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Abstract 
Block-based programming languages are becoming increasingly common in introductory 
computer science classrooms, from kindergarten through grade twelve. One oft-cited justification 
for this switch to block-based environments is the idea that the concepts and practices developed 
using these introductory tools will prepare learners for future computer science learning 
opportunities. In this paper, we present data investigating how a five-week introductory 
curriculum in which high school students used either a block-based, a text-based, or a hybrid 
blocks/text programming environment, affects how the students approach the more traditional 
Java curriculum that immediately follows. Using a quasi-experimental design, we show that 
there are subtle differences in programming practices between students that worked in block-
based environments compared to students who worked in isomorphic text-based and hybrid 
blocks/text environments. This paper also provides an example of using computational logging 
as a methodological approach for understanding emerging programming practices.  

Introduction 
Block-based programming is quickly becoming the way that younger learners are 

introduced to programming and to computer science in general. Led by the popularity of tools 
such as Scratch (Resnick et al., 2009), Snap! (Harvey & Mönig, 2010) and Code.org’s suite of 
Hour of Code activities (Hour of Code, 2013), millions of kids are engaging with programming 
through drag-and-drop graphical tools. Due in part to the success of such tools at engaging 
novices in programming, these environments are increasingly being incorporated into curricula 
designed for high school computer science classrooms, like Exploring Computer Science 
(Goode, Chapman, & Margolis, 2012), the CS Principles project (Astrachan & Briggs, 2012), 
and Code.org’s curricular offerings (Code.org Curricula, 2013). Many uses of block-based tools 
in formal educational contexts presuppose that such tools will help prepare students for later 
instruction in text-based languages (Armoni, Meerbaum-Salant, & Ben-Ari, 2015; Brown, 
Mönig, Bau, & Weintrop, 2016; Dann, Cosgrove, Slater, Culyba, & Cooper, 2012; Powers, 
Ecott, & Hirshfield, 2007). While work has been done focusing on learning with block-based 
tools (e.g. Franklin et al., 2017; Grover & Basu, 2017; Weintrop & Wilensky, 2015), little 
empirical work has rigorously tested the transition to text-based languages in classroom settings. 
This question is of great importance given the growing role of block-based tools in K-12 
education. As one student in the study said: “I can guarantee that the transition between 
languages will be hard to do.” 

This paper seeks to understand if and how introductory programming tools (block-based, 
text-based, and hybrid blocks/text) prepare learners for the transition to conventional text-based 
languages. To answer this question, we conducted a quasi-experimental study in three high 
school computer science classrooms, comparing isomorphic block-based, text-based, and hybrid 



block-based programming environments. To understand the differences, we investigate 
programming practices (like frequency of compilation and size of changes between consecutive 
compilations) and patterns of errors in authored programs. 

Data Collection 
The data presented in this paper are part of a larger study comparing introductory 

programming modalities at a selective enrollment public high school in a Midwestern city 
(Weintrop, 2016). We followed students in three sections of an elective introductory 
programming course for the first 15 weeks of the school year. Each section spent the first five 
weeks of the course working in one of three introductory programming environments: a Text 
condition, a Blocks condition, and a Hybrid condition (in this condition, students could browse 
through a Blocks library, but when dropped on the canvas, these blocks morphed into text) 
(Figure 1). All three environments are extensions of the Pencil Code platform (Bau, Bau, 
Dawson, & Pickens, 2015). Each class then spent the remaining 10 weeks programming in Java. 
A single teacher who had previously taught the course many times before taught all three 
sections.  

 

   
(a) (b) (c) 

Figure 1. The three forms of the programming environment used in the study: (a) block-based, 
(b) hybrid blocks/text, and (c) text. 

 
In total, 90 students participated in the study (approximately 30 students per section), 

with 75 students identifying as male and 15 identifying as female. The students participating in 
the study were 41% White, 27% Hispanic, 11% Asian, 10% African American, and 11% Multi-
racial and ranged from freshman to senior in age. Roughly half of these students spoke a 
language other than English in their households and 58.6% of the school-wide student body 
comes from economically disadvantaged households.  

This paper analyzes the programs written by students in the Java portion of the class to 
understand the lasting impact the various introductory modalities had on students’ programming 
ability. Each classroom computer was instrumented so that a call to compile a program1 would 
send a copy of that Java program, along with the complier output, to a remote server controlled 
by the researchers. In this way, each student-authored program and each run of the program was 
logged. The following analysis, broken down into a series of questions, uses this data to explore 
different aspects of the stated research question. 

Findings 

                                                
1 This was a call to javac executed from the command line by the student. 



The findings section of the paper is broken down into a number of guiding questions 
revealing different aspects of learner practices and outcomes as they transitioned from 
introductory tools to the Java programming language. 

Are there differences in how often students attempted to run their programs? 
Students in the Blocks condition ran the javac command an average of 142.3 times (SD 

= 67.1). The same statistic for the Text condition was 130.9 (SD = 61.1) and for the Hybrid 
condition was 150.9 (SD = 79.2) . The results of an F-test (F(2, 80) = .594, p = .55) on the three 
samples shows no statistical significance, meaning in aggregate, there was no difference in the 
number of calls to javac based on the introductory modality students used. Figure 2 shows the 
average number of compilations for each student per day across the three conditions by week2. 
This chart includes both successful compilations as well as calls the resulted in an error. 

 

 
Figure 2. The average number of javac calls per student per day grouped by week. 

 
This figure shows spikes (like weeks 4 and 7) and dips (like in weeks 5, 8, and 9), over 

the course of the ten-week curriculum. The shifts in per-week runs from week-to-week are 
largely explained by the in-class activity for the week. For example, in week 7, students were 
introduced to the char variable type through an assignment where they were asked to write a 
short program, then try and run it will different values to see what would happen. As a result, 
there was a spike in week 7 as these types of assignments (that would have student call javac 
over and over again) were not the norm.  
 

                                                
2 Unless otherwise specified, all charts in this section show per-student averages to control for 
the fact that not all classes had the same number of students. In addition, the charts do not 
include week 1 and week 10 because students did not compile or run any programs in those 
weeks. 
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Are there differences in how error prone/successful the students’ compilations are? 
While the previous analysis included all calls to javac, we now separate these calls into 

‘successful’ and ‘failed’ in order to look for systematic patterns across the three conditions. 
Figure 3 uses the same compilation data as the previous chart, but now only includes successful 
compilations. The pattern in this figure largely matches the data from the previous figure.  
 

 
Figure 3. Average number of successful compilations by condition. 

 
Students in the text condition frequently had the lowest average number of successful 

compilations, while students from the Hybrid condition showed the highest number of successful 
compilations. Since the students were all working on the same assignments in the same 
programming language (Java), the difference in successful runs does suggest a subtle difference 
in programming practice based on introductory modality. The higher frequency of successful 
compilations of Block and Hybrid students implies these students had higher levels of success in 
writing syntactically valid programs. One explanation for this pattern is that students in these 
conditions were more likely to compile their program at intermediate steps along the way. In 
other words, as they were writing their program, they would check to see if the portion they had 
written was correct before continuing with the next portion. A second potential explanation is 
that students these conditions ran their programs more frequently once they were completed, thus 
inflating their successful compilation counts. A third possible explanation is as simple as the fact 
that students in the Text condition did not call javac as often as students in the other two 
classes. In fact, it is possible Text students took longer to author programs in the first place 
which may have caused them to spend less time exploring and playing with the program they had 
authored. 

Are there differences in the amount of code added in between successful compilations? 
Along with compilation patterns, we are also interested in composition patterns. To 

measure the distance between two programs, we use the Levenshtein distance between the texts 
of the two programs. Levenshtein distance captures the minimum number of single-character 

0	

5	

10	

15	

20	

25	

2	 3	 4	 5	 6	 7	 8	 9	

Av
g.
	N
um

be
r	o

f	S
uc
ce
ss
fu
l	C
om

pi
la
6o

ns
	

Week	

Average	Number	of	Successful	Compila6ons	by	Week	

Blocks	

Hybrid	

Text	



edits (i.e. insertions, deletions or substitutions) required to change one string into the other. Table 
1 shows the results of this analysis. The columns capture the size of the Levenshtein distance 
between consecutive successful programs, while the cells show the average number of 
occurrences of that distance per student. The lower the number, the less often a program with 
that distance from the previous successful compilation was run by a student. For example, the 
left-most column that contains numbers shows that, on average, students in the Blocks condition 
complied a program that was identical to the last program they complied 7.00 times over the 
course of the 10 weeks, while the Hybrid condition recompiled programs an average of 7.40 
times and the Text condition only did this 6.16 times.  

 
Table 1. The frequency of successful compilations with a given Levenshtein distance from the 
last successful compilation of the same program. 

 
Levenshtein Distance 

0 1 2 3 4 5 - 10 11 - 25 26 - 100 > 100 
Blocks 7.00 3.37 5.70 1.33 2.37 4.30 3.52 6.56 3.33 
Hybrid 7.40 3.68 5.88 1.84 2.60 4.64 4.72 6.48 3.76 

Text 6.16 3.00 5.58 1.23 2.13 3.77 3.48 5.87 2.55 
 

The students in the Text condition made fewer large changes to their programs and also 
re-ran their programs without making any changes less often than the other two conditions. 
These numbers tell the same story as Figure 2, which shows the Text group to have called javac 
least often. The most likely explanation for this is that students in the Text condition are slower 
to author programs in Java, but this study did not collect keystroke data, which is the data source 
needed to provide strong evidence for this outcome. The data does not show that fewer 
compilations is a result of the students making larger sets of changes between runs. 

Are there differences in the number and type of errors encountered? 
Just as we can glean information from patterns found in successful compilation calls, we 

can also look at novice programmers emerging understanding by looking of programming at the 
errors they encounter. Every time a student makes a call to javac, our system records all errors 
reported by the Java compiler. The plurality of compilation errors produced by the Java compiler 
has been documented as both a source of difficulty for novices (Nienaltowski, Pedroni, & Meyer, 
2008; Traver, 2010) as well as an opportunity for improving introductory programming 
environments (Flowers, Carver, & Jackson, 2004; Hristova, Misra, Rutter, & Mercuri, 2003). 
Table 2 provides on overview of the frequency of failed compilations per student as well as 
information about the number of errors per failed javac call broken down by condition. 

 
Table 2. High-level descriptive patterns of failing compilations and errors over the course of the 
entire 10 week period. 

 
Failed javac calls per 

student 
Compilation errors 

per student 
Compilation errors per 

failed javac call 
Blocks 75.11 165.78 2.23 
Hybrid 80.04 212.04 2.5 

Text 69.55 164.26 2.21 



Unfortunately, the compiler often does not (and at times cannot) provide meaningful 
error messages to the programmer. For instance, a missing ‘;’ could result in the error message 
“expected ‘;’ on line 11” or by the rather generic message “not a statement”. In 
addition, many error messages are class specific (e.g. “Class names, 'VarRefConcate', 
are only accepted if annotation processing is explicitly requested”). In 
order to make the analysis more meaningful, errors were grouped into more broadly defined 
error types. For example, the class name error above was classified as an “Incorrect javac 
Call” as that is the most common cause of that particular error. 

Figure 4 shows the ten most frequently found errors encountered, grouped by condition. 
The values in this chart are reported on a per-compilation basis to control for how often students 
chose to compile as well as the fact that the three conditions did not have the same number of 
students. 

 

 
Figure 4. The ten most frequently encountered Java errors, grouped by condition. 

 
The most common error was: “’;’ expected”, which is seen when students forget to 

end a statement with a semi-colon, a syntactic requirement of Java. The second most common 
error: “cannot find symbol”, occurs when students try and use a variable before it has been 
defined. Neither of these two errors are possible in the introductory modality, as semi-colon 
terminators were not required and variables do not need to be instantiated before they are used. It 
is important to note that regardless of introductory modality, novices frequently encounter these 
two errors. Both Jadud (2005) and Jackson et al. (2004) identified these two mistakes as the most 
frequently encountered in their data.  

Looking across the ten errors, we see that half of the ten most frequently occurring errors 
were seen least often by students in the Blocks condition. One possible explanation for this 
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outcome is that because Java code is so unlike the block-based modality the students had spent 
the first five weeks working in, they were more attentive to the specific syntax they were being 
forced to use. Text and Hybrid students on the other hand, were already accustomed to 
manipulating a text-based language, but were used to an entirely different syntax, so they may 
have assumed a higher level of similarity across the text-based languages resulting in more 
errors. 

Conclusion 
While block-based languages have exploded in popularity, little work has been done to 

show that students learning in these environments are effectively transitioning to more traditional 
text-based languages like Java. This paper is meant to be a step towards trying to understand how 
the modality a learner uses in an introductory course impacts their approach to programming in a 
professional language. Even with the relatively small sample size, we were able to take 
computationally logged data and qualitatively analyze it in order to produce several reasonable 
explanations. Our analysis shows minor deviations in the programming patterns adopted by 
novices as they transition from introductory tools to Java based on modality, but few large or 
statistically significant patterns. This suggests the differences that emerge are more nuanced and 
more-learner specific than can be captured in the coarse grained analysis provided here. 
Nevertheless, this paper provides evidence towards a counter-narrative suggesting that one 
modality is not inherently ‘better’ than another. Instead, modality (block-based, text-based, or 
hybrid blocks/text interfaces) is just one dimension of a more complex learning context that 
shapes learners emerging attitudes and understandings. 
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