
Blocking Progress? Transitioning from Block-based to Text-based
Programming

David Weintrop*, Connor Bain#, Uri Wilensky#
dweintrop@uchicago.edu, connorbain2015@u.northwestern.edu, uri@northwestern.edu

Center for Connected Learning and Computer-based Modeling
* UChicago STEM Education, University of Chicago

Learning Sciences & Computer Science, Northwestern University

Abstract
Block-based programming languages are becoming increasingly common in introductory
computer science classrooms, from kindergarten through grade twelve. One oft-cited justification
for this switch to block-based environments is the idea that the concepts and practices developed
using these introductory tools will prepare learners for future computer science learning
opportunities. In this paper, we present data investigating how a five-week introductory
curriculum in which high school students used either a block-based, a text-based, or a hybrid
blocks/text programming environment, affects how the students approach the more traditional
Java curriculum that immediately follows. Using a quasi-experimental design, we show that
there are subtle differences in programming practices between students that worked in block-
based environments compared to students who worked in isomorphic text-based and hybrid
blocks/text environments. This paper also provides an example of using computational logging
as a methodological approach for understanding emerging programming practices.

Introduction
Block-based programming is quickly becoming the way that younger learners are

introduced to programming and to computer science in general. Led by the popularity of tools
such as Scratch (Resnick et al., 2009), Snap! (Harvey & Mönig, 2010) and Code.org’s suite of
Hour of Code activities (Hour of Code, 2013), millions of kids are engaging with programming
through drag-and-drop graphical tools. Due in part to the success of such tools at engaging
novices in programming, these environments are increasingly being incorporated into curricula
designed for high school computer science classrooms, like Exploring Computer Science
(Goode, Chapman, & Margolis, 2012), the CS Principles project (Astrachan & Briggs, 2012),
and Code.org’s curricular offerings (Code.org Curricula, 2013). Many uses of block-based tools
in formal educational contexts presuppose that such tools will help prepare students for later
instruction in text-based languages (Armoni, Meerbaum-Salant, & Ben-Ari, 2015; Brown,
Mönig, Bau, & Weintrop, 2016; Dann, Cosgrove, Slater, Culyba, & Cooper, 2012; Powers,
Ecott, & Hirshfield, 2007). While work has been done focusing on learning with block-based
tools (e.g. Franklin et al., 2017; Grover & Basu, 2017; Weintrop & Wilensky, 2015), little
empirical work has rigorously tested the transition to text-based languages in classroom settings.
This question is of great importance given the growing role of block-based tools in K-12
education. As one student in the study said: “I can guarantee that the transition between
languages will be hard to do.”

This paper seeks to understand if and how introductory programming tools (block-based,
text-based, and hybrid blocks/text) prepare learners for the transition to conventional text-based
languages. To answer this question, we conducted a quasi-experimental study in three high
school computer science classrooms, comparing isomorphic block-based, text-based, and hybrid

block-based programming environments. To understand the differences, we investigate
programming practices (like frequency of compilation and size of changes between consecutive
compilations) and patterns of errors in authored programs.

Data Collection
The data presented in this paper are part of a larger study comparing introductory

programming modalities at a selective enrollment public high school in a Midwestern city
(Weintrop, 2016). We followed students in three sections of an elective introductory
programming course for the first 15 weeks of the school year. Each section spent the first five
weeks of the course working in one of three introductory programming environments: a Text
condition, a Blocks condition, and a Hybrid condition (in this condition, students could browse
through a Blocks library, but when dropped on the canvas, these blocks morphed into text)
(Figure 1). All three environments are extensions of the Pencil Code platform (Bau, Bau,
Dawson, & Pickens, 2015). Each class then spent the remaining 10 weeks programming in Java.
A single teacher who had previously taught the course many times before taught all three
sections.

(a) (b) (c)

Figure 1. The three forms of the programming environment used in the study: (a) block-based,
(b) hybrid blocks/text, and (c) text.

In total, 90 students participated in the study (approximately 30 students per section),

with 75 students identifying as male and 15 identifying as female. The students participating in
the study were 41% White, 27% Hispanic, 11% Asian, 10% African American, and 11% Multi-
racial and ranged from freshman to senior in age. Roughly half of these students spoke a
language other than English in their households and 58.6% of the school-wide student body
comes from economically disadvantaged households.

This paper analyzes the programs written by students in the Java portion of the class to
understand the lasting impact the various introductory modalities had on students’ programming
ability. Each classroom computer was instrumented so that a call to compile a program1 would
send a copy of that Java program, along with the complier output, to a remote server controlled
by the researchers. In this way, each student-authored program and each run of the program was
logged. The following analysis, broken down into a series of questions, uses this data to explore
different aspects of the stated research question.

Findings

1 This was a call to javac executed from the command line by the student.

The findings section of the paper is broken down into a number of guiding questions
revealing different aspects of learner practices and outcomes as they transitioned from
introductory tools to the Java programming language.

Are there differences in how often students attempted to run their programs?
Students in the Blocks condition ran the javac command an average of 142.3 times (SD

= 67.1). The same statistic for the Text condition was 130.9 (SD = 61.1) and for the Hybrid
condition was 150.9 (SD = 79.2) . The results of an F-test (F(2, 80) = .594, p = .55) on the three
samples shows no statistical significance, meaning in aggregate, there was no difference in the
number of calls to javac based on the introductory modality students used. Figure 2 shows the
average number of compilations for each student per day across the three conditions by week2.
This chart includes both successful compilations as well as calls the resulted in an error.

Figure 2. The average number of javac calls per student per day grouped by week.

This figure shows spikes (like weeks 4 and 7) and dips (like in weeks 5, 8, and 9), over

the course of the ten-week curriculum. The shifts in per-week runs from week-to-week are
largely explained by the in-class activity for the week. For example, in week 7, students were
introduced to the char variable type through an assignment where they were asked to write a
short program, then try and run it will different values to see what would happen. As a result,
there was a spike in week 7 as these types of assignments (that would have student call javac
over and over again) were not the norm.

2 Unless otherwise specified, all charts in this section show per-student averages to control for
the fact that not all classes had the same number of students. In addition, the charts do not
include week 1 and week 10 because students did not compile or run any programs in those
weeks.

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

2	 3	 4	 5	 6	 7	 8	 9	

Av
g.
	N
um

be
r	o

f	C
om

pi
la
3o

ns
	p
er
	D
ay
	

Week	

Average	Number	of	Compila3ons	a	Day	per	Student	by	Week	

Blocks	

Hybrid	

Text	

Are there differences in how error prone/successful the students’ compilations are?
While the previous analysis included all calls to javac, we now separate these calls into

‘successful’ and ‘failed’ in order to look for systematic patterns across the three conditions.
Figure 3 uses the same compilation data as the previous chart, but now only includes successful
compilations. The pattern in this figure largely matches the data from the previous figure.

Figure 3. Average number of successful compilations by condition.

Students in the text condition frequently had the lowest average number of successful

compilations, while students from the Hybrid condition showed the highest number of successful
compilations. Since the students were all working on the same assignments in the same
programming language (Java), the difference in successful runs does suggest a subtle difference
in programming practice based on introductory modality. The higher frequency of successful
compilations of Block and Hybrid students implies these students had higher levels of success in
writing syntactically valid programs. One explanation for this pattern is that students in these
conditions were more likely to compile their program at intermediate steps along the way. In
other words, as they were writing their program, they would check to see if the portion they had
written was correct before continuing with the next portion. A second potential explanation is
that students these conditions ran their programs more frequently once they were completed, thus
inflating their successful compilation counts. A third possible explanation is as simple as the fact
that students in the Text condition did not call javac as often as students in the other two
classes. In fact, it is possible Text students took longer to author programs in the first place
which may have caused them to spend less time exploring and playing with the program they had
authored.

Are there differences in the amount of code added in between successful compilations?
Along with compilation patterns, we are also interested in composition patterns. To

measure the distance between two programs, we use the Levenshtein distance between the texts
of the two programs. Levenshtein distance captures the minimum number of single-character

0	

5	

10	

15	

20	

25	

2	 3	 4	 5	 6	 7	 8	 9	

Av
g.
	N
um

be
r	o

f	S
uc
ce
ss
fu
l	C
om

pi
la
6o

ns
	

Week	

Average	Number	of	Successful	Compila6ons	by	Week	

Blocks	

Hybrid	

Text	

edits (i.e. insertions, deletions or substitutions) required to change one string into the other. Table
1 shows the results of this analysis. The columns capture the size of the Levenshtein distance
between consecutive successful programs, while the cells show the average number of
occurrences of that distance per student. The lower the number, the less often a program with
that distance from the previous successful compilation was run by a student. For example, the
left-most column that contains numbers shows that, on average, students in the Blocks condition
complied a program that was identical to the last program they complied 7.00 times over the
course of the 10 weeks, while the Hybrid condition recompiled programs an average of 7.40
times and the Text condition only did this 6.16 times.

Table 1. The frequency of successful compilations with a given Levenshtein distance from the
last successful compilation of the same program.

Levenshtein Distance

0 1 2 3 4 5 - 10 11 - 25 26 - 100 > 100
Blocks 7.00 3.37 5.70 1.33 2.37 4.30 3.52 6.56 3.33
Hybrid 7.40 3.68 5.88 1.84 2.60 4.64 4.72 6.48 3.76

Text 6.16 3.00 5.58 1.23 2.13 3.77 3.48 5.87 2.55

The students in the Text condition made fewer large changes to their programs and also
re-ran their programs without making any changes less often than the other two conditions.
These numbers tell the same story as Figure 2, which shows the Text group to have called javac
least often. The most likely explanation for this is that students in the Text condition are slower
to author programs in Java, but this study did not collect keystroke data, which is the data source
needed to provide strong evidence for this outcome. The data does not show that fewer
compilations is a result of the students making larger sets of changes between runs.

Are there differences in the number and type of errors encountered?
Just as we can glean information from patterns found in successful compilation calls, we

can also look at novice programmers emerging understanding by looking of programming at the
errors they encounter. Every time a student makes a call to javac, our system records all errors
reported by the Java compiler. The plurality of compilation errors produced by the Java compiler
has been documented as both a source of difficulty for novices (Nienaltowski, Pedroni, & Meyer,
2008; Traver, 2010) as well as an opportunity for improving introductory programming
environments (Flowers, Carver, & Jackson, 2004; Hristova, Misra, Rutter, & Mercuri, 2003).
Table 2 provides on overview of the frequency of failed compilations per student as well as
information about the number of errors per failed javac call broken down by condition.

Table 2. High-level descriptive patterns of failing compilations and errors over the course of the
entire 10 week period.

Failed javac calls per

student
Compilation errors

per student
Compilation errors per

failed javac call
Blocks 75.11 165.78 2.23
Hybrid 80.04 212.04 2.5

Text 69.55 164.26 2.21

Unfortunately, the compiler often does not (and at times cannot) provide meaningful
error messages to the programmer. For instance, a missing ‘;’ could result in the error message
“expected ‘;’ on line 11” or by the rather generic message “not a statement”. In
addition, many error messages are class specific (e.g. “Class names, 'VarRefConcate',
are only accepted if annotation processing is explicitly requested”). In
order to make the analysis more meaningful, errors were grouped into more broadly defined
error types. For example, the class name error above was classified as an “Incorrect javac
Call” as that is the most common cause of that particular error.

Figure 4 shows the ten most frequently found errors encountered, grouped by condition.
The values in this chart are reported on a per-compilation basis to control for how often students
chose to compile as well as the fact that the three conditions did not have the same number of
students.

Figure 4. The ten most frequently encountered Java errors, grouped by condition.

The most common error was: “’;’ expected”, which is seen when students forget to

end a statement with a semi-colon, a syntactic requirement of Java. The second most common
error: “cannot find symbol”, occurs when students try and use a variable before it has been
defined. Neither of these two errors are possible in the introductory modality, as semi-colon
terminators were not required and variables do not need to be instantiated before they are used. It
is important to note that regardless of introductory modality, novices frequently encounter these
two errors. Both Jadud (2005) and Jackson et al. (2004) identified these two mistakes as the most
frequently encountered in their data.

Looking across the ten errors, we see that half of the ten most frequently occurring errors
were seen least often by students in the Blocks condition. One possible explanation for this

0	 0.05	 0.1	 0.15	 0.2	 0.25	

missing	curly	
brace	

unclosed	string	
literal	

type	mismatch	

unmatched	parenthesis	
or	bracket	

illegal	start	of	
expression	

illegal	character:	'\'	

not	a	statement	

incorrect	javac	
call	

cannot	find	
symbol	

';'	expected	

Average	Number	of	Times	Error	Occurred	per	Compila8on	

Top	Ten	Java	Compila8on	Errors	

Blocks	

Hybrid	

Text	

outcome is that because Java code is so unlike the block-based modality the students had spent
the first five weeks working in, they were more attentive to the specific syntax they were being
forced to use. Text and Hybrid students on the other hand, were already accustomed to
manipulating a text-based language, but were used to an entirely different syntax, so they may
have assumed a higher level of similarity across the text-based languages resulting in more
errors.

Conclusion
While block-based languages have exploded in popularity, little work has been done to

show that students learning in these environments are effectively transitioning to more traditional
text-based languages like Java. This paper is meant to be a step towards trying to understand how
the modality a learner uses in an introductory course impacts their approach to programming in a
professional language. Even with the relatively small sample size, we were able to take
computationally logged data and qualitatively analyze it in order to produce several reasonable
explanations. Our analysis shows minor deviations in the programming patterns adopted by
novices as they transition from introductory tools to Java based on modality, but few large or
statistically significant patterns. This suggests the differences that emerge are more nuanced and
more-learner specific than can be captured in the coarse grained analysis provided here.
Nevertheless, this paper provides evidence towards a counter-narrative suggesting that one
modality is not inherently ‘better’ than another. Instead, modality (block-based, text-based, or
hybrid blocks/text interfaces) is just one dimension of a more complex learning context that
shapes learners emerging attitudes and understandings.

References
Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “Real”

Programming. ACM Transactions on Computing Education (TOCE), 14(4), 25:1-15.
Astrachan, O., & Briggs, A. (2012). The CS principles project. ACM Inroads, 3(2), 38–42.
Bau, D., Bau, D. A., Dawson, M., & Pickens, C. S. (2015). Pencil Code: Block Code for a Text

World. In Proceedings of the 14th International Conference on Interaction Design and
Children (pp. 445–448). New York, NY, USA: ACM.

Brown, N. C. C., Mönig, J., Bau, A., & Weintrop, D. (2016). Future Directions of Block-based
Programming. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (pp. 315–316). New York, NY, USA: ACM.

Code.org Curricula. (2013). Code.org. Retrieved from http://code.org/educate
Dann, W., Cosgrove, D., Slater, D., Culyba, D., & Cooper, S. (2012). Mediated transfer: Alice 3

to Java. In Proceedings of the 43rd ACM technical symposium on Computer Science
Education (pp. 141–146). ACM.

Flowers, T., Carver, C. A., & Jackson, J. (2004). Empowering students and building confidence
in novice programmers through Gauntlet. In Frontiers in Education, 2004. FIE 2004.
34th Annual (p. T3H/10-T3H/13 Vol. 1). https://doi.org/10.1109/FIE.2004.1408551

Franklin, D., Skifstad, G., Rolock, R., Mehrotra, I., Ding, V., Hansen, A., Weintrop, D. &
Harlow, D. (2017). Using Upper-Elementary Student Performance to Understand
Conceptual Sequencing in a Blocks-based Curriculum. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education (pp. 231–236). New
York, NY, USA: ACM. https://doi.org/10.1145/3017680.3017760

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond curriculum: the exploring computer
science program. ACM Inroads, 3(2), 47–53.

Grover, S., & Basu, S. (2017). Measuring Student Learning in Introductory Block-Based
Programming: Examining Misconceptions of Loops, Variables, and Boolean Logic (pp.
267–272). ACM Press. https://doi.org/10.1145/3017680.3017723

Harvey, B., & Mönig, J. (2010). Bringing “no ceiling” to Scratch: Can one language serve kids
and computer scientists? In J. Clayson & I. Kalas (Eds.), Proceedings of Constructionism
2010 Conference (pp. 1–10). Paris, France.

Hour of Code. (2013). Code.org. Retrieved from http://code.org/learn
Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003). Identifying and correcting Java

programming errors for introductory computer science students. In ACM SIGCSE
Bulletin (Vol. 35, pp. 153–156). ACM.

Jadud, M. C. (2005). A first look at novice compilation behaviour using BlueJ. Computer
Science Education, 15(1), 25–40.

Nienaltowski, M.-H., Pedroni, M., & Meyer, B. (2008). Compiler error messages: What can help
novices? In ACM SIGCSE Bulletin (Vol. 40, pp. 168–172). ACM. Retrieved from
http://dl.acm.org/citation.cfm?id=1352192

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: teaching CS0 with
Alice. ACM SIGCSE Bulletin, 39(1), 213–217.

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., … Silver,
J. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60.

Traver, V. J. (2010). On compiler error messages: what they say and what they mean. Advances
in Human-Computer Interaction, 2010.

Weintrop, D. (2016). Modality Matters: Understanding the Effects of Programming Language
Representation in High School Computer Science Classrooms. Ph.D. Dissertation.
Northwestern University, Evanston, IL.

Weintrop, D., & Wilensky, U. (2015). Using Commutative Assessments to Compare Conceptual
Understanding in Blocks-based and Text-based Programs. In Proceedings of the Eleventh
Annual International Conference on International Computing Education Research (pp.
101–110). New York, NY, USA: ACM. https://doi.org/10.1145/2787622.2787721

