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ABSTRACT

Video games offer an exciting opportunity for learners to engage in computational thinking in 
informal contexts. This paper describes a genre of learning environments called constructionist 
video games that are especially well suited for developing learners’ computational thinking skills. 
These games blend features of conventional video games with learning and design theory from the 
constructionist tradition, making the construction of in-game artifacts the core activity of gameplay. 
Along with defining the constructionist video game, the authors present three design principles 
central to thier conception of the genre: the construction of personally meaningful computational 
artifacts, the centrality of powerful ideas, and the opportunity for learner-directed exploration. Using 
studies conducted with two constructionist video games, the authors show how players used in-game 
construction tools to design complex artifacts as part of game play, and highlight the computational 
thinking strategies they engaged in to overcome game challenges.

KeywoRdS
Computational Thinking, Constructionism, Design, Learner-Directed Exploration, Video Games

As our world continues to become progressively digital, the way in which we interact with and 
shape our environment is increasingly dependent on the ability to translate problems and ideas into 
forms that computers can interpret and execute. Recent calls by education researchers and computer 
scientists advocate for bringing this “computational thinking” into formal education spaces. “To 
reading, writing, and arithmetic, we should add computational thinking to every child’s analytical 
ability” (Wing, 2006, p. 33). This enthusiasm has resulted in new curricula and tools that provide 
opportunities for students to engage with computational thinking in classrooms. While we applaud 
this effort to bring computational thinking into formal educational spaces, we think there is untapped 
potential in the many computational contexts of the everyday. Tools and environments such as video 
games, mobile applications, and online social communities are ubiquitous in youth culture and already 
provide compelling computational thinking experiences.

While the emphasis on the importance of computational thinking has received much recent 
attention (National Research Council, 2010, 2011), the ideas that underpin this movement have 
long been championed in constructionist theory and research circles, which advocate for engaging 
learners in meaningful design and has produced a long tradition of educational environments, tools, 
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and interventions that foster computational thinking in young learners (Harel & Papert, 1991; Papert 
1980, 1996). By incorporating constructionist design into video games and the digital world in which 
young learners live outside of the classroom, we can not only develop computational experiences 
that leverage the affordances of the medium and its position in youth culture, but also reimagine 
the forms that computational thinking can take and how, when, and where learners engage with it.

This paper describes a genre of learning environments called constructionist video games that 
are especially well suited for developing learners’ computational thinking skills. We argue that by 
blending features of conventional video games with learning and design theory from the constructionist 
tradition, we can create compelling, motivating learning experiences that align with the skills and 
practices advocated by the computational thinking community. Using two constructionist video 
games of our own design, we demonstrate how constructionist design principles can be used to 
embed computational thinking in the activity of playing video games and provide evidence for the 
effectiveness of this approach.

This paper begins with a discussion of relevant constructs and design traditions. We then formally 
define constructionist video games and discuss the three central design principles of the genre. Our 
two constructionist games are then introduced, highlighting the design principles in use and reporting 
on a study conducted with each, providing evidence of the development and use of computational 
thinking skills by learners during game play. The paper concludes with a discussion of the potential 
of this design genre and a challenge to the educational video game design community to push on 
narrow views of computational thinking and further explore and experiment with the video game 
medium as a context for situating these critical skills.

ReLeVANT CoNSTRUCTS ANd THeoRy

Computational Thinking
The driving theme behind the computational thinking movement is the idea that knowledge and skills 
derived from the field of computer science have far reaching applications that can be beneficial to 
all learners. Central to this skillset is the ability to encode ideas into a form that can be interpreted 
and executed by a computational device. Though this idea, or close variants, have been proposed 
frequently under a variety of names over the last half century (diSessa, 2000; Guzdial & Soloway, 
2003; Guzdial, 2008; Papert, 1980; Wilensky, 2001), Wing’s (2006) recent call to make computational 
thinking a subject everyone should learn has brought renewed interest and excitement to the cause 
of bringing these skills into the mainstream.

Despite a long history of research to draw on, no clear consensus of where the boundaries of 
computational thinking lie has emerged (Grover & Pea, 2013). Wing defines computational thinking 
as: “the thought processes involved in formulating problems and their solutions so that the solutions 
are represented in a form that can be effectively carried out by an information-processing agent” 
(Wing, 2011). The Computer Science Teachers Association succinctly captures both the central 
goals of computational thinking and the importance of the skills stating: “the study of computational 
thinking enables all students to better conceptualize, analyze, and solve complex problems by 
selecting and applying appropriate strategies and tools, both virtually and in the real world” (2011). 
A National Research Council report on the scope and nature of computational thinking detailed a 
lengthy list of skills including: heuristic reasoning, reformulation of difficult problems by reduction 
and transformation, parallel processing, testing, debugging, simulation, and search strategies. (NRC, 
2010, p. 3). Replacing a constrained set of skills tightly coupled to programming with this broader 
set of concepts opens the door to a much wider set of possible designs that learners can engage with 
as part of developing computational thinking skills. This more inclusive view has motivated us to 
look beyond conventional computer science contexts to find opportunities to design novel, engaging 
computational thinking learning environments that build on existing digital practices of young learners.
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Constructionism and Constructionist design
From its inception, constructionism has explored the cognitive implications of learners generating 
their own computational artifacts and the potential of the computational medium as a context for 
expression and learning (Papert, 1980). The desire to allow the child to program the computer, rather 
than have the computer program the child, led to the development of the Logo language (Feurzeig, 
Papert, & Lawler, 2011; Papert, 1972). While Logo was designed most immediately to teach 
mathematical concepts, research revealed that through developing programming skills, learners could 
cultivate a range of powerful ideas that had purchase beyond the specific activity of programming 
(Papert & Harel, 1990), a position echoed in the computational thinking literature (Grover & Pea, 
2013). Grounded in Piaget’s constructivist theory, which characterizes learning as a learner-drive 
process of constructing understanding through the creation of internal cognitive structures through 
the processes of accommodation and assimilation (Piaget, 1952), constructionism applies this theory 
to the design of learning environments by creating learning experiences in which learners build their 
own cognitive structures through constructing public, sharable artifacts. This approach challenges the 
traditional instruction model of teachers as disseminators of knowledge and replaces it with learner-
driven activities (Papert, 1980, 1993).

Constructionist learning designs have been successfully used in a variety of content domains, 
both to motivate learners to deeply explore content and to help them develop high levels of content 
understanding (Blikstein & Wilensky, 2009; Caperton, 2010; Harel & Papert, 1991; Kafai, 1995; Noss 
& Hoyles, 1996; Sengupta & Wilensky, 2009; Wilensky & Reisman, 2006; Wilensky, 1996). While 
numerous features contribute to the effectiveness of these environments, here we highlight three that are 
central to all constructionist tools. First is the idea that learners should have the opportunity to construct 
personally meaningful artifacts that can be publicly shared. Such designs allow learners to set their 
own agendas and pursue their own goals, empowering them to be the architects of their own learning. 
Through designing, constructing, and refining these external artifacts, internal cognitive structures 
are created and reorganized as the learner builds and explores. Second is the centrality of “powerful 
ideas” in the learning environment. Powerful ideas are concepts that are central to many domains 
and provide access to a large number of other useful concepts. Finally, constructionist environments 
should be “discovery rich.” Learners should be encouraged to explore and the environment should 
be designed so that exploration within the space is fruitful with respect to the larger goals of the 
environment. These three design principles are central to constructionist video games and provide a 
roadmap for enabling deep, meaningful learning in video game contexts.

Video Games and Constructionism
As we propose to bring computational thinking to young people’s everyday practices, we turn now 
to video games, an activity shared by nearly all youth in economically developed countries (Lenhart 
et al., 2008; Rideout, Foehr, & Roberts, 2010). Because of the popularity of this activity, education 
researchers, policy makers, and funding agencies have sought to harness the motivational aspects of 
video games as a means to deliver skills and content taught in formal educational settings. Educational 
researchers have explored the learning that occurs when individuals play video games (Gee, 2003; 
Squire, 2013; Steinkuehler, Squire, & Barab, 2012; Stevens, Satwicz, & McCarthy, 2007). This work 
spans a variety of subject areas, ranging from the study of scientific practices (Barab et al., 2007; 
Clark et al., 2011; Holbert, 2013; Steinkuhler & Duncan, 2008) to how game play can be used to 
explore issues of player identity (Itō, 2010; Squire & Barab, 2004).

Constructionism has a long history of incorporating aspects of video games to achieve desired 
learning goals for ideas central to computational thinking. Early Logo projects and more recent 
constructionist programs utilize game design as an impetus for construction (Caperton, 2010; Kafai, 
1995; Papert & Harel, 1991), while other constructionist initiatives draw on game design principles 
to structure the learner’s experience (Goldstein et al., 2001; Kahn, 1999) or to teach “Computational 
Thinking Patterns” (Ioannidou et al., 2011; Repenning, Webb, & Ioannidou, 2010). Some projects 
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have attempted to make building in the game the prime activity of playing a game. In these games, 
players progress through levels by creating and programming the behaviors and actions of game 
entities (Berland, Martin, & Benton, 2010; Games, 2010; Kazimoglu et al., 2012; MacLaurin, 2009; 
Weintrop & Wilensky, 2014). Another approach uses the mechanism of training virtual players to spur 
the development and use of computational thinking skills in a video game context (Lee et al., 2014). 
Finally, “microworlds,” which are constructionist environments that instantiate rules and behaviors 
particular to a chosen domain, have been used for many years to provide game-like experiences 
within an constrained constructionist space to encourage learners to “play” with the rules of the 
system (Edwards, 1995).

While many projects, including those discussed above, have used game design as a context for 
practicing and developing computational thinking, fewer designs have attempted to make gameplay 
itself a constructionist endeavor. One reason relatively few video games have been designed for 
practicing computational thinking is the perception that traditional game design is at odds with the 
assumed territory of computational thinking—namely programming. Video games are often designed 
to carefully sequence challenges to ensure they remain appropriate for the player’s skill level and 
constrain action to give players time to learn skills necessary for progression. While these design 
techniques are adept at ensuring players encounter targeted experiences (making them especially 
suitable for a particular paradigm of educational design), they are less appropriate for allowing the 
enactment of computational practices such as iterative development, recursion, or debugging, which 
often require an open space with a great degree of freedom to try a variety of solutions and to engage 
in productive failure (Kapur, 2008). In our own work we have explored the potential of this genre for 
learning about kinematics (Holbert & Wilensky, 2010; 2014), the particulate nature of matter (Brady et 
al., 2014; Holbert, 2013), systems feedback (Brandes & Wilensky, 1991) and programming (Weintrop 
& Wilensky, 2012; 2014). Others have utilized this approach to design games for exploring science 
and math (Klopfer et al., 2009), Newtonian mechanics (Clark et al., 2009), and robotics (Berland, 
Martin, & Benton, 2010). In this paper we demonstrate that by incorporating constructionist design 
principles, video game play can serve as an ideal space for developing computational thinking practices 
(Holbert, Penny, & Wilensky, 2010; Holbert & Wilensky, 2011).

deFINING THe CoNSTRUCTIoNIST VIdeo GAMe GeNRe

Having articulated the constructs and theoretical foundations of this work, we now define 
constructionist video games and present three design principles to act as a framework for creating 
such games. Adopting the definition of games provided by Salen and Zimmerman (2004), we define 
constructionist video games as:

Designed computational environments in which players construct personally meaningful artifacts to 
overcome artificial conflict or obstacles resulting in quantifiable outcomes.

This definition of constructionist video games remains faithful to key aspects of traditional 
games, but also include the construction of in-game artifacts as the central activity of gameplay. By 
shifting gameplay towards construction (rather than reflex) to achieve in-game goals, the resulting 
game can remain true to video game conventions while adhering to constructionist principles. In 
constructionist video games, players might design and build in-game tools to accomplish a goal or 
“program” actions of the in-game character to fight off enemies. While construction activities within 
the game may take many forms, it is important that the resulting artifacts are identifiable by the player 
and useful for achieving in-game goals. In a constructionist video game, construction is not relegated 
to a mini-game that occurs outside of the main game action, nor should constructions be forgettable 
or artificial with respect to the larger game objective (such being able to customizing the “look” of 
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a racecar without impacting its performance). Furthermore, the construction process itself should 
allow for a high degree of freedom—players are free to make the thing they want to make, rather than 
provided a false sense of freedom that leads them toward constructing the “correct” thing. This does 
not mean that there cannot be “correct” solutions—as an environment with “quantifiable outcomes” 
by definition requires some form of evaluation—but rather the game supports a variety of correct 
solutions, providing many different ways to arrive at these solutions.

While the design of individual games of this genre may vary, we propose three core design 
principles for creating constructionist video games that foster computational thinking: the construction 
of personally meaningful computational artifacts, the opportunity for learner directed explorations, 
and the centrality of powerful ideas. For each principle, we discuss its constructionist roots and link 
it to specific computational thinking skills and practices.

Principle 1: Constructionist video games include sufficiently expressive construction tools for players 
to engage with and build personally meaningful artifacts.

This paramount principle redefines gameplay to focus on having players build things they care 
about—things they wanted to show to their friends, their parents, and to keep for themselves. It is in 
this process of construction that play becomes linked to the development and refinement of knowledge 
(Harel & Papert, 1991; Papert, 1980). Creating this link in a video game context is dependent on 
players being given the opportunity to make authentic and consequential choices during play. Therefore, 
constructionist video games must provide a set of sufficiently expressive tools or mechanics for players 
to construct solutions to the in-game challenges in a way that promotes a feeling of ownership over 
the resulting artifact or gameplay.

Central to our conception of computational thinking is the practice of encoding ideas into 
forms that computational devices can interpret and execute. Designing video games that allow 
players to express their invented gameplay strategies, ideas, characters, etc. using tailored tools and 
representations ensures that players encounter and develop computational thinking skills such as 
testing and debugging computational constructions, identifying patterns, and iteratively developing 
and revising solutions. To achieve this goal, constructionist video games must provide thoughtfully 
constrained primitives, or building components, that are flexible enough to enable diverse constructions 
and support various epistemological perspectives, but also constrained enough so that learners can 
easily find meaning in their form. As game designers, we can adjust the expressiveness of the in-game 
representations through the breadth of control options provided, as well as through the granularity 
of the building blocks offered to players. If building blocks are too large, then the game may become 
too easy, or too restrictive in terms of expressiveness. At the same time, blocks that are too “small” 
might make the activity tedious or overly difficult (Wilensky, 1999). By providing carefully tailored 
and flexible construction systems that allow the player to create something personally meaningful 
that accomplishes the in-game objective, gameplay becomes fundamentally tied to encoding ideas 
to be acted on by a computational agent – a central computational thinking practice.

Principle 2: Game goals and construction tools encourage exploration and discovery during play.

Constructionism places a premium on learner-directed exploration, which at first might seem 
counter to the goal of learners engaging with specific content. However, narrowing the provided 
construction tools to fit within the desired domain need not compromise the learners’ ability to 
explore. “Although there are constraints on the materials, there are no constraints on the exploration 
of combinations…the power of the environment is that it is ‘discovery rich’” (Papert, 1980, p. 162). 
This feature of constructionist environments, when brought into contexts in which the constructions 
are computational, provides a productive context for the development of computational thinking skills. 
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One characteristic of computational thinkers is their ability to work with computational tools to make 
progress towards solutions despite uncertainty of what form the final solution will take. Instead of 
expecting learners to know the solution at the outset, the expectation is that learners work their way 
towards it, trying solutions, learning from previous trials, and incorporating lessons learned in prior 
attempts into future iterations, a common practice in well designed video games (Gee, 2003; Squire, 
2005). By designing games that encourage exploration and discovery, players become the architects 
of their own learning as they are challenged to learn, revise, and adapt to advance in the game.

If a game requires “defined rules and quantifiable outcomes” as we have stated in our definition, 
how then can we also reward exploration and self-directed discovery? First, by not limiting the player 
to a single or a small set of winning strategies, the game can support an epistemological pluralism 
(Turkle & Papert, 1990) that rewards various approaches that can accomplish the task. Allowing for 
a variety of solutions also introduces a qualitative aspect to constructions; players can decide if they 
prefer one construction to another or prioritize certain features of their constructions over others. 
Alternatively, such games can be designed to allow players to choose how and when they engage 
with challenges. Finally, creating a low-stakes environment where there is little risk associated with 
experimentation allows players to explore the construction space without worrying about negative 
consequences. In these types of designs, players are free to engage in trial and error, should be able 
to quickly iterate and modify play, and be allowed to explore alternative solutions even after they 
have achieved success without serious repercussion.

Principle 3: Learners engage with and employ powerful ideas to advance through the game.

Not all concepts are created equal—while some ideas have only narrow applications, others 
are much more powerful, providing purchase for reasoning across a diverse set of problem spaces. 
Powerful ideas are seen to be immediately useful, connect to many other productive ideas, and are 
rooted in the learner’s intuitive understanding about the world (Papert 1980, 2000). An idea’s power, 
from an epistemological standpoint, is tied to its ability to “lead to an understanding of a large class 
of phenomenon” (Papert, 2000, p. 727). Powerful ideas are not limited to the case in which they are 
discovered. Rather, they are central hubs in a vast network of knowledge. In this respect, there is much 
overlap between powerful ideas and computational thinking as computational thinking is frequently 
championed as being broadly applicable and useful across a wide variety of contexts (NRC, 2010; 
Wing, 2006).

Papert suggests that ideas are powerful if they are syntonic to the learner – that is, if they connect 
to the learner’s personal and intuitive understanding of the world. The intuitive nature of powerful 
ideas makes them highly accessible to learners of all ages and cognitive ability, further democratizing 
access to knowledge once thought to require years of formal instruction. The Logo turtle, perhaps 
Papert’s most famous contribution, was said to be body-syntonic (1980) in that the child was able 
to use his own understanding about how his body functions in the world to command and direct the 
turtle as it “walked-out” shapes and animations on a computer screen. Similarly, learning experiences 
that align to aspects of the learner’s identity and way of life are culturally-syntonic (Papert, 1980), as 
the understandings that are being cultivated fit within the practices and activities the learner regularly 
engages in. Because video game play is a central part of youth culture, situating computational 
thinking within video games provides a culturally syntonic way for learners to experience these ideas.

CoMPUTATIoNAL THINKING IN CoNSTRUCTIoNIST VIdeo GAMeS

Having described the constructionist video game genre and outlined design principles central to their 
creation, we now introduce two examples and present data on students’ developing computational 
thinking skills as they play. We intentionally use two very different games to highlight the flexibility 
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of the genre and challenge a narrow view of computational thinking that tightly couples the skills 
with conventional computer science learning environments. In evaluating these games we utilize a 
mixed methods approach. To explore how the environment shapes learners’ emerging understanding 
of computational practices, we rely on semi-clinical interviews and observational data. To identify 
patterns in game play behaviors and to gain insight into the typicality of these behaviors and the 
outcomes observed in the case studies, we use computational methods such as learning analytics 
and cluster analysis. By triangulating the observations, interviews, and computational data, we gain 
insight into how the design of the games—and more specifically the constructionist features—provide 
a space for learners to explore and experiment with computational practices.

developing Iterative Solutions in RoboBuilder
RoboBuilder (Figure 1), is a program-to-play game that challenges learners to design and implement 
combat strategies to make their virtual robot defeat a series of progressively more challenging 
opponents in one-on-one battle (Weintrop & Wilensky, 2012). Unlike a conventional game where the 
player would control the robot live as the game unfolds, in RoboBuilder, the player gives instructions to 
the robot before it competes. The design was initially conceptualized as a way to situate programming 
in a motivating context while also providing the designer a way to scaffold and motivate learning in 
moving from simple to more complex programs. Research into the design rational of other successful 
introductory programming environments led us to take a constructionist design approach. Figure 1 
shows RoboBuilder’s interface.

In RoboBuilder, players build strategies for their robots using a custom designed blocks-based, 
visual programming environment. The programming primitives were chosen to closely map on to 
in-game events and can support a wide variety of strategies (principle 1). While the core purpose of 
the RoboBuilder language is to provide a toolset for constructing strategies to defeat progressively 
more difficult opponents, players are free to interact with the tools, and consequently play the game, 
in whatever way they see fit (principle 2). The types of strategies that players compose reflect their 
own strategic sensibilities, be they assertive and aggressive, passive and defensive, or emphasize 
aesthetics along with effectiveness. The combination of a single, high-level game goal (defeat your 
opponent) paired with the expressive language and the visual enactment of players’ constructed 
strategies, encourages players to explore various robot designs.

A number of powerful ideas that align with computational thinking are made central to the 
gameplay of RoboBuilder (principle 3). First, the act of constructing a winning strategy using a 
blocks-based programming language challenges players to encode their ideas into a format that the 

Figure 1. RoboBuilder’s two windows: (a) the battle screen where players watch their robot compete and (b) the construction 
space where players implement their strategies.
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computer can interpret and execute, a practice central to our conception of computational thinking. 
In doing so, players must work with abstractions, debug unintended behaviors in the program, and 
interpret the feedback they received in order to advance in the game. In the analysis we present 
below, we focus on two computational thinking skills: encoding ideas in a computational medium 
and iteratively developing solutions to a problem.

Methods and Participants
The data presented in this section were collected through a series of hour-long, one-on-one interviews 
in which a researcher sat alongside participants as they played the game. The interviews followed 
a three-phase, iterative protocol. First, players discussed their strategies with the interviewer. Next, 
the players were given the chance to interact with the game and implement their strategy. Finally, the 
interviewer and player watched the robot compete, with the interviewer asking the player to describe 
what he or she had seen and whether or not it matched expectations. After each battle, players were 
asked how they wanted to improve or change their strategy, thus beginning the next iteration. This 
iterative interview-play design allowed us to observe the formation and evolution of an individual’s 
computational thinking practices and to continually probe how the learner made sense of the game 
mechanics and concepts embedded into the game. Along with recording the interview, we collected 
and analyzed the robot strategies the players constructed and conducted brief post-gameplay interviews. 
In this analysis we first focus on characteristics of student-authored programs looking for evidence of 
productive computational thinking practices, before referring to the qualitative interviews to support 
the findings from our computational analysis.

Fifteen subjects with little or no prior programming experience were recruited to participate in 
this study. The study took place in a large American city. Participation in the study was voluntary 
and included students ranging in age from seventh grade to graduate school. Convenience sampling 
was used to recruit participants, finding novice programmers affiliated with educational institutions 
the research had relationships with. Participants played for an average of 48 minutes and 43 seconds 
(SD 8 minutes 39 seconds) and constructed an average of 11.5 unique robot strategies (SD 4.9). This 
resulted in a total of over 200 robot strategies being constructed and roughly 19 hours of RoboBuilder 
gameplay footage.

Results
The central gameplay mechanism in RoboBuilder is to construct robot strategies using RoboBuilder’s 
blocks-based programming language to defeat a series of opponents. Of the 15 programming novices 
who participated in this study, all but one were able to defeat the level-one opponent. Put another way, 
through playing our constructionist video game, 14 out of 15 novices were able to successful construct 
a program that a computer could execute to accomplish a task—an activity central to computational 
thinking. These programs went beyond a single command; the average winning level-one program 
contained 22.6 blocks (SD 9.5), with nine participants constructed programs that defeated the first 
three opponents in the game. As players advanced through the game, and defeated successively more 
challenging opponents, their constructions generally grew in size and complexity (Figure 2).

RoboBuilder players’ also generally utilized an iterative and incremental approach when designing 
winning constructions, an important computational thinking practice. An iterative and incremental 
approach is often cited as a best practice when developing computational solutions to problems 
(Larman & Basili, 2003). We analyzed the video footage collected and coded each interview, looking 
for iterative development practices. Specifically, we looked for players repeating a cycle of making 
a small number of changes to their program, running the battle to see the effect of those changes, 
then returning to the construction space to make another round of small changes in quick succession. 
We found that each participant added an average of 1.6 blocks to their program for each level they 
advanced. If we only consider the cases where participants revised their robot strategies between 
successful battles, the number of blocks added per level increases to 3.3 blocks for each new successful 
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robot construction. Only two players’ robot constructions got smaller as they progressed through the 
game; a third player’s program remained at a fixed size; the remaining players’ constructions grew 
as they progressed in the game. This fact is highlighted in Figure 2b where we see mostly upward 
sloping trend lines, the gradual slopes denote small, incremental changes being made.

At the conclusion of the interviews, the participants were asked if they had any advice for future 
RoboBuilder players. In their responses, seven of the participants advised future players to use an 
iterative, incremental approach, or to start with simple constructions and build up from there. For 
example, one participant advised future players: “don’t try and do too much in the beginning,” and 
followed up that advice by saying “it is better to build up,” recommending that strategies need not be 
built all at once. Another participant reflected: “I think what helped me was the iterations...I would 
recommend that [future players] don’t change too much each time.” The approach of taking an iterative, 
incremental approach is a powerful idea for problem solving and is an important, broadly applicable 
computational thinking strategy. By providing players with an accessible and sufficiently expressive 
toolset and the freedom to develop the strategies the wanted to, RoboBuilder, a constructionist video 
game, enabled players to have meaningful interactions with powerful ideas central to computational 
thinking.

PRoCedURAL THINKING IN FoRMULAT RACING

Our second illustration of a constructionist video game for computational thinking is FormulaT 
Racing (Holbert & Wilensky, 2010). FormulaT Racing (FTR) is a racing game where, rather than 
drive a car with a joystick or controller, players direct a racecar by painting the track with various 
colors, each indicating a different velocity (Figure 3). Players are free to paint the track in any way 
they choose, though they must be careful to consider track features such as sharp turns and race time 
limits. After the player has painted the entire track, the race begins and the car drives around the 
track automatically, turning when necessary and dynamically adjusting its velocity as it moves over 
each painted segment.

While players do not engage in an activity that would be generally recognized as programming, 
as we will show in this section, the encoding of a “race” representation in FTR incorporates our three 
design principles and engages players in the development of computational thinking strategies. Though 
there are only a limited number of colors (corresponding to specific velocities), because players choose 
the location and combination of colors placed on the track, this small set of primitives can be highly 
expressive (principle 1) and result in great diversity of racetrack designs. Some players may choose to 
paint every inch of the track, while others may only apply colors sparingly in strategic locations; still 

Figure 2. Charts showing the size of RoboBuilder constructions: (a) the size of winning robot strategies and (b) the trend lines 
of the changing size of constructions (projected forward).
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others may focus on the aesthetics of their construction, trying to make a track that is both beautiful 
and fast. Likewise, the ability to easily reset the player car after a failed run encourages players to 
quickly prototype and iterate race constructions to explore the range of designs possible (principle 2).

Rather than making computational thinking the central goal of the game, like RoboBuilder, 
FTR was designed to facilitate thinking and reasoning about kinematics through the enactment of 
computational strategies (Holbert & Wilensky, 2011). Specifically, FTR was designed to encourage 
players to reason about the relationship between velocity and acceleration by allowing them to encode 
these kinematic concepts into systematic representations (Holbert & Wilensky, 2014). By requiring 
players to articulate these relationships into a form that can be executed by the computer, and supporting 
them in debugging and iteratively refining these representations, we argue that players interact deeply 
with the powerful idea of kinematics (principle 3). In the remainder of this section we present a study 
of players painting and graphing in FTR and show how they not only used computational thinking 
during play, but how these skills became more advanced as they progressed in the game.

MeTHodS ANd PARTICIPANTS

In a study exploring the ways in which players enacted computational strategies during FTR play, 
two unique but complementary forms of data were collected. First, six players aged 7-13 recruited 
from various informal organizations in a Midwestern American city were interviewed and observed 
as they played FTR at their homes or in an after-school program they attended. Pre-game interviews 
lasted approximately 45-minutes. Participants played the game for 1 hour 2-4 days after the first 
interview. Finally, a 45-minute post-game interview was conducted approximately 1 week after playing 
the game. The second source of data comes from anonymous logs collected from online play that 
recorded player constructions. The motivation for using these two data sources matches the previous 
study’s rational: the interview data provided detailed insight into the effects of different aspects of 
the game’s design on learning, specifically its constructionist features, while the computational data 
allowed for some level of generalizability across the full set of participants. In the following section, 
we present evidence from video recorded observations of gameplay as well as online logging data 
that show players utilizing powerful computational thinking strategies during play and that these 
strategies increase in sophistication as players become more experienced with game mechanics.

Figure 3. In FormulaT Racing players paint the track various colors to encode behaviors that the car follows as it races around 
the track
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Results
To analyze the way participants interact with FTR, video of the participant playing the game was 
synced to screen recording of game action and placed side-by-side (Stevens et al., 2008). Video data 
was split into analytic units according to instances of strategy switching (often corresponding to each 
race attempt). Analytic units were coded using a scheme that emerged from the data informed by the 
computational thinking literature and included codes such as creatively designing a representation, 
exploring the limits of the construction tools, planning construction chronologically, breaking 
constructions into repeating motifs, and debugging constructions (the full coding scheme can be found 
in Holbert, 2013). An independent researcher verified the game-play codes. Conflicts were discussed 
and resolved resulting in agreement on 97% of video time. Our analysis of participants’ gameplay 
found that players usually begin by exploring the painting system. This exploration often takes the 
form of “painting” the entire track one very fast color. After getting a sense of the scale of the painting 
system, players begin to systematically debug constructions. Debugging occurs when players make 
very small changes to their painting—not unlike making minor and iterative modifications to “code”—
before attempting another run. As play progresses, many players begin to notice and reuse patterns 
of motion and track features to paint and graph successful solutions. For example, finding a pattern 
that works for some feature of the course, like repeating a color pattern of fast->slower->slow in the 
corners, then systematically using it throughout the track. These motifs are a relatively sophisticated 
computational thinking strategy akin to breaking a program up into many smaller “procedures” or 
“methods” that can be called upon and executed at the appropriate time.

Figure 4 shows the percentage of total time players enact a particular computational strategy. While 
players spend some time simply exploring the model—painting the track all one color, “just to see 
what will happen,” or to see how fast the car could go—players engage in sophisticated computational 
strategies 76% of the time. These strategies include debugging, using repeated motifs, and enacting 
an ordered strategy across large portions of the track.

To understand if and how such computational thinking strategies were used among a larger 
population of users outside of one-on-one interviews, a second analysis of gameplay data was 
conducted using anonymous logging data from online play. Thirty logs were analyzed having 
an average of 27 changes made to the painted track per player. Numerical data was coded using 
computational analytic techniques to look for predefined patterns in player paintings. By identifying 
the number of changes made between each run, attempts could be automatically coded as either 
planning out complex strategies all at once (plan), enacting many changes between runs (explore), 
or making only a few changes between runs (debug). After automatically coding each run, a manual 
pass was made on the visual data to verify automatically generated codes and to also identify repeating 
patterns or motifs and evidence of tinkering—attempts to create a complex plan by enacting very 
small portions one at a time.

The process of painting and the forms the paintings took in the online version of FTR looked 
similar to what was observed during the interviews. While some players planned strategies from the 
beginning, more players tended to tinker towards a successful painting. Not surprisingly, tinkering 
tended to happen more at the beginning of a gameplay session and then dropped towards the end. 
Debugging was by far the most common activity enacted by players. Not surprisingly, debugging 
became more central to gameplay as players progressed in the game. Seventy percent of all online 
players also utilized repeating patterns or strategic motifs (such as slow->slower->fast around corners) 
during gameplay with each player creating an average of 4.9 motifs over the course of gameplay. 
Together with the analysis of interviewed participants’ gameplay, these results indicate that FTR, 
and its employment of constructionist video game principles, allowed for and encouraged the use 
of sophisticated computational thinking strategies. The game’s open-ended painting task, intuitive 
representation of kinematic concepts, and support of multiple play styles, allows players to tinker, 
plan, or explore their way towards a successful strategy.
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dISCUSSIoN

In this paper we set out to both introduce constructionist video games—a genre blending common 
video game design techniques and learning theory rooted in the constructionist design paradigm—and 
argue that this new genre of game is particularly suited for supporting the development of complex 
computational thinking skills. Our proposal of the genre included three core design principles for 
creating these constructionist video games and examples of two such games. The presentation and 
analysis of these exemplar constructionist video games reveals the possible variety inherent in the 
genre, and indicates a relationship between the inclusion of the three core principles and observed 
play patterns and documented learning outcomes.

Both games provided accessible and highly expressive construction tools (principle 1). These 
tools allowed players to easily understand game mechanics and quickly implement strategies and 
actions to meet both their self-defined goals and the larger game objective. While certain ideas or 
strategies were common during robot construction, players implemented these ideas and strategies 
in unique ways throughout game play. Likewise, while some racing strategies were more successful 
than others, players approached track design in a variety of ways, with some planning ahead, others 
tinkering, and still others ensuring track constructions included aesthetic flair.

Despite vastly different game mechanics and designs, both RoboBuilder and FTR provided 
tools and mechanics that allowed for a high degree of personalization and encouraged exploration in 
construction (principle 2). Players freely experimented with previously unused programming blocks 
in RoboBuilder and thoroughly investigated the specifics behaviors of each color in FTR. By lowering 
the cost of failure and streamlining the test and debug cycle, players of both games created many 
constructions and engaged in tinkering and iterative design, two beneficial practices for working in 
computational contexts (Berland et al., 2013).

Figure 4. This graph shows the breakdown of time each individual spent engaged in the coded activities. 76% of time spent using 
the construction tools was spent engaging in complex computational thinking (strategic ordered, strategic motif, or debugging).
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Both RoboBuilder and FTR players employed powerful ideas central to computational thinking 
practices throughout game play (principle 3). In both games, players successfully created abstractions 
of strategies in a form that could be read and acted on by a computational device. In RoboBuilder, 
this meant encoding behaviors and strategies for a robot to follow as it tried to defeat its competition. 
Similarly, in FTR, players painted colors to define the action of a vehicle as it moved around a track. 
Furthermore, we showed that in each game, players’ “programs” became more complex, and their 
use of advanced computational thinking practices became more pronounced as they played the 
game, highlighting how the video game medium can scaffold learners in developing and refining 
computational think practices. RoboBuilder players utilized more blocks and advanced logic blocks 
as opponent difficulty increased and likewise, over time, FTR players were more likely to utilize 
motifs, or patterns of action, when building their race representation.

CoNCLUSIoN

In this paper we weave together two successful, but disparate traditions—constructionism and video 
game design—in such a way as to take advantage of the strengths of each. In addition to defining the 
constructionist video game genre, we also provide guidelines in the form of three design principles 
for creating educational tools that fall within this space and argue that the games that result from 
this marriage are especially well situated to engage players in computational thinking ideas and 
practices. To support this claim, we present data from studies of two very different constructionist 
video game designs to offer concrete but diverse examples of games in this genre, as well as to show 
how interactions with the tools and features of these games facilitate the practice and development 
of computational thinking strategies. It is our hope that these exemplar games might offer new 
perspectives on what computational thinking learning environments might look like, and new insights 
into how learners can engage with ideas central to computational thinking.

Computational thinking, having primarily grown out of the computer science education 
community, remains closely associated with formal classrooms despite claims of broad applicability. 
If computational thinking is to achieve equal status in the larger educational and social space, we 
must challenge narrow conceptions of computational thinking, moving its locus out of computer labs 
and classrooms and into the larger, digital world in which learners live. By integrating computational 
thinking into self-directed play, as we have done with constructionist video games, learners begin 
to see these practices and ways of thinking as another way to interact with the world, rather than as 
skills only valued in a particular domain (see Berland & Lee, 2010 for a second, non-digital context). 
Continuing to explore the potential of these “everyday” contexts should be a central focus for the 
community as we work to introduce computational thinking to large and diverse audiences.

By bringing computational thinking out of the classroom and into kids’ daily lives, we also 
have the potential to fundamentally reshape the nature of computational thinking. For example, in 
RoboBuilder, which utilizes a blocks-based language aligned with typical programming conventions, 
computational thinking is pushed beyond the act of programming. While learners certainly practice 
computational thinking within the robot construction phase, they also hone these skills as they study 
and decipher their opponents’ behavior, and as they interpret and refine their strategies. These two 
activities, distinct from programming, become central to the way that learners reflect on created 
code and gain knowledge of new strategies and programming concepts (Weintrop & Wilensky, 
2013). In FTR, players engage in computational thinking using tools and representations lacking 
many defining features of conventional programming environments. Instead of manipulating text or 
numbers, players express instructions for the computer through painting—using colors and spatial 
arrangement to convey meaning. Learners continue to work with abstractions, search for patterns, 
and debug programs, but as part of an activity quite different than typing statements in a text editor. 
RoboBuilder and FTR serve as examples of learning environments that push beyond a narrow view 
of computational thinking as learning to program in a formal classroom. By reimagining what it looks 
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like to practice computational thinking, we can broaden its reach and relevance, engaging and exciting 
learners in ways that are more familiar and inviting than conventional computational thinking settings.

While we think constructionist video games are especially well suited for engaging learners in 
computational thinking, the complementary features of the constructionist and video game design 
paradigms provide an ideal learning space for a range of domains and powerful ideas. The synthesis 
of these two design traditions is a relatively recent—and still underutilized—approach, due at least 
in part to the seemingly different motivations that underpin each genre. On the one hand, popular 
video games emphasize a low entry point and streamlined play in an effort to ensure players fully 
enjoy the designed experience. Conversely, constructionist environments privilege personalization 
and creativity, allowing learners to explore topics and ideas of personal interest. While these aims 
differ, they are not incompatible; attending to both can produce learning environments that have the 
engagement, enjoyment and cultural syntonicity (Papert, 1980) of video games, while producing the 
deep learning outcomes common to constructionist learning tools.

Further, incorporating video game design tropes into constructionist spaces can provide one 
way out of what Noss and Hoyles (1996) call the “play paradox”—a long-standing design challenge 
for constructionist environments. In a highly open-ended constructionist environment, it is difficult 
to ensure that learners encounter the target content. And yet, constraining the interaction space to 
ensure content coverage often sacrifices learner agency and the feeling of play. As constructionist 
video games require players to achieve specific, quantifiable outcomes, through carefully designing 
in-game objectives to align with learning outcomes, players can be motivated to engage with 
the desired content in ways that are learner-directed and empowering. In RoboBuilder, to defeat 
progressively more difficult opponents, learners must explore and utilize the full range of language 
features, while FormulaT, through its use of normal, repeating racetrack features and compelling 
visual representations, rewards players for finding and reusing productive patterns. As a result, the 
design of the in-game challenges serves as a means to encourage and reward leaners for engaging 
with and employing the ideas central to the designer’s learning agenda. In bringing together these two 
design traditions, we see great promise in providing learners with meaningful learning experiences, 
be it with computational thinking or other powerful ideas.

On the surface, RoboBuilder and FormulaT Racing look like very different games. FTR’s roots 
are in more traditional video game design, while RoboBuilder emerged from environments and tools 
designed to teach programming fundamentals. Likewise, RoboBuilder was designed specifically to 
teach more classic programming concepts, while FTR targets the development of kinematic intuitions. 
Despite these very different beginnings and goals, by focusing on allowing learners to create artifacts 
or solutions that are personally meaningful, allowing for low-stakes exploration of the design space, 
and focusing on exploring and using powerful ideas, both games provide players with an engaging 
construction experience that is rich with opportunities to engage in computational thinking. Our hope 
is these two games, and the broader genre of constructionist video games, can provide meaningful 
and powerful computational thinking learning experiences for young players that can be drawn on 
during whatever future endeavors they choose to pursue.
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