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This paper presents an agent based model simulating animal tracking datasets for individual animals based on
observed habitat use characteristics, movement behaviours and environmental context. The model is presented
as an alternative simulation methodology for movement trajectories for animal agents, useful in home range,
habitat use and animal interaction studies. The model was implemented in NetLogo 5.1.0 using observed behav-
ioural data for the Muscovy duck, obtained in a previous study. Four test scenarios were completed to evaluate
the fidelity of model results to behavioural patterns observed in the field. Results suggest the model framework
illustrated in this paper provides an effective alternative to traditional animal movement simulation methods
such as correlated random walks.
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1. Introduction

Researchers simulate tracking data for individual animals for a num-
ber of purposes relevant to both GIScience and ecology. A popular rea-
son is to generate a complete baseline dataset of known tracking data
to testmethods that are useful for analysing samples of VHF, GPS, or sat-
ellite data collected in thefield. For example, simulated trackingdata are
routinely used to test methods of home range analysis, where the per-
formance of different techniques is evaluated for samples of different
sizes, tracking intervals, or other qualities (Downs & Horner, 2009,
2012; Getz et al., 2007; Girard, Ouellet, Courtois, Dussault, & Breton,
2002; Laver & Kelly, 2008). Simulated animal tracking data are also
widely used as reference datasets for the purposes of quantifying animal
interactions. Here, observed data are compared to simulated data to de-
termine if animals come into contact more or less frequently than ex-
pected at random (Long, Nelson, Webb, & Gee, 2014; Miller, 2012,
2015; Richard, Calenge, Said, Hamann, & Gaillard, 2013). Similarly, sim-
ulated animal movement data are used to study habitat preferences of
animals through the use of step selection functions, which compare ob-
served tracking data to simulated random movement data to infer re-
source selection (Duchesne, Fortin, & Rivest, 2015; Forester, Im, &
Rathouz, 2009).

There are severalways that animal tracking data for individuals have
been simulated in practice. The first approach is to generate point pat-
terns of data that conform to particular statistical distributions, such as
son).
Poisson clusters or bivariate normal mixtures (Gitzen & Millspaugh,
2003; Gitzen, Millspaugh, & Kernohan, 2006). Sometimes the geome-
tries of these patterns are modified to create locational data that con-
form to particular shapes (Downs & Horner, 2008). Alternatively, the
density of points in a core location are artificially increased for the pur-
pose of creating data with non-stationary spatial properties consistent
with repeated use of a nest or den site (Downs et al., 2012). Often
times, the generated point data represent an animal's known locations,
and simulated tracking data are created by randomly sampling specified
numbers of points from the distribution. The downside of point pattern
approaches is that the locational data are not generated with explicit
time stamps. This means that consecutive points in the dataset are not
modelled as components of a continuous movement trajectory, which
makes the data less representative of animal movements (Downs,
2010).

Tracking data have been more realistically modelled using random
walk models, such as correlated randomwalks, Lévy walks and step se-
lection functions which simulate an ordered set of spatial locations that
constitute a movement trajectory (Bartumeus, Da Luz, Viswanathan, &
Catalan, 2005; Bergman, Schaefer, & Luttich, 2000; Byers, 2001;
Codling, Plank, & Benhamou, 2008; James, Plank, & Edwards, 2011;
Thurfjell, Ciuti, & Boyce, 2014). Random walk models generally use
two main parameters to model movement: turn angle and step length.
In practice, these two parameters have specified frequency distributions
that are used to control the properties of the modelled trajectory, such
as whether sharp turns or long steps are more or less likely. Tracking
data is simulated in this way by randomly generating values from
those distributions and plotting the resulting spatial coordinates over
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time. Extensions to random walk models use maximum likelihood ap-
proaches to model and incorporate the effects of resource availability
and habitat configuration from observed animal paths into simulated tra-
jectories (Moorcroft, Lewis, & Crabtree, 2006). Additionally, the simulated
data can be constrained to specific spatial areas, such as known home
ranges, so that they better correspond to observeddata or conform to par-
ticular sizes or shapes (Jeanson et al., 2003; Miller, Christman, & Estevez,
2011; Miller, 2012). A limitation of this approach is that turn angles are
not always good predictors of animal movements (Holloway & Miller,
2014; Nams, 2013; Wilson et al., 2013). It is possible that some species
do not have preferences for turning at particular angles, or that other con-
textual factors such as habitat preferences play larger roles in determining
how animals move about space.

A somewhat less explored but promising approach to simulating an-
imal tracking data for individuals involves using an agent-based model
(ABM). Spatially-explicit ABMs are routinely used to model movement
in complex geographical systems for a wide range of applications,
such asmodelling disaster response (Widener, Horner, &Ma, 2015), pe-
destrian behaviour (Torrens et al., 2012), traffic (Manley, Cheng, Penn, &
Emmonds, 2014), crime (Malleson & Birkin, 2012), urban processes
(Ettema, 2011), and humanitarian relief (Crooks & Wise, 2013). ABMs
have been used tomodel animalmovements, though generally the pur-
pose is to model how animals interact with one another and the envi-
ronment across space and time in order to understand dynamic
population and landscape processes, rather than to explicitly simulate
tracking data per se (McLane, Semeniuk, McDermid, & Marceau,
2011). Tang and Bennett (2010) provide an excellent review of ABMs
for animals, some examples include those developed to model migra-
tion (Bennett & Tang, 2006), population dynamics (Carter, Levin,
Barlow, & Grimm, 2015), predator-prey interactions (Ringelman,
2014), and group behaviour (Bonnell et al., 2013; Strombom et al.,
2014).

Though randomwalkmodels may appear similar in function to sim-
ple ABMs, more complex ABMs could potentially be used to simulate
more realistic tracking data for individual animals for testing home
range estimation methods, studying interactions, and related purposes.
The ABM approach differs from random walk models and their deriva-
tives as ABMs generate movement trajectories based on context-
aware decision-making logic defined for each fundamental actor in
the ABMmodel environment. The resulting ABM-generated movement
trajectories represent the aggregate of actor decisions. Consequently,
the ABM approach offers an alternative to empirical reduction or
model fitting on a priori animal trajectory datasets, as used in random
walk implementations or step selection functions (Epstein, 1999). This
paper presents an ABM that simulates animal tracking data for individual
animals based on observed movement behaviour and environmental
context. Themodel uses threemain behavioural variables—habitat transi-
tion, step length, and return time—that operate within the context of an
environment of habitat types. The goal is to develop an alternative plat-
form for simulating animal locational data for future studies, though the
model is created specifically for Muscovy ducks (Cairina moschata) in a
study area where one year of field data on their habitats andmovements
were collected. The paper is organised as follows. Section 2 describes the
modelling framework. Section 3 provides an overview of the field obser-
vations, model simulations, and methods of analysis. The corresponding
modelling and analysis results are detailed in Section 4. Finally, discus-
sions and conclusions are presented in Section 5.

2. Model framework

2.1. Overview

Tang and Bennett (2010) provide a detailed review of spatially-ex-
plicit ABMs and their features. Minimally, an ABM requires three basic
components: agents, environment, and behaviour. Agents are the fun-
damental actors in an ABM; they move about and interact with the
model environment according to sets of behavioural rules. The model
environment provides the context for agent movement and interaction.
For animals, the environment is generally modelled as a set of discrete
patches of habitat thatmay ormay not have other attributes. Behaviour-
al rules control how the agents move within the environment, for in-
stance by specifying possible step lengths or types of habitats that can
be occupied. Movements and actions carried out by agents occur at dis-
crete time steps, or ticks. At each tick, random behaviours are selected
by the model and enacted by agents. In more complex models, agents
have internal states that influence their behaviour, enabling agents to
interact; influencing one another and the environment (Ahern, Smith,
Joshi, & Ding, 2001).

In our model for simulating the movements of a single animal,
though, we specify a single agent—an individual Muscovy duck. The
model environment is composed of a grid of cells, or patches, classified
by habitat types relevant to the species of interest. The duck agent starts
the day at a designated known shoreline roosting location. After that,
the duck's movement is controlled by three sets of behavioural rules
that are explicitly linked to one another: habitat transition, step length,
and return time. The model simulates the duck's movement every 15 s
within and between habitats in the environment over 28 15-hour diur-
nal periods from 06:00:00 to 21:00:00. The 9-hour night time period,
when the duck is expected to roost in the same location on the shore-
line, is not modelled. The model output includes the duck's position
and habitat at each time step. The model is implemented in NetLogo
version 5.1.0, as described below (Fig. 1).

2.2. Agents

The animal species selected for this model is the Muscovy duck. The
Muscovy duck is a species of waterfowl native to South and Central
America, though populations have been introduced nearly worldwide
and are considered invasive in some locales. Though there is little pub-
lished literature on introduced Muscovy ducks, a population of about
120 individuals at the University of South Florida campus in Tampa,
FL, is relatively well studied (Anderson, 2012). A previous study by
Downs et al. (under review) documented habitat use and behavioural
patterns of this population. There, Muscovy ducks occupied urban envi-
ronments where open water was present. They utilized fivemain habitat
types during the daytime:water (pond, lake, orwetland), shoreline (edge
of pond, lake, or wetland), grass (open lawn), tree and shrub cover, and
urban (roads, buildings, parking lots, sidewalks, etc.). They roosted on
shoreline overnight, typically returning several times per day. Additional-
ly, Muscovy ducks are capable of flight, however they fly relatively infre-
quently, locomoting mostly by walking and swimming. Movement data
collected at the same time but not published with those observations
are reported here and used to inform the agent's behavioural rules (see
Section 2.4).

2.3. Model environment

The model environments consisted of rectangular grids of cells classi-
fied by habitat type. For this study, two model environments, or habitat
maps, were used for comparison: an observed study area and a random
habitat map (Fig. 2). The study area consisted of a 0.28 km2 area that in-
cluded a pond where a portion of the behavioural data were collected.
The study area was divided into square grid cells at a 5 m resolution.
The choice of a 5 m cell resolution was motivated by the distribution of
distances in observed duck movements, the size and habitat gradient in
the study area, and the need for abstraction in terms of the model imple-
mentation. The 5 m resolution represents a compromise level of abstrac-
tion where both habitat type gradient could be effectively captured and
animal movements effectively simulated. Duck agent location is under-
stood by the model in terms of continuous X/Y coordinates, an agent
can be located at any location within any habitable environment cell.
The study area comprised 86 rows and 132 columns of cells. Each cell



Fig. 1.Muscovy duck agent-based model diagram.

Fig. 2. Sample simulatedMuscovyduck tracking data for four scenarios: study areawith a 720 tick return time (a), study areawith a 3600 tick return time (b), random landscapewith a 720
tick return time (c), and random landscape with a 3600 tick return time (d).
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wasmanually assigned one of five habitat classes corresponding to previ-
ous studies:water, shoreline, grass, tree-shrub, andurban. An inaccessible
class is also included to exclude buildings and major roadways where
ducks were not expected to visit. For comparison, a randommodel envi-
ronment was also created by randomly assigning cells in the original
study area to one of the five habitat classes. Habitats were randomly
assigned in proportion to how often ducks were observed to spend time
in them (12% water, 13% shoreline, 42% grass, 26% tree and shrub, and
7% urban). Both habitat maps were created using GIS (ArcMap v 10.1,
ESRI Inc.) and saved as polygon shapefiles in a UTM projection. For
these shapefiles, each habitat cell consisted of a single, square-shaped
polygon feature, with cells arranged in a regular grid or “fishnet” configu-
ration. The vector shapefile maps were later imported into the NetLogo
software to serve as the model environments. The import routine imple-
mented by the NetLogo software package enables a one-to-one mapping
of vector grid cells intomodel environment patches carrying correspond-
ing habitat type information.

2.4. Agent behaviours

The model of Muscovy duck movements utilizes three behavioural
rules: habitat transition, step length, and return time. Habitat transition re-
fers to the duck's decision at each time step to either remain in the same
habitat or move to another. There were 25 possible transitions observed
for the study area environment, which involved 5 habitat classes. The
step length specifies the distance the duck desires to move within or be-
tween habitats. In this case, observed step lengths were categorized into
five ranges of distances relevant to the species of interest: 0 m, 1–5 m,
6–20m, 21–40m, and41–100m. Thefirst category represents a lackof an-
imal movement coinciding with resting or loafing behaviour. The second
corresponds to movement by walking or swimming within a single cell
in the model environment, depending on the habitat type. The third en-
compasses movements into nearby cells by walking, swimming, or flying.
The fourth and fifth categories represent longer movements that occur at
higher speeds and correspond exclusively to flight behaviour. The return
time specifies the frequency at which the duck returns to the roost (i.e.
homing behaviour directs the animal to its starting location), measured
as the number of model ticks passing before it returns. For example, a re-
turn time of 3600 forces the duck to return to the roost at the start of
every diurnal period. A return time of 720 requires the duck to return to
the roost every three hours, or at 06:00:00, 09:00:00, 12:00:00,
15:00:00, and 18:00:00. The decision to set the temporal resolution of
the model to 15 s per tick was motivated by the resolution at which field
observations were collected, in the context of consideration surrounding
observedmovement distances and the overall extent of the study area en-
vironment. Given the extent of the study area and the capabilities for ani-
mal movement observed, a temporal resolution of 15 s was deemed
appropriate to model both short and long distance transitions for duck
agents.

Frequency distributions constructed from habitat transition and as-
sociated step length observations were used to inform agent decision-
making in the model. During a given model tick where a return-to-
roost is not required, the duck agent will randomly draw an element
from the transition frequency distribution corresponding to its current
habitat situation. For example, if a duck agent is currently situated in
shoreline cover, a transition type of “to-water” might be drawn. Based
on the result of the initial transition draw, the duck agent proceeds to
draw a step length from a step length distribution associated with the
chosen transition type. In the case of a shoreline-to-water transition,
step length draws of 1-5 m and 6-20 m are possible.

2.5. Model steps

The ABM models duck movement based on the observed habitat
transition, step length, and return frequencies within the habitat map
using the following procedure:
Step 1: Initialization.

a. A single duck is located at a pre-designated shoreline cell at tick 0
(i.e. 06:00:00).

b. The duck's spatial coordinates are recorded.
c. 1 tick (15 s) is added to the model clock.
d. Duck proceeds to Step 2.

Step 2: Duck movement.

a. The duck counts the number of ticks that have passed.

1. If the number of ticks is equally divisible by the specified return time:
a. The duck returns to the roost.
b. The duck records its spatial position.
c. 1 tick (15 s) is added to the model clock.
d. The duck proceeds to Step 3.

2. If the number of ticks is not equally divisible by the specified return
time:
a. The duck identifies the habitat type of its current position.
b. The duck randomly draws a habitat transition type from a habitat

transitions distribution corresponding to its current habitat situa-
tion.

c. The duck randomly draws from a step length distribution for the
selected habitat transition.

d. The duck determines possible target cells given its current posi-
tion, selected habitat transition, and selected range of move-
ment/step length.
i. If possible target cells are identified within range of the chosen
step length:

1. The duck randomly selects one of the potential cells.
2. The duck moves to a random location within that selected cell.
3. The duck records its spatial position.
4. 1 tick (15 s) is added to the clock.
5. The duck proceeds to Step 3.

ii. If possible target cells are not identified, for example, no cells of
the drawn transition type are available within the drawn step
length:

1. The duck returns to Step 2.a.

3. If the number of ticks is equally divisible by the specified return time:
a. The duck immediately returns to the original roost location via a

direct-flight.

Step 3. Model continuation or end.

b. If the final number of ticks (100800) has not been reached, the duck
returns to Step 2.

c. If the final number of ticks (100800) has been reached, the model
ends.

3. Methods

3.1. Field observations

Habitat transition and movement data were collected alongside
other behavioural data at the University of South Florida Tampa campus
(paper under review). Field observations were conducted from January
2012 to January 2013 during daylight hours. The protocol began with
the researcher visiting a designated part of the campus and randomly
selecting a duck to observe. Observations of individual ducks were



Table 1
Observed transition frequencies from one habitat (row) to another (column) forMuscovy
ducks.

Habitat Water Shoreline Grass Tree-shrub Urban

Water 2796 113 4 0 0
Shoreline 80 2705 78 2 2
Grass 21 76 8807 101 124
Tree-shrub 8 3 75 5794 30
Urban 0 0 133 38 1393

Table 2
Observed movement distances associated with habitat transitions for Muscovy ducks.

From To Distance (m)

Habitat Habitat 0 1–5 6–20 21 to 40 41 to 100

Water Water 2276 504 14 0 2
Water Shoreline 0 77 36 0 0
Water Grass 0 0 3 1 0
Water Tree-shrub 0 0 0 0 0
Water Urban 0 0 0 0 0
Shoreline Water 0 56 24 0 0
Shoreline Shoreline 2682 22 0 0 1
Shoreline Grass 0 45 31 1 1
Shoreline Tree-shrub 0 2 0 0 0
Shoreline Urban 0 0 2 0 0
Grass Water 0 7 2 5 7
Grass Shoreline 0 38 22 5 11
Grass Grass 8470 315 8 5 9
Grass Tree-shrub 0 62 37 2 0
Grass Urban 0 88 35 0 1
Tree-shrub Water 0 6 1 1 0
Tree-shrub Shoreline 0 1 1 1 0
Tree-shrub Grass 0 44 31 0 0
Tree-shrub Tree-shrub 5761 32 0 0 1
Tree-shrub Urban 0 21 9 0 0
Urban Water 0 0 0 0 0
Urban Shoreline 0 0 0 0 0
Urban Grass 0 92 25 10 6
Urban Tree-shrub 0 28 9 1 0
Urban Urban 1364 28 1 0 0
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conducted for 10-min timeperiods. Relevant to this study, the habitat in
which the duckwas locatedwas recorded every 15 s, alongwith the ap-
proximate distance it travelled between each 15 s interval. The final
dataset included N22,000 observed habitat transitions and their associ-
ated distances, as summarized in Tables 1 and 2. Table 1 shows how
Muscovy ducks tended to stay within the same habitat during most ob-
served transitions. Some transitions between habitats were fairly com-
mon, such as those between water and shoreline and those between
shoreline and grass. Ducks were never observed moving directly from
water to urban habitat, or vice versa. The second table summarizes the
Fig. 3. Subset of a single simulated Muscovy duck trajectory (origin at
distances associated with each of the transition types. Note, the values
are directly linked. For example, of 102 transitions fromwater to shore-
line 77 were associated distances b1–5 m, and 25 were associated with
distances of 6–20 m. Overall, it is clear from the tables that the ducks
overwhelmingly moved rather small distances during 15 s intervals,
though these are punctuated by less frequent, relatively long flights.
The longer flights mostly occurred between grass and other habitats.

3.2. Model specification and simulations

TheMuscovy duck agent-basedmodel was run under four scenarios.
All scenarios utilized the observed habitat transition and step length
distributions. Upon any randomdraw, the duck agent has access to hab-
itat transition and step length distributions corresponding to the habitat
type currently occupied and has access to a step length distribution cor-
responding to its chosen destination. Once a destination is selected, the
duck agent proceeds to the destinationwithout further consideration of
possible, intermediate habitat changes occurring along its path ofmove-
ment between the origin and destination habitat cell. Environment cells
of inaccessible type are omitted from agent consideration for move-
ment. No duck agent can move to an inaccessible cell, as no transitions
to inaccessible habitat were observed or included in transition distribu-
tions. In terms of the model time elapsed during movement, the duck
agent executes its chosen transition within the span of a single tick
once habitat transition type and distance have been drawn. In this
sense, the model generates animal movements which are possible in
the span of 15 s, consistent with the 15 s long field observations collect-
ed. Upon reaching a return-to-roost tick, movement is also instanta-
neous, representing a return to the roost via direct flight of the duck.
For model runs conducted as part of this research, four scenarios were
evaluated by using all combinations of the two landscapes (study area
and random) and two return times (3600 and 720 ticks), as described
in Section 2. The models for the study area were initialized using a
predetermined list of observed duck shoreline roosting locations for
consistency between the two different return time scenarios for that
model environment. Similarly, sets of shoreline roosts were specified
for the random landscape toward the centre of the map. The model
was run 60 times for each scenario, producing a total of 240 individual
movement trajectories (Fig. 3). The generated tracking point datasets
for each model run were exported as shapefiles for further analysis in
a GIS.

3.3. Analysis

Two measurements were calculated for each individual tracking
dataset for comparison among scenarios, as well as for comparison to
shoreline, symbol height (z-axis) indicates model ticks elapsed).

Image of Fig. 3


Table 3
Mean percent and standard deviation of points located in each habitat type for four model scenarios of 60 runs each.

Scenario Water Shoreline Grass Tree/shrub Urban

Landscape Return time Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d.

Study area 720 12.8 2.1 12.0 1.5 47.9 2.3 23.5 1.9 4.0 0.9
Study area 3600 10.7 1.3 8.7 0.9 49.9 1.8 25.6 3.1 4.7 0.5
Random 720 10.1 1.1 11.4 0.9 44.8 1.5 29.7 1.2 4.0 0.4
Random 3600 9.0 0.8 9.3 0.6 45.0 5.4 32.0 1.3 4.1 0.3
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existing studies ofMuscovy ducks. First, percentages of points located in
each habitat type were calculated as a measure of habitat usage. This
was calculated in order to compare habitat use simulated by the
model to that observed in the original field study. Second, the number
of occupied cells (i.e. grid cells containing a tracking point) were count-
ed as a simple measure of the spatial extent of the duck's movements.
This can loosely be considered as a measure of the duck's home range.
For bothmeasures ofmodel output, basic summary statisticswere com-
piled for each of the four scenarios. Analysis of variance (ANOVA) using
Tukey's HSD test was used to determine if these measures differed be-
tween scenarios.
4. Results

Model runs produced habitat percentages that were very similar to
those observed in the field (12% water, 13% shoreline, 42% grass, 27%
tree and shrub, and 7% urban), though there were differences between
scenarios (Table 3). While the mean percentages only differed by a
few percentage points between scenarios, the differences were signifi-
cant (p b 0.05) as the variance within scenarios was low. Tukey's HSD
test indicated that percentages differed between all scenarios for
water, shoreline, grass, and tree-shrub. Urban percentages were only
different for the second scenario. The first scenario (study area map
with a return time of 720) produced percentages most similar to those
observed in thefield forwater and shoreline, themost critical duck hab-
itats. Usage was lower for all other scenarios. The second scenario
(study areamapwith a return time of 720) generated themost accurate
tree-shrub percentages, though all scenarios produced results that were
slightly higher than observed. The random habitat map scenarios best
simulated grass usage, although all models predicted slightly higher
usage than observed in the field. All scenarios produced urban percent-
ages that were slightly lower than observed.

Sample Muscovy duck tracking data sets for each of the four model
scenarios are illustrated in Fig. 2. The different scenarios produced track-
ing data sets with different spatial characteristics. The first scenario pro-
duced the smallest occupied areas, on average 1616 cells or 0.040 km2

(Table 4). When only a single return to the roost at the start of each day
was modelled in the same landscape, the size increased to an average of
2140 cells or 0.054 km2. Compared to the study area environment, the
simulated duck tracking for the random scenarios data covered larger
spatial areas, an average of 1967 cells or 0.050 km2 under 720-tick return
times and an average of 3023 cells or 0.076 km2 for 3600-tick return
times. Although there were 11,352 grid cells in eachmodel environment,
numbers of occupied cells did not vary greatly within each scenario, with
a difference of at most 665 cells between the minimum and maximum
Table 4
Mean, standard deviation, minimum, and maximum numbers of occupied cells for four
landscape and return time scenarios of Muscovy duck agent-based model runs.

Landscape Return time Mean s.d. Minimum Maximum

Study area 720 1616 94 1377 1785
Study area 3600 2140 145 1856 2488
Random 720 1967 85 1786 2169
Random 3600 3023 123 2606 3271
valueswithin any one scenario (Table 4). ANOVA andTukey's HSD test in-
dicated that the numbers of occupied cells differed among all scenarios.
5. Discussion

The agent-basedmodel ofMuscovy duckmovements produced sim-
ulated tracking data with habitat use characteristics similar to the
percentages reported in a previous study. The best performing
model—the first scenario with frequent return times in the study area
map—produced habitat percentages most similar to those observed in
the field. This scenario produced tracking data with the smallest spatial
extents, which is not surprising as each duck was required to return to
the shoreline at regular intervals. A once daily return time caused rela-
tive decreases in water and shoreline usage—compared to both the
first scenario and the observed field data—because whenever the duck
was located N100 m from the pond, it could not return there even
when transitions to water or shoreline were drawn. As ducks in the
study area were observed returning to the water several times each
day, incorporating a shorter return time into the model improved the
results. Alterations in return time for either landscape composition
may significantly affect associated home range estimates in situations
where convex hulls are constructed from multiple simulated
trajectories.

The model's performance in random habitats illustrated how the
model output differed with changes landscape composition and config-
uration. Despite water and shoreline being distributed throughout the
random landscape, usage of these habitats was slightly less than that
generated by the study area models. This is because those habitats
were distributedmostly as isolated cells, so habitat transitions between
water and shoreline often could not be completed if the cells were not
adjacent to one another. The declines in water and shorelinewere asso-
ciated with increased in grass and tree-shrub usage. Despite approxi-
mating habitat usage fairly accurately, the models for the random
environment produced tracking data with different spatial features
than produced for the study area scenarios. First, the random models
produced tracking data that covered larger spatial extents. This is be-
cause inaccessible cover typeswere included in themapwhile preferred
habitats were more continuously available throughout the landscape,
which imposed less restrictions on movement. Second, the shapes of
the point clouds of tracking data tended to be more circular or radial,
particularly for the frequent return time scenario. In comparison,
those for the study area map tended to follow the configuration of suit-
able habitat features.

In summary, the agent-based modelling approach described in this
paper provides a useful method for simulating tracking data. Such
data could be used in future studies that test methods of home range
analysis or quantify animal interactions. Rather than using turn angles
in conjunction with step length frequencies, habitat transition frequen-
cies and return timeswere used tomodel animal tracking data in differ-
ent landscape contexts. This approach contributes a novel extension to
the process of simulating animal movements, as habitat preferences
and landscape features are directly incorporated into the model. Addi-
tionally, the use of the return time feature allows intensive use of core
areas to be modelled, which could be useful for species that repetitively
visit particular locations, such as roosts, nests, or dens.
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Concerning limitations of the current model implementation, future
development could address logical issues surrounding the sensitivity of
themodel components to the structure and size of the study area and ob-
servedmovement datasets. For example, in the case of this study, a small
study area combined with the available range of distance choices for ani-
mal locomotion during transitions rendered the majority of model envi-
ronment readily accessible (except for inaccessible cells) to agents in
situations such as direct and long flight movements. If this model were
specified for a larger study area, the movement dynamics analysed and
reported in this research could change. Additional agent decision-making
logic or the incorporation of agent state information capturing a time-
budget for return-to-roost state in agents could resolve complications
brought about by larger model environments (agents becoming too far
from roost to effectively return during a single tick). Further, the approach
detailed in this study has the goal of generating movement trajectories
which are representative of a population resident to a study area, using
observations taken from individuals. Due to the nature of this approach,
themodel does not simulate any behaviours unique to one individual an-
imal, for example simulation of an individualwhere specific biases in hab-
itat preferences have been observed. This is lost upon aggregation of the
observed data informing the model. Ultimately, this renders simulation
problematic where uniqueness in behaviour between animal agents is a
research requirement. Alteration of the data aggregation methods and
collection of additional observational datasets which focus on individuals
across a series of repeat observation efforts could be used to relax this lim-
itation in the future.

Though the approachwas employed for Muscovy ducks, the general
approach is flexible enough to simulate tracking data for other species if
habitat transition and step length frequency data can be collected or esti-
mated. In this study relevant data were collected via visual observations,
but deriving this information from high temporal frequency GPS or satel-
lite tracking data also should be possible. Additionally, other types of
agent behaviours could be incorporated into themodel to generate track-
ing data with other types of characteristics. For example, if particular an-
imals move in groups, then spatial dependency among agents could be
explicitly modelled. It would also be straight forward to model
constrained movements within predefined home ranges, such as is com-
monly done tomodel animal interactions. This could be accomplished by
altering the model environment to exclude additional inaccessible areas
outside a designated home range area. Another interesting addition
might be to include dynamic changes in the model environment, such
as resource availability, or behavioural states of the agents, such as hun-
ger, which are commonly modelled for other purposes.
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