
Building Computer Models from Small Pieces

Ken Kahn

Oxford University

kenneth.kahn@oucs.ox.ac.uk

Keywords: micro-behaviors, simulation construction kits,

Behavior Composer, NetLogo

Abstract

Computer models can be built by assembling code

fragments. Here we describe the BehaviourComposer,

which supports browsing for small modular program pieces

called micro-behaviors and their assembly and execution.

Using a web browser, the model builder finds and

customizes micro-behaviors and associates them with

prototypical agents. These micro-behaviors run as

independent processes. Different combinations of micro-

behaviors produce the desired behavior of each element of

the model.

One of the challenges is creating a runtime environment

in which several un-ordered micro-behaviors can run

together without conflict or the need to explicitly interface

them. Another challenge is creating and organizing libraries

of micro-behaviors.

1. INTRODUCTION

The Constructing2Learn Project at Oxford University

[Kahn 2007b] is building a modeling tool called the

BehaviourComposer. The BehaviourComposer has a web

browser component for browsing web sites of code

fragments called micro-behaviors. These are bits of code

that were carefully designed to be easily understood,

composed, and parameterized. The BehaviourComposer

user attaches these micro-behaviors to prototype agents. In

order to create models containing many instances of a

prototype agent, a micro-behavior for making copies is

added to the prototype. When the user wishes to run the

current model, the BehaviourComposer assembles a

complete program and launches it. The current prototype

assembles NetLogo [Wilensky 1999] programs, but the

framework could be adapted for other modeling systems

such as Repast [North et al 2006].

 The current prototype uses a library of generic micro-

behaviors organized into categories for initial position and

state of model elements, movement, appearance, attribute

maintenance, reproduction, death, and social networks. In

addition there are micro-behaviors for creating graphs,

histograms, sliders, buttons, and event logs. We are

currently taking prototypical published models in zoology

and social sciences and re-implementing them as collections

of micro-behaviors. For example, we re-implemented a

relative agreement model [Deffuant et al 2002] as a

collection of seven micro-behaviors and re-implemented a

model of vaccinations [Scherer and McLean 2002] using ten

micro-behaviors.

A major technical challenge is to design and build

micro-behaviors so that they can be combined without

concern for their order of execution. Each micro-behavior is

modeled as an autonomous process. A fish in a school, for

example, may be concurrently running processes for

avoiding fish that are too close, for aligning its orientation

with neighboring fish, for staying close to neighboring fish,

and for heading in a desired direction, as well as processes

for modeling noise. These processes combine to generate

the desired agent behavior. Conflicts between these

processes are avoided by careful use of scheduling routines

and support for simultaneous updating of attributes (we

added both to NetLogo).

 Micro-behaviors should not be confused with the

software engineering concept of modules, components, or

other programming language abstractions such as packages,

classes, methods, or procedures. These modular constructs

have interfaces that must be carefully matched in order to

combine them. They represent program fragments that run

only if another fragment invokes them. Micro-behaviors run

as independent processes or threads. They are designed to

run simultaneously with a minimum (and in some cases

zero) need to coordinate their execution order and

interactions. Micro-behaviors resemble the structured

processes in the LO programming language [Andreoli and

Pareschi 1990].

 The primary focus in building the BehaviourComposer

is in educational tools for multi-agent model building.

Students can quickly build, run, and analyze models without

first mastering a programming language. We are currently

exploring whether the highly modular model construction

method of the BehaviourComposer will also be well-suited

for constructing models for research purposes. A novel

economic model of network formation is being constructed

using the BehaviourComposer for this purpose.

2. PARAMETERISABLE AND COMPOSABLE

MICRO-BEHAVIORS

The building blocks of models constructed with the

BehaviourComposer are micro-behaviors: small, coherent,

and independent program fragments.

2.1. A Typical Micro-behavior

Each micro-behavior is presented as a web page which

can be accessed via links, tags, or a search engine just like

any other web page. A section of the page is the program

fragment itself. A button is automatically generated when

the page is loaded in the BehaviourComposer’s web

component. When the button is pushed the code fragment is

added to the current prototype agent. By convention, the rest

of the page includes sections that

• describe the behavior

• describe how to edit the micro-behavior to produce

variants

• provide links to related micro-behaviors

• describe how the program fragment implements the

desired behavior

• a history of edits to the micro-behavior

Some pages also have references to published papers

and links to sample models using the behavior. The addition

of formal specifications of micro-behaviors is a topic of

future research.

In the Figure 1 we see the BehaviourComposer

application displaying the model composition window and a

web page for a micro-behavior for moving towards others.

The code itself is a NetLogo program extended with a

scheduling primitive, do-every, described below, and an

iteration primitive all-who-are. The following sections

describe the NetLogo extensions for scheduling and attribute

maintenance (my-desired-direction in this example).

Figure 1 – Typical BehaviourComposer Screen Shot

2.2. Scheduling Events

Code fragments defining micro-behaviors consist of

ordinary NetLogo code enhanced with a scheduler. Our

NetLogo extensions maintain a schedule for each agent. The

schedule is specified using these primitives where actions

can be any NetLogo code:

• do-at-setup <actions> performs actions when the

simulation is initialized

• do-now <actions> performs actions immediately

• do-at <time> <actions> performs actions when the

clock has reached time

• do-after <interval> <actions> performs actions

after interval time units

• do-every <interval> <actions> performs actions

now and every interval time units

• do-with-probability <odds> <actions> performs

actions with probability odds

• do-repeatedly <count> <actions> performs actions

count times (if count is a non-integer then the

actions may be performed an additional time where

the odds are the fractional part of count)

• do-if <condition> <actions> performs actions if

condition is true
• when <condition> <actions> performs actions once

as soon as condition holds

• whenever <condition> <actions> performs actions

whenever condition holds

In some cases it is possible to observe an animation of

the execution of a model or the graphing of some aspects of

the state of the model in real time. The units for the

scheduler are optionally interpreted as seconds, and if the

simulation is running faster than real time, the system slows

down in order to reproduce a smooth and temporally

accurate playback. If the user runs the simulation “un-

clocked” it proceeds as normal, but there will not be a

constant ratio between simulation time and real-time due to

varying or excessive computational demands.

2.3. Creating and Maintaining Attributes

Most programming languages, including NetLogo,

provide a means of creating object attributes and performing

immediate updates of the values of attributes. Immediate

updates of attributes introduce execution ordering

dependencies. Consider, for example, two agents that update

their position when they are within a specified distance. If

one agent updates its position, then the other will see the

updated position and not the position the other agent had at

the start of this round of activity. While the agents are

conceptually running simultaneously, the state of the model

will depend upon the order in which the simulation engine

runs the agents. This is often undesirable.

The BehaviourComposer is based upon the premise that

models should ideally be defined by unordered collections

of micro-behaviors. To enable this, simultaneous updates

are supported. This enables the model builder to express the

requirement that all updates of state should take place as if

they were performed at the same instant.

NetLogo, like many programming languages, expects

agent attributes (“breed variables” in NetLogo parlance) to

be declared before use. The BehaviourComposer automates

this so that any attribute whose name begins with “my-”

becomes a breed variable without the need for a declaration.

When an attribute needs to be both read and updated then

the current and next value can be kept separate by using the

“my-next-” form. After all actions scheduled for time t have

completed, all attributes whose name begins with “my-” are

set to the current value of the “my-next-” version of the

attribute. Predicates in conditionals can refer to the current

state of an attribute by using the “my-” version of a variable,

while code that updates a variable can use the “my-next-”

version. In this way, execution order dependencies are

eliminated.

For example, agents with the following simultaneous

update micro-behavior will at time t+1 move to the left if

that location was unoccupied at time t.
do-every delta-t

 let step-to-the-left my-x - 1

 if not

 any? all-individuals with

 [my-x = step-to-the-left]

 [set my-next-x step-to-the-left]

In contrast, agents with the immediate update version of

this micro-behavior will at time t+1 move to the left if that

location was unoccupied at time t by agents yet to run and

unoccupied at time t+1 by those agents that have already

run. It differs from the simultaneous update version in that

the last line is
 [set my-x step-to-the-left]

If each agent in a line ran the simultaneous update

micro-behavior only the leftmost agent would move at time

0, then the two leftmost agents at time 1, and so on. If they

ran the immediate update micro-behavior then the same

sequence of events may happen, or they may all move left:

many other possible outcomes can result from different

execution orders. Immediate updates are simplest to

implement and are the most common in modeling. We

believe their idiosyncratic semantics (a mixture of time

states) makes them less desirable, in general, than the simple

semantics of simultaneous updates. The choice between the

two kinds of update can be made by the micro-behavior

programmers on a case-by-case basis.

3. MODEL CONSTRUCTION

Here we illustrate a typical scenario in which a model is

constructed using the BehaviourComposer. The model is

based upon [Couzin et al 2005] which explores collective

decision making in animal groups. A school of fish is

modeled using micro-behaviors for avoidance, attraction,

alignment, noise, informed direction, and maximum turning.

Some of the scientific questions explored with this model

are how the school behaves if a small fraction of the

individuals tend to move in an “informed” direction. Will

the entire school follow? What if there is more than one

informed direction?

Using the BehaviourComposer one can browse to a

page with links to about a dozen micro-behaviors specially

constructed for these kinds of models. A good model

construction heuristic is to build and test successively more

complex models. Students can begin by modeling a single

fish moving in a straight line at a constant velocity. We can

provide (detailed or very open-ended) instructions to

students to browse to a page with the UPDATE-POSITION

micro-behavior whose code fragment is:
do-every delta-t

 go-forward 1 * delta-t

Following the advice on the page students replace the ‘1’

with the desired speed. One could replace it with the

variable name of a slider to be able to easily change the

speed during testing. Students also add and customize the

SET-SHAPE micro-behavior so our object looks like a fish.

Students now execute the model by clicking on the

‘Run My Model’ button. A complete NetLogo program is

assembled, NetLogo is launched, and, by clicking on the

‘Go’ button, they see a fish move upwards.

Next, to make the fish avoid those too close, students

add the DIRECTION-TO-AVOID-OTHERS micro-

behavior:
do-every delta-t

 all-who-are distance-within 1

 do-now

 set my-next-desired-direction

 subtract

 my-next-desired-direction

 unit-vector

 subtract

 location other

 my-location

We find that using the first person for the “owner” of a

micro-behavior makes for more easily comprehensible

descriptions of behaviors. We describe this code as “I

consider all others that are at most one unit away from me.

For each one I update my desired direction by subtracting

the unit vector from it to me.” Later we replace the ‘1’ in the

code by personal-space, a variable controlled by a slider.

The code above implements the first equation in

[Couzin et al 2005]:

∑
≠ −

−
−=∆+

ij ij

ij

i
tctc

tctc
tt

)()(

)()(
) (d

The model now needs the TURN-IN-DESIRED-

DIRECTION-AT-MAXIMUM-SPEED micro-behavior to

convert the desired direction into a new heading. We need to

allow for noise to model sensory or motor inaccuracies

(which can be zero) and to impose a maximum turning

speed. The micro-behavior is defined as:
do-every delta-t

 let desired-heading

 direction-to-heading

 my-desired-direction +

 my-direction-noise

 let desired-delta-heading

 canonical-heading

 (desired-heading - my-heading)

 let maximum-turn 2 * radian * delta-t

 set my-next-heading

 my-next-heading +

 within-range desired-delta-heading

 (- maximum-turn)

 maximum-turn

 set my-next-desired-direction 0

There is a problem here with the BehaviourComposer’s

inability to specify that this micro-behavior should run after

all the other micro-behaviors that contribute to the value of

the desired direction have completed. Currently, we address

this by using the BehaviourComposer’s scheduler to

postpone this micro-behavior by a tiny amount relative to

the other micro-behaviors. By prefixing do-after .001

to the code we specify that this code regularly runs .001

time units after the others.

To test the avoidance behavior students need more than

one fish. They can add the ADD-COPIES micro-behavior to

the fish:
do-at-setup

 add-copies 1 []

This will create a single copy that has no additional

micro-behaviors. When students run the model they will see

two fish (the original prototype and the copy) at the same

position move in unison. This is because the copy is an

identical copy. They could resolve this by adding micro-

behaviors to the call to add-copies as:

add-copies 1

[“SET-RANDOM-POSITION”

 “SET-RANDOM-HEADING”]

Or they can add the DIRECTION-NOISE micro-

behavior to model the inability of fish to exactly control

their heading. With either solution, or both, they see their

two fish moving and veering away from each when they are

within one unit of each other.

We found it useful to change the ‘1’ in the call to add-

copies to a large number to test our model with many fish.

Later when students add additional micro-behaviors we

suggest that they change it back to ‘1’ in order to test the

model in the simplest situation and then restore the large

number for realistic testing.

One issue with testing our model is the need to specify

the geometry of the space these fish are swimming in. The

default in the BehaviourComposer (and in NetLogo) is a

torus. It is very convenient to have the fish appear on the

side of the display when it swims off the opposite side. If

we were to use a micro-behavior to set the geometry of the

world to a 2D plane or a 3D volume then we would need to

use a micro-behavior to initialize the position and heading

of our fish to ensure that they approach each other for

testing. Once we add a micro-behavior that causes fish to be

attracted to each other then we could more easily test other

geometries.

Our ideal student next adds the DIRECTION-

TOWARDS-OTHERS micro-behavior to our fish:
do-every delta-t

 all-who-are

 distance-between personal-space

 local-interaction

 do-now

 set my-next-desired-direction

 add my-next-desired-direction

 unit-vector

 subtract location other

 my-location

This differs from DIRECTION-TO-AVOID-OTHERS

in that it adds rather than subtracts the unit vector from the

other to “me” and has a different range of distances for

which it applies. Note that due to the BehaviourComposer’s

support for simultaneous updates the same desired direction

will be computed regardless of the order of execution of

DIRECTION-TOWARDS-OTHERS and DIRECTION-TO-

AVOID-OTHERS. Similarly the DIRECTION-TO-ALIGN-

WITH-OTHERS micro-behavior can be added and its

execution can be interleaved with the others.

A slightly different model of fish behavior specifies that

if there are any fish to avoid then the avoidance behavior

takes precedence and the attraction and alignment behaviors

do not occur. This slightly interferes with the pure

independence of the micro-behaviors. It can be implemented

by setting a new attribute in DIRECTION-TO-AVOID-

OTHERS to true and adding a condition to the other micro-

behaviors that they don’t run if the attribute is true.

A micro-behavior to give a fish an “informed direction”

could be implemented as another process that adds or

subtracts from the fish’s desired direction. The published

model instead introduces a weighting factor that is used to

combine the unit vectors of the informed direction and the

desired direction. Again this interferes with the strong

independence of the micro-behaviors, since the

INFORMED-DECISION micro-behavior must run after the

others have computed the desired direction.

The model of the fish can be enhanced in various ways

[Reynolds 1987] such as introducing a cone of vision so that

a fish only interacts with those it can see.

We have also explored the construction of games by

adding to the simulation individuals that are controlled

interactively. A student can explore the behavior of the

school of fish by controlling one or more fish, perhaps to

learn first-hand the extent to which the school can be

influenced by a proportionately small number of

individuals.

In a similar manner micro-behaviors can be associated

with the observer to obtain graphs, histograms, monitors,

and statistics. Other micro-behaviors can be associated with

the world to specify its scale, geometry, and the state of the

environment.

4. STRENGTHS OF MICRO-BEHAVIORS

Micro-behaviors are organized into a web site where

each micro-behavior has a page that includes much more

than just the code fragment needed for execution. Students

can acquire an understanding of what a micro-behavior does

without reading the program code. Simple edits to the code

are possible without programming expertise. Micro-

behaviors are designed to be the smallest coherent unit of

behavior and as such are often easy to understand. Micro-

behaviors can often be better understood by executing them

in isolation or with only a few accompanying micro-

behaviors.

When appropriate micro-behaviors are available

modeling becomes a “middle-out” activity of composing

(upward) and editing (downward) micro-behaviors rather

than the normal bottom-up programming activity.

A familiar web browser is used to search and browse

for micro-behaviors. We use a Wiki to support the

collaborative creation of libraries of micro-behaviors. Each

page for a micro-behavior can thereby support discussions

by users and authors.

The decomposition of a model into independent

concurrent processes enables students to rebuild the model

at a high level, focusing on domain issues rather than

technical ones. A set of micro-behaviors can be composed

in different ways to form a rich family of models. The

simple example presented here includes micro-behaviors for

avoidance, attraction, alignment, noise, and informed

movement. Students can explore different subsets and

different customizations of these micro-behaviors.

The support for the expression of simultaneous updates

often enables micro-behaviors to be executed in any order.

Indifference to the execution order enables the model

builder to more easily construct and experiment with

different models.

Another advantage of models built out of micro-

behaviors is that they are easier to understand and compare

than relatively monolithic program sources [Kahn 2007a].

5. WEAKNESSES OF MICRO-BEHAVIORS

The critical open question is: how often can worthwhile

models be decomposed into micro-behaviors? We have built

a small number of models other than the collective decision

making model reported here. They include a model of the

spread of disease, another for modeling the spread of

extremist opinions, a predator and prey model, the

SugarScape model [Epstein and Axtell 1996], and an

economic model of network formation. Our experience has

been that most models are “nearly decomposable” [Simon

1962]. Dealing with the weak or occasional interactions

between micro-behaviors does introduce complexity and

dependencies that reduce the benefits of our approach.

There are also issues of execution speed and memory

usage. In order to achieve modularity some computations

are repeated. For example, both the DIRECTION-

TOWARDS-OTHERS and DIRECTION-TO-ALIGN-

WITH-OTHERS micro-behaviors compute the set of

individuals whose distance is within a specified range. The

use of the scheduler to impose ordering constraints also

entails some overhead. An open question is whether an

optimizing implementation could eliminate these kinds of

additional costs.

6. FUTURE RESEARCH

The BehaviourComposer is a proof-of-concept

prototype. There are many ways of enhancing it, including a

drag-and-drop user interface, support for hierarchical

grouping of micro-behaviors, a better way to customize

micro-behavior pages, and support for import and export to

model repositories. Hierarchical grouping together with the

support for prototypes should provide comparable

functionality to class inheritance in conventional object-

oriented systems. The libraries of micro-behaviors need to

be enlarged to support a wider variety of modeling projects.

We chose NetLogo as the platform because of its ease

of use and expressive power. It has support from a broad

and active community of users including teachers and

researchers in a variety of sciences. NetLogo is well-suited

for our primary audience: university students without

computer programming experience. We foresee no technical

obstacles to the building a variant of the

BehaviourComposer based upon a different modeling

platform.

Initial tests of the BehaviourComposer in a pedagogic

setting have been encouraging. Two evaluation studies

(MBA students and masters of science students in a

management research methods module) were recently

conducted and the students built and understood relatively

complex models (the second chapter of [Epstein and Axtell

1996]) in less than two hours. Another evaluation study of

biology students building models of epidemics is scheduled

for later this year. We are also collaborating with a doctoral

student to explore how useful our approach is for original

research in addition to the primarily pedagogic goals of the

project. More usage studies would illuminate many of the

open questions around this research. Because the

BehaviourComposer enables non-programmers to construct

models, there is the possibility of introducing this kind of

model building to younger students.

We have plans to build a new system based upon these

ideas. It will be constructed as a web service and is designed

to benefit from the kinds of community contributions and

support seen in “Web 2.0” services. Furthermore, we plan to

explore the idea of implementing the same micro-behavior

in different modeling environments.

7. ACKNOWLEDGEMENTS

This work was carried out at the Oxford University

Computing Services within the Constructing2Learn Project

funded by the JISC Designs for Learning Program.

References

[Andreoli and Pareschi 1990]

Andreoli, J. and Pareschi, R., “LO and behold! Concurrent

structured processes”, Proceedings of the European

Conference on Object-Oriented Programming on Object-

Oriented Programming Systems, Languages, and

Applications, OOPSLA/ECOOP '90, Ottawa, Canada,

ACM Press. Also published in ACM SIGPLAN Notices,

Volume 25, Issue 10, Oct. 1990.

[Cousin et al 2005]

Couzin, I.D., Krause, J., Franks, N.R. & Levin, S.A.,

“Effective leadership and decision making in animal groups

on the move”, Nature 433, 513-516.

[Deffaunt et al 2002]

Deffaunt, G., Amblard, F., Weisbuch, G. and Faure, T.,

“How can extremism prevail? A study based on the relative

agreement interaction model”, Journal of Artificial Societies

and Social Simulation, vol. 5, no. 4,

http://jasss.soc.surrey.ac.uk/5/4/1.html

[Epstein and Axtell 1996]

Epstein, J. and Axtell, R., Growing Artificial Societies

Social Science From the Bottom Up, Brookings Institution

Press and MIT Press, 1996

[Kahn 2007a]

Kahn, K., “Comparing Multi-Agent Models Composed

from Micro-Behaviours”, M2M 2007, Third International

Model-to-Model Workshop, Marseille, France, March 2007

[Kahn 2007b]

Kahn, K., Constructing2Learn Project Web Site,

http://dfl.cetis.ac.uk/wiki/index.php/Constructing2Learn

[North el at 2006]

North, M.J., Collier, N.T. and Vos, J. R., “Experiences

Creating Three Implementations of the Repast Agent

Modeling Toolkit”, ACM Transactions on Modeling and

Computer Simulation, Vol. 16, Issue 1, pp. 1-25, ACM,

New York.

[Railsback et al 2006]

Railsback, S. F., Lytinen, S. L. and Jackson, S. K., “Agent-

based simulation platforms: review and development

recommendations”, Simulation 82: 609-623.

[Reynolds 1987]

Reynolds, C. W. “Flocks, Herds, and Schools: A Distributed

Behavioral Model”, Computer Graphics, 21(4)

(SIGGRAPH '87 Conference Proceedings) pages 25-34.

[Scherer and McLean 2002]

Scherer, A. and McLean, A. "Mathematical models of

vaccination", British Medical Bulletin 2002, 62 187-199

[Simon 1962]

Simon, H. “The Architecture of Complexity”, Proceedings

of the American Philosophical Society, 106: 467-482

[Wilensky 1999]

Wilensky, U. (1999) NetLogo, Center for Connected

Learning and Computer-Based Modeling, Northwestern

University, http://ccl.northwestern.edu/NetLogo/

8. AVAILABILITY OF THE

BEHAVIOURCOMPOSER AND MICRO-

BEHAVIORS
A beta version of the BehaviourComposer is available

for download from

http://dfl.cetis.ac.uk/wiki/index.php/Beta_testing.

Micro-behaviors, sample models, and documentation

are available at

http://dfl.cetis.ac.uk/wiki/index.php/Constructing2Learn.

9. BIOGRAPHY

 Ken Kahn has been engaged in research in computer

programming since before he received his doctorate from

MIT in 1979. After exploring programming languages for

children he turned towards the design and implementation

of very high-level programming languages embodying ideas

from object-oriented programming, logic programming,

constraint programming, concurrent programming,

distributed computing, and visual programming. In 1992,

Ken returned to programming languages for children when

he founded Animated Programs. He designed and built

ToonTalk, an animated programming language for children.

He is currently a senior researcher at Oxford University

where he is leading the Constructing2Learn Project and is a

visiting fellow and researcher at the London Knowledge

Lab. He will soon be leading the Modelling4All Project

which aims to bring the ideas reported here into a “Web

2.0” setting.

