
Between a Block and a Typeface: Designing and 
Evaluating Hybrid Programming Environments 

David Weintrop 
UChicago STEM Education  

University of Chicago 
dweintrop@uchicago.edu 

Uri Wilensky 
Center for Connected Learning and  

Computer-based Modeling 
Northwestern University 
uri@northwestern.edu 

 
ABSTRACT 
The last ten years have seen a proliferation of introductory 
programming environments designed for learners across the 
K-12 spectrum. These environments include visual block-
based tools, text-based languages designed for novices, and, 
increasingly, hybrid environments that blend features of 
block-based and text-based programming. This paper 
presents results from a quasi-experimental study 
investigating the affordances of a hybrid block/text 
programming environment relative to comparable block-
based and textual versions in an introductory high school 
computer science class. The analysis reveals the hybrid 
environment demonstrates characteristics of both ancestors 
while outperforming the block-based and text-based 
versions in certain dimensions. This paper contributes to 
our understanding of the design of introductory 
programming environments and the design challenge of 
creating and evaluating novel representations for learning. 
Author Keywords 
Block-based programming; K-12 Education; Programming 
Environments; Design  
ACM Classification Keywords 
D.1.7 Visual Programming; D.2.2 Design Tools and 
Techniques; K.3.2 Computer Science Education 
INTRODCUTION 
The last ten years has seen a proliferation of introductory 
programming environments. Led by the popularity of tools 
like Scratch and Alice, visual block-based programming is 
increasingly becoming the modality of choice for 
programming environments designed for novices of all 
ages. A recent review of coding environments for children 
included 19 drag-and-drop tools among the 24 
environments reviewed for learners under the age of eight, 
and 28 drag-and-drop environments out of the 47 total 

reviewed environments [10]. Further, we expect this trend 
to continue as a growing number of libraries are making it 
easy to develop environments that incorporate a block-
based programming interface [12]. This growth in 
popularity can be seen both in informal environments as 
well as in classrooms where a growing number of curricula, 
like Exploring Computer Science [29] and the Beauty and 
Joy of Computing [13] utilize block-based programming. 

Until recently, block-based and text-based programming 
environments have been distinct. An environment used 
either one modality or the other. As a result, learners trying 
to migrate from a block-based environment to a more 
conventional text-based programming language had few 
environmental supports to facilitate the transition. Multiple 
approaches have been developed to mitigate this transition 
cost. One approach is pedagogical, relying on teachers to 
assist learners in moving between modalities. An alternative 
approach sees this challenge as a design question, asking: 
how can we design programming environments to scaffold 
learners in moving from block-based to text-based 
programming? Two strategies have been employed in 
response to the design solution to this challenge: dual 
modality environment that support both block-based and 
text-based programming and hybrid block/text 
environments that try and blend features of both modality to 
create a best-of-both world tool. This paper explores one 
implementation of a hybrid block/text programming 
environment and answers the following research question: 

How does a hybrid block/text programming environment 
perform compared to isomorphic block-based and text-
based environments with respect to the conceptual learning 
of programming concepts and learners’ attitudes and 
perceptions of the field of computer science? 

To answer this question, we conducted a 15 week, quasi-
experimental study in which high school students in an 
introductory computer science classroom used either a 
block-based, text-based, or hybrid block/text programming 
environment. Data were collected to understand how these 
three programming modalities impacted learners’ 
experiences. This paper presents the results of this study, 
specifically focusing on how students in the hybrid 
condition performed relative to peers in the block-based and 
text-based environments. 

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage and that copies bear this notice 
and the full citation on the first page. Copyrights for components of this work 
owned by others than the author(s) must be honored. Abstracting with credit is 
permitted. To copy otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee. Request permissions 
from Permissions@acm.org.  
IDC '17, June 27-30, 2017, Stanford, CA, USA  
© 2017 Copyright is held by the owner/author(s). Publication rights licensed to 
ACM.  
ACM 978-1-4503-4921-5/17/06…$15.00 
http://dx.doi.org/10.1145/3078072.3079715 

Coding and Computational Thinking IDC 2017, June 27–30, 2017, Stanford, CA, USA

183



This paper begins with a review of prior work, specifically 
looking at empirical and design work related to block-based 
programming environments. Next, we introduce Pencil.cc, 
the multi-modality programming environment created to 
study the stated research question. A methods section 
follows, which details the study design and provides 
information on the setting and participants. Findings from 
the study are then presented, including results on outcomes 
of attitudinal surveys and content assessments. The paper 
concludes with a discussion section that presents 
implications of this work. 
PRIOR WORK 

Block-based programming 
Block-based programming (Figure 1) is a programming 
modality that is becoming increasingly widespread in 
introductory computing contexts. We use the term modality 
to capture the representational infrastructure used to depict 
the program, as well as the various forms of interactions 
supported by the representation and its presentation. Block-
based programming environments leverage a programming-
primitive-as-puzzle-piece metaphor that provides visual 
cues to the user about how and where commands can be 
used. Composing programs in these environments takes the 
form of dragging blocks into a canvas and snapping them 
together to form scripts. If two blocks cannot be joined to 
form a valid syntactic statement, the environment prevents 
them from snapping together, thus preventing syntax errors 
but retaining the practice of assembling programs 
instruction-by-instruction. Along with using block shape to 
denote usage, there are other visual cues to help 
programmers, including color coding by conceptual use and 
nesting of blocks to denote scope [20,32]. Early versions of 
this interlocking blocks approach include LogoBlocks [4] 
and BridgeTalk [5] which helped formulate the 
programming approach which has since grown to be used in 
dozens of applications across a variety of domains [10]. The 
growing ecosystem of block-based tools speaks to the need 
for more critical research around the affordances and 
drawbacks of the modality [30,38]. 

   
(A) LogoBlocks (B) Scratch (C) Alice 

Figure 1. Three examples of block-based programming tools. 

Bridging Block-based to Text-based Programming 
With the rise in popularity of the block-based approach to 
programming, a question of growing importance is how 
well these tools prepare students for future, text-based 
programming languages. An emerging body of scholarship 
is exploring the question of transfer of programming 

knowledge between block-based and text-based 
programming. For example, as Alice is often used in 
undergraduate computer science classrooms, the transition 
from Alice to Java is an active area of research showing 
mixed results. A number of studies have reported student 
difficulties in making the transition [7,14,26], with one 
study stating: “Students do not seem to naturally make a 
strong connection between the formal coding process and 
what they are doing with Alice” [25:213]. In contrast, other 
researchers have found Alice to be an effective way to 
introduce learners to programming and have had success 
transition learners to Java [8,9].  

A few studies have been conducted looking at the transition 
from Scratch to other text-based programming languages. 
While many of these report only anecdotal evidence, 
Armoni, Merrbaum-Salant & Ben-Ari [1] conducted a 
longitudinal study looking at whether students who had 
taken Scratch programming classes in middle school 
performed better in a high school, text-based programming 
course. Overall, the researchers found little quantitative 
difference in performance on assessments between students 
who had previous worked with Scratch and those who had 
not, but were able to find some areas where the Scratch 
students out-performed their peers (specifically on the 
concept of looping). Additionally, the authors found 
qualitative differences between the two populations, with 
students who had prior Scratch experience reporting higher 
levels of motivation and self-efficacy. A quasi-experimental 
study investigating students transition from block-based 
languages to Java found block-based programming, without 
pedagogical support, provided relatively little benefit for 
novices in the transition to a text-based language [33]. 
Scaffolding the Block-to-Text Transition 

Block-to-Text Transformations 
A growing number of tools are being designed to address 
the block-to-text gap, either as new stand-alone tools or 
add-ons to existing tools. One direction programming 
designers have pursued is giving users the ability to convert 
block-based programs into equivalent text-based scripts. 
This includes environments like PicoBlocks, TurtleArt, and 
the App Inventor Java Bridge [40]. Other tools provide 
native language translation, for example, the Blockly toolkit 
comes with built-in language generators that allow you to 
convert graphical scripts to equivalent JavaScript, Python, 
or XML files [12]. Additionally, Blockly is architected in 
such a way as to make it easy to add additional generators 
to the library making it extensible for future block-to-text 
transformations. The DrawBridge project is noteworthy in 
its effort to bridge block-based and text-based programming 
by introducing pen-and-paper drawing and program-by-
demonstration features into its larger pedagogical strategy 
[31]. Game authoring has also been used as a context to 
motivate block-to-text programming as demonstrated by the 
Flip project [17]. 

Coding and Computational Thinking IDC 2017, June 27–30, 2017, Stanford, CA, USA

184



Dual Modality Programming Environments 
While the environments listed in the previous section 
provide a one-way transition from a block-based interface 
to the textual form, a growing number of tools are 
providing bi-directional support. Pencil Code [3] provides a 
two-way transition between blocks and CoffeeScript, 
JavaScript, and HTML, while tools have also been built for 
Java [21], Python [2], and Grace [16]. In these 
environments, the user can move back and forth between 
block-based and text-based representations of their 
program. Matsuzawa et al. [21] taught an introductory 
programming course using an environment that allowed 
users to program with either a block-based or text-based 
Java interface and found that over the course of the 
semester, students systematically transitioned from blocks 
to text on their own. These findings were replicated in 
another study that investigated the cause of block-to-text 
transitions, and found students often used the block-based 
modality when adding commands to their programs for the 
first time, revealing one specific way dual modality 
environments are able to scaffold novice programmers [34]. 
Hybrid environments 
The last section of this literature review looks at the types 
of environments that are the focus of this work: hybrid 
block/text environments. These environments blend 
features of block-based interfaces with conventional text-
based editors to create a new modality distinct from both 
blocks and text. One recent example of this type of 
environment is Greenfoot’s Frame-based Editor. As its 
creators explain, frame-based editing “maintains some of 
the graphical representation advantages, discoverability and 
error avoidance of blocks while providing the flexibility, 
keyboard-entry capabilities, and readability of text” [19:29–
30]. A central design goal of the Frame-based editing 
approach is to keep the atomic unit of operation a valid 
node in the program’s abstract syntax tree (i.e. you 
add/edit/delete full commands, akin to working in blocks), 
but that manipulation of these nodes can be completed with 
the keyboard and the program presentation retains the 
visual characteristics of a text-based program. Early 
analysis of frame-based editing shows the promise of this 
specific hybrid approach [27]. A second example of a 

hybrid block/text programming tool can be seen with GP, a 
tool inspired by Scratch that seeks to address the drawbacks 
of block-based languages as programs become larger and 
more complicated by incorporated text layouts and 
keyboard-driven compositional mechanisms [22]. A third 
hybrid block/text environment is Pencil.cc, which is the 
focus of this paper and described in detail below.  
MEET PENCIL.CC 
Pencil.cc is a customized version of the Pencil Code 
environment [3] that supports block-based, text-based, and 
hybrid block/text programming, but is designed such that a 
given user only has access to one of these programming 
modalities. Pencil.cc’s blocks interface (Figure 2a) features 
many of the defining features of block-based tools, 
including the drag-and-drop programming mechanism, a 
palette of blocks for the user to choose from, and visual 
cues on how and where blocks can be used. The text 
version of Pencil.cc presents users with a text editor that 
includes basic programming supports like highlighting, 
automatic formatting, and syntax checking.  

The hybrid form of Pencil.cc retains the block-palette and 
the ability to drag-and-drop commands into a program, but 
replaces the blocks canvas with a text editor. When a user 
drags a block from the palette onto the text canvas, the 
block turns into the textual equivalent and is inserted into 
the program in a syntactically valid way. Thus, the hybrid 
interface supports both drag-and-drop and keyboard-driven 
composition. Figure 2b and 2c shows Pencil.cc’s hybrid 
interface. This hybrid approach was informed by earlier 
findings on the design of block-based tools, including 
features that learners found to be useful as well as perceived 
drawbacks of block-based programming tools [36]. 
Specifically, this hybrid design retains features including a 
browsable blocks library, drag-and-drop composition, and 
pre-fabricated commands. At the same time, the text-editor 
interface tries to address some of the drawbacks identified 
by learners in block-based tools, such as perceived 
inauthenticity and issues with block-based environment 
being less powerful or slower than text-based alternatives. 

In Pencil Code, users are free to move back-and-forth 
between the blocks and text modalities. With Pencil.cc, this  

   
(a) (b) (c) 

Figure 2. Pencil.cc’s interfaces. (a) shows the blocks interface while (b) and (c) show Pencil.cc’s hybrid block/text interface. The 
middle image (b) shows how learners can drag-drop blocks into the text editor; the right image (b) shows the results of this action.

Coding and Computational Thinking IDC 2017, June 27–30, 2017, Stanford, CA, USA

185



ability has been removed, instead users see either the block-
based interface, the text-based interface, or the hybrid 
interface. Aside from the programming modality, all other 
features of the three modes of Pencil.cc are the same, 
making the three environments isomorphic, meaning the 
capabilities and expressive power are equivalent across 
modalities; anything that can be done in one mode can also 
be achieved in the other two. Pencil.cc was chosen as the 
environment for this study due to its ability to support all 
three modalities and because it shares many characteristics 
with widely used introductory environments such as visual 
execution of programs and accessible language primitives. 
METHODS 
In this section, we present details of the study conducted to 
understand outcomes of hybrid block/text programming 
environments relative to isomorphic block-based and text 
alternatives. We begin by detailing the design of the study, 
then present information about the participants and setting. 
Study Design and Data Collection Strategy 
This study uses a quasi-experimental setup with three high 
school introductory programming classes. The study 
follows each classroom for the first 15 weeks of a yearlong 
introduction to programming course. The 15 weeks were 
broken down into two phases, a five-week introductory 
phase, which was immediately followed by a 10-week Java 
phase. During the introductory phase, each of the three 
classes used a different Pencil.cc modality (block-based, 
text-based, or hybrid). This means students only saw one of 
the three modalities (so a student in the blocks condition, 
never saw the text or hybrid interface). These three classes 
constituted the three conditions of the study: Blocks, Text, 
and Hybrid. Starting in week six, all three classes transition 
to Java and followed the same curriculum in the same 
programming environment for the remaining 10 weeks. 

The study began on the first day of school with students in 
the three classes taking Pre attitudinal surveys and content 
assessments. The Commutative Assessment [37] was used 
for the content assessment and a modified version of the 
attitudinal survey from the Georgia Computes project [6] 
was used for the attitudinal survey with questions added 
related to students’ perceptions of the different modalities. 
The attitudinal survey and content assessments were 
administered at three points during the fifteen-week study: 
the first day of the study (Pre), at the conclusion of the 
introductory curriculum at the end of week 5 (Mid), and at 
the conclusion of the study in week 15 (Post). The surveys 
were administered online during class time on consecutive 
days. The attitudinal survey took students around 20 
minutes to complete and the content assessment took close 
to 25 minutes. The assessments were given on the same day 
across all three classes. 

The five-week curriculum for the introductory phase of the 
study was based on the Beauty and Joy of Computing 
course [13], along with an assortment of other introductory 
computing activities grounded in the Constructionist 

programming tradition and the Logo programming 
language [15,23]. An emphasis of this design was to allow 
students creative freedom in each assignment. Over the 
course of the five-week introductory phase, four major 
conceptual topics were covered: variables, conditional 
logic, looping logic, and procedures. Throughout the 
activities, care was taken to blend visually executing 
programs (like traditional Logo graphics drawing activities) 
and text-based activities (like asking for and responding to 
input from the keyboard). The curriculum was largely 
designed by the first author but the classroom teacher 
contributed ideas and customized the activities while 
teaching them. Full versions of the Commutative 
Assessment, the attitudinal survey, and the five-week 
curriculum can be found in the appendices of [33]. 
Setting and Participants 
This study was conducted at a large, urban, public high 
school in a Midwestern city in the United States of 
America, serving almost 4,000 students. The school is a 
selective enrollment institution, meaning students have to 
take an exam and qualify to attend. In this school district, 
students are selected based on their performance on the 
admissions test relative to other students from their school 
(as opposed to all other applicants). As a result, students 
attend this school from across the city and there is an equal 
representation of students from under-resourced schools as 
from schools in more affluent parts of the city. A majority 
of the students in the school (58.6%) come from 
economically disadvantaged households.  

The computer science course used for the study is an 
elective class but historically has attracted students from a 
variety of racial background and been taken by both male 
and female students. A total of 90 students participated in 
the study. The self-reported racial breakdown of the 
participants was: 41% White, 27% Hispanic, 11% Asian, 
11% Multiracial, and 10% Black. The classes comprised of 
students across all four years of high school, with a reported 
mean age of 17.1 (SD = 1.1 years). The three classes in the 
study were comprised of 15 female students and 75 male 
students. This gender disparity is problematic, but as 
recruitment for the courses was out of the control of the 
researchers, there was little that could be done to address 
this. Of the students participating in the study, 47% speak a 
language other than English in their households.  

The experiment was conducted in an existing Introduction 
to Programming course. Historically, the class spent the 
entire year teaching students the Java programming 
language. To accommodate the study, Java instruction 
began in the sixth week of school, after the conclusion of 
the five-week curriculum previously discussed. Each class 
had 30 students and each student was assigned a laptop 
which they used every class. Students sat in individual 
desks that were on wheels, that allowed them to move their 
desks around. The same teacher taught all three sections of 
the course, allowing us to control for teacher effects. 

Coding and Computational Thinking IDC 2017, June 27–30, 2017, Stanford, CA, USA

186



FINDINGS 
The findings section is broken down into two main sections. 
First, we look at student performance on the content 
assessment by modality, then we look at attitudinal and 
perceptual outcomes from this study. While there is much 
that can be said about the data presented below, the analysis 
and discussion in the paper is focuses specifically on the 
Hybrid condition and understanding how it fared relative to 
the Blocks and Text conditions. A comparison of the 
Blocks condition to the Text condition can be found in [35]. 
Throughout this section, only significant statistics are 
presented; absent values were not significant.  
Content Assessment 
We begin our findings section by looking at how students 
performed on the content assessment at the three time 
points based on the version of Pencil.cc they used during 
the introductory five weeks of the study. At the outset of the 
study, the Hybrid condition was not statistically different 
than either the Blocks class or the Text condition. This 
means that the three classes are not different from each 
other with respect to their incoming programming 
knowledge. Figure 3 shows cumulative scores for students 
across the three conditions on the Pre, Mid, and Post 
Commutative Assessment administrations1.  

 
Figure 3. Content scores by condition over time. 

The positive slope for all three conditions between the Pre 
and Mid assessments means that, in aggregate, students in 
all three classes performed better on the Mid survey than 
they did on the Pre. Given that this was an introductory 
class it is not surprising, but still noteworthy and an 
encouraging sign given that these three conditions cover 
almost the entirety of the modalities used to introduce 
learners to programming. For the Hybrid condition, the 
improvement on test scores from the Pre to the Mid was 
significant, t(26) = 6.65, p < .001, d = .65. This shows that 
students in the Hybrid condition did better on the 
assessment after working in the Hybrid interface of 
Pencil.cc for five week. 

                                                           
1 Please note the line charts in this paper to not start at 0. 

On the Mid assessment, students’ performance in the 
Hybrid condition was significantly different from the Text 
condition, albeit with a moderate effect size (t(52) = 2.03, 
p-value = 0.04, d= 0.58), and not different from the Blocks 
condition. On the Post assessment, the three conditions 
converge, resulting in the Hybrid condition not being 
statistically different from the other two conditions. 
Looking over the three time points in Figure 3 shows a 
pattern of students in the Hybrid condition performing more 
similarly to the Blocks condition than to the Text condition 
over the course of the 15-week study. This trend can be 
seen by the fact that the change in the score between the 
Mid and Post administrations for the Hybrid condition was 
significantly different than the learning gains observed for 
the Text condition (t(48) = 2.88, p = .01, d = .81), but not 
the Blocks condition. 
Condition by Concept  
This section investigates how students in the Hybrid 
condition performed compared to the Blocks and Text 
conditions with respect to specific programming concepts. 
The Commutative Assessment covers six content areas: 
Algorithms, Code Comprehension, Conditional Logic, 
Functions, Iterative Logic, and Variables. If we look at how 
students performed on each of the six content areas on the 
Mid assessment, we find that students in the Hybrid 
condition scored between their Block-based and Text-based 
peers on half of them (Code Comprehension, Conditional 
Logic, and Functions,). In two concept areas (Iterative logic 
and Algorithms) the Hybrid condition scored the highest, 
while they scored the lowest on Variables questions. None 
of these differences are statistically significant at the p < .05 
level. This means with this data, we cannot state that 
students learned specific concepts better in the Hybrid 
version of Pencil.cc compared to either the Blocks or Text 
modalities. Where we do see differences emerge is in 
students’ perceived ease-of-use of these concepts. On the 
Mid attitudinal assessment, students were asked: “How easy 
was it to use ___ in Pencil.cc?”, where ___ was replaced 
with the concept under question. The mean responses to the 
7-point Likert questions are shown in Figure 4. The higher 
the score, the easier a student thought it was to use the 
given concept. 

 
Figure 4. Student reported ease of using concepts in Pencil.cc.  

54.3% 

66.6% 65.0% 

53.4% 

64.1% 62.3% 

51.7% 
58.8% 

64.9% 

20.0% 

30.0% 

40.0% 

50.0% 

60.0% 

70.0% 

80.0% 

90.0% 

Pre 
Assessment 

Mid 
Assessment 

Post 
Assessment 

M
ea

n 
Ag

gr
eg

at
e 
As

se
ss
m
en

t S
co
re

 

Score by Condi on  

Blocks 

Hybrid 

Text 

5.0 

4.0 
4.5 

5.0 

4.1 3.9 4.2 

5.0 

4.1 

3.2 

3.9 
4.2 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

Condi onal 
Logic 

Func ons Itera ve 
Logic 

Variables 

M
ea

n 
Li
ke

rt
 S
co
re

 

Ease‐of‐Use of Concepts by Condi on 

Blocks 

Hybrid  

Text 

Coding and Computational Thinking IDC 2017, June 27–30, 2017, Stanford, CA, USA

187



Two of the four concept areas show a significant difference 
between Hybrid and another modality. interestingly, in one 
case the Hybrid condition is similar to the Text condition, 
and in the other, the Hybrid is similar to Blocks. When 
asked how easy students found it to use conditional logic, 
students in the Hybrid condition reported a scores that was 
significantly lower than their Block-based peers (U = 212, p 
= .01)2, and no different from the Text condition. This 
means, first, the Hybrid condition found conditional 
statements significantly harder to use than students in the 
Blocks condition. Second, students working in the Hybrid 
condition found conditional logic as difficult to use as 
students in the Text condition. This suggests the drag-and-
drop mechanism provided by the Hybrid interface was not 
successful in providing the same amount of scaffolding as 
the full Blocks interface provided.  

Running the same analysis on the responses to the question 
of how easy are variables to use, we find the opposite trend. 
The Hybrid condition is significantly different from the 
Text condition (U = 248.5, p = .05) but no different from 
the Blocks condition. Here, the drag-and-drop composition 
mechanism provided by the Hybrid programming 
environment was successful in making students feel like 
variables were as easy to use as the Blocks condition. 

Looking across the data, one explanation for ease-of-use in 
the Hybrid condition is that the simpler the post-addition 
modification is, the easier the construct to be used is 
perceived. Whereas the use of a conditional statement in the 
Hybrid condition often included non-trivial post addition 
edits (i.e. defining the test and the commands to be 
followed after the test is evaluated, as can be seen by the ``s 
that need to be replaced by the user in Figure 2c), when 
adding variables to a program via drag-and-drop, only very 
straightforward edits are necessary, like entering the name 
or changing the value. In this way, the addition of variable 
blocks to a program in the Hybrid condition presented a 
template that required simple replacements. This finding is 
useful in that it can provide direction in terms of the design 
of new hybrid environments and how the addition of 
different programming constructs is accomplished. One 
other important thing to note from this analysis is the 
revelation that the effect of a given hybrid block/text 
implementation does not necessarily have a uniform benefit 
across the various constructs that constitute a programming 
language. This highlights the need for nuanced analysis 
beyond just aggregated assessment scores. 
Attitudes and Authenticity 
The attitudinal assessment given to students included a 
series of 10-point Likert scale questions. In this section, we 
present data looking at how students in the Hybrid 
                                                           
2 When comparing the conditions to each other, we use a 
Wilcoxon Rank Sum test (reported as a U statistic). This 
test is appropriate as the two samples are independent and 
the underlying data is non-parametric and ordinal in nature. 

condition responded relative to their block-based and text-
based peers with respect to confidence, enjoyment, 
perceived authenticity of the programming environment, 
and interest in pursuing the field of computer science. 
Confidence in Programming Ability 
The first attitudinal dimension we present is students’ 
perceived confidence in their own programming ability. 
Student responses to the following two Likert scale 
statements: I will be good at programming (or I am good at 
programming on the Post survey) and I will do well in this 
course, which were then averaged together. These questions 
show an acceptable level of correlation, having Cronbach’s 
α scores of .79 (Pre), .80 (Mid), and .88 (Post) on the 
surveys, all of which are near the .8 threshold commonly 
used to denote an acceptable level of reliability.  

Looking at how students responded on the confidence 
questions at the Midpoint of the study (i.e. after working in 
Pencil.cc for five weeks) we find no difference between the 
Hybrid condition and either the Blocks condition or the 
Text condition, as all three groups reported roughly the 
same average level of confidence. However, after students 
transitioned to Java, a difference between the conditions 
emerges. At the conclusion of the study, the Hybrid 
students reported confidence level was M = 8.3 (SD = 1.9), 
compared to Blocks students’ average of M = 7.4 (SD = 
2.3) and Text students’ M = 8.3 (SD = 1.1). In other words, 
the Hybrid students and Text students had a higher level of 
confidence than the Blocks condition. The Hybrid 
conditions average confidence score is only significantly 
higher than the Blocks condition at the .10 level (U = 274, p 
= .10) and not significantly different than the Text 
condition. Taken together, this shows, with respect to 
confidence, at the conclusion of the study, the Hybrid 
condition was more similar to the Blocks students and their 
higher reported level of confidence compared to students 
who had worked in the Text only interface. 
Enjoyment of Programming 
The second attitudinal dimension is whether or not 
students’ enjoyment of programming differed based on the 
modality they used. To calculate a measure of enjoyment, 
responses to the following three Likert statements from the 
Pre, Mid, and Post surveys were averaged: I like 
programming, Programming is Fun, and I am excited about 
this course. These three questions were found to reliably 
report the same underlying disposition at all three time 
points (Pre Cronbach’s α = .84, Mid Cronbach’s α = .84, 
Post Cronbach’s α = .89). Comparing students’ scores at the 
Mid and Post time points, the Hybrid condition was not 
significantly different from either the Blocks condition or 
the Text condition. The conclusion here is that the hybrid 
version of Pencil.cc did not affect students’ enjoyment of 
the act of programming. This is possibly because there are 
other more salient features of a programming experience 
that shape enjoyment (like the activities, setting, or runtime 
environment) or that modality does not affect enjoyment. 

Coding and Computational Thinking IDC 2017, June 27–30, 2017, Stanford, CA, USA

188



Programming is Hard  
The attitudinal survey included the Likert statement: 
Programming is Hard. On both the Mid survey and the Post 
survey, students in the Hybrid condition reported scores 
significantly lower than the Blocks condition (Mid: U = 
488, p = .01; Post: U = 481, p = .04) and not different than 
the Text condition. This mean, that with respect to 
perceived difficulty of programming, the Hybrid condition 
was viewed as the same as the Text condition, suggesting 
that the Hybrid interface did not succeed in making students 
feel like programming was easier.  
Interest in Future Computer Science 
The last attitudinal category looks at whether or not the 
modality used in the introductory programming 
environment affected students’ interest in future computer 
science courses. More specifically, students were asked to 
respond to the statement: I plan to take more computer 
science courses after this one. Figure 5 shows the average 
response for students grouped by condition. 

 
Figure 5. Average responses to the Likert statement: I plan to 

take more computer science courses after this one.  

Like with the other attitudinal findings, these data show 
student responses in the Hybrid condition being more 
similar to the Text condition than the Blocks condition. On 
the Mid survey, the Hybrid condition is significantly 
different from the Blocks condition (U = 451, p = .05) but 
not different from the Text condition. On the Post survey, 
there is no statistically significant difference between the 
Hybrid group and either the Blocks condition as the 
reported attitudes converge. Like with the overall scores 
shown in Figure 3, the three conditions diverge at the 
midpoint of the study, then converge at its conclusion. 
However, unlike the content assessments, when asked about 
interest in future computer science courses, the Hybrid 
condition’s path followed that of the Text condition, rather 
than the Blocks condition. This is not the desired outcome 
as the Blocks condition reported a higher level of interest in 
future computer science learning opportunities. 
Perceived Authenticity 
One drawback identified in using block-based programming 
environments with high school-aged learners is the 
perceived lack of authenticity and a recognized difference 

between what it looks like to program in block-based 
languages versus conventional text-based languages [36]. 
On the Mid and Post attitudinal surveys, students were 
asked if what they did in the first five weeks of the course 
was similar to what “real programmers” do. Responses 
were given on a ten-point Likert scale, with a higher score 
meaning students agreed more strongly. Figure 6 shows 
student responses by condition to this prompt. 

 
Figure 6. Student responses to the authenticity prompt: 

Pencil.cc is similar to what real programmers do. 

After working in Pencil.cc for five weeks, students in the 
Text condition viewed the environment as the most similar 
to what real programmers do, while the Blocks and Hybrid 
conditions had similar views of the authenticity, which 
were lower than the Text condition. This suggests that this 
specific Hybrid implementation was not successful in 
addressing the authenticity concern previously identified in 
the literature. However, after spending 10 weeks 
programming in Java, students’ perceptions of the 
authenticity of Pencil.cc shifted. In both the Text and 
Blocks conditions, students viewed Pencil.cc as less 
authentic than they had initially, while the perceived 
authenticity of Hybrid improved, meaning students thought 
the Hybrid Pencil.cc environment was slightly more 
authentic than they had initially. This positive change for 
the Hybrid condition is significantly different from the 
negative change for the Text condition (U = 437.5, p = .01) 
but not the Blocks condition. The Hybrid condition was the 
only modality with a positive slope, suggesting that after 
working in Java, students did not see the Hybrid condition 
as less authentic than they had before. One possible 
explanation for the Hybrid condition’s different outcome 
stems from the fact that only in that condition do students 
interact with more than one modality (graphical blocks and 
text side-by-side), thus possibly suggesting to students that 
programming is not a uniform activity, but instead, that the 
act of programming and programming languages and 
environments can take many shapes and rely on many 
modalities, interfaces, and technologies. 
DISCUSSION 
The research question this paper addresses is investigating 
whether or not it is possible to design a “best-of-both 
worlds” introductory programming modality that includes 
features of both block-based and text-based editors. In this 

7.93 

8.59 

8.31 8.45 

7.65 7.84 
8.03 

7.18 

7.90 

6.50 

7.00 

7.50 

8.00 

8.50 

9.00 

9.50 

Pre Survey Mid Survey Post Survey 

M
ea

n 
Li
ke

rt
 S
co
re
s 

I Plan to Take More Computer  
Science Courses A er This One 

Blocks 

Hybrid 

Text 

5.89 
5.69 

6.04 
6.12 

6.71 

5.69 

5.00 

5.50 

6.00 

6.50 

7.00 

7.50 

8.00 

Mid Survey Post Survey 

M
ea

n 
Li
ke

rt
 S
co
re

  

Pencil.cc is Similar to What Real 
Programmers Do 

Blocks 

Hybrid 

Text 

Coding and Computational Thinking IDC 2017, June 27–30, 2017, Stanford, CA, USA

189



section, we summarize the findings, first looking at how the 
three conditions fared relative to each other during the 5-
week comparative portion of the study, then looking at if 
and how those differences persisted as students transition to 
Java. Finally, we step back from this specific study and 
discuss the larger implications of these findings. 
The Hybrid Condition: The First Five Weeks 
Over the first five weeks of the study, students in the 
Hybrid condition showed attitudinal changes that were 
similar to those observed in the Text condition: little change 
with respect to confidence or enjoyment of programming 
and a decrease in interest in taking future computer science 
courses. When asked about how the introductory 
environment compared to what real programmers do, the 
Hybrid students gave responses similar to the Blocks 
students, which were lower than their Text-based peers. 
Together, these findings show that the Hybrid environment 
was not particularly successful with respect to cultivating 
positive attitudes relative to the other modalities. On the 
Mid administration of the Commutative Assessment, the 
Hybrid condition scored between the Blocks and Text 
students overall, but was closer to the higher score of the 
Blocks condition than to the Text condition. When asked 
about the perceived ease-of-use of various programming 
constructs, the Hybrid students reported that variables and 
functions were as easy to use as the students in the Blocks 
condition, but found conditional logic more difficult to use, 
like the Text condition. Taken together, these results 
highlight how the Hybrid condition has successfully 
blended the Blocks and Text modalities, however, was not 
universally successful in achieving a best-of-both-world 
outcome, as there were instances where the Hybrid 
condition was closer to the underperforming modality. 
There were also a few places where the Hybrid condition is 
distinct from the other two modalities, suggesting that, 
along some dimensions, the Hybrid modality is more than 
the sum of the other two modalities.  
The Hybrid Condition: Transitioning to Java 
Whereas the Hybrid condition did not seem to produce 
positive outcomes with respect to attitudinal measures 
during the first five weeks, things changed after the 
transition to Java. When asked to reflect on their time in the 
introductory modality, students in the Hybrid condition 
reported their time in Pencil.cc as being the most similar to 
what real programmers do. In the four other attitudinal 
categories evaluated, the Hybrid condition saw relatively 
little change, having three categories showing slight 
increases (enjoyment, perceived difficulty, and interest) and 
a minor decrease the last (confidence). Students’ scores on 
the Commutative Assessment decreased slightly after 
working in Java for ten weeks, suggesting the modality was 
not an outlier with respect to preparation for future text-
based learning in a different language.  
Modality is Malleable 
One of the contributions of this work is providing evidence 
that modality is malleable and showing that its design is 

consequential. Unlike many other domains, the 
representations novices use when being introduced to 
computer science are not set, but instead are part of an 
active area of design research. Designing novice 
programming tools is one instantiation of the larger 
intellectual pursuit of creating new ways of expressing 
ideas and interacting with representational systems 
[18,24,39]. Programming languages provide an especially 
rich context for this work due to what Papert [23] called the 
Protean nature of computers. Computers provide the ability 
to introduce layers of abstraction between the way a 
representational infrastructure is presented to the user and 
the form those instructions must take in order to be 
executed by the machine upon which they reside. From this 
relatively blank canvas, a vast design space emerges for the 
creation of new modalities. Looking at the three modalities 
used for this work, we can start to see the various 
dimensions along which computationally situated 
modalities can be defined. Visual rendering (color, shape, 
location on the screen, etc.) serves as a first dimension 
along which modality design can explore. Likewise, the 
novelty of the modality and if, how, and when other 
representational systems are incorporated can differ. For 
example, when comparing Scratch Jr. [11] and its use of 
glyphs to Scratch [28] where natural language expressions 
are used, to Pencil Code [3] which provides visual supports 
on top of programming keywords, and finally to Logo [23], 
which is a fully text language, we see a spectrum of how 
textual language can exist within a programming interface. 
Figure 7 shows the turn right command as it is represented 
across these four tools. 

 right 90 

(a) (b) (c) (d) 
Figure 7. The command to turn right in four modalities: (a) 

Scratch Jr., (b) Scratch, (c) Pencil Code, and (d) Logo. 

These four representations highlight visual differences 
between modalities. Other design dimensions to be 
explored in the creation of new modalities include temporal 
differences (have the representation change over time), 
auditory components, responsive or interactive modalities 
where the representation changes based on state or input, or 
creating tangible dimensions of the modality that are 
independent or live alongside virtual elements.  

As our definition of modality includes interactions, thus 
designing modalities extends beyond just the visual 
depiction of the representation. Consideration of modality 
design also includes various interaction capabilities that 
influence the mechanics of interaction with and use of the 
modality. In this work, the difference between dragging-
and-dropping blocks on the canvas versus typing 
commands in character-by-character with the keyboard 
highlight difference in interaction.  

Coding and Computational Thinking IDC 2017, June 27–30, 2017, Stanford, CA, USA

190



A final important dimension to discuss in terms of the 
malleability of modalities is to point out that a user need not 
be pinned to a specific modality. The learners in this study 
were held to a specific modality for the purpose of the 
research, not because of design constraints. The growing 
number of dual modality environments discussed earlier in 
this paper highlight the potential of this approach. The 
ability to provide multiple modalities within the same 
environment further opens the set of possibilities to 
designers of learning environments and computational tools 
more broadly. A strength of this approach is that it gives 
agency to the learner to decide not just how to use the 
various features of a single modality, but also to choose the 
modality they want to use. 
CONCLUSION 
As the presence of programming and computer science in 
K-12 classrooms grows, it is important that we take time 
and care to develop and evaluate the environments learners 
are using. Introductory programming environments that 
blend features of the block-based and textual modalities are 
one design approach that is gaining popularity. In this 
paper, we present one such implementation of a hybrid 
programming environment and compare it to isomorphic 
block-based and text-based alternatives to understand the 
impacts of this approach. In doing so, we have identified 
places where this hybrid design is effective and other 
dimensions where more design work needs to be done to 
better support learners. The hybrid design used in this study 
shows the potential for this line of work towards the greater 
goal of developing effective and accessible programming 
environments. Looking beyond programming 
environments, the larger contribution of this work is 
showing how the design choices made in the creation of 
new modalities and learning environments can produce 
outcomes similar to either of the source modalities used, as 
well as unique outcomes distinct from the designs that 
served as its inspiration. The hope for this work is that by 
attending to modality and viewing it as a design challenge, 
we can improve existing and create new ways for learners 
to engage with the powerful ideas of computing that 
surround them. 
REFERENCES 
1. M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari. 

2015. From Scratch to “Real” Programming. ACM 
Transactions on Computing Education (TOCE) 14, 4: 
25:1-15. 

2. A. C. Bart, E. Tilevich, C. A. Shaffer, and D. Kafura. 
2015. From interest to usefulness with BlockPy, a 
block-based, educational environment. In Blocks and 
Beyond Workshop, 2015 IEEE, 87–89. 

3. D. Bau, D. A. Bau, M. Dawson, and C. S. Pickens. 
2015. Pencil Code: Block Code for a Text World. In 
Proceedings of the 14th International Conference on 
Interaction Design and Children (IDC ’15), 445–448.  

4. A. Begel. 1996. LogoBlocks: A graphical 
programming language for interacting with the world. 
Electrical Engineering and Computer Science 
Department. MIT, Cambridge, MA. 

5. J. Bonar and B. W. Liffick. 1987. A visual 
programming language for novices. In Principles of 
Visual Programming Systems, S. K Chang (ed.). 
Prentice-Hall, Inc. 

6. A. Bruckman, M. Biggers, B. Ericson, T. McKlin, J. 
Dimond, B. DiSalvo, M. Hewner, L. Ni, and S. Yardi. 
2009. Georgia computes!: Improving the computing 
education pipeline. In ACM SIGCSE Bulletin, 86–90. 

7. D. C. Cliburn. 2008. Student opinions of Alice in CS1. 
In Frontiers in Education Conference, 2008. FIE 2008. 
38th Annual, T3B–1. 

8. W. Dann, S. Cooper, and B. Ericson. 2009. Exploring 
Wonderland: Java Programming Using Alice and 
Media Computation. Prentice Hall Press. 

9. W. Dann, D. Cosgrove, D. Slater, D. Culyba, and S. 
Cooper. 2012. Mediated transfer: Alice 3 to Java. In 
Proceedings of the 43rd ACM technical symposium on 
Computer Science Education, 141–146. 

10. C. Duncan, T. Bell, and S. Tanimoto. 2014. Should 
Your 8-year-old Learn Coding? In Proceedings of the 
9th Workshop in Primary and Secondary Computing 
Education (WiPSCE ’14), 60–69.  

11. L. P. Flannery, B. Silverman, E. R. Kazakoff, M. U. 
Bers, P. Bontá, and M. Resnick. 2013. Designing 
ScratchJr: Support for early childhood learning 
through computer programming. In Proceedings of the 
12th International Conference on Interaction Design 
and Children, 1–10. 

12. N. Fraser. 2013. Blockly. Google, 
https://developers.google.com/blockly/. 

13. D. Garcia, B. Harvey, and T. Barnes. 2015. The Beauty 
and Joy of Computing. ACM Inroads 6, 4: 71–79.  

14. R. Garlick and E. C. Cankaya. 2010. Using Alice in 
CS1: A quantitative experiment. In Proceedings of the 
fifteenth annual conference on Innovation and 
technology in computer science education, 165–168. 

15. B. Harvey. 1997. Computer science logo style: Beyond 
programming. The MIT Press. 

16. M. Homer and J. Noble. 2014. Combining Tiled and 
Textual Views of Code. In IEEE Working Conference 
on Software Visualisation (VISSOFT), 1–10.  

17. K. Howland and J. Good. 2014. Learning to 
communicate computationally with flip: A bi-modal 
programming language for game creation. Computers 
& Education.  

18. J. Kaput, R. Noss, and C. Hoyles. 2002. Developing 
new notations for a learnable mathematics in the 

Coding and Computational Thinking IDC 2017, June 27–30, 2017, Stanford, CA, USA

191



computational era. Handbook of international research 
in mathematics education: 51–75. 

19. M. Kölling, N. C. C. Brown, and A. Altadmri. 2015. 
Frame-Based Editing: Easing the Transition from 
Blocks to Text-Based Programming. In Proceedings of 
the Workshop in Primary and Secondary Computing 
Education (WiPSCE ’15), 29–38.  

20. J. H. Maloney, M. Resnick, N. Rusk, B. Silverman, 
and E. Eastmond. 2010. The scratch programming 
language and environment. ACM Transactions on 
Computing Education (TOCE) 10, 4: 16. 

21. Y. Matsuzawa, T. Ohata, M. Sugiura, and S. Sakai. 
2015. Language Migration in non-CS Introductory 
Programming through Mutual Language Translation 
Environment. In Proceedings of the 46th ACM 
Technical Symposium on Computer Science Education, 
185–190. 

22. J. Mönig, Y. Ohshima, and J. Maloney. 2015. Blocks 
at your fingertips: Blurring the line between blocks and 
text in GP. In 2015 IEEE Blocks and Beyond 
Workshop, 51–53.  

23. S. Papert. 1980. Mindstorms: Children, computers, and 
powerful ideas. Basic books, New York. 

24. S. Papert. 2006. Afterword: After how comes What. In 
The Cambridge Handbook of the Learning Sciences, 
R.K. Sawyer (ed.). Cambridge University Press, 581 – 
586. 

25. D. Parsons and P. Haden. 2007. Programming osmosis: 
Knowledge transfer from imperative to visual 
programming environments. In Procedings of The 
Twentieth Annual NACCQ Conference, 209–215. 

26. K. Powers, S. Ecott, and L.M. Hirshfield. 2007. 
Through the looking glass: teaching CS0 with Alice. 
ACM SIGCSE Bulletin 39, 1: 213–217. 

27. T. W. Price, N. C. C. Brown, D. Lipovac, T. Barnes, 
and M. Kölling. 2016. Evaluation of a Frame-based 
Programming Editor. In In Proceedings of the 2016 
ACM Conference on International Computing 
Education Research, 33–42.  

28. M. Resnick, B. Silverman, Y. Kafai, J. Maloney, A. 
Monroy-Hernández, N. Rusk, E. Eastmond, K. 
Brennan, A. Millner, E. Rosenbaum, and J. Silver. 
2009. Scratch: Programming for all. Communications 
of the ACM 52, 11: 60. 

29. J. J. Ryoo, J. Margolis, C. H. Lee, C. D. Sandoval, and 
J. Goode. 2013. Democratizing computer science 
knowledge: transforming the face of computer science 
through public high school education. Learning, Media 
and Technology 38, 2: 161–181.  

 

 

 

30. R. B. Shapiro and M. Ahrens. 2016. Beyond Blocks: 
Syntax and Semantics. Commun. ACM 59, 5: 39–41.  

31. A. Stead and A. F. Blackwell. 2014. Learning Syntax 
as Notational Expertise when using DrawBridge. In 
Proceedings of the Psychology of Programming 
Interest Group Annual Conference (PPIG 2014), 41–
52. 

32. M. Tempel. 2013. Blocks Programming. CSTA Voice 
9, 1. 

33. D. Weintrop. 2016. Modality Matters: Understanding 
the Effects of Programming Language Representation 
in High School Computer Science Classrooms. 
Northwestern University, Evanston, IL. 

34. D. Weintrop and N. Holbert. 2017. From Blocks to 
Text and Back: Programming Patterns in a Dual-
Modality Environment. In Proceedings of the 2017 
ACM SIGCSE Technical Symposium on Computer 
Science Education (SIGCSE ’17), 633–638.  

35. D. Weintrop and U. Wilensky. In Press. Comparing 
Blocks-based and Text-based Programming in High 
School Computer Science Classrooms. ACM 
Transactions on Computing Education (TOCE). 

36. D. Weintrop and U. Wilensky. 2015. To Block or Not 
to Block, that is the Question: Students’ Perceptions of 
Blocks-based Programming. In Proceedings of the 
14th International Conference on Interaction Design 
and Children (IDC ’15), 199–208.  

37. D. Weintrop and U. Wilensky. 2015. Using 
Commutative Assessments to Compare Conceptual 
Understanding in Blocks-based and Text-based 
Programs. In Proceedings of the Eleventh Annual 
International Conference on International Computing 
Education Research (ICER ’15), 101–110.  

38. D. Weintrop and U. Wilensky. 2015. The challenges of 
studying blocks-based programming environments. In 
2015 IEEE Blocks and Beyond Workshop, 5–7.  

39. U. Wilensky and S. Papert. 2010. Restructurations: 
Reformulating knowledge disciplines through new 
representational forms. In Proceedings of the 
Constructionism 2010 conference. 

40. 2014. App Inventory Java Bridge. Retrieved from 
https://code.google.com/p/apptomarket/ 

 

Coding and Computational Thinking IDC 2017, June 27–30, 2017, Stanford, CA, USA

192


