed with ClusterMod can represent HPCC in sufficient
detail to support meaningful research into the previously posed questions. The design
goals are as follows:

1. The framework must support the modeling of network routing protocol
behavior with enough detail to study communication link congestion and to
investigate the effects of changes in protocol designs. This support must
include the ability to model the simultaneous operation of several network
routing protocols in a single cluster.

2. The framework must support the modeling of cluster structures with
sufficient fidelity to investigate changes in performance that result from
changing the availability or connectivity of network nodes and links.

3. The framework must support the modeling of user and system processes with
enough detail to study the effects of different levels and kinds of workloads.

4. The framework must support the modeling of scheduling algorithms with
sufficient detail to investigate the possible results from alternative scheduling
approaches.

5. The framework must support the modeling of users with enough richness to
study the potential consequences of cluster performance feedback and user
adaptation.

6. The framework must weave together the modeling of network routing
protocols, cluster structures, processes, cluster schedulers and users to allow
the interactions between to be investigated.

These goals were used to develop and evaluate the model architecture. As such,
ClusterMod provides researchers with the tools needed to implement models of both
specific clusters and general cluster configurations. The use of ClusterMod to model
Ethernet, Myrinet and the Maui Scheduler is discussed later in this paper.
Furthermore, the use of these implementations models the Argonne Chiba City HPCC
and to research the problem of process contention in HPCC is shown [12].

3.2 Software Architecture

ClusterMod models the components in an HPCC as a complex graph. The Cluster
Node and Cluster Edge classes provide the foundation for ClusterMod HPCC graphs.
Cluster Nodes maintain a list of incoming and a list of outgoing Cluster Edges as well
as three-dimensional positioning information. Conversely, Cluster Edges maintain
references to their terminal nodes. All individual edges in ClusterMod are
unidirectional. Bidirectional links are modeled using two unidirectional edges, one in
each direction. Edges that are naturally bidirectional, such as Ethernet links, take
advantage of ClusterMod’s automatic mechanisms for creating the two unidirectional
edges needed when a single bidirectional edge is created.

Cluster Nodes are specialized into Units, Hosts, Management Units and Switches.
Each of thee classes provide core methods and attributes that are used to model

 Users Matter: A Multi-agent Systems Model of High Performance Computing 103

specific HPCC nodes. Unit is the parent class for Host and Switch. Host is the parent
class for Management Unit.

Units naturally form the basis for the unit classes. They add NIC and ClusterMod
Process management to Cluster Edges along with Maui Scheduler importing
capabilities. The implementation of the Maui Scheduler in ClusterMod is discussed in
a later section.

Cluster Processes provide the core components needed to model processes
executing on Hosts. They are designed to model the central behaviors of host
processes. Sets of Cluster Processes are grouped into Cluster Jobs that are scheduled
by Schedulers.

Cluster Jobs are subclasses of Cluster Process that replace the normal Cluster
Process compute cycle with process management behaviors. Jobs maintain a list of
assigned units and processes. Jobs handle process initialization and monitor process
termination once they are assigned resources by a Scheduler. Jobs are normally
created by Cluster Users. Schedulers are specialized Jobs that manage other Jobs.

The central classes in the ClusterMod framework are shown using Unified
Modeling Language (UML) notation in Figure 1 (left) along with an example
ClusterMod Ethernet Network (right). The heart of ClusterMod is the Cluster Model.
This component provides the central stage for the cluster modeling activities. There is
one Cluster Model class instance per HPCC simulation. The Cluster Model maintains
the discrete event time schedule, keeps a list of the active agents in the system,
handles any required files and manages interactions with the model interface.

Host A : HostHost A : Host Host C : HostHost C : Host

Bus 1 : EthernetBusBus 1 : EthernetBus

NIC A : EthernetNICNIC A : EthernetNIC NIC 1 : EthernetNICNIC 1 : EthernetNIC
NIC C : EthernetNICNIC C : EthernetNIC

Link 1 : EthernetLinkLink 1 : EthernetLink Link 2 : EthernetLinkLink 2 : EthernetLink

Switch 1 : EthernetSwitchSwitch 1 : EthernetSwitch

Switch 2 : EthernetSwitchSwitch 2 : EthernetSwitch

Bus 2 : EthernetBusBus 2 : EthernetBus

NIC 2 : EthernetNICNIC 2 : EthernetNIC

Link 3 : EthernetLinkLink 3 : EthernetLink

Bus 3 : EthernetBusBus 3 : EthernetBus

Host C : HostHost C : Host

NIC C : EthernetNICNIC C : EthernetNIC

Link 4 : EthernetLinkLink 4 : EthernetLink

Bus 4 : EthernetBusBus 4 : EthernetBus

Host D : HostHost D : Host

NIC D : EthernetNICNIC D : EthernetNIC

Link 5 : EthernetLinkLink 5 : EthernetLink

Fig. 1. The Core Classes (left) and an Example ClusterMod Ethernet Network (right)

The Cluster Model provides the central functions for all of the Cluster Agents
used for simulation. The Cluster Agent class is also shown in Figure 1. Almost all of
the customized classes used for modeling are derived from the Cluster Agent class.

104 M.J. North and C.S. Hood

Cluster Agent provides several key functions that are used throughout the ClusterMod
framework. The Cluster Agent class provides an entrance to the time schedule,
provides every component with a unique identifier, provides automatic storage
capabilities for each component, and provides interactive user interface editors for
each component. The time schedule functions are discussed in this section. The
unique identifier (ID) is an integer that is used to track each component for a variety
of different purposes including verification and validation.

Nearly all HPCC components are time-limited, asynchronous resources suggests
that time tracking and nonbinding schedule access is an important abstraction that
should be placed high in the ClusterMod component hierarchy. To factor this
abstraction, the Cluster Agent class tracks component availability throughout each
simulation run. This component availability is updated based on task times generated
by a uniform random distribution that varies between a given minimum and maximum
delay. These delay times are specified in seconds on a component-by-component
basis, most commonly during component creation. However, these values can be
changed at any time during a simulation to model component degradation, repair, or
significant changes in state.

3.3 Implementation

Consistent with its design goals, ClusterMod was implemented using the Repast
multi-agent simulation (MAS) toolkit. Repast is one of several advanced MAS
toolkits that are currently available. For many other good examples, see both the
survey by Serenko and Detlor and the survey by Gilbert and Bankes [13][14]. Repast
is a free open source toolkit that was originally developed by Collier, Howe and North
and others [15]. The Repast system, including the source code, is available directly
from the web [16].

The Repast discrete event time schedule provides a convenient mechanism for
tracking the global flow of time. This allows each of the ClusterMod HPCC
components to schedule events for themselves and for other components in an
organized and coordinated fashion. Nearly all of the simulation classes in ClusterMod
are used to model HPCC components with time-limited availability. Typically, real
HPCC components can only be used for one or a small number of tasks at any given
time. Consider “phits,” or physical units, on network links for example. In the case of
an Ethernet link, only one packet can be meaningfully transmitted at a time without a
collision. In the case of a Myrinet link, several flits can be transmitted at once. While
considering these examples, it is important to observe that the activities of individual
HPCC components are often asynchronous and vary in duration. Thus, an Ethernet
link can transmit a message while network interface cards (NICs) attached to the link
are both listening for the current message and preparing new messages to be sent
later. Myrinet goes even further by having NICs and switches simultaneously send
and receive messages passing through them from their links. On a large scale, this
kind of implicit parallelism is one of the principle advantages of cluster systems. For
example, the Myrinet link implementation uses the Cluster Agent’s dynamic
asynchronous scheduling capability to model the difference in time delays for the
initial flit and the later flits in a message burst. A uniform distribution was chosen as

 Users Matter: A Multi-agent Systems Model of High Performance Computing 105

the default since it is a simple random number source that can be used to approximate
a reasonable range of behaviors, since it is fully specified by only two parameters and
since it is naturally bounded from both above and below. Bounding from both above
and below is particularly important since most of the processes to be modeled in
HPCC take finite and strictly positive amounts of time. Other distributions can be
substituted as needed. There are many choices including the common normal
distribution, the triangular distribution and the general gamma distribution. See Law
and Kelton for an extensive discussion of the alternatives [17].

Each time a simulated component needs something to occur, it calls one of the
schedule methods to asynchronously queue the activity for future execution. There are
three major types of schedule methods that scheduling events after waiting for a
randomly distributed time period, schedule events when the agent is next available for
work and schedule the event immediately. The types vary based on when the queued
activity will occur. There are multiple versions of each of the types to support the
queuing differing numbers of arguments to the called component. All of these
methods extend the Repast schedule to add new functionality specifically for
ClusterMod.

3.4 Verification

According to Law and Kelton, model verification is matching an implemented model
to its design while model validation is matching an implemented model to the real
world [17]. The ClusterMod main components were verified and validated using a
combination of manual traces, extensive unit tests logged with Aspects and
benchmark results [18]. An overview of Aspects can be found in Elrad, Filman and
Bader [19].

The manual traces were used as part of the class verification and for interface
verification. The traces involved the manual creation of small test cases that here
subsequently simulated. The simulation cases involved one or two units and one link.
The interface test cases involved from one to ten units and zero to twenty links.

The unit tests used Aspects to log calls to all of the core simulation functions
[18][19]. The Aspects were used to insert logging code into all of the simulation
methods [18][19]. This type of tracing covered all of the core simulation classes.

4 Myricom Myrinet, Ethernet and the Maui Scheduler

From Boden et al., Myrinet is a commercial network protocol created by Myricom,
Inc. in the 1990’s based on work done at the California Institute of Technology and
the University of Southern California. Myrinet is a source-routed system that uses
wormhole routing for flow control [20]. Myrinet was modeled in ClusterMod
following the details given by Boden et al., Kim and Lee and other sources [20][8].
The ClusterMod Myrinet model was verified and validated using a combination of
manual traces, extensive unit tests logged with Aspects and benchmark comparisons
[18][19]. See the system verification and validation section for a background
discussion.

106 M.J. North and C.S. Hood

An Ethernet model was also built using the ClusterMod framework. The results
are similar to the Myrinet work described above. The ClusterMod Ethernet model was
verified and validated using steps similar to that for the Myrinet model. The results of
the ClusterMod Ethernet model were also compared to Francis, Frost and Soldan’s
measured Ethernet performance for multiple large file transfers as well as Smith and
Kain’s measurements of Ethernet performance under actual loads [21][22].

The Maui Scheduler is a free, open source cluster preemptive backfill job
scheduler currently maintained as a community project [23]. The Maui Scheduler acts
as an advanced HPCC resource manager. Maui was modeled in two different ways
using the ClusterMod framework. The first approach modeled the full scheduler with
the goal of supporting multi-scale investigations into Maui performance. The second
approach modeled the behavior of known workloads with the goal of providing an
experimental control for comparative studies. Both implementations followed the
Maui Scheduler source code and other sources [23][24]. As with the previous models,
the ClusterMod Maui Scheduler model was verified and validated using a
combination of manual traces, extensive unit tests logged with Aspects and
benchmark comparisons [18][19]. The system verification and validation section has a
background discussion on this topic. The manual traces were used as part of the class
verification. The unit tests used Aspects to log calls to all of the Maui Scheduler
simulation functions [18][19]. These tests verified that the Full Maui Scheduler
manages jobs as designed.

5 Users in ClusterMod

Many user studies have been completed as reviewed in the opening sections. However,
despite this substantial body of work, much more remains to be done. In particular,
Downey and Feitelson have emphasized the need for user modeling that goes well
beyond the existing research [3]. Feitelson and Nitzberg and others have shown that
the variable behavior of users has a large impact on cluster performance [5].

Dowdy et al. have noted that, not surprisingly, “users behave mischievously in
order to beat the primitive scheduler, steal computational cycles and weasel in ahead
of other users in the waiting queues” [4]. The Maui Scheduler Administrator’s Guide
states that the need for a specific scheduler feature “is necessitated by the fact that
most sites have pretty smart users and pretty smart users like to work the system,
whatever system it happens to be” [25]. The guide goes on to describe work done
within the Maui Scheduler to control this kind of user behavior. Clearly this is not the
last cluster or even scheduler feature that will be driven by user adaptation and
learning. To address these issues, users need to be included in HPCC models.

There are several major user modeling goals, namely descriptive modeling,
predictive modeling and automated weakness discovery. Current techniques for
meeting these goals have met with significant success when applied other areas of
research.

Descriptive user modeling summarizes or reproduces past user behaviors. It is the
underlying data source for the other approaches as well as a productive line of
research in its own right. The research examples have been cited earlier are all useful
contributions, but again, according to Downey and Feitelson, more is needed [3]. In

 Users Matter: A Multi-agent Systems Model of High Performance Computing 107

other areas, MAS techniques have been used successfully to describe competitive
economic behavior similar to that of cluster users. North and Murakami et al. are two
examples [26][27].

Predictive user modeling seeks to forecast future user behaviors. Explaining,
predicting and budgeting runtime charges are immediate HPCC applications. There
have been successes with other systems see Gozzi, Paolucci and Boccalatte and
Veselka et al. for specific examples as well as Bonabeau’s survey [28][29][[30].

Automated weakness discovery seeks to identify possible pathological behaviors.
This line of research is differentiated from predictive studies because there is no
attempt to determine whether users will actually take advantage of the discovered
weaknesses. Rather, the goal is to determine if exploitable weaknesses exist. Related
work in neighboring areas has met with significant success. See Ebben, de Boer and
Pop Sitar and North, Macal and Campbell for examples of probing complex economic
systems for weakness as well as platforms for such work [31][32]. The central focus
for HPCC is the development and use of tools to probe cluster systems for potential
weaknesses that might be exploited by users.

The descriptive user modeling done with the current ClusterMod system is not
intended in any way to be a complete model of user behavior. It is only intended to
indicate the potential of future research. The ClusterMod Scripted User was combined
with the ClusterMod Ethernet, Myrinet and scripted Maui Scheduler classes to
descriptively model user behavior recorded during May of 2001. Scripted Users run
jobs based on predetermined plans. In this case, the plans were taken from
reformatted logs for Argonne’s Chiba City high performance computing cluster [12].
The correctness of the Scripted User behavior was confirmed using both manual and
logged unit tests following the methods detailed in the system verification and
validation section.

6 Software Development Methodology

ClusterMod was developed using object-oriented design with UML support as
described in Booch [33]. Design patterns were used following Gamma et al. [34].
Aspects were used extensively for testing the framework. See Elrad, Filman, and
Bader for an overview of Aspects [19]. ClusterMod was developed using the a variety
of tools. The core agent –based modeling used Repast 2.1 [16]. The Javasoft Java 2
Development Kit, as described by Foxwell, was used for implementing ClusterMod
[35]. Eclipse was used as the development environment. Freeman-Benson and
Borning discuss the development of an urban simulation using Eclipse [36]. AspectJ
was used for Aspect development following Walker, Baniassad, and Murphy [37].
The data captured with Aspects was logged with Log4j following Gülcü [38]. The use
of Log4j, among other logging tools, in conjunction with AspectJ is discussed briefly
by Cloyer et al. [18]. Unit testing was performed with JUnit as outlined in Beck and
Gamma [39]. The WinCVS implementation of the Concurrent Versions System
(CVS) was used for source code and data file version control following Fogel and Bar
[40]. ClusterMod’s three-dimensional graphical editor was custom built for the
ClusterMod framework using Auburn University’s Visualizing Graphs with Java
(VGJ) library [41].

Summary software metrics for were calculated for both the framework itself and
the Ethernet, Myrinet, and Maui Scheduler models. In general, ClusterMod scores

108 M.J. North and C.S. Hood

well on the metrics. The outliers on the far right end of the distributions are the
Cluster Model class and some of the import methods. The Cluster Model class is
detailed in the section on core architecture. The import methods are described in the
Ethernet, Myrinet and Maui sections. They are good candidates for future factoring.

Chiba City configuration data for selected hours from May 13 to 14, 2001 was
obtained from the HPC Workload-Resource Trace Repository and from the Argonne
Chiba City Project [32][12]. This data was used to simulate Chiba City’s operation
from Sunday May 13, 2001 at about 5:19 PM to Monday May 14, 2001 at about 4:30
A.M. Central Standard Time. The data described the hosts, the Myrinet network
structure and the parameter settings for the Maui Scheduler as well as the requested
workloads. The runs used the previously described full Maui Scheduler to reproduce
the selected time. Three jobs were submitted during the simulation. These were the
only jobs executed by the cluster during the simulation time window.

7 Initial ClusterMod Results

The ClusterMod Ethernet, Myrinet and Maui Scheduler classes described in previous
sections were used to simulate Argonne’s Chiba City high performance computing
cluster [12]. Chiba City is a 256-host Linux cluster that is used for HPCC scalability
research. The cluster is organized into “towns” of approximately 32 hosts each. Eight
computing towns provide user services along with several supporting towns that
provide management, storage and visualization facilities. Town activities are
coordinated by the Maui Scheduler.

Chiba City configuration data for selected hours from May 13 to 14, 2001 was
obtained from the HPC Workload-Resource Trace Repository and from the Argonne
Chiba City Project [32][12]. This data was used to simulate Chiba City’s operation
from Sunday May 13, 2001 at about 5:19 PM to Monday May 14, 2001 at about 4:30
A.M. Central Standard Time. The data described the hosts, the Myrinet network
structure and the parameter settings for the Maui Scheduler as well as the requested
workloads. The runs used the previously described full Maui Scheduler to reproduce
the selected time. Three jobs were submitted during the simulation. These were the
only jobs executed by the cluster during the simulation time window.

The current model runtime for a group of large processes utilizing most Chiba
City hosts is approximately ten to fifteen minutes for one hour of simulation time on
an 2.08 GHz AMD Athlon XP 2800+ PC with 992 MB of RAM. Naturally, this run
time is a function of the amount of activity in the cluster being simulated.

Figure 2 (left) shows the Myrinet structure of Chiba City on May 13 to 14, 2001
using the two-dimensional Fruchterman-Reingold (FR) graph layout algorithm [43].
The FR layout positions units based on their connectivity. It places heavily connected
units such as switches near the center of diagrams and lightly connected units such as
computational hosts towards the edges of diagrams. The Maui Scheduler is on the
host in the lower left corner of the left diagram. Network traffic tends to move from
far-flung hosts to the central switches and then back out again. The tree-like patterns
created by this flow are visible in the diagram.

Figures 2 and 3 show normalized combined Myrinet usage for each of the three
individual jobs that were submitted. Lines represent active Myrinet links. Note that all
of the jobs are using a common set of links near the middle of the network. Also,
notice that a few central switches are being heavily used by multiple jobs. These

 Users Matter: A Multi-agent Systems Model of High Performance Computing 109

switches represent bottlenecks for Myrinet’s wormhole routing protocol. Wormhole
routing reservations keep nearly all of the downstream links utilized when key
upstream switches become congested. This situation results in substantial system-
wide congestion.

Figure 4 shows the logical process communications between the May 13 to 14,
2001 jobs. Each line represents one or more successful communications between
processes on the connected hosts. The lines and nodes are shaded by user. The figure
shows that the user processes were allocated disjoint sets of nodes with a significant
amount of interleaving in Myrinet connectivity space. Comparing these results with
those in the Figures 2 and 3 reveal that the Maui Scheduler’s host allocation forced a
few switches high in the network to be in the path between most links.

Why do the unit allocations appear to be fragmented in such a way as to increase
network congestion when the Maui Scheduler is designed to allocate units in
contiguous blocks based on host addresses? Results from the simulated Maui
Scheduler show that the first job was allocated a single contiguous block of host
addresses. However, as can be seen in Figures 2 and 3, these hosts were not always
adjacent in the Myrinet network. The Maui Scheduler fits the second job into some of
the spaces left over from the previous job’s allocation. This, combined with the non-
uniform Myrinet network structure, leads to the central switch congestion visible by
comparing the conflicting switch usage in Figures 2 and 3. Finally, the situation
worsened as the third job was interleaved into the spaces left behind by the other two,
as can be seen by contrasting Figures 2 and 3. Key switches that are simultaneously
demanded by two or more jobs are shown in the insets in the figures.

Fig. 2. User 1 Job 1 network usage (left) and User 1 Job 2 network usage (left)

Hosts

Switches

Hosts

Switches

110 M.J. North and C.S. Hood

The Chiba City Myrinet network is quite interleaved based on the switch host port
connections tables from May 13 to 14, 2001. The simulation results suggest that
allocating units contiguously by address under these conditions may result in heavily
fragmented physical allocations and thus produce switch contention. Furthermore, the
simulation results indicate that, at least for big jobs, the switch contention may occur
in the critical upper-level switches. This can compound an already difficult situation.

As previously discussed, the Myrinet Mapper calculates routes within Myrinet
networks. The Myrinet Mapper algorithm and the Maui Scheduler lead to the
contention shown in Figures 2 and 3. This provides new evidence to support the
concerns raised by Flich et al. and others that the widely used Myrinet Mapper
algorithm can produce inefficient routes when it is employed in common cluster
configurations [44]. Thus, the ClusterMod Chiba City simulation results help support
calls for alternative Myrinet Mappers such as those proposed by Baik, Hood and
Gropp and Flich et al. [45][44].

Fig. 3. User 2 Job 1 network usage Fig. 4. Job Allocations Shaded by User

8 Conclusions and Future Work

Following Dowdy et al., a parsimonious and “holistic view” of high performance
clusters is needed [4]. The extensive body of existing research, while valuable, does
not adequately meet this need according to both Dowdy et al. and Downey and
Feitelson [4][3]. Multi-scale high performance cluster simulation is needed to achieve
the desired holistic view. The ClusterMod system provides a framework for multi-

Hosts

Switches

 Users Matter: A Multi-agent Systems Model of High Performance Computing 111

scale cluster simulation, as shown by its application to modeling Argonne’s Chiba
City high performance computing cluster. Results from this application provide new
evidence for substantial inefficiencies in the HPCC routing tables produced by the
widely used Myrinet Mapper algorithm.

There are several future directions for research with ClusterMod. First, ClusterMod
will be used to investigate the factors that cause variations in cluster performance
including network configurations, scheduler configurations, user requests and user
process classes. Second, ClusterMod will be used to study the performance of
alternate network protocols, such as those for message routing. Third, ClusterMod
will be extended to study highly distributed heterogeneous grid computing clusters.
Finally, ClusterMod will be extended to simulate adaptive users for prediction and
automated weakness discovery. Each of these directions for future research is likely to
improve our understanding of high performance computing clusters.

References

1. Dongarra, J., Meuer, H. Simon, H., and Strohmaier, E.: High Performance Computing
Today, Proceedings of the 1st International Conference on Molecular Modeling and
Simulation, American Institute of Chemical Engineers, New York, New York, USA (July
23-28, 2000) 1-7.

2. Sterling, T.: Launching Into the Future of Commodity Cluster Computing, Proceedings of
the 2002 IEEE International Conference on Cluster Computing, IEEE, Piscataway, New
Jersey, USA (Sept. 23-26, 2002) 345

3. Downey A., and Feitelson, D.: The Elusive Goal of Workload Characterization, ACM
SIGMETRICS Performance Evaluation Review, Vol. 26 No.4, ACM, New York, New
York, USA (Mar 1999) 14-29

4. Dowdy, L., Rosti, E., Serazzi, G., and Smirni, E.: Scheduling Issues in High-Performance
Computing, ACM SIGMETRICS Performance Evaluation Review (Special Issue on
Parallel Scheduling), ACM, New York, New York, USA (March 1999) 60-69

5. Feitelson, D. and Nitzberg, W.: Job Characteristics of A Production Parallel Scientific
Workload on the NASA Ames iPSC/860, In , D. G. Feitelson and L. Rudolph (eds.): Job
Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Science, Vol.
949 Springer-Verlag, Heidelberg, Germany (1995) 337-360

6. Feitelson, D.: Experimental Analysis of the Root Causes of Performance Evaluation
Results: A Backfilling Case Study, Technical Report 2002-4, School of Computer Science
and Engineering, the Hebrew University of Jerusalem, Jerusalem, Israel (Mar. 2002)

7. Draper J., and Ghosh, J.: A Comprehensive Analytical Model for Wormhole Routing in
Multicomputer Systems, Journal of Parallel and Distributed Computing, Vol. 23, No. 2,
Elsevier, San Diego, California, USA (1994) 202-214

8. Kim, S., and Lee, S.: Measurement and Prediction of Communication Delays in Myrinet
Networks, Journal of Parallel and Distributed Computing, Vol. 61, No. 2, Elsevier, San
Diego, California, USA (2001) 1692-1704

9. Chang, X.: Network Simulations with OPNET, Winter Simulation Conference
Proceedings, vol. 1, IEEE, Piscataway, New Jersey, USA (Dec. 5-8 1999) 307-314

10. Kang, S., and Cha, K.: Performance Evaluation and Simulation on Myrinet-Based Packet
Router, Electrical Engineering 611 Class Project, School of Engineering, Cleveland State
University, Cleveland, Ohio, USA (Fall 2000)

112 M.J. North and C.S. Hood

11. Lawson, B., and Smirni, E.: Multiple-Queue Backfilling Scheduling with Priorities and
Reservations for Parallel Systems, ACM SIGMETRICS Performance Evaluation Review,
Vol. 29, Issue 4, ACM, New York, New York, USA (March 2002) 40-47

12. Argonne National Laboratory, Chiba City Project: Available as http://www-
unix.mcs.anl.gov/chiba/ (May 2004)

13. Serenko, A. and Detlor, B.: Agent Toolkits: A General Overview of the Market and An
Assessment of Instructor Satisfaction With Utilizing Toolkits in the Classroom (Working
Paper 455), McMaster University, Hamilton, Ontario, Canada (2002)

14. Gilbert, N., and Bankes, S.: Platforms and Methods for Agent-Based Modeling,
Proceedings of the National Academy of Sciences of the USA, Vol. 99, Suppl. 3, National
Academy of Sciences of the USA, Washington, DC, USA (May 14, 2002) 7197-7198

15. Collier, N., Howe, T., and North, M.: Onward and Upward: The Transition to Repast
2.0, Proceedings of the First Annual North American Association for Computational
Social and Organizational Science Conference, Electronic Proceedings, Pittsburgh, PA
USA (June 2003)

16. ROAD: Repast 2.0, Available as http://repast.sourceforge.net/ (May 2004)
17. Law, A., A. and Kelton, D.: Simulation Modeling and Analysis, McGraw-Hill, New York,

New York, USA (1982)
18. Cloyer, A., Clement, A., Bodkin, R., and Hugunin, J.: Practitioners Report: Using AspectJ

for Component Integration in Middleware, Companion of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
ACM, New York, New York, USA (Oct. 2003)

19. Elrad, T., Filman, R., and Bader, A.: Aspect-Oriented Programming: Introduction,
Communications of the ACM, Vol. 44, Issue 10, ACM, New York, New York, USA
(October 2001) 29-32

20. Boden, N., Cohen, D., Felderman, Kulawik, R., Seitz, A., Seizovic, C., and Su, J.: Myrinet:
Aa Gigabit-Per-Second Local Area Network, IEEE Micro, Vol. 15 , Issue 1, IEEE,
Piscataway, New Jersey, USA (Feb. 1995) 29-36

21. Francis, S., Frost, V. and Soldan, D.: Measured Ethernet Performance for Multiple Large
File Transfers, Proceedings of the 14th Conference on Local Computer Networks, IEEE,
Piscataway, New Jersey, USA (Oct. 10-12, 1989) 323-327

22. Smith, W., and Kain, R.: Ethernet Performance Under Actual and Simulated Loads,
Proceedings of the 16th Conference on Local Computer Networks, IEEE, Piscataway, New
Jersey, USA (Oct. 14-17 1991) 569-581

23. Supercluster Research and Development Group: Maui Source Code, Available as
http://www.supercluster.org/downloads/maui/ (Jan. 2004)

24. Supercluster Research and Development Group: Maui Scheduler Administrator's Guide
v.3.2, Cluster Resources, Covered Bridge Canyon, Utah, USA (2002)

25. North, M.: Towards Strength and Stability: Agent-Based Modeling of Infrastructure
Markets, Social Science Computer Review, Sage Publications, Thousand Oaks, California,
USA (Fall 2001) 307-323

26. Murakami, Y., Minami, K., Kawasoe, T., and Ishida, T.: Multi-Agent Simulation for Crisis
Management, Proceedings of the 2002 IEEE Workshop on Knowledge Media Networking,
IEEE, Piscataway, New Jersey, USA (July 10-12, 2002) 135-139

27. Gozzi, A., Paolucci, M. and Boccalatte, A.: A Multi-Agent Approach To Support Dynamic
Scheduling Decisions, Proceedings of the Seventh International Symposium on Computers
and Communications, IEEE, Piscataway, New Jersey, USA (July 1-4, 2002) 983-988

 Users Matter: A Multi-agent Systems Model of High Performance Computing 113

28. Veselka, T., Boyd, G., Conzelmann, G., Koritarov, V., Macal, C., North, M., Schoepfle, B.,
and Thimmapuram, P.: Simulating the Behavior of Electricity Markets With an Agent-
Based Methodology: the Electricity Market Complex Adaptive System (EMCAS) Model,
Proceedings of the 22nd International Association for Energy Economics International
Conference, Published on CD-ROM, Vancouver, British Columbia, Canada (October 2002)

29. Bonabeau, E.: Agent-Based Modeling: Methods and Techniques for Simulating Human
Systems Proceedings of the National Academy of Sciences of the USA, Vol. 99, Suppl.
3, National Academy of Sciences of the USA, Washington, DC, USA (May 14, 2002)
7280-7287

30. Ebben, M., De Boer, L., and Pop Sitar, C.: Multi-Agent Simulation of Purchasing
Activities in Organizations, Proceedings of the 2002 Winter Simulation Conference, Vol.
2, IEEE, Piscataway, New Jersey, USA (Dec. 8-11, 2002) 1337-1344

31. North, M., Macal, C., and Campbell, A.: Oh Behave! Problem Solving Environments for
Agent Behavioral Simulation, International Journal of Future Generation Computer
Systems, Elsevier, San Diego, California, USA (Accepted Jan. 2004)

32. Supercluster Research and Development Group: HPC Workload/Resource Trace Repository,
Available as http://www.supercluster.org/research/traces/index.shtml (May 2004)

33. Booch, G.: Object-oriented Design with Applications 2nd ed., Addison-Wesley, Boston,
Massachusetts, USA (1993)

34. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, Massachusetts, USA (1995)

35. Foxwell, H.: Java 2 Software Development Kit, Linux Journal, Specialized Systems
Consultants, Seattle, Washington, USA (Oct. 1999)

36. Freeman-Benson, B., and Borning, A.: Practitioners Report: Experience in Developing the
UrbanSim System: Tools and Processes, Companion of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
ACM, New York, New York (Oct. 2003)

37. Walker, R., Baniassad, E., and G. Murphy: An Initial Assessment of Aspect-oriented
Programming, Proceedings of the 1999 International Conference on Software Engineering,
IEEE, Piscataway, New Jersey, USA (May 16-22, 1999) 120-130

38. Gülcü, C.: Log4j Delivers Control Over Logging, Java World, Online Magazine Available
as http://www.javaworld.com/, IDG, San Francisco, California, USA (Nov. 2000)

39. Beck, K., and Gamma E.: Test Infected: Programmers Love Writing Tests, Java Report,
vol. 3, issue 7, 101 Communications, Chatsworth, California, USA (1998) 37-50

40. Fogel K., and Bar, M.: Open Source Development with CVS, 2nd ed., Coriolis, Scottsdale,
Arizona, USA (2000)

41. Barowski, L.: Visualizing Graphs with Java Library, Auburn University, Available as
http://www.eng.auburn.edu/department/cse/research/graph_drawing/graph_drawing.html
(Jan. 2004)

42. Fruchterman, T., and Reingold, E.: Graph Drawing by Force Directed Placement, Journal
of Software: Practice and Experience, Vol. 21, No. 11, Wiley, New York, New York, USA
(1991) 129-1164

43. Flich, J., Malumbres, M., Lopez, P., and Duato, J.: Improving Routing Performance in
Myrinet Networks, Proceedings of the 14th International Parallel and Distributed
Processing Symposium, IEEE, Piscataway, New Jersey, USA (May 1-5, 2000) 27-32

44. Baik, S., Hood, C., and Gropp, W.: Prototype of AM3: Active Mapper and Monitoring
Module for the Myrinet Environment, Proceedings of the 27th Annual IEEE Conference on
High Speed Local Networks, IEEE, Piscataway, New Jersey, USA (Nov. 6-8, 2002) 703-707

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 114 – 129, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Formal Analysis of Meeting Protocols

Catholijn M. Jonkera,1, Martijn Schuta, Jan Treura,b, and Pınar Yoluma,2

a Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{jonker, schut, treur, pyolum}@few.vu.nl

b Universiteit Utrecht, Department of Philosophy,
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

Abstract. Organizations depend on regular meetings to carry out their everyday
tasks. When carried out successfully, meetings offer a common medium for
participants to exchange ideas and make decisions. However, many meetings
suffer from unfocused discussions or irrelevant dialogues. Within Social
Science sometimes general, informal meeting guidelines are formulated. To
study meetings in detail, we first formalize general properties for meetings and
a generic meeting protocol for the role interactions in meetings that is coherent
with such guidelines. In the context of a case study, an example meeting is
simulated based on this protocol. The properties are verified in this simulated
trace. These properties are also validated by verifying them against a
formalisation of empirical data of a real meeting in the same context. A
comparison of the two traces reveals that a real meeting is more robust in the
sense exception violations of the protocol may occur, and these exceptions
are handled effectively without damaging the success of the meeting. Given this
observation, a more refined protocol is specified that includes exception-
handling strategies. Based on this refined protocol a meeting is simulated that
closely resembles the real meeting.

1 Introduction

Meetings are an integral part of every day life. Meetings are important tools in most
organizations to structure decision processes and to disseminate information
throughout the organization. Typically the members of a group come together on a
regular basis to inform each other of new developments, to discuss problems, and
propose solutions. While many organizations depend on face-to-face meetings, it is
notoriously difficult to hold a focused and an effective meeting. There is an abundant
literature on guidelines on how to carry a successful meeting [7, 1]. These guidelines
are rather informal, which makes it hard to put into practice and hard to evaluate.

This paper formalizes a domain-independent meeting protocol that can be used in
various meetings. The formalization captures many intuitive ideas that are also

1 Currently at: Division of Cognitive Engineering, NICI, Nijmegen, The Netherlands, C.Jonker@nici.ru.nl.
2 Currently at: Department of Computer Engineering, Bogazici University, Bebek, Istanbul, Turkey,

pyolum@cmpe.boun.edu.tr

 that

 Formal Analysis of Meeting Protocols

115

mentioned in meeting guidelines, hence is compatible with most meeting guidelines.
The formalization captures actions that need to be carried out by participants as well
as constraints that each participant has to satisfy. The main aim of this work is to
understand how meeting protocols are carried out, by understanding the different
flows that take place in meetings. To achieve this, we study the meeting protocol
with an empirical trace as well as with a simulated trace and analyze various
properties. The empirical trace is based on observations of a real meeting. The
simulated trace is generated in a simulation environment where agents are assumed to
follow the meeting protocol strictly. We compare the two traces in terms of desirable
properties. Desirability is defined from the perspective of the attendees; it is the desire
to let the meeting go as quickly as possible, to be fair to all attendees (chance to speak
if they want to), necessary items are discussed, etcetera.

The rest of this paper is organized as follows. Section 2 develops the formal
generic meeting protocol. Section 3 studies a generic meeting trace based on the
formalized protocols. Section 4 introduces an empirical trace of a real meeting.
Section 5 analyzes both traces formally in terms of desired properties. Section 6
provides a revised protocol and a simulation of the enhanced protocol. Section 7
discusses the relevant literature in comparison to this work.

2 Meetings Formalized

In this section a formalization of the organization of a meeting is presented:
organizational structure (Section 2.1), dynamic properties for the overall process
(Section 2.2.1), and a protocol for role interactions (Section 2.2.2).

2.1 Organizational Structure

Consider a typical meeting that contains a chairperson, a secretary, and a number of
participants. A common form to structure meetings is the following. A Chairperson
chairs every meeting. The Secretary takes minutes of the meeting. Taking minutes
means writing down the arguments presented by the Participants of the meeting, as
well as the decisions made. Chairing a meeting means opening and closing a meeting,
making sure that people are talking one at a time, and that only the current issue is
discussed. The decision process differs according to the customs and/or agreements in
the group. Common decision procedures are decision by consensus, decision by
majority, and decision by the Chairperson. A question to be addressed is how
dynamic properties describing such a protocol can be identified.

2.2 Organizational Behavior

Dynamic properties characterizing an organizational behavior can be specified at
different levels: at the level of the organization as a whole, at the level of interactions
between roles (interaction protocol), and at the level of roles. We define an
organization property as a characteristic that is exhibited by an organization as a
whole. Such a property holds in an organization as a result of the individuals. The
organization in this case is the meeting as a whole.

C.M. Jonker et al.

116

2.2.1 Organizational Behavior Properties
For the organisation of a meeting a number of organization properties can be
identified. As an example the following property expresses that no two participants
speak at the same time. In this and the following properties, communicates_
from_to(p, q, x, y) denotes that p communicates to q the communicative act x with the
content y. For this paper, we consider two types of communicative acts, mainly
inform and declare. Only when the communicative act x is a “declare” act, then the
receiver q is dropped meaning that the message is sent to everyone. For the sake of
simplicity, we assume that messages always reach their destination. For an
explanation of the formal language TTL used, see [3,4].

Organizational Property 1 (OP1)
Informal
During the meeting only one Participant is speaking at a time.
Semiformal
At any point in time,
if any participant is speaking,
then all other participants are not speaking
Formal
∀t, p, p’ :PARTICIPANT, q, q’ :ROLE, x, x’, y, y’

p ≠ p’ & state(γ, t, output(p)) |= communicates_from_to(p, q, x, y) ⇒
state(γ, t, output(p’)) |≠ communicates_from_to(p’, q’, x’, y’)

To express the properties the following abstractions have been introduced for agenda
item, current agenda item and addressed agenda item.

Abstraction: agenda item
Informal
An agenda item is an item that was declared to be an agenda item and not retracted
since then
Semiformal
Item i is an agenda item if at some point in time it was declared to be so,
and since then it was not declared that it is no agenda item
Formal
agenda_item_at(γ, i, t) =
∃ m:CHAIR, t' ≤ t
state(γ, t', output(m)) |= communicates_from_to(m, declare, agenda_item(i)) &
∀t" t' < t"< t state(γ, t", output(m)) |≠ communicates_from_to(m, declare,
not_agenda_item(i))

Abstraction: current agenda item
Informal
A current agenda item is one that was opened but not yet closed.
Semiformal
An agenda item is a current item if and only if
Some time ago the Chairperson declared that item to be the current item
And since then the Chairperson did not declare the item closed.

 Formal Analysis of Meeting Protocols

117

Formal
current_agenda_item_at(γ, i, t) =
∃m:CHAIR, t' ≤ t
state(γ, t', output(m)) |= communicates_from_to(m, declare, opened(i)) &
∀t" [t' < t"< t ⇒ state(γ, t", output(m)) |≠ communicates_from_to(m, declare,
closed(i))]

Abstraction: addressed agenda item
Informal
An agenda item has been addressed if it was opened and closed during the meeting.
Semiformal
An agenda item has been addressed if and only if
for every time point that the chairperson has opened the item, at a later time point she
declared the item closed
Formal
addressed_agenda_item_at(γ, i, t) =
∃ m:CHAIR, t1≤t state(γ, t1, output(m)) |= communicates_from_to(m, declare,
opened(i)) &
∀t2≤t state(γ, t2, output(m)) |= communicates_from_to(m, declare, opened(i))
⇒ ∃t3 t2≤t3≤t &
state(γ, t3, output(m)) |= communicates_from_to(m, declare, closed(i))

OP2
Informal
During the meeting only agenda items are addressed.
Semiformal
At any point in time t,
if the item i is opened
then i is an agenda item
Formal
∀t, i, p, q, x, y ∀m:CHAIR
state(γ, t, output(m)) |= communicates_from_to(m, declare, opened(i))
⇒ agenda_item_at(γ, i, t)

OP3
Informal
Every Participant who indicates that he has something to say on the current agenda
item will have the opportunity to speak.
Semiformal
At any point in time t,
if a participant communicates that he has something to say about the current
agenda item i
then before the item was closed a later time point exists such that at t’ the
participant communicates something in the context of i
Formal
∀t, I, p:PARTICIPANT, q:ROLE current_agenda_item_at(γ, i, t)
&
state(γ, t, output(p)) |= communicates_from_to(p, q, inform, has_input_for(p, i))
⇒

C.M. Jonker et al.

118

∃t’ ≥ t, x
state(γ, t’, output(p)) |= communicates_from_to(p, q, inform,x)
& is_in_context_of(x, i)

The notion of being in context of is assumed to be a given notion.

OP4
Informal
Eventually the meeting is closed.
Semiformal
At some point in time the chairperson declares the meeting closed
Formal
∀m:CHAIR ∃t state(γ, t, output(m)) |= communicates_from_to(m, declare,
meeting_closed)

OP5
Informal
If the meeting is closed, all agenda items have been addressed.
Semiformal
At any point in time,
if the meeting is declared closed,
then for any item i that was on the agenda there are earlier time points at which item i
was declared opened and closed
Formal
∀t, i, m:CHAIR

state(γ, t, output(m)) |= communicates_from_to(m, declare,
meeting_closed) & agenda_item_at(γ, i, t) ⇒

addressed_agenda_item_at(γ, i, t)

OP6
Informal
No two items are current at the same time.
Semiformal
At any point in time t,
if item i is current at t,
and item i' is current at t,
then i = i'
Formal
∀t, i, i'
current_agenda_item_at(γ, i, t) & current_agenda_item_at(γ, i', t) ⇒ i = i'

OP7
Informal
If a participant is speaking, then she is speaking on the current item.
Semiformal
At any point in time t,
if at t the item i is current agenda item
 and at t any participant is communicating X,
then X fits in item i

 Formal Analysis of Meeting Protocols

119

Formal
∀t, i, p, q :ROLE, x, y
current_agenda_item_at(γ, i, t) & state(γ, t, output(p)) |= communicates_
from_to(p, q, x, y)
⇒ is_in_context(y, i)

OP8
Informal
The meeting starts and ends in time.
Semiformal
The meeting starts at the planned starting time
and ends before the planned end time

Formal
∀m:CHAIR ∀t1 [planned_starting_time(t) ⇒
state(γ, t1, output(m)) |= communicates_from_to(m, declare,
meeting_opened))] &
∀t2, t3 state(γ, t2, output(m)) |= communicates_from_to(m, declare,
planned_end_time(t3)) ⇒
∃t4 ≤ t3 state(γ, t4, output(m)) |= communicates_from_to(m, declare,
meeting_closed))

OP9
Informal
Every communication in the meeting is received by everyone
Semiformal
At any point in time,
if a participant communicates something to another one,
then this communication will be received by everyone
Formal
∀t, p, q , q':ROLE, x, y
state(γ, t, output(p)) |= communicates_from_to(p, q, x, y) ⇒
∃t'≥t state(γ, t, input(q')) |= communicates_from_to(p, q', x, y)

OP10
Informal
The secretary will make minutes of the meeting
Semiformal
if an agenda item is closed,
then notes for the minutes on this item have been made by the Secretary
Formal
∀t, i ∀m:CHAIR
state(γ, t, output(m)) |= communicates_from_to(m, declare, closed(i)) ⇒
state(γ, t, EW) |= notes_present_for_by(i, Secretary)

OP11
Informal
The internal state property of the chairperson indicating that i is being discussed
holds precisely then when i is a current agenda item

C.M. Jonker et al.

120

Semiformal
if an agenda item is closed,
then notes for the minutes on this item have been made by the Secretary
Formal
∀t, i ∀m:CHAIR
current_agenda_item_at(γ, i, t) ⇔
state(γ, t, internal(m)) |= being_discussed(i)

2.2.2 Role Interaction Properties: The Generic Meeting Protocol
A number of role interaction properties have been specified to define a generic
interaction protocol for a meeting. Here role interaction properties can also be seen as
constraints on agents’ interactions.

RI1 If the Chairperson generates a question (which implies a permission to
speak) to a Participant, then a little time later the Participant generates an
answer.

Formal
∀m:CHAIR, p:PARTICIPANT ∀t
[state(γ, t, output(m)) |= communicates_from_to(m, p, request, q)) &
not ∃ x state(γ, t', output(p)) |= communicates_from_to(p, m, inform, x)]
∃t' > t state(γ, t', output(p)) |= communicates_from_to(p, m, inform,
answer_on(a, q)))

RI2 If a Participant requests to add an item to the agenda,
then the Chairperson communicates this to all Participants.

Formal
∀m:CHAIR, p:PARTICIPANT ∀t
state(γ, t, output(p)) |= communicates_from_to(p, m, request,
agenda_item(i)))
⇒
∃t' > t state(γ, t', output(m)) |= communicates_from_to(m, declare,
agenda_item(i)))

Notice that it is not difficult to express in these properties within how many seconds a
reaction should be given. For simplicity this has been left out.

RI3 If the Chairperson generates a permission to speak for a Participant,
then that Participant will begin speaking on the current agenda item.

Formal
∀m:CHAIR, p:PARTICIPANT ∀t
state(γ, t, output(m)) |= communicates_from_to(m, p, permit, speak)) &
current_agenda_item(i)
⇒ ∃t' > t, y
state(γ, t', output(p)) |= communicates_from_to(p, m, inform, y) &
is_in_context_of(y, i)

 Formal Analysis of Meeting Protocols

121

RI4 If the Chairperson revokes the permission to speak from a Participant while
that Participant is still speaking, then that Participant will stop speaking
immediately.

Formal
∀t, i ∀m:CHAIR, p:PARTICIPANT
state(γ, t, output(m)) |= communicates_from_to(m, p, revoke, i)
& state(γ, t, output(p)) |= communicates_from_to(p, x, y, i)
⇒ ∀x’, y’, z’ state(γ, t+1, output(p)) |≠ communicates_from_to(p, x’, y’, z’)

RI5 If all Participants who at an earlier point in time have indicated that they
have information or a question regarding the current item, have put forward
their information,
then the Chairperson asks each Participant in turn whether he has further
information on the current item.

Formal
∀t, i ∀m:CHAIR
 [∀p:PARTICIPANT [∃t”≤t state(γ, t”, output(p)) |= communicates_from_to(p,
m, inform, has_input_for(i)) ⇒
∃t’’’≤t, y state(γ, t’’’, output(p)) |= communicates_from_to(p, m, inform, y) &
is_in_context _of(y, i)]]
⇒ ∃ t'≥t state(γ, t, output(m)) |= communicates_from_to(m, request,
further_info_on(i))

RI6 If the Chairperson has declared an agenda item closed, and not all items
have been treated, then the Chairperson will announce one of the remaining
items as the current item.

Formal
∀t, i ∀m:CHAIR
state(γ, t, output(m)) |= communicates_from_to(m, declare, meeting_closed)
& ∃i agenda_item_at(γ, i, t) & not addressed_agenda_item_at(γ, i, t)
⇒ ∃i, t'≥t agenda_item_at(γ, i, t) & not addressed_agenda_item_at(γ, i, t) &
state(γ, t’, output(m)) |= communicates_from_to(m, declare, opened(i))

RI7 If the Chairperson has declared the meeting opened,
then the Chairperson will announce the proposed end time.

Formal
∀t, i ∀m:CHAIR
state(γ, t, output(m)) |= communicates_from_to(m, declare, meeting_opened)
⇒ ∃t'≥t, t” state(γ, t’, output(m)) |= communicates_from_to(m, declare,
planned_end_time(t”))

RI8 If the Chairperson has proposed an end time,
then the Chairperson will announce the agenda items.

∀t, t", i ∀m:CHAIR
state(γ, t, output(m)) |= communicates_from_to(m, declare, planned_
end_time(t”)) &
agenda_item_at(γ, i, t)

C.M. Jonker et al.

122

⇒ ∃t'≥t state(γ, t, output(m)) |= communicates_from_to(m, declare,
agenda_item(i))

RI9 If the Chairperson has announced all agenda items,
then the Chairperson will ask if any Participant has another agenda item.

∀t, t", i ∀m:CHAIR
∀i [agenda_item_at(γ, i, t) ⇒
∃t’< t state(γ, t’, output(m)) |= communicates_from_to(m, declare,
agenda_item(i))]
⇒ ∃t”≥t state(γ, t”, output(m)) |= communicates_from_to(m, request,
other_items)) &

RI10 If the Chairperson has declared the last agenda item closed and 10sec has
passed,
then the Chairperson will close the meeting.

∀t, t", i ∀m:CHAIR, ∀i [agenda_item_at(γ, i, t) ⇒
∃t’≤ t state(γ, t’, output(m)) |= communicates_from_to(m, declare, closed(i))]
&
∃i [agenda_item_at(γ, i, t) &
state(γ, t, output(m)) |= communicates_from_to(m, declare, closed(i))] &
⇒ ∃t”≥t t” < t + 10
state(γ, t”, output(m)) |= communicates_from_to(m, declare,

meeting_closed))

RI11 If all Participants have answered that they have no further information on the
current item,
then the Chairperson provides a summary and declares the item closed.

Formal
∀t, i ∀m:CHAIR
[∀p:PARTICIPANT state(γ, t, output(p)) |= communicates_from_to(p, m,
inform, no_further_info_on(i))]
⇒ ∃ t'≥t state(γ, t, output(m)) |= communicates_from_to(m, declare,
summary(i)) &
state(γ, t, output(m)) |= communicates_from_to(m, declare, closed(i))

3 Simulating a Meeting Based on the Generic Meeting Protocol

The simulations of interest are generated using a logic-based simulation environment.
Using this environment, executable temporal rules are specified so that the simulation
environment can generate a trace, for more details see [3]. These executable temporal
rules are executed based on the current status of the world, without regard to the past.
A generated trace describes which state properties related to the protocol hold at each
time point. The generated traces can then be analyzed with an automated logic-based
checker. This checker takes as input a property of interest about the trace and
logically validates the property by the trace. If the property holds in the trace, the
checker outputs ‘success’ otherwise it outputs ‘fail’.

 Formal Analysis of Meeting Protocols

123

We consider a simulation of an example meeting on the topic of study groups.
These simulations consist of one chairperson (referred to as chair) and three
participants (referred to as p1, p2, and p3). The agenda items are about particular
study groups, hence named as group_1, group_2, and so on. For each of the
agenda items one of the participants is the contact person, who is asked to speak if the
agenda item is opened.

Simulation as discussed here is based on the formal specification of the generic
meeting protocol, which was developed based on the meeting guidelines discussed
above. The simulation follows the protocol but here we give a brief overview of the
trace. The simulation starts by the chairperson declaring the desired end time
(proposed_end_time) for the meeting. Next, the chairperson announces the
agenda items one by one (agenda_item). Next, the chairperson asks for further
additions to the agenda. Participant p1 suggests a new item (schedule), which is
also added to the agenda. Once the agenda is finalized, the chair opens the first item
(group_1) for discussions. The chairperson requests information from the
participant who is likely to have input on the current agenda item. After this
participant is done speaking, the chairperson asks the other participants to see if they
have further information for the topic (last_comments). Since no participant has
further input on the agenda item (group_1), the chairperson closes the agenda item
and opens the second item. This procedure repeats itself until the agenda item is
group_4. On this agenda item, when the chairperson asks for other comments from
the participants, participant p3 provides additional comments. Later the meeting is
continued as before. After the last agenda item is discussed, the chairperson declares
the meeting closed. A complete trace can be found in [3].

From a broad overview, the simulation described above has some differences from
our observations of real meetings. For this reason, we observed a real meeting and
obtained data on how it was carried out. These data were analyzed in some depth.

4 An Empirical Trace of a Real Meeting

An important part of the work presented here is based on empirical data. This data
was obtained through carefully observing a meeting in the Artificial Intelligence
Department of the Vrije Universiteit Amsterdam. Similar to the observation
techniques explained elsewhere [6], the observer sat apart from the meeting
participants and the chair. Two of the participants and the chair knew why the
observant was present, while a third participant did not.

The observer wrote down the conversations of the meeting in an informal
language. Later these informal texts were formalized to analyze and reason about the
meeting. Table 1 gives brief snapshots from this. For a complete formalized trace see
[3]. The left column in the table provides the informal text and the right column gives
the formalized states.

We briefly explain the differences from the simulated meeting trace in Section 5.
The trace again starts with the chairperson announcing a desired end time for the
meeting (proposed_end_time). The chairperson announces the agenda items but
does not explicitly ask for additions to the agenda. After the chair opens an agenda item
and receives input on the item, she closes the item when she sees fit. Compared to the

C.M. Jonker et al.

124

generic meeting protocol described in Section 2.2.2, the difference here is that the chair
does not explicitly ask for further input from the participants. Complementing this is a
change in the role behavior of participants. Whereas in the meeting simulated according
to the generic protocol (Section 3), a participant speaks only when permission is given,
in the real meeting participants take the initiative to speak up without being asked. The
interesting question then is how these different behaviors affect the outcome of the
meetings? Do the desired properties of interest hold for both cases? Does one trace have
advantages over the other one? We discuss these questions next.

Table 1. The transition from informal statements to formal states

 Informal Description Formal State
…

2 C: We will talk about the regular
agenda

communicates_from_to(chair, declare, agenda_item(group_1)
communicates_from_to(chair, declare, agenda_item(group_2)
communicates_from_to(chair, declare, agenda_item(group_3)
communicates_from_to(chair, declare, agenda_item(group_4)
communicates_from_to(chair, declare, agenda_item(group_5)

…

8 C: Mike any inputs for group_2 communicates_from_to(chair, p1, request, group_2)

9 Mike gives an explanation on
group_2

communicates_from_to(p1, chair, inform, group_2)

10 Mike complains about lecture
notes

communicates_from_to(p1, chair, inform, notes)

11 C: This is not the right time for
that.

communicates_from_to(chair, p1, revoke, notes)

12 C: Let’s move on communicates_from_to(chair, declare, close(group_2))

…

20 C: Let’s move on communicates_from_to(chair, declare, close(group_4))

21 C: Group_5 communicates_from_to(chair, declare, open(group_5))

22 C: Tim, any inputs for group_5 communicates_from_to(chair, p2, request, group_5)

23 Tim speaks more on group_4 communicates_from_to(p3, chair, inform, group_4)
communicates_from_to(chair, declare, open(group_4))

24 C: We talked enough on group_4 communicates_from_to(chair, p3, revoke, group_4)
communicates_from_to(chair, declare, close(group_4))

25 C: Group_5 communicates_from_to(chair, declare, open(group_5))

…

32 C: OK, we are done now. communicates_from_to(chair, declare, close(schedule))

33 C: Same time, next week communicates_from_to(chair, declare, meeting_closed)

5 Formal Analysis of Simulated Trace and Empirical Trace

We analyzed the traces generated by these simulations in terms of the organization
properties defined above, for more properties see [3]. To do so, the organization
properties of Section 2 (and more) have been entered into the checker and
automatically checked against each trace.

 Formal Analysis of Meeting Protocols

125

5.1 Analysis of the Simulated Meeting

The meeting simulated according to the generic protocol (Sections 2 and 3) satisfies
the first organization property (OP1) which states that no two participants speak at the
same time. This is intuitive since participants speak only when given permission. In
this simulation, the chair ensures that only one participant has the permission to
speak. Hence, the property holds. The second property (OP2) is on the agenda items
that were talked. The role interaction RI6 specifies that once an agenda item is closed,
then the chair chooses a new item from the agenda. Hence, it is always the case that
the chairperson will open an existing agenda item. This explains why OP2 holds for
this trace as well.

OP3 is satisfied for this trace because before closing each topic the chairperson asks
for further comments from the participants. Hence, anyone who declares an intention to
speak will get a change to speak. Organization property OP4 states that the meeting is
eventually closed. This will always hold for a meeting based on the generic meeting
protocol as long as the number of items on the agenda as well as the duration of
comments on the items is finite. OP5 ensures that no meeting ends prematurely; that is
if the meeting ends, then all agenda items have been discussed. In the specification of
the meeting, the only way to close a meeting is when the meeting items have been
discussed. OP6 states that no two items are open at the same time. This holds for this
trace again due to role interaction RI6. A chairperson will open a new agenda item only
if the previous item is closed. Organization property OP7 states that if a participant is
speaking then she is speaking on the current item. This follows from the fact that the
chairperson will only allow a participant to speak on the current item (RI3).
Organization property (OP8) states that meeting start and end on time. This property
holds for this trace since the first thing in the traces there is a declaration of intended
start and end times of the meeting and that the meeting takes place between these time
points. However, in general this property may have conflicts with OP3.

5.2 Analysis of the Empirical Data of the Real Meeting

While the generic meeting protocol obediently obeys the organization properties, the
real meeting trace violates some of them. To avoid repetition, only the properties that
are violated are discussed here.

The first interesting situation happens during the discussion of item group_3. The
chairperson requests information from p2 on the item. The participant p2 speaks with
short breaks (stammer), which influences one of the other participants (p3) to help
p2 with his speech (complete). Notice that this is not part of the generic protocol
and in general no participant has to help other participants. To be able to generate this
behavior, we added an extra role interaction property to the simulation so that
participant p3 would help p2. Participant p3's helping p2 is constructive in that it
allows p2 to formulate his thoughts. Ironically, this situation disobeys one of the
desired organization properties of meetings; namely OP1 which states that no two
participants at a meeting should speak at the same time.

After a chair person requests information from a participant, the participant
provides the required information. In some cases, it could also be the case that the
participant provides information that is not relevant to the request of the chairperson.
One such example happens during the discussion of item group_2 (see lines 7-12).
After giving feedback on group_2, participant p1 starts speaking on a topic

C.M. Jonker et al.

126

(notes) that is out of the scope of group_2. This is an example of impromptu
interruption from participants that sometimes happen. This behavior of p1 causes the
violation of the organization property OP7, which says that participant speak on
current agenda items only. While this behavior of the participant is not part of the
generic interaction protocol, a method for recovering from such a situation is followed
in the meeting. Hence, the chair person can first revoke the permission from
participant p1 and then continue with the protocol.

Contrary to the generic protocol, in this simulation the chairperson does not
request further input from other participants before closing an agenda item. One
interesting consequence is that after the discussion of item group_4, the chairperson
closes the agenda item (line 20). However, there is still a participant who is willing to
speak more on the item. Hence, this participant (participant p3) continues speaking
about group_4, even though the item has been closed and a new item has been open
(line 23). This point in time is interesting because in reality both agenda items are
current. Item group_5 is current because it has been declared as open and not closed
by the chairperson. While group_4 is also current, since one participant is talking
about this item. Hence, another organization property, property OP6 is violated since
there are two current items at the same time. However, this failing of this property
does not halt the system. The meeting handles this exception in the sense that the
chair person in this case lets the participant finish and then re-closes the item
group_4 and reopens the item group_5 (in lines 24 and 25).

6 Refined Protocol and Simulation

As shown in the analysis in Section 5, a real meeting (such as the one described in
Section 3) may deviate from a meeting correctly following the protocol (such as the
simulated meeting in Section 4) in the following ways:

• sometimes, by exception, protocol properties are violated by one of the members
• strategies are employed to handle these exceptions and get the meeting on the

right track again

One of the reasons that these exceptions occur is the fact that human agents are
not ideal and may forget things. In practice members are able to accept these
shortcomings and to recover from them. To this end a number of exception handling
strategies are used. This can be considered a more sophisticated way of working than
just by following the protocol. An interesting question is whether the generic meeting
protocol can be refined by including such exception handling strategies to provide a
more robust protocol. This question is discussed in the current section.

To experiment with a refined protocol, using the formal states given for the
empirical trace, a second simulation was developed, where a number of the properties
for the simulation (as used in Section 3) were adapted to reconstruct the empirical
trace as precisely as possible. The generated trace indeed closely resembles our
observations of the real meeting described in Section 4. For example, the exception of
the participant speaking on notes while the current agenda item is group_2, is now
handled realistically in the simulation: the chairperson first revokes the permission
from participant p1 and then continues with the protocol. Moreover, now also the
simulated meeting can handle the exception that during an item i1 a participant wants
to add to an already closed agenda item i2. The strategy was added that for such an

 Formal Analysis of Meeting Protocols

127

exception the chairperson returns to the earlier agenda item i2, lets the participant
finish and then re-closes the item i2 and reopens the item i1. The following properties,
that can be considered part of such a refined protocol, were used to obtain this:

RI1 If after a new agenda item was opened and not yet closed, a Participant speaks on
an earlier addressed agenda item,

 then the Chairperson closes the current agenda item and reopens the earlier item.
Formal
∀t, i1,i2 ∀m:CHAIR, p:PARTICIPANT
[current_agenda_item_at((γ, i2, t) &
addressed_agenda_item_at(γ, i1, t) &
state(γ, t, output(p)) |= communicates_from_to(p, m, inform, y) &
in_context_of(i1)]
⇒ ∃ t”≥t state(γ, t”, output(m)) |= communicates_from_to(m, declare,
closed(i2)) &
state(γ, t”, output(m)) |= communicates_from_to(m, declare, opened(i1))

RI2 If a Participant speaks on an item other than the current agenda item or any
earlier addressed agenda item,
then the Chairperson revokes the Participant and asks for additional comments on
the current agenda item from the other participants.

Formal
∀t, i2 ∀m:CHAIR, p:PARTICIPANT, y
[state(γ, t, output(p)) |= communicates_from_to(p, m, inform, y) &
not ∃i1 addressed_agenda_item_at(γ, i1, t) & in_context_of(y, i1)]
⇒ ∃ t”≥t state(γ, t”, output(m)) |= communicates_from_to(m, p, permission,
revoke) &

∀q state(γ, t”, output(m)) |= communicates_from_to(m, q, request,
info_on(i1))

Using these properties, a new trace was generated that shows how participants can
accommodate these exceptions. More information on this trace can be found in [3].

7 Discussion

In this paper a generic role interaction protocol for meetings that adhere to several
guidelines on holding meetings was formalized, using the logical language TTL; cf. [3].
Moreover, desirable overall properties for a meeting were formally specified. In a case
study in terms of the desirable overall properties of a meeting, an empirical trace was
compared with a simulated trace generated from the given meeting protocol. Based on
deviations revealed in this comparison, a more human-like refined protocol was specified
and used as a basis for another simulation, closely resembling the empirical data.

Croston and Goulding present one of the earlier empirical works on meeting
effectiveness [2]. Croston and Goulding develop a meeting analysis kit that is used in
different departments of a company by the participants of the meeting. The kit enables
the participants to re-evaluate a past meeting by analyzing the discussed topics, the
time spent on each topic, and so on. Based on the analysis from different meetings,
Croston and Goulding observe that the starting a meeting with a formal agenda and

C.M. Jonker et al.

128

better chairing of the meetings increase the effectiveness of meetings. The meeting
protocol that we propose respects both of these observations. Further, we explicitly
formalize the notion of better chairing a meeting.

Table 2. Simulation trace based on the refined protocol

internal(chair)|agenda_being_discussed
internal(chair)|being_discussed(group_1)
internal(chair)|being_discussed(group_2)
internal(chair)|being_discussed(group_3)
internal(chair)|being_discussed(group_4)
internal(chair)|being_discussed(group_5)
internal(chair)|being_discussed(schedule)
output(chair)|communicates_from_to(chair, declare, meeting_closed)
output(chair)|communicates_from_to(chair, declare, meeting_opened)
output(chair)|communicates_from_to(chair, declare, agenda_item(group_1))
output(chair)|communicates_from_to(chair, declare, agenda_item(group_2))
output(chair)|communicates_from_to(chair, declare, agenda_item(group_3))
output(chair)|communicates_from_to(chair, declare, agenda_item(group_4))
output(chair)|communicates_from_to(chair, declare, agenda_item(group_5))
output(chair)|communicates_from_to(chair, declare, agenda_item(schedule))
output(chair)|communicates_from_to(chair, declare, closed(group_1))
output(chair)|communicates_from_to(chair, declare, closed(group_2))
output(chair)|communicates_from_to(chair, declare, closed(group_3))
output(chair)|communicates_from_to(chair, declare, closed(group_4))
output(chair)|communicates_from_to(chair, declare, closed(group_5))
output(chair)|communicates_from_to(chair, declare, closed(schedule))
output(chair)|communicates_from_to(chair, declare, opened(group_1))
output(chair)|communicates_from_to(chair, declare, opened(group_2))
output(chair)|communicates_from_to(chair, declare, opened(group_3))
output(chair)|communicates_from_to(chair, declare, opened(group_4))
output(chair)|communicates_from_to(chair, declare, opened(group_5))
output(chair)|communicates_from_to(chair, declare, opened(schedule))
output(chair)|communicates_from_to(chair, declare, planned_end_time(120))
output(chair)|communicates_from_to(chair, declare, planned_start_time(1))
output(chair)|communicates_from_to(chair, p1, request, group_1)
output(chair)|communicates_from_to(chair, p1, request, group_2)
output(chair)|communicates_from_to(chair, p1, request, schedule)
output(chair)|communicates_from_to(chair, p1, revoke, notes)
output(chair)|communicates_from_to(chair, p2, request, group_3)
output(chair)|communicates_from_to(chair, p2, request, group_4)
output(chair)|communicates_from_to(chair, p3, request, group_5)
output(chair)|communicates_from_to(chair, p3, revoke, group_4)
output(p1)|communicates_from_to(p1, chair, inform, group_1)
output(p1)|communicates_from_to(p1, chair, inform, group_2)
output(p1)|communicates_from_to(p1, chair, inform, notes)
output(p1)|communicates_from_to(p1, chair, inform, schedule)
output(p1)|communicates_from_to(p1, chair, request, schedule)
output(p2)|communicates_from_to(p2, chair, inform, group_3)
output(p2)|communicates_from_to(p2, chair, inform, group_4)
output(p2)|communicates_from_to(p2, chair, stammer, group_3)
output(p2)|communicates_from_to(p2, chair, stammer, group_4)
output(p3)|communicates_from_to(p3, chair, inform, group_4)
output(p3)|communicates_from_to(p3, chair, inform, group_5)
output(p3)|communicates_from_to(p3, p2, complete, group_3)
output(p3)|communicates_from_to(p3, p2, complete, group_4)

 time 0 20 40 60 80

 Formal Analysis of Meeting Protocols

129

Serman and Basili study various properties of software inspection meetings in a
software development project [6]. Although these types of meetings are different from
the ones presented here, their and our procedures for meeting analysis have similarities.
Similar to the generation of the empirical trace here, Serman and Basili collect data by
attending inspection meetings as an observant. They later analyze their data statistically
to uncover causal relations between various properties of the meeting, such as
effectiveness, efficiency, or meeting length. While Serman and Basili discover
interesting relations, they do not provide a formal protocol of how the meetings should
be carried out as we have done here. Since our study uses simulations, we can easily
adjust different behaviors of participants to see the effect of (local) properties of
participants of a meeting on the (global) properties of the meeting as a whole.

Generally, the group-support systems help participants share data, improve
communication, and reach decisions. Hence, group-support systems can help increase
the efficiency of meetings. Niederman et al. study the meetings in organizations with
group-support systems [5]. Their primary focus is to show how the use of group-
support systems by facilitators affects meeting performances. Through interviews
with facilitators, Niederman et al. observe that different facilitators have different
ideas on measuring performance. However, no formal properties for identifying or
bringing out successful meetings are identified.

Given the informal literature as discussed, the work reported in the current paper
contributes some first steps in formal analysis of meetings. It is shown how meeting
simulations following widely accepted guidelines in a rigid manner, do not resemble
human meetings, which exploit more sophisticated strategies. It is pointed out how
this discrepancy can be overcome by allowing by exception violations of the protocol,
and by including exception handling mechanisms and strategies within the protocol.
Future research will address this theme further.

References

1. James L. Creighton. Using Group Process Techniques to Improve Meeting Effectiveness.
URL: http://www.effectivemeetings.com/teams/teamwork/creighton.asp

2. J. D. Croston and H. B. Goulding. The Effectiveness of Communication at Meetings: A
Case Study. Operational Research Quarterly, Vol.17. No.1, pp. 47-57, March 1966.

3. Catholijn M. Jonker, Martijn Schut, Jan Treur, and Pinar Yolum. Formal Analysis of
Meeting Protocols. Vrije Universiteit Amsterdam, Department of Artificial Intelligence.
Technical Report, 2004. Available at: http://www.few.vu.nl/~wai/Papers/TR2004-
meeting.pdf

4. Catholijn M. Jonker and Jan Treur. Compositional Verification of Multi-Agent Systems: a
Formal Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative
Information Systems, vol. 11, 2002, pp. 51-92.

5. Fred Niederman, Catherine M. Beise, and Peggy M. Beranek. Issues and Concerns about
Computer-Supported Meetings: The Facilitator’s Perspective. MIS Quarterly, Vol.20, No.
1, pp. 1-22, March 1996.

6. Carolyn B. Serman and Victor R. Basili. Communication and Organization: An Empirical
Study of Discussion in Inspection Meetings. In IEEE Transactions on Software
Engineering, Vol.24, No. 6, pp. 559-572, July 1998.

7. Kevin Wolf. The Makings of a Good Meeting. October, 2002. Available at:
http://members.dcn.org/kjwolf

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 130 – 144, 2005.
© Springer-Verlag Berlin Heidelberg 2005

From KISS to KIDS
– An ‘Anti-simplistic’ Modelling Approach

Bruce Edmonds and Scott Moss

Centre for Policy Modelling,
Manchester Metropolitan University

http://cfpm.org

Abstract. A new approach is suggested under the slogan “Keep it Descriptive
Stupid” (KIDS) that encapsulates a trend in increasingly descriptive agent-
based social simulation. The KIDS approach entails one starts with the
simulation model that relates to the target phenomena in the most straight-
forward way possible, taking into account the widest possible range of
evidence, including anecdotal accounts and expert opinion. Simplification is
only applied if and when the model and evidence justify this. This contrasts
sharply with the KISS approach where one starts with the simplest possible
model and only moves to a more complex one if forced to. An example multi-
agent simulation of domestic water demand and social influence is described.

1 Introduction

The popular admonition to “Keep It Simple Stupid” or KISS, makes good sense if you
are designing or constructing something – that is, if one has a particular specification,
function or purpose in mind and one is trying to construct something appropriate. In
this context the advice makes sense in two ways: firstly, that the more complex
something is the less easy it is to control (and hence to make it do what one wants);
and, secondly, in circumstances where a particular design does not work that one
should resist elaborating it in an attempt to make it work but rather one should engage
in a more fundamental re-evaluation (since such elaboration seldom really works) [7].

However the KISS sentiment is often also applied to the business of modelling
some phenomena, e.g. with a simulation or a set of equations. So that even when
faced with obviously complex phenomena modellers strive to keep their models
simple, to an extent that is beyond any evident justification. The reasons for this are
varied, if often left implicit. There are obvious practical reasons for keeping a model
simple – this makes it easier to: implement; manipulate; analyse; check;
communicate, etc.. However, it is sometimes claimed (and often implied) that the
advantages of simplicity go beyond these practical values – that a simpler model is
more likely to be true; or gets closer to the essence of the matter. In other words, that
a simpler model is, in general, fundamentally better – it is this we are arguing against.

We suggest a new slogan: “Keep It Descriptive Stupid” or KIDS – which is
supposed to suggest the approach to modelling where one starts with a descriptive
model (which may be quite complex) and then only simplifies it where this turns out

 From KISS to KIDS 131

to be justified. This is in contrast to the KISS paradigm where one only tries a more
complex model if simpler ones turn out to be inadequate. Multi-agent based
simulation (MABS) not only facilitates the KIDS approach but epitomises it. Thus the
importance of the move towards MABS can be seen as part of a broader movement
away from unjustified abstraction in modelling – abstraction that is, since the advent
of accessible computational power, frequently unnecessary.

This can be seen as the encapsulation of a trend in some agent-based social
simulation work where relatively rich models are being developed, often in close
collaboration with relevant stakeholders. We do not have space here or the time for a
survey of such models, but point to some recent work, including many in: the journal
JASSS (http://jasss.soc.surrey.ac.uk); the recent ESSA (http://essa.eu.org) conference; and a
forthcoming special issue of Simulation on applications of agent-base social
simulation. Examples of work progressing in this direction include [2, 3, 15, 22, 23].

We necessarily can not deal with all the issues this paper raises – this would take a
book rather than a workshop paper. Thus this paper has to be more in the way of a
summary which passes over many of the arguments. We are forced to refer to our
previous work for many of these issues – these will provide a more adequate entrance
to the relevant literatures. We apologise for this. Thus for more on the meaning and
definition of complexity see [6]; for the issue of how and why one might judge one
model to be better that another see [9, 11]; for more on the relation of the scientific
process to simplicity see [7]; for an extended paper on why simplicity is not truth-
indicative see [10]; for more on the relation of formal systems to the scientific process
see [8]; for more on the intended theory/implemented simulation distinction and its
ramification see [9, 14]; and for more on constructive ways forward see [11].

2 Why KIDS Rather than KISS?

We are limited beings, which could explain why simplicity has such advantages and
attractions for us. It also seems we have a tendency to project our own characteristics
upon the natural world, thus we would like to think that everything has an “inner”
simplicity even if they appear to be very complicated. Sometimes this is expressed as
an assumption that simplicity is a (fallible) guide to truth, sometimes by conflating
simplicity with generality (hiding the assumption that simpler models will apply to a
greater variety of real cases, an assumption that is often unjustified).

When a modelling decision is justified using a phrase like “for the sake of
simplicity” it is implicit that this is (in some sense) a good justification. People do not
tend to justify their modelling decisions in papers using phrases such as: “it would
have taken too long”; “we could not think how to do this”; or “it would make it very
hard to check”, despite the fact that, in our view, these are perfectly acceptable
(indeed inevitable) reasons for beings with limited resources (like us). Rather, often it
seems that people invoke simplicity because of its positive connotations, even if it
was the more practical reasons that motivated them (of course, they also do so
because that is what they were taught, but presumably the teachers had some reason
for supposing this etc.). Thus the philosophical tradition that somehow simplicity is
truth indicative gives credence to modelling decisions that are not otherwise explicitly
justified. Elsewhere I (BE) argue that simplicity is not truth-indicative [10].

132 B. Edmonds and S. Moss

Rather we suggest that one would expect that, for many purposes and for many
phenomena, that the models will need to be complex if they are to be adequate for the
purposes for which the model is built. Given that much that we study is complex, it
would be very surprising if it always turned out to be the case that the models could
be simple. Surely the burden of proof is on those who insist that it is not sensible to
try and match the complexity of the model with the complexity of the phenomena
being modelled. The facts that complex outcomes can emerge from apparently simple
systems (as in mathematics or ALife) does not mean that the complex phenomena we
now observe is reducible to simple models. Even if (a huge presumption) a certain
phenomena was generated using simple mechanisms, this does not mean the results
we observe now are simple or could be usefully represented with a simple model. For
more on the difference between kinds of complexity see [6].

To make this clear consider an analogy with a 19th Century naturalist making
sketches of animals. The naturalist is doing this in order to help correctly identify and
classify new species. It would have been laughable to suggest that such sketches
should be limited to line cartoons “for the sake of simplicity”, “so that they have the
greatest possible generality”, because the different species would not have been
identified yet. It may have been that small details would have turned out to be
important later for distinguishing closely-related species. Only when the naturalist had
examined (and sketched) enough individuals would it have become clear which
details were relevant and which not. The details that turned out to be essential may
have allowed the drawings to be significantly simplified a posterior, but in many
cases only marginally simplified (as with moths). The point is that it is simply not
appropriate to make simplifications before one knows what is relevant and what is
not. Simply hoping that one may have chanced upon an appropriate simplification
does not make that simplification justified.

This is even more evident when one is considering the domain of interacting
systems of flexible and autonomous actors or agents. The relevant behaviour of many
such systems will not be simple, in particular they will not be reducible to aggregate
models (for example statistical models) without significantly diverging from their
target systems (that is, the agents are ‘embedded’ in their society in the sense of [17]).
This includes multi-agent systems that are designed for a specific purpose [12].
Adopting a multi-agent model represents a move towards descriptive accuracy since:
actors or agents in the target domain are represented by agents in the model and
communications by messages between the agents. That is MABS allows and
facilitates a more direct correspondence between what is observed and what is
modelled. One benefit of this move to descriptive MABS is that a whole swath of
evidence becomes available for validating our models – straight-forward descriptive
evidence gained from observation of the domain can be applied to the model by virtue
of the more straight-forward correspondence. What is new is that this evidence may
be anecdotal or “common-sense”. Previously such evidence may have been rejected
on the ground that it is not “scientific” or “rigorous”, but this was because it was not
formalisable in terms of the current modelling technology (analytic mathematics) and
hence had no deducible outcomes that could be checked. Now such qualitative
information can be formally modelled in simulations where the deduction of
outcomes is performed computationally rather than analytically. Further, in a

 From KISS to KIDS 133

descriptive MABS, this is relatively easy and natural and combines naturally with
participative approaches to model construction and validation, as in [2].

Given that such evidence can be made rigorous and thus brought within the
domain of the scientific, it should not be ignored. Thus if you have a target domain in
which there is such evidence (such as “it seems that the actors learn to avoid areas
where they were mugged”) then models should only ignore such evidence if either:
(1) there is good reason to think this is irrelevant or (2) there is evidence that this is
wrong (e.g. over-simplified to the extent that it is significantly erroneous). In
particular if one has access to a direct or expert “common-sense” account of a
particular social or other agent-based system, then one needs to justify a model that
ignores this solely on a priori grounds. In other words, constructing a model that is
simpler only “for the sake of simplicity” may be a case of wilfully ignoring evidence.

Thus a move towards descriptive models allows for more of the available evidence
to be applied. Of course, all available evidence should be used, including evidence
that is traditionally used: time series data, point measurements, statistics etc. and
evidence resulting from new methods of data collection (as suggested in [4]). This can
be used as a sort of check of the anecdotal evidence, because one can check that a
model constructed on the basis of anecdotal evidence is consistent with them (see [20]
or references above for many others who suggest this). As with all data, one takes into
account its reliability. Anecdotal evidence can be unreliable – however this does not
mean we should not use it, merely that we need to cross-check it (as with any other
useful but fallible evidence), but this is exactly what MABS facilitates.

This is an uncomfortable lesson for us: that the common-sense description may be
a far better starting place than an artificially simple construction based on the guesses
of academics. However, if one is modelling social or multi-agent systems, where the
phenomena is undoubtedly complex (making a priori guessing difficult) it is not
sensible to ignore any evidence that may help us. The more complex the phenomena
the more evidence as to its workings are needed.

One common response to the arguments above is to claim that one is doing a sort
of applicable mathematics rather than science. That is, one is not claiming that a
particular model (or simulation) represents in any sense any observed phenomena but
that one is merely establishing the model’s properties, so that in the future someone
may be able to successfully apply it to solving real problems. I call this the “formalist
stance” – it is often adopted in fields which are currently lacking significant empirical
or practical success (e.g. AI or Economics). The argument goes thus: much
mathematics that was driven by goals other than representing reality (but sometimes
including simplicity) turned out to be very useful later on, might not the same thing
happen with developing abstract simulations. The answer is that this is possible, but
then the simulation (or model) should be judged by the same sort of criteria as is used
to judge new mathematics, namely: precision, soundness, importance and generality.
The assumptions/mechanisms upon which the results depend should have been made
completely explicit and precise. The model should be very thoroughly tested to almost
eliminate any possibility of error in the results (this will almost certainly involve a
wide search of the parameter space and independent replication in the case of
complex simulations). The results should be sufficiently important in that they
effectively present (to us humans) new information about the system that is not
available from a casual inspection of the simulation set-up and inputs. Finally, it
should be established that the results are applicable to a wide range of kinds of

134 B. Edmonds and S. Moss

system. All too often simulations that are claim protection under the formalist stance
do not justify themselves against these criteria but rather via the credibility of their
results in terms of observed phenomena. Thus they fail to satisfy any set of relevant
academic criteria. These issues are discussed further in [8].

To summarise, the KISS approach says that one needs a good reason not to use the
simplest model, and then allows for progressively more complex models if simpler
ones turn out to be inadequate. In contrast the KIDS approach starts with a model that
is as straight-forwardly descriptive as evidence and resources allow (even if this
means that one starts with relatively complex model) and then allows for progressive
development later (including simplification and abstraction) as evidence and
understanding of the model support this (it may turn out that some features that turn
out to be important later have been left out, leading to an even more complex model).
This is shown in Fig. 1.

Simplest
Possible

More
Complex in
Aspect 2

etc.

More
Complex in
Aspect 1

KISS

KIDS

Fig. 1. An Illustration of KISS and KIDS

3 Distinguishing Intended Theories and Implemented Models

In this discussion it is important to distinguish between the intended theory and the
implemented simulation (or model) that is meant to realise that theory in
computational (or analytic) form. There are many ways in which this distinction is
significant. In general, there will be many ways of constructing a simulation to
embody any particular theory, because only certain aspects of the simulation are
considered significant in terms of the theory, the rest being considered as the
mechanisms to produce these. There will be various artefacts introduced as a side-
effect of a particular implementation, so that the implemented model differs from the
intended theory. This might be in ways that are considered unimportant, for example
in minuscule deviations due to the pseudo-random number generator, or it may turn
out to be significant (when a seemingly-innocent implementation detail significantly
changes the results, e.g. as documents in [21]). All too often the implemented
simulation and the intended theory are conflated or the intended theory is not
described explicitly. This distinction is discussed further in [13].

 From KISS to KIDS 135

In this paper we are arguing that the intended theory should (as a starting point) be
as descriptive as possible and that a (single) simulation should be as direct a
representation of this theory as is feasible. Of course, if there are two completely
adequate ways of implementing the same theory as simulations then (for practical
reasons) it is sensible to choose the simpler one. However feasibility considerations
concerning the implemented simulation should not lead one to simplify the intended
theory – this would be a case of “the tail wagging the dog”. Rather if it is infeasible
(for whatever reason) to implement a simulation of the intended theory, then this
should be explicitly acknowledged.

When it is infeasible to implement a simulation that is adequate (for a specific
purpose) to the intended theory (a common case in social simulation) one has a
number of ways in which one can proceed. Often the wisest course is to abandon
formal (including computational) modelling as (at least currently) beyond our
capabilities. This may be followed by a decision to change the modelling goal to
something less ambitious – for example to restrict the theory to cover a small aspect
or special case. This might result in a new intended theory that is feasible to
implement. The temptation here is to not admit one has taken this step – to pretend (to
oneself) that the resulting feasible simulation is somehow still a model of the original
intended theory.

4 Building Upwards from Descriptively Adequate Models

In this section we briefly outline a suggestion as to a constructive way forward in the
face of extremely complex phenomena (such as with social systems and ‘non-toy’
multi-agent systems). More about this can be found in [11]. This suggestion is
encapsulated in the diagram in Fig. 2.

Before we even get to descriptive simulations one has a series of “Data Models”
[23] – that is, descriptions or data obtained by either measurement or elicitation.
These provide the foundations upon which descriptive simulations will be built.

When one has a number of descriptive simulations concerning a related class of
phenomena (satisfying similar purposes), one may be in a position to see what is
relevant to a more abstract simulation, by examining the processes that result in these.
It may well be that the abstract simulation only applies to the behaviour of descriptive
simulations under certain conditions or (to use terminology from physics) within
certain phases.

It may then be possible to formulate analytic models about the behaviour of
aspects of the abstract simulation. For example, it may be observed that a certain
process dominates the results in certain conditions and this can be approximated by
some analytic or statistical models. The huge advantage of approaching abstract and
analytic models in this way is that it provides a traceable chain of reference to
observations of the phenomena. Thus if we ask why a certain term has a particular
exponent in an analytic model, we can point to the behaviour in the abstract
simulation this approximates. This can guide us when adapting or improving the
analytics, especially when we are fault finding. Similarly, the mechanisms in the
abstract model can be traced to the descriptive models it represents etc.

136 B. Edmonds and S. Moss

If one is in the fortunate position where a number of these analytic models or
abstract simulations concur then this might be a sought-after general theory covering
a range of phenomena. Such a theory can then be tested against the class of
phenomena it concerns.

Later on, once the general theory has been thoroughly validated in multiple ways,
it may be possible to simplify and systematise it. This process has occurred frequently
in Physics. Whereas only a few people could understand Newtonian mechanics as it
was first presented, nowadays it has been systematised into the accounts found in
standard school text books. Such systemisation and simplification greatly facilities its
applications to problems and new phenomena.

It is highly unlikely that ‘short-cuts’ to the simple or general theories will be
discovered without a substantial amount of lower level data-collection and modelling
has occurred first. This seems to be because the human mind requires conceptual
frameworks to work within, which then trap us into formulating models similar to
those that have gone before. It often seems to require a substantial (if sometimes
indirect) ‘jolt’ from the phenomena itself to guide us towards really useful theory.

To summarise this, complex phenomena will not only require more complex
simulations, but also the development and maintenance of complex clusters of
models, as suggested in [16]. There are other ways in which such clusters may be
created, such a using a number of models in parallel to cover different aspects of the
same intended theory, this is discussed to a limited extent in [11].

Data ModelData ModelData Model
Data ModelData ModelData Model

Data ModelData ModelData Model
Data ModelData ModelData Model

Data ModelData ModelData Model
Data ModelData ModelData Model

Descriptive
Simulation

Descriptive
Simulation

Descriptive
Simulation

Descriptive
Simulation

Descriptive
Simulation

Descriptive
Simulation

Abstract
Simulation
Abstract

Simulation

Analytic
Model

Analytic
Model

General
Theory
General
Theory

Simple
Model
Simple
Model

ApplicationsApplications

Fig. 2. An illustration of the bottom-up way of model development

5 Exploring Variations of a Model of Domestic Water Demand

The purpose of this section is to illustrate the KIDS approach. Thus we have here
started with a model that encapsulates the aspects of the target domain for which we
have (formal or informal) information. We then explore the behaviour of the model
when different aspects stay the same – that is to see if one can find any aspects which
do not have a relevant and significant impact on the chosen outcomes. This would
then suggest a hypothesis that a simpler model is possible, which excludes this aspect.
If all aspects seem to be essential to maintaining the properties of the outcomes that
are deemed to be representative of what is reported, then this suggests that a simpler

 From KISS to KIDS 137

model would not be descriptively adequate. If this is the case it is difficult to see that
such a model would have been reached by starting from a simpler model and
elaborating it. Of course what we have is a complex model whose behaviour is not
fully understood – it acts as an intermediary between observation and theory building.

The model in this example is a descriptive social simulation. It seeks to see how
the patterns of domestic water demand in localities may be explained by mutual
influence. To be exact, it models how a set of stakeholders perceived that households
might interact because it was developed as the result of feedback from a panel of
representatives from UK water companies and other domain experts (i.e. we would
explain the model and current results and they would comment upon it). This model
aimed to: capture their qualitative informal suggestions (e.g. demand rebounds fairly
fast after a drought); be consistent with known data about households (e.g.
ownership/frequency/use data of appliances); and have aggregate demand patterns
similar to those observed (e.g. with clustered volatility)1. In other words, where we
evidence, even if it was of an anecdotal nature, we used it in the design of the model.
Only where we did not have any evidence did we turn to theory, and then theory
developed as the result of at least some observation. For example, in this model
although we had some evidence that households did influence their neighbours as to
water usage the exact nature of the imitation behaviour was not known, which is why
we turned to sociology to fill the gap. It is this insistence that the all the available
evidence be reflected in the model design and behaviour, that makes it “descriptive”.

The model was developed as part of the FIRMA2 and CC:DEW3 projects. FIRMA
was an EU 5FP project to investigate the use of agent-based simulation and Integrated
Assessment to fresh-water management issues in 5 river basins in Europe. CC:DEW
was a project commissioned by the Environment Agency in the UK to assess the
impact of any climate change on the demand for water. For a more detailed
description of the model see [5]. The initial model was written by Scott Moss and
then developed by Olivier Bathelemy and Bruce Edmonds. Tom Downing gave
substantial advice and guidance.

The core of this model is a set of agents, each representing a household, which are
situated on a grid. Each of these households is allocated a set of water-using devices
in a similar distribution to those in the mid-Thames region of the UK. At the
beginning of each month each household sets the frequency the appliance is used (and
in some cases the volume at each use, depending on the appliance). Households are
influenced as to their usage of these appliances by several sources: their neighbours
and particularly the neighbour most similar to themselves (for publicly observable
appliances); the policy agent; what they themselves did in the past; and occasionally
the new kinds appliances that are available (in this case power showers, or water-
saving washing machines). The individual household’s demands are summed to give
the aggregate demand. Each month the ground water saturation is calculated based on
weather data (which is past data or past simulated data), if this is less than a critical
amount for more than a month, this triggers the policy agent to suggest a lower usage
of water. If a period of drought continues it progressively suggests using less and less
water. The households are biased to attend to the influence of neighbours or the policy

1 The validation of this model was quite complex and multi-faceted. For more details on this

see [20].
2 http://firma.cfpm.org
3 http://www.sei.se/oxford/ccdew

138 B. Edmonds and S. Moss

agent to different extents – the proportion of these biases are set by the simulator.
This structure is illustrated in Fig. 3.

Fig. 3. The structure of the water demand model

The neighbours in this model are those either those in the shape of a cross or a
square neighbourhood (Fig. 4). The extent of this neighbourhood is parameterised by
the area (in the cases in Fig. 4 this is 8).

C

N

NN

N

N

N
N N C

N

N
N

N

N N

N

N

Fig. 4. The neighbourhood pattern for the households, left cross, right square (each area 8), C
marks the focus location, and its neighbourhood is marked with Ns.

Every neighbour has a unique most neighbour who is most influential to it, the
topology of this social network consists of a few pairs of mutually most influential
neighbours and a tree of influence spreading out from these. The extent of the
influence that is transmitted over any particular path of this network will depend upon
the extent each node in the path is biased towards being influenced by neighbours.

Households are also (to a lesser extent) influenced by all its neighbours in its
neighbourhood. The edges of this may or may not be wrapped around into a torus.
The focus model used an unwrapped cross-shaped neighbourhood so the households
at the edges and corners have fewer neighbours that those in the middle. The reason
for this that the resulting patterns seem to us a reasonable mix of locality and
complexity (data on the actual patterns was not available).

In each run the households are distributed and initialised randomly, whilst the
overall distribution of the ownership and usages of appliances by the households and
the biases of the households is approximately the same. In the runs described herein
the same weather data is used, so the timing of droughts (and hence advice from the
policy agent) and of new innovations are the same in each run.

 From KISS to KIDS 139

The graphs below (such as Fig. 5 immediately below) show the aggregate demand
resulting from many runs of the same set-up (rescaled so that 1973=100 for ease of
comparison). Each line shows a different run from using that set-up, so you can see
the variations in aggregate behaviour possible from the same model. Significant
events include the droughts of 1976 and 1990, which often show up in a (temporarily)
reduced water demand, due to agents taking the advice from the policy agent to use
less water. Power showers become available in early 1988 and water-saving washing
machines in late 1992 which can cause a sudden increase or decrease respectively.

0

50

100

150

200

250

Jan-73 Jun-78 Dec-83 Jun-89 Nov-94

Fig. 5. Relative aggregate demand levels (cross-shaped unwrapped neighbourhoods of size 24)

Fig. 5 shows the model set-up chosen as the starting point for the model
variations. It shows 15 different runs of that model. The droughts of 1976 and 1990
are clear as dips in demand in most (but not all) of the runs and the introduction of
power showers in 1988 precipitate a sharp upturn in demand. It is noticeable that each
such ‘shock’ can cause a lasting period of volatility in a demand line, possibly in the
opposite direction as the original shock (as in the top line in Fig. 5). This seems to be
because the influence is not significantly dampened but ‘rings’ around the model and
changes become locked-in due to mutually self-reinforcing influence between
households. Fig. 6 shows the difference when the network of influence is limited to
only adjoining neighbours which cuts out most of the social influence. The pattern is
usually regular and predictable for most households –unlike observed patterns of
water demand.

It is important that each run can turn out to be different, even though the
parameters and set-up is the same. This is due to the fact that, in the Thames Valley in
the UK, very similar neighbourhoods (in terms of socio-economic profile and size)
can display very different patterns of aggregate water demand. Thus this model is not
only intended to capture a typical water demand response but the range of water
demand responses. For this reason one run (or even statistics about many runs) is
insufficient to characterise the output from a particular model set-up. Thus in the
examples below we will show a set of runs, to give some idea about the range of
behaviours that each set-up can exhibit.

140 B. Edmonds and S. Moss

0

50

100

150

200

250

Jan-73 Jun-78 Dec-83 Jun-89 Nov-94

Fig. 6. As Fig. 5 but with neighbourhoods of size 4

Next we change the topology of the social influence network so that the social
relations are wrapped-around as if they lived on a torus – this is shown in Fig. 7. This
has the effect of increasing the short-term volatility of many of the runs but
decreasing the longer-term variation in a run. It seems that the whole population can
‘flip’ from one behaviour to another – they are too connected. This contrasts with the
runs shown in Fig. 5 where different behavioural ‘regimes’ may be found on different
edges of the population. The shape of the neighbourhood also seems to make a
difference.

0

50

100

150

200

250

Jan-73 Jun-78 Dec-83 Jun-89 Nov-94

Fig. 7. As Fig. 4 but with wrapped neighbourhoods (rather than unwrapped)

Fig. 8 shows the what happens when the shape of the neighbourhood is changed to
a block shape (see Fig. 4). This appears to lessen the impact of droughts.

 From KISS to KIDS 141

0

50

100

150

200

250

26665 28665 30665 32665 34665

Fig. 8. As Fig. 5 but with block-shaped neighbourhoods (rather than cross-shaped)

Lastly we experimented with the memory coefficient. This halved the rate at which
past behaviours are forgotten, this is shown in Fig. 9.

0

50

100

150

200

250

Jan-73 Jun-78 Dec-83 Jun-89 Nov-94

Fig. 9. As Fig. 5 but with a memory coefficient of 5 (rather than 2.5)

Unsurprisingly many of the lines are a lot flatter. In particular many more of the
demand patterns reverted after droughts to the levels they were before them. The
introduction of innovations (power showers and water-saving washing machines) still
has an affect on the general levels.

Elsewhere [3] it was shown that the: climatological data: the timing of innovation
introduction; and the proportion of different biases as to influence sources can all
make a marked qualitative difference to the aggregate demand patterns that result.
However [3] also showed that the shape of the initial distribution of the use of
appliances in households turned out not to be important and hence could be
simplified. Thus this element is a candidate for simplification.

142 B. Edmonds and S. Moss

To summarise these results and those from [3]. it appears that the following
elements of the model are important to the kinds of results that one gets out of the
model: the number and size of droughts, the distribution of biases of the households,
the timing of innovations, the rate of forgetting, the neighbourhood shape, the
topology of the influence grid, and the size of the neighbourhoods. This makes is
rather unlikely that a simpler model, that eliminated these would have been
descriptively adequate. However it does not rule out the possibility that there are other
aspects that might turn out to be unnecessary to produce the desired outputs.

6 Discussion – Simplification and Relevance

MABS models allow for a finer-grained comparison than traditional ‘black-box’
models. If the outputs from two ‘black-box’ models are the same given identical
inputs, then they are functionally equivalent. In contrast MABS models allow for
comparison at finer-grains both in time and in detail. Thus, for example, if two
models differ significantly in the behaviour of individual agents as they interact then
they are different, as with different interactive processes that generate the same
aggregate outcomes.

This means that it is extremely unlikely that any simplification of a MABS model
will result in a completely equivalent model. Even when the results appear to be
indistinguishable within a particular range of parameters and set-ups, it is likely that,
with enough ingenuity, it will be possible to find some settings and initialisations that
will force any two different models to diverge in terms of behaviour, and if this is
then run for long enough this divergence will become statistically significant. Even if
the same algorithm is implemented on two different systems, there will be details
such as the nature of the floating-point representation and random number generators
that would eventually cause detectable differences [1, 14].

Thus the aim of simplifying models should not be that they retain all the
behaviours of the more complex model, but rather that they retain all relevant
behaviours. So before one attempts simplification, one has to decide exactly what it is
about the behaviour that is considered significant, for the particular purpose one has.
Then one can investigate how one can simplify models whilst preserving this
behaviour. That is, having decided which aspects of the aggregate data are important
for the task in hand, one could determine some measures or criteria to test for these.
One could then investigate (as I did above) which parts of the model set-up did not
effect these measures or criteria. One could then simplify away these parts of the
model for this purpose. In other words, simplification might results from explicit
decisions as to representational relevance.

One corollary of this is that it may well be that different simplifications will be
appropriate when the same model is used for different purposes or in different
contexts. This context-dependency of simplification is opposite to that in the KISS
approach, for there one makes a model more complex in order to be less general.

7 Conclusion

The difficult part in science is not finding attractive abstract models, but of relating
abstract models to the world (i.e. the target domain). The KISS approach ensures that

 From KISS to KIDS 143

one has an attractive and understandable model, but does not (of itself) give any
reason to suppose that it will lead to models that relate strongly enough to the target
domain so as to usefully inform us about that domain. The KIDS approach starts with
a model which relates as strongly to the target domain as possible, but does not ensure
that the models are “elegant”. Before the advent of cheap computational power, it was
only possible to get any results out of analytic (and hence relatively simple models),
this made the KIDS approach infeasible.

The trade-off between the practicality of our models and their descriptive adequacy
is a complex and context-dependent one – as with all modelling decisions, there is no
final and general answer [9]. Neither the KISS nor the KIDS approach will always be
the best one, and complex mixtures of the two will be frequently appropriate.
However the balance is shifting away from KISS and towards KIDS in areas
dominated by complex phenomena. In such areas there is no reason to suppose that
elegant models will be particularly useful and the advent of MABS facilitates the
creation, management and communication of complex, descriptive models.

In short, when modelling multi-agent and multi-actor systems, (where there are
many good reasons to suspect that things will be very complex), one would need
strong reasons for adopting a KISS methodology – much better reasons than empty
invocations of “simplicity”. In science, at least, truth comes before beauty.

Acknowledgements

We would like to thank the many people with whom we have discussed these issues,
including: Tom Downing, Juliette Rouchier, Jim Doran, David Hales, Rosaria Conte
and Guillaume Deffuant. We would also like to thank the anonymous referees whose
queries have provided us with the perfect excuse for citing so much of our own work.

References

1. Axtell, R., & al. (1996), Aligning Simulation Models: A Case Study and Results,
Computational and Mathematical Organization Theory 1:123-141.

2. Barreteau, O. & al. (2001). Role-playing games for opening the black box of multi-agent
systems: method and lessons of its application to Senegal River Valley irrigated systems.
Journal of Artificial Societies and Social Simulation 4(2), <http://jasss.soc.surrey.ac.uk/4/2/5.html>

3. Barthelemy, O. (2003) The impact of the model structure in social simulations, 1st
International Conference of the European Social Simulation Association, Gronigen, the
Netherlands, September 2003. <http://cfpm.org/cpmrep121.html>

4. Chattoe, E. (2002). Building Empirically Plausible Multi-Agent Systems: A Case Study of
Innovation Diffusion. In K. Dautenhahn, & al. (eds.). Socially Intelligent Agents - creating
relationships with computers and robots. Dordrecht, Kluwer.

5. Downing, T.E, & al. (2003). Climate Change and the Demand for Water, Research Report,
Stockholm Environment Institute Oxford Office. <http://www.sei.se/oxford/ccdew>

6. Edmonds, B. (1999). Syntactic Measures of Complexity. Doctoral Thesis, University of
Manchester, Manchester, UK. <http://bruce.edmonds.name/thesis>

7. Edmonds, B. (2000). Complexity and Scientific Modelling. Foundations of Science,
5:379-390.

8. Edmonds, B. (2000) The Purpose and Place of Formal Systems in the Development of
Science, CPM Report 00-75. <http://cfpm.org/cpmrep75.html>

144 B. Edmonds and S. Moss

9. Edmonds, B. (2001) The Use of Models - making MABS actually work. In. Moss, S. &
Davidsson, P. (eds.), Multi Agent Based Simulation, Lecture Notes in Artificial
Intelligence, 1979:15-32.

10. Edmonds, B. (2002) Simplicity is Not Truth-Indicative. CPM Report 02-99.
<http://cfpm.org/cpmrep99.html>

11. Edmonds, B. (in press) Simulation and Complexity - how they can relate. In Feldmann, V.
and Mühlfeld, K. (eds.) Virtual Worlds of Precision. Lit Verlag. <http://cfpm.org/
cpmrep118.html>

12. Edmonds, B. & Bryson, J. (2004) The Insufficiency of Formal Design Methods - the
necessity of an experimental approach for the understanding and control of complex MAS.
In Jennings, N. R. et al. (eds.) Proceedings of the 3rd International Joint Conference on
Autonomous Agents & Multi Agent Systems (AAMAS'04), July 19-23, New York, ACM
Press, 938-945.

13. Edmonds, B. & Hales, D. (2003) Computational Simulation as Theoretical Experiment,
CPM report 03-106. (submitted to the Journal of Mathematical Sociology).
<http://cfpm.org/cpmrep106.html>

14. Edmonds, B. and Hales, D. (2003) Replication, Replication and Replication - some hard
lessons from model alignment. Journal of Artificial Societies and Social Simulation 6(4)
<http://jasss.soc.surrey.ac.uk/6/4/11.html>

15. Etienne, M., Le Page, C. & Cohen, M. (2003) A Step-by-step Approach to Building Land
Management Scenarios Based on Multiple Viewpoints on Multi-agent System Simulations.
Journal of Artificial Societies and Social Simulation 6(2) <http://jasss.soc.surrey.ac.uk/
6/2/2.html>

16. Giere, R. N. (1988). Explaining Science: A Cognitive Approach. Chicago, University of
Chicago Press.

17. Granovetter, M. (1985). Economic-Action and Social-Structure – The Problem of
Embeddedness. American Journal of Sociology 91:481-510.

18. Moss, S. (1998). Critical Incident Management: An Empirically Derived Computational
Model. Journal of Artificial Societies and Social Simulation 1(4), <http://jasss.soc.surrey.ac.uk
/1/4/1.html>

19. Moss, S. (2002). Policy Analysis from First Principles. Proceedings of the US National
Academy of Sciences 99:7267-7274.

20. Moss, S. & Edmonds, B. (accepted) Sociology and Simulation: Statistical and Qualitative
Cross-Validation. American Journal of Sociology. Earlier version is CPM report 03-105.
<http://cfpm.org/cpmrep105.html>

21. Pohill, J. G., Izquierdo, L. R. & Gotts, N. M. (2003) The Ghost in the Model (and other
effects of floating point arithmetic). 1st International Conference of the European Social
Simulation Association, Gronigen, the Netherlands, September 2003. <http://www.uni-
koblenz.de/~kgt/ ESSA/ESSA1/Polhill-Izquierdo-Gotts.pdf>

22. Rouchier, J. (2004) Interaction Routines and Selfish Behaviours in an Artificial Market –
Transferring field observations of a wholesale fruits and vegetables market into a multi-
agent model. CPM Report No.: CPM-04-130. <http://cfpm.org/cpmrep130.html>

23. Suppes, P. (1962). Models of Data. Logic In E. Nagel, P. Suppes & A. Tarski (eds.)
Methodology and the Philosophy of Science: Proceedings of the 1960 International
Congress. Palo Alto, CA, Stanford University Press: 252-261.

24. Taylor, R. (2003) Agent-Based Modelling Incorporating Qualitative and Quantitative
Methods: A Case Study Investigating the Impact of E-commerce upon the Value Chain. 1st
International Conference of the European Social Simulation Association, Gronigen, the
Netherlands, September 2003. <http://cfpm.org/cpmrep123.html>

Analysis of Learning Types in an Artificial Market

Kiyoshi Izumi, Tomohisa Yamashita, and Koichi Kurumatani

ITRI, AIST & CREST, JST, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan

Abstract. In this paper, we examined the conditions under which evolutionary
algorithms (EAs) are appropriate for artificial market models.We constructed three
types of agents, which are different in efficiency and accuracy of learning. They
were compared using acquired payoff in a minority game, a simplified model of a
financial market.As a result, when the dynamics of the financial price was complex
to some degree, an EA-like learning type was appropriate for the modeling of
financial markets.

1 Introduction

An artificial market approach, a new agent-based approach to financial market research,
has been developing against the background of drastic changes of financial markets in
recent years.An artificial market study found mechanisms of several market phenomena,
such as a financial bubble, which were not able to be explained well by the conventional
researches [1, 2]. An artificial market study builds a multi-agent model of a financial
market, where an agent trades as a virtual dealer. In many artificial market models,
each agent can change its behavior rules by learning based on past performance. Many
studies used evolutionary algorithms (EAs), such as Genetic Algorithm (GA) or Genetic
Programming (GP), as agents’ learning method.

Although artificial market models using EA have achieved many successful results,
there is little research which examined whether EA would be appropriate as the learning
method in an artificial market model. We analyzed field data such as interviews and
questionnaires to actual dealers, and verified appropriateness of EA as a learning method
in an artificial market from the empirical viewpoint [3, 1]. Chen and Yeh implemented
EA mechanism in their artificial market model, and found that their model had similar
characteristics to the actual financial markets such as a fat-tail property and nonlinearity
[2]. That is, they showed EA’s ability to simulate the actual financial markets.

The purpose of this paper is to verify the appropriateness of applying EA to an
artificial market model from a different viewpoint. We focus on the function of a learning
algorithm. This paper explores these questions focusing on the relationship between the
past financial price movement and the supply and demand. So, this paper conducts
computer experiments under a game-theoretic environment called a minority game, a
simplified model of a financial market from the viewpoint of this relationship.As learning
algorithms of agents who participate in the game, we prepared several kinds of learning
types. These learning types differ in input information, accuracy, and efficiency. And we
compared the performance of agents that have different learning types, under various
conditions. Then it was investigated what conditions made a learning algorithm like EA
appropriate for an artificial market.

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 145–158, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

146 K. Izumi, T. Yamashita, and K. Kurumatani

2 Framework of Experiments

2.1 Minority Game as a Model of Financial Markets

A minority game is a repetition game in which N (odd number) players must choose one
of two alternatives at each step. A payoff is given to a minority group that consists of
players who chose the alternative which fewer people chose between two alternatives.
Arthur proposed the idea of a bar problem that people try to drink at the bar which
fewer person chose between two bars [4]. Many other researchers had discussed the
nonlinearity of this phenomenon and made various extensions [5].

Since the mechanism that a minority group wins is seen also in an actual financial
market, a minority game can be considered as a simplified model of a financial market [6].
In this paper, a standard minority game [7,8] was extended as an artificial market model.
N (odd number) agents participate in a game, and time progresses dispersedly. One
period consists of four steps; (1) Determination of action, (2) Price determination, (3)
Calculation of payoffs, and (4) Learning.

(1) Determination of Action: Each agent i determines its dealing action hi(t), to buy
or sell a certain financial capital at t, using knowledge called a memory Pm(t − 1). The
memory Pm(t − 1) is a time series data of price changes of the financial price at the
past m time steps.

Pm(t − 1) = {P (t − 1), P (t − 2), · · · , P (t − m)} (1)

P (τ) is either +1 or −1, and expresses the change in the price at time τ . When the
financial price rises or drops at time τ , then P (τ) equals +1 or −1, respectively. Each
agent i has the rule that determines its behavior hi(t) (buy or sell) according to each
pattern of the price changes Pm(t − 1). This rule is called strategy Si(t) (see Fig. 1).

(2) Price Determination: The supply and demand of all N agents are accumulated
after all agents determined their action. When more agents try to buy, the price rises.
When more agents try to sell, the price falls. That is, the price change P (t) is decided
by majority.

P (t) =
{

+1 up (
∑N

i=1 hi(t) > 0)
−1 down (

∑N
i=1 hi(t) < 0)

This equation simplifies the relation between financial prices and supply and demand in
a market.

(3) Calculation of Payoff: A payoff to each agent i, payoffi(t), is calculated from the
last price change P (t) and its dealing behavior hi(t).

payoffi(t) = −hi(t) ·
N∑

j=1

hj(t) (2)

By this equation, when the price rises (P (t) = +1), agents that sold the financial capital
(hi(t) = −1) belong to a minority group, and they acquire a positive payoff. On the other

Analysis of Learning Types in an Artificial Market 147

Dealing behavior hi(t)
Price change Pm(t − 1) Buy or sell

{−1, −1, −1, · · · , −1, −1}
{−1, −1, −1, · · · , −1, +1}

...
{+1, +1, +1, · · · , +1, +1}

→
→
...

→

⎛
⎜⎜⎝

+1 or − 1
+1 or − 1

...
+1 or − 1

⎞
⎟⎟⎠

↑
Strategy Si(t)

Fig. 1. Each agent’s strategy

hand, when the price falls (P (t) = −1), agents that bought the capital (hi(t) = +1)
belong to a minority group, they acquires a positive payoff.

Economically, the equation 2 assumes that the financial price will returns to the
average value in the future. That is, when the price rises (falls), it will fall (rise) to
the previous level in the future. And the equation 2 also assumes that the payoff is
calculated based on the final value of the financial capital in terms of the price in the
future. Therefore, the payoff is positive when a player buys (sells) the financial capital
in drop (rise) of the price. The payoff is negative when a player sells (buys) the financial
capital in drop (rise) of the price. Under such a regression assumption, a finance market
can be considered as a minority game.

(4) Learning: The learning in a standard minority game is simple: selection of strategy.
Each player has s strategies generated randomly at the beginning of the game, and con-
tinue to have those strategy without modifying them. And each strategy has a specific
value called a virtual value. It is a number of times that the dealing behavior derived from
a strategy did acquire a positive payoff. Each agent chooses one strategy with the highest
value from s strategies, and uses it when the agent determines its behavior at the next step.

In studies of the standard minority game, only the very simple learning was assumed
and they analyzed in many cases about the relationship between memory length m and
the price fluctuation. However, Cavagna [9] suggested that it has essential significance
that all agents are homogeneous, that is, all agents share the same information and the
same learning algorithm. He showed that the same results were obtained in both cases
that all agents used information about price movement and that all agents used random
data. In our study, agents are heterogeneous and the information and the learning methods
differ among agents.

2.2 Learning Types

We prepared 4 types of agents; one standard type and three extended types. First, Chartist
(Ch) was prepared as a standard agent. It is extended from the player in the standard
minority game, described in section 2.1. This agent determines its behavior based on the
time series of past price changes (chart information).

Besides the standard agent, we prepared three kinds of agent; Hand imitator (HI),
Perfect predictor (PP), and Strategy imitator (SI). They are different in terms of kinds

148 K. Izumi, T. Yamashita, and K. Kurumatani

of information that they use. First, Hand imitator determines its trading behavior with a
value of a parameter, and does not have a complicated strategy or rule. It performs simple
learning by copying the parameter value from other successful agents. Its learning and
behavior rules are simplified like an agent in many models of econophysics (for example,
see [10]). Second, Perfect predictor infers both other agents’ strategies and the game
structure (a payoff matrix) using all kinds of information. It corresponds to a rational
agent in conventional economic models. Finally, Strategy imitator is in the middle of
these two types. It performs only an inference of other agents’ strategies, and imitates
the strategy of other agents with high payoff. It corresponds to an agent of an artificial
market model where learning is described by an evolutionary algorithm.

Chartist(Ch). Chartist’s behavior decision is the same as stated in section 2.1. It is
extended about learning. An agent in the standard minority games continues to have its
strategies given first without changing, as described in section2.1. Thus, it can not search
for all of solution spaces. Then, we extended Chartist’s learning method as follows, to
enable it to search for all solution spaces.

Decision of Behavior. Chartist has one strategy described in figure 1. The pattern match-
ing of the price changes of the past m steps, Pm(t−1), to the strategy Si(t) determines
Chartists’ behavior hi(t).

Learning. When Chartists acquires a positive payoff at t, it does not change its strategy.
When it got a negative payoff, its strategy Si(t) is updated at a certain probability α (a
learning rate). That is, when the behavior rule about this price pattern is to buy, the rule
is changed to sell, and vice versa.

Hand Imitator (HI). Hand imitator performs simple learning of imitating the behavior
which other agents with a high payoff.

Decision of Behavior. According to a certain probability pbuy , Hand imitator buys the
financial capital. Probability to sell psell is 1 − pbuy .

Learning. The probability of dealing behavior of other agents with a high payoff is
copied.

1. Inference of others’ dealing probability
About other agents js except itself, an estimated probability to buy p̃j

buy(t) is updated
by the following equation.

p̃j
buy(t) = (1 − β) · p̃j

buy(t − 1) + β · actionj(t), (3)

where actionj(t) is the agent j’s trading behavior at t.

actionj(t) =
{

1 (Agent j bought at t)
0 (Agent j sold at t)

The parameter 0 ≤ β ≤ 1 expresses the rate which updates the estimated value of
the probability of dealing behavior of other agents. β means the learning speed of
others’ models.

Analysis of Learning Types in an Artificial Market 149

2. Accumulation of payoff
About all agents j including itself, the accumulation value Rj(t) of payoff is updated
by the following equation.

Rj(t) = (1 − γ) · Rj(t − 1) + γ · payoffj(t), (4)

where payoffj(t) is the payoff of agent j at t. The parameter 0 ≤ γ ≤ 1 expresses
the update rate of the accumulation value of a payoff, and fixed it to 0.5 in this study.

3. Copy of the behavior according to the payoff
Each agent copies the probability to buy from other successful agents with a certain
probability α (a learning rate). First, one agent j∗ is chosen by the probability
proportional to the accumulation value Rj(t) from all the agents. Next, the estimated
trading probability p̃j∗

buy(t) about the agent j∗ is copied to its own probability pi
buy(t).

Strategy Imitator (SI). Strategy imitator performs only an estimation of other agents’
strategies, and imitates the strategy of other agents with high payoffs.

Decision of Behavior. The dealing behavior hi(t) is determined by the pattern matching
of the price changes of the past m steps, Pm(t − 1), to the strategy Si(t). It is the same
as that of Chartist.

Learning. Strategy imitator estimates others’ strategies and imitates the other’s strategy
with high payoff.

1. Estimation of others’ strategies
Strategy imitator estimates whether the other agent js to buy or sell from the pattern
matching of the price change Pm(t− 1) to estimated others’ strategies S̃j(t). If the
estimated behavior is different from the actual behavior which agent j performed,
by a certain probability 0 ≤ β ≤ 1 (learning speed of others’ models), the estimated
strategy S̃j(t) will be updated. The bit of the agent j’s behavior corresponding to
the price change in S̃j(t) will be inverted.

2. Accumulation of a payoff
About all agents j including itself, the accumulation value Rj(t) of payoff is updated
by the equation 4. It is the same as that of Hand imitator.

3. Imitation of strategy according to the payoff
The other agent’s strategy is copied by a certain probability α (learning rate). First,
one agent j∗ is chosen by the probability proportional to the accumulation value
Rj(t) of each payoff from all the agents. Next, the agent’s strategy S̃j∗

(t) is copied
to its own strategy Si(t).

Perfect Predictor (PP). Perfect predictor estimates both the other agents’strategies and
a game structure (a payoff matrix) using all information.

Decision of Behavior. Perfect predictor estimates others’ behavior and decides its own
behavior according to the estimated payoff matrix.

150 K. Izumi, T. Yamashita, and K. Kurumatani

1. Estimation of others’ behavior
Perfect predictor estimates the other agent js’behavior (to buy or sell) by the pattern
matching of the price changes Pm(t − 1) to estimated the others’ strategies S̃j(t).

2. Decision of behavior
Perfect predictor has its own strategy that represents an estimated game structure
(a payoff matrix). The strategy means which behavior (buy or sell) can acquire a
positive payoff corresponding to the others’ behavior. According to the strategy and
the other agent j’s estimated behavior, Perfect predictor decides its own behavior.

Learning. Perfect predictor learns both others’ strategies and the game structure.

1. Learning of others’ model
The estimated strategies S̃j(t) about the other agent js are updated. Learning method
is the same as that of Strategy imitator.

2. Learning of the game structure
When each agent acquired a negative payoff, the bit of behavior corresponding to
the estimated others’ behavior is reversed by a certain probability α (learning rate).
This means renewal of the knowledge about the payoff structure.

3 Experiment: Match Against Standard Type

We measured how much better HI, SI, and PP could perform than Chartist, and compared
them in performance against Chartist. Each agent type (HI, SI, or PP) plays minority
games against the standard agent type, Chartist.

3.1 Setting of the Simulation

The setting of the computer experiments in this paper is shown in Table 1. 25 agents
participate in each trial of the minority game. 20 agents are Chartists as standard agents
in all trials. The remaining 5 agents are Hand imitators, Strategy imitators, or Perfect
predictors.

Table 1. Setting of the simulation

Number of agents N = 25
Agents’ combination {20 CHs and 5 HIs}, {20 CHs and 5 SIs}, or {20 CHs and 5 PPs}
Memory length m = {1, 2, · · · , 15}
Learning speed α = 0.8 (fixed)
Learning speed of
others’ model

β = {0.1, 0.2, · · · , 0.9}
Update rate of payoff γ = 0.5 (fixed)
Simulation step 1000 steps
Number of simulation runs 10 times every parameter combination

Comparison method
The improvement rate of the average payoff of 5 HIs, 5 SIs, or 5
PPs from the average payoff of 20 CHs.

(Ch: Chartist, HI : Hand imitator, SI: Strategy imitator, and PP : Perfect predictor)

Analysis of Learning Types in an Artificial Market 151

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Learning speed of others’ model ƒ´

M
em

or
y

le
ng

th
 m

-- HIs got the highest payoff.
-- SIs got the highest payoff.

-- PPs got the highest payoff.
-- Difference between the 1st payoff and 2nd < 3.0

Fig. 2. Summary of results: Each symbol represents which agent type got the highest improvement
rate. There are 4 distinct areas (m ≤ 3 &β < 0.3, m ≤3 & β > 0.3, 3< m < 12, and m ≥ 13)
according to the winners’ types

The learning speed α of all agents’ strategy and the update rate of a payoff γ were
fixed. The memory length m and the learning speed of others’ models β of HI, SI, and
PP were changed as shown in Table 1.

The simulation was performed 10 times every parameter set; {Agents’ combination
(CH vs. HI, SI, or PP) × Memory length m × Learning speed of others’ modelsβ}.
The agents (HI, SI, and PP) were compared by the improvement rate, ImpRate, of the
average payoff of 5 HIs, 5 SIs, or 5 PPs from the average payoff of the 20 standard agents
(Chartists).

ImpRate(type) =
payoff type − payoffCH

|payoffCH | × 100,

=

∑5
i=1 payoffitype/5 − ∑20

j=1 payoffjCH/20

| ∑20
k=1 payoffkCH/20| × 100, (5)

where type is an agent type (HI, SI, or PP), payoff type is the averaged payoff of type,
payoffCH is the averaged payoff of Chartist, payoffitype is an accumulated payoff of

the i-th agent in type at time 1000, and payoffjCH is that of the j-th Chartist. The
improvement rates are averaged over 10 simulation runs.

3.2 Simulation Results

The simulation results are summarized in Fig. 2. Different types of learning methods got
the highest improvement rate according to the memory length m and the learning speed
of others’ models β.

152 K. Izumi, T. Yamashita, and K. Kurumatani

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Im
pr

ov
em

en
t r

at
e

of
 p

ay
of

f
(C

H
s

=
10

0)

Learning speed of others’ model ƒ´

SI

PPHI

Fig. 3. Simulation results when the memory length m is 2. When the learning speed is slow, the
payoff of HI (Hand imitator) is high. When the learning speed of an others model is fast, the payoff
of PP (Perfect predictor) is high

Joshi’s paper [11] and our preceding study [12] revealed that the memory length
linked to the complexity of dynamics of the whole system. When memory length is short,
the whole system showed relatively simple patterns that can be described by dynamic
systems of finite dimensions. As the memory length got longer, the dynamics patterns
became more complex, and finally they can not be described by any finite dimensional
dynamic systems1. Therefore the memory length m can be considered as an index of
complexity of the whole system.

The learning speed of others’ models β is an index of the time restriction to learning.
All agents continuously change their own strategies at the fixed learning speed α. When
β is small, agents must track the others’ strategies at a low learning speed, so the time
restriction to learning is strong. When β is large, agents can have relatively enough time
to track the others’ strategies, so the time restriction to learning is weak.

Fig. 2 shows that there are 4 distinct areas according to the two conditions, the
complexity and time restriction.

Short Memory Length and Slow Learning Speed Area. When the memory length
is short (m ≤ 3) and the learning speed of others’ models is slow (β < 0.3), Hand
imitators’ payoff was higher. This result was also shown in Fig. 3. As you can see from
the typical results of agents’ payoffs in Table 2, Hand imitators could perform against
the standard agent the best. The other simulation runs showed similar results. This is be-
cause the Perfect predictors and Strategy imitators can not have enough time to learn the
others’ strategies because of the strong time restriction, and they showed the poor perfor-
mance2. Only Hand imitators could catch up with the fast change of Chartists’ strategies

1 LeBaron [13] found that an artificial market with long time horizon agents showed simpler
dynamics, in opposition to [11, 12]. That is because he changed the time horizon to evaluate
the performance of agents’ rules and didn’t change the memory length of rules.

2 In general, learning methods asking for accurate solutions do not always show poor performance
even under strong time pressure. Chen and Liao constructed an artificial model considering
trading volume and showed various types of relation between the complexity at the micro level
and that at the macro level [14].

Analysis of Learning Types in an Artificial Market 153

Table 2. Payoffs of agents in a typical simulation run when m = 2 and β = 0.2. Payoffs in each
table are ranked in descending order

(a) 5 HIs and 20 Chs

ImpRate(HI) = 86.09
payoffHI = −1348

payoffCH = −9689.4

Payoff Type
1 -912 HI
2 -1110 HI
3 -1316 HI
4 -1690 HI
5 -1712 HI
6 -9220 CH
7 -9372 CH
8 -9398 CH
9 -9400 CH

10 -9432 CH
11 -9464 CH
12 -9650 CH
13 -9670 CH
14 -9678 CH
15 -9708 CH
16 -9734 CH
17 -9736 CH
18 -9846 CH
19 -9848 CH
20 -9852 CH
21 -9876 CH
22 -9906 CH
23 -9932 CH
24 -10026 CH
25 -10040 CH

(b) 5 SIs and 20 Chs

ImpRate(SI) = 64.73
payoffSI = −3464

payoffCH = −9822.4

Payoff Type
1 -3148 SI
2 -3268 SI
3 -3340 SI
4 -3410 SI
5 -4154 SI
6 -9388 CH
7 -9402 CH
8 -9428 CH
9 -9432 CH

10 -9544 CH
11 -9686 CH
12 -9704 CH
13 -9740 CH
14 -9750 CH
15 -9756 CH
16 -9900 CH
17 -9910 CH
18 -9926 CH
19 -9944 CH
20 -9960 CH
21 -9984 CH
22 -10076 CH
23 -10118 CH
24 -10178 CH
25 -10622 CH

(c) 5 PPs and 20 Chs

ImpRate(PP) = 79.09
payoffPP = −2054.8
payoffCH = −9828.7

Payoff Type
1 -1502 PP
2 -1870 PP
3 -1904 PP
4 -2408 PP
5 -2590 PP
6 -9298 CH
7 -9418 CH
8 -9506 CH
9 -9522 CH

10 -9586 CH
11 -9590 CH
12 -9730 CH
13 -9766 CH
14 -9798 CH
15 -9816 CH
16 -9898 CH
17 -9906 CH
18 -9934 CH
19 -9972 CH
20 -10036 CH
21 -10038 CH
22 -10120 CH
23 -10142 CH
24 -10190 CH
25 -10308 CH

because of their simple and quick learning method. Moreover, Hand imitators could
learn adequately accurate models because the whole system is comparatively simple.

Short Memory Length and Fast Learning Speed Area. When the memory length
is short (m ≤ 3) and the learning speed of others’ models is fast (β > 0.3), Perfect
predictor’s payoff was high (Fig. 3). Table 3 also shows that Perfect predictors could
perform against the standard agent the best under this condition. It is because the Perfect
predictors can have enough time to learn the others’ strategies and the game structure.
Moreover the dynamics of whole systems is relatively simple in this area. They then
could obtain exact learning results using all information and beat the other two types,
the Hand imitators and Strategy imitators.

154 K. Izumi, T. Yamashita, and K. Kurumatani

Table 3. Payoffs of agents in a typical simulation run when m = 2 and β = 0.8. Payoffs in each
table are ranked in descending order

(a) 5 HIs and 20 Chs

ImpRate(HI) = 71.57
payoffHI = −2766.4
payoffCH = −9729.6

Payoff Type
1 -2530 HI
2 -2642 HI
3 -2710 HI
4 -2940 HI
5 -3010 HI
6 -9096 CH
7 -9406 CH
8 -9512 CH
9 -9514 CH

10 -9570 CH
11 -9600 CH
12 -9612 CH
13 -9612 CH
14 -9614 CH
15 -9618 CH
16 -9666 CH
17 -9672 CH
18 -9682 CH
19 -9832 CH
20 -9860 CH
21 -9874 CH
22 -10012 CH
23 -10148 CH
24 -10250 CH
25 -10442 CH

(b) 5 SIs and 20 Chs

ImpRate(SI) = 69.66
payoffSI = −2855.6
payoffCH = −9412.1

Payoff Type
1 -2518 SI
2 -2644 SI
3 -2870 SI
4 -2880 SI
5 -3366 SI
6 -8772 CH
7 -9026 CH
8 -9058 CH
9 -9130 CH

10 -9270 CH
11 -9338 CH
12 -9376 CH
13 -9388 CH
14 -9390 CH
15 -9462 CH
16 -9486 CH
17 -9510 CH
18 -9522 CH
19 -9528 CH
20 -9580 CH
21 -9600 CH
22 -9602 CH
23 -9634 CH
24 -9738 CH
25 -9832 CH

(c) 5 PPs and 20 Chs

ImpRate(PP) = 92.11
payoffPP = −741.2
payoffCH = −9395.1

Payoff Type
1 -440 PP
2 -730 PP
3 -742 PP
4 -810 PP
5 -984 PP
6 -8944 CH
7 -8974 CH
8 -9064 CH
9 -9150 CH

10 -9158 CH
11 -9158 CH
12 -9240 CH
13 -9258 CH
14 -9302 CH
15 -9324 CH
16 -9376 CH
17 -9386 CH
18 -9490 CH
19 -9498 CH
20 -9662 CH
21 -9728 CH
22 -9736 CH
23 -9810 CH
24 -9822 CH
25 -9822 CH

Medium Memory Length Area. The Strategy imitators’payoff becomes high as mem-
ory length becomes longer (3 < m < 13). Fig. 4 and Table 4 shows that the Strategy
imitators could beat the other two type throughout all learning speed β. When other
agents’ strategy is complicated, simple learning methods such as the Hand imitators can
only acquire inaccurate learning results. And learning methods using all information
such as the Perfect predictors spend too much time to get learning results at a limited
learning speed. Therefore, payoff of Hand imitator and Perfect predictor had fallen in
this area. Then, the Strategy imitators, that are in the middle of these two learning types,
got high payoff in this area.

Long Memory Length Area. In this area, the dynamic structure of the whole system
is very complicated and then can not be described by any finite dimensional dynamic
systems. That is, the system showed chaotic features. Therefore, the difference of per-

Analysis of Learning Types in an Artificial Market 155

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Learning speed of others’ model ƒ´

PPHI

SI

Im
pr

ov
em

en
t r

at
e

of
 p

ay
of

f
(C

H
s

=
10

0)

Fig. 4. Simulation results when the memory length m is 9. The payoff of SI (Strategy imitator)
becomes high as memory length becomes long

Table 4. Payoffs of agents in a typical simulation run when m = 9 and β = 0.5. Payoffs in each
table are ranked in descending order

(a) 5 HIs and 20 Chs

ImpRate(HI) = 85.35
payoffHI = −947.6

payoffCH = −6469.1

Payoff Type
1 -528 HI
2 -722 HI
3 -1082 HI
4 -1142 HI
5 -1264 HI
6 -6250 CH
7 -6252 CH
8 -6266 CH
9 -6300 CH

10 -6302 CH
11 -6362 CH
12 -6370 CH
13 -6402 CH
14 -6432 CH
15 -6468 CH
16 -6484 CH
17 -6486 CH
18 -6488 CH
19 -6602 CH
20 -6610 CH
21 -6622 CH
22 -6630 CH
23 -6646 CH
24 -6692 CH
25 -6718 CH

(b) 5 SIs and 20 Chs

ImpRate(SI) = 94.7
payoffSI = −326.4
payoffCH = −6164

Payoff Type
1 222 SI
2 -232 SI
3 -352 SI
4 -476 SI
5 -794 SI
6 -5848 CH
7 -5854 CH
8 -5900 CH
9 -5920 CH

10 -5948 CH
11 -5996 CH
12 -6006 CH
13 -6042 CH
14 -6146 CH
15 -6184 CH
16 -6186 CH
17 -6224 CH
18 -6236 CH
19 -6262 CH
20 -6280 CH
21 -6290 CH
22 -6306 CH
23 -6324 CH
24 -6632 CH
25 -6696 CH

(c) 5 PPs and 20 Chs

ImpRate(PP) = 84.18
payoffPP = −981.6
payoffCH = −6206.2

Payoff Type
1 -338 PP
2 -670 PP
3 -1256 PP
4 -1290 PP
5 -1354 PP
6 -5864 CH
7 -5874 CH
8 -5994 CH
9 -6026 CH

10 -6048 CH
11 -6072 CH
12 -6124 CH
13 -6206 CH
14 -6246 CH
15 -6248 CH
16 -6280 CH
17 -6300 CH
18 -6310 CH
19 -6324 CH
20 -6328 CH
21 -6334 CH
22 -6362 CH
23 -6370 CH
24 -6404 CH
25 -6410 CH

156 K. Izumi, T. Yamashita, and K. Kurumatani

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Learning speed of others’ model ƒ´

SI

PP

HI

Im
pr

ov
em

en
t r

at
e

of
 p

ay
of

f
(C

H
s

=
10

0)

Fig. 5. Simulation results when the memory length m is 13. The performance of all agent types
have small difference

Table 5. Payoffs of agents in a typical simulation run when m = 13 and β = 0.5. Payoffs in each
table are ranked in descending order

(a) 5 HIs and 20 Chs

ImpRate(HI) = 30.7
payoffHI = −1075.2
payoffCH = −1551.6

Payoff Type
1 -924 HI
2 -1066 HI
3 -1096 HI
4 -1106 HI
5 -1184 HI
6 -1220 CH
7 -1242 CH
8 -1310 CH
9 -1336 CH

10 -1348 CH
11 -1438 CH
12 -1498 CH
13 -1534 CH
14 -1542 CH
15 -1562 CH
16 -1566 CH
17 -1584 CH
18 -1590 CH
19 -1604 CH
20 -1690 CH
21 -1734 CH
22 -1740 CH
23 -1816 CH
24 -1830 CH
25 -1848 CH

(b) 5 SIs and 20 Chs

ImpRate(SI) = 33.84
payoffSI = −867.2

payoffCH = −1310.8

Payoff Type
1 -718 SI
2 -826 SI
3 -860 SI
4 -912 SI
5 -1020 SI
6 -1036 CH
7 -1128 CH
8 -1172 CH
9 -1186 CH

10 -1202 CH
11 -1206 CH
12 -1222 CH
13 -1222 CH
14 -1246 CH
15 -1268 CH
16 -1330 CH
17 -1364 CH
18 -1366 CH
19 -1372 CH
20 -1394 CH
21 -1420 CH
22 -1462 CH
23 -1502 CH
24 -1546 CH
25 -1572 CH

(c) 5 PPs and 20 Chs

ImpRate(PP) = 29.02
payoffPP = −978

payoffCH = −1377.9

Payoff Type
1 -826 PP
2 -872 PP
3 -898 PP
4 -1042 CH
5 -1082 PP
6 -1144 CH
7 -1212 PP
8 -1238 CH
9 -1250 CH

10 -1258 CH
11 -1260 CH
12 -1310 CH
13 -1322 CH
14 -1340 CH
15 -1340 CH
16 -1352 CH
17 -1352 CH
18 -1388 CH
19 -1452 CH
20 -1486 CH
21 -1502 CH
22 -1556 CH
23 -1596 CH
24 -1622 CH
25 -1748 CH

Analysis of Learning Types in an Artificial Market 157

formance became small among all the 4 agent types; Pattern matchers, Hand imitators,
Strategy imitators, and Perfect predictors. Fig. 5 revealed that the improvement rate
against the Chartists became small and it becomes hard to distinguish among all agent
types by performance. Table 5 also shows there was little difference among the improve-
ment rates of HI, SI, and PP. Moreover, these types could not win over Chartist by a
large margin.

We conducted competitions in mixed populations with all 4 agent types, { 6 HIs,
6 SIs, 6 PPs, and 7 CHs }, in order to test the validity of the 4 areas under different
combinations [3]. As a result, the similar results were acquired as above mentioned. In
the short memory length and slow learning speed area, Hand imitators could acquire the
highest payoff. Perfect predictors could get the highest payoff in the the short memory
length and fast learning speed area. In the medium memory length area, Strategy imitators
won and in the long memory length area there were little difference among payoffs of
all the 4 types.

4 Conclusions

Our simulation results revealed that the 4 areas existed from the viewpoint of the advan-
tageous learning types, in the minority game which is the model of a financial market.
Which area is applicable for the modeling of a financial market by an artificial market?

Our preceding paper has suggested that it belongs to the medium memory length
area [12]. We performed the artificial market simulation using the agent with various
memory length. As a result, while the memory was short, agents with longer memory
could predict more accurately and were able to get the higher profit. Therefore, it was
advantageous to have a longer memory. As each agent used a longer memory, however,
the movement of the financial price in the artificial market became more complicated.
Then, the movement of the price became complicated too much and the advantageousness
of the longer memory disappeared. Thus, each agent stops to make its memory longer
before the dynamics of the market become random.

Therefore, it is thought that the modeling by an artificial market belongs to the
medium memory length area. In this area, it is reasonable that an agent’s learning type
is Strategy imitator. If the estimation of other agents’ strategies is sufficiently accurate,
Strategy imitator is correspond to an agent in an artificial market model where the
learning is described by the evolutionary algorithm. Hence, when the above-mentioned
conditions are satisfied, the EA mechanism is appropriate for the description of learning
in an artificial market model.

References

1. Izumi, K., Ueda, K.: Phase transition in a foreign exchange market: Analysis based on an ar-
tificial market approach. IEEE Transactions on Evolutionary Computation 5 (2001) 456–470

2. Chen, S.H., Yeh, C.H.: Evolving traders and the buisiness school with genetic programming:
a new architecture of the agent-based artificial stock market. Journal of Economic Dynamics
and Control 25 (2001) 363–393

3. Izumi, K., Nakamura, S., Ueda, K.: Development of an artificial market model based on a
field study. Information Science (in press)

158 K. Izumi, T. Yamashita, and K. Kurumatani

4. Arthur, W.B.: Inductive reasoning and bounded rationality (the el farol problem). American
Economic Review 84 (1994) 406

5. Minority Game’s web page: (http://www.unifr.ch/econophysics/)
6. Zhang, Y.C.: Modeling market mechanism with evolutionary games. Europhys. News 29

(1998) 51–54
7. Challet, D., Zhang, Y.C.: Emergence of cooperation and organization in an evolutionary

game. Physica A 246 (1997) 407–418
8. Marsili, M.: Market mechanism and expectations in minority and majority games. Physica

A 299 (2001) 93–103
9. Cavagna, A.: Irrelevance of memory in the minority game. PHYSICAL REVIEW E 59

(1999) R3783–R3786
10. Lux, T., Marchesi, M.: Scaling and criticality in a stochastic multi-agent model of a financial

market. Nature 397 (1999) 493–500
11. Joshi, S., Parket, J., Bedau, M.A.: Technical trading creates a prisoner’s dilemma: Results

from an agent-based model. In Abu-Mostafa, Y.S., LeBaron, B., Lo, A.W., Weigend, A.S.,
eds.: Computational Finance 1999, MIT Press (2000) 465–479

12. Izumi, K.: Complexity of agents and complexity of markets. In Terano, T., Nishida,
T., Namatame, A., Tsumoto, S., Osawa, Y., T.Washio, eds.: New Frontiers in Artificial
Intelligence. Springer (2001) 110–120

13. LeBaron, B.: Evolution and time horizons in an agent based stock market. Macroeconomic
Dynamics 5 (2001) 225–254

14. Chen, S.H., Liao, C.C.: Agent-based computational modeling of the stock price-volume
relation. Information Sciences (in press)

Toward Guidelines for Modeling Learning
Agents in Multiagent-Based Simulation:

Implications from Q-Learning and Sarsa Agents

Keiki Takadama1,2 and Hironori Fujita3

1 Tokyo Institute of Technology,
4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 Japan

keiki@dis.titech.ac.jp
2 ATR Network Informatics Labs,

2-2-2 Hikaridai, ”Keihanna Science City” Kyoto 619-0288 Japan
keiki@atr.jp

3 Hitotsubashi University,
2-1 Naka, Kunitachi-shi, Tokyo 186-8601 Japan

cm040226@srv.cc.hit-u.ac.jp

Abstract. This paper focuses on how simulation results are sensitive
to agent modeling in multiagent-based simulation (MABS) and inves-
tigates such sensitivity by comparing results where agents have differ-
ent learning mechanisms, i.e., Q-learning and Sarsa, in the context of
reinforcement learning. Through an analysis of simulation results in a
bargaining game as one of the canonical examples in game theory, the
following implications have been revealed: (1) even a slight difference has
an essential influence on simulation results; (2) testing in static and dy-
namic environments highlights the different tendency of results; and (3)
three stages in both Q-learning and Sarsa agents (i.e., (a) competition;
(b) cooperation; and (c) learning impossible) are found in the dynamic
environment, while no stage is found in the static environment. From
these three implications, the following very rough guidelines for model-
ing agents can be derived: (1) cross-element validation for specifying key
factors that affect simulation results; (2) a comparison of results between
the static and dynamic environments for determining candidates to be
investigated in detail; and (3) sensitive analysis for specifying applicable
range for learning agents.

Keywords: Multiagent-based simulation, sensitivity, agent modeling,
learning mechanism, bargaining game.

1 Introduction

Verification and validation (V&V) is a critical issue in multiagent-based simula-
tion (MABS) [1, 7] due to the fact that simulation results are very sensitive to
how agents are modeled. In particular, this problem becomes serious when an
agent has a learning mechanism because it causes a complex interaction among

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 159–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

160 K. Takadama and H. Fujita

agents that yields emergent phenomena in social simulations. Because of these
difficulties, our previous research focused on learning mechanisms applied to
agents and compared the results of computational models that employ either
of (1) evolutionary strategy (ES) [3], (2) learning classifier system (LCS) [4, 6],
or (3) reinforcement learning (RL) [18]. Through a comparison of the results in
game theory [8, 9], our research concluded that agents with some learning mech-
anisms acquire rational behaviors while those with other learning mechanisms
acquire human-like behaviors, even though the agent architecture is the same
except for the learning mechanisms [19].

The above research found that different kinds of learning mechanisms (i.e.,
ES, LCS, and RL) may derive different results, even though they try to maximize
their profit. Therefore, the next question is what is the result when employing
the same kind of learning mechanisms. An example includes Q-learning [21] and
Sarsa [15, 17], which are both reinforcement learning and differ very little (the
detailed difference is shown in equations (1) and (2) in Section 3). Related to
this issue, Sutton and Barto, from the computer science field (in particular, ma-
chine learning literature), reported that simulation results of Q-learning differ
from those of Sarsa [18]. Specifically, Q-learning agents acquire optimal behav-
iors paying no attention to risk (e.g., danger of receiving large negative rewards),
while Sarsa agents cannot acquire optimal behaviors but acquire behaviors that
avoid risk. Since the study investigated the results in a single agent environment
(i.e., static environment), this paper aims at conducting simulations in a multi-
agent environment (i.e., dynamic environment), as is usual in social simulations,
and investigating what kinds of differences are found by comparing both envi-
ronments. Based on such comparison, this paper explores guidelines for modeling
learning agents in multiagent-based simulation.

This paper is organized as follows. Section 2 explains the bargaining game as
an example for social simulations and an implementation of agents is described
in Section 3. Section 4 presents computer simulations and Section 5 discusses a
comparison of the results. Finally, our conclusions are given in Section 6.

2 Bargaining Game

As a concrete domain, we focus on bargaining theory [8, 9] and employ a bar-
gaining game [14] where two or more players try to reach a mutually beneficial
agreement through negotiations. This game has been proposed for investigat-
ing when and what kinds of offers of an individual player can be accepted by
the other players. We selected this domain because (1) this game is a canoni-
cal example; and (2) since the rational behaviors of players have already been
analyzed in game theory [12], we can validate simulation results by comparing
the rational behaviors of players. Note that such comparisons only validate a
certain aspect of results, because rational behaviors analyzed in game theory
are not the same as human behaviors analyzed in experimental economics [11, 5,
10, 13]. But, this research starts by conducting the validation based on rational
behaviors.

Toward Guidelines for Modeling Learning Agents 161

To understand the bargaining game, let us give an example from Rubinstein’s
work [14] which illustrated a typical situation using the following scenario: two
players, P1 and P2, have to reach an agreement on the partition of a “pie”. For
this purpose, they alternate offers describing possible divisions of the pie, such
as “P1 receives x and P2 receives 1 − x at time t”, where x is any value in the
interval [0, 1]. When a player receives an offer, the player decides whether to
accept it or not. If the player accepts the offer, the negotiation process ends, and
each player receives the share of the pie determined by the concluded contract.
If the player decides not to accept the offer, on the other hand, the player
makes a counter-offer, and all of the above steps are repeated until a solution
is reached or the process is aborted for some external reason (e.g., the number
of negotiation processes is finite). If the negotiation process is aborted, neither
player can receive any share of the pie.

Here, we consider the finite-horizon situation, where the maximum number
of steps (MAX STEP) in the game is fixed and all players know this information
as common knowledge [16]. In the case where MAX STEP = 1 (also known as the
ultimatum game), player P1 makes the only offer and P2 can accept or refuse
it. If P2 refuses the offer, both players receive nothing. Since a rational player
is based on the notion of “anything is better than nothing”, a rational P1 tends
to keep most of the pie to herself by offering only a minimum share to P2. Since
there are no further steps to be played in the game, a rational P2 inevitably
accepts the tiny offer.

By applying a backward induction reasoning to the situation above, it is
possible to perform a simulation for MAX STEP > 1. For the same reason seen in
the ultimatum game, the player who can make the last offer is better positioned
to receive the larger share by offering a minimum offer [16]. This is because both
players know the maximum number of steps in the game as common knowledge,
and therefore the player who can make the last offer can acquire a larger share
with the same behavior of the ultimatum game at the last negotiation. The point
of multiple-step negotiation is to investigate whether the advantageous player
can continue the negotiation to the last step to acquire a larger share under the
situation. From this feature of the game, the last offer is granted to the player
who does not make the first offer if MAX STEP is even, since each player is allowed
to make at most MAX STEP/2 offers. On the other hand, the last offer is granted
to the same player who makes the first offer if MAX STEP is odd.

After this section, we use the terms “payoff” and “agent” instead of the terms
“share” and “player” for their more general meanings in the bargaining game.

3 Modeling Agents

To implement reinforcement learning agents in the framework of the bargaining
game described in the previous section, we implement agents as follows.

– Strategies memory stores a fixed number of matrixes of offers (O) and
thresholds (T) as shown in Figure 1. In particular, the MAX STEP/2+1 number

162 K. Takadama and H. Fujita

Agent 1

Strategies

Learning Mechanism

O T O T O T

T
O S 0.1 0.9

0.1
0.2

0.9

A Q
00

Q
01

Q
09

Q
10

Q
11

Q
19

Q
20

Q
90

Q
91

Q
99

T
O S 0.1 0.9

0.1
0.2

0.9

A

Agent 2

Strategies

Learning Mechanism

O T O T O T

T
O S 0.1 0.9

0.1
0.2

0.9

A

T
O S 0.1 0.9

0.1
0.2

0.9

AQ
00

Q
01

Q
09

Q
10

Q
11

Q
19

Q
20

Q
90

Q
91

Q
99

Q
00

Q
01

Q
09

Q
10

Q
11

Q
19

Q
20

Q
90

Q
91

Q
99

Q
00

Q
01

Q
09

Q
10

Q
11

Q
19

Q
20

Q
90

Q
91

Q
99

Note: (A) Acceptance, (S) Start

Fig. 1. Reinforcement learning agents

of matrixes are used in turn at each negotiation to decide to accept an offer
or make an counter-offer (see an example presented later in this section).
In this model, agents independently learn and acquire different worths of
strategies (i.e., different Q-values in offer and threshold).1 Note that (1)
both offer and threshold values are represented by the discrete values in a
0.1 unit; and (2) in addition to these 0.1-0.9 values, the matrix has a column
labelled (S) and a row labelled (A), which is used to determine the value of
the first offer and is used to hold the value of accepting an offer, respectively.

– Learning mechanism (i.e., Q-learning and Sarsa) updates the worth of
pairs of offer and threshold by the following conventional equations (1) and
(2), respectively. In these equations, Q(t, o), Q(t′, o′), r, O(t′), α(0 < α ≤ 1),
and γ(0 ≤ γ ≤ 1) indicate the worth of selecting the offer (o) at threshold
(t), the worth of selecting 1 step next offer (o′) at 1 step next threshold (t′),
the reward corresponding to the acquired payoff, a set of possible offers at 1
step next threshold (t′), the learning rate, and the discount rate, respectively.
Note that the only difference between Q-learning and Sarsa is whether the
max operation is used or not in the equations of updating Q-values.

Q − learning : Q(t, o) = Q(t, o) + α[r + γ max
o′∈O(t′)

Q(t′, o′) − Q(t, o)] (1)

Sarsa : Q(t, o) = Q(t, o) + α[r + γQ(t′, o′) − Q(t, o)] (2)

The action selection (acceptance or counter-offer) in this paper is based on
the ε-greedy method, which selects an action of the maximum worth (Q-

1 In the context of reinforcement learning, worth is called “value”. We select the term
“worth” instead of “value” because the term “value” is used as a numerical number
that represents the offer and threshold in strategies.

Toward Guidelines for Modeling Learning Agents 163

Agent 1

Agent 2

1st 2nd 3rd 4th

T
O S 0.1 0.9

0.1
0.2

0.9

A Q
00

Q
01

Q
09

Q
10

Q
11

Q
19

Q
20

Q
90

Q
91

Q
99

T
O S 0.1 0.9

0.1
0.2

0.9

A Q
00

Q
01

Q
09

Q
10

Q
11

Q
19

Q
20

Q
90

Q
91

Q
99

T
O S 0.1 0.9

0.1
0.2

0.9

A Q
00

Q
01

Q
09

Q
10

Q
11

Q
19

Q
20

Q
90

Q
91

Q
99

T
O S 0.1 0.9

0.1
0.2

0.9

A Q
00

Q
01

Q
09

Q
10

Q
11

Q
19

Q
20

Q
90

Q
91

Q
99

T
O S 0.1 0.9

0.1
0.2

0.9

A Q
00

Q
01

Q
09

Q
10

Q
11

Q
19

Q
20

Q
90

Q
91

Q
99

T
O S 0.1 0.9

0.1
0.2

0.9

A Q
00

Q
01

Q
09

Q
10

Q
11

Q
19

Q
20

Q
90

Q
91

Q
99

T
O S 0.1 0.9

0.1
0.2

0.9

A Q
00

Q
01

Q
09

Q
10

Q
11

Q
19

Q
20

Q
90

Q
91

Q
99

5th 6th

(A)1

(A)2

Fig. 2. Example of a negotiation process

value) at the 1 − ε probability, while selecting an action randomly at the
ε(0 ≤ ε ≤ 1) probability.

As a concrete negotiation process, agents proceed as follows. Defining
{O, T}A{1,2}

i as the ith offer or threshold value of agent A1 or A2, A1 starts
by selecting one Q-value from the row S(Start) (i.e., one Q-value from {Q10,
· · ·, Q90}2 in the row S), and makes the first offer OA1

1 according to the selected
Q-value (for example, A1 makes an offer 0.1 if it selects Q10). Here, we count one
step when either agent makes an offer. Then, A2 selects one Q-value from the row
TA2

2 (= OA1
1) (i.e., one Q-value from {Q0T , · · ·, Q9T }, where T = TA2

2 (= OA1
1)).

A2 accepts the offer if Q0T (i.e., the acceptance (A)) is selected; otherwise, it
makes a counter-offer OA2

2 according to the selected Q-value as the same way
of A1. This cycle is continued until either agent accepts the offer of the other
agent or a negotiation is over (i.e., the maximum number of steps (MAX STEP) is
exceeded by deciding to make a counter-offer instead of acceptance at the last
negotiation step).

To understand this situation, let us consider the simple example where MAX
STEP = 6 as shown in Figure 2. Following this example, A1 starts to make an
offer 0.1(= OA1

1) to A2 by selecting Q10 from the row S(start). However, A2 does
not accept the first offer because it determines to make 0.1(= OA2

2) counter-offer

2 At the first negotiation, one Q-value is selected from {Q10, · · ·, Q90} not from {Q00,
Q10, · · ·, Q90}. This is because the role of the first agent is to make the first offer
and not to accpet any offer (by selecting Q00) due to the fact that a negotiation has
not started yet.

164 K. Takadama and H. Fujita

by selecting Q11 from the row 0.1(= TA2
2 , corresponding to A1’s offer). Then,

in this exapmle, A1 makes 0.9(= OA1
3) counter-offer by selecting Q91 from the

row 0.1(= TA1
3), A2 makes 0.9(= OA2

4) counter-offer by selecting Q99 from the
row 0.9(= TA2

4), A1 makes 0.1(= OA1
5) counter-offer by selecting Q19 from the

row 0.9(= TA1
5), and A2 makes 0.1(= OA2

6) counter-offer by selecting Q11 from
the row 0.9(= TA2

6). Finally, A1 accepts the 6th offer from A2 by selecting Q01
from the row 0.1, which results in A(acceptance). But, if A1 makes a counter-
offer instead of accpetance of the 6th offer from A2 at the last negotiation step
(which means to exceed the maximum number of steps), both agents can no
longer receive any payoff, i.e., they receive 0 payoff.

Here, we count one iteration when the above negotiation process ends or fails.
In each iteration, Q-learning and Sarsa agents update the worth pairs of offer
and threshold in order to acquire a large payoff.

4 Simulation

4.1 Simulation Design

The following two simulations were conducted as comparative simulations.

– Case 1: Q-learning vs. Sarsa in a static environment
Investigation of the results of two different learning mechanisms in a single
agent environment, where one agent is a predetermined agent without learn-
ing mechanisms. Precisely, we compare results of the predetermined agent
vs. Q-learning with those of the predetermined agent vs. Sarsa. The prede-
termined agent in this case is set as A1 who makes the first offer, and it is
implemented by (1) accepting the offer from A2 if the offer value is 0.2 or
more; otherwise, it makes a 0.1 counter-offer to A2; and (2) accepting any
offer at the last steps (i.e., the maximum number of steps). This implemen-
tation is based on rational behaviors analyzed in the bargaining game. In
particular, the predetermined agent (A1) accepts a 0.2 or more offer value
from A2, because the maximum values that A1 can receive is theoretically
calculated as 0.1.

– Case 2: Q-learning vs. Sarsa in a dynamic environment
Investigation of the results of two different learning mechanisms in a multi-
agent environment, as is usual in social simulations. Precisely, we compare
results of Q-learning vs. Q-learning with those of Sarsa vs. Sarsa.

In each simulation, (a) the payoff and (b) the negotiation process size are
investigated by varying the ε parameter in the ε-greedy method, which deter-
mines a randomness of agent behaviors. Here, the negotiation process size is the
number of steps until an offer is accepted or MAX STEP if no offer is accepted.
All simulations are conducted for up to 10,000,000 iterations, which is enough
for the agents to learn appropriate behaviors, and the results show an average
over the last 10,000 iterations, which means the converged values calculated by
the average from 9,990,000 to 10,000,000 iterations. We confirmed that both

Toward Guidelines for Modeling Learning Agents 165

standard deviations of (a) the payoff and (b) the negotiation process size from
9,990,000 to 10,000,000 iterations are almost 0.

As to the parameter setting, the variables are set as follows: MAX STEP (max-
imum number of steps in one iteration) is 6; α (learning rate) is 0.1; γ (discount
rate) is 1.0; and ε (ε-greedy method) is from 0.0 to 0.2. Note that preliminary
examinations found that the tendency of the results does not drastically change
according to the parameter setting except for the ε parameter.

All simulations in this paper were implemented in the C language with stan-
dard libraries and were conducted using the Linux OS on a Pentium 2.4GHz
Processor. Note that the same simulation can be implemented and conducted
using other compilers and platforms.

4.2 Simulation Results

Figure 3 shows the simulation results of both the static (case 1) and dynamic
(case 2) environments. The upper figures indicate the payoff, while the lower
figures indicate the negotiation process size. The vertical axis in the figures
indicates these two criteria, while the horizontal axis indicates the ε parameter
of the ε-greedy method. In each figure, the solid line indicates the results of the
Q-learning related, while the dotted line indicates those of the Sarsa related.
Here, Q-learning related includes two cases of (i) the predetermined agent vs.
Q-learning and (ii) Q-learning vs. Q-learning, while Sarsa related includes two
cases of (i) the predetermined agent vs. Sarsa and (ii) Sarsa vs. Sarsa. The “Q”,
“Sarsa”, and “Predetermined” in the figures indicate Q-learning, Sarsa, and the
predetermined agents, respectively. Furthermore, the “Predetermined-Q”, for
example, indicates that the predetermined agent corresponds to A1 while the
Q-learning agent corresponds to A2. Specifically, the payoff of A1 is shown in
the lower lines, while that of A2 is shown in the upper lines.

These results suggest us that simulation results are affected by both learning
mechanisms applied to agents (i.e., Q-learning or Sarsa) and environments (i.e.,
static and dynamic environments).

5 Discussion

5.1 Q-Learning Versus Sarsa

When comparing the results between Q-learning and Sarsa, Figure 3 shows that
(1) the payoff of Q-learning related (i.e., Predetermined-Q or Q-Q) is almost the
same as that of Sarsa related (i.e., Predetermined-Sarsa or Sarsa-Sarsa); and (2)
the negotiation process size of Q-learning related differs from that of Sarsa re-
lated. In particular, we are surprised that the different results occur in the negoti-
ation process size because the difference between Q-learning and Sarsa is very lit-
tle (i.e., the only difference is whether the max operation is used in an equation of
updating Q-values as shown in equations (1) and (2)). So, why do we obtain such
different results? The reasons for the above results are summarized as follows:

166 K. Takadama and H. Fujita

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

Predetermined-Q

Predetermined-Q

Predetermined-Sarsa

Predetermined-Sarsa

0

1

2

3

4

5

6

0 0.05 0.1 0.15 0.2

Predetermined-Q

Predetermined-Sarsa

0

1

2

3

4

5

6

0 0.05 0.1 0.15 0.2

Q-Q

Sarsa-Sarsa

0
0 0.05 0.1 0.15 0.2

Q-Q

Q-Q

Sarsa-Sarsa

Sarsa-Sarsa

Epsilon

N
eg

o
ti

at
io

n
 s

iz
e

P
ay

o
ff

Case 1: Static environment Case 2: Dynamic environment

0.2

0.4

0.6

0.8

1

A2

A1

A2

A1

Fig. 3. Simulation results of static and dynamic environments (0 < ε ≤ 0.2)

– Payoff: The payoffs of both Q-learning and Sarsa are mostly the same be-
cause agents in the bargaining game are designed not to take large negative
rewards (i.e., only zero rewards in the worst case) when exceeding the last
negotiation steps. If agents take large negative rewards, our preliminary sim-
ulation found that the payoff of Q-learning becomes small than that of Sarsa.
This is because Q-learning agents takes risk while Sarsa agents avoid risk,
which can be understood from implication found by Sutton and Barto in the
cliff walking problem [18]. It reports that Q-learning agents acquire optimal
behaviors paying no attention to risk (i.e., danger of receiving large negative
rewards in the bargaining game), while Sarsa agents cannot acquire optimal
behaviors but acquire behaviors that avoid risk. Here, the bargaining game
are designed not to take large negative rewards, and therefore the difference
in payoffs between Q-learning and Sarsa does not occur.

– Negotiation process size: The reason why the negotiation process size
of Q-learning differs from that of Sarsa can be also understood from the
same implication that Q-learning takes risk while Sarsa avoid risk. Here,
considering the risk from the viewpoint of the bargaining game, A2 has a
chance to obtain the maximum payoff (i.e., 90% of the rewards) when A2
reaches the last negotiation steps, but A2 should take a risk to do so because
A2 cannot receive any share of the rewards if A1 refuses the offer from A2.
In this situation, the negotiation process size becomes large if an agent takes
risk like Q-learning, while the size becomes small if an agent avoids risk like
Sarsa. This indicates that Q-learning and Sarsa have different capabilities
from the viewpoint of risk. Furthermore, what should be noticed here is that

Toward Guidelines for Modeling Learning Agents 167

this implication is found not only in the static environment, which Sutton
and Barto addressed, but also in the dynamic environment.

We can first conclude that even a slight difference (i.e., whether the max
operation is used or not in an equation of updating Q-values) has an essential
influence on simulation results.

5.2 Static Versus Dynamic Environments: Short Range of ε

When comparing the results between the static and dynamic environments, Fig-
ure 3 shows that (1) the payoffs of A1 (or A2) in both the static and dynamic
environments increases (or decreases) as the ε parameter increases; and (2) the
negotiation process size in the static environment decreases, while that in the
dynamic environment increases. Why do we obtain such different results? The
reasons for the above results are summarized as follows:

– Payoff: The payoffs in both the static and dynamic environments are very
similar for the same reason described in Section 5.1. Specifically, the payoff
of A1 (or A2) increases (or decreases) as the ε parameter increases because
agents have difficulty in performing rational behaviors due to an increase of
the probability of random behaviors.

– Negotiation process size: The different results are obtained in the nego-
tiation process size, because the probability of reaching the last negotiation
steps in the static and dynamic environments are different. Precisely, Q-
learning and Sarsa agents become to make the large offer by mistake instead
of making the tiny offer as the ε parameter increases. In the static envi-
ronment, the predetermined agent perfectly accepts such offer even before
reaching the last negotiation steps. This makes the negotiation process size
decrease. In the dynamic environment, on the other hand, both learning
agents have the chance to acquire the large offer when one of agents makes
the large mistaken offer. This leads agents to wait for the large mistaken offer
from the opponent agent, which makes the negotiation process step increase.

We can secondly conclude that the static and dynamic environments derive
the different tendency in the negotiation process size but not in the payoff. This
tendency is common in both Q-learning and Sarsa agents.

5.3 Static Versus Dynamic Environments: Long Range of ε

In order to investigate the different tendency of the static and dynamic environ-
ments in more detail, we extend the simulations by changing the ε parameter
from 0 to 1 (the ε parameter in Figure 3 is set from 0 to 0.2). Figure 4 shows
the extended simulation results, where the vertical axis indicates the negotiation
process size, while the horizontal axis has the same meaning as in Figure 3. Note
that the results in Figure 4 are smoothed in comparison with those in Figure 3
in order to make clear the tendency of results.

These results suggest that (1) no stage is found in the static environment,
while (2) three stages (a), (b), and (c) are found in the dynamic environment.

168 K. Takadama and H. Fujita

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Predetermined-Q

Predetermined-Sarsa

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Q-Q

Sarsa-Sarsa

Case 1: Static environment
Epsilon

N
eg

o
ti

at
io

n
 s

iz
e

Case 2: Dynamic environment

(a) (b) (c)

Fig. 4. Simulation results of static and dynamic environments (0 < ε ≤ 1)

Precisely, the negotiation process size in the static environment mainly decreases
as the ε parameter increases, while the size in the dynamic environment increases
in stage (a), decreases or keeps in stage (b), and increases again in stage (c).
These three stages are categorized as follows:

– (a) Competition stage: As described in the previous section, agents in this
stage have the chance to acquire the large offer when one of agents makes the
large mistaken offer. This makes agents compete with each other to acquire
the large mistaken offer by waiting for it from the opponent agent until the
last negotiation steps. Since the probability of a mistake by agents increase
as the ε parameter increases, the negotiation process size also increases ac-
cording to the ε parameter.

– (b) Cooperation stage: Agents in this stage become to hard in competing
each other to acquire the large offer. This is because agents are hard to
accept the large mistaken offer, even though they want to accept it, due
to an increase of the randomness in stage (b) in comparison with stage
(a). Since such a randomness also increases a probability of exceeding the
last negotiation steps, the agents in this stage change to cooperate with the
opponent agent from compete each other, in order not to avoid exceeding the
last steps. This contributes to decreasing the negotiation process size.

– (c) Learning impossible stage: Agents in this stage can no longer learn
to avoid exceeding the last negotiation steps due to high randomness. Since
most negotiations exceed the last negotiation steps, the negotiation process
size increases again.

From this analysis, we can finally conclude that there is an applicable range
for learning agent. In this simulation, the stage (a) is appropriate for the aim of
the bargaining game.

5.4 Toward Guidelines for Modeling Agents

From the discussions in Sections 5.1 to 5.3, we can derive the following very
rough guidelines for modeling agents:
1. Cross-element validation: Since even a slight difference (i.e., whether the

max operation is used or not in an equation of updating Q-values) has an

Toward Guidelines for Modeling Learning Agents 169

essential influence on simulation results, it is indispensable to conduct the
cross-element validation [19], instead of the cross-model validation such as
“alignment of computational models” or “docking” [2]. The former validation
is based on within-models, which compares simulation results of agents who
differ only in one element (e.g., a learning mechanism in this research), while
the latter validation is based on between-model, which compares simulation
results of different computational models. Both approaches assert the im-
portance of investigating whether different computational elements/models
can produce the same results. However, key elements (e.g., the max oper-
ation), that determine characteristics of learning agents (e.g., risk taking
or risk avoidance), are hard to be found by the cross-model validation but
can be found by the cross-element validation. This is simply because the
cross-model validation does not focus on an influence of detailed elements
in computational models but analyze an influence of a structure of compu-
tational models. From this feature, the cross-element validation should be
done to specify sensitive parts in multiagent-based simulation.

2. Comparison of results between static and dynamic environments:
As described in Section 5.2, the negotiation process size in the static envi-
ronment decreases, while that in the dynamic environment increases. Such a
difference depends on whether an agent competes with an environment (i.e.,
the predetermined agent) or agents complete with each other. This clearly in-
dicates that implications derived from simulations in the static environment
(i.e., simulations using the predetermined agent) may not be useful because
such simulation results differ from those in the dynamic environment (i.e.,
simulations using multiple agents) as is usual in social simulations. In this
sense, we should conduct simulations in the dynamic environment, which is
a very proper guideline. But, simulations in the static environment is useful
to specify sensitive factors (i.e., the negotiation process size) by comparing
with results in the dynamic environment. Since it is important to analyze
such sensitive factors in detail in order for accurate implications, a compar-
ison of results between the static and dynamic environments should be also
done to determine candidates to be investigated in detail.

3. Sensitivity analysis for specifying a range that agents perform well:
Since the dynamic environment has three stages in the negotiation process
size (i.e., (a) competition; (b) cooperation; and (c) learning impossible), it
is quite important to find such stage transition. This is because we have to
clarify the stage that enables agents to acquire appropriate behaviors in or-
der to conduct appropriate simulations. For this purpose, sensitive analysis
is indispensable to clarify such applicable stage. In the bargaining game, the
ε parameter should be set from 0 to 0.2 for an appropriate learning. What
should be noticed here is that this type of analysis aims at specifying a
range that agents perform well, which differs from the conventional sensitiv-
ity analysis that aims at finding sensitive parts in simulation results. From
this different aim, we should also conduct sensitive analysis for specifying
applicable range for learning agents.

170 K. Takadama and H. Fujita

6 Conclusions

This paper focused on how simulation results are sensitive to agent modeling
in multiagent-based simulation and investigated such sensitivity by comparing
results where agents have different learning mechanisms. Specifically, we em-
ployed two types of reinforcement learning, Q-learning and Sarsa, which differ
very little (i.e., just one difference in updating Q-values). Through an analysis
of simulation results in the bargaining game as one of the canonical examples
in game theory, the following implications have been revealed: (1) even a slight
difference (i.e., whether the max operation is used or not in an equation of up-
dating Q-values) has an essential influence on simulation results. This indicates
that cross-element validation is indispensable to specify key factors that affect
simulation results; (2) testing in static and dynamic environments highlights
the different tendency of results. Concretely, the different tendency is found in
the negotiation process size not derive in the payoff, which suggests that the
negotiation process size is sensitive factors in the bargaining game. Since it is
important to analyze such sensitive factors in detail in order for accurate impli-
cations, a comparison of results between the static and dynamic environments is
useful to determine candidates to be investigated in detail; and (3) three stages
in both Q-learning and Sarsa agents (i.e., (a) competition; (b) cooperation; and
(c) learning impossible) are found in the dynamic environment, while no stage
is found in the static environment. Such finding suggests to conduct sensitive
analysis for specifying applicable range for learning agents. In this example, the
ε parameter should be set from 0 to 0.2 for an appropriate learning.

From these three implications, the following very rough guidelines for model-
ing agents can be derived: (1) cross-element validation for specifying key factors
(e.g., the max operation) that affect simulation results; (2) a comparison of re-
sults between the static and dynamic environments for determining candidates
(e.g., the negotiation process size) to be investigated in detail; and (3) sensitive
analysis for specifying applicable range for learning agents (e.g., the parameter
setting of ε). However, the above implications and rough guidelines have only
been obtained from two learning mechanisms (i.e., Q-learning and Sarsa) and
from one social problem (i.e., the bargaining game). Therefore, further careful
qualifications and justifications, such as analyses of results using other learn-
ing mechanisms or in other domains, are needed to generalize our results. Such
important directions must be pursued in the near future in addition to the follow-
ing future research: (1) simulation mixing different kinds of learning mechanisms
(preliminary results were shown in [20]); (2) simulation mixing agents who have
different ε parameters; (3) simulation with more than two agents; and (4) inves-
tigation of the influence of the discount factor [14] in the bargaining game.

Acknowledgements

The authors wish to thank anonymous reviewers for useful, significant, and
constructive comments and suggestions. The research reported here was sup-

Toward Guidelines for Modeling Learning Agents 171

ported in part by a Grant-in-Aid for Scientific Research (Young Scientists (B),
15700122) of Ministry of Education, Culture, Sports, Science and Technology
(MEXT).

References

1. Axelrod, R. M.: The Complexity of Cooperation: Agent-Based Models of Competi-
tion and Collaboration, Princeton University Press, 1997.

2. Axtell, R., Axelrod, R., Epstein J., and Cohen, M. D.: “Aligning Simulation Mod-
els: A Case Study and Results,” Computational and Mathematical Organization
Theory (CMOT), Vol. 1, No. 1, pp. 123–141, 1996.

3. Bäck, T., Rudolph, G., and Schwefel, H.: “Evolutionary Programming and Evolu-
tion Strategies: Similarities and Differences,” The 2nd Annual Evolutionary Pro-
gramming Conference, pp. 11–22, 1992.

4. Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley, 1989.

5. Güth, W., Schmittberger, R., and Schwarze, B.: “An Experimental Analysis of
Ultimatum Bargaining,” Journal of Economic Behavior and Organization, Vol. 3,
pp. 367–388, 1982.

6. Holland, J. H., Holyoak, K. J., Nisbett, R. E., and Thagard, P. R.: Induction, The
MIT Press, 1986.

7. Moss, S. and Davidsson, P.: Multi-Agent-Based Simulation, Lecture Notes in Arti-
ficial Intelligence, Vol. 1979, Springer-Verlag, 2001.

8. Muthoo, A.: Bargaining Theory with Applications, Cambridge University Press,
1999.

9. Muthoo, A.: “A Non-Technical Introduction to Bargaining Theory,” World Eco-
nomics, pp. 145–166, 2000.

10. Neelin, J., Sonnenschein, H., and Spiegel, M.: “A Further Test of Noncooperative
Bargaining Theory: Comment,” American Economic Review, Vol. 78, No. 4, pp.
824–836, 1988.

11. Nydegger, R. V. and Owen, G.: “Two-Person Bargaining: An Experimental Test
of the Nash Axioms,” International Journal of Game Theory, Vol. 3, No. 4, pp.
239–249, 1974.

12. Osborne, M. J. and Rubinstein, A.: A Course in Game Theory, MIT Press, 1994.
13. Roth, A. E., Prasnikar, V., Okuno-Fujiwara, M., and Zamir, S.: “Bargaining and

Market Behavior in Jerusalem, Ljubljana, Pittsburgh, and Tokyo: An Experimental
Study,” American Economic Review, Vol. 81, No. 5, pp. 1068–1094, 1991.

14. Rubinstein, A.: “Perfect Equilibrium in a Bargaining Model,” Econometrica, Vol.
50, No. 1, pp. 97–109, 1982.

15. Rummery, G. A. and Niranjan, M.: “On-line Q-learning Using Connectionist Sys-
tems”, Technical Report CUED/F-INFENG/TR 166, Engineering Department,
Cambridge University, 1994.

16. St̊ahl, I.: Bargaining Theory, Economics Research Institute at the Stockholm
School of Economics, 1972.

17. Sutton, R: “Generalization in Reinforcement Learning: Successful Examples Using
Sparse Coarse Coding,” In Touretzky, D. S., Mozer, M. C., and Hasselmo M. E.
(Eds.), Advances in Neural Information Processing Systems, The MIT Press, pp.
1038–1044, 1996.

18. Sutton, R. S. and Bart, A. G.: Reinforcement Learning – An Introduction –, The
MIT Press, 1998.

172 K. Takadama and H. Fujita

19. Takadama, K., Suematsu, Y. L., Sugimoto, N., Nawa, N. E., and Shimohara, K.:
“Cross-Element Validation in Multiagent-based Simulation: Switching Learning
Mechanisms in Agents,” The Journal of Artificial Societies and Social Simulation
(JASSS), Vol. 6, No. 4, http://jasss.soc.surrey.ac.uk/6/4/6.html, 2003.

20. Takadama, K. and Fujita, H.: “Lessons Learned from Comparison Between Q-
learning and Sarsa Agents in Bargaining Game,” NAACSOS (North American As-
sociation for Computational Social and Organizational Science) Conference 2004,
2004.

21. Watkins, C. J. C. H. and Dayan, P.: “Technical Note: Q-Learning,” Machine Learn-
ing, Vol. 8, pp. 55–68, 1992.

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 173–184, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agent-Based Modelling of Forces in Crowds

Colin M. Henein1 and Tony White2

1 Institute of Cognitive Science, Carleton University,
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

cmh@ccs.carleton.ca
2 School of Computer Science, Carleton University,

1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
arpwhite@scs.carleton.ca

Abstract. Recent events have highlighted the importance of good models of
crowds, however many existing crowd models are either computationally inef-
ficient, or are missing a crucial human behaviour in crowds: local pushing. Af-
ter discussing some essential aspects of force in crowds, and considering some
existing models, we propose an efficient agent-based model of crowd evacua-
tion that incorporates pushing forces and injuries. Basing our model on existing
work, we extend this model to investigate force effects at different crowd densi-
ties. Analysis of our model shows significant effects of force on the crowd, as
well as significant effects of crowd density when measuring the number of
agents still trapped inside the space after a fixed time.

1 Introduction

Crowds are a part of our everyday lives. While most crowds are safe, some can be
dangerous: this year alone over 250 pilgrims were crushed during the Hajj, and over
80 were crushed at the lantern festival in Beijing. Crowd effects are not limited to
these exterior settings; for example, architects designing large venues (e.g. arenas and
lecture theatres) need to understand crowd exit behaviours. Thus, good models of
crowds can be very helpful to many professionals.

From a modelling perspective, crowd events are interesting to social simulation
researchers because their associated phenomena are largely emergent in nature. Inter-
esting crowd behaviours with which we are familiar include the formation of rivers of
movement through otherwise stationary crowds, spontaneous formation of lanes when
pedestrians are moving in opposing directions, and roundabouts when paths cross [1].
Crowds also demonstrate speed and force-related effects, including rainbow-like arch-
ing structures as pedestrians jam and clog at exits, bursty exit rates as jostling pre-
vents smooth use of doors, and inability for crowds to pass through each other when
speeds (and forces) are high [1]. All these crowd effects are generally observable
from an overhead perspective, and we are all aware from our personal experience that
individual pedestrians do not plan them.

Force effects are particularly important in modelling crowd behaviours. Although
people generally try to move toward goals, force effects can cause them to be pushed
away from their desired trajectories and accurate models must reflect this. Also, the

174 C.M. Henein and T. White

presence of crowd members injured by excessive force can significantly affect the
ability of others to move freely. In an evacuation situation, increased desired walking
speed leads to increased forces, and these forces tend to cause additional delays to
those trying to exit. Models that do not represent pushing forces therefore cannot di-
rectly account for all these additional delays.

The purpose of the present research was to create an efficient, agent-based, indi-
vidual-centred model of crowd evacuation that incorporates pushing forces and inju-
ries. In the remainder of this section we will consider existing models of crowd be-
haviour (including some agent-based ones), and discuss their advantages and
disadvantages; ultimately we will conclude that one promising model could be im-
proved by the addition of force. The following sections will outline this model, essen-
tial aspects of force in crowds, and the details of our implementation of these phe-
nomena. Finally, we will provide an analysis of our results as well as future directions
for this research.

1.1 Existing Models of Crowd Behaviour

Many explanations of crowd behaviour have been proposed over the last forty years
[review: ref. 1]. Historically, many of these investigations have borrowed physical
analysis techniques (e.g. fluid dynamics) that are focussed on aggregate factors. This
approach obscures individual-level interactions (e.g. collision avoidance and pushing)
which may be important for accurate modelling, and which are of particular interest to
researchers seeking to study individual movement and safety.

Recently, agent-based models have been proposed which begin to address this is-
sue by operating at the level of individuals. A frequently cited model of this type is
the social forces model, advanced by Helbing and colleagues [2]. A strongly physical-
ist model, it calculates forces acting on agents to determine movement, with excessive
forces leading to agent injuries. The model considers the effect that each agent has
upon all the other agents, almost as if the model were a simulation of an n-body prob-
lem in astrophysics. Physical forces (e.g. friction encountered when brushing past an-
other person, or elastic force due to body compressions) are modelled, as are social
forces (desire to change direction to avoid another). One problem with Helbing’s
model is that of computational complexity. Simulation update is O(n2) due to the cal-
culation of the effect that each agent (and obstacle) has on all the other agents. This
may limit the model’s ability to simulate many agents.

A more efficient model may be obtained by avoiding the direct consideration of
every agent’s effect on all the others. We call these models local-interaction models.
Cellular automata models take this approach, as do agent-based models that rely on
local information to simulate an unfolding crowd scenario.

Kirchner and colleagues have proposed a model along these lines that emphasizes
decentralised processing by independent agents [3]. Agents representing crowd mem-
bers are distributed on a grid that serves not only as a coordinate system to track agent
movement, but also as a data structure storing location-specific data of use to agents.
As each agent calculates its next step, references to physical features of interest in the
environment (e.g. doors) are replaced by references to a value stored on the grid cell
in question (e.g. distance from here to nearest exit).

One deficiency of many local-interaction models is that, unlike Helbing’s model,
they do not address the question of force applied by agents to other agents. Individu-

 Agent-Based Modelling of Forces in Crowds 175

als in Kirchner’s crowds, for example, are well behaved as they await their opportu-
nity to exit. This means that the model cannot account for delays in exiting due to
pushing or the secondary obstruction effects of injuries. We believe that results can be
improved by creating an agent-based local-interaction model incorporating force.

2 Starting with an Existing Model: Kirchner

Instead of creating an entirely new local-interaction model demonstrating force ef-
fects of interest we have elected to base our model on the Kirchner model [3]. This is
because Kirchner’s model is already capable of demonstrating many of the effects
discussed in the introduction; furthermore it provides a computationally efficient and
extensible base on which to construct force effects.

In this section we will describe the basic model. In the next section, we describe
how pushing and inter-agent forces can be integrated into the model.

2.1 Floor Field Modelling

The modelled space is divided into square grid cells. It makes use of floor fields to
provide location-specific data to individual agents in the model. Each floor field de-
fines a set of values, one value for each cell. An individual agent has access to the
floor field values on its current cell, as well as those on the four cardinal neighbouring
cells.

The Kirchner model defines two floor fields: the static field and the dynamic field.
The static field is a gradient that indicates the shortest distance to an exit. Thus, an
agent is in a position to know the distance to the closest exit by consulting the static
field value on its current cell; by consulting the values in neighbouring cells the agent
can determine the direction in which to move to reach an exit.

The dynamic field is a measure of agent movement. An agent increments the dy-
namic field level when moving. By analogy with ant pheromones [4], the dynamic
field diffuses and evaporates. By consulting the dynamic field an agent can follow
other nearby agents without directly considering the position of any other agent.

By varying the degree to which an agent is sensitive to one field or the other, this
model can simulate different pedestrian strategies within the crowd, as well as situa-
tions in which pedestrians have less than perfect knowledge of the location of exits.
For example, to model herding behaviours in anxious crowds, the agents’ sensitivity
to the dynamic field can be increased, thereby promoting agent interaction. To model
reduced visibility in an unfamiliar environment agents’ sensitivity to both fields can
be decreased.

2.2 Update Rules

Kirchner’s model proceeds by iterating a set of basic steps, represented graphically in
figure 1. First (step K1), a score – representing desirability – is calculated for each
cell according to the following formula:

176 C.M. Henein and T. White

Score(i) = exp(kd Di) × exp(k s Si) × ξi × ηi (1)

where Score(i) represents the score at cell i; Di is the value of the dynamic field in that
cell and Si is the value of the static field in that cell; kd and ks are scaling parameters to
the model governing the degree to which an individual is aware of other-agent move-
ment and location of exits, respectively; ξi is 0 for forbidden cells (e.g. walls, obsta-
cles) and 1 otherwise; ηi is 0 if an agent is on the cell, and 1 otherwise.

Having determined the scores, each agent then uses them (step K2) to probabilisti-
cally determine the cell that it would like to move onto in the next time step (motion
is permitted to the four cardinal neighbours, and ‘motion’ to the current cell is also
possible). The agent calculates the probability of moving from cell i to a neighbouring
cell j, by dividing the score for j by the sum of the scores of those cells adjacent to i:

pij = Score(j) Score(a)
a∈N (i)
∑

⎛

⎝⎜
⎞

⎠⎟

−1

 (2)

where pij is the desired probability and N(i) gives the set of cells that are neighbouring
cells to i, including i itself.

Fig. 1. (a) Update rules in Kirchner (left) and (b) force-modified model (right). Italicised rules
highlight differences with the Kirchner model

When all agents have decided on their desired grid cells, they all move simultane-
ously (step K3) and increment the Di value of their original cell by one (step K5).
Agents selecting their own cell do not move, and do not update the dynamic field. As

 Agent-Based Modelling of Forces in Crowds 177

no two agents may occupy the same space, any conflicts for moving agents (step K4)
are resolved by allowing a random agent to occupy the desired cell, if empty; the
other conflicting agents do not move.

Finally, Di is diffused and decayed (step K6). To diffuse, a cell distributes a pro-
portion of its Di value equally among its 4 cardinal neighbour cells. To decay, the cell
discards a proportion of its Di value. The decay and diffusion proportions are input
parameters to the model.

Agents moving onto a cell designated as an exit cell are removed from the model
upon the completion of the time step, and are deemed to have exited at that time.

3 Modelling the Application of Force

Force is an important aspect of crowd models. Forces in crowds affect the ability of
pedestrians to exit in a timely manner. A model without force may not accurately
model pedestrian exit behaviours. In this section we add force to Kirchner’s model.

3.1 Aspects of Force

Before proceeding to create a model that includes forces it is worth mentioning five
essential properties of crowd forces that will guide our design.

First, people in crowds do not push randomly; pushing occurs for a reason. People
push in a particular direction when they want to move in that direction and are pre-
vented from doing so. Also, people push when they want to maintain their personal
space in a crowd.

Second, forces propagate through crowds; some researchers have reported that
force can move through a crowd like a shockwave [5]. It is essential to note this fact
when modelling force, as it dictates that force applied by individuals in one part of a
modelled crowd must propagate through that crowd with certain time characteristics;
pushing and force propagation in crowds is not instantaneous.

Third, forces are directed and any model should consider force to be a vector
rather than a scalar.

Fourth, from a modeller’s perspective there are two important effects of force on
individuals within crowds: Individuals subjected to extremes of force become injured;
these injuries have consequences for the injured agent (immobility, inability to exit)
but also for others in the vicinity (injured people are obstacles to others). The other
important effect of force is that when individuals are subjected to non-injuring
(smaller) forces, these affect movement. Therefore a modelled pedestrian who is
pushed ought to move in the direction of the force, rather than in some other direction
that they might prefer.

Fifth, is location-specificity. When many people in a crowd are pushing together
in a similar direction then the applied force combines additively to have a large effect
on those receiving the force. Often, injuries tend to occur near the front of crowds, as
the aggregate force from behind becomes overwhelming. Some reports have con-
cluded that injuries have occurred towards the centre of a crowd, where the force from
those pushing off the wall at the front met with force generated by those pushing from
the rear [5]. In any case, modelled injuries should not be randomly distributed
throughout the modelled space, but should instead be produced at physically reason-
able positions within the crowd.

178 C.M. Henein and T. White

3.2 Adding Pushing to Kirchner’s Model

When adding force to the model, we have been conscious of the performance advan-
tages of the floor field design. Accordingly, force is represented in the model as a
third floor field.

The force field value on each cell represents the force experienced by the agent on
that cell in the current time step. In order to represent the directionality of force, we
have used a vector field instead of the scalar fields used by Kirchner. We define a
vector floor field to hold both a magnitude and direction for each cell in the model,
rather than the scalar floor fields that hold only a scalar value for each cell. Where ap-
plicable, we use vector addition to update the vector field.

Agent Rule Modifications. The agent applies force in two circumstances (see Figure
1b). If the agent wishes to move into a cell, but is blocked (another agent has moved
there first, or an occupying agent is present) then the agent will push the occupant of
the desired cell; in other words, the agent will vector-add its pushing force (parameter
kpush) into the force field value on the desired cell, in the direction of desired travel
(figure 1b, step F7).

In the second circumstance of force application, the agent applies force to
neighbouring agents in order to maintain its space in the crowd (step F8); one quarter
of the pushing force (kresist = 0.25 kpush) is vector-added into each adjacent occupied
cell in the direction of that cell.

The agents follow Kirchner’s movement rules, with the following exception: If the
force experienced by an agent (i.e. the value of the force floor field at the agent’s lo-
cation) exceeds the force (fdivert = kpush + kresist) that it can apply to another agent, then
the normal score-based probabilistic cell selection described above is bypassed (step
F2). Instead, the agent is forced to select the cell in the direction of the force. Thereaf-
ter, normal movement rules apply (only one agent can actually move onto that cell,
blocked agents apply force, etc).

Force Update Rules. The force field is an active field; like the dynamic floor field
that tracks agent movement, the force field propagates through the model according to
certain rules (step F3). The basic force rule is that as a part of each time step, the
entire force on a particular cell moves on to the next cell (in the direction of the force
vector). Thus, force is propagated through the model over time. Forces that collide on
a cell are vector added together. Force cannot be propagated through empty space; if
force becomes stranded on an empty space its magnitude is reduced to zero. Likewise,
walls and obstacles absorb force, and do not re-transmit it.

Injury Behaviours. Agents become injured if the sum of forces acting on them
reaches a threshold level (finjuring), which is an input parameter to the model. The
scalar sum of incoming forces is used, rather than the vector sum for this purpose.
Once injured, an agent ceases movement; its cell is designated as an obstacle cell
(like walls).

 Agent-Based Modelling of Forces in Crowds 179

3.3 Controlling Crowd Density

Force transmission within a crowd is highly dependent on crowd density because
force cannot travel through empty space. We found that Kirchner’s model created
crowds that were highly dense (virtually all agents packed around the door, few
empty grid squares). Some crowds in the world may be like this, but most are not;
generally there are tightly-packed areas within crowds (e.g. near the exit) and more
space within the crowd at other points (e.g. near the back). We wanted to evaluate our
force model in the context of differing crowd densities.

Accordingly, we further modified Kirchner’s model to allow for a density control.
This control was achieved by refining the η term of the cell scoring equation (1). It
was also necessary to exclude the agent’s current cell from the neighbourhood for the
probabilistic cell selection of equation (2).

Regarding the η term: Since movement within the model is simultaneous, one
agent should very well be able to leave a cell c at the same time as another agent is
entering it. The η term prevents this, however, by stopping agents from selecting cell
c if it is occupied (by dropping its probability of selection to 0), meaning that no agent
will try to move into c as its current occupant leaves; this guarantees that any occu-
pied cell will be unoccupied for at least one time step when its occupant leaves.

To resolve this problem we have redefined the occupied value of the η term as an
input parameter to the model, kn . When a cell is unoccupied then its η is set to 1, and
when a cell is occupied then its η set to the value of kn . This means that agents can
now (with a certain probability) select occupied cells – in effect betting that the occu-
pying agent will leave. (Note that the rules regarding multiple agents on the same cell
are still in force, so an agent does not move if it selects a cell that does not then be-
come unoccupied.)

Regarding the agent’s neighbourhood: If the agent’s current cell is not excluded
from equation (2), then the η term manipulation does not yield a good density control
as the probability of remaining on the current cell overwhelms the scaled probability
of moving to a neighbouring cell.

When kn is high then a dense crowd should be obtained because agents select cells
irrespective of their occupancy; in a packed crowd we expect most agents will stand
still waiting for the neighbouring cell with the most attractive score. When kn is low
then a lower density crowd should emerge because agents are encouraged to move to
unoccupied cells, and this movement within the crowd should preserve space. Thus,
this new parameter should allow us to model situations ranging from closely packed
crowds (kn = 1) to sparse crowds (kn = 0).

4 Results

The model was implemented in NetLogo 2.0 [6] (on Mac OS X 10.3.2, Java 1.4.2).
The simulated floor space was 31 × 31 cells in size, not including the wall cells

surrounding the floor space. The results presented here are for one exit cell situated in
the middle of one wall, with no other obstacles (figure 2).

180 C.M. Henein and T. White

Fig. 2. Snapshot of representative model execution. Agents (circles) clustered around door
(white cell in black walls) in typical arch formation. Injured agents (black squares) are present
due to previous pushing. Individuals within the half-crowd closest to door (overlaid curve
added for illustration) are most likely to become injured

Two hundred individuals were assigned random starting cells within the space.
Initially the force field had a magnitude of 0 on every cell. The static floor field was
initialized according to the linear distance between the centre of each cell and the cen-
tre of the exit cell. For the purposes of measuring the effects of force on the model, ks
was set to 10 and kd was set to 0. The agent’s pushing force, kpush, was set to 1, and the
agent’s injury threshold, finjuring, was set to 23.

We report performance of the model in terms of the number of agents that remain
in the space after a fixed number of iterations. (Although it may seem more natural to
report the number of iterations required for all agents to exit, this measure is problem-
atic because if an injury occurs such that an agent blocks the exit it prevents the re-
maining agents from ever exiting.)

4.1 Effect of Varying kn

To investigate the effect of introducing the kn parameter we measured our model run-
ning with Kirchner’s rules as a base case. We then removed agents’ own cells from
their neighbourhoods in equation (2), and measured the result of setting the kn pa-
rameter to values of 0, 0.5 and 1.0.

We observed that upon introducing the 4 cell neighbourhood more agents were
able to exit. For the 4 cell neighbourhood, a sparse crowd was observed when kn = 0.
while arching structures with only a few empty cells are obtained when kn = 1. Exits
when kn = 0 occur at quite a regular rate, not faster than 1 exit per 2 timesteps. When
kn is increased to 0.5 this rate increased, remaining regular.

Numerical result are provided in Table 1.

 Agent-Based Modelling of Forces in Crowds 181

Table 1. Agent escape statistics with Kirchner 5-cell neighbourhood vs. 4-cell neighbourhood
with varying kn (means and standard deviations of 10 runs). All differences are significant with
a two-tailed Student t-test (p < 0.0001) except between the pair*

neighbourhood kn # remaining after 350
5-cell - 75.3 (6.3)
4-cell 0.0 55.1 (3.7) *
4-cell 0.5 28.7 (5.7)
4-cell 1.0 57.7 (4.3) *

4.2 Effect of Adding Force Rules

We measured the effect on agent escape when force was added to the model at the
same values of kn that were tested above.

Numerical result are provided in Table 2.
We observed that forces did propagate through the crowd, gaining strength as

multiple agents joined in the pushing action. Forces tend to propagate both into the
crowd (towards the vertical centre and towards the door) and out of the crowd (from
the vertical centre out) as agents push in the direction they want to move, and simul-
taneously resist those around them.

Table 2. Agent escapes and injuries with revised model (means and standard deviations of 10
runs). All differences significant with a two-tailed Student t-test (p < 0.05)

kn # remaining after 350 # injured after 350
0 66.4 (4.7) 0.0 (0.0)

0.5 80.9 (11.1) 4.7 (2.1)
1.0 105.4 (30.8) 7.1 (2.0)

Fig. 3. Number exited (upper line) and injured (lower line) with time during a representative
model execution

182 C.M. Henein and T. White

Injuries in the model tend not to occur right at the beginning or end of the simula-
tion, but rather begin when a significant crowd density has developed near an exit,
and end when enough agents have exited to relieve some pressure. In our trials, inju-
ries tended to occur between time steps 50 and 150 (e.g. figure 3). Some injuries oc-
curred in groups of 2-4 nearby cells, while other injuries were isolated. The majority
of injuries occurred in the half-crowd closest to the door (see figure 2), and tended to
be distributed roughly along an arch that passed near the centre of the crowd (at the
time the injury occurred). Agents near the wall with the door, but towards the edges of
the arch structure were also frequently affected by injuries. We also observed a more
bursty exit rate than in trials without force.

5 Discussion

The modification of Kirchner’s neighbourhood to a 4 cell neighbourhood decreased
the number of agents remaining in the space after 350 iterations of the model (table
1). This is due to an increased movement rate because agents could no longer choose
to spend time standing still.

Revision of Kirchner’s cell-selection (scoring) function by introducing a value of
kn = 0.5 significantly decreased the number of agents remaining after a fixed time (ta-
ble 1) compared to other values of kn. This is because the revised cell-selection rule no
longer requires that occupied cells spend a time step unoccupied. Since this rule ap-
plies to the exit cell as well, the original model’s maximum exit rate was one agent
per two time steps, while the new rule allows for a maximum exit rate of one agent
per time step. In addition, the new rule increases crowd density, placing more agents
in the vicinity of the door, and thereby in a position to readily exit when possible.

At kn = 1.0 agents completely ignore the occupancy of a cell when rating its desir-
ability. This may be a poor strategy in dense crowds as the occupying agent may not
be able to move. When kn is 0.5 agents will select occupied cells but still prefer unoc-
cupied ones – a better trade-off according to table 1.

The addition of force to the model (table 2) results in a significant increase in
agents stranded after 350 time steps at all values of kn when compared with table 1
(two-tailed Student t test, p < 0.0001). Hence, the simulation bears out the fact that
pushing (paradoxically) increases exit times [1]. It should be noted that the standard
deviations increase noticeably when force is added and injuries occur. This is because
the number and distribution of injuries play a large role in determining the effect of
force on the model. In some cases injuries in front of the door block large numbers of
agents, while injuries that occur near the periphery have minimal effect.

Another effect of adding force to the model is that agents tend to exit in bursts in-
stead of at a fairly regular rate. The gap between bursts occurs because an agent a
standing in front of the exit cell is unable to move towards that cell; this is due to
other agents lined up to the left and right of a pushing a in a different direction, over-
riding a’s desire to step onto the exit cell. Eventually the forces acting on a may be
disrupted, or overcome by agents behind a pushing toward the door, and a will exit.
This creates a hole that can be capitalised upon by other agents until forces build up to
once again jam the door. This bursty exit pattern has been reported as a hallmark of
the arches that form at exit points [1].

 Agent-Based Modelling of Forces in Crowds 183

Bursty exit characteristics may be precluded if injuries occur near, but asymmetric
to the door. In these cases, the bursting behaviours are extinguished because the cell
with the injury acts as a force break, taking up the force and helping to isolate agents
nearer to the door from the paralysing force scenario just described. Force relief by
obstacles is a known phenomenon in crowd research [1]. Its effectiveness in regulat-
ing bursty output in this model is an effect that was not programmed into the rules;
rather it emerges from the effects of force on agents and obstacles. Its emergence in
the model is further evidence that our force paradigm is a promising one.

Because crowd density increases with increasing kn, and crowd density should
lead to more pushing and therefore delay and injury, we can further test our model by
predicting that delay and injury should increase with kn when forces are applied by
agents. In fact, this prediction is borne out (table 2). Crowd density directly affects the
number of injuries because fewer empty cells within the crowd mean more effective
force propagation. The increase in density is accompanied by an increase in the num-
ber of agents left inside after 350 time steps, both because the number of injuries in-
creases, and because greater force build up results in longer intervals between bursts
of exiting agents. Note that when kn is 0 no injuries were obtained because spacing in
the crowd prevented the transmission and build-up of force.

The principle of location-specificity described above is observed in the model.
Generally consistent injury positions re-occur across multiple simulation tests. It is a
consequence of the generally semi-circular arching structure that there are more
agents pushing on the chord parallel and adjacent to the wall, than on the chord paral-
lel to the wall but near the back of the crowd. The combined pushing power of the
larger group of agents along the wall, mostly directed parallel to the wall towards the
door, means that injuries tend to occur near this wall. Forces tend to concentrate near
the door (result of agents pushing towards the door) and towards the edges of the
crowd (result of agents pushing back to maintain space in the crowd).

6 Conclusion

We have described an agent-based model of crowd dynamics based upon local inter-
actions with floor fields. After the addition of a force floor field, the model continued
to demonstrate the characteristic arching structure that we expect to see in crowd
evacuation simulations. Moreover, our new model is capable of answering quantita-
tive and qualitative predictions related to crowd injuries and egress dynamics.

A flexible density control was successfully added to Kirchner’s model by turning
his occupancy-exclusion parameter η into a more flexible density control: kn , and by
modifying his neighbourhood structure.

Considerable work remains in the development of this model. In particular, the
model needs to be related to real world data, and calibrated so that units of force and
distance in the model can be related to real units of force and distance, and so force
capability and thresholds are related to human capacities. Finally, a quantitative
analysis of the bursting exit behaviours, and role of the kn parameter in regulating
crowd density, needs to be undertaken.

184 C.M. Henein and T. White

References

1. Helbing, D., Farkas, I.J., Molnár, P., Vicsek, T.: Simulation of pedestrian crowds in normal
and evacuation situations. In: Schreckenberg, M., Sharma, S.D. (eds.): Pedestrian and
evacuation dynamics. Springer-Verlag, New York (2002) 21-58

2. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature
v. 407, 28 September 2000. 487-490

3. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-
inspired cellular automaton model for pedestrian dynamics. Physica A 312 (2002) 260-276

4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: From natural to artificial
systems. Oxford university press, New York (1999)

5. Fruin, J.: The causes and prevention of crowd disasters. In: Smith, R.A., Dickie, J.F. (eds):
Engineering for crowd safety. Elsevier, New York (1993)

6. Wilensky, U.: NetLogo. Center for connected learning and computer-based modeling,
Northwestern University, Evanston IL. 1999. http://ccl.northwestern.edu/netlogo

An Investigation into the Use of Group Dynamics for
Solving Social Dilemmas

Tomohisa Yamashita, Kiyoshi Izumi, Koichi Kurumatani

Cyber Assist Research Center (CARC),
National Institute of Advanced Industrial Science and Technology (AIST),

Aomi 2-41-6, Koto-ku,
Tokyo 135-0064, Japan

{tomohisa.yamashita, k.kurumatani}@aist.go.jp
kiyoshi@ni.aist.go.jp

Abstract. In this research, we propose some group dynamics that promote co-
operative behavior in systems with social dilemmas and hence enhances their
performance. If cooperative behavior among self-interest individuals is estab-
lished, effective distribution of resources and useful allocation of tasks based on
coalition formation can be realized. In order to realize these group dynamics, we
extend the partner choice mechanisms for 2-IPD to that for N-person Dilemma
game. Furthermore, we propose group split based on metanorm as a new group
dynamic. A series of evolutionary simulations confirm that this group dynamic:
i) establishes and maintains cooperation, and ii) enhances the performance of the
systems consisting of self-interest players in Social Dilemmas situations.

1 Introduction

Recently, multiagent systems have applied more and more frequently as a framework
for constructing large distributed systems. The introduction of autonomous collaborating
agents gives more flexibility and efficiency to systems. In multiagent systems, usually
the agents have only incomplete information and limited ability to solve problems in
the environment [9, 19]. Faced with a problem it cannnot solve, an agent may seek to
get together with other agents and form a collaborative group. The question is then
whether cooperative behaviours will result from such a group. It is difficult to promote
cooperative behaviors in the case that an individual agent can acquire a higher reward
by non-cooperative behavior even though cooperative behaviour by all would maximise
the reward of all [5, 6, 8, 10, 15, 16]. This situation is generally called a Social Dilemma
[11], where free-riders who choose non-cooperative behaviors decrease the total reword
in the group. In multiagent systems, this problematic situation is often observed in re-
source distribution and task allocation without central authority. Self-interest agents do
not choose a e cooperative behavior for maximizing the reward of the group because
they prefer the individually best outcome to the collectively best outcome. If some de-
centralised mechanisms ca be devised to prevent free-riders from joining cooperative
groups, the total reward in the group can be increased and the performance of the sys-
tems can be enhanced. Therefore group dynamics which do not require the existence of

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 185–194, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

 and

186 T. Yamashita, K. Izumi, and K. Kurumatani

central authority, are one of the most important mechanisms promoting cooperation in
multiagent systems.

In this paper, in order to realize effective group dynamics in dilemma situation, we
use the mutual choice mechanisms [1, 18, 20] as the basic interaction for group forma-
tion, which is the matching mechanism in a multiple 2-person Prisoner’s Dilemma (2-
PD). Some previous researchs revealed that the conventional partner choice mechanisms
for matching two persons can promote the establishment of coopeartion [7, 12, 14, 17].
Here a more general dilemma situation is investigateed, the iterated N-person Prisoner
Dilemma game. Furthermore, we propose a group split rule based on the concept of
metanorm [2]. The effect of our proposed group dynamics on the enhancement of sys-
tem performance is confirmed through an agent-based simulation with evolutionary
approach.

2 Group Dynamics

In this paper, we use mutual choice for the matching mechanism in multiple 2-P PD
games, to show how effective group dynamics can be in dillema situations.1 Group
dynamics in the dilemma situation are modeled as a 2 stage game. The first stage is
where agents choose group members. The groups are determined through some group
dynamic mechanism, – a population of all agents is partitioned. A group is defined as
a subset of the overall agent set. Each agent can join only one group at any one time.
The order of decision-making by the agents is set as random. According to this order,
the agents make decisions one by one, so that groups are gradually formed. The second
stage is a dilemma game. In the groups consisting of two or more agents, agents play the
N-PD with their group members. The result of the N-PD in a group is independent of
the agents in other groups. Where groups consist of a single agent, that agent acquires a
fixed payoff.

2.1 Unilateral Choice

In group formation based on unilateral choice [13], agent i can join group k surely, i.e.,
group k cannot refuse agent i. Each agent has the alternative of forming a new group or
joining an existing group. Agent, i, chooses a group, k, which is the most tolerable to it.
Agent i is then added to group k. If there is no tolerable group for agent i, agent i makes
no offers and forms a new group.

2.2 Mutual Choice

In group formation based on mutual choice, the agent making an offer and the group
receiving it form a new group only if both agree. Therefore, a group has the possbilities
of either refusing or accepting an offer. After agent i makes an offer to group k (this
process is the same as that for unilateral choice.), group k can decide to refuse or accept
agent i by majority vote based on the decision of all members. If the majority of agents
in group k agree to accept player i, group k accepts the offer of agent i and then agent

1 For more details see Yamashita and Ohuchi[21].

An Investigation into the Use of Group Dynamics for Solving Social Dilemmas 187

i joins group k. If group k refuses agent i, agent i makes an offer to the second most
tolerable group. Agent i continues making offers until a group accepts its offer or until
all groups tolerable to it refuse its offer. If agent i is refused by all tolerable groups, agent
i forms a new group.

2.3 Group Split

A group split rule is proposed based on the concept of a metanorm. According to Axelrod
[2], if there is a certain norm, a metanorm is to "punish, not only against the violators of
the norm, but also against anyone who refuses to punish the defectors." In this model, a
norm based on mutual choice is "don’t choose defectors as group members."A metanorm
based on mutual choice is "don’t choose, not only defectors, but also anyone who choose
defectors as group members." This metanorm effectively realizes group split by dividing
the group of agents agreeing to the acceptance of an agent (agreeing agents) and the other
group opposing this (opposing agents). From the point of view of the opposing agents,
the agreeing agents violate the metanorm because the agreeing agents choose the agent
that opposing agents consider to be a defector. In order not to choose the agents who
choose defectors as group members, the opposing agents leave from the group.

2.4 Re-offering

By the introduction of the rule of group split, the number of groups of only one agent
may increase. Re-offering is proposed as a mechanism to increase the chance of creating
a group of several agents as soon as possible.

2.5 Dilemma Game

In this model, we use a more general dilemma game than the N-PD in [6]. After the
group dynamics, the players in each group play the dilemma game with group members
if the players are in groups of more than two players. Otherwise, a player in a group only
consisting of itself acquires the fixed payoff for lone players, the reservation payoff
Preservation, instead of the payoff of the dilemma game [1, 18, 20]. Each group member
decides its contribution to its group, and then the profit given by the total contibuted
by all members is redistributed equally to the group members. Each player i in group
k contributes some amount, xi ∈ {0, 1}, to group k as the strategy, and has a payoff
function, Fi. The total contribution of all players in group k amounts to X ≡ ∑

i∈Gk
xi.

The payoff function of player i in group k can be written as

Fi(xi; X, |Gk|) = a
X

|Gk| + b(1 − xi) (1)

where |Gk| is the size of group k, and a and b are positive constants.

3 Simulation

In our simulations, a genetic algorithm (GA) is applied to evolve the player’s strategies
[3, 4]. The two dimensions of a strategy, cooperativeness Ci and vengefulness Vi, are

188 T. Yamashita, K. Izumi, and K. Kurumatani

each divided into 2x−1 equal levels, from 0.0 to 1.0. Because 2x−1 levels are represented
by x binary bits, a player’s strategy needs a total of 2x bits: x bits for cooperativeness
Ci and x bits for vengefulness Vi.

Each generation consists of an iteration of group formation and split processes,
and then the Dilemma game. At the beginning of the GA, each player’s strategy in a
population is assigned a fitness equal to its average payoff given per payoff received.
Uniform crossover is applied to the strategies of a player and a partner to obtain a new
strategy for one offspring if the fitness of the partner is better than that of the player in
tournament selection.

Since our purpose is to examine whether the group dynamics we investigate can
promote cooperative behavior amoung players and enhance the performance of systems,
we pay attention to the development of players’ strategies and the average payoff of all
players. In order to confirm the effect of the proposed group dynamics, we compare four
settings: case 1) only group formation based on unilateral choice, case 2) only group
formation based on mutual choice, case 3) group formation based on mutual choice
and group split, and case 4) group formation based on mutual choice, group split and
re-offering. We define the establishment of cooperation as the situation where both the
average cooperativeness of all players (C) and the average vengefulness (V) are bigger
than 0.8. The important parameters are shown in Table. 1.

3.1 Establishment of Cooperation

The number of times cooperation is established in 40 trials of the four cases is 0 in case
1, 4 in case 2, 12 in case 3, and 40 in case 4. In all trials of case 1, there was little
cooperativeness and vengefulness, i.e., cooperation was not established at all within
5,000 generations. In 36 trials of case 2, cooperation was not established within 5,000
generations. In the remaining 4 trials, there were great deal of cooperativeness and
vengefulness, i.e., cooperation was established. In 28 trials of case 3, cooperation was
not established within 5,000 generations. In the remaining 12 trials, cooperation was
established. In all trials of case 4, cooperation was established.

Three typical developments of the average cooperativeness and vengefulness of play-
ers are shown in Figs. 1, 2, and 3. In these graphs, the horizontal axis represents the gen-

Table 1. Common parameters in the simulations

Number of players 50
Number of generations 5000
Number of group dynamics per generation 200
Coefficient of payoff function a 1.0
Coefficient of payoff function b 0.6
Payoff for lone player Preservation 0.1
Initial value of expected cooperation π 1.0
Initial value of Cooperativeness Ci 0.0
Initial value of Vengefulness Vi 0.0
Mutation rate 0.05
Binary bits for Ci and Vi (total bits) 10

An Investigation into the Use of Group Dynamics for Solving Social Dilemmas 189

Fig. 1. Example of the failure of the establishment of cooperation in case 1: the average coopera-
tiveness C̄ and vengefulness V̄ from 0 to 5,000 generations

Fig. 2. Example of the failure of the establishment of cooperation in case 2 and 3: the average
cooperativeness C̄ and vengefulness V̄ from 0 to 5,000 generations

eration, and the vertical axis represents the average cooperativeness and vengefulness of
players. The typical behavior of C̄ and V̄ in case 1 for 5,000 generations is shown in Fig.
1. Throughout the generations, C̄ and V̄ fluctuated in the range of 0.0 to 0.1. The typical
behavior of C̄ and V̄ in case 2 and 3 when cooperation was not established is shown
in Fig. 2. Usually, C̄ remained in the range of 0.0 to 0.2 and V̄ remained in the range
of 0.2 to 0.4. However, occasionally C̄ rose to 0.4 and V̄ fell to 0.3, and then C̄ and V̄
returned to their initial states. This fluctuation was repeated throughout the generations.
The typical behavior of C̄ and V̄ in case 2, 3, 4 when cooperation was established is
shown in Fig. 3. Once C̄ and V̄ reached 1.0, this state continued to remain there and did
not transfer to another state.

190 T. Yamashita, K. Izumi, and K. Kurumatani

Fig. 3. Example of the establishment of cooperation in case 2, 3, 4: the average cooperativeness
C̄ and vengefulness V̄ from 0 to 5,000 generations

Fig. 4. The average payoff of all players in 40 trials of four cases of group dynamics

3.2 Average Payoff

The average payoffs of all players in 40 trials of four cases are ranked in descending
order as case 4, 3, 2, 1. In the graph of Fig. 4, throughout all generations, the average
payoff of unilateral choice continued to fluctuate near 0.6. The average payoff of mutual
choice also continued to be near 0.7. The average payoffs of mutual choice with the split
rule continued to slightly rise from 0.7 to 0.8. The average payoffs of mutual choice with
the split rule and re-offering rose to 0.9 until 2,000 generations. After 2,000 generations,
it seldom changed.

4 Discussion

We discuss the establishment of cooperation based on the strategy (Ci and Vi) in four
cases and the enhancement of systems’ performance based on the average payoff of all

An Investigation into the Use of Group Dynamics for Solving Social Dilemmas 191

players. In the following discussion, a player with a high level of cooperativeness is
represented as Chigh, and a player with a low level of cooperativeness as Clow. In the
same way, a player with high and low levels of vengefulness are represented as Vhigh

and Vlow, respectively.

4.1 Establishment of Cooperation

Case 1. In all trials in case 1, why did the establishment of cooperation fail? A player
with low cooperativeness as the result of a mutation (i.e., a player with Chigh), cannot
acquire a higher payoff than the players with Clow. The reason is that the players with
Chigh cannot refuse an offer from the players with Clow in a group dynamic based on
unilateral choice, so the players with Clow have a free-ride on the players with Chigh.
Accordingly, the players with Chigh do not increase in the next generation. Therefore,
cooperation is never established.

Case 2. In 36 trials of case 2, why did the establishment of cooperation fail? We analyze
the factors leading to the failure of cooperation based mutual choice.

First, we consider the case where there is only one player with Chigh and Vhigh. Mu-
tation decreases cooperativeness or increases vengefulness because the initial condition
is Vi = 0 and Ci = 0 (∀i ∈ N). A player with cooperativeness decreased by mutation,
i.e., a player with Chigh, cannot acquire a higher payoff than the players with Clow

because the players with Clow can freeride on the players with Chigh. Accordingly, the
players with Chigh do not increase in the next generation. A player with vengefulness
increased by mutation, i.e., a player with Vhigh, cannot acquire a higher payoff than the
players with Clow because players with Vhigh do not join a group consisting of players
with Clow. Therefore, one player with Chigh and Vhigh by mutation cannot acquire a
higher payoff than the players with Clow and Vlow. Consequently, the player with Chigh

and Vhigh is not selected in the genetic operation, and so it perishes.
Next, we consider the case where there are several players with Chigh and Vhigh. If

a group consists of only players with Chigh and Vhigh, the group refuses the offers of
players with Clow. If a group consists of both players with Chigh and Vhigh and players
with Chigh and Vlow, it is possible that a player with Clow would join this group and
be able to free-ride. The player with Clow can join the group because, while the players
with Chigh and Vhigh oppose the acceptance of his/her game offer, the players with
Chigh and Vlow agree to it. If the players with Chigh and Vlow win the majority vote
over the players with Chigh and Vhigh, the player with Clow can join the group. In such
a group, the players with Clow free-ride on the players with Chigh. The players with
Chigh and Vhigh are not selected in the genetic operation and then perish because they
cannot acquire higher payoffs than the free-rider. Although there are plural players with
Chigh and Vhigh, the players with Clow and the players with Chigh and Vlow prevent the
establishment of cooperation. The players with Clow directly prevent the establishment
of cooperation because they free-ride on the players with Chigh and Vhigh. On the other
hand, the players with Chigh and Vlow indirectly prevent the establishment of cooperation
because they accept offers from the players with Clow who free-ride on the players with
Chigh. In the group dynamics based on mutual choice, therefore, the establishment of
cooperation often fails.

192 T. Yamashita, K. Izumi, and K. Kurumatani

On the other hand, in the remaining 4 trials, why did the establishment of cooperation
succeed? Here, we analyze the factors leading to the establishment of cooperation in these
cases. The reason for the establishment of cooperation was that a player with Clow can
join the group consisting of both players with Chigh and Vhigh and players with Chigh

and Vlow. If there are players with Chigh and Vhigh but no player with Chigh and Vlow, the
player with Clow cannot join the group, and then the players will defect from each other.
As a result, the player with Clow acquires a lower payoff than the players with Chigh

and Vhigh who cooperate with each other. If the number of players with Chigh and Vhigh

increases, and the players predominate in the population for a few generations before the
number of players with Chigh and Vlow increases by crossover or mutation, cooperation
becomes established. Therefore, since the simulation results show that cooperation was
established in 4 out of 40 trials, we can conclude that it is not impossible but difficult to
realize the establishment of cooperation in the group dynamics based on mutual choice.

Case 3. In 12 trials of group dynamics in case 3, why did the establishment of coop-
eration succeed? In case 3, the establishment of cooperation fails because the players
with Chigh and Vlow accept the offer of the players with Clow. Here, we analyze the fac-
tors leading to the establishment of cooperation in the group dynamics based on mutual
choice with the split rule.

In these group dynamics, if the players with Chigh and Vlow agree to accept the
offer of a player with Clow, and the group as a whole also accepts it, the players with
Chigh and Vhigh leave the group based on the split rule; they refuse to play the dilemma
game with those who play with defectors. The split rule prevents the player with Clow

from having a free-ride on the players with Chigh and Vhigh. This is because if the
player with Clow joins the group, the players with Chigh and Vhigh leave. As a result, if
there are some players with Chigh and Vhigh, they can form a group without the player
with Clow. The players with Chigh and Vhigh can acquire higher payoffs because they
cooperate with each other. Throughout this process, the number of players with Chigh

and Vhigh increases and they predominate in the population. Therefore, cooperation
becomes established.

Case 4. In all trials of group dynamics in case 4, why did the establishment of coopera-
tion succeed? Based on group dynamics based on mutual choice and group split, a player
with Chigh and Vhigh sometimes leaves its group and then joins a group consisting of
only itself. In this case, the player with Chigh and Vhigh acquires the payoff of the loner,
which is lower than those in a group. If the player with Chigh and Vhigh has a chance of
re-offering, the player leaving from one group may be able to join another group. The
player with Chigh and Vhigh can avoid acquiring a lower payoff by mutual cooperation if
another group consisting of many players with Chigh exists. The re-offering of a player
leaving a group increases the chance for players with Chigh and Vhigh to acquire a higher
payoff.Accordingly, the establishment of cooperation increases because the players with
Chigh and Vhigh do not decrease in the next generation.

4.2 Comparison of Average Payoffs

In this research, we compare the effect of the proposed group dynamics using the average
payoff because the average payoff can be considered as a measure of the system perfor-

An Investigation into the Use of Group Dynamics for Solving Social Dilemmas 193

mance. Based on the comparison of the average payoffs, the effect of four cases is ranked
in descending order as case 4, 3, 2, 1. >From the development of the average payoffs, we
can acquire the following results concerning these group dynamics. In relatively early
generations, the effect of the split rule doesn’t provide good results for the establishment
of cooperation because there is not a great difference between case 3 and 4.

5 Conclusions

In this paper, certain gourp dynamics were proposed in order to enhance the performance
of systems of self-interested agents. The partner choice mechanisms for the multiple 2-
PD were extended to that for a multiple N-person dilemma game to study this. Four
kinds of group dynamics based on partner choice mechanisms were investigated: case
1) only group formation based on unilateral choice, case 2) only group formation based
on mutual choice, case 3) group formation based on mutual choice and group split, and
case 4) group formation based on mutual choice, group split and re-offering. In order
to measure the effect of these on the establishment of cooperation and the enhancement
of system performance, an agent-based simulation was used. Evolutionary agent-based
simulations were conducted to confirm whether these group dynamics with the split rule
could promote cooperative behavior of players and enhance the performance of systems.

On the establishment of cooperation, the following results were confirmed: in group
dynamics with group formation based on only unilateral choice, it is impossible to
establish cooperation. In group dynamics with group formation based on monly utual
choice, it is not impossible but difficult to establish cooperation. Similarly, in group
dynamics with group formation based on mutual choice and group dynamics, it is difficult
to establish cooperation. In group dynamics with group formation based on mutual choice
and group formation and re-offering, it is possible to reliably establish cooperation.
Finally, it was confirmed that these group dynamics has a large enough effect to increase
the performance of systems if these included group split and re-offering.

References

1. Ashlock, D., Smucker, S. and Stanley, A., Tesfatsion, L.: Preferential Partner Selection in an
Evolutionary Study of the Prisoner’s Dilemma. BioSystems 37 No. 1-2 (1996) 99–125

2. Axelrod, R.: An Evolutionary Approach to Norms. American Political Science Review 80
(1986) 1095–1111

3. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)
4. Axelrod, R.: The Complexity of Cooperation. Princeton University Press, New York(1997)
5. Axtell, R.: The Emergence of Firms in a Population of Agents: Local Increasing Returns,

Unstable Nash Equilibria, and Power Law Size Distributions. The Brookings Institution CSED
Working Paper 3 (2000)

6. Axtell, R.: Non-Cooperative Dynamics of Multi-Agent Teams. Proceedings of The First Inter-
national Joint Conference onAutonomousAgents and Multiagent Systems (2002) 1082–1089

7. Batali, J. and Kitcher, P.: Evolution of Altruism in Optional and Compulsory Games. Journal
of Theoretical Biology 175 (1995) 161–171

8. Bicchieri, C.: Rationality and Coordination. Cambridge University Press (1993)

194 T. Yamashita, K. Izumi, and K. Kurumatani

9. Caillou, P., Aknine, S. and Pinson, S.: A Multi-Agent Method for Forming and Dynamic
Restructuring of Pareto Optimal Coalitions. Proceedings of The First International Joint Con-
ference on Autonomous Agents and Multiagent Systems (2002) 1074–1081

10. Cohen, M. D., Riolo, R. L., Axelrod, R.: The Emergence of Social Organization in the Pris-
oner’s Dilemma: How Context-Preservation and Other Factors Promote Cooperation. Santa
Fe Institute Working Paper, 99-01-002, Santa Fe Institute (1999)

11. Dawes, R. M.: Social Dilemmas. Annual Review of Psychology 31 (1981) 169–193
12. Hauert, C., Monte, S., Hofbauer, J., Sigmund, K.: Volunteering as Red Queen Mechanism for

Cooperation in Public Goods Game. Science 296 (2002) 1129–1132
13. Hauk, E. and Nagel, R.: Choice of Partners in Multiple Prisoner’s Two-person Prisoner’s

Dilemma Games: An Experimental Study. Economics Working Papers, Universitat Pompeu
Fabra (2000)

14. Hirshleifer, D. and Rasmusen, E.: Cooperation in a Repeated Prisoners’ Dilemma with Os-
tracism. Journal of Economic Behavior and Organization 12 87–106

15. Luis, J. and Silva, T.: Vowels Co-ordination Model. Proceedings of The First International
Joint Conference on Autonomous Agents and Multiagent Systems (2002) 1129–1136

16. Ostrom, E.: Governing the Commons. Cambridge University Press, New York (1990)
17. Shussler, R.: Exit Threats and Cooperation under Anonymity. Journal of Conflict Resolution

33 (1989) 728–749
18. Stanley, E. A., Ashlock, D. and Tesfatsion, L.: Iterated Prisoner’s Dilemma with Choice and

Refusal of Partners. Artificial Life III (1994) 131–175
19. Soh, L. and Tsatsoulis, C.: Satisficing Coalition Formation Agents. Proceedings of The First

International Joint Conference on Autonomous Agents and Multiagent Systems (2002) 1062–
1063

20. Tesfatsion, L.:A Trade Network Game with Endogenous Partner Selection. KluwerAcademic
Publishers (1997) 249–269

21. Yamashita, T. and Ohuchi, A.: Analysis of Norms Game with Mutual Choice. In Exploring
New Frontiers on Artificial Intelligence, Springer-Verlag Tokyo (2002) 174–184

ASAP: Agent-Based Simulator for Amusement Park

— Toward Eluding Social Congestions Through Ubiquitous
Scheduling —

Kazuo Miyashita

National Institute of Advanced Industrial Science and Technology,
Tsukuba, Ibaraki, Japan 305-8564
k.miyashita@aist.go.jp

Abstract. In this paper, an innovative application of scheduling methodology is
advocated for the emerging service, which is named “social coordination” in the
ubiquitous information environments. A typical service expected in ubiquitous
computing is information provision adapted to each user’s current situation. The
service is supposed to increase a single person’s convenience. However, a new type
of service (“social coordination”) is also possible for improving conveniences of
the people sharing the ubiquitous information environment. The author explains
the concept of “ubiquitous scheduling” that eludes congestions in the society by
scheduling people’s activities efficiently and rationally. To evaluate effectiveness
of the concept, a multi-agent scheduler for an amusement park problem is imple-
mented, which coordinates the demands for rides by tens of thousands people and
makes suggestions as to when they should visit attractions in the amusement park
to avoid standing in long lines.

1 Introduction

Due to drastic advancement of computers, sensors and wireless communication devices,
we are entering a new era of ubiquitous computation [14]. However, in spite of the
rapid progress of hardware technologies in ubiquitous computing, we are still in search
of killer applications that take the most advantage of ubiquitous computation and give
remarkable benefits to our daily activities.

So far, most of the applications proposed for the ubiquitous computing environment
are to provide context-aware information services [10] for an individual user. For ex-
ample, in a museum, based on a visitor’s current location information, he/she can get
an explanation on nearby paintings automatically via his/her mobile device (such as
PDA or cellular phone). Moreover, based on information stored in the visitor’s device,
additional services (e.g., showing a way to pictures of a similar taste) can be provided
for his/her convenience. This type of service is quite useful for each individual, but the
service does not give any consideration to the relationship among people in their prox-
imity. For example, the above system might cause congestion in the museum by guiding
many people to the same picture in a short period of time.

In addition to the personally adapted information provision service proposed so far,
a new type of service can be developed in the ubiquitous computing environment for

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 195–209, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

196 K. Miyashita

eluding congestion in daily life. This type of service is called social coordination [4],
since it pursues to coordinate people’s behavior in the society for their conveniences and
also contribute to improve social welfare.

In this paper, ubiquitous scheduling is advocated as one example of such social co-
ordination services for reducing wasted time in congestions of the society. In ubiquitous
scheduling, the social coordination problem is formulated as a multi-agent resource allo-
cation problem and solved in real time using constraint-based scheduling heuristics. To
validate effectiveness of the approach experimentally, the ubiquitous scheduling method
is applied to the problem of making reservations of attractions for visitors in an imag-
inary amusement park. An amusement park simulator is implemented as a testbed and
the simulation results are analyzed to see whether ubiquitous scheduling is useful for
reducing congestions in the amusement park.

The paper’s outline is as follows: Section 2 describes characteristics of the amusement
park problem. Section 3 explains the detailed algorithm of ubiquitous scheduling. Then,
in Section 4, the agent model and architecture of the implemented amusement park
simulator is explained, and preliminary experimental results are shown and discussed in
Section 5. The paper concludes with a summary and some suggestions for future work.

2 Amusement Park Problem

In an amusement park, we sometimes see popular attractions having long queues and, at
the same time, some attractions running with few customers. In this paper, the author sets
up an imaginary amusement park, which is microcosm of ubiquitous computing society,
as a testbed for the study of social coordination. In the amusement park, visitors interact
with the attractions and coordinate their plans of riding attractions to reduce congestion
in the park. Recently the amusement park problem has attracted the attentions of the
researchers [8, 3], because it has several practical and expedient reasons for investigation
as follows:

– In an amusement park, visitors sometimes need to stand in line for an hour or more
before they ride the most popular attractions in the park. And, to ensure repeat cus-
tomers, amusement parks are interested in reducing the waiting hours for visitors and
increasing their satisfaction. For that purpose, they have developed several systems
such as wait hour display, but they are still in need of more effective solutions.

– Because the purpose of customers visiting an amusement park is to enjoy or ride
as many attractions as possible during their visit, it does not contradict with the
objective of the amusement park (i.e., to increase customers’ satisfaction). Thus,
benefits obtained by social coordination should be appreciated in the both sides.

– An amusement park is usually geographically isolated from the outside world. There-
fore, it is plausible to reify ubiquitous computing environment for it.

2.1 Social Coordination in an Amusement Park

In the amusement park with ubiquitous computing capabilities, visitors are assumed to
possess some portable terminal through which they can interact with attractions in the
park and exchange information for the purpose of social coordination. Information to be

ASAP: Agent-Based Simulator for Amusement Park 197

transmitted from a visitor includes: time of admission, planned time to exit, attractions of
interest and time range in which s/he wants to ride each attraction. Receiving information
from the visitors, an attraction in the park aggregates its envisioned loads and suggests
visitors when they should come for a ride. When the visitors accept the suggestion, the
attraction makes a reservation of its capacity for their rides.

In a realistic situation, some visitors might dislike to use this system or disobey
the suggestions made by attractions. Hence, it is important to give them incentives1 for
appreciating benefits of social coordination. In addition to such human problems on the
user’s side, the amusement park problem has the following computational difficulties:

Scale of problem: Millions of customers visit a large-scale amusement park in a year2.
Hence, a large park usually has tens or hundreds of thousands of visitors in a day.And
it has more than dozens of attractions. To coordinate the visitors’ plans and produce
reservations of satisficing quality for them, countless numbers of interactions among
visitors and attractions might be required in the search of solutions.

Quick response: Information of visitors is not available prior to their visit to an amuse-
ment park. Therefore, social coordination cannot begin until they have arrived. But,
it should not keep visitors waiting for the reservations to be made, since its objective
is to reduce their waiting time. Social coordination should be executed in a timely
manner.

Fairness of solution: For social coordination, another important factor to be considered
is that the produced solution should appear fair to the visitors. Otherwise, the visitors
will not follow the plans. Necessary information must be provided to visitors to make
them believe in the fairness of the plan.

Although not all of the above problems are solved in the paper, the author proposes
ubiquitous scheduling as a promising method for realizing a social coordination ser-
vice. The ubiquitous scheduling method utilizes explicit representations of constraints
in the problem and constraint-based heuristics for scheduling visitors’ attraction rides.
The following section shows how the ubiquitous scheduling method can solve the above
problems by (1) reducing search space, (2) constructing problem space in an iterative and
real-time fashion, and (3) providing meaningful problem solving information to visitors.

3 Ubiquitous Scheduling

In general, scheduling proceeds through interactions among two types of agents: (1) the
user agent which represents a user who has temporal demands on some resources, and
(2) the resource agent that manages capacity of a resource. The problem is to allocate
capacity of resources to users, thereby satisfying users’ demands as much as possible.
To solve the problem in a distributed manner, several methods have been studied (e.g.,
contract-net [11], market oriented methods [7], biologically inspired approaches [1]).
Those methods are either too time consuming or too ad hoc to solve a real-world problem.

1 For example, each attraction gives higher priority to entry of visitors with reservation than those
without reservation.

2 Tokyo Disney Resort, which is one of the most popular amusement parks in the world, reported
that about 24 million customers visited the park in 2003.

198 K. Miyashita

User User Agent Resource Agent

Input Demand Build Resource
Demand Profile

Send Receive

Aggregate Demands

Assign Resource

SendReceiveJudge Assignment

Adjust Resource
Demand Profile

Send Receive

Fig. 1. Interactions among agents in ubiquitous scheduling

In the ubiquitous scheduling method, user agents and resource agents exchange their
constraint information to search for a resource allocation solution that satisfies as many
constraints as possible. Resource allocations found in the search are assigned to users
as reservations of resources at the time interval. During the process, user agents do
not interact with each other, neither do the resource agents. This kind of problem has
been modeled and solved as a distributed constraint-based scheduling problem [12, 5].
For real-time problem solving, the ubiquitous scheduling method extends those past
research results with a mechanism to relax constraints by promoting users’ concession
in necessary situations.

Fig. 1 depicts the interactions among agents in ubiquitous scheduling. Although
user, user agent, and resource agent are shown as a single entity in the figure, in the
implementation of ubiquitous scheduling, many users, user agents and resource agents
interact with each other simultaneously and search for a feasible schedule iteratively.
In the following subsections, details of the ubiquitous scheduling method are explained
along the interaction flow shown in Fig. 1.

3.1 Demand Profile

When a user enters his/her demand information (i.e., earliest entry time and latest exit
time for each resource in demand) through a portable terminal, the user agent, which is
resident in the terminal, generates data called a demand profile [9] based on the input
information. The demand profile represents a distribution of the user’s demand strength
on a resource along the timeline, considering the temporal constraints on the earliest
entry and the latest exit.

Fig. 2 illustrates an example of a demand profile for the case where a user requests a
resource in the time window between 10:00 and 10:50, and the resource needs 30 minutes
for processing the user’s request. In Fig 2 planning granularity is assumed 10 minutes.
A smaller planning granularity produces a finer solution with more computation.

ASAP: Agent-Based Simulator for Amusement Park 199

Time Window

Processing Time Planning
Granularity

10:00 10:10 10:20 10:30 10:40 10:50 Time

1.0

0.67

0.33

0

Fig. 2. Illustrated example of resource demand profile

Possible solutions for the user to satisfy his/her request are: to allocate the resource
either (1) from 10:00 to 10:30, (2) from 10:10 to 10:40 or (3) from 10:20 to 10:50. Hence,
distribution of user’s demand strength on the resource takes a stepwise shape as shown
in Fig. 2. The figure shows that, to satisfy user’s request in this example, the resource
must be allocated to the user from 10:20 to 10:30. In general, with a small time window,
a demand profile takes large values near 1.0, which means that there is little choice of
time for user’s demand on a resource.

Before a user agent transmits a demand profile to a resource agent, the user’s demand
profile is normalized so that total demand to all the resources by the user should be equal
to that of the other users. And, a demand profile needs to be re-calculated every time that
the user’s temporal constraints or resource’s capacity constraints change in the process
of ubiquitous scheduling.

3.2 Resource Allocation

After the user agents send the demand profiles to the corresponding resources, each
resource agent aggregates the demand profiles that it receives. The aggregated demand
profile shows demand contentions of users for the resource. For satisfying the users’
demands as much as possible, the resource agent needs to search for allocation that
resolves the contentions. Backtrack-based search used in the distributed constraint sat-
isfaction methods [6, 15] is unsuitable for application to ubiquitous scheduling because
it requires intolerable amounts of computation for solving a large scale problem. To
avoid backtracks in the constraint satisfaction search process, the ubiquitous scheduling
method uses constraint-based heuristics for making a partial solution. For the unsolved
parts of the problem, the users are requested to modify or cancel their demands on the
resource.

Fig. 3 depicts the demand profiles of 3 users and their aggregated demand profile
of the resource. The graph of the aggregated demand profile (i.e., the bottom graph in
Fig. 3) shows Resource1 has a contention peak. The demand profile graphs of 3 users
reveal that User3 is the most critical user who has the largest demand at the contention
peak of Resource1. Resource1 starts resolving contentions heuristically by allocating its
capacity around the contention peak to User3 for his/her reservation, and then allocate
the capacity away from the contention peak to the other users.

Different from the conventional reservation methods, which basically make reser-
vations on the first-come-first-serve basis, the ubiquitous scheduling method considers
tightness of users’ constraints (i.e., demand contentions and length of demand time win-

200 K. Miyashita

Time

Time

Time

Time

Demand

Demand

Demand

Aggregated
Demand

User1

User2

User3

Resource1

1.0

0.5

1.0

0.5

1.0

0.5

2.0

1.0

contention peak

Fig. 3. Contention peak for resource

dow specified by a user) and gives higher priority to those with tighter constraints. But, to
realize fair resource allocation among users, the ubiquitous scheduling method needs to
force users to declare the tightness of their demand honestly. For the purpose, a resource
agent modifies the demand profile from a user as follows:

d∗
u =

{
duwu/Tr (if wu ≤ Tr)
du (otherwise)

where d∗
u is a modified value of user’s demand profile at a resource, du is the original

value of the demand profile of the user on the resource, wu is a time window length of
the user’s demand profile, and Tr is a standard time length defined by the resource. By
this modification of the demand profile value, a resource can prevent users from setting
a small time window to make their demand tight.

3.3 Demand Adjustment

When each resource agent makes decisions on allocation of its capacity to the users, it
sends information about the allocation to the user agents.

Receiving the information, the user evaluates acceptability of the allocation as a re-
served time slot for the resource. Because resource agents neither interact with other
resource agents in allocating their own capacity nor have information about users’ other
fixed reservations, allocations made by the resource agents for a user might cause con-
flicts in his/her constraints. In distributed constraint satisfaction algorithms, those con-
flicts should be resolved by backtracking. However, in ubiquitous scheduling, the expo-
nential explosion of search time caused by backtracking is not permissible. Therefore,

ASAP: Agent-Based Simulator for Amusement Park 201

Resource1

Resource2

Resource3 Resource3

Resource2

Resource1

Demand Conflict

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

Fig. 4. Demand conflict for user

in ubiquitous scheduling, when a user has conflicts in his/her constraints, the user is re-
quired to adjust the constraints to resolve the conflicts. To help users make adjustments,
they are provided information on constraints and conflicts.

Fig. 4 shows an example in which a user suffers a demand conflict from a newly
assigned resource allocation. The left side of Fig. 4 depicts demand profiles of a user
for 3 resources. The graphs on the right represent the modified demand profiles for
the resources after the user accepts the assignment by Resource3 (i.e., a dotted area in
the left graph). Since the user has to use Resource3 in the assigned time interval, the
time window allotted for Resource2 should be shrunk. Hence, the demand profile for
Resource2 changes its shape as shown in the figure. As a consequence, demand profiles
of both Resource1 and Resource2 have a peak with a value of 1.0 at the same time
interval. This situation is called a demand conflict. When this occurs, the user must
decide whether (1) to reject an assignment by Resource3, (2) to accept the assignment
by Resource3 and adjust his/her demands by giving up either Resource1 or Resource2,
or (3) to give up Resource3.

Since rejection of the assignment by Resource3 causes similar extra computation
with that of backtrack search, the maximum number of rejections allowed for a user
should be limited. In ubiquitous scheduling, its effectiveness depends heavily on the
ability to assign as many reservations as possible in a short time period. Thus, by putting
a low limit on the number of rejections allowed, ubiquitous scheduling urges the users
not to reject the assignments but to give up some of their demands. In other words, mutual
concession by demand adjustment is requested of the users of ubiquitous scheduling.

4 Simulation System

The ubiquitous scheduling method is experimentally evaluated in the context of multi-
agent simulation [2]. The ASAP (Agent-based Simulator for Amusement Park) system
has been developed to test the effectiveness of ubiquitous scheduling as a social coordi-
nation service in realistic situations at an amusement park.

202 K. Miyashita

4.1 Agent Model

In the ASAP system, an imaginary amusement park consists of the following 3 types of
agents:

1. Visitor agent: this is an agent that simulates behaviors of a customer who visits the
amusement park for pleasure. In ASAP, the visitor agent does not have any direct
interaction with the other visitor agents. Two types of visitor agents are assumed in
ASAP;
(a) Cooperative visitors who follow the reservation suggested by ubiquitous schedul-

ing.
(b) Uncooperative visitors who do not use ubiquitous scheduling and behave as

they plan based on their individual priorities.
Attributes of a visitor agent are: (1) time of entry, (2) planned time of exit, (3)

walking speed, and (4) a list of attractions and their priority (and preferred time
range of each visit as option).

The cooperative agent v has an additional attribute αv to be used when deciding
whether it should go to the next reserved attraction, or stop by and stand in line for
another attraction without reservation. In such a case, the agent who queues for the
unreserved attraction may need to leave for another reserved attraction in time for its
reservation. Probability p that the agent stops by at the attraction r∗ before visiting
the reserved attraction r is calculated as

p = 1.0 − αvwr∗/sr,

where wr∗ is waiting time for the attraction r∗, sr is the time left till the reservation
time of the attraction r. Hence, αv shows cautiousness of the cooperative visitor
agent v in deciding to visit the unreserved attractions.

The visitor agent can take one of the following states at a time: (1) idling, (2)
walking to an attraction,(3) waiting without reservation,(4) queuing with reservation,
(5) riding an attraction and (6) exit the park. Possible state transition for the visitor
agent is shown in Fig. 5.

idling

waiting

queuing

walking riding

exit

Decision making

Fig. 5. State transition of visitor agent

ASAP: Agent-Based Simulator for Amusement Park 203

The visitor agent make its decision on its behavior only in the idling state or in the
waiting state. In the idling state, a visitor agent decides which attraction to visit next,
and in the waiting state, a visitor agent decides whether to keep standing in line or
leave for another attraction. After riding all the attractions on its list, the visitor agent
walks to the exit and its state transits to the exit state.

2. Attraction agent: this agent simulates behaviors of attractions or other facilities in
an amusement park such as restaurants or gift shops. As a consequence of behaviors
made by the attraction agent, the states of visitor agents are changed accordingly.
In ASAP, 2 types of attraction agents are assumed:
(a) Reservable attraction: cooperative visitor agents can make a reservation with

this type of attraction agent through ubiquitous scheduling. Uncooperative vis-
itor agents also ride this type of attractions without a reservation, but this agent
prioritizes cooperative visitors over uncooperative visitors. Hence, uncoopera-
tive visitors can ride the attraction only when the attraction has some capacity
after satisfying all the reserved demands of cooperative visitors.

(b) Non-reservable attraction: no visitor can make a reservation for this type of
attraction. Hence, both cooperative visitors and uncooperative visitors should
stand in the same line before riding the attraction.

3. Coordinator agent: this agent is in charge of making reservations for a reservable
attraction through the ubiquitous scheduling method explained in Section 3. The
coordinator agent does not interact with the other coordinator agents. In other words,
it does not consider possible conflicts among reservations for a visitor. The conflicts
should be resolved by the visitor agent.

As one of the current limitations of the ASAP system, it does not have models of
“roads” in the park. It assumes that visitors can move from one attraction to another
in a direct straight path with a constant walking speed. Another possible extension to
the current implementation is to enable the visitor agents to change their attributes
dynamically. This increase flexibility of the visitor’s behavior, such as riding the same
attraction again if the visitor might like it at the first ride.

4.2 Implementation

Fig. 6 shows an overview of the implemented architecture of the ASAP system. In the
amusement park problem solved by ASAP, tens of thousands of visitors and dozens
of attractions need to be simulated. Since it requires a considerable amount of compu-
tation, the ASAP system is implemented on the Beowulf cluster computer, which has
8 nodes of 3.06 GHz dual Xeon computers interconnected with Gigabit Ethernet. For
communication among agents, distributed shared memory (i.e., tag boards in Fig. 6)
is implemented to reduce the burden of programming tangled peer-to-peer interactions
among many agents [13].

After a simulation run, ASAP can analyze the results graphically and quantitatively.
With a graphical output shown in Fig. 7, ASAP can show the results of two simulation
runs simultaneously as graphic animation, thus enabling the researcher to compare the
dynamic aspects of the simulation results visually. For a more detailed and quantitative
analysis, ASAP can also produce graphs of simulation results such as the utilization of
attractions and the waiting time of visitors.

204 K. Miyashita

Main Controller

Tag Board Server

Tag BoardTag Board Tag Board Tag Board

VisitorVisitor Visitor

Visitor

Visitor

VisitorVisitor

Visitor

Visitor

Visitor
Visitor

Visitor

Coordinator
CoordinatorCoordinatorCoordinator

Attraction Attraction Attraction

Attraction

Attraction

Fig. 6. Architecture of ASAP system

Fig. 7. Screenshot of ASAP system

5 Preliminary Experimental Results

To evaluate the effectiveness of the ubiquitous scheduling method, preliminary experi-
ments of applying the ASAP system to an imaginary amusement park are executed.

5.1 Problem Definitions

An imaginary amusement park is defined for the experiments. The park is assumed to
have 8 attractions (from Attraction1 to Attraction8, respectively) with the same capacity:
they accommodate 130 customers for a ride at the maximum, take 5 minutes for the ride,
and are open from 9 o’clock to 17 o’clock. 12,000 visitors enter the park at 9 o’clock.

ASAP: Agent-Based Simulator for Amusement Park 205

They leave the park as soon as they finish riding all the 8 attractions in the park or when
the park is closed at 17 o’clock.

The theoretical load ratio of every attraction in the park is 96%, which is calculated
as follows:

L = V/C

= 12, 000/(CrNr)
= 12, 000/(130T/Tr)
= 12, 000/(130 ∗ (60 ∗ (17 − 9))/5) = 0.96

where L is the theoretical load ratio of an attraction, V is the number of visitors to ride
the attraction, C is the total capacity of the attraction in a day, Cr is the capacity of the
attraction for a ride, Nr is the number of the rides operated by the attraction in a day,
T is the total working hour of the attraction in a day, and Tr is the time needed for a
ride. This load ratio (96%) means that the park has just enough capacity to satisfy all the
demands by the visitors when they act in a coordinated way.

The priority list of attractions for a visitor is determined to make unevenly distributed
preferences over the attractions with the following conditions: (1) One third of the visitors
(i.e., 4,000 visitors) are designed to have the highest priority in visiting Attraction1 and
the second highest priority in visiting Attraction2, (2) another one third of the visitors
like to visit Attraction2 most and secondarily Attraction1, and (3) the rest of visitors
are supposed to prefer visiting the other attractions over Attraction1 or Attraction2. This
makes Attraction1 and Attraction2 more likely to be congested than the other attractions.

To see the effects of ubiquitous scheduling, the following 3 sets of the experiments
are executed; (1) No Res.: no attraction has the reservation function, (2) Res.1: only
Attraction1 has the reservation function with the ubiquitous scheduling method, and (3)
Res.1&2: both Attraction1 and Attraction2 have the reservation function. Both in Res.1
and Res.1&2 cases, every visitor is assumed cooperative and follows the suggestions of
ubiquitous scheduling.

Since an increase of attractions to be reserved complicates the coordination process
among visitors and requires enormous computation, only the bottleneck resources (i.e.,
most popular attractions, Attraction1 and Attraction2) are considered in the experiments
of this paper.

5.2 Experimental Results

Table 1 shows the average distribution of visitors’ states in the 3 sets of experiments.
From the result of No Res. case, a visitor spends 75% of the time in standing in line for
attractions. In Res.1 or Res.1&2 cases, where ubiquitous scheduling is adopted, time
spent in waiting and queuing is about 65%. Thus, by making reservations for popular
attractions (i.e., Attraction1 and Attraction2), a visitor can reduce his/her waiting time
by about 10%.

The number of attractions ridden by a visitor in Fig. 8 shows drastic distinctions
among the 3 cases. In the No Res. case, although 2, 903 visitors can ride all the attractions,
2, 243 visitors ride less than 4 attractions. But in the Res.1&2 case, almost all the visitors
(11, 705 visitors out of 12, 000) ride all the attractions and the rest of visitors ride 7

206 K. Miyashita

Table 1. Visitor’s state distribution

No Res. Res. 1 Res. 1&2

idling 1 1 1
walking 15 17 18
queuing 0 11 13
waiting 75 53 52
riding 6 8 8
exit 3 10 8

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8

N
um

be
r

of
 V

is
ito

rs

Number of Ridden Attractions

No Res.

Res. 1

Res. 1&2

Fig. 8. Distribution of visitors with a number of attraction rides

attractions. This result suggests that ubiquitous scheduling can give fair and extended
opportunities to all the visitors even when the attractions have a high theoretical load
ratio of 96% and the visitors have unbalanced priorities to the attractions. Thus, it is
shown that ubiquitous scheduling improves visitors’ satisfaction with the park.

The above discussions explain the results on the visitor’s side. For management of
the amusement park, in addition to improving customer’s satisfaction, keeping high
utilization of attractions is also important since it costs a large amount of money to build
an attraction 3 and it may become obsolete in a year or two. Fig. 9 depicts the average
utilization of the attractions in 3 cases of experiments. In the No Res. case, although
popular attractions have high utilization, the other attractions have a considerable loss
of utilization. This is because visitors’ time is wasted waiting in the lines of popular
attractions. In the Res.1 and Res.1&2 cases, all of the attractions have high utilization
of more than 90%.

Fig. 10 presents the average queue length for each attraction in 3 cases of the experi-
ments. In the No Res. and Res.1 cases, long queues are formed at the popular attractions
(i.e., Attraction1 and Attraction2). And, in the Res.1&2 case, the queues are evenly dis-
tributed among all the attractions, thus visitors do not need to wait more than 1 hour for

3 Some attraction facilities might cost more than 10 million dollars.

ASAP: Agent-Based Simulator for Amusement Park 207

0

20

40

60

80

100

1 2 3 4 5 6 7 8

U
til

iz
at

io
n

Attraction

No Res.
Res. 1

Res. 1&2

Fig. 9. Utilization of attractions

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8

Q
ue

ue
 le

ng
th

Attraction

No Res.

Res. 1

Res. 1&2

Fig. 10. Average queue length of attractions

any attraction. At the same time, all the attractions have enough length of visitor’s queue
to achieve high utilization.

These results show that making reservations only at the popular attractions can im-
prove visitor’s satisfaction at the amusement park. Although taking reservations at all the
attractions can further reduce visitor’s waiting time at the unpopular rides, it might not
be worth the required computational cost when considering the expected extra benefits
of the visitors. Giving an opportunity of making reservations at the popular attractions
to the visitors is practically beneficial and feasible suggestion to the amusement parks.

208 K. Miyashita

6 Conclusion and Future Work

In this paper, the author advocates ubiquitous scheduling for eluding congestion in
society. It shows an example of a social coordination service to be provided in the
coming ubiquitous computing environments. TheASAP system is developed as a testbed
of the ubiquitous scheduling method, and an imaginary amusement park is modeled and
analyzed for evaluating effectiveness of the proposed method. Preliminary experimental
results show that the ubiquitous scheduling method using constraint-based heuristics can
solve a large scale problem of making attraction reservations for 12,000 visitors in the
amusement park and produce fair and reasonable solutions for visitors.

As an extension of the research, further investigation is required to examine practical
applicability of the method. For this purpose, the author is now applying the ubiquitous
scheduling method to the data of a real amusement park in Japan. And, future work
should also address the issue of efficient coordination of a visitor’s reservations made
by many attractions.

References

1. Eric Bonabeau, Marco Dorigo, and Guy Theraulaz, editors. Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, 1999.

2. J.M.Epstein and R.Axtell. Growing Artificial Societies - Social Science from the Bottom UP.
MIT Press, 1996.

3. Hidenori Kawamura, Koichi Kurumatani, and Azuma Ohuchi. Modeling of theme park
problem with multiagent for mass support. In Proc. of The IJCAI-03 Workshop on Multiagent
for Mass-User Support, pages 1–10, 2003.

4. Koichi Kurumatani. Social coordination with architecture for ubiquitous agents: Consorts.
In Proc. of International Conference on Intelligent Agents, Web Technologies and Internet
Commerce IAWTIC’2003, 2003.

5. Jyi-Shane Liu and Katia P. Sycara. Exploiting problem structure for distributed constraint
optimization. In Proceedings of the First International Conference on Multi-Agent Systems,
pages 246–253. AAAI, 1995.

6. Kazuo Miyashita. CAMPS: A constraint-based architecture for multiagent planning and
scheduling. Journal of Intelligent Manufacturing, 9:147–154, 1998.

7. M.P.Wellman and W.E.Walsh. Auction protocols for decentralized scheduling. Games and
Economic Behavior, 35:271–303, 2001.

8. Jorge E. Prado and Peter R. Wurman. Non-cooperative plannning in multi-agent, resource-
constrained environments with markets for reservations. In AAAI whorkshop planning with
and for Multiagent Systems Technical Report WS-02-12, pages 60–66, 2002.

9. Norman Sadeh. Micro-opportunistic scheduling: The micro-boss factory scheduler. In
M. Zweben and M. Fox, editors, Intelligent Scheduling. Morgan Kaufmann, San Mateo,
CA, 1994.

10. B. Schilit, N. Adams, and R. Want. Context-aware computing applications. In Proc. of IEEE
Whorkshop on Mobile Computing Systems and Applications, pages 85–90, 1994.

11. Reid G. Smith. The contract net protocol: High-level communication and control in a dis-
tributed problem solver. IEEE Transactions on Computers, C-29(12):1104–1113, 1980.

12. Katia P. Sycara, Steven F. Roth, Norman Sadeh, and Mark S. Fox. Resource allocation in
distributed factory scheduling. IEEE Expert, 6(1):29–40, 1991.

ASAP: Agent-Based Simulator for Amusement Park 209

13. Holger Veit and Gernot Richter. The FTA design paradigm for distributed systems. Future
Generation Computer Systems, 16:727–740, 2000.

14. Mark Weiser. Hot topic: Ubiquitous computing. IEEE Computer, pages 71–72, 1993.
15. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. Distributed con-

straint satisfaction for formalizing distributed problem solving. In Proceedings of the Twelfth
International Conference on Distributed Computing Systems, pages 614–621, 1992.

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 210 – 224, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Patchiness and Prosociality: An Agent-Based Model of
Plio/Pleistocene Hominid Food Sharing

L.S. Premo

Department of Anthropology, University of Arizona,
Tucson, Arizona, 85721, USA

lpremo@email.arizona.edu

Abstract. Anthropologists have yet to adequately investigate the evolution of
food sharing despite its prevalence among contemporary human societies. As an
initial step toward rectifying this lapse, I present preliminary population-genetic
results generated by an agent-based model of Plio/Pleistocene hominid food
sharing. SHARE explores the dynamics of a unique conceptual model that treats
fragmented closed habitat patches as the loci of hominid social evolution and
investigates the altruistic behavior of food sharing using multilevel selection
theory. Data collected from artificial societies of hominid foragers demonstrate
that specific levels of ecological patchiness facilitate the evolution of food
sharing due to the fitness benefits bestowed upon subsistence–related trait
groups.

1 Introduction

Multi-agent-based modeling provides researchers interested in the evolution of
cooperation with a unique and sophisticated methodological tool (e.g., Hales, this
volume). To wit, the research presented below employs artificial societies to
investigate how food sharing, a biologically altruistic behavior displayed (to some
degree) by all living humans, could have evolved1 in ancestral populations and to
explore the recursive roles that ecology and behavior might have played in this
biosocial process during the period known as the Plio/Pleistocene (~3.5 million – 1
million years ago).

1.1 The Study of Altruistic Food Sharing and Hominid Evolution

Biologically altruistic behaviors benefit the fitness of one or more recipients while
incurring a cost to that of the actor/donor. Examples include alarm calling, feeding
restraint, and—the topic of this paper—food sharing. Food sharing is but one of many
intriguing prosocial behaviors exhibited by living humans. Although ethologists
recognize that ours is not the only species to display this altruistic behavior, both the

1 Traditionally, “evolution” is defined as a change in the allele frequency of a population

through time. However, for the purposes of this project, when used in conjunction with a
particular allele, trait, or behavior, the terms “evolution,” “evolve,” “evolved,” and “spread”
synonymously refer to the increase in the frequency of that phenotype through time.

 Patchiness and Prosociality: An Agent-Based Model 211

rich diversity of food types involved and the high frequency at which food transfers
occur among non-related individuals distinguish our version as quantitatively, if not
qualitatively, unique from those documented in other animal societies. Because the
majority of anthropological research on human food sharing has focused on
explaining its function in extant hunter-gatherer communities rather than on tracing its
evolutionary history, important questions concerning when and how food sharing
evolved in hominid populations have been left unaddressed.

In the absence of unequivocal archaeological evidence and analytic models,
previous attempts to reconstruct Plio/Pleistocene hominid food sharing behaviors
have relied heavily upon referential modeling, an inherently limiting enterprise that
employs an observable phenomenon (contemporary hunter-gatherer behavior) as a
model for a targeted referent phenomenon which may be impossible to study directly
(hominid behavior) [18]. Many of the reconstructions yielded by this methodology
were viewed as controversial because they casually ascribed contemporary human
food sharing behaviors to hominids living nearly two million years ago [5,7]. In
response, some anthropologists issued warnings against the unfettered use of living
hunter-gatherer (and nonhuman primate) behaviors as referential models for
interpreting early hominid material remains [18].

1.2 Agent-Based Modeling Provides a New Method to Investigate an Old
Question

Though adept at inferring behavioral processes from scarce archaeological assemblages,
paleoanthropologists yearn for an opportunity to observe their subjects firsthand. To
some extent, this can be accomplished through conceptual models that afford the
opportunity to observe cultural formation processes as they unfold in caricatures of past
societies. Archaeologists often compare conceptual model output to empirical
observations in order to learn more about the range of processes that could have been
responsible for the patterns they exhume in the field. It is in this capacity—as tools used
to explore one’s ideas about the past—that models are most appropriately employed in
archaeological research. Despite their long-standing relationship with other types of
conceptual models, archaeologists have only recently become acquainted with agent-
based simulations. Though the majority of the discipline views the first wave of agent-
based applications with an appropriate mix of skepticism and curiosity, a distinguished
minority has already begun to extol the methodology’s exciting potential [6].

The agent-based model introduced here was built to address two principal questions,
the first of which serves as the focus of this paper. Given certain assumptions and
constraints, what range of ecological and social conditions facilitates the evolution of
food sharing in artificial Plio/Pleistocene hominid populations? Second, does food
sharing imprint a diagnostic spatial signature on archaeological landscapes, and, if so,
how can this possibly multi-scale pattern be recognized in both experimental and
empirical distributions of material culture? Previous studies relied heavily upon
observations of living humans to address food sharing issues. Here, artificial societies of
hominid foragers, which can be placed in any number of ecological scenarios and
imbued with a variety of social rules, are employed as so-called cultural laboratories to
investigate a much wider range of behavioral possibilities, many of which are not
observable today.

212 L.S. Premo

2 A New Conceptual Model of Hominid Food Sharing

As we shall see in this section, previous anthropological thought on the topic of food
sharing focused on selective pressures associated with open grasslands and searched
for a selfish motivation for sharing in the form of benefits to the donor’s fitness. As a
response to these studies, my theoretical approach differs fundamentally in two
respects. To more accurately characterize the socio-ecological milieu of
Plio/Pleistocene hominids, I 1) focus on the selective pressures associated with
fragmented patches of closed (woodland) habitat and 2) expand evolutionary
ecological explanations of food sharing to include the selective benefits bestowed
upon supra-individual vehicles of selection (i.e., trait groups). This multilevel
selection perspective marks a significant departure from previous anthropological
reconstructions of early hominid food sharing, and it yields a new conceptual model
in which the altruistic trait evolves to fixation due to the benefits it bestows upon the
fitness of subsistence-related trait groups competing with one another in a
heterogeneous environment. This model implies that the strategy of sharing patchy
woodland resources, not stalking prey in open grasslands, might have laid the
ethological foundation for what we recognize today as exceptionally cooperative
human societies.

2.1 East African Paleoecology

Raymond Dart’s [2] colorful, but ultimately inaccurate, behavioral reconstruction of
Australopithecus africanus as a formidable savanna carnivore is largely responsible
for the popular notion that Plio/Pleistocene hominids were endemic to open
grasslands. Seemingly bolstered by Vrba’s [19,20] extensive research on climate
change in sub-Saharan Africa, this deep-seated notion has been invoked by
paleoanthropologists interested in such diverse topics as the emergence of bipedalism,
the process of encephalization, early hunting/scavenging opportunities, and food
sharing.

Today few paleoanthropologists would deny that a general cooling and drying
trend allowed open grasslands to expand at the expense of closed forests and
woodlands at various times during the Pliocene and early Pleistocene in sub-Saharan
Africa. However, not every researcher feels that the role open grasslands played in
hominid evolution was as direct and prominent as earlier explanations might lead one
to believe. In fact, contrary to the predictions of the traditional savanna hypothesis,
Plio/Pleistocene hominid skeletal and material remains have been found in association
with a variety of paleohabitats including swamps, treeless to wooded grasslands,
woodlands, and gallery forests [14]. In addition, postcranial morphological traits of
Australopithecus afarensis, such as long curved phalanges and a relatively large
humero-femoral index, serve as skeletal evidence that these hominids possessed
physical adaptations for life in and around the trees [16,17].

The expansion of open grasslands during the Pliocene and early Pleistocene
undoubtedly presented a significant environmental change that had far-reaching
effects on the community ecology of sub-Saharan Africa. However, I believe the
evolutionary significance of this ecological shift derived not from the expansion of
open habitat, per se, but rather from the fragmentation of closed habitat. It is difficult

 Patchiness and Prosociality: An Agent-Based Model 213

to accept that late Pliocene hominids—seemingly still physically adapted to closed
habitats—would have voluntarily abandoned habitable woodland patches in order to
compete for the treeless ecological niche. The inverse of this popular explanation
embodies a more plausible evolutionary scenario. That is, in the face of significant
ecological changes caused by a cooling and drying climate, hominid populations
continued to adapt (in this case, largely behaviorally) in ways that enhanced their
utilization of woodland patches, not open grasslands. The loci of Plio/Pleistocene
hominid social evolution, therefore, can be found in disjointed patches of closed
habitat, not in treeless expanses.

2.2 Expanding Evolutionary Explanations of Food Sharing

Those who perform biologically altruistic acts, such as sharing food, benefit a
recipient’s individual fitness at a cost to their own. Because a selfish individual
(social cheater) is able to enjoy the benefits of another’s selfless deed without paying
the associated costs, each egoist possesses a higher relative fitness than that of whom
s/he takes advantage. How, then, can an altruistic trait evolve to fixation in a mixed
population if individuals who display it are less fit than individuals who do not? In the
past, attempts to make food sharing evolve via individual selection, thereby avoiding
this thorny issue, have discredited the self-sacrificial nature of the behavior [1]. But
recently strides have been made to couch explanations of food sharing in a multilevel
selection evolutionary framework, one which allows researchers to more accurately
model altruistic traits [21].

Although it requires that we expand our explanations of food sharing to include
fitness benefits bestowed upon evolutionarily meaningful groups of individuals,
multilevel selection theory is an elegant conceptual framework predicated on the idea
that natural selection concurrently operates at two levels of the biological hierarchy:
within-group and between-group [15,23]. Synonymous with individual selection,
within-group selection promotes phenotypic traits that allow an individual to
maximize one’s relative fitness, regardless of how one’s actions affect the fitness of
others. On the other hand, between-group selection promotes phenotypes that are
beneficial to the fitness of others while costly to that of the actor. The key to
understanding this fundamental tenet of multilevel selection lies in the concept of trait
groups. Trait groups are not defined spatially or by common descent (but note that
spatially proximate individuals [10] and kin [4] can sometimes meet trait group
requirements). Rather, a trait group is simply “a set of individuals that influence each
other’s fitness with respect to a certain trait but not the fitness of those outside the
group” [15: p 92]. A population that is divided into trait groups will often experience
increased levels of between-group selection which can foster the evolution of
altruism, as we shall see below.

2.3 Previous Research on Patchiness and Prosociality

John Pepper and Barbara Smuts [9] present an elegant multilevel selection simulation,
called ECO, which they use to study the evolution of two altruistic traits—alarm
calling and feeding restraint—in freely-mixing populations of generalized foragers.
They report that when inhabited by a mixed population of altruists and nonaltruists,

214 L.S. Premo

patchy resource distributions can support the spread of these particular altruistic traits
by facilitating (not to be confused with causing) positively assorted interactions
among socially inept2 foragers. In the absence of cultural mechanisms responsible for
facilitating nonrandom interactions between similar individuals, positive assortment
resulting from resource patchiness effectively structures mixed populations into
evolutionarily meaningful trait groups.

Pepper and Smuts’ conclusion that “[trait] groups emerging through the behavior
of individual agents in patchy environments are sufficient to drive the evolution of
group beneficial traits” [9: p 70] could prove crucial to an understanding of early
hominid food sharing, given the patchy resource structure of Plio/Pleistocene
savannas. As open grasslands encroached upon woodlands, resource patchiness would
have facilitated assortative interactions within hominid subgroups relegated to slowly
shrinking islands of preferred closed habitat. Pepper and Smuts’ findings suggest that
these fragmented environmental conditions could shift the balance of selective
pressure from within-group to between-group, thereby fueling the spread of food
sharing in the metapopulation through the differential reproductive success of trait
groups. Testing this hypothesis requires a different agent-based model, one that
explores dynamics particular to food sharing among abstracted hominid foragers.

3 SHARE: An Agent-Based Model of Hominid Food Sharing

Agent-based models allow social scientists to investigate emergent group level
phenomena resulting from historically contingent interactions between heterogeneous
agents, each of which behaves according to rule-based schemata [3]. Free from the
deterministic, top-down structure of traditional equation-based simulation techniques,
evolutionary agent-based models provide a generative, bottom-up understanding of
selective processes as simulated societies evolve according to particularistic
population dynamics. The following paragraphs briefly describe an agent-based
model, aptly named SHARE (Simulated Hominid Altruism Research Environment),
which was implemented in Objective-C using the Swarm libraries [8] in order to
explore the population-genetic consequences of the conceptual model presented
above. SHARE’s world is a two-dimensional grid, wrapped into a torus to avoid edge
effects. Three types of agents—plants, meat, and foragers—can occupy each regularly
shaped, regularly spaced grid cell.

3.1 The Physical Environment: Food Resources

Plants. Plant agents represent closed habitat (woodlands) food resources. Therefore,
areas that lack plant agents model open grasslands. To characterize open grasslands
as void of plant foods might seem counterintuitive, but because paleoanthropologists
do not widely consider edible grasses as important components of most early hominid
diets, they are not emphasized in SHARE. At the start of each simulation, plant agents
are systematically distributed into regularly shaped and regularly spaced patches
according to two experimental variables, patch size and gap size (Fig. 1). Plant agents
do not die, move, or reproduce. Each plant’s energy store represents the amount of

2 Unable to discriminate the identities, phenotypes, or relatedness of other foragers.

 Patchiness and Prosociality: An Agent-Based Model 215

energy that a forager could potentially gain by consuming it. When not fed upon, a
plant’s energy store grows logistically up to a relatively low fixed maximum. To
foragers, plant agents represent temporally and spatially reliable, albeit relatively
small, packages of food.

Fig. 1. Plant agents arranged in patches at the start of a SHARE simulation run (Patch Size = 10
and Gap Size = 2). Plant energy level is depicted in grayscale: higher values are lighter

Meat. Meat agents represent the carcasses of the medium to large-sized mammals
often associated with both open and closed components of African savanna
environments. Unlike plants, meat energy quickly depletes from a relatively high
maximum value according to a logistic decay rate to emulate scavenging by other
savanna carnivores and/or decomposition. Also unlike plant agents, meat agents are
randomly instantiated over space and through time. The probability that a meat agent
will be added to each cell per time step is an experimental variable that can be varied
to investigate the impact that large, unpredictable food packages have on the
evolution of food sharing. Though capable of yielding much more energy than a plant,
each meat agent provides a spatially and temporally unreliable food source. Though
meat agents are described here, note that they were not included in any of the
simulation runs that yielded the results reported below.

3.2 The Social Environment: Hominid Foragers

Foraging, Reproduction, and Death. Forager agents are purposefully abstracted
versions of Plio/Pleistocene hominids. Foragers that successfully procure plants
and/or meat on a regular basis amass healthy stores of energy that eventually
surpass their fertility thresholds. Forager reproduction is asexual and entails a
significant energetic cost to the parent. To guarantee that each offspring inherits its

216 L.S. Premo

parent’s genotype, genetic transmission occurs through a single haploid locus with
two immutable alleles (S = selfish and A = altruistic). Foragers that metabolize all
of their stored energy while in search of food die of starvation. Foragers are also
removed from the simulation if they fall prey to a savanna carnivore, disease, or an
accident or when they reach their maximum age. The probability of dying from
something other than old age or starvation is an experimental variable that can vary
between open and closed habitats (the former more dangerous than the latter). Note
that this particular experimental variable is not employed in the baseline version of
SHARE.

Movement. Each forager first scans its immediate Moore neighborhood (including
its current cell) for plant and meat agents. Of the subset of cells that contain enough
food to support the metabolic cost of at least one time step and are not currently
occupied by another forager, foragers will decide to move to that which contains the
highest plant and/or meat energy level (ties broken randomly). If adequate food
resources cannot be found in the adjacent cells, then the forager moves to one of
them at random. While in the process of scanning the Moore neighborhood for
food, each forager also looks for other foragers. If necessary, the first forager
spotted in this manner can be asked to share excess food3 during the current time
step. These simple foraging rules effectively model hominids using individually
retrieved spatial information to exploit locally available resources. The use of
random walks between closed patches insures that all foragers employ the same
strategy for finding additional woodland resources.

Food Sharing. To make food transfers possible, foragers are allowed to carry
limited amounts of procured but unconsumed energy. Each forager possesses a
(possibly unique) floating-point value greater than or equal to zero and less than or
equal to one that provides the probability that it will share excess food when
approached by another in need. Foragers are considered to be in need when their
current energy level drops below the food share threshold value. In its current form
SHARE has the capability to model three distinct sharing behaviors, described
below in order of increasing social sophistication.

According to the simplest sharing rule (Rule 1), a donor (D) shares excess food
with a prospective recipient (R) when a random number between zero and one is
less than or equal to D’s food share probability. The second food sharing method
(Rule 2) resembles the well-known tit-for-tat strategy, and it requires that foragers
remember whether agents cooperated with or defected against them in their most
recent social interaction. Memory is operationalized with dynamic lists of social
cooperators and defectors. Each agent maintains its own lists by updating them after
each interaction in which it functioned as the prospective recipient. Donors use their
memory to make food sharing decisions on a forager-by-forager basis according to
the following rule: share excess food with those who shared with you in the most
recent interaction, but refuse to share with those who refused to share with you. If D
has no memory of a past interaction with R, Rule 1 is used instead. According to the

3 The amount of excess food is defined as the positive difference of a forager’s current energy

level and the food share threshold value.

 Patchiness and Prosociality: An Agent-Based Model 217

final food sharing method (Rule 3), D can accurately identify whether R is altruistic
or selfish. D uses this important information to decide whether or not to share
according to the following rule: altruistic D share with altruistic R but not with
selfish R, and selfish D share with no one. Depending on one’s theoretical
proclivity, Rule 3 models either the situation in which there exists a reliable costly
signal for cheaters, cooperators, or both or the scenario in which foragers use
information exchanged with others (via gossip) about past social interactions to
identify and act appropriately towards individuals upon their first meeting.

3.3 Variable Settings and Parameter Sweeps

To explore how a variety of socio-ecological contexts affect the evolution of the
food sharing strategies described above, 30 simulation runs—each initialized using
the same set of standard variable values (Table 1) and one of 30 unique random
number seeds—were executed for each possible combination of experimental
variables (e.g., Patch size 5, Gap size 8, Rule 1).

Table 1. Standard and experimental parameter settings for the baseline version of SHARE

 Parameter Value(s)

 Standard Variables
 Minimum number of plants 500

 Plant maximum (energy units) 10
 Plant logistic growth rate r 0.2
 Starting number of foragers 40 (20 of each type)
 Forager starting energy (energy units) 50
 Forager metabolic rate (energy units) 2
 Forager fertility threshold (energy units) 100
 Forager birth interval (time steps) 20
 Cost of reproduction (energy units) 50
 Forager maximum life span (time steps) 100
 Forager maximum (energy units) 110
 Forager food share threshold (energy units) 50
 Probability of sharing food 0 (selfish), 1 (altruist)
 Experimental Variables
 Patch size (number of cells per patch side) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
 Gap size (number of cells between patches) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

 Food sharing behaviors Rule 1, Rule 2, Rule 3

3.4 Data Collection

Price’s equation [11,12,13] provides an elegant tool for quantifying the relative
strengths of between-group and within-group selective pressures as they fluctuate
through time. By employing patch membership as a reliable proxy for trait group
affiliation in SHARE, Price’s equation can be used to partition the overall change in
allele frequency so that selection within and between subsistence-related trait
groups can be tracked separately. During each simulation run, the values yielded by

218 L.S. Premo

Price’s equation, the percentage of altruistic foragers present in the metapopulation,
and the total number of foragers in the metapopulation were collected to confirm
that altruistic alleles increased in frequency due to raised levels of between-group
selection and not by other means.

4 Results

I have qualified the results presented here as preliminary not to indicate that the
data will change, but rather to underscore the fact that more will be added before
completing the full exploration of this conceptual model’s population-genetic and
archaeological consequences. For instance, as mentioned above, this fundamental
version of the model does not include large unpredictable energy packages (meat),
mortality due to predation/disease/accident, or polygenic food sharing
phenotypes—all of which are important aspects of the conceptual model that are
currently being addressed with additional parameter sweeps—nor does it consider
in any way the archaeological manifestations of food sharing. Thus, Figures 2-4
summarize only the population-genetic results of 9,000 runs of the most basic
version of SHARE.

In considering Figures 2 and 3, the effect of ecological patchiness is readily
discernible—altruistic food sharing evolves to fixation predominantly in
intermediate patch sizes (3-6) when combined with intermediate-to-large gap sizes
(3-10). This pattern echoes that which Pepper and Smuts [9] found for feeding
restraint and alarm calling, but why? Recall that the evolution of altruism requires
strong between-group selection. The strength of between-group selection depends
largely upon the partitioning of genetic variation within and among trait groups.
Resource patchiness can structure the genetic variation of a population in a variety
of ways, some of which actually weaken between-group selection: small patches
succeed in creating trait groups that are too ephemeral to compete as evolutionarily
meaningful groups; large patches can support large trait groups that often contain a
mix of forager types, thereby effectively increasing both within-group heterogeneity
and between-group homogeneity; small gaps between patches do not pose
deterrents for migration; and large gaps present serious obstacles that make it nearly
impossible for reproductively successful trait groups to export their offspring to
additional patches [22]. As Figures 2 and 3 clearly illustrate, between these
extremes exists a transitional range of resource patchiness that provides the
structure necessary to form internally homogenous and externally heterogeneous
trait groups. It is under this rather restricted range of conditions that ecological
patchiness enjoys its most influential between-group selective power. The results
show that, though theoretically possible, it is far less likely for altruistic versions of
Rules 1 and 2 to evolve to fixation in environmental settings outside of this so-
called transitional range of resource patchiness. The fact that altruistic alleles
evolve to fixation less frequently than their selfish counterparts should not detract
from the finding that ecological heterogeneity can effectively structure forager
populations into evolutionarily meaningful groups.

 Patchiness and Prosociality: An Agent-Based Model 219

Gap Size

 1 2 3 4 5 6 7 8 9 10
 1 | 0 * * * * * * * * *
 2 | 0 1 * * * * * * * *
 3 | 0 0 1 5 * * * * * *

 Patch 4 | 0 0 0 1 5 7 2 2 * 0
 Size 5 | 0 0 0 2 0 0 3 9 9 6

 6 | 0 0 0 0 0 0 0 0 1 5
 7 | 0 0 0 0 0 0 0 0 0 0
 8 | 0 0 0 0 0 0 0 0 0 0
 9 | 0 0 0 0 0 0 0 0 0 0
 10 | 1 0 0 0 0 0 0 0 0 0

Fig. 2. Rule 1 results for each Patch Size/Gap Size combination. Table values (above) represent
the number of simulation runs (out of 30) in which the altruistic food sharing allele evolved to
fixation in a viable4 population. Each of the values greater than zero is plotted in the bar chart
along the axis labeled # of Altruistic Fixations. *None of the runs yielded a viable population at
time of allele fixation

4 In this study, “viable” populations contain at least ten foragers (25% of the starting population

number). This arbitrary threshold effectively eliminates from further consideration most of
the populations near extinction at the time of allele fixation.

220 L.S. Premo

Gap Size
 1 2 3 4 5 6 7 8 9 10
 1 | 2 * * * * * * * * *
 2 | 0 2 0 * * * * * * *
 3 | 0 1 9 3 * * * * * *

 Patch 4 | 0 0 1 1 10 9 8 1 2 1
 Size 5 | 0 0 0 0 1 5 3 8 12 2

 6 | 0 0 0 0 1 0 0 2 3 6
 7 | 0 0 0 0 0 0 0 0 0 0
 8 | 0 1 0 0 0 0 0 0 1 0
 9 | 0 0 0 0 0 0 0 0 0 0
 10 | 0 0 0 0 0 0 0 0 0 0

Fig. 3. Rule 2 results for each Patch Size/Gap Size combination. Table values (above) represent
the number of simulation runs (out of 30) in which the altruistic food sharing allele evolved to
fixation in a viable population. Each of the values greater than zero is plotted in the bar chart
along the axis labeled # of Altruistic Fixations. *None of the runs yielded a viable population at
time of allele fixation

Here, it is important to remember that the significance of an event need not be

directly related to its probability, for rare events often precipitate serious
consequences. In this sense, the quantitative results presented in this section can also
be interpreted at a qualitative level (binary: presence/absence).

Some of the results obtained from this relatively conservative model are surprising.
The fact that even the least sophisticated form of food sharing (Rule 1) occasionally
evolved to fixation, despite the fact that it involves neither memory of past
interactions nor the ability to identify the phenotype of prospective recipients,

 Patchiness and Prosociality: An Agent-Based Model 221

demonstrates the powerful role that resource patchiness can play in structuring an
otherwise freely-mixing population of socially inept foragers. Less surprising, but still
interesting, is the observation that the selective influence of ecological patchiness is
inversely related to the social sophistication of food sharing behaviors. Figures 2 and
3 show that resource patchiness played an instrumental role in the evolution of the
socially sophomoric food sharing behaviors (Rules 1 and 2), both of which evolved to
fixation under a relatively restricted range of ecological conditions. In contrast, Figure
4 shows that resource patchiness played only a minor role in the case of the culture-
laden Rule 3, which spread to fixation at least once under each and every ecological

Gap Size

 1 2 3 4 5 6 7 8 9 10
 1 | 8 * * * * * * * * *
 2 | 6 10 * * * * * * * *
 3 | 6 12 14 9 * * * * * *

 Patch 4 | 11 8 9 16 13 9 5 1 2 1
 Size 5 | 8 6 12 10 15 13 18 15 8 8

 6 | 8 10 10 8 11 16 14 11 13 17
 7 | 8 12 11 11 8 6 10 10 7 8
 8 | 3 8 8 12 8 12 10 8 7 7
 9 | 7 13 5 7 4 3 10 8 6 6
 10 | 12 17 9 6 4 4 7 5 6 5

Fig. 4. Rule 3 results for each Patch Size/Gap Size combination. Table values (above) represent
the number of simulation runs (out of 30) in which the altruistic food sharing allele evolved to
fixation in a viable population. Each of the values greater than zero is plotted in the bar chart
along the axis labeled # of Altruistic Fixations. *None of the runs yielded a viable population at
time of allele fixation

222 L.S. Premo

condition capable of supporting a viable population. Note that the frequencies at
which this version of the altruistic trait evolved to fixation are greater than Rule 1 and
Rule 2 frequencies in the transitional range of resource patchiness. In addition, it is
apparent that Rule 3 altruistic alleles evolved to fixation more frequently in a much
larger range of ecological conditions than did either of the less sophisticated altruistic
alleles.

In the final analysis, one must consider how the preliminary results of this baseline
model inform our understanding of how altruistic food sharing could have evolved in
Plio/Pleistocene hominid populations. First, we have learned that food sharing
behaviors need not be overly complicated to evolve within the transitional range of
ecological patchiness. Thus, in certain ecological circumstances even rudimentary
food sharing behaviors could have evolved to fixation in hominid populations during
the Plio/Pleistocene. The premise that early hominids displayed relatively simple food
sharing strategies is more parsimonious than the traditional application of modern
hunter-gatherer behaviors. According to the preliminary results, the more
parsimonious hypothesis could also be more accurate in some environmental
scenarios. This conclusion implies that if the earliest food sharing behaviors were
indeed simple, a strong temporal correlation should exist between significant forest
fragmentation and the spread of this altruistic behavior. Of course, high resolution
field research on the timing and spatial structure of Pliocene forest fragmentation in
East Africa as well as a methodology by which spatial signatures left by food sharing
can be recognized in early archaeological assemblages are required to test for the
presence of this correlation. Second, we have learned that cultural sophistication
liberates food sharing from a narrow transitional range of ecological patchiness,
thereby allowing altruistic alleles to evolve to fixation at higher frequencies in a larger
proportion of the environmental state space. This finding implies that had early
hominids been capable of practicing a complex version of food sharing, one which
involved gossip and/or the punishment of social cheaters, closed habitat fragmentation
would have played a greatly diminished role in the biosocial process. Therefore, if the
earliest food sharing behaviors were culturally sophisticated, paleoanthropologists
should not expect to find a strong temporal correlation between the evolution of food
sharing and the fragmentation of Pliocene forests in East Africa.

5 Conclusion

Clearly, the results of SHARE do not (in fact, cannot) prove that food sharing spread
through early hominid populations due to the fragmentation of closed habitats.
However, the preliminary population-genetic findings demonstrate that ecological
patchiness can facilitate the evolution of food sharing when both altruistic and selfish
behavioral traits are present in artificial societies of foragers. At the very least, these
results imply that the new conceptual model of early hominid food sharing, which
focuses on woodland fragmentation and trait group benefits, deserves further scrutiny.
In order to investigate more detailed research questions, subsequent versions of
SHARE will include additional experimental variables such as the presence of meat,
mortality due to predation/accident/disease, and polygenic food sharing phenotypes.

 Patchiness and Prosociality: An Agent-Based Model 223

The initial success of this model suggests that paleoanthropologists could employ
different agent-based models to build inferences for a variety of hominid behaviors as
an alternative to applying allegedly representative living human and nonhuman
primate behaviors to evolutionarily unique cultural remains. Though referential
models can only remind us of the way the world is, agent-based models are capable of
generating inferences about how the world could have been. Behavioral
reconstructions of species that lack contemporary analogs will only benefit from this
type of approach. The population-genetic results of SHARE elucidate the relationship
between two important variables in the hominid food sharing equation:
Plio/Pleistocene ecological patchiness and the social savvy of early food sharing
behaviors. Paleoecologists and paleoanthropologists can now use the archaeological
record to solve this equation for two unknowns.

Acknowledgements

SHARE was built around ECO, and I thank John Pepper for making his code
available for this research on food sharing. I am indebted to Steve Lansing, who
provided some of the computer hardware used to create and execute SHARE. Steve
Kuhn offered insightful advice throughout the modeling endeavor. John Olsen,
Jonathan Scholnick, and five anonymous reviewers provided helpful comments on
earlier drafts of this paper. An Emil W. Haury Fellowship, awarded by the
Department of Anthropology at the University of Arizona, supported this research.
Finally, I would like to thank those who organized the 2004 Joint Workshop on Multi-
Agent and Multi-Agent-Based Simulation and orchestrated the peer review process.

References

1. Blurton Jones, N. G.: A Selfish Origin for Human Food Sharing: Tolerated Theft.
Ethology and Sociobiology (1984) 5:1-3

2. Dart, R. A.: The Osteodontokeratic Culture of Australopithecus prometheus. Transvaal
Museum, Pretoria (1957)

3. Epstein, J. M., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom-
Up. The Brookings Institution Press, Washington, D.C. and MIT Press, Cambridge (1996)

4. Hamilton, W. D.: Innate Social Aptitudes of Man: An Approach from Evolutionary
Genetics. In: Fox, R. (ed.): Biosocial Anthropology. Malabry Press, London (1975) 133-
155

5. Isaac, G. Ll.: The Food Sharing Behavior of Protohuman Hominids. Scientific American
(1978) 238(4):90-108

6. Kohler, T., Gumerman, G. (eds.): Dynamics in Human and Primate Societies. Oxford
University Press, Oxford (2000)

7. Lovejoy, C. O.: The Origin of Man. Science (1981) 211:341-350
8. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The Swarm Simulation System: A

Toolkit for Building Multi-agent Systems. SFI Working Papers 96-06-042, Santa Fe
(1996)

224 L.S. Premo

9. Pepper, J. W., Smuts, B. B.: The Evolution of Cooperation in an Ecological Context: An
Agent-Based Model. In: Kohler, T., Gumerman, G. (eds.): Dynamics in Human and
Primate Societies. Oxford University Press, Oxford (2000) 45-76

10. Pepper, J. W., Smuts, B. B.: A Mechanism for the Evolution of Altruism among Nonkin:
Positive Assortment through Environmental Feedback. American Naturalist (2002)
160(2):205-213

11. Price, G. R.: Selection and Covariance. Nature (1970) 227:520-521
12. Price, G. R.: Extension of Covariance Selection Mathematics. Annals of Human Genetics

(1972) 35:485-490
13. Price, G. R.: The Nature of Selection. J. of Theoretical Biology (1995) 175:389-396
14. Sikes, N. E.: Early Hominid Habitat Preferences in East Africa: Paleosol Carbon Isotopic

Evidence. J. of Human Evolution (1994) 27:25-45
15. Sober, E., Wilson, D. S.: Unto Others: The Evolution and Psychology of Unselfish

Behavior. Harvard University Press, Cambridge (1998)
16. Stern, J. T., Susman, R. L.: The Locomotor Anatomy of Australopithecus afarensis.

American J. of Physical Anthropology (1983) 60:279-317
17. Susman, R. L., Stern, J. T., Jungers, W. J.: Arboreality and Bipedality in the Hadar

Hominids. Folia Primatologica (1984) 43:113-156
18. Tooby, J., DeVore, I.: The Reconstruction of Hominid Behavioral Evolution Through

Strategic Modeling. In: Kinzey, W. G. (ed.): The Evolution of Human Behavior: Primate
Models. State University of New York Press, Albany (1987) 183-237

19. Vrba, E. S.: Morphology and Environmental Change: How do they Relate in Time? South
African J. of Science (1980) 76:61-84

20. Vrba, E. S.: Ecological and Adaptive Changes Associated with Early Hominid Evolution.
In: Delsen, E. (ed.): Ancestors: The Hard Evidence. Alan R. Liss, New York (1985) 63-71

21. Wilson, D. S.: Hunting, Sharing, and Multilevel Selection: The Tolerated-Theft Model
Revisited. Current Anthropology (1998) 39(1):73-97

22. Wilson, D. S., Pollock, G. B., Dugatkin, L. A.: Can Altruism Evolve in Purely Viscous
Populations? Evolutionary Ecology (1992) 6:331-341

23. Wilson, D. S., Sober, E.: Reintroducing Group Selection to the Human Behavioral
Sciences. Behavioral and Brain Sciences (1994) 17:585-654

Plant Disease Incursion Management

Lisa Elliston, Ray Hinde, and Alasebu Yainshet

Australian Bureau of Agricultural and Resource Economics, GPO Box 1563,
Canberra ACT 2601, Australia

Abstract. An incursion management model was developed to estimate
the regional economy effects of a potential exotic pest or disease in-
cursion in the agricultural sector. By developing an agent based spatial
model that integrates the biophysical aspects of the disease incursion
with the agricultural production system and the wider regional economy
the model can be used to analyze the effectiveness and economic im-
plications of alternative management strategies for a range of different
incursion scenarios. A case study application of the model investigates
the impact of a potential incursion of Karnal bunt in wheat in a valuable
agricultural producing region of Australia.

1 Introduction

Australia has a valued reputation for supplying high quality agricultural prod-
ucts with disease free status to export markets. Disease incursions pose a serious
threat to this reputation and could cause significant harm to the agricultural
industry and surrounding regional commodities, resulting in considerable losses
in trade and incomes.

The exotic incursion management (EIM) model was developed to provide
estimates of the direct and indirect costs of plant disease and pest incursions,
and to evaluate the strategic and tactical response options available to the gov-
ernment in the event of an exotic incursion in the agricultural sector.

A case study application of the model investigates the impact of a potential
incursion of Karnal bunt in wheat. While this disease is known not to occur in
Australia currently, its introduction would lead to the immediate and signifi-
cant loss of valuable export markets, currently valued at more than $3 billion
Australian dollars annually. The analysis was undertaken to evaluate a range of
alternative post-incursion management strategies. As such, in all scenarios it is
assumed that an infestation has, or will, occur.

While a number of studies have quantified the direct costs associated with a
Karnal bunt incursion under a range of different scenarios (see [1], [2], and [3]), this
work also takes into account the flow-on effects to surrounding regional economies.

2 Exotic Incursion Management Model

The EIM model is an agent based model developed using Cormas, a spatial
natural resource and agent based simulation modeling framework based within

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 225–235, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

226 L. Elliston, R. Hinde, and A. Yainshet

the VisualWorks programming environment, which allows for the development
of applications in the object oriented language, SmallTalk [4].

A number of programming environments can be used to model multi-agent
systems. Cormas was selected because it is a platform focused on the building
of simulation models where individuals and groups of individuals share, or are
located on, a common resource. The established library features, including a
strong focus on the visualization of agents and their behavior, facilitate quick
model development.

The Cormas development platform contains three modules. In the first mod-
ule each of the entities within the system are created, and their interactions with
other entities are defined. The second module coordinates the overall dynamics,
particularly the sequence of events. The third and final module enables the pro-
grammer to define the points of view from which the model can be observed.

The model is spatial in nature, with a grid of square cells representing indi-
vidual paddocks, groups of which are managed as farms by different landholders.
Cellular automata techniques are used to drive the spread of the disease across
neighboring paddocks, and a range of potential disease transmission vectors are
modeled explicitly. At the same time, numerous agents including farmers, con-
tract labor and quarantine officers — each with their own specific patterns of
behavior and movement — are also interacting in the spatial environment.

The model consists of a number of distinct components with separate modules
capturing the characteristics of the disease; the farming system; the incursion
response and management of an outbreak; and a stylized representation of a
regional economy to measure the flow-on effects of a disease incursion.

An agent-based approach was used to allow for a more realistic evaluation of al-
ternative management strategies. By explicitly modelling the dynamic responses
of farmers to an incursion and any subsequent eradication or control measures in
a simulation framework the results provide insight into their likely effectiveness.

2.1 Disease Characteristics

A range of potential disease vectors, identified by plant pathologists as the most
likely transmission paths for plant diseases, were explicitly incorporated into
the model. Estimates of the spread characteristics were also provided by plant
pathologists based on their expert knowledge of the disease (table 1). Each dis-
ease vector interacts with the spatial environment, with its own patterns of
behavior and movement1. For example, contract workers and farmers are able
to spread disease across and between farms as they move throughout the region.
Subsequently, the disease may spread across neighboring paddocks by wind or
the movement of machinery on-farm.

2.2 Farm System

The farm system is modeled as an annual cropping cycle, with each simulation
running over 15 years. Each step of the simulation represents the passing of

1 All probabilities are expressed per visit (v), or per season (s).

Plant Disease Incursion Management 227

one week of time. Farmers decide what proportion of their farm to plant to
different crops, as well as when to plant them within a planting timeframe that
starts in early April and finishes at the end of June. Four agricultural activities
are explicitly incorporated in the model: wheat, feed wheat, sorghum and an
aggregate representing all other cropping and livestock activities.

After planting, the two major events in the remainder of the year involve
spraying for weeds in July and harvesting crops throughout October, November
and December. Farmers decide whether they wish to use contractors to spray
for weeds and harvest crops, or whether they will do these activities themselves.
During these two periods of time the disease can be spread across and between
farms in the region. At all other times of the year farmers are randomly moving
around their property, potentially spreading the disease.

Based on average yields for the region as reported in the 2001 agricultural cen-
sus conducted by the Australian Bureau of Statistics (ABS), the total volume of
wheat, sorghum and other commodities produced on each farm is calculated [5].
The grain produced is sent to the silo and, based on average farm-gate prices,
gross receipts are calculated.

The farmers have not been modeled explicitly as profit maximising agents.
There are few agricultural land use alternatives available to farmers in the re-
gion analysed so they face a prescribed set of planting options based on their
quarantine status.

Table 1. Parameters representing the spread characteristics of the disease

Transmission vector Probability

Probability of contractor with infected machinery infesting a wheat
paddock while spraying for weeds (v) 0.00001
Probability of a contractor with infected machinery infesting a wheat
paddock while harvesting (v) 0.5–0.75
Probability of a contractor’s machinery becoming infected if they spray
for weeds in an infested paddock (v) 0.0001
Probability of a contractor’s machinery becoming infected if they
harvest an infested paddock (v) 1.0
Probability of a farmer with infected machinery infesting an uninfested
wheat paddock elsewhere on their property during harvest time (s) 0.75
Probability of a farmer with infected machinery infesting an uninfested
wheat paddock elsewhere on their property at any other time of the year (v) 0.0001–0.75
Probability of a farmer’s machinery becoming infected if they are in an
infested paddock during harvest time (s) 1.0
Probability of a farmer’s machinery becoming infected if they are in an
infested paddock at any other time of the year (s) 0.001–0.0001
Probability of disease spreading from one paddock to a neighboring
one (due to wind) at harvest time (s) 0.9
Probability of disease spreading from one paddock to a neighboring
one (due to wind) at any other time of the year (s) 0–0.25

228 L. Elliston, R. Hinde, and A. Yainshet

2.3 Incursion Response and Management

There are two ways in which a disease incursion can be identified: on farm by
farmers, or at the silo after harvesting. When the disease is identified a quaran-
tine response is triggered to investigate the extent of the incursion and attempt
to contain it so that it cannot spread further. The farm from which the in-
fected grain came is immediately quarantined and a tactical response officer is
dispatched to the property. Depending on the specific quarantine rules, a collec-
tion of neighboring properties are placed in a buffer quarantine zone. Tactical
response personnel visit each neighboring property and search for signs of the
disease. If the disease is found on any neighbouring property it is upgraded to
full quarantine status. A buffer quarantine zone is established around this farm
and all properties within this region are then searched. Where signs of infestation
are not found on neighboring properties, those properties remain in the buffer
quarantine region and the search of other properties stops.

At the same time, any contractors that have visited infested farms that are
now fully quarantined are identified to trace back the source of the incursion and
limit its spread. In the first instance, contractors identified in this process are
asked to provide a list of all the farms they have visited during the year. Tactical
response personnel are then dispatched to each of these farms in order to identify
the extent of the incursion. Where an infestation is identified on a property, that
property is fully quarantined and the search through all neighboring properties
begins. Any contractors contacted in this trace back process who were carrying
the disease on their machinery are disinfected before the next season begins.

In the event of an identified disease incursion, farms can be classified as:
identified as having an infestation and fully quarantined; identified as not having
an infestation but in a buffer quarantine zone because neighboring properties
have an infestation; or not quarantined, either clear of infestation or not yet
identified.

Depending on the characteristics of the particular disease incursion, a range
of control measures can be put in place. These can include the application of
chemical treatments to crops, soil or seed; the destruction of crops; and restric-
tions on the agricultural activities that can be undertaken for a specified period
of time. The effectiveness of these control measures can be subject to some un-
certainty. However, in the scenarios presented in this paper it is assumed that
the control measures are always fully effective. After control measures have been
applied all restrictions are lifted from the previously infested farm.

2.4 The Regional Economy

A twelve sector input-output (I–O) model based on data collected by the ABS
represents the regional economy [6]. I–O tables contain the supply and demand
of goods and services in an economy over a particular period, along with the
interdependencies between the industries and associated primary factors of pro-
duction. Changes in the value of agricultural production as a result of a disease
incursion or any subsequent management can therefore be traced through the
rest of the regional economy.

Plant Disease Incursion Management 229

The I–O analysis provides estimates of both the direct and indirect impacts
of a change in agricultural production resulting from a disease incursion. The
direct — or initial — impact captures the changes in wheat and other grain
production and any associated changes in employment and income in the directly
affected industries, as well as any changes in imports required by these industries.
Subsequent changes in all other industries and the directly affected industries
form indirect or flow-on impacts.

I–O analysis can overestimate the results of a change in the economy because
it does not allow for price induced flexibility between primary factors of produc-
tion or labour and capital between different commodities. However, the analysis
was considered a reasonable approximation for this regional case study where
the potential price impacts are likely to be small. For a more detailed description
of the model see [7].

3 Karnal Bunt Case Study

Karnal bunt of wheat is caused by the smut fungus Tilletia indica Mitra, and
despite causing only minor yield losses, infected grains emit a fishy odor and
are unfit for human consumption [8] and [9]. It has never been identified in
Australian wheat [10]. Karnal bunt could be introduced into Australia through
the importing of infected machinery and farm inputs. While the likelihood of
this occurring is low, the costs associated with the immediate loss of valuable
grain export markets in the event of an infestation would be significant. As a
result, it is a disease of particular concern to the Australian wheat industry.

Karnal bunt teliospores have proven resistant to adverse environmental con-
ditions, remaining viable for up to five years in contaminated soil. The primary
means of containing the disease is to ban the planting of wheat on affected farms
for at least five years.

The model was calibrated to a case study region in eastern Australia that
relies heavily on the agricultural sector and produces high quality wheat that
attracts a significant price premium on world market. In baseline simulations
with no disease the model generated production statistics comparable with data
collected as part of the 2001 agricultural census [5].

3.1 Incursion Scenarios

Two different incursion scenarios, with different levels of farmer detection and
reporting were analyzed to investigate the importance of early detection on the
likelihood of eradicating the disease and the overall economic cost of a Karnal
bunt outbreak. A series of 100 simulations were conducted for each scenario and
the results presented reflect the average results of those simulations. Sensitivity
analysis has not been included due to space constraints.

The first scenario involves a limited and slowly expanding incursion with
Karnal bunt introduced into the case study region by contractor equipment.
The incursion begins with just two contractors and spreads across the region by
the movement of farmers and contractors, as well as the wind.

230 L. Elliston, R. Hinde, and A. Yainshet

The second scenario represents a diffuse starting point with potentially rapid
expansion, with a load of fertilizer contaminated with Karnal bunt sold through-
out the region at the beginning of the simulation.

The measures put in place to contain the Karnal bunt incursion include the
destruction of Karnal bunt infested wheat in the first year that it is identified
and the establishment of planting restrictions that last for five years. Farmers
identified as having the disease are unable to grow grain crops for five years.
Neighboring farms that form the buffer zone are unable to grow grain crops in
the first year after an incursion is identified. In the remaining years of the five
year quarantine period, wheat grown on these farms can only be used for feed
purposes within the region.

Further, when the disease is first identified the price for wheat production
in the region, even wheat that is free of the disease, is assumed to receive a
lower price. The price for wheat only returns to the higher export price after the
disease is deemed to have been eradicated from the region on the basis that no
new incursions are identified for at least one year.

3.2 Contractor Based Incursion

Two contractor based incursion scenarios were investigated. In the first scenario,
the likelihood of infested grain being identified at the silo was assumed to be 50
per cent, and farmers did not report signs of the disease on their property. In
the second scenario, the likelihood of detection at the silo remained at 50 per
cent and all farmers reported signs of the disease on their property.

When farmers do not report signs of the disease on their property the area
infested increases rapidly to more than 14000 hectares by the fourth year of
the fifteen year simulation (figure 1). Almost 80 per cent of all infested land is
identified and quarantined, the spread of the incursion is curtailed and the area
infested reduces to negligible levels by the end of the planning horizon.

In contrast, when farmers report signs of the disease on their property the
extent of the incursion is reduced, with a maximum of 5900 hectares infested
by the fourth year of the simulation. More than 95 per cent of all infested land
is quarantined in the fourth year and the area infested is reduced significantly.
Despite a slightly higher level of infestation in this scenario compared with the
scenario where no farmers report in the latter years of the simulation, more than
95 per cent of the infested land is quarantined and the likelihood of the disease
being eradicated within another five years is high.

The combined effect of the low level of infestation in the region and the ability
of quarantine measures to contain an outbreak caused by contractors means
that the adverse economic effects of this hypothetical Karnal bunt incursion are
relatively minor. Over the fifteen year planning horizon considered, an incursion,
even when no farmers report signs of the disease on their property, results in a
net loss of production valued at around $58 million 2 in net present value terms,

2 All economic impacts are reported in Australian dollars (2003 prices) and exclude
the administrative costs associated with undertaking surveillance and eradication.

Plant Disease Incursion Management 231

0 5 10 15
0

2

4

6

8

10

12

14

16

year

‘0
00

 h
a

No farmers report

All farmers report

Fig. 1. Area infested, contractor scenario

Table 2. Regional economy effect of alternative incursion scenarios ($AUD)

Initial Flow-on
(direct) (indirect) Total

Contractor incursion, no farms report −58.0 −22.3 −80.4
Contractor incursion, all farms report −55.6 −21.5 −77.1
Fertilizer incursion, no farms report −430.2 −165.3 −595.5
Fertilizer incursion, all farms report −368.9 −141.5 −510.3

which represents around 2 per cent of the value of grain production in the region
(table 2).

Over a fifteen year planning horizon, the indirect effect of the hypothetical
incursion on all industries is estimated to be around $22 million. The total
industry and consumption effects, reflecting the indirect effects along with the
initial (direct) effects, capture the overall impact of this particular Karnal bunt
incursion. It is estimated that over the fifteen year planning horizon, the decline
across the case study region is around $80 million.

When farmers report signs of the disease on their property the incursion is
contained in a shorter period of time and the overall economic effects of the
outbreak are reduced. Over the fifteen year planning horizon, the loss in value
of production is estimated at under $56 million. When the direct and indirect
effects of changes in production are aggregated across the region, the decline in
economic performance is $77 million.

The $3.3 million difference in the economic performance of the region under
these two contractor based incursion scenarios provides an indication of the

232 L. Elliston, R. Hinde, and A. Yainshet

0 5 10 15
0

50

100

150

200

250

300

350

year

‘0
00

 h
a

No farmers report

All farmers report

Fig. 2. Area infested, fertilizer scenario

value associated with improving the likelihood of detection by farmers on their
property. This in turn can provide a benchmark against which expenditure aimed
at improving farmer awareness of the disease, and therefore the likelihood of
detection, can be assessed.

3.3 Fertilizer Based Incursion

Two fertilizer based incursions, with the same likelihood of detection at the
silo and on-farm, were also investigated. When farmers do not report signs of
the disease on their property, the area infested increases to more than 300000
hectares by the fourth year of the simulation (figure 2). Unlike the contractor
scenario, only around two-thirds of all infested land is identified and quarantined
at this point in the simulation. The disease fails to be contained and the area
infested continues to increase throughout the remainder of the planning horizon.
When farmers report signs of the disease on their property, the extent of the
incursion is reduced significantly, but still fails to be eradicated.

The much larger incidence of infestation across the region and the failure
of quarantine measures to adequately contain the disease when it is brought
into the region via contaminated fertilizer results in the economic impact of this
scenario being much larger than the contractor based incursion scenario.

Over the fifteen year planning horizon, a fertilizer based incursion where
farmers do not report signs of the disease results in a net loss of agricultural
production valued at around $430 million, compared with a reference case of no
disease, which represents around 20 per cent of the value of grain production in
the region (table 2). When the indirect effects are added to this, the economic
impact of the disease incursion is estimated at more than $595 million over the
fifteen year planning horizon.

Plant Disease Incursion Management 233

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

year

$‘
00

0

No farmers report
All farmers report

Fig. 3. Receipts per infested farm, contractor scenario

When farmers do report signs of the disease on their property the extent of the
incursion is reduced and the economic impact of the incursion is correspondingly
reduced. The net loss in agricultural production that results from the fertilizer
based incursion falls to around $369 million when farmers report signs of the
disease on their property. This converts to an overall loss in regional income of
$510 million.

The difference in the economic performance of the region under the two fertil-
izer based incursion scenarios again provides an indication of the value associated
with improving the likelihood of detection by farmers on their property.

3.4 Incentives to Self Report

The reporting of the disease by farmers is likely to be a social dilemma as
reflected in the tragedy of the commons. While the region as a whole is better
off when farmers report signs of the disease on their property, it is likely that
individual farmers are made worse off by such reporting. See [11] for a detailed
review of the agent based simulation of these social dilemmas.

In the contractor based incursion scenario the receipts per infested farm for
the scenario where no farmers report signs of the disease on their property are
higher than the scenario where all farmers report for the first two years (figure 3).
In the third year the receipts per farm are on average equivalent. In subsequent
years when the quarantine measures take effect and the disease is contained,
the receipts per infested farm are higher under the scenario where farmers re-
port signs of the disease on their property. Similar results were observed for the
fertilizer based incursion.

These results indicate that while the region as a whole is better off when
farmers report signs of the disease on their property, at least in the early years
of the simulation farmers appear to have little incentive to report signs of the

234 L. Elliston, R. Hinde, and A. Yainshet

disease on their property. This results indicates that the ability to successfully
contain a disease such as Karnal bunt is likely to depend critically on it being
identified within the first few years of its introduction to a region.

To ensure self reporting, farmers with the disease may require financial pay-
ments to offset the disadvantages associated with reporting the disease and being
placed under quarantine restrictions.

4 Conclusions and Further Work

The initial case study application of the EIM model indicates that it can be used
for assessing the likely effectiveness of alternative management strategies in the
event of an exotic plant disease incursion such as Karnal bunt. The integrated
bio-economic nature of the model makes it possible to undertake a comprehensive
analysis of the impact of an incursion and any resulting incursion management.
This includes not only an assessment of the biophysical impact of an incursion,
but the resulting on-farm and regional economy effects as well.

The results from the case study analysis demonstrate the ability of improved
farmer detection and reporting to reduce the overall economic costs associated
with exotic disease incursions. They also highlight the need to provide appropri-
ate incentives to farmers in order to obtain the estimated benefits of eradication
or containment to the regional economy.

This preliminary assessment of the incentives that farmers face to engage in
strategic behavior highlights the ability of an agent based modeling approach to
enhance the accuracy with which the effect of proposed containment strategies
can be assessed. Further development on the representation of the economic
agents within the model is being undertaken to explicitly capture their incentives
to cooperatively reduce the effect of an exotic incursion.

The modeling framework presented is generic in nature and is capable of being
adapted to analyze a wide range of incursion scenarios, as well as the incursion
of other plant diseases and pests. It is anticipated that additional development
of the framework will occur so that the model can be extended to analyze the
spread of both weeds and insect pests in other case study regions.

References

1. CIE (Centre for International Economics): A Tale of Two Models: A more detailed
look at the Karnal bunt case study, (2002), Report prepared for Plant Health
Australia, Canberra.

2. Murray, G.: Pest Risk Analysis on Karnal Bunt of Wheat. Risk Analysis Report,
NSW Agriculture, Sydney (1998).

3. Brennan, J.P. and Warham, E.J.: Economic losses from Karnal bunt of wheat
in Mexico, CIMMYT Economics Working Paper 90/02, International Maize and
Wheat Improvement Centre, Mexico (1990).

4. CIRAD (Centre de coopération internationale en recherche agronomique pour
le développement): CORMAS: Natural Resouces and Agent-Based Simulations,
(2003), Montpellier, France, (cormas.cirad.fr/indexeng.htm)

Plant Disease Incursion Management 235

5. ABS (Australian Bureau of Statistics): 2001 Agricultural Census, (2001), Canberra,
Australia.

6. ABS (Australian Bureau of Statistics): Australian National Accounts, Input–
Output Multipliers 1989-90, cat. no. 5237.0, Canberra, Australia.

7. Elliston, L., Hinde, R., Yainshet, A.: Karnal Bunt: The Regional Economic
Effects of a Potential Incursion. ABARE eReport 04.4 Prepared for Plant
Health Australia, (2004), Canberra, Australia, (freely available for download from
www.abareonlineshop.com).

8. Bonde, M., Peterson, G., Schaad, N., Smilanick, J.: Karnal bunt of wheat. Plant
Disease 81 (1997) 1370–7.

9. Nagarajan, S., Aujla, S.S., Nanda, G.S., Sharma, I., Goel, L.B., Kumar, J. and
Singh, D.V.: Karnal bunt (Tilletia indica) of wheat – a review. Review of Plant
Pathology. 76(12) 1207–14.

10. Stansbury, C.D., McKirdy, S.J., Diggle, A.J. and Riley, I.T.: Modeling the risk of
entry, establishment, spread, containment and economic impact of Tilletia indica,
the cause of Karnal bunt of wheat, using an Australian context. Phytopathology.
92(3) 321–31.

11. Gotts, N., Polhill, J., Law, A.: Agent-Based Simulation in the Study of Social
Dilemmas. Artificial Intelligence Review 19 (2003) 3–92.

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 236 – 247, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Hybrid Micro-Simulator for Determining the Effects of
Governmental Control Policies on Transport Chains

Markus Bergkvist1, Paul Davidsson1, Jan A. Persson2, and Linda Ramstedt2

1 Blekinge Institute of Technology, Department Systems and Software Engineering,
372 25 Ronneby, Sweden

2 Blekinge Institute of Technology, Department Systems and Software Engineering,
374 24 Karlshamn, Sweden

{Markus.Bergkvist, Paul.Davidsson, Jan.Persson, Linda.Ramstedt}@bth.se

Abstract. A simulation-based tool is described which will be used to investi-
gate how the actors in a transport chain are expected to act when different types
of governmental control policies are applied, such as, fuel taxes, road tolls, ve-
hicle taxes and requirements on vehicles. The simulator is composed of two
layers, one layer simulating the physical activities taking place in the transport
chain, e.g., production, storage, and transports of goods, and another layer
simulating the different actors’ decision making processes. The decision layer is
implemented by a multi-agent system where each agent corresponds to a par-
ticular actor and models the way it acts in different situations. The simulator
will be used for analyzing the costs and environmental effects, and will in this
way provide guidance in decision making regarding control policies. In addi-
tion, it will be possible for companies to use the simulator in order to determine
cost-effective strategies given different (future) scenarios.

1 Introduction

This paper describes a simulation-based tool with the aim to investigate how the ac-
tors in a transport chain are expected to act when different types of governmental
control policies, such as, fuel taxes, road fees, vehicle taxes and requirements on ve-
hicles, are applied. The policy making is driven by a desire to attain a sustainable
environment (by reducing emissions, noise, accidents, and so on) and to achieve sus-
tainable economical development. From a societal perspective, the simulator will be
used to analyze the total costs and environmental effects of a transport chain and in
this way provide guidance in decision making regarding control policies. The inten-
tion is that such analyses will complement those made using existing macro-models.
In addition, it will be possible for businesses to use the simulator in order to deter-
mine cost-effective strategies given different (future) scenarios.

In the next section we further motive the need for the type of tool suggested and
review some related work. We then describe the problem domain, the structure of the
simulator, and a small case study. A discussion and pointers to future work concludes
the paper.

 A Hybrid Micro-Simulator 237

2 Background

The importance of being able to predict the effects of governmental control policies
can be illustrated by the marginal cost principle. According to this principle, the ex-
ternal costs of transports, such as, emissions, road wear, congestion, noise, accidents
etc., should be internalized. It has been argued that the current fees and taxes for
heavy transports do not correspond to the actual external costs caused by these trans-
ports [5]. To apply the marginal cost principle it is necessary to change some taxes,
fees, or regulations. But in order to know which action(s) to take, it is important to
have deep knowledge regarding the effects of these actions, i.e., how the different
actions will change the behavior of the actors involved in transport chains. This is
important in order for policy makers to take a long term perspective supporting sus-
tainable growth of trade and industry. From the perspective of the actors in a transport
chain, they need to develop strategies for acting given different future implementa-
tions of control policies.

2.1 Existing Simulation Models for Transport Systems

Traditionally, the effects of control policies have been studied using macro-level
models, such as SAMGODS (SAMPLAN) [9], ASTRA [1] and SISD [6]. These
models are taking a societal perspective and are based on aggregated course-grained
data on the national level. A problem with these models is that they do not take the
logistical processes into account, e.g., choice of carrier type and inventory strate-
gies, and thus fail to model the level where the decisions regarding the actual trans-
ports are taking place. Models that take logistical aspects into consideration are for
example SMILE [10], GoodTrip [2] and SLAM [6]. However, these models cannot
take specific properties of individual transport chains into account. Due to (in-
creased) cooperation between actors in transport chains (e.g., producers, customers,
transport operators), there exists a significant flexibility of how to carry out their
operations given different control policies. We believe that more precise predictions
regarding the effects of control policies can be achieved using micro-level models,
i.e., transport chain level models, that capture also the decision making of the actors
in the logistical processes.

2.2 Multi Agent Based Simulation for Policy Making

As Multi Agent Based Simulation, MABS, and other micro simulation techniques,
explicitly attempts to model specific behaviors of specific individuals, it may be con-
trasted to macro simulation techniques that are typically based on mathematical
(equation-based) models where the characteristics of a population are averaged to-
gether and the model attempts to simulate changes in these averaged characteristics
for the whole population. Thus, in macro simulations, the set of individuals is viewed
as a structure that can be characterized by a number of variables, whereas in micro
simulations the structure is viewed as emergent from the interactions between the
individuals. According to Parunak et al. [7] “…agent-based modeling is most appro-
priate for domains characterized by a high degree of localization and distribution and

238 M. Bergkvist et al.

dominated by discrete decision. Equation-based modeling is most naturally applied to
systems that can be modeled centrally, and in which the dynamics are dominated by
physical laws rather than information processing.” Obviously, transport systems fulfill
all the characteristics of domains appropriate for agent-based modeling.

As an example of an application of MABS for policy making, consider Downing et
al. [4], who have used it in the context of climate policy and climate change. A proto-
type agent-based integrated assessment model was proposed for water issues like
drought, flood etc. where the social relations that support the effectiveness of exhorta-
tion are described. Downing et al. argue that MABS is well-suited for this purpose
since agents represent the behavior of different actors, here policy makers and house-
holds, and the interaction between the agents can therefore be described and evalu-
ated. Also, since MABS can represent different grains, couplings to macro-models
can be done.

3 The Problem Domain

The general area investigated is decision support for public policy makers in the area
of transportation and traffic. In particular we study the question: What would the
consequences be in a transport chain1 given a certain policy? We envision a simula-
tion-based decision support system were a policy maker is able to experiment with
different types of fees, taxes, requirements on vehicles, etc. and get feedback from the
system regarding the predicted effects of these policies.

The consequences of public control policies on transport chains are closely con-
nected to the decisions made within the chain, such as, choosing mode of transporta-
tion, carrier size, when to transport, which quantities to transport. These decisions are
made by different actors at different levels in the chain and may have implications on
the system which are rather hard to anticipate.

In general a transport chain can be organized in a number of different ways with
respect to the owner of the products at different locations and to the decision makers
organizational belonging, e.g., the transport could be carried out by either the seller,
buyer or third party logistics operator. The decision making in transport chains is
subject to both short- and long-term planning implying that the time dimension of the
decisions needs to be considered when modeling the transport chains. We will assume
that the decision makers (actors) are cost minimizers locally with only minor explora-
tion of potential cost savings achievable by cooperation in the transport chain. This
appears to be rather typical in transport chains today, e.g. a customer orders a certain
quantity to be delivered at a particular time and date. However, we also plan to incor-
porate market-based cooperation between the simulated actors allowing for a behavior
which approaches a system optimal behavior. This represents the ongoing develop-
ment in transport chains, e.g. negotiations of when and of which quantities to deliver
to the customer occurs in order to reduce costs of production and transportation.

1 We avoid the term supply chain, since it implies indirectly that a customer view is taken, i.e.

to supply a customer, rather than a system view. Also, our focus is on transports, whereas
production and consumption provides the context in which the transports take place.

 A Hybrid Micro-Simulator 239

The input to the simulator is:

– the transport tasks, i.e., a sequence of customer requirements
– the available transport resources and their characteristics, such as costs, capac-

ity, and environmental performance
– the available production resources and their characteristics
– the available infrastructure, e.g., road and rail networks
– the location of producers, customers, storages, etc.

Given this task, the user of the simulator will be able to experiment with different
control policies, by varying a number of parameters corresponding to different taxes,
fees, regulations etc.

The output will then include (among other things):

– performed transport operations
– the estimated external costs (including environmental costs)
– society revenue (from taxes, fees, etc)
– the internal costs
– customer satisfaction measured in terms of reliability of deliveries and quality of

products.

4 The Simulator

We have chosen a hybrid approach, where an agent-based approach has been used to
simulate the decision making activities, and a more traditional object-oriented micro-
level approach has been used to simulate the physical activities. This is illustrated in
Fig 1 and further described in the remaining part of this section.

4.1 Physical Simulator

The physical simulator is based on the description of the production and distribution
network suggested by Davidsson and Wernstedt [3]. It simulates the physical level of
the production and distribution of commodities, whereas the decisions for what to
produce, where to store the commodities, fleet management, etc. are simulated by the
decision making simulator.

There are four basic types of entities in the simulator that makes up the production
and distribution: nodes, links, transport carriers and commodities. A node is a pro-
ducer, an internal distribution node, or a customer, and has the following attributes:

– production capacity for each commodity,
– production level (dynamic, i.e., the value may change during the simulation),
– storage capacity (volume) for each commodity type,
– inventory level (dynamic),
– load time for each carrier type, and
– unload time for each carrier type.

240 M. Bergkvist et al.

Fig. 1. The two layers of the simulator.

A link connects a pair of nodes in the distribution network and acts as a distribution
channel for the transport carriers. A link has the following attributes:

– connected pair of nodes,
– mode of transportation,
– length, and
– average distribution speed.

A transport carrier is an entity that performs a transport along a link and has the
following attributes:

– carrier type (Each type is associated with a particular mode of transportation.),
– volume capacity for each commodity type,
– location (dynamic),
– load (dynamic),
– maximum speed,

Transport chain

coordinator

Decision maker simulator

Transport
buyer

Physical simulator

Transport
planner

Customer
agent

Customer
agent

Transport
planner

Product
buyer

Production
planner

Production
planner

 A Hybrid Micro-Simulator 241

– delay probability distribution,
– transport cost, and
– environmental performance.

A commodity is produced at nodes and transported via links by transport carriers
and have the following attributes:

– commodity type (based on storage requirements),
– production cost,
– production time,
– mass,
– volume, and
– quality (dynamic, based on age).

The activities in the physical simulator can be controlled during run-time through a
number of commands. There are commands available to start a production batch, load
and unload commodities from a transport carrier, initiate a transport or consume
commodities. Commands that are sent to the simulator are placed locally at the target
entity in a first-in-first-out queue.

The available commands, their constraints and expected outcomes are:

– Manufacture(n, c, s). Adds a new command to the command queue of node n to
start a new production batch of commodity c of size s. The command is exe-
cuted if the node has the required production capacity. The time until the batch
is completed is determined by the production time. When the batch is completed
the new commodities are placed in storage at n.

– Load(v, c, s, n). Adds a new command to the command queue of transport car-
rier v to load the quantity s of commodity c from the storage of node n. The
command is executed if the transport carrier is located at node n. It then requests
the commodities from the node which returns the commodities (if available) and
the time it takes to load them.

– Unload(v, c, s, n). Adds a new command to the command queue of transport
carrier v to unload the quantity s of commodity c to the storage of node n.
Works similar to the Load command with the difference that a request to unload
is sent to the node.

– Dispatch(v, e). Adds a new command to the command queue of transport carrier
v to initiate a transport using link e. The command can only be executed if the
carrier is at either of the nodes connected by e, and is not un/loading.

– Consume(n, c, s). Adds a new command to the command queue of the node n to
consume quantity s of commodity c from the storage of node n.

In addition, it is possible to read the attributes of all entities.

4.2 Decision Making Simulator

We have identified a number of important roles in a transport chain, which are de-
scribed in Table 1.

242 M. Bergkvist et al.

Table 1. The modeled roles of a transport chain

Decision
maker

Decisions and actions Based on Goal

Customer
agent

Makes requests of products
with respect to quantities, time
of delivery (or time window),
and quality level.

Anticipated customer demand
and inventory levels at cus-
tomer.

Mediate
customer
requirements
in the most
accurate
way that is
possible.

Transport
chain
coordina-
tor

Decides how much should be
bought from producers and
how much should be taken
from storages. Makes requests
to product and transport buyers.

Requests from the customer
agents, intermediate inventory
levels, and transport and pro-
duction opportunities.

Satisfy the
customer
requirements
at the lowest
possible
cost.

Product
buyer

From which producer should
the products be bought? Makes
request of production to pro-
duction planners.

Requests from transport chain
coordinator. Bids from produc-
ers (production planners),
including prices, deadlines,
quality of product etc.

Satisfy the
product
requirements
at the lowest
price possi-
ble (given
the con-
straints).

Production
planner

What is the best bid that the
producer can provide? Gives
production orders to the pro-
ducer.

Production capacity, storage
levels (at the production site).

Minimize
production
costs.

Transport
buyer

From which transport operator
should the transport be bought?
Makes request of transports to
transport planners.

Requests from transport chain
coordinator. Bids from trans-
port operators (transport plan-
ners), including prices, quality
of transport, etc.

Satisfy the
transport
requirements
at the lowest
price possi-
ble (given
the con-
straints).

Transport
planner

What is the best bid that the
transport operator can provide?
Assigns tasks to transport
carriers (fleet management).

Status (availability, position,
etc) of the transport carriers
controlled by the operator.

Minimize
transport
costs.

There are many possible mappings between organizations and the different deci-
sion making agents. In the extreme case, all decision makers belong to the same or-
ganization for a transport chain, e.g., petroleum companies. Another extreme, is
where all decision makers belongs to different organizations. Also, intermediate ar-
rangements exist such as one of the real world cases in the project. Below, some map-
pings between agents and organizations are suggested:

 A Hybrid Micro-Simulator 243

– The customer agent might be a retailer or a producer, with the goal to buy a de-
sired quantity of goods to the lowest price delivered at a desired time. However,
this agent can typically accept (to a reduced price) to receive the products earlier
than required and hence store the product until needed.

– The transport chain coordinator might, for example, be a planner within a larger
company or a third or fourth party logistics operator.

– The product buyer is often connected to the organization which hosts the trans-
port chain coordinator. However, it can be independent, for example, in case the
transport chain coordinator is a third party logistics operator.

– The production planner belongs typically to the producing company.
– The transport buyer might belong to different type of organizations, for instance,

the transport buyer might belong to the same organization as the customer or as
the transport chain operator.

– The transport planner typically belongs to the organization owning and control-
ling the transport carriers.

As a case study we have selected a transport chain within the food industry consist-
ing of: Karlshamns AB, a producer of fats and oils, the transport operator FoodTank-
ers, and a typical buyer of bulk products from Karlshamns AB, Procordia Foods. A
number of the decision making agents, i.e., the transport chain coordinator, product
buyer, production planner, and transport buyer, are all associated with Karlshamns
AB. The customer and the transport planner agents are associated with Procordia
Foods and FoodTankers, respectively.

The suggested hierarchical design of the decision maker simulator allows for the
study of different levels of cooperation. It allows for modeling the extreme (but rather
common) case, where the agents have pure local objectives (local cost minimizer)
with virtually no sharing of information. Further, the design allows for the other ex-
treme case, where the agents are fully cooperative with the objective of minimizing
total cost of the system. In order to approach system optimality, however, an optimi-
zation mechanism needs to be applied for guiding the decision agents. In Persson and
Davidsson [8], an example of such a mechanism is outlined for a similar problem
setting.

The decision making simulator primarily models operational decisions. Strategic
decisions, such as buying or selling of vehicles, increase or decrease of storage capac-
ity, are not explicitly modeled. However, these decisions may indirectly be accounted
for by the user of the simulator, or directly in a more advanced version of the simula-
tor by extending the decision domain.

5 A Simple Case Study

In order to illustrate the usage of the simulator we have chosen to describe a very
simple case study. The scenario consists of a producer of fluids (density 1000 kg/m3)
in Karlshamn, situated in southern Sweden, a customer in Fredrikstad situated in
southern Norway, and no internal distribution nodes. There are two transport opera-
tors available, one using trucks and one using rail. We focus on the transport selection
task, assuming that sufficient amount of products and carriers are available to meet

244 M. Bergkvist et al.

the demands of the customers. Details of the two links that connects the two nodes
and the three different transport carrier types used in the case study are given in Ta-
ble 2 and 3 respectively.

Table 2. The links of the transport chain

 Link A Link B
Nodes Karlshamn, Fredrikstad Karlshamn, Fredrikstad
Mode Road Rail
Length (km) 540 600
Average speed (km/h) 72 14

Table 3. The attributes of the transport carrier types. The cost and environmental performance
for trucks depends on the load [empty, full]. The values for rail are based on proportions of the
size of the average freight train set in Sweden which is 535 tonnes (according to the Swedish
Network for Transport and Environment, see www.ntm.a.se)

 Truck Rail_27 Rail_50

Mode Road Rail Rail

Volume capacity (m3) 30 27 50

Max speed (km/h) 90 90 90

Probability of delay 0 0 0

Cost (€€) [665, 680] 1005 1764

Env. perf.: CO2 (g/km) [754, 891] 143 265

Further assumptions and characteristics of the studied scenario are given below.

– A time horizon 52 weeks is considered.
– Two customer orders are generated per week. The time and the quantity of the

order are randomly generated. The quantities are generated to match an ideal
size of a truck, which is 30 tonnes with a probability of 0.5 or of a rail freight
carriage of either 27 or 50 tonnes, with a probability of 0.25, respectively.

– In the scenario, the effects (costs and environmental performance) of returning
the truck or the rail freight carriage to the producer have been ignored. This has
been ignored in these initial experiments since the effects are highly dependent
on the possibility to take on other loads on the return trip which is not modeled
explicitly.

– It is assumed that the train carriage is transported using diesel engines for 30%
of the distance and electrical engines for 70% of the distance, since only parts of
the railway network are electrified.

– It is assumed that products can be loaded directly into and directly from the dif-
ferent types of vehicles (train and truck) at both the customer and the producer.

 A Hybrid Micro-Simulator 245

We have chosen to study the effect of using kilometer taxation on heavy trucks,
since this governmental control policy is under discussion for implementation in
Sweden. In Figures 2 and 3, the results have been plotted for different levels of kilo-
meter taxation. We study the effect on the total cost for the customer, tax income, and
emitted carbon dioxide. As expected, the cost is increasing for increasing kilometer
taxation. The tax income is not zero for zero kilometer taxation, since a fuel tax is
associated with the diesel of €€ 0.55 which applies both for trucks and diesel trains.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0,00 0,21 0,41 0,62 0,83 1,03 1,24 1,45 1,65 1,86 2,06 2,27 2,48 2,68

kilometer taxation (€€)

(€€
) Internal cost

Taxes

Fig. 2. Internal costs and taxes for different values of kilometer taxation

0

10000

20000

30000

40000

50000

60000

70000

0,00 0,21 0,41 0,62 0,83 1,03 1,24 1,45 1,65 1,86 2,06 2,27 2,48 2,68

kilometer taxation (€€)

ca
rb

on
 d

io
xi

de
 (

kg
)

Fig. 3. Carbon dioxide emissions

246 M. Bergkvist et al.

In Figure 4, the transition from using only trucks and to using only train is illus-
trated. Using only trucks is competitive up to a kilometer taxation of €€ 0.38; and in
order to make only trains competitive a kilometer taxation of €€ 2.0 is required. These
breakpoints will naturally shift if the cost for moving vehicles back to the producer is
fully considered.

0
10
20
30
40
50
60
70
80
90

100

0,
00

0,
21

0,
41

0,
62

0,
83

1,
03

1,
24

1,
45

1,
65

1,
86

2,
06

2,
27

2,
48

2,
68

kilometer taxation (€€)

(%
)

Train 50

Trucks

Train 27

Fig. 4. Percentage of the three carrier types for different kilometer taxations

6 Conclusions and Future Work

We have outlined a hybrid micro-level simulator which is currently being developed. It
models the physical activities as well as decision making activities taking place in trans-
port chains. We will use this simulator in order to study the effects of different govern-
mental control policies. This is done in several steps with increasing complexity:

1. Consider only the transport selection issues (focusing on the decisions made
by the Transport buyer), assuming that sufficient amount of products and car-
riers always are available.

2. Considering also fleet management issues (focusing on the decisions made by
the Transport planners), but still assuming that sufficient amount of products
always are available.

3. Considering also production planning (focusing on the decisions made by the
Production planners), but assuming that transports and production are inde-
pendently planned.

4. Consider cooperation between producers and transporters (focusing on the de-
cisions of the Transport chain coordinator and its interaction with the produc-
tion and transport buyers).

Once step four is completed, different levels of cooperation between actors can be
studied. Hence the effects of governmental control policies can be studied in relation
to the level of cooperation.

A number of characteristic scenarios will be studied using the simulator. In-depth
case studies will be made on a set of transport chains involving FoodTankers and
Karlshamns AB (see below). Validation of the simulation model will be carried out
partly through these case studies, and partly though close cooperation with SIKA (the
Swedish Institute for Transport and Communications Analysis). SIKA has much ex-

 A Hybrid Micro-Simulator 247

perience in the area and access to vast amount of data concerning the Swedish trans-
port and traffic systems. As they also are a potential user of the simulator, they are
participating in the requirements analysis.

Acknowledgements

This work is carried out within the project “Effects of Governmental Control Policies in
Transportation Chains: A Micro-level Study” (see www.ipd.bth.se/stem), which is
mainly financed by VINNOVA, the Swedish Agency for Innovation Systems. Further,
the Swedish Knowledge Foundation is in part supporting this research, via the project
“Integrated Production and Transportation Planning within Food Industry” (see
www.ipd.bth.se/fatplan) Two companies are primarily involved in the case study,
FoodTankers which provides services in the form of tanker transport, and Karlshamns
AB which is one of the world's leading producers of vegetable oils and fats. In addition,
the project is supported by an expert committee including experts from SIKA and the
Swedish Environmental Protection Agency (via the MiSt research programme).

References

1. ASTRA – Assessment of Transport Strategies, Final Report, Deliverable to EU DGTREN,
ASTRA Consortium, Karlsruhe, ASTRA, 2000. (Available at http://www.iww.uni-
karlsruhe.de/ASTRA/ASTRA_Final_Report.pdf)

2. Boerkamps, J., van Binsbergen, A., GoodTrip – A New Approach for Modelling and
Evaluation of Urban Goods Distribution, Urban Transport Conference, 2nd KFB Research
Conference, Lund, Sweden, 7-8 June 1999.

3. Davidsson, P., and Wernstedt, F.: A framework for evaluation of multi-agent system ap-
proaches to logistics network management. Multi-Agent Systems: An Application Science,
Kluwer, 2004.

4. Downing, T.E., Moss, S., Pahl-Wostl, C.: Understanding Climate Policy Using Participa-
tory Agent-Based Social Simulation, In Moss, S. and Davidsson, P. (eds.) Multi-Agent-
Based Simulation, Springer, 2001.

5. Hesselborn P.-O., Swahn, H., Ekonomiska styrmedel i transportpolitiken – Förslag till
utveckling av den svenska modellen, SIKA Dokument 1998:1, Presented at the University
of Aalborg at the conference ”Trafikdage i Aalborg”

6. ME&P – WSP, DfT Integrated Transport and Economic Appraisal, Review of Freight Model-
ling, 2002 (http://www.dft.gov.uk/stellent/groups/dft_transstrat/ docu-

ments/page/dft_transstrat_508058.pdf)
7. Parunak H.V.D., Savit R., Riolo R.L.: Agent-Based Modeling vs. Equation-Based Model-

ing: A Case Study and Users’ Guide. In Sichman, J.S., Conte, R., Gilbert, N. (eds.), Multi-
Agent Systems and Agent-Based Simulation, pp. 10-26, Springer, 1998.

8. Persson J. A. and Davidsson, P.: Integrated optimization and multi-agent technology for
combined production and transportation planning, HICSS-38, Hawaii International Con-
ference on Systems Science, 2005.

9. Swahn, H.: The Swedish model systems for goods transport – SAMGODS. A brief intro-
ductory overview. SAMPLAN Report 2001:1, SIKA, 2001.

10. Tavasszy, L.A., van de Vlist, M., Ruijgrok, M., van de Rest, J.: Scenario-wise analysis of
transport and logistics systems with a SMILE, 8th World Conference on Transport Re-
search, Antwerp, Belgium, 1998.

P. Davidsson et al. (Eds.): MABS 2004, LNAI 3415, pp. 248–264, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Simulation and Analysis of Shared Extended Mind

Tibor Bosse1, Catholijn M. Jonker1, Martijn C. Schut1, and Jan Treur1,2

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands

{tbosse, jonker, schut, treur}@cs.vu.nl
http://www.cs.vu.nl/~{tbosse, jonker, schut, treur}

2 Utrecht University, Department of Philosophy,
Heidelberglaan 8, 3584 CS Utrecht

Abstract Some types of animals exploit patterns created in the environment as
external mental states, thus obtaining an extension of their mind. In the case of
social animals the creation and exploitation of such patterns can be shared,
which supports a form of shared extended mind or collective intelligence. This
paper explores this shared extended mind principle for social animals in more
detail. Its main goal is to analyse and formalise the dynamic properties of the
processes involved, both at the local level (the basic mechanisms) and the
global level (the emerging properties of the whole), and their relationships. A
case study in social ant behaviour in which shared extended mind plays an im-
portant role is used as illustration. For this case simulations are described based
on specifications of local properties, and global properties are specified and
verified.

1 Introduction

In [4], [5], [6], [8], [14], [15] it is described how behaviour is often not only sup-
ported by an internal mind in the sense of internal mental structures and cognitive
processes, but also by processes based on patterns created in the external environment
that serve as external mental structures. Examples of this pattern of behaviour are the
use of ‘to do lists’ and ‘lists of desiderata’. Having written these down externally
(e.g., on paper, in your diary, in your organiser or computer) makes it unnecessary to
have an internal memory about all the items. Thus internal mental processing can be
kept less complex. The only thing to remember is where these lists are available.
Other examples of the use of extended mind are doing mathematics or arithmetic,
where external (symbolic, graphical, material) representations are used; e.g., [3].

Clark and Chalmers [6] point at the similarity between cognitive processes in the
head and some processes involving the external world. This similarity can be used as
an indication that these processes can be considered extended cognitive processes or
extended mind: ‘If, as we confront some task, a part of the world functions as a
process which, were it done in the head, we would have no hesitation in recognizing
as part of the cognitive process, then that part of the world is (so we claim) part of
the cognitive process. Cognitive processes ain't (all) in the head!’ [6], Section 2. (…)

 Simulation and Analysis of Shared Extended Mind 249

‘Of course, one could always try to explain my action in terms of internal processes
and a long series of "inputs" and "actions", but this explanation would be needlessly
complex. If an isomorphic process were going on in the head, we would feel no urge
to characterize it in this cumbersome way.’ [6], Section 3. As the patterns in the
external world have to be created and sensed, interaction with the external world
will be more intensive, compared to the case where internal mental states are created
and exploited.

Especially in the case of social animals external mental states created by one indi-
vidual can be exploited by another individual, or, more generally, the creation, main-
tenance, and exploitation of external mental states are activities in which a number of
individuals can participate (for example, presenting slides on a paper with multiple
authors to an audience). Further examples can be found everywhere, varying from
roads and traffic signs to books or other media, and to many other kinds of cultural
achievements. In this multi-agent case the extended mind principle serves as a way to
build a form of social or collective intelligence that goes beyond (and may even not
require) social intelligence based on direct one-to-one communication. In such cases
the external mental states cross and, in a sense, break up the borders between (the
minds of) the individuals and become shared mental states.

An interesting and currently often studied example of collective intelligence is the
intelligence shown by ant colonies [1], [7]. Indeed, in this case the external world is
exploited as an extended mind by using pheromones. While they walk, ants drop
pheromones on the ground. The same or other ants sense these pheromones and fol-
low the route in the direction of the strongest concentration. Because pheromones
evaporate, such routes may vary over time.

The goal of this paper is to analyse this shared mind principle in more detail, and
to provide a formalisation of its dynamics. These are illustrated by a case study of
social behaviour based on shared extended mind (a simple ant colony). The analysis
of this case study comprises multi-agent simulation based on identified local dynamic
properties, identification of dynamic properties for the overall process, and verifica-
tion of these dynamic properties.

More specifically, Section 2 is a brief introduction of the basic concepts used in
the modelling approach and formalisation. It introduces two modelling languages,
one (the leads to language) used for simulation, and one (the Temporal Trace Lan-
guage TTL) for more complex properties that can be used in analysis. For the former
language a software environment for simulation has been developed, for the latter
language a software environment has been developed that enables automatic checking
of specified properties against given traces. In Section 3 a simulation model is pre-
sented for the ant case study. This simulation model is specified using local proper-
ties: temporal rules that express in a local manner the basic mechanisms of the case.
These rules are specified and formalised in the leads to language introduced in Sec-
tion 2, and are therefore directly executable in the software environment that has been
developed. Some of the simulation outcomes are included in Section 3. Whereas
Section 3 has a local perspective on the basic mechanisms, Section 4 takes the global
perspective of emergent properties of the multi-agent process as a whole. A number
of relevant global dynamic properties are identified and formalised in the language

250 T. Bosse et al.

TTL. It is discussed how these global dynamic properties have been checked against
simulation traces. Moreover, some of the logical relationships between them are dis-
cussed. Section 5 is a discussion of the results.

2 State Properties and Dynamic Properties

Dynamics will be described in the next section as evolution of states over time. The
notion of state as used here is characterised on the basis of an ontology defining a set
of physical and/or mental (state) properties that do or do not hold at a certain point in
time. For example, the internal state property ‘the agent A has pain’, or the external
world state property ‘the environmental temperature is 7º C’, may be expressed in
terms of different ontologies. To formalise state property descriptions, an ontology is
specified as a finite set of sorts, constants within these sorts, and relations and func-
tions over these sorts. The example properties mentioned above then can be defined
by nullary predicates (or proposition symbols) such as pain, or by using n-ary predi-
cates (with n≥1) like has_temperature(environment, 7). For a given ontology Ont,
the propositional language signature consisting of all state ground atoms (or atomic
state properties) based on Ont is denoted by APROP(Ont). The state properties
based on a certain ontology Ont are formalised by the propositions that can be made
(using conjunction, negation, disjunction, implication) from the ground atoms. A state
S is an indication of which atomic state properties are true and which are false, i.e., a
mapping S: APROP(Ont) → {true, false}.

To describe the internal and external dynamics of the agent, explicit reference is
made to time. Dynamic properties can be formulated that relate a state at one point in
time to a state at another point in time. A simple example is the following informally
stated dynamic property for belief creation based on observation:

‘if the agent observes at t1 that it is raining, then the agent will believe that it is
raining’.

To express such dynamic properties, and other, more sophisticated ones, the
Temporal Trace Language TTL is used; cf. [10]. In this language, explicit references
can be made to time points and traces. Here a trace or trajectory over an ontology
Ont is a time-indexed sequence of states over Ont. The sorted predicate logic tempo-
ral trace language TTL is built on atoms referring to, e.g., traces, time and state prop-
erties. For example, ‘in trace γ at time t property p holds’ is formalised by state(γ, t)
|= p. Here |= is a predicate symbol in the language, usually used in infix notation,
which is comparable to the Holds-predicate in situation calculus. Dynamic properties
are expressed by temporal statements built using the usual logical connectives and
quantification (for example, over traces, time and state properties). For example,
consider the following dynamic property:

‘in any trace γ, if at any point in time t1 the agent A observes that it is raining,
then there exists a time point t2 after t1 such that at t2 in the trace the agent
A believes that it is raining’.

 Simulation and Analysis of Shared Extended Mind 251

In formalised TTL form it looks as follows:

∀t1 [state(γ, t1) |= observes(A, itsraining) ⇒
 ∃t2 ≥ t1 state(γ, t2) |= belief(A, itsraining)]

Language abstractions by introducing new (definable) predicates for complex ex-
pressions are possible and supported.

In order to specify simulation models, a simpler temporal language has been de-
veloped, based on TTL. This language (the leads to language) enables one to model
direct temporal dependencies between two state properties in successive states. This
executable format is defined as follows. Let α and β be state properties of the form
‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative real num-
bers. In the leads to language α →→e, f, g, h β, means:

If state property α holds for a certain time interval with duration g,
then after some delay (between e and f) state property β will hold for a certain
time interval of length h.

For a precise definition of the leads to format in terms of the language TTL, see
[11]. A specification of dynamic properties in leads to format has as advantages that it
is executable and that it can often easily be depicted graphically.

3 A Simulation Model of Shared Extended Mind

Dynamic properties can be specified at different aggregation levels, varying from
(local) dynamic properties for the basic mechanisms and (global) properties of a proc-
ess as a whole. This section introduces the local dynamic properties for the basic
mechanisms; they are used to specify a simulation model. The world in which the
ants live is described by a labeled graph as depicted in Figure 1.

Fig. 1. An ants world

Locations are indicated by A, B,…, and edges by E1, E2,… The ants move from
location to location via edges; while passing an edge, pheromones are dropped. The
objective of the ants is to find food and bring this back to their nest. In this example
there is only one nest (at location A) and one food source (at location F).

The example concerns multiple agents (the ants), each of which has input (to
observe) and output (for moving and dropping pheromones) states, and a physical
body which is at certain positions over time, but no internal mental state properties

E9

E7

E10

E8

E5

E4 E3E2

E1

A

B C D

F

 E

 H G
(nest) (food)

E6

252 T. Bosse et al.

(they are assumed to act purely by stimulus-response behaviour). An overview of the
formalisation of the state properties of this single agent conceptualisation is shown in
Table 1. In these local properties, a is a variable that stands for ant, l for location,
e for edge, and i for pheromone level.

Table 1. Formalisation of state properties

 body positions in world:
pheromone level at edge e is i pheromones_at(e, i)
ant a is at location l coming from e is_at_location_from(a, l, e)
ant a is at edge e to l2 coming from location l1 is_at_edge_from_to(a, e, l1, l2)
ant a is carrying food is_carrying_food(a)

 world state properties:

edge e connects location l1 and l2 connected_to_via(l1, l2, e)
location 1 is the nest location nest_location(l)
location 1 is the food location food_location(l)
location l has i neighbours neighbours(l, i)
edge e is most attractive for ant a coming from loca-
tion l

attractive_direction_at(a, l, e)

 input state properties:
ant a observes that it is at location l coming from
edge e

observes(a, is_at_location_from(l, e))

ant a observes that it is at edge e to l2 coming from
location l1

observes(a, is_at_edge_from_to(e, l1, l2))

ant a observes that edge e has pheromone level i observes(a, pheromones_at(e, i))

 output state properties:
ant a initiates action to go to edge e to l2 coming
from location l1

to_be_performed(a, go_to_edge_from_to(e,
l1, l2))

ant a initiates action to go to location l coming from
edge e

to_be_performed(a, go_to_location_from(l,
e))

ant a initiates action to drop pheromones at edge e
coming from location l

to_be_performed(a,
drop_pheromones_at_edge_from(e, l))

ant a initiates action to pick up food to_be_performed(a, pick_up_food)
ant a initiates action to drop food to_be_performed(a, drop_food)

To model the example a number of local dynamic properties are used, of which a
small subset is provided in this section. The complete set of local properties used is
given in Appendix A.

LP5 (Selection of Edge)
This property models (part of) the edge selection mechanism of the ants. It expresses
that, when an ant observes that it is at location l, and there are two edges connected to
that location, then the ant goes to the edge with the highest amount of pheromones.
Formalisation:

observes(a, is_at_location_from(l, e0)) and neighbours(l, 3) and con-
nected_to_via(l, l1, e1) and observes(a, pheromones_at(e1, i1)) and con-
nected_to_via(l, l2, e2) and observes(a, pheromones_at(e2, i2)) and e0 ≠ e1
and e0 ≠ e2 and e1 ≠ e2 and i1 > i2 •→→ to_be_performed(a,
go_to_edge_from_to(e1, l1))

 Simulation and Analysis of Shared Extended Mind 253

LP9 (Dropping of Pheromones)
This property expresses that, if an ant observes that it is at an edge e from a location l
to a location l1, then it will drop pheromones at this edge e. Formalisation:
observes(a, is_at_edge_from_to(e, l, l1)) •→→ to_be_performed(a, drop_
pheromones_at_edge_from(e, l))

is_at_location_from(ant1, 'A', 'E6')
is_at_location_from(ant1, 'A', init)

is_at_location_from(ant1, 'B', 'E1')
is_at_location_from(ant1, 'C', 'E2')
is_at_location_from(ant1, 'D', 'E3')
is_at_location_from(ant1, 'E', 'E4')
is_at_location_from(ant1, 'F', 'E5')
is_at_location_from(ant1, 'F', 'E8')
is_at_location_from(ant1, 'G', 'E6')
is_at_location_from(ant1, 'G', 'E7')
is_at_location_from(ant1, 'H', 'E7')
is_at_location_from(ant1, 'H', 'E8')
is_at_location_from(ant2, 'A', 'E6')
is_at_location_from(ant2, 'A', init)
is_at_location_from(ant2, 'F', 'E8')
is_at_location_from(ant2, 'G', 'E6')
is_at_location_from(ant2, 'G', 'E7')
is_at_location_from(ant2, 'H', 'E7')
is_at_location_from(ant2, 'H', 'E8')
is_at_location_from(ant3, 'A', 'E1')
is_at_location_from(ant3, 'A', init)

is_at_location_from(ant3, 'B', 'E1')
is_at_location_from(ant3, 'B', 'E2')
is_at_location_from(ant3, 'C', 'E2')
is_at_location_from(ant3, 'C', 'E3')
is_at_location_from(ant3, 'D', 'E3')
is_at_location_from(ant3, 'D', 'E4')
is_at_location_from(ant3, 'E', 'E4')
is_at_location_from(ant3, 'E', 'E5')
is_at_location_from(ant3, 'F', 'E5')
is_at_location_from(ant3, 'G', 'E6')
is_at_location_from(ant3, 'H', 'E7')

observes(ant1, pheromones_at('E1', 0.0))
observes(ant1, pheromones_at('E1', 8.73751))

observes(ant1, pheromones_at('E5', 10.0))
observes(ant1, pheromones_at('E5', 15.5433))

observes(ant1, pheromones_at('E6', 0.0))
observes(ant1, pheromones_at('E6', 30.9861))
observes(ant1, pheromones_at('E8', 16.7056))
observes(ant1, pheromones_at('E8', 40.2328))

to_be_performed(ant1, drop_food)
to_be_performed(ant1, pick_up_food)

to_be_performed(ant2, drop_food)
to_be_performed(ant2, pick_up_food)

to_be_performed(ant3, drop_food)
to_be_performed(ant3, pick_up_food)

time 0 10 20 30 40 50 60 70 80

Fig. 2. Simulation trace with three ants, part I

254 T. Bosse et al.

LP13 (Increment of Pheromones)
This property models (part of) the increment of the number of pheromones at an
edge as a result of ants dropping pheromones. It expresses that, if an ant drops
pheromones at edge e, and no other ants drop pheromones at this edge, then the new
number of pheromones at e becomes i*decay+incr. Here, i is the old number of
pheromones, decay is the decay factor, and incr is the amount of pheromones
dropped. Formalisation:

to_be_performed(a1, drop_pheromones_at_edge_from(e, l1)) and ∀l2 not
to_be_performed(a2, drop_pheromones_at_edge_from(e, l2)) and ∀l3 not
to_be_performed(a3, drop_pheromones_at_edge_from(e, l3)) and a1 ≠ a2
and a1 ≠ a3 and a2 ≠ a3 and pheromones_at(e, i) •→→ pheromones_at(e,
i*decay+incr)

LP14 (Collecting of Food)
This property expresses that, if an ant observes that it is at location F (the food
source), then it will pick up some food. Formalisation:

observes(a, is_at_location_from(l, e)) and food_location(l) •→→ to_be_ per-
formed(a, pick_up_food)

LP18 (Decay of Pheromones)
This property expresses that, if the old amount of pheromones at an edge is i, and
there is no ant dropping any pheromones at this edge, then the new amount of phero-
mones at e will be i*decay. Formalisation:

pheromones_at(e, i) and ∀a,l not to_be_performed(a, drop_pheromones_
at_edge_from(e, l)) •→→ pheromones_at(e, i*decay)

A special software environment has been created to enable the simulation of ex-
ecutable models. Based on an input consisting of dynamic properties in leads to for-
mat, the software environment generates simulation traces. Example of such traces
can be seen in Figure 2, 3 and 4. Time is on the horizontal axis, the state properties
are on the vertical axis. A dark box on top of the line indicates that the property is true
during that time period, and a lighter box below the line indicates that the property is
false. This trace is based on all local properties identified. Because of space limita-
tions, in the example depicted in Figure 2 and 3, only three ants are involved. The
trace in Figure 4 shows an example with two ants. However, similar experiments have
been performed with a population of 50 ants. Since the abstract way of modelling
used for the simulation is not computationally expensive, also these simulations re-
quired no more than 30 seconds each.

Figure 2 and 3 are both parts from the same trace. Figure 2 shows the observations
and locations of the ants; Figure 3 shows the performed actions of the ants. As can be
seen in Figure 2 and 3, there are two ants (ant1 and ant2) that start their search for
food immediately, whereas ant3 comes into play a bit later, at time point 3. When
ant1 and ant2 start their search, none of the locations contain any pheromones yet, so
basically they have a random choice where to go. In the current example, ant1 selects
a rather long route to the food source (via locations A-B-C-D-E-F), whilst

 Simulation and Analysis of Shared Extended Mind 255

to_be_performed(ant1, drop_pheromones_at_edge_from('E2', 'B'))
to_be_performed(ant1, drop_pheromones_at_edge_from('E3', 'C'))

to_be_performed(ant1, drop_pheromones_at_edge_from('E4', 'D'))
to_be_performed(ant1, drop_pheromones_at_edge_from('E5', 'E'))
to_be_performed(ant1, drop_pheromones_at_edge_from('E6', 'A'))
to_be_performed(ant1, drop_pheromones_at_edge_from('E6', 'G'))
to_be_performed(ant1, drop_pheromones_at_edge_from('E7', 'G'))
to_be_performed(ant1, drop_pheromones_at_edge_from('E7', 'H'))
to_be_performed(ant1, drop_pheromones_at_edge_from('E8', 'F'))
to_be_performed(ant1, drop_pheromones_at_edge_from('E8', 'H'))

to_be_performed(ant1, go_to_location_from('A', 'E6'))
to_be_performed(ant1, go_to_location_from('B', 'E1'))
to_be_performed(ant1, go_to_location_from('C', 'E2'))

to_be_performed(ant1, go_to_location_from('D', 'E3'))
to_be_performed(ant1, go_to_location_from('E', 'E4'))
to_be_performed(ant1, go_to_location_from('F', 'E5'))
to_be_performed(ant1, go_to_location_from('F', 'E8'))
to_be_performed(ant1, go_to_location_from('G', 'E6'))
to_be_performed(ant1, go_to_location_from('G', 'E7'))
to_be_performed(ant1, go_to_location_from('H', 'E7'))
to_be_performed(ant1, go_to_location_from('H', 'E8'))

to_be_performed(ant1, go_to_edge_from_to('E1', 'A', 'B'))
to_be_performed(ant1, go_to_edge_from_to('E2', 'B', 'C'))
to_be_performed(ant1, go_to_edge_from_to('E3', 'C', 'D'))

to_be_performed(ant1, go_to_edge_from_to('E4', 'D', 'E'))
to_be_performed(ant1, go_to_edge_from_to('E5', 'E', 'F'))
to_be_performed(ant1, go_to_edge_from_to('E6', 'A', 'G'))
to_be_performed(ant1, go_to_edge_from_to('E6', 'G', 'A'))
to_be_performed(ant1, go_to_edge_from_to('E7', 'G', 'H'))
to_be_performed(ant1, go_to_edge_from_to('E7', 'H', 'G'))
to_be_performed(ant1, go_to_edge_from_to('E8', 'F', 'H'))
to_be_performed(ant1, go_to_edge_from_to('E8', 'H', 'F'))

time 0 10 20 30 40 50 60 70 80

Fig. 3. Simulation trace with three ants, part II

ant2 chooses a shorter route (A-G-H-F). Note that, in the current model, a fixed route
preference (via the attractiveness predicate) has been assigned to each ant for the case
there are no pheromones yet. After that, at time point 3, ant3 starts its search for
food. At that moment, there are trails of pheromones leading to both locations B and
G, but these trails contain exactly the same number of pheromones. Thus, ant3 also
has a choice among location B and G, and chooses in this case to go to B. Meanwhile,
at time point 18, ant2 has arrived at the food source (location F). Since it is the first
to discover this location, the only present trail leading back to the nest, is its own
trail. Thus ant2 will return home via its own trail. Next, when ant1 discovers the
food source (at time point 31), it will notice that there is a trail leading back that is
stronger than its own trail (since ant2 has already walked there twice: back and forth,
not too long ago). As a result, it will follow this trail and will keep following ant2
forever. Something similar holds for ant3. The first time that it reaches the food
source, ant3 will still follow its own trail, but some time later (from time point 63) it
will also follow the other two ants. To conclude, eventually the shortest of both routes
is shown to remain, whilst the other route evaporates. Other simulations, in particular

256 T. Bosse et al.

for small ant populations, show that it is important that the decay parameter of the
pheromones is not too high. Otherwise, the trail leading to the nest has evaporated
before the first ant has returned, and all ants get lost.

is_at_location_from(ant1, 'A', 'E1')
is_at_location_from(ant1, 'A', 'E6')
is_at_location_from(ant1, 'B', 'E1')
is_at_location_from(ant1, 'B', 'E2')
is_at_location_from(ant1, 'C', 'E2')
is_at_location_from(ant1, 'C', 'E3')
is_at_location_from(ant1, 'D', 'E3')
is_at_location_from(ant1, 'D', 'E4')
is_at_location_from(ant1, 'E', 'E4')
is_at_location_from(ant1, 'E', 'E5')
is_at_location_from(ant1, 'F', 'E5')
is_at_location_from(ant1, 'F', 'E8')
is_at_location_from(ant1, 'F', init)

is_at_location_from(ant1, 'G', 'E6')
is_at_location_from(ant1, 'G', 'E7')
is_at_location_from(ant1, 'H', 'E7')
is_at_location_from(ant1, 'H', 'E8')
is_at_location_from(ant2, 'A', 'E6')
is_at_location_from(ant2, 'A', init)
is_at_location_from(ant2, 'F', 'E8')
is_at_location_from(ant2, 'G', 'E6')
is_at_location_from(ant2, 'G', 'E7')
is_at_location_from(ant2, 'H', 'E7')
is_at_location_from(ant2, 'H', 'E8')

time 0 20 40 60 80 100 120 140 160 180 200

Fig. 4. Simulation trace with two ants, starting at different locations

 In Figure 4, there is one ant (ant1) that starts its search departing from the food
location and one ant (ant2) that starts slightly later departing from the nest location.
The first ant (ant1) takes the long way home (via locations F-E-D-C-B-A), while the
second ant (ant2) immediately takes the short route (via locations A-G-H-F) to the
food. Figure 4 shows that after some time, both ants follow the short route. Thus also
for this example, we may conclude that eventually the shortest of both routes is
shown to remain, whilst the other route evaporates.

4 Global Properties and Verification

In the previous section dynamic properties at the lowest aggregation level (the local
dynamic properties) were addressed, and simulation based on these properties was
discussed. The current section addresses dynamic properties of a global nature and
their verification. Within these properties, γ is a variable that stands for an arbitrary
trace. First a language abstraction is given:

food_delivered_by(γ, t, a) ≡ ∃l, e [state(γ,t) |= is_at_location_from(a, l, e)) &
state(γ,t) |= nest_location(l) & state(γ,t) |= to_be_performed(a, drop_food)]

 Simulation and Analysis of Shared Extended Mind 257

GP1 Food Delivery Succesfulness
There is at least one ant that brings food back to the nest.

∃t∃a: food_delivered_by(γ, t, a).

GP2 Multiple Delivery
Food is delivered by more than one ant

∃t1, t2 ∃a1, a2 [a1 ≠ a2 & food_delivered_by(γ, t1, a1) &
food_delivered_by(γ, t2, a2)]

Other language abstractions are:

attractive_route_to(γ, a, x) ≡
∃l ∃e ∀t [state(γ, t) |= attractive_direction_at(a, l, e) & state(γ, t) |= con-
nected_ o_via(l, x, e)]

i.e., the attractive route of ant a passes through location x.

reaches_end_attractive_route(γ, t, a) ≡
∃l, e [state(γ, t) |= is_at_location_from(a, l, e) &
attractive_route_to(γ, a, l) & ∀e' state(γ, t) |=/= attractive_direction_at(a, l, e')]

GP3 Reaching End of Attractive Route
Ants reach the end of their attractive route.

∀a ∃t reaches_end_attractive_route(γ, t, a)

GP4 Returning To Nest
Ants get back to the nest from the end of their attractive routes.

∀a ∀t1 ∃e, t2 > t1 ∃l [reaches_end_attractive_route(γ, t1, a) ⇒
state(γ, t2) |= is_at_location_from(a, l, e) & state(γ, t2) |= nest_location(l)]

GP5 From Food To Nest
Ants get back to the nest from locations of food.

∀a, e ∀t1 ∃t2 > t1 ∃l, l’, e'
[state(γ, t1) |= is_at_location_from(a, l, e) & state(γ, t1) |= food_location(l)] ⇒
state(γ, t2) |= is_at_location_from(a, l’, e') & state(γ, t2) |= nest_location(l’)

These and a number of other properties have been formalised and using a checking
software environment have been (automatically) verified in simulation traces. This is
a first manner for verification. A second way of verification is to establish logical
relationships between properties (by mathematical proof). This also has been per-
formed in a number of cases. For example, under a number of assumptions the fol-
lowing relationships hold:

GP4 ⇒ GP5
GP3 & GP4 ⇒ GP2

258 T. Bosse et al.

The assumptions include:

 attractive routes are not branching and are not crossing each other or them-
selves.

 at least two ants exist for which the attractive routes end at a food location and
are short enough compared to the evaporation rate of pheromones to return.

 GP5 is only valid in the infinite future, since food sources are not depleted. In
practice, the simulations stop, invalidating GP5 for the ants that are still on their
way to the nest.

Furthermore, an additional premise of Temporal Completion, see [9], is needed.
For example, any of the following trivial (non-intended) world situations would dis-
turb the ants: an ant comes to a location that contains a pheromone that is there with-
out any reason (no ant dropped it), or on its way back an ant comes to a location
without a pheromone (the pheromone immediately disappeared). It is clear that the
above properties can only be proven under the assumption that nothing unexpected
will happen. To put it differently, proofs can be given under the assumption that the
set of local properties determines the whole range of events. This assumption has
been added as a premise to establish the logical relationships between the properties.

5 Discussion

Clark and Chalmers [6], Section 5, provide four criteria for an extended mind: (1) the
external information is a constant in the agent's life - when the information is rele-
vant, he will rarely take action without consulting it; (2) the external information is
directly available; (3) the agent endorses retrieved external information; (4) the exter-
nal information has been endorsed at some point in the past, and is there as a conse-
quence of this endorsement. How do these criteria apply to the ants case? First, in-
deed an ant always senses the pheromone before choosing a direction. Second, at
each location the pheromone is immediately accessible for sensing. Third, the deci-
sion for the direction is indeed always based on the pheromone. Finally, the external
information is endorsed in the past: the pheromone was dropped at the direction from
whence one or more ants traveled.

The extended mind perspective introduces an additional, cognitive ontology to de-
scribe properties of the physical world, which essentially is an antireductionist step,
providing a more abstract and better manageable, higher level conceptualisation. In
[12] a number of arguments can be found of why such antireductionist steps can be
useful in explanation and theory development. Indeed, following the extended mind
perspective a high-level conceptualisation was obtained. This high-level conceptuali-
sation could be formalised and analysed in a logical manner. The formalisation en-
ables simulation and automated checking of dynamic properties of traces or sets of
traces, and allows one to logically relate dynamic properties of different aggregation
levels to each other. All this would have been more difficult in the case of an algo-
rithmic or physically-oriented modelling perspective, involving, for example, differ-
ential equations and gradients of concentrations.

 Simulation and Analysis of Shared Extended Mind 259

As an extension to the current paper, in [2] the notion of representational content
is analysed for mental processes based on the shared extended mind principle. The
analysis of notions of representational content of internal mental state properties is
well-known in the literature on Cognitive Science and Philosophy of Mind. In this
literature a relevant internal mental state property m is taken and a representation
relation is identified that indicates in which way m relates to properties in the external
world or the agent’s interaction with the external world; cf. [13, pp. 184-210]. For the
case of extended mind an extension of the analysis of notions of representational
content to external state properties is needed. Moreover, for the case of external men-
tal state properties that are shared, a notion of collective representational content is
needed (in contrast to a notion of representational content for a single agent).

With respect to the simulation, work is currently in progress to replace the behav-
iour prescribed by attractiveness of a route by random route selection. In addition,
experiments with food sources at different distances from the nest will be undertaken
to determine the relation between evaporation rate and ants finding their way home.
Therefore, these food sources will be made depletive. Also, the effect of using differ-
ent types of pheromones will be studied. Moreover, an advanced visualisation envi-
ronment is currently developed to make the simulation traces more readable.

Finally, work is in progress to addresses the question in how far a process involv-
ing multiple agents that shows some form of collective intelligence can be interpreted
as a single agent. Like in the current paper, this question will be answered by formal
analysis. It will be explored for example processes how they can be conceptualised
and formalised in two different manners: from a single agent or from a multi-agent
perspective. Moreover, an ontological mapping will be formally defined between the
two formalisations, in order to show how collective behaviour can be interpreted as
single agent behaviour.

Acknowledgements

The authors are grateful to Lourens van der Meij for his contribution to the develop-
ment of the software environment.

References

1. Bonabeau, J. Dorigo, M. and Theraulaz, G. (1999). Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York, 1999.

2. Bosse, T., Jonker, C.M., Schut, M.C., and Treur, J. (2004). Modelling Shared Extended
Mind and Collective Representational Content. Proceedings of the 24th International Con-
ference on Innovative Techniques and Applications of Artificial Intelligence. Lecture
Notes in AI, Springer Verlag. To appear.

3. Bosse, T., Jonker, C.M., and Treur, J. (2002). Simulation and analysis of controlled multi-
representational reasoning processes. Proc. of the Fifth International Conference on Cog-
nitive Modelling, ICCM'03. Universitats-Verlag Bamberg, 2003, pp. 27-32.

260 T. Bosse et al.

4. Clark, A. (1997). Being There: Putting Brain, Body and World Together Again. MIT
Press, 1997.

5. Clark, A. (2001). Reasons, Robots and the Extended Mind. In: Mind & Language, vol. 16,
2001, pp. 121-145.

6. Clark, A., and Chalmers, D. (1998). The Extended Mind. In: Analysis, vol. 58, 1998,
 pp. 7-19.

7. Deneubourg, J.L., Aron S, Goss S., Pasteels J. M. and Duerinck G. (1986). Random Be-
havior, Amplification Processes and Number of Participants: How They Contribute to the
Foraging Properties of Ants. In: Evolution, Games and Learning: Models for Adaptation
in Machines and Nature, North Holland, Amsterdam, 1986, pp. 176-186.

8. Dennett, D.C. (1996). Kinds of Mind: Towards an Understanding of Consciousness, New
York: Basic Books.

9. Engelfriet, J. Jonker, C.M., and Treur, J. (2002). Compositional verification of Multi-
Agent Systems in Temporal Multi-Epistemic Logic. Journal of Logic, Language and In-
formation, vol. 11, 2002, pp. 195-225.

10. Jonker, C.M., and Treur, J., Compositional Verification of Multi-Agent Systems: a Formal
Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative
Information Systems, vol. 11, 2002, pp. 51-92.

11. Jonker, C.M., Treur, J., and Wijngaards, W.C.A., A Temporal Modelling Environment for
Internally Grounded Beliefs, Desires and Intentions. Cognitive Systems Research Journal,
vol. 4(3), 2003, pp. 191-210.

12. Jonker, C.M., Treur, J., and Wijngaards, W.C.A., Reductionist and Antireductionist Per-
spectives on Dynamics. Philosophical Psychology Journal, vol. 15, 2002, pp. 381-409.

13. Kim, J. (1996). Philosophy of Mind. Westview Press
14. Kirsh, D. & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cogni-

tive Science, vol. 18, 1994, pp. 513-49.
15. Menary, R. (ed.) (2004). The Extended Mind, Papers presented at the Conference The Ex-

tended Mind - The Very Idea: Philosophical Perspectives on Situated and Embodied Cog-
nition, University of Hertfordshire, 2001. John Benjamins, 2004, to appear.

Appendix A - The Simulation Model

LP1 (Initialisation of Pheromones)
This property expresses that at the start of the simulation, at all locations there are 0
pheromones. Formalisation:

start •→→ pheromones_at(E1, 0.0) and pheromones_at(E2, 0.0) and
pheromones_at(E3, 0.0) and pheromones_at(E4, 0.0) and phero-
mones_at(E5, 0.0) and pheromones_at(E6, 0.0) and pheromones_at(E7,
0.0) and pheromones_at(E8, 0.0) and pheromones_at(E9, 0.0) and
pheromones_at(E10, 0.0)

LP2 (Initialisation of Ants)
This property expresses that at the start of the simulation, all ants are at location A.
Formalisation:

start •→→ is_at_location_from(ant1, A, init) and is_at_location_from(ant2,
A, init) and is_at_location_from(ant3, A, init)

 Simulation and Analysis of Shared Extended Mind 261

LP3 (Initialisation of World)
These two properties model the ants world. The first property expresses which loca-
tions are connected to each other, and via which edges they are connected. The sec-
ond property expresses for each location how many neighbours it has. Formalisation:

start •→→ connected_to_via(A, B, l1) and … and connected_to_via(D, H, l10)
start •→→ neighbours(A, 2) and … and neighbours(H, 3)

LP4 (Initialisation of Attractive Directions)
This property expresses for each ant and each location, which edge is most attractive
for the ant at if it arrives at that location. This criterion can be used in case an ant
arrives at a location where there are two edges with an equal amount of pheromones.
Formalisation:

start •→→ attractive_direction_at(ant1, A, E1) and … and attractive_direction_
at(ant3, E, E5)

LP5 (Selection of Edge)
These properties model the edge selection mechanism of the ants. For example, the
first property expresses that, when an ant observes that it is at location A, and both
edges connected to location A have the same number of pheromones, then the ant
goes to its attractive direction. Formalisation:

observes(a, is_at_location_from(A, e0)) and attractive_direction_at(a, A,
e1) and connected_to_via(A, l1, e1) and observes(a, pheromones_at(e1,
i1)) and connected_to_via(A, l2, e2) and observes(a, pheromones_at(e2,
i2)) and e1 \= e2 and i1 = i2 •→→ to_be_performed(a, go_to_
edge_from_to(e1, A, l1))

observes(a, is_at_location_from(A, e0)) and connected_to_via(A, l1, e1)
and observes(a, pheromones_at(e1, i1)) and connected_to_via(A, l2, e2)
and observes(a, pheromones_at(e2, i2)) and i1 > i2 •→→ to_be_per-
formed(a, go_to_edge_from_to(e1, A, l1))

observes(a, is_at_location_from(F, e0)) and connected_to_via(F, l1, e1)
and observes(a, pheromones_at(e1, i1)) and connected_to_via(F, l2, e2)
and observes(a, pheromones_at(e2, i2)) and i1 > i2 •→→ to_be_per-
formed(a, go_to_edge_from_to(e1, F, l1))

observes(a, is_at_location_from(l, e0)) and neighbours(l, 2) and con-
nected_to_via(l, l1, e1) and e0 ≠ e1 and l ≠ A and l ≠ F •→→
to_be_performed(a, go_to_edge_from_to(e1, l, l1))

observes(a, is_at_location_from(l, e0)) and attractive_direction_at(a, l, e1)
and neighbours(l, 3) and connected_to_via(l, l1, e1) and observes(a,
pheromones_at(e1, 0.0)) and connected_to_via(l, l2, e2) and observes(a,
pheromones_at(e2, 0.0)) and e0 ≠ e1 and e0 ≠ e2 and e1 ≠ e2 •→→
to_be_performed(a, go_to_edge_from_to(e1, l, l1))

observes(a, is_at_location_from(l, e0)) and neighbours(l, 3) and con-
nected_to_via(l, l1, e1) and observes(a, pheromones_at(e1, i1)) and con-

262 T. Bosse et al.

nected_to_via(l, l2, e2) and observes(a, pheromones_at(e2, i2)) and e0 ≠
e1 and e0 ≠ e2 and e1 ≠ e2 and i1 > i2 •→→ to_be_performed(a,
go_to_edge_from_to(e1, l1))

LP6 (Arrival at Edge)
This property expresses that, if an ant goes to an edge e from a location l to a location
l1, then later the ant will be at this edge e. Formalisation:

to_be_performed(a, go_to_edge_from_to(e, l, l1)) •→→ is_at_edge_from_
to(a, e, l, l1)

LP7 (Observation of Edge)
This property expresses that, if an ant is at a certain edge e, going from a location l to
a location l1, then it will observe this. Formalisation:

is_at_edge_from_to(a, e, l, l1) •→→ observes(a, is_at_edge_from_to(e, l, l1))

LP8 (Movement to Location)
This property expresses that, if an ant observes that it is at an edge e from a location l
to a location l1, then it will go to location l1. Formalisation:

observes(a, is_at_edge_from_to(e, l, l1)) •→→ to_be_performed(a, go_to_
location_from(l1, e))

LP9 (Dropping of Pheromones)
This property expresses that, if an ant observes that it is at an edge e from a location l
to a location l1, then it will drop pheromones at this edge e. Formalisation:

observes(a, is_at_edge_from_to(e, l, l1)) •→→ to_be_performed(a, drop_
pheromones_at_edge_from(e, l))

LP10 (Arrival at Location)
This property expresses that, if an ant goes to a location l from an edge e, then later it
will be at this location l. Formalisation:

to_be_performed(a, go_to_location_from(l, e)) •→→ is_at_location_from(a, l, e)

LP11 (Observation of Location)
This property expresses that, if an ant is at a certain location l, then it will observe
this. Formalisation:

is_at_location_from(a, l, e) •→→ observes(a, is_at_location_from(l, e))

LP12 (Observation of Pheromones)
This property expresses that, if an ant is at a certain location l, then it will observe
the number of pheromones present at all edges that are connected to location l.
Formalisation:

is_at_location_from(a, l, e0) and connected_to_via(l, l1, e1) and phero-
mones_at(e1, i) •→→ observes(a, pheromones_at(e1, i))

LP13 (Increment of Pheromones)
These properties model the increment of the number of pheromones at an edge as a
result of ants dropping pheromones. For example, the first property expresses that, if

 Simulation and Analysis of Shared Extended Mind 263

an ant drops pheromones at edge e, and no other ants drop pheromones at this edge,
then the new number of pheromones at e becomes i*decay+incr. Here, i is the old
number of pheromones, decay is the decay factor, and incr is the amount of phero-
mones dropped. Formalisation:

to_be_performed(a1, drop_pheromones_at_edge_from(e, l1)) and ∀l2 not
to_be_performed(a2, drop_pheromones_at_edge_from(e, l2)) and ∀l3 not
to_be_performed(a3, drop_pheromones_at_edge_from(e, l3)) and a1 ≠ a2
and a1 ≠ a3 and a2 ≠ a3 and pheromones_at(e, i) •→→ pheromones_at(e,
i*decay+incr)

to_be_performed(a1, drop_pheromones_at_edge_from(e, l1)) and to_be_
performed(a2, drop_pheromones_at_edge_from(e, l2)) and ∀l3 not to_be_
performed(a3, drop_pheromones_at_edge_from(e, l3)) and a1 ≠ a2 and
a1 ≠ a3 and a2 ≠ a3 and pheromones_at(e, i) •→→ pheromones_at(e,
i*decay+incr+incr)

to_be_performed(a1, drop_pheromones_at_edge_from(e, l1)) and to_be_
performed(a2, drop_pheromones_at_edge_from(e, l2)) and to_be_per-
formed(a3, drop_pheromones_at_edge_from(e, l3)) and a1 ≠ a2 and a1 ≠
a3 and a2 ≠ a3 and pheromones_at(e, i) •→→ pheromones_at(e, i*decay +
incr+incr+incr)

LP14 (Collecting of Food)
This property expresses that, if an ant observes that it is at location F (the food
source), then it will pick up some food. Formalisation:

observes(a, is_at_location_from(l, e)) and food_location(l) •→→ to_be_per-
formed(a, pick_up_food)

LP15 (Carrying of Food)
This property expresses that, if an ant picks up food, then as a result it will be carry-
ing food. Formalisation:

to_be_performed(a, pick_up_food) •→→ is_carrying_food(a)

LP16 (Dropping of Food)
This property expresses that, if an ant is carrying food, and observes that it is at loca-
tion A (the nest), then the ant will drop the food. Formalisation:

observes(a, is_at_location_from(l, e)) and nest_location(l) and is_carrying_
food(a) •→→ to_be_performed(a, drop_food)

LP17 (Persistence of Food)
This property expresses that, as long as an ant that is carrying food does not drop the
food, it will keep on carrying it. Formalisation:

is_carrying_food(a) and not to_be_performed(a, drop_food) •→→ is_carrying_
food(a)

264 T. Bosse et al.

LP18 (Decay of Pheromones)
This property expresses that, if the old amount of pheromones at an edge is i, and
there is no ant dropping any pheromones at this edge, then the new amount of phero-
mones at e will be i*decay. Formalisation:

pheromones_at(e, i) and ∀a,l not to_be_performed(a, drop_pheromones_
at_edge_from(e, l)) •→→ pheromones_at(e, i*decay)

Author Index

Berbers, Yolande 37
Bergkvist, Markus 236
Bonneaud, Stéphane 78
Bosse, Tibor 248

Calvi, Gianguglielmo 49
Chee, Brant 1

Davidsson, Paul 236
Drogoul, Alexis 78

Edmonds, Bruce 130
Elliston, Lisa 225
Esteva, Marc 1

Fujita, Hironori 159

Gasser, Les 1

Hales, David 89
Helleboogh, Alexander 37
Henein, Colin M. 173
Hinde, Ray 225
Holvoet, Tom 37
Hood, Cynthia S. 99

Ishida, Toru 78
Izumi, Kiyoshi 145, 185

Jonker, Catholijn M. 114, 248

Kakugawa, Kelvin 1
Kurumatani, Koichi 145, 185

Lees, Michael 25

Logan, Brian 25

Minson, Rob 25
Miyashita, Kazuo 195
Moss, Scott 130

North, Michael J. 99

Oguara, Ton 25

Persson, Jan A. 236
Pezzulo, Giovanni 49
Premo, L.S. 210
Pritchett, Amy R. 65

Ramstedt, Linda 236

Schut, Martijn C. 114, 248
Shah, Anuj P. 65

Takadama, Keiki 159
Theodoropoulos, Georgios 25
Torii, Daisuke 78
Treur, Jan 114, 248
Turner, Stephen John 11

Wang, Fang 11
Wang, Lihua 11
Weyns, Danny 37
White, Tony 173

Yainshet, Alasebu 225
Yamashita, Tomohisa 145, 185
Yolum, Pınar 114

View publication statsView publication stats

https://www.researchgate.net/publication/221056024

	Front matter
	Chapter 1
	Introduction
	MACE Overview and Design Philosophy
	Understanding Simulation

	Managing Uncertainty in Scalable MAS Simulations
	Progressive Scaling
	Experiences and Discussion
	Grid Rationale and Experiments
	Implementing Agents as "Pure" Distributed Objects

	Conclusions

	Chapter 2
	Introduction
	Multi-agent Systems and the HLA
	Integration of Agents into Distributed Simulations
	Causality and Message Ordering
	How Agents Communicate Using HLA
	The Mailbox Agent
	Synchronization Between Federates and Agents

	The Prototype System
	Experimental Results
	Conclusions

	Chapter 3
	Introduction
	Modelling a MAS
	Distributing the Shared State
	CLPs
	Ports
	Load Balancing

	RelatedWork
	Conclusion and FurtherWork
	Acknowledgements
	References

	Chapter 4
	Introduction and Problem Statement
	Semantic Duration Models
	Time Management Transparency
	Aspect-Oriented Programming
	The Prototype

	Time Management Applied in the Packet-World
	The Packet-World
	Timing Requirements for the Simulation
	Defining a Semantic Duration Model
	Integrating Timing Management Code

	Conclusions and Future Work

	Chapter 5
	Introduction
	Desiderata and Theoretical Assumptions
	The Framework
	A Society of Functions
	Simulation Models in AKIRA
	AKIRA at Work

	Conclusions
	Acknowledgements
	References

	Chapter 6
	Introduction
	Design Issues in Socio-technical Systems
	The Work-Environment
	The Agents
	Engineering Issues

	Work-Environment Analysis
	Models of the Work-Environment
	Environment-Aware Agent Generation
	Other Architectural Issues
	Summary of WEA Framework

	An Illustrative Example in Air Traffic Control
	Physical Environment
	Context-Process Structure
	Models of Agents
	Simulation and Analysis

	Conclusion
	References

	Chapter 7
	Introduction
	Background
	Q^1
	CORMAS2

	Multi-layer Socio-environmental Simulation
	Architecture
	Connection Control

	Connecting Q and CORMAS
	Q and CORMAS
	Connection Control Module

	Fire Fighter Domain
	Problem
	Scenario
	Result

	Conclusion
	Reference s

	Chapter 8
	Introduction
	Some Previous Tag Models
	Mutation in the Models

	Hypothesis and Theory
	Testing the Hypothesis
	The Prisoner’s Dilemma
	The TagWorld Model

	Conclusions
	Acknowledgements
	References

	Chapter 9
	Introduction
	Related Work
	The ClusterMod Framework
	Design Goals
	Software Architecture
	Implementation
	Verification

	Myricom Myrinet, Ethernet and the Maui Scheduler
	Users in ClusterMod
	Software Development Methodology
	Initial ClusterMod Results
	Conclusions and Future Work
	References

	Chapter 10
	Introduction
	Meetings Formalized
	Organizational Structure
	Organizational Behavior

	Simulating a Meeting Based on the Generic Meeting Protocol
	An Empirical Trace of a Real Meeting
	Formal Analysis of Simulated Trace and Empirical Trace
	Analysis of the Simulated Meeting
	Analysis of the Empirical Data of the Real Meeting

	Refined Protocol and Simulation
	Discussion
	References

	Chapter 11
	Introduction
	Why KIDS Rather than KISS?
	Distinguishing Intended Theories and Implemented Models
	Building Upwards from Descriptively Adequate Models
	Exploring Variations of a Model of Domestic Water Demand
	Discussion – Simplification and Relevance
	Conclusion
	Acknowledgements
	References

	Chapter 12
	Introduction
	Framework of Experiments
	Minority Game as a Model of Financial Markets
	Learning Types

	Experiment: Match Against Standard Type
	Setting of the Simulation
	Simulation Results

	Conclusions

	Chapter 13
	Introduction
	Bargaining Game
	Modeling Agents
	Simulation
	Simulation Design
	Simulation Results

	Discussion
	Q-Learning Versus Sarsa
	Static Versus Dynamic Environments: Short Range of ϵ
	Static Versus Dynamic Environments: Long Range of ϵ
	Toward Guidelines for Modeling Agents

	Conclusions
	Acknowledgements
	References

	Chapter 14
	Introduction
	Existing Models of Crowd Behaviour

	Starting with an Existing Model: Kirchner
	Floor Field Modelling
	Update Rules

	Modelling the Application of Force
	Aspects of Force
	Adding Pushing to Kirchner’s Model
	Controlling Crowd Density

	Results
	Effect of Varying k_n
	Effect of Adding Force Rules

	Discussion
	Conclusion
	References

	Chapter 15
	Introduction
	Group Dynamics
	Unilateral Choice
	Mutual Choice
	Group Split
	Re-offering
	Dilemma Game

	Simulation
	Establishment of Cooperation
	Average Payoff

	Discussion
	Establishment of Cooperation
	Comparison of Average Payoffs

	Conclusions

	Chapter 16
	Introduction
	Amusement Park Problem
	Social Coordination in an Amusement Park

	Ubiquitous Scheduling
	Demand Profile
	Resource Allocation
	Demand Adjustment

	Simulation System
	Agent Model
	Implementation

	Preliminary Experimental Results
	Problem Definitions
	Experimental Results

	Conclusion and Future Work

	Chapter 17
	Introduction
	The Study of Altruistic Food Sharing and Hominid Evolution
	Agent-Based Modeling Provides a New Method to Investigate an Old Question

	A New Conceptual Model of Hominid Food Sharing
	East African Paleoecology
	Expanding Evolutionary Explanations of Food Sharing
	Previous Research on Patchiness and Prosociality

	SHARE: An Agent-Based Model of Hominid Food Sharing
	The Physical Environment: Food Resources
	The Social Environment: Hominid Foragers
	Variable Settings and Parameter Sweeps
	Data Collection

	Results
	Conclusion
	Acknowledgements
	References

	Chapter 18
	Introduction
	Exotic Incursion Management Model
	Disease Characteristics
	Farm System
	Incursion Response and Management
	The Regional Economy

	Karnal Bunt Case Study
	Incursion Scenarios
	Contractor Based Incursion
	Fertilizer Based Incursion
	Incentives to Self Report

	Conclusions and Further Work

	Chapter 19
	Introduction
	Background
	Existing Simulation Models for Transport Systems
	Multi Agent Based Simulation for Policy Making

	The Problem Domain
	The Simulator
	Physical Simulator
	Decision Making Simulator

	A Simple Case Study
	Conclusions and Future Work
	Acknowledgements
	References

	Chapter 20
	Introduction
	State Properties and Dynamic Properties
	A Simulation Model of Shared Extended Mind
	Global Properties and Verification
	Discussion
	Acknowledgements
	References
	Appendix A - The Simulation Model

	Back matter

