
Playing by
Programming:

Making Gameplay
a Programming

Activity

David Weintrop
Uri Wilensky

Video games are an oft-cited reason for young learners
getting intere$ted in programming and computer science.
As such, many learning opportunities build on
this interest by having kids program their own video
games. This approach, while sometimes successful, has
its drawbacks stemming from the fact that the challenge
of programming and game building are left distinct from
the gamep!ay experience that initially drew learners in.
An alternate strategy to engage learners in programming
that builds on their interest and enjoyment of video
games is to integrate programming into the gameplay
experience directly through the design of program-to-
p!ay games. These games make programming a central
part of the activity of playing th.e game, fully immersing
programming within the game context. In this article, the
authors develop the genre of program-to-play games,

David Weintrop is a doctoral student in the Learning Sciences
at Northwestern University. His research focuses on the design
and implementation of accessible and engaging programming
environments that support learners in successfully encoding their
own ideas in computationally meaningful ways. This includes
questions of interface design, language features, and ways of
leveraging the prior knowledge and experiences !earners bring
to an activity. He is also interested in the use of technological
tools in supporting the exploration of non-computer science
subjects, particularly within the STEM disciplines (e-mai!:
dweintrop@u.northwestern.edu). Uri Wilensky is a Professor of
Learning Sciences, Computer Science, and Complex Systems
at Northwestern University. He is the founder and director of
the Center for Connected Learning and Computer-Based
Modeling and a founding faculty member of the Northwestern
Institute on Complex Systems. His core research interests are in
the design of learning technologies and agent-based modeling.
He has published more than 200 refereed articles and he is the
author of the widely-used Netlogo agent-based modeling
environment. He has employed NetLogo to develop computa-
tionally-based curriculum for all levels of education. He received
his Ph.D. from MIT in 1993 (e-mail: uri@northwestern.edu).

36

discuss key features of these environments and their
pedagogical potential, and highlight some exemplar
program-to-play games.

Rethinking Games and
Computer Science Education

Video games have become nearly ubiquitous in the lives of
kids growing up today. Be it addictive mobile games,
sophisticated blockbuster console games, or casual on line
games played through social networking sites-video
games are everywhere. The growth in popularity of video
games has not gone unnoticed by educators and designers
of educational technology. As a result, a growing number
of educational designers are using video games as a con-
text for learners to engage with new ideas and concepts. In
this way, the video game medium is being used to provide
meaningful learning opportunities, often with the hopes
that positive play experiences will increase interest in the
domain for the player. This is especially true for the field of
computer science, as the video games being played are
themselves products of the concepts and practices that
are central to computer science. Thus, interest in and en-
joyment of video games is a frequently cited reason for why
learners want to study computer science (Carter, 2006).
Blending video games and computer science education
often has learners create their own games. Numerous
game-authoring tools and game-building workshops exist
that rnake it easy for programming novices to create their
own unique garnes in hopes of providing early, positive
computer science experiences. This approach, while
sometimes successful, has the potential drawback that the
challenge of programming and game building are discon-
nected from the gameplay experience that initially drew
in !earners.

We propose program-to-play games as an alternate strat-
egy to engage learners in computer science. Program-to-
p lay games build on learners' interest and enjoyment of
video games while integrating prograrnrning directly into
the gameplay experience. These games make program-
ming an integral and essential part of the activity of play-
ing the game, fully immersing programming within the
game context. In this article we introduce the genre of
program-to-play games, discuss key features of these envi-
ronments, argue for the educational and pedagogical
potential of games that employ this gameplay mechanism,
and finally, highlight some existing program-to-play games.

Program-to-Play Games
Program-to-play games are defined by the use of pro-

gramming as a central mechanism of gameplay. Rather
than simply "gamifying" introductory programming activ-
ities to motivate and engage learners, program-to-play
games blend programming and gameplay to provide an
authentic and enriching programming experience. Though
this blending can be accomplished in a number of ways,
all games in this genre challenge players to conceive of

EDUCATIONAL TECHNOLOGY/May-June 2016

strategies and then figure out how to encode that idea
using the game's programming tools. Program-to-play
games shift gameplay away from in-the-moment reaction
and reflex towards a more deliberate, premeditated, and
thoughtful gameplay interaction, with programming
spurring and mediating in-game design thinking.

During gameplay, players engage in authentic program-
ming practices, including programmatically expressing
ideas, constructing and manipulating computational
abstractions, iteratively developing solutions, and debug-
ging constructed artifacts (Weintrop, Holbert, Wilensky,
& Horn, in press). This game design approach aligns the
concepts to be learned with the way the learner interacts
with and plays the game, a strategy found to be effective
for learning through gameplay (Clark, Nelson, Chang,
Martinez-Garza, Slack, & D' Angelo, 2011; Habgood &
Ainsworth, 2011; Holbert & Wilensky, 2014). Program-
to-play games are one instantiation of the genre of con-
structionist video games, which more broadly place
construction at the heart of gameplay (Weintrop, Holbert,
Wilensky, & Horn, 2012) and brings a "code-first" design
(Horn Brady, Hjorth, Wagh, & Wilensky, 2014) to the
video game medium.

The idea of using video games to situate and motivate
programming is not new. There is a long history of proj-
ects and tools that have successfully brought video
games and programming together to create meaningful
experiences for learners. This is most commonly done
through an authorship model, where learners engage in
programming by writing their own video games. This
approach was pioneered by Paper! and students as part
of the Instructional Software Design Project (ISDP),
which had students author games about fractions in the
Logo language as part of a larger constructionist learning
experience (Harel & Paper!, 1990; Kafai, 1994). The
ISDP project found that students learned more about
both programming and math than students who learned
the content separately in the traditional curriculum.

Since early successes with Logo, a number of other
introductory programming tools have been used in
game-making educational contexts, including Scratch
(Resnick et al., 2009), Alice (Werner, Campe, & Denner,
2012), AgentSheets (Basawapatna, l<oh, & Repenning,
2010), NetLogo (Holbert & Wilensky, 2011; Wilensky,
1999), and StarLogo TNG (Begel & Klopfer, 2007).
Additionally, new tools have been specifically designed
to rnake it easy for novice programmers to author
fun and engaging games, including Stagecast Creator
(Smith, Cypher, & Tesler, 2000), Game Maker (Overmars,
2004), and Toon Talk (Kahn, 1996).

Another variant of the game authorship approach
provides players with tools that enable the creation of
new content in existing games, be it new items, levels, or
opponents (Robertson & Good, 2005).

While these tools have been successful, there are a
number of features of the program-to-play approach that

EDUCATIONAL TECHNOLOGY/May-June 2016

build on the strengths of the game authorship model and
also address some of its shortcomings.

Benefits of Program-to-Play Games
The strengths of the program-to-play approach that differ-

entiate it from the authorship model, and make it an effec-
tive context for learning to program, stem from the parallels
between the act of playing video games and the practice of
programming. Additionally, there are features of the video
game context that are particularly well suited to foster
productive programming practices and encourage players
to interact with and use concepts central to programming.

The Parallels Between
Gaming and Programming

There are many similarities between programming and
playing video games. For example, when playing a video
game, players do not expect to be successful on their ini-
tial attempt; instead, game norms dictate that players will
need multiple tries to accomplish an in-game challenge,
trying different approaches, refining strategies, and learn-
ing from prior mistakes as they progress. In this way,
games are low-stakes environments where is a
part of success (Squire, 2005). Programming shares this
feature, as programs rarely work correctly on the first try.
Instead, writing working programs requires successive
debugging. A willingness to trying different approaches
to see what works, and the abi I ity to learn from prior
mistakes without getting frustrated at a lack of immediate
success, are productive dispositions for both program-
ming and playing video games. By aligning the construc-
tion of programs with the act of gameplay, players are
situated in a context where early failures are expected
and provide valuable learning experiences.

A second productive parallel between gameplay and
programming that we leverage in the program-to-play
approach is the iterative, incremental nature of both
activities. When playing a game, challenges are laid out
sequentially such that later levels depend on skills and
abilities mastered in earlier levels. At the outset of a game,
players develop foundational capabilities that are then
incrementally built upon as the player's skill improves and
the in-game challenges get more difficult. Likewise, when
composing programs, at the outset, basic functionality is
implemented that enables the program to carry out simple
and more central aspects of the ultimate goal. As the
development of the program proceeds, these basic func-
tions are built upon, revised, and improved to support
more sophisticated behaviors that are added later in the
development process. In this way, programs are iteratively
and incrementally built. By embedding the programming
challenge within the game itself, the incremental nature of
both activities helps learners develop an iterative perspec-
tive on the practice of programming.

A third similarity between programming and playing
video games is not a feature of games specifically, but of

37

the larger set of norms that accompany gameplay. For
any given game, players are only a few Web searches
away from being able to find walk-through videos, game
guides, and other online support materials. Likewise, for
any given programming challenge, a carefully crafted
search query will quickly lead you towards information
that can help you accomplish the task at hand. While this
feature can be abused (in both video games and program-
ming), knowing how and when to take advantage of use-
ful resources available beyond the immediate problem
context is an important skill. More often than not with both
programming and video games, potential solutions found
externally cannot (or should not) be directly applied, but
instead need to be adapted and configured to address the
problem at hand. This process of adaption entails figuring
out how a discovered solution works, then appropriating
just the necessary pieces of it. Through studying solutions
developed by others and deciding if and how the solution
can be integrated into their own game, players engage in
the authentic programming practice of using online
resources, while also further developing the skills of code
comprehension and reasoning about the programming
constructed used as part of the found solution.

Contextualizing and Scaffolding
Programming with Games

Along with these productive para I leis between video
games and programming, there are other productive rea-
sons to situate a programming activity within a video
game. Research from the computer science education
community has found that context is an important compo-
nent of learning to program, especially early on (Cooper &
Cunningham, 2010). Video games, and the engaging and
motivating experiences they provide, can serve as an
effective context within which meaning-making around
programming concepts can occur (Weintrop & Wilensky,
2014b). By situating computational abstractions within
video game contexts, game resources can help learners
make sense of abstract ideas and understand how to incor-
porate them into programs. Further, games provide a visu-
al environment in which to watch programs run, providing
immediate and meaningful feedback about whether a
program behaved as intended.

The video game context also provides a natural, unob-
trusive way to scaffold players in moving from simple to
more sophisticated programs that utilize more complex
constructs (Weintrop & Wilensky, 2014a). Given the
iterative and incremental nature of video games,
challenges become more difficult as a player advances
in program-to-play games. Players thus need to respond
by creating more sophisticated programs. This provides a
mechanism for the game designer to encourage and
reward players for using more advanced programming
constructs and creating more sophisticated programs. In
this way the game can scaffold players in moving
from simple, straightforward programs to more complex

38

programs that include more sophisticated programming
ideas.

Potential Limitations
While initial studies of program-to-play games as

introductory programming environments have been
promising, questions remain about potential drawbacks
and limitations of the approach. One central concern is
that the use of video games could potentially contribute
to the existing gender disparity within the field of com-
puter science. While video game playing is becoming
increasingly widespread among girls, it is still perceived
as a largely male activity; thus, it is important to consid-
er and incorporate themes and mechanics that appeal to
a broad, diverse audience.

A second concern is that games that provide clear out-
comes (in the form of success/failure or wins/losses) could
promote the sense that unsuccessful programs are 'wrong,'
as opposed to 'fixable.' Likewise, players might look for
the one 'correct' program, and not learn that in program-
ming, there are a wide variety of ways to accomplish a
specific task.

Finally, where video games are often seen in a com-
petitive light, programming is a much more communal,
collaborative activity. By introducing programming in a
potentially combative context, it is possible that learners
will develop an individualist, competitive view of the
practice and miss the cooperative, community-oriented
aspects of programming.

Research is currently underway seeking to understand
the extent of these issues on learners and to investigate
potential design solutions to mitigate their effects.

Examples of Program-to-Play Games
Having introduced the concept of a program-to-play

game, and discussed some of the benefits of the
approach, we now present some exemplar program-to-
play games to concretize our conceptual introduction of
program to play games and emphasize the diversity of
the genre. This is by no means an exhaustive list, but
instead intended to describe various approaches to inte-
grating programming into gameplay.

Programming the Character:
The Legacy of Karel

The first game we want to highlight is a classic that was
initially designed as a way to introduce basic program-
ming concepts, and developed a formula that has often
been replicated since its release. Karel the Robot (Pattis,
1981) is a game in which players write simple programs to
control an on-screen robot as it moves around a two-
dimensional world (Figure la). At each level, players are
asked to write a program using a simplified programming
language to get Karel to pick-up a set of "beepers" that
have been scattered throughout the world. As players
progress, the levels require players to integrate condition-

EDUCATIONAL TECHNOLOGY/May-June 2016

Lebf-Alt.EH3.plm Lebl.EH3 World-Alt
D•girming-Of-Progr•m 9 . . . • . • .

' B
{ No N!iw Instructions "' } 7
Beginoing-Of-Ex•cution

6
1urnle-ft; 5
move;
move; 4 . :::::1: move-;

' turnoff .
End-Of-ExecuOon z . End-Of-Program

2 3 ' 5 6 7 a

(a) (b)
Figure 1. Karel the Robot (a) and LightBot (b)- two player-versus-environment program-to-play games.

(a) (b)
Figure 2. Two examples of player-versus-player program-to-play games: RoboBui/der (a) and /PRO (b).

al and looping logic into their programs in order to collect
all the beepers. Karel the Robot initially used its own
Logo-like language but has since been modified to use a
number of other languages including C++ (Karel++),
Python (Guido van Robot and RUR-PLE), Java (Karel/.
Robot), and JavaScript (CodeHS). More recent variants
of this game design, such as LightBot (Figure 1b),
Robozzle, and Cato's Hike, replace the text-based pro-
gramming language with a graphical language to pre-
vent syntactic errors but still have players engage with
the same concepts as they play.

The approach of having players write programs to
control characters directly is a common form of program-
to-play game; but where Karel the Robot focused on
motion and a simple pick-up/drop mechanism, other
games provide a much larger set of capabilities to the play-
er. For example, Gidget (Lee et al., 2014) provides players
with a Python-like language and has early levels similar
to Karel before moving on to levels that have player use
variables, lists, conditional, objects, and looping struc-
tures. Other games are designed to teach players specific
programming concepts. For example, Wu's Castle (Eagle &
Barnes, 2008) is a role-playing game in which players
instruct characters to create armies of spowmen by issuing
Java commands that depend on looping structures and

EDUCATIONAL TECHNOLOGY/May-June 2016

array manipulation to succeed at in-game challenges.
While Karel and its descendants had players author

programs to control their robots in a player-versus-environ-
ment cha I lenge, another set of program-to-play games uses
a similar mechanism, but in a player-versus-player model.
Robocode (Nelson, 2001) provides players with a Java
API that al lows them to control on-screen robots as they
compete in battles against other robots. RoboBuilder
(Figure 2a) uses the Robocode library and adds a blocks-
based programming language, making it easier for learners
to play without prior programming experience (Weintrop &
Wilensky, 2012). A second game that uses a similar game-
play mechanism in a very different context is /PRO (Martin,
Berland, Benton, & Smith, 2013), which has players give
directions to soccer-playing robots using a visual program-
ming language running on a mobile device (Figure 2b).

Augmenting Characters Through Programming
The above games have players write programs to control

their in-game characters. Another way to integrate pro-
gramming into gameplay is by having players write pro-
grams to add capabilities to their in-game characters. For
example, in CodeSpells (Esper, Foster, & Griswold, 2013),
players create spells for their characters by writing pro-
grams that define what the spells will do (Figure 3a). In this

39

(a) (b)
Figure 3. Two program-to-play games that use programming as a way to add new capabilities to in-game
characters: (a) CodeSpells and (b) CodeCombat.

(a) (b)
Figure 4. Two program-to-play games that allow players to write code to manipulate the game environments:
(a) Hack n Slash and (b) Code Hero.

way, programming remains an integral part of the game,
but it is a distinct activity independent of controlling the
character in real time, leaving in place more conventional
gameplay mechanics. A second, similar approach is used
in CodeCombat (Figure 3b), where players define sets of
instructions for their in-game characters to carry out as
they navigate the world, defeating enemies and collecting
items. The items that players collect grant new capabilities
to the characters in the form of new instructions that can
be included in programs, thus linking in-game accom-
plishments with new and more sophisticated programs.

(Re) Programming Worlds and Environments
A third way to integrate programming into gameplay

is by allowing players to programmatically interact with
the environment in which the game is played. The first
example of this type of program-to-play game is called
Hack n Slash (Figure 4a). In this game, players have a
magic sword that allows them to view and edit the prop-
erties of in-game objects. This game mechanic allows
players to rewrite the code that is controlling the game
and defining the objects in it as they play. For example,
if there is an immovable obstacle in the player's way,

40

the player, using their magical sword, can rewrite the
properties of that obstacle, making it moveable.

A second example of th is type of game is Code Hero
(Figure 4b), a first-person shooter that allows the player to
"shoot" small programs at elements in the world. These
code snippets execute when they reach their target. So, for
example, if a platform is out of reach, but the player wants
to jump to it, the player could author a short program that
would modify the y-position of the object that it hits, and
then shoot that code at the platform, lowering ·,t so the
player can jump on it.

These two games, along with others presented in
this article, illustrate some of the ways that programming
has been integrated into gameplay and demonstrate the
program-to-play approach to video game design.

Conclusion
Video games often serve as a gateway to introduce

learners to the field of computer science, with game
authorship activities serving as the primary way to bring
these two interrelated domains together. In this article, we
have presented an alternative approach to blending video
games and programming through the development of

EDUCATIONAL TECHNOLOGY/May-June 2016

program-to-play games. By integrating the writing of
programs into the gameplay mechanics of the game,
players can be introduced to fundamental computer sci-
ence concepts and develop productive programming
practices in fun, motivating, and meaningful ways.

Program-to-play games draw on parallels between the
activity of playing video games and productive practices in
programming, as well as features unique to the video
game medium, to create a new way to introduce and
engage younger learners with ideas from the field of
computer science. Program-to-play video games con-
tribute a new approach to the growing number of ways
that educational designers can bring programming and
computer science into the lives of young learners. In doing
so, we hope that these games wi 11 help educate and
inspire the next generation of great programmers. D

References
Basawapatna, A. R., Koh, K. H., & Repenning, A. (2010). Using

scalable game design to teach computer science from middle
school to graduate school. ln Proc. of the 15th Annual
Conference on Innovation and Technology in Computer
Science Education (pp. 224-228). New York: ACM.

Begel, A., & Klopfer, E. (2007). Starlogo TNC: An introduction to
game development. }ourhal of £-Learning.

Carter, L. (2006). Why students with an apparent aptitude for
computer science don't choose to major in computer science.
In Proc. of the 31th Technical Symposium on Computer
Science Education (pp. 27-31). New York: ACM.

Clark, D. B., Nelson, B. C., Chang, H. Y., Martinez-Garza, M.,
Slack, K., & D' Angelo, C. M. (2011). Exploring Newtonian
mechanics in a conceptually-integrated digital game:
Comparison of learning and affective outcomes for students in
Taiwan and the United States. Computers & Education, 57(3),
2178-2195.

Cooper, S., & Cunningham, S. (2010). Teaching computer sci-
ence in context. ACM Inroads, 7 (1), 5-8.

Eagle, M., & Barnes, T. (2008). Wu's Castle: Teaching arrays and
loops in a game. ACM SICCSE Bulletin, 40(3), 245-249.

Esper, S., Foster, S. R., & Griswold, W. G. (2013). CodeSpe!!s:
Embodying the metaphor of wizardry for programming. In
Proc. of the 18th Annual Conference on Innovation and
Technology in Computer Science Education (pp. 249-254).
New York: ACM.

Habgood, M. P. J., & Ainsworth, S. E. (2011). Motivating children
to learn effectively: Exploring the value of intrinsic integration
in educational games. journal of the Learning Sciences, 20(2),
169-206.

Harel, I., & Papert, S. (1990). Software design as a learning envi-
ronment. Interactive Learning Environments, 1(1), 1-32.

Holbert, N., & Wilensky, U. (2011). FormulaT Racing: Designing
a game for kinematic exploration and computational thinking.
In Proc. of the 7th Games, I.Earning, & Society Conference,
Madison, WI.

Holbert, N., & Wilensky, U. (2014). Constructible authentic
representations: Designing video games that enable players to
utilize knowledge developed in-game to reason about science.
Technology, Knowledge, and Learning, 79(1-2), 53-79.

Horn, M. S., Brady, C., Hjorth, A., Wagh, A., & Wilensky, U.

EDUCATIONAL TECHNOLOGY/May-June 2016

(2014). Frog Pond: A'codefirst learning environment on evo-
lution and natural selection. Jn Proc. of the 2014
Conference on Interaction Design and Children (pp. 357-
360). New York: ACM.

Kafai, Y. B. (1994). Minds in play: Computer game design as a
context for children's learning. New York: Routledge.

Kahn, K. (1996). Toon Talk: An animated programming environ-
ment for children. journal of Visual Languages & Computing,
7(2), 197-217.

Lee, M. J., Bahmani, F., Kwan, I., LaFerte, J., Charters, P., Horvath,
A., ... Ko, A. (2014). Principles of a debugging-first puzzle
game for computing education. In Proc. of the 2014 IEEE
Symposium on Visual Languages and Human-Centric Com-
puting (pp. 57-64). New York: IEEE.

Martin, T., Berland, M., Benton, T., & Smith, C. M. (2013).
Learning programming with /PRO: The effects of a mobile,
social programming environment. journal of Interactive
Learning Research, 24(3), 301-328.

Nelson, M. (2001). Robocode. IBM Advanced Technologies.
Overmars, M. (2004). Teaching computer science through game

design. Computer, 37(4), 81-83.
Pattis, R. E. (1981). Karel the RDbot: A gentle introduction to the

art of programming. New York: John Wiley & Sons.
Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-

Hernandez, A., Rusk, N., ... Silver, j. (2009). Scratch: Pro-
gramming for all. Comm. of the ACM, 52(11), p. 60.

Robertson, J., & Good, J. (2005). Story creation in virtual game
worlds. Comm. of the ACM, 48(1), 61-65.

Smith, D. C., Cypher, A., & Tesler, L. (2000). Programming by
example: Novice programming comes of age. Comm. of the
ACM, 43(3), 75-81.

Squire, K. (2005). Changing the game: What happens when
video games enter the classroom? Innovate: journal of Online
Education, 7(6).

Weintrop, D., Holbert, N., Wilensky, U., & Horn, M. S. (2012).
Redefining constructionist video games: Marrying construc-
tionism and video game design. In C. Kynigos, J. Clayson, & N.
Yiannoutsou (Eds.), Proc. of the Constructionism 2012
Conference, Athens, Greece.

Weintrop, D., Holbert, N., Wilensky, U., & Horn, M. S. (in press).
Computational thinking in constructionist video games.
International journal of Game-Based Learning.

Weintrop, D., & Wilensky, U. (2012). RoboBuilder: A program-
to-play constructionist video game. ln C. Kynigos, J. Clayson,
& N. Yiannoutsou (Eds.), Proc. of the Constructionism 2012
Conference, Athens, Greece.

Weintrop, D., & Wilensky, U. (2014a). Program-to-play
videogames: Developing computational literacy through
gameplay. In Proc. of the 10th Games, Learning, & Society
Conference, Madison, Wl.

Weintrop, D., & Wilensky, U. (2014b). Situating programming
abstractions in a constructionist video game. Informatics in
Education, 13(2), 307-321.

Werner, L., Campe, S., & Denner, J. (2012). Children learning
computer science concepts via Alice game-programming. In
Proc. of the 43rd technical symposium on Computer Science
Education (pp. 427-432). New York: ACM.

Wilensky, U. (1999). Netlogo. Evanston, IL: Center for
Connected Learning and Computer-Based Modeling,
Northwestern University; http://ccf.northwestern.edu/netlogo.

41

