
Bringing Blocks-based Programming into High School
Computer Science Classrooms

David Weintrop & Uri Wilensky

Northwestern University

Abstract
Over the last decade, blocks-based programming has steadily been moving from the
informal settings it was initially designed for, into more conventional educational
contexts. Inspired in large part by the successes such tools have had at engaging novices
in programming, these drag-and-drop graphical programming environments are now a
central component of numerous curricula designed for high school computer science
classrooms. In this paper, we explore some of the consequences, both positive and
negative, associated with using blocks-based programming tools in introductory high
school computer science courses, including issues relating to student perceptions of
blocks-based tools, the shifting role of the teacher with differing tools, and open
questions surrounding learning and transfer with blocks-based programming.

Introduction
Blocks-based programming is increasingly becoming the way that younger

learners are being introduced to programming and computer science more broadly. Led
by the popularity of tools like Scratch, Snap! and Code.org’s suite of Hour of Code
activities, millions of kids are engaging with programming through drag-and-drop
graphical tools. Due in part to the success of such tools at engaging novices in
programming, these environments are increasingly be incorporated into curricula
designed for high school computer science classrooms. Notably, national curricular
efforts including Exploring Computer Science (Goode, Chapman, & Margolis, 2012), the
CS Principles project (Astrachan & Briggs, 2012), and Code.org’s curricular offerings
utilize blocks-based tools to introduce students to programming. This decision is not
entirely unproblematic as the formal setting and older learners found in high school
classrooms is quite distinct from the younger learners and informal contexts that most
blocks-based programming environments were initially designed for. In this paper, we
elucidate some consequences, both positive and negative, of the decision to bring this
programming approach into high school classrooms. The goal of this work is to bring an
analytical lens to the decision to incorporate blocks-based tools in high school curricula
with the hope that by better understanding the strengths and drawbacks of the modality in
formal contexts, we can ultimately improve learners’ early programming experiences and
better prepare them for future computer science learning opportunities.

Blocks-based Programming

Blocks-based programming environments are a variety of visual programming
languages that leverage a primitives-as-puzzle-pieces metaphor (Figure 1). In such
environments, learners can assemble functioning programs using only a mouse by
snapping together instructions and receiving visual (and sometime audio) feedback
informing the user if a given construction is valid. Each block provides visual cues to the
user on how and where the block can be used through the block’s shape, its color (which
is associated with categories of similar blocks), and the use of natural language labels on
the block to communicate its function. Along with the visual information depicted by
each block, the construction space in which the blocks are used also provides various
forms of scaffolding. Collectively, these features contributed to the perceived ease-of-use
of blocks-based programming (Weintrop & Wilensky, 2015a).

(A) LogoBlocks (B) Scratch (C) Alice

Figure 1. Three examples of blocks-based programming tools.

Blocks-based programming is a relatively recent addition to the long line of

programming languages and environments designed explicitly with learners in mind (for
reviews of this work, see: Duncan, Bell, & Tanimoto, 2014; Guzdial, 2004; Kelleher &
Pausch, 2005). The earliest language designed explicitly for children, and a direct
influence on many blocks-based programming tools, is the Logo programming language
(Feurzeig, Papert, Bloom, Grant, & Solomon, 1970). The Logo language introduced a
number of characteristics that feature prominently in blocks-based programming
environments, notably, the use of egocentric motion commands, the presence of onscreen
avatars to carryout those commands (Logo had the turtle, while newer environments have
sprites) and the emphasis on learner-directed construction and exploration, and the
importance of learners creating public, sharable artifacts, often in the form of artwork,
games, and interactive stories (Harel & Papert, 1991; Papert, 1980).

In recent years, there has been a proliferation of programming environments that
utilize a blocks-based approach. Well known block-based programming environments
such as Scratch (Resnick et al., 2009) and Alice (Cooper, Dann, & Pausch, 2000) provide
learners with open-ended, exploratory spaces designed to support creative activities like
story telling and game making. With the rise in popularity of these and other similar
tools, the number of activities a learner can engage with through blocks-based
programming is growing increasingly diverse. For example, you can develop mobile
applications with MIT App Inventor and Pocket Code (Slany, 2014), build and interact

with computational models with DeltaTick (Wilkerson-Jerde & Wilensky, 2010), Frog
Pond (Horn et al., 2014) or StarLogo TNG (Begel & Klopfer, 2007), create artistic
masterpieces with Turtle Art (Bontá, Papert, & Silverman, 2010) or Pencil Code (Bau et
al., 2015), and play video games like RoboBuilder (Weintrop & Wilensky, 2012) and
CodeSpells (Esper, Foster, & Griswold, 2013). Similarly, informal computer science
education initiatives are increasingly relying on blocks-based programming, including the
activities provided as part of Code.org’s Hour of Code and Google’s Made with Code
initiative. Further, we expect this trend to continue as a growing number of libraries are
making it easy to develop environments that incorporate a blocks-based programming
interface (Fraser, 2013; Roque, 2007).

Methods and Participants
The data presented in this paper are part of a larger study comparing blocks-

based, text-based, and hybrid blocks/text programming environments at a selective
enrollment public high school in a Midwestern city. We followed students in three
sections of an elective introductory programming course for the first 10 weeks of the
school year. Each class spent the first five weeks of the course working in a form of
blocks-based programming environment then transitioned to Java for the second five
weeks of the study. Two teachers participated in this study (one teacher taught two of the
classes), both of whom have over five years of teaching high school computer science
and have previously taught the course. A variety of data were collected as part of the
study including pre/mid/post attitudinal and content assessments, clinical interviews with
the students and teachers.

A total of 90 students across three sections of a Programming I course
participated in the study, which included 67 male students and 23 female students. The
students participating in the study were 43% Hispanic, 29% White, 10% Asian, 6%
African American, and 10% Multi-racial - a breakdown comparable to the larger student
body. The classes included one student in eighth grade, three high school freshman, 43
sophomores, 18 juniors, and 25 high school seniors. Two-thirds of the students in these
classes speak a language other than English in their homes.

Blocks-based Programming in High School Classrooms
In this section we discuss consequential aspects of bringing blocks-based

programming into high-school computer science classrooms.

Perceived of Lack of Applicability Beyond the Classroom
One of the main differences between younger (elementary and middle-school

aged learners) and high school aged students is their motivation for learning to program.
Unlike younger learners, high school students who choose to enroll in a programming
elective are often concerned with the direct applicability of what they are learning. As a
result, some students take issue with a perceived inauthenticity of the blocks-based
modality. This can be seen in student responses to an open-ended question from our post-

survey asking students to compare blocks-based program and Java. “Java is actual code,
while [blocks-based programming] is something nobody will let you code in,” wrote one
student, a second student echoed this sentiment saying: “If we actually want to program
something, we wouldn't have blocks.” In both of these responses, students are thinking
about programming beyond the classroom and recognizing how blocks-based tools are
largely reserved for educational contexts. This position is consistent with other work
done on older learners working in blocks-based tools where high school aged learners
show a preference for text-based languages (DiSalvo, 2014).

One potential way to address this perceived lack of authenticity is to make clear
the relationship between blocks-based and text-based modalities. There are a number of
ways to do this, including isomorphic tools that allow learners to move back and forth
between the two representations (Bau et al., 2015; Matsuzawa, Ohata, Sugiura, & Sakai,
2015) or providing ways to view text-based versions of programs authored in a blocks-
based interfaces (Weintrop, Wilensky, Roscoe, & Law, 2015). In making explicit this
link, teachers can directly confront the perception of the limited scope of blocks-based
tools by showcasing the isomorphic features of graphical introductory tools and the text-
based languages they will encounter in the future.

It is also worth noting that there are some upsides to this perceived inauthenticity.
For example, the more inviting, playful feel of the blocks-based interface can contribute
to a productive classroom culture; as one teacher commented: “[Blocks-based
programming] creates a different feel to the room...blocks take away the foreign feel, it
looks friendly, and it's something you can do right away, and because of that, the culture
in the room is different, kids are more prone to talk to their neighbors, more prone to feel
OK about joking around.” This characteristic of blocks-based tools helps them excel in
informal spaces and can productively change the culture of formal classrooms.

Open Questions Around Transfer to Text-based Languages
A second potential drawback to the inclusion of blocks-based programming in

high school classrooms stems from the open question of if and how understandings and
practices developed in blocks-based tools transfer to more conventional text-based
languages. Studies have reported both successful transfer between modalities (Armoni,
Meerbaum-Salant, & Ben-Ari, 2015; Dann, Cosgrove, Slater, Culyba, & Cooper, 2012)
and found difficulties with students transferring concepts and practices from blocks-based
to text-based tools (Chetty & Barlow-Jones, 2012; Cliburn, 2008; Mullins, Whitfield, &
Conlon, 2009; Powers, Ecott, & Hirshfield, 2007). Direct comparison between
conceptual understanding in blocks-based and text-based languages found there to be
some concepts that are more accessible in the blocks-based modality, but that this benefit
is far from universal across programming concepts (Lewis, 2010; Weintrop & Wilensky,
2015b). These conflicting findings underscore the importance of better understanding the
inclusion of blocks-based tools in formal high-school contexts as the assumed transfer of

learned concepts and developed programming practices underpins the motivation for
using blocks-based tools in formal computer science contexts.

In our study, teacher encountered this reported lack of conceptual transfer. When
asked about how concepts carried over from the blocks-based introduction to Java, one
teacher said the transition was “rough, I think [the students] lost what they were doing [in
the blocks-based tool] with what they were doing in Java.” The extended gap between
when students first encounter concepts at the outset of the year and when they are
reintroduced in Java is problematic. One way to address this challenge is to have tools
that let you move back and forth more fluidly, like Pencil Code (Bau et al., 2015), or to
consistently move back and forth between blocks and text over the course of the year,
which is another approach that has been used in classes (Matsuzawa et al., 2015).

One feature that is shared by the studies that found successful transfer of concepts
and practices was an explicit focus on preparing students for their eventual move from
blocks-based tools to text-based languages. Throughout students’ use of the introductory
graphical environments, the teachers made it a point to link the blocks-based
representation and activities with the text-based languages learners were going to
encounter in the future. This suggests that, at least in part, there are pedagogical strategies
that can be used to effectively bridge blocks-based and text-based programming.

Shifting Role of the Teacher
One major difference between formal and informal learning spaces is the presence

of an expert who can provide guidance and support. Teachers can not only provide
instruction, they also design the curriculum, providing a carefully crafted sequence of
activities to smoothly move learners from accessible to more challenging concepts,
alleviating the need for the environment itself to play these supportive roles. As such, the
scaffolds that blocks-based tools provide change the role of the teacher in the classroom.
For example, when teaching text-based languages, early classroom time is spent
discussing unintuitive, yet necessary, syntax features and walking students through
program compilation and execution procedures, while early blocks-based classes allow
students to dive right into the code. While this beneficial with respect to student
confidence and engagement, there are potential drawbacks to the intuitive nature as one
of our teachers commented: “the point of the environment is that it shouldn't generate a
whole lot of questions, like ‘how do I do this?’ - it's more intuitive.” The teacher goes on
to explain that while this is empowering for the learner, it gives him fewer opportunities
to engage in productive discussions on different aspects of programming. Additionally, in
classrooms using blocks-based tools, the teacher can spend less time standing in front of
the class lecturing and instead, focus on working one-on-one with students who get stuck.

The shift in the role of the teacher is often accompanied by new, or at least
different, pedagogical strategies and classroom orchestration techniques. Being able to
support these different types of classrooms requires a level of comfort and confidence
with the material that not all teachers possess. This shift is compounded in classrooms

where students will eventually transition to text-based tools, as that will potentially
necessitate the teacher changing his or her pedagogical strategy over the course of the
school year.

Similarities between High School Classrooms and Computer Clubhouses
In some cases, the challenges faced by younger learners in informal spaces mirror

those of older learners in classrooms. For example, in both cases, learners struggle with
issues of syntax and benefit from the easy of composition provided by the blocks-based
interface. Similarly, the visual outcomes and easy of browsing available commands play
the same role for younger and older learners. When asked to compare the blocks-based
introductory class with a text-based alternative, one teacher responded, with blocks
“students feel like they can do more right away.”

A second important strength shared by computer education opportunities in both
formal and informal context is their difficulty in recruiting female learners and minority
students. Blocks-based tools like Alice and Scratch have been found to be effective at
attract students who are underrepresented in computing fields (Kelleher, Pausch, &
Kiesler, 2007; Maloney, Peppler, Kafai, Resnick, & Rusk, 2008). The engaging,
accessible, and convivial aspects of blocks-based programming tools are productive in
both formal and informal settings. Similarly, the ease with which programs can be
personalized, presented, and shared, all aid students in creating personally meaningful
projects that they are eager and proud to share, which promotes deep, meaningful
learning (Papert, 1980).

There are also some features of blocks-based tools that lend themselves well to
formal spaces. For example, the ease of browsing available commands makes it possible
for learners to discover and tinker with new programming constructs with little (or no)
formal introduction (Weintrop & Wilensky, 2013). This makes it possible for learners
who are more experienced, or more adventurous, to go beyond what has been covered in
class. This discoverability can keep learners of various level engaged.

Conclusions
In the last five years, the blocks-based programming approach that has changed

how younger learners are being introduced to programming in informal spaces has
arrived in high school classrooms. The inclusion of graphical drag-and-drop
programming tools in formal contexts with older learners is not as straightforward as
simply changing the program learners open up at the start of class, but instead includes a
number of differences that can effect the learning experience. These differences include
students’ perception of the programming tool and its utility, issues of transfer between
programming environments, and shifting roles of the teacher in classrooms using blocks-
based tools. As more and more curricula incorporate drag-and-drop programming tools, it
is important that we understand the effects of using such tools in formal classrooms with
older learners. Our hope is that in gaining a better understanding of how blocks-based

tools fit into formal spaces we can take full advantage of what the modality provides and
also better equip teachers to effectively incorporate them into their classrooms.

References
Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “Real”

Programming. ACM Transactions on Computing Education (TOCE), 14(4), 25:1–
15.

Astrachan, O., & Briggs, A. (2012). The CS principles project. ACM Inroads, 3(2), 38–
42.

Bau, D., Bau, D. A., Dawson, M., & Pickens, C. S. (2015). Pencil Code: Block Code for
a Text World. In Proceedings of the 14th International Conference on Interaction
Design and Children (pp. 445–448). New York, NY, USA: ACM.

Begel, A., & Klopfer, E. (2007). Starlogo TNG: An introduction to game development.
Journal of E-Learning.

Bontá, P., Papert, A., & Silverman, B. (2010). Turtle, Art, TurtleArt. In Proceedings of
Constructionism 2010 Conference. Paris, France.

Chetty, J., & Barlow-Jones, G. (2012). Bridging the Gap: the Role of Mediated Transfer
for Computer Programming. International Proceedings of Computer Science &
Information Technology, 43.

Cliburn, D. C. (2008). Student opinions of Alice in CS1. In Frontiers in Education
Conference, 2008. FIE 2008. 38th Annual (p. T3B–1). IEEE.

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool for introductory
programming concepts. Journal of Computing Sciences in Colleges, 15(5), 107–
116.

Dann, W., Cosgrove, D., Slater, D., Culyba, D., & Cooper, S. (2012). Mediated transfer:
Alice 3 to Java. In Proceedings of the 43rd ACM technical symposium on
Computer Science Education (pp. 141–146). ACM.

DiSalvo, B. (2014). Graphical Qualities of Educational Technology: Using Drag-and-
Drop and Text-Based Programs for Introductory Computer Science. IEEE
Computer Graphics and Applications, (6), 12–15.

Duncan, C., Bell, T., & Tanimoto, S. (2014). Should Your 8-year-old Learn Coding? In
Proceedings of the 9th Workshop in Primary and Secondary Computing
Education (pp. 60–69). New York, NY, USA: ACM.

Esper, S., Foster, S. R., & Griswold, W. G. (2013). CodeSpells: embodying the metaphor
of wizardry for programming. In Proceedings of the 18th ACM conference on
Innovation and technology in computer science education (pp. 249–254). ACM.

Feurzeig, W., Papert, S., Bloom, M., Grant, R., & Solomon, C. (1970). Programming-
languages as a conceptual framework for teaching mathematics. SIGCUE
Outlook, 4(2), 13–17.

Fraser, N. (2013). Blockly. https://code.google.com/p/blockly: Google.

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond curriculum: the exploring
computer science program. ACM Inroads, 3(2), 47–53.

Guzdial, M. (2004). Programming environments for novices. Computer Science
Education Research, 2004, 127–154.

Harel, I., & Papert, S. (Eds.). (1991). Constructionism. Norwood N.J.: Ablex Publishing.
Horn, M. S., Brady, C., Hjorth, A., Wagh, A., & Wilensky, U. (2014). Frog pond: a

codefirst learning environment on evolution and natural selection. In Proceedings
of the 2014 conference on Interaction design and children (pp. 357–360). ACM.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy
of programming environments and languages for novice programmers. ACM
Computing Surveys, 37(2), 83–137.

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle school
girls to learn computer programming. In Proceedings of the SIGCHI conference
on Human factors in computing systems (pp. 1455–1464).

Lewis, C. M. (2010). How programming environment shapes perception, learning and
goals: Logo vs. Scratch. In Proceedings of the 41st ACM Technical Symposium on
Computer Science Education (pp. 346–350). New York, NY.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by
choice: Urban youth learning programming with Scratch. ACM SIGCSE Bulletin,
40(1), 367–371.

Matsuzawa, Y., Ohata, T., Sugiura, M., & Sakai, S. (2015). Language Migration in non-
CS Introductory Programming through Mutual Language Translation
Environment. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (pp. 185–190). ACM Press.

Mullins, P., Whitfield, D., & Conlon, M. (2009). Using Alice 2.0 as a first language.
Journal of Computing Sciences in Colleges, 24(3), 136–143.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York:
Basic books.

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: teaching
CS0 with Alice. ACM SIGCSE Bulletin, 39(1), 213–217.

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., …
Silver, J. (2009). Scratch: Programming for all. Communications of the ACM,
52(11), 60.

Roque, R. V. (2007). OpenBlocks: An extendable framework for graphical block
programming systems (Master’s Thesis). Massachusetts Institute of Technology.

Slany, W. (2014). Tinkering with Pocket Code, a Scratch-like programming app for your
smartphone. In Proceedings of Constructionism 2014. Vienna, Austria.

Weintrop, D., & Wilensky, U. (2012). RoboBuilder: A program-to-play constructionist
video game. In C. Kynigos, J. Clayson, & N. Yiannoutsou (Eds.), Proceedings of
the Constructionism 2012 Conference. Athens, Greece.

Weintrop, D., & Wilensky, U. (2013). Supporting computational expression: How
novices use programming primitives in achieving a computational goal. Presented
at the American Education Researchers Association, San Francisco, CA, USA.

Weintrop, D., & Wilensky, U. (2015a). To Block or Not to Block, That is the Question:
Students’ Perceptions of Blocks-based Programming. In Proceedings of the 14th
International Conference on Interaction Design and Children (pp. 199–208).
New York, NY, USA: ACM.

Weintrop, D., & Wilensky, U. (2015b). Using Commutative Assessments to Compare
Conceptual Understanding in Blocks-based and Text-based Programs. In
Proceedings of the Twelth Annual International Conference on International
Computing Education Research. Omaha, NE.

Weintrop, D., Wilensky, U., Roscoe, J., & Law, D. (2015). Teaching Text-based
Programming in a Blocks-based World. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education (pp. 678–678). New York,
NY, USA: ACM.

Wilkerson-Jerde, M. H., & Wilensky, U. (2010). Restructuring Change, Interpreting
Changes: The DeltaTick Modeling and Analysis Toolkit. In J. Clayson & I. Kalas
(Eds.), Proceedings of the Constructionism 2010 Conference. Paris, France.

