
LevelSpaceGUI - Scaffolding Novice Modelers’ Inter-Model
Explorations

Arthur Hjorth Bryan Head Corey Brady Uri Wilensky
{arthur.hjorth, bryan.head}@u.northwestern.edu {cbrady, uri}@.northwestern.edu
+1 773 943 0013 +1 206 504 0137 +1 847 371 1985 + 1 847 372 2524

Center For Connected Learning and Computer-Based Modeling
Departments of Learning Sciences and Computer Science

Northwestern Institute on Complex Systems
Northwestern University

2120 Campus Drive
60208 Evanston, IL, USA

ABSTRACT
We present an interface for programming relationships between
two or more NetLogo [18] models running concurrently. The
interface is designed specifically to help high school aged novices
explore and define computational relationships between agent-
based models, and to investigate how prompting learners to reason
about the relationships between complex systems may change
how they reason about the systems individually.

Categories and Subject Descriptors
H.5.m [Information interfaces and presentations (e.g., HCI)]:
Miscellaneous.

General Terms
Design, Languages, Modeling, Systems

Keywords
Agent-based modeling, education, novice programming, complex
systems, complexity, multi-level, science education

1. INTRODUCTION
The last two decades have seen an increased focus on methods for
both studying complexity [8, 26, 27] and researching how
learners make sense of complex systems [7, 22]. One strand in
complexity research has focused on agent-based descriptions of
systems. Within this perspective, many core scientific phenomena
in a variety of domains can be understood through a complexity
lens using computational simulations of the interactions of many
individual “agents” [1, 12, 21]. Modelers can give instructions to
thousands of independent agents, all operating concurrently. This
makes it possible to capture complex system behavior by
“growing it” [2, 17] from the behavior of these system elements

and to explore the connection between the micro-level behavior of
individuals and the macro-level patterns that emerge.
Research on learning about emergence from an agent-based
perspective begins from the observation that reasoning about
complexity involves coordination between (at least) two “levels”
of experience. This approach posits that difficulties arise when
learners mis-apply intuitions developed and found effective at one
level of experience, to another level [11, 14, 24]. Agent-based
modeling languages like NetLogo [18] have been designed in part
to address this challenge, supporting the development of learners’
intuitions about complex systems. By allowing learners to bridge
their understanding of how individual entities behave with their
observations of how the systems act in the aggregate, learners are
able to overcome many of these problems [10, 11, 14, 19, 23].
Moreover, we have found that applying an agent-based modeling
perspective can provide immediate benefits for scientific
understanding as well as supporting learners in applying a
complexity lens to phenomena in other domains [3].

This line of inquiry has typically focused on learners reasoning
about the interactions within individual systems. By describing
just one phenomenon, the agent-based model has acted as a
focusing device, excluding or simplifying factors not directly
relevant to the dynamics of the phenomenon. A potential
downside to this approach, of course, is that phenomena could be
seen as isolated or disjointed, when they may in fact be highly
interconnected and interdependent at a “higher” meta-systemic
level.

Figure 1: LevelSpace connects NetLogo models of phenomena
like ecosystems and climate change.
We hypothesize that providing support for learners to reason
between systems may not only be valuable in itself but may also
be a fruitful approach to getting them to reason in greater depth
about each system. This hypothesis was substantiated by a pilot
study that we conducted with an early prototype of our design in
which we found that learners asked new questions of individual
systems when asked to connect them to another system [4]. We
wish to extend this line of inquiry to include reasoning about the

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
IDC '15, June 21-25, 2015, Medford, MA, USA
ACM 978-1-4503-3590-4/15/06.
http://dx.doi.org/10.1145/2771839.2771884

interactions between systems by enabling learners to connect
different agent-based models and program interactions between
them at both the agent and aggregate levels.

Our demo shows our design of a graphical programming interface,
LevelSpaceGUI, based on a novel and powerful NetLogo
extension called LevelSpace [5] in which both researchers and
learners can connect NetLogo models, program interactions
between them, and explore the results as the models run together.
LevelSpaceGUI is an application that provides a lower threshold
graphical interface to LevelSpace using the eXtraWidgets
extension [13] to dynamically add, remove, and modify interface
elements (or “widgets”) in NetLogo.

1.1 DESIGN CONTEXT
Over the next two years we will be iteratively developing
curricular activities based on LevelSpaceGUI in two different
contexts—after-school computer clubs and classrooms—both at
the high school level. The design literature on reasoning about
complex systems emphasizes the necessity of a deep
understanding of the behavior of the agent-level entities in the
system, described by agent-rules, which in turn implies the
importance of actively modeling, rather than simply interacting
with pre-programmed models. If learners do not know the inner
workings of a model, including the entities, their properties, and
their rules of interaction, it will be much harder for them to make
these connections. Of course, this requires a level of familiarity
with programming that many learners in our contexts may not
possess. Other NetLogo-based programming environments for
novices such as DeltaTick [25], NetTango [6], or Modelling4All
[9] enable such scaffolding for novices, but none currently allow
cross-model linking. We built LevelSpaceGUI specifically to
enable modeling across linked systems by novices.

2. DESCRIPTION OF OUR DESIGN
LevelSpaceGUI is itself implemented as a NetLogo model. It
allows users to load two or more other, separate NetLogo models
and program connections between them. Our hope is to scaffold
learners during this process in two different ways: first, by always
offering learners access to potentially relevant data structures
from the models that they are connecting. While working on
connecting models, LevelSpaceGUI makes the programmatic
components of the model (procedure/method names, global
variable names, breed names, breed-specific variable names, etc.)
easily accessible to learners. (Figure 2). Additionally, learners
can construct new components with which inter-model
relationships can be defined.

Second, we scaffold learners during inter-model programming by
constraining the combinations of what can interact with what and
by restricting in a few different ways: First, we introduce static
types to help prevent runtime errors. NetLogo is a dynamically
typed language, which in spite of all of its benefits means that
syntactically there are almost no constraints on what can interact
with what, which in turn can lead to runtime errors. We therefore
introduced three different, static types: extended agents,
commands and reporters.

Figure 2: Screenshot of LevelSpaceGUI. Commands,
reporters, and extended agents are on the left. Runtime
interactions between models are in the middle. Control
buttons are on the right. Blue boxes are part of the
‘workspace’ and signify that the command or the inter-model
relationship has not yet been saved.
Agents in our design have been extended to include anything that
can act; both NetLogo’s native types of agents (turtles, links, and
patches), and the models themselves – that is, we have represented
models themselves as first-class agents. Commands are anything
that run code and change the state of any of the loaded worlds,
without returning a result value. Reporters are anything that
returns some sort of data, whether at the level of a model or at the
level of an individual agent inside a model. By introducing static
types, we minimize the risk that learners get runtime errors when
they are running their LevelSpace models.

Figure 3: The interface allows learners to "inspect" the
models that they open. Gray commands are inbuilt, green
ones are user-created.
Second, we constrain the reporters that are available as arguments
depending on which extended agent is running the command. For
instance, each model will contain different breeds of agents, each
of which has their own variables. Wolves and sheep in the Wolf-
Sheep Predation [14] NetLogo model, for instance, have variables
like energy and x- and y- coordinates, and these are available only
when wolves or sheep are chosen as the extended agent to run a
command (Figure 4). Our hope with this design decision is to help
learners better understand what kind of information is available to
each extended agent, and thus to enable them to build multi-level
models from the agent-perspective.

Figure 4: Side by side comparison of available arguments
when respectively a model or lower-level agents run
commands. Breed-specific arguments show up only on the
right side.
Finally, our intention in visually separating the ‘parts’ of a model
(left-hand column) from its runtime (center column) is to make
this distinction conceptually clearer to learners. In addition, in the
center column, we separate out inter-model commands that are
run at setup from those that are run during runtime, for the same
reason.

2.1 Example: Interactions between a model of
Climate and a model of an Ecosystem
To illustrate the kinds of connections and entities that learners
might create, we will give an example of how two models in the
NetLogo library, Climate Change (CC) [15] and Wolf Sheep
Predation (WSP) [20], can be connected. Briefly, CC shows how
the interaction between photons from the Sun, infrared energy,
clouds, and greenhouse gases such as CO2 and methane interact to
produce the greenhouse effect. WSP shows population dynamics
in a two-tiered ecosystem in which wolves eat sheep, sheep eat
grass, and grass grows back after a certain period of time.

So, how might these two models be connected? This question has
guided our early implementations of LevelSpaceGUI with
learners. In working closely with the WSP model, learners
identified a wide array of external factors that could affect the
Wolf-Sheep-Grass Ecosystem. The list below is aggregated from
student ideas generated while exploring the WSP model:

• Seasons, weather, climate, or the sun’s effect on the
grass

• Rain/drought/floods
• Fire, tornados, natural disasters
• Diseases
• Human effects (hunters, farmers, shepherds, poachers)
• Other animals, in particular other predators for wolves

and/or sheep
• Animals’ group behavior (e.g., herding, flocking)
• Manmade (fences/walls) or natural (rivers/mountains)

barriers to movement
• Lifespan of sheep and wolves (youth, old age)

The theme of weather and climate factors was salient in student
thinking, which suggested exploring possible links between WSP
and CC. Other interests led to links between WSP and other
models, such as Fire [16]. In the rest of this section, we follow out
one pathway for exploring connections between WSP and CC.

First, the rate at which grass in the WSP ecosystem grows could
be a function of, among other possible weather-related factors,
temperature. To create this relationship, a learner would first
select the WSP model, then choose “Commands”. This would
show a list of all commands currently in the WSP model. She can

then fill in the blue box— first naming her new command (e.g.,
‘change grass regrowth’); then writing the function that she
believes would describe the relationship between the growth rate
of grass and temperature; and finally deciding what arguments
this function would take (Figure 5a). She would then create the
relationship between CC and WSP by creating a new relationship
in the center column, choosing the CC model first because it is the
agent that causes this change to happen, then select her newly
constructed command, and finally choose which of the parameters
from CC would be passed on to their command as arguments–in
this case, ‘temperature’ (see Figure 6, bottom block).

Figure 5: Two examples of the interface for creating
LevelSpace-commands, reporters, and extended agents. 5a
(top): creating a command for changing how fast grows back;
5b (bottom): creating an extended agent consisting of ‘gassy
animals.’
Second, the greenhouse gases in the atmosphere come from,
amongst other sources, animal flatulence. A learner might
hypothesize that animals with full stomachs are gassier than other
animals. So she might decide that only the animals who are most
full should participate in this interaction, by first choosing the
WSP model, then “Extended Agents”, name their collection of
agents ‘gassy animals’, and then choose all turtles1 satisfying
some criterion, e.g. having an energy value greater than 15
(Figure 5b). She would then create a new relationship between the
‘gassy animals’ and the ‘add-greenhouse-gas’ command that
already exists in the CC model, and that was ‘imported’ to the
interface as part of the initial import of the elements of the model
(Figure 2). The end result is the LevelSpace go-procedure seen in
Figure 6.

This example illustrates a few important features of our design:
Understanding the scope of variables is potentially difficult for
novices to begin with. This difficulty can be exacerbated by
having many different, concurrent models and their respective
agents each with their own sets of global and agent-specific
variables. LevelSpaceGUI helps learners by only populating the
dropdown menu with commands that that particular extended
agent is actually able to run, and only allows variables as
arguments that these agents have “knowledge of” and access to.
For instance, the extended agent called ‘gassy animals’ contains a
reference to ‘energy’. This variable is only accessible to ‘turtles’
in the WSP model, and not to the turtles in the CC model.
Similarly, when CC calls the learner-constructed command
‘change grass regrowth’, which is a command specific to the WSP
model, it essentially asks the WSP model to run this command.
The command’s code (Figure 5a) contains a reference to ‘grass-

1 Generic mobile agents in NetLogo are called ‘turtles’

regrowth-time’, a global variable that only WSP has access to, but
it is being changed as a result of a variable in another model. By
constraining users’ references to model- or agent-specific
reporters and commands, our hope is to both prevent runtime
errors, and to encourage novices to think about the scope of
variables.

Figure 6: The go-procedure with relationships between WSP
and CC.
In our early iterative design work with learners, we have already
begun to see evidence in favor of our guiding hypothesis, namely
that providing support for learners to reason between systems may
not only be valuable in itself but may also be a fruitful approach
to getting them to reason in greater depth about each system. In
particular, not only have we found that students are able to
conceptualize links between NetLogo models that they have
studied individually, but also making these links can lead them to
reflect more deeply on these systems. For instance, after reasoning
about climatic effects on WSP, students became more attentive to
the agent-based rules of interactions between wolves and sheep.
An initial hypothesis—that barren ground or longer grass might
make it easier or harder for wolves to hunt sheep—was
disconfirmed by looking more deeply into the NetLogo code of
WSP. In another example, students became unsatisfied with
“grass regrowth time” as a simple means of expressing seasonal
effects. Instead, they wished to explore the effects of snow-
covered areas in winter, or water-covered areas in rainy seasons.
Indeed, these reflections (involving how to remove land areas
temporarily from the grass-regrowth cycle) connected the inquiry
of students who were connecting WSP with CC with lines of
thought being pursued by students connecting WSP with the Fire
model.

Our empirical studies are in early stages, but these early
implementations suggest that, conceptually, linking models and
thinking between models are generative acts that support powerful
ways of thinking about the systems involved.

3. DEMONSTRATION AT IDC2015
In our workshop, attendees will connect models from the NetLogo
models library (or their own!). We also welcome pedagogical and
design-related discussions about inter-model reasoning, and how
to design and study curricular activities that foreground the
particularities of thinking between models.

4. ACKNOWLEDGMENTS
This work is supported by The National Science Foundation grant
#1441552. The opinions expressed here are solely those of the
authors.

5. REFERENCES
[1] Epstein, J.M. 2006. Generative social science: Studies in

agent-based computational modeling. Princeton University
Press.

[2] Epstein, J.M. and Axtell, R.L. 1996. Growing Artificial
Societies: Social Science From the Bottom Up. Brookings
Institution Press MIT Press.

[3] Goldstone, R.L. and Wilensky, U. 2008. Promoting Transfer
by Grounding Complex Systems Principles. Journal of the
Learning Sciences. 17, 4, 465–516.

[4] Hjorth, A., Brady, C., Head, B. and Wilensky, U. 2015.
Thinking Within and Between Levels: Exploring Reasoning
with Multi-Level Linked Models. Exploring the material
conditions of learning: opportunities and challenges for
CSCL (Gothenburg, Sweden).

[5] Hjorth, A., Head, B. and Wilensky, U. 2015. LevelSpace
NetLogo Extension. Center for Connected Learning and
Computer-Based Learning. Evanston, IL.

[6] Horn, M. and Wilensky, U. 2011. NetTango: A Mash-‐Up
of NetLogo and Tern.

[7] Jacobson, M.J. and Wilensky, U. 2006. Complex systems in
education: Scientific and educational importance and
implications for the learning sciences. Journal of the
Learning Sciences. 15, 1, 11.

[8] John, H. 1998. Holland, Emergence: from chaos to order.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA.

[9] Kahn, K. and Noble, H. 2009. The Modelling4All project a
web-based modelling tool embedded in Web 2.0. Rome,
Italy, 1–6.

[10] Levy, S.T. and Wilensky, U. 2009. Crossing Levels and
Representations: The Connected Chemistry (CC1)
Curriculum. Journal of Science Education and Technology.
18, 3, 224–242.

[11] Levy, S.T. and Wilensky, U. 2008. Inventing a “Mid Level”
to Make Ends Meet: Reasoning between the Levels of
Complexity. Cognition and Instruction. 26, 1, 1–47.

[12] Macy, M.W. and Willer, R. 2002. From factors to actors:
Computational sociology and agent-based modeling. Annual
review of sociology, 143–166.

[13] Payette, N. 2014. eXtraWidgets NetLogo extension. Centre
for Research in Social Simulation, University of Surrey,
Guildford: UK.

[14] Sengupta, P. and Wilensky, U. 2009. Learning Electricity
with NIELS: Thinking with Electrons and Thinking in
Levels. International Journal of Computers for
Mathematical Learning. 14, 1, 21–50.

[15] Tinker, R. and Wilensky, U. 2007. NetLogo Climate Change
model.
http://ccl.northwestern.edu/netlogo/Models/ClimateChange.
Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL.

[16] Wilensky, U. NetLogo Fire model. 1997.
http://ccl.northwestern.edu/netlogo/Models/Fire. Center for
Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL.

[17] Wilensky, U. 2001. Modeling nature’s emergent patterns
with multi-agent languages. Procedings of EuroLogo.

[18] Wilensky, U. 1999. NetLogo.
http://ccl.northwestern.edu/netlogo. Center for connected
learning and computer-based modeling. Northwestern
University, Evanston, IL, 49–52.

[19] Wilensky, U. 2003. Statistical mechanics for secondary
school: The GasLab multi-agent modeling toolkit.
International Journal of Computers for Mathematical
Learning. 8, 1, 1–41.

[20] Wilensky, U. 1997. Wolf Sheep Predation model.
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredat
ion. Center for Connected Learning and Computer-Based
Modeling.

[21] Wilensky, U., Brady, C. and Horn, M. 2014. Fostering
Computational Literacy in Science Classrooms.
Communications of the ACM. 57, 8, 17–21.

[22] Wilensky, U. and Jacobson, R. 2014. Complex Systems in
the Learning Sciences. The Cambridge handbook of the
learning sciences. Cambridge University Press.

[23] Wilensky, U. and Reisman, K. 2006. Thinking like a wolf, a
sheep, or a firefly: Learning biology through constructing
and testing computational theories—an embodied modeling
approach. Cognition and Instruction. 24, 2, 171–209.

[24] Wilensky, U. and Resnick, M. 1999. Thinking in levels: A
dynamic systems approach to making sense of the world.
Journal of Science Education and Technology. 8, 1, 3–19.

[25] Wilkerson-Jerde, M.H. and Wilensky, U. 2010.
Restructuring change, interpreting changes: The deltatick
modeling and analysis toolkit. Proceedings of
constructionism.

[26] Wolfram, S. 2002. A New Kind of Science, Champaign, IL:
Wolfram Media.

[27] Bar-Yam, Y. 1997. Dynamics of complex systems. Addison-
Wesley Reading, MA.

