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ABSTRACT 

The electricity market in the U.S. is changing rapidly from a 

utility-scale centralized generation-distribution model to a more 

distributed and customer-sited energy model. Increasingly, 

residential consumers are showing interest in solar-based 

electricity, which has resulted in increased adoption of distributed 

solar on the rooftops of owner-occupied residences. However, 

limited accessibility of rooftop photovoltaic (PV) has led to equity 

concerns among policymakers. Also, utility companies face a 

decline in revenues as more residents adopt rooftop PV. In 

response to these issues, utility companies must consider 

providing alternative renewable energy options to their customers 

and incorporate consumer adoption modeling in their expansion 

planning approach. Agent-based modeling enables energy 

consumers’ socially-motivated adoption decisions to be 

realistically captured. This paper describes an agent-based model 

that demonstrates the value of incorporating consumer-adoption 

modeling in a utility company’s expansion planning approach1. 
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1 INTRODUCTION 

The electricity market in the U.S. is changing rapidly. In 

particular, the share of renewable sources of energy has increased 

in response to serious environmental consequences associated 

with fossil fuels. As a result, there has been a structural shift in the 

electricity market, from a utility-scale centralized generation-

distribution model to a more distributed and customer-sited 
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energy model. Figure 1 shows a structural comparison between a 

utility-scale and consumer-sited energy model. The focus of this 

paper is on distributed generation in the residential sector. The 

residential sector is of interest, as it accounts for about one-third 

of total electricity consumption in the U.S. [1]. 

 

Figure 1: Structural difference between utility-scale and 

consumer-sited energy model. 

Over the last decade solar energy has emerged as a viable 

option for electricity supply through distributed generation [2]. 

Residential energy consumers have shown increased interest in 

solar-based electricity – in a 2015 survey of U.S. residential utility 

customers, 59% claimed to be interested in using solar electricity 

at home, and 34% claimed to be “seriously considering” their 

solar options [3]. This has resulted in a large increase in the 

adoption of distributed solar panels on the rooftops of owner-

occupied residences (typically known as rooftop PV) in the U.S. 

over the past several years [4]. Adopters are typically motivated 

by energy cost savings, a desire to own the energy infrastructure, 

concern for the environment, peer influence, and the ability to 

gain independence from the utility company. Interactions among 

peers are of particular interest – research has shown that 

consumers’ energy technology adoption decisions are often 

socially motivated [5,6,7].  

However, the rate of rooftop PV adoption has decreased in 

recent years, mainly because there are few remaining early 

technology adopters. There are several other reasons for this 

decrease in growth. First, the high up-front cost of purchasing and 

installing rooftop PV has limited access to higher-income 

households. Although incentives (e.g., income tax credit) and 

leasing options have attempted to address this issue, the majority 

of U.S. homeowners are still unable to install rooftop PV. In fact, 

a National Renewable Energy Laboratory (NREL) study found 

that only 22–27% of all rooftop area in the U.S. is suitable for 

installation of PV panels, after adjusting for structural, shading, or 

ownership issues [8]. Apart from that, rooftop PV does not 

accommodate renters and apartment owners who do not own the 

space needed to install solar collectors. This has raised equity 

concerns among policymakers, since publically-funded rebates are 

only being distributed to a small number of U.S. households [6]. 
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Another challenge associated with rooftop PV involves the 

utility companies. As the number of consumers who generate their 

own energy using rooftop PV increases, utility companies’ 

revenues decline. Because rooftop PV consumers do not pay their 

fair share of the cost of maintaining and upgrading the existing 

electricity infrastructure, utility companies are forced to increase 

electricity tariffs. This creates an unfair financial burden on 

consumers who do not have the resources to install rooftop PV. In 

response to this, many utility companies in the U.S. are changing 

their policies on rooftop PV adoption. For example, the Iowa 

Utilities Board has recently approved a policy change on net 

metering from Alliant Energy (a public utility company) [9]. Net 

metering allows consumers to offset their energy bills with the 

excess energy generated by their PV systems. Per the new policy, 

new customers must significantly reduce the size of their rooftop 

PV installations. The projected result is a reduction in solar 

installations in Alliant Energy’s territory by at least 70%.  

Alternative renewable energy models that involve both 

consumers and utility companies as stakeholders could help to 

address these issues. For example, community solar, also called 

“shared solar,” is defined by NREL as “a solar-electric system 

that provides power and/or financial benefit to multiple 

community members” [8]. Under a community solar program, the 

actual generation of renewable energy does not occur at the 

customer’s home. Instead, the customer subscribes to a portion of 

a shared renewable energy facility (much like a resident may 

invest in a community garden) located elsewhere in the 

community, and each subscriber benefits in proportion to their 

investment [10]. These shared renewable energy facilities can be 

owned by a third-party entity, a utility company or by a group of 

consumers themselves. Utilities, mandated by federal and state 

policies to increase renewable sources in their energy mix, should 

consider adopting alternative models to increase consumer 

participation as investors in creating new energy infrastructure. 

However, utilities must be strategic about structure (e.g., capacity, 

ownership) of the alternative renewable energy models that they 

decide to offer. It is important for them to understand how 

heterogeneous individual customers would respond and what the 

impacts of these individual decisions would be on the long-term 

success of the overall system. In particular, while consumer 

energy choices are driven by perceived benefits such as financial 

savings and increased convenience, they are also often socially 

motivated.  

Conventional methods for expansion planning (i.e., 

mathematical modeling) assume aggregate consumer behavior 

based on extrapolations of historical data and do not account for 

consumers’ social behaviors, such as diffusion of innovation and 

social learning within spatial and social networks. By contrast, 

consumer-adoption modeling explicitly uses historical distributed 

PV deployment data, location-specific generation potential, 

economic considerations for adopting distributed PV, and end-

users’ behaviors as predictive factors in expansion forecasting for 

utility companies [11]. Therefore, in the current energy market 

with increasing number of consumers interested in becoming 

stakeholders in the energy infrastructure, it is apparent that the 

utility companies should incorporate consumer-adoption modeling 

in their expansion planning approach.  

Agent-based modeling (ABM) is a technique that is well-

suited to studying the effects of energy consumers’ heterogeneous 

behaviors, boundedly rational decision processes, and social 

interactions on the adoption of energy technology over space and 

time [12,13,14]. The nonlinear interactions arising from 

consumers’ decisions could result in an overall system-wide 

behavior that emerges over time [15,16,17]. ABM has been 

previously used as a tool to study the consumer adoption of 

various energy technologies. For example, several ABMs have 

been developed to study the effects of different policies on rooftop 

PV adoption among residential energy consumers [6,18,19]. 

However, the existing work does not aim to help utilities make 

decisions about how to effectively structure alternative renewable 

energy models to address the issues associated with increased 

rooftop PV adoption.  

This paper describes an ABM that has been developed to 

demonstrate the value of incorporating consumer-adoption 

modeling in a utility company’s expansion planning approach. 

This model captures the decision processes and interactions of 

heterogeneous individual residential electricity consumers who 

are given the options of adopting rooftop PV or participating in a 

community solar project. Model outputs (i.e., system-wide 

consumer adoption behavior) can be used to help utility 

companies understand the effects of offering different renewable 

energy alternatives to their customers. 

2 CONCEPTUAL MODEL 

The ABM was developed using NetLogo 5.3.1 and will be 

described using the ODD (Overview, Design concepts and 

Details) protocol [20]. First, an overview of the ABM is provided: 

Purpose – The purpose of this model is to demonstrate the 

usefulness of incorporating consumer-adoption modeling in a 

utility company’s expansion planning approach. The model can be 

used to assist utility companies in identifying specific attributes of 

alternative renewable energy models (e.g., the capacity of a 

community solar project) that minimize their revenue losses and 

maximize consumer participation and total green power in their 

energy portfolios.  

Agents – The ABM contains 300 residential consumer 

agents. The 300 consumer agents are each assigned to one of 

seven different communities. Communities 1 through 7 consist of 

70, 30, 20, 70, 40, 30, and 40 agents, respectively. A community 

identification number (Ci) has been assigned to each consumer 

agent, such that agents of the same community have the same 

value of Ci.  Each consumer agent has also been assigned a level 

for each of four demographic factors (age, income, education 

level, and race) based on empirical data from a small city in Iowa. 

Nine levels (0-8) of age (Ai), 16 levels (0-15) of income (Ii) and 6 

levels (0-5) of education (Ei) have been defined, where higher 

levels correspond to larger values of age, income, and educational 

experience, respectively. Eight levels (0-7) of race (Ri) were also 

defined, with each level corresponding to a unique race. The 
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income level, education level, and race of an agent are assumed to 

remain constant throughout the simulation run. However, the age 

level of each consumer agent increases as simulated time 

progresses.  

The consumer agents can either buy electricity from the 

utility company through conventional sources, or they have the 

potential to become energy generators through rooftop PV 

adoption or participation in a community solar project. Each agent 

is categorized as being either a house-owner, a renter, or an 

apartment owner. It is assumed that only house-owner agents can 

install rooftop PV (either through buying or leasing option), while 

house-owner, renter, and apartment owner agents can all adopt 

community solar. The consumer agents are capable of interacting 

with other agents, both within and outside their own communities. 

The variables associated with the consumer agents and data 

sources are explained in Table A1 of Appendix A. 

Overview – In each time-step (where one time-step 

represents one month), each consumer agent assesses whether it 

wants to participate in one of three different renewable energy 

models: buy rooftop PV, lease rooftop PV from a solar installer, 

or enroll in a community solar project offered by the utility 

company. This decision is driven by the agent’s financial position 

(i.e., its ability to invest), its attitude toward buying solar 

electricity, its demographic attributes, and influence from other 

agents in its social and spatial networks. Next, the model design 

concepts are described: 

Basic principles – The various financial, attitudinal, and 

demographic factors that drive the consumer agents’ decisions to 

adopt a renewable energy model were shortlisted through a review 

of numerous existing empirical studies that have identified 

consumers’ motivations for adopting solar electricity. In 

particular, the literature indicates that consumer decisions to adopt 

energy technology are socially motivated [7], with social and 

spatial interactions serving as influential factors in residential 

solar electricity adoption [5,6].  

Emergence – The collective behavior of the agents yields 

emergent properties. Consumer agents’ decisions to adopt a 

renewable energy model will influence other consumer agents’ 

decisions due to the interactions that occur between them. The 

heterogeneous interactions between the consumer agents yield 

emergent system-wide adoption of different renewable energy 

models.  

Objectives – Each consumer agent’s objective is to meet its 

energy needs in each time-step. The agent can achieve this 

objective by sourcing conventionally-produced energy directly 

from the utility company, or by sourcing renewable energy 

through adoption of rooftop PV or by participating in a 

community solar project. 

Interactions – Two types of interactions between the 

consumer agents have been considered in this model. The first 

type is a visual interaction (i.e., seeing PV panels on a neighbor’s 

roof): if a house-owner agent adopts rooftop PV in a given time-

step, in the next time-step every other consumer agent within the 

same community becomes aware of it. Past research on consumer 

adoption of rooftop PV has shown that having more rooftop PVs 

in a zip code increases the likelihood of another household 

adopting [5]. 

 The second type of interaction involves peer interactions 

between the consumer agents within their social networks. This 

type of interaction involves the exchange of information (e.g., 

availability of a community solar project) and can occur between 

the agents of the same as well as different communities. Influence 

due to peer interactions plays an important role in a consumer’s 

decision to adopt solar electricity [5,6]. To create the agents’ 

social network, a small-world network was generated using 

Watts-Strogatz algorithm, with a rewiring probability of 0.5 [21]. 

Figure 2 shows a snapshot of the NetLogo user interface after the 

small-world social network generation, where each node in a 

circle represents a consumer agent, and the line connecting the 

node refers to its connection. The seven circles represent the 

seven different agent communities in the model.   

After generating the social network, each of the links 

between the consumer agents is assigned a similarity index. 

Consumer similarity (i.e., homophily) is a predictor of the strength 

of interactions within the generated social network [22]. It is 

assumed that higher similarity index values yield more influential 

interactions between the consumer agents. The four demographic 

characteristics of the consumer agents (age, income, education, 

and race) are used to determine the similarity index of each link. 

The similarity of two agents is assumed to be indirectly 

proportional to the differences in their age (Ai), income (Ii), 

education (Ei), and race (Ri) levels, with equal weights on each 

factor. A similarity index is calculated as the sum of the 

normalized similarity values from each demographic factor. 

Because the maximum and minimum possible values of similarity 

from each demographic factor are equal to 0.25 and 0, 

respectively, the maximum and minimum values of the overall 

similarity index are 1 and 0, respectively. Similarity index (Simijk) 

between agents’ j and k is evaluated using (1), where Rjk is 0 if the 

race levels of agents’ j and k are the same; otherwise it is assigned 

a value of 1.  

𝑆𝑖𝑚𝑖𝑗𝑘 = (0.25 −
|𝐴𝑗 − 𝐴𝑘|

32
) + (0.25 −

|𝐼𝑗 − 𝐼𝑘|

60
) 

+ (0.25 −
|𝐸𝑗 − 𝐸𝑘|

20
) + (0.25 −

𝑅𝑗𝑘

4
) 

 

(1) 

 Observations – The total number of consumer agents buying 

rooftop PV, leasing rooftop PV, or adopting community solar are 

captured in each simulation run. The net revenue and losses of the 

utility company serving the consumer agents due to rooftop PV 

uptake is also recorded, as well as the total green power addition 

in the network. Finally, model details are provided: 
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Figure 2: Snapshot of the NetLogo model showing 300 

consumer agents living in 7 different communities and socially 

connected via a small-world network.  

Initialization – At the beginning of the simulation run, each 

consumer agent is initialized to be a non-adopter that buys 

electricity from the utility company through conventional sources. 

Input data – Publically-available data from a city in Iowa 

was used to inform the decisions and behavior of the consumer 

agents. Approximately 59% of the residents of this city are house-

owners and 41% are either renters or apartment owners. This ratio 

has been applied to the 300 consumer agents randomly. However, 

in reality not all house-owners can adopt rooftop solar. In the U.S. 

only 22-27% of rooftops are suitable for installation of PV panels 

after adjusting for structural, shading, or ownership issues [8]. 

Therefore, it is assumed that only 25% of the house-owner 

consumer agents are capable of adopting rooftop PV, although 

they can all adopt community solar. 

The mean monthly residential electricity consumption of the 

Iowa city (873 kWh/month) was used to define the probability 

distribution of the consumer agents’ monthly electricity 

consumption. A normal distribution using this value as the mean 

and a standard deviation of 50 (i.e., N (873, 50) kWh/month) was 

assumed, from which monthly consumption values (Qi) are drawn 

for each consumer agent. The consumer agents’ unit electricity 

cost was set to the current average residential electricity rate of 

the city, i.e. 11.63 ¢/kWh. This cost was assumed to increase by 

four percent annually. 

Sub-models – The ABM contains three sub-models: 

Consumer Agent Attitude Assessment, Consumer Agent Financial 

Assessment, and Consumer Agent Decision. All the three sub-

models are executed in each monthly time-step for each consumer 

agent. 

Sub-model 1 – Consumer Agent Attitude Assessment - 

Several attitudinal factors are known to influence consumers’ 

decisions to buy solar electricity [3]. These factors include a 

desire to become independent from the utility company and own 

the energy infrastructure, concern for protecting the environment 

for future generations, the complexity involved in buying rooftop 

PV, the expected duration of staying in the current house, and the 

influence of recommendations from people in their social and 

spatial networks.  

Each consumer agent is initially assigned an initial awareness 

index (AWi) on a scale of 0-1, which is the normalized product of 

its education level (Ei) and a random number generated between 0 

and 1. A higher value of AWi corresponds to a greater probability 

that a consumer agent will adopt a renewable energy model. The 

value of AWi for a non-adopter may increase over time as a result 

of visual and peer interactions.  

In each time-step, it is assumed that AWi for a non-adopter 

increases by 0.1 if a house-owner agent within its community 

adopts rooftop PV in the previous time-step. This is because it is 

assumed that every agent can see the panels on the rooftop of a 

house-owner agent in its community. The value of AWi for a non-

adopter consumer agent also increases when it interacts with an 

adopter (either rooftop PV or community solar) agent in its social 

network. This value of this increase is determined by (2), where 

AWj(before) and AWj(after) are the non-adopter j awareness index 

values before and after the interaction, AWk is the adopter k 

awareness index, and Simijk is the similarity index value of the 

link between agent j and k (calculated using Equation 1). It is 

assumed that the awareness index of an adopter will no longer 

increase after adoption. It is also assumed that in each time-step a 

consumer agent will interact with every agent in its social 

network.  

𝐴𝑊𝑗(𝑎𝑓𝑡𝑒𝑟) = 𝐴𝑊𝑗(𝑏𝑒𝑓𝑜𝑟𝑒) + 0.01𝐴𝑊𝑘𝑆𝑖𝑚𝑖𝑗𝑘 (2) 

The awareness index of an agent also increases if it interacts 

with solar installers at renewable energy fairs and/or with utility 

companies at seminars on the renewable energy programs that 

they offer for their customers [23]. It is assumed that only house-

owner agents who can adopt rooftop PV can attend a renewable 

energy fair, at which they gain knowledge on rooftop PV 

buying/leasing options. However, any type of agent can attend a 

utility company seminar. In each time-step the likelihood that a 

consumer agent will attend a renewable energy fair and/or a 

seminar conducted by the utility company depends on the agent’s 

current value of AWi, where a higher value yields a higher 

probability of attending a fair or seminar. An agent will attend a 

solar installers’ fair and/or a utility company seminar a maximum 

of one time during a simulation run. If an agent attends a fair or 

seminar, its awareness index increases by a value of 0.1. During 

the interactions in the seminar, the utility company also shares 

information about the availability of a community solar project. 

Those consumer agents that attend the seminar will become aware 

of the community solar option. Additionally, if a consumer agent 
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that is aware of the community solar option interacts with another 

agent in its social network, the other agent also becomes aware of 

the community solar option, irrespective of attending the utility 

company seminar. It is assumed that a consumer agent does not 

know about community solar if it does not either attend a utility 

company seminar or interact with another agent in its social 

network that is aware of the community solar program offered by 

the utility in its area. 

Consumers tend to consider the purchase of rooftop PV to be 

a complex issue, because of the effort required to learn about 

installation procedures, federal and state incentive policies, utility 

companies’ net metering policies, house-owners’ association 

regulations, and the required paperwork [8,10,24,25]. However, 

when a consumer leases solar panels or adopts community solar, 

project developer handles all of the local permitting and 

approvals, as well as evaluating incentives to maximize the 

financial return for their customers. To capture this factor in the 

agents’ decision process, each house-owner consumer agent is 

assigned a perceived complexity index (PCi) value on a scale of 0-

1. The initial value of this index is assigned randomly to each 

house-owner consumer agent. Lower values of PCi correspond to 

greater probabilities that the house-owner agent will buy rooftop 

PV. The value of PCi decreases by 0.25 if a non-adopter house-

owner agent interacts with the solar installers at a renewable 

energy fair. Its value also decreases if the non-adopter house-

owner agent interacts with a rooftop PV buyer within its social 

network. This decrease in the perceived complexity index of a 

non-adopter house-owner agent j is given by (3), where PCj(before) 

and PCj(after) are the non-adopter’s j perceived complexity index 

values before and after the interaction, PCk is the perceived 

complexity index of rooftop PV buyer k, and Simijk is the value of 

the similarity index between agents’ j and k. 

𝑃𝐶𝑗(𝑎𝑓𝑡𝑒𝑟) = 𝑃𝐶𝑗(𝑏𝑒𝑓𝑜𝑟𝑒) − 0.01𝑃𝐶𝐾𝑆𝑖𝑚𝑖𝑗𝑘 (3) 

 Each house-owner consumer agent is also assigned an 

ownership index (Oi) on a scale of 0-1, where higher values of Oi 

correspond to higher probabilities that the agent would prefer 

installing rooftop PV over participating in a community solar 

project. This value is assigned randomly to each house-owner 

agent. Lastly, a house-owner agent’s current age level (Ai) also 

affects its decision to adopt rooftop PV. Older people are more 

likely to adopt rooftop PV, as they tend to plan to stay in their 

existing home and are closer to retirement [23]. Therefore, each 

house-owner agent has been assigned an age risk index (ARi) on a 

scale of 0-1, based on its current age level (Ai). The age risk index 

of an agent is evaluated by normalizing to 1 the product of its 

current age level (Ai) and a random number generated between 0 

and 1. Higher values of age risk index (ARi) correspond to greater 

probabilities that the house-owner agent will buy or lease rooftop 

PV from a solar installer.  

Sub-model 2 – Consumer Agent Financial Assessment -

Reducing electric bills is one of the most important factor in a 

consumer’s decision to use solar electricity at home [26].  It is 

assumed that a consumer agent calculates the Net Present Value 

(NPV) of a renewable energy model to evaluate its financial 

viability. The NPV evaluation for each agent is based on a 25-year 

investment decision, which is the average life of solar panels. 

Also, based on the solar PV radiation in the Iowa city, it is 

assumed that 100 kWh (AC) of energy is generated each month 

for each kW (DC) of solar panel installed through either rooftop 

PV or a community solar project. Further, it is assumed that if a 

consumer agent decides to buy or lease rooftop PV or subscribe to 

a community solar project, it will choose a PV module of size Si 

(in kW (DC)) that will be capable of meeting 100% of its monthly 

energy needs (Qi).  

Each agent is randomly assigned one of five agent types (Ti) 

based on its optimism towards solar electricity [27]. These agent 

types are classified as Very Conservative (Ti= 0), Conservative 

(Ti= 1), Baseline (Ti= 2), Optimistic (Ti= 3), and Very Optimistic 

(Ti= 4), with higher values of Ti corresponding to greater optimism 

toward solar power’s financial prospects. An agent’s type 

determines its perceived annual growth rate of electricity cost 

from conventional sources in the future (PGi), perceived annual 

discount rate (PDi), and perceived annual rooftop PV maintenance 

costs (PMi) associated with buying rooftop PV, as a percentage of 

up-front investment. The values of PGi and PDi increase, whereas 

the value of PMi decreases, from Very Conservative to Very 

Optimistic agent types. The more optimistic an agent is towards 

solar electricity, the greater it will perceive the return on 

investment in solar due to a higher perceived future growth rate of 

electricity cost from conventional sources. The values for PGi, 

PDi, and PMi considered in this model are described for each 

agent type (Ti) in Table 1.  

Table 1: Financial parameters assigned to each agent type in 

the ABM. 

Variable Ti= 0 Ti= 1 Ti= 2 Ti= 3 Ti= 4 

PGi 0.00% 2.60% 2.60% 3.30% 5.00% 

PDi 1.00% 3.00% 5.00% 7.00% 9.00% 

PMi  0.50% 0.25% 0.25% 0.15% 0.00% 

Another financial attribute that affects a house-owner agent’s 

decision to adopt rooftop PV is the up-front cost of buying solar 

panels. High up-front costs deter consumers with lower income 

levels from installing solar [25,28]. To incorporate this factor, an 

affordability factor (AFi) on a scale of 0-1 for each house-owner 

consumer agent has been defined based on its income-level (Ii). 

The affordability factor (AFi) of the agent is evaluated by 

normalizing to 1 the product of its income level (Ii) and a random 

number generated between 0 and 1. A higher affordability factor 

(AFi) signifies a higher probability that the house-owner consumer 

agent can afford to pay the high up-front cost of purchasing solar 

panels.  
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Each consumer agent evaluates the financial viability of a 

renewable energy model by calculating its NPV in each time-step. 

If a house-owner consumer agent has the ability to adopt rooftop 

PV (i.e., it can afford to purchase rooftop PV and does not face 

any structural constraints), then it calculates the NPVs for buying 

and leasing rooftop PV. The house-owner agent will also calculate 

the NPV of participating in a community solar project in each 

time-step if it has previously been made aware of its availability. 

If a house-owner agent cannot adopt rooftop PV due to structural 

constraints, then it only calculates the NPV of the community 

solar project in each time-step (if it is aware of it). Every other 

agent (i.e., agents that are not house-owners) will calculate the 

NPV for the community solar project, provided that the agent is 

aware of it. 

NPV (buying rooftop PV) - The present value of the 

installation cost of rooftop PV (Pb(install)) for a house-owner agent 

at time t is given by (4), where Wt is the installation cost ($/kW 

(DC)) and ITCt is the percentage of federal income tax credit at 

time t. The federal income tax credit has played a key role in 

reducing the up-front cost of buying rooftop PV. Wt is assumed to 

be $3360/kW at the beginning of the simulation run, and it 

decreases by 4% annually. This decrease in the installation cost is 

attributed to the declining prices of rooftop PV modules. It is 

assumed that the utility company allows its customers to offset 

100% of the energy generated by their rooftop PV for net 

metering.  

The present value of the future monthly bill savings (Pb(mbs)) 

from buying rooftop PV and of the future maintenance cost 

(Pb(maint)) associated with rooftop PV are given by (5) and (6), 

respectively. These costs are evaluated for a 25-year (300 months) 

time period for each consumer agent, by converting annual 

discount and electricity growth rates to equivalent monthly values. 

Finally, the NPV of net perceived savings from adopting rooftop 

PV (NPVb(saving)) at time t is given by (7), which is the present 

value of the total savings in the future monthly energy bills 

(Pb(mbs)) minus the present value of the total up-front investment 

involved in buying rooftop PV (Pb(install)) and the present value of 

the total future maintenance cost (Pb(maint)).  

𝑃𝑏(𝑖𝑛𝑠𝑡𝑎𝑙𝑙)  =  𝑆𝑖𝑊𝑡 ( 1 −  𝐼𝑇𝐶𝑡) (4) 

𝑃𝑏(𝑚𝑏𝑠) =  100𝑆𝑖𝐶𝑡 ∑ (
1 + 𝑃𝐺𝑖  

1 + 𝑃𝐷𝑖
)

300

𝑛=1

𝑛−1

 (5) 

𝑃𝑏(𝑚𝑎𝑖𝑛𝑡) = 25𝑃𝑀𝑖𝑃𝑏(𝑖𝑛𝑠𝑡𝑎𝑙𝑙) (6) 

𝑁𝑃𝑉𝑏(𝑠𝑎𝑣𝑖𝑛𝑔) = 𝑃𝑏(𝑚𝑏𝑠) − 𝑃𝑏(𝑖𝑛𝑠𝑡𝑎𝑙𝑙) −  𝑃𝑏(𝑚𝑎𝑖𝑛𝑡)   (7) 

NPV (leasing rooftop PV) – The monthly leasing cost that a 

house-owner agent must pay if it leases solar panels at time t is 

decided by the solar installer. This monthly leasing cost depends 

on the size of the solar panel array (Si) required by the house-

owner agent, the income tax credit rate (ITCt) at time t, the 

installation cost of solar panels (Wt), the perceived discount rate 

by the solar installer (PDs), and the leasing period (assumed to be 

25 years). The total investment made by the utility company to 

buy solar panels for an agent i is given by (8). This total 

installation cost (Ii) which the solar installer has invested will be 

recovered from the consumer agent via part of the fixed monthly 

leasing cost (Mi) over 25 years.  

Apart from the initial investment (Ii), the solar installer will 

also evaluate the present value of the total maintenance cost 

(Pl(maint)) over next 25 years, given by (9). It is assumed that 

maintenance cost is 4 percent annually (or 0.33 percent monthly) 

of the total investment cost (Ii), including the solar installer’s 

expected return. This total maintenance cost will also be 

recovered by the solar installer as a part of the monthly leasing 

cost (Mi).  

The fixed monthly leasing cost (Mi) is evaluated by the solar 

installer using (10), which equates the sum of total investment (Ii) 

made by the solar installer at time t and the present value of total 

maintenance cost to the present value of the total future leasing 

cost that the consumer will pay over next 25 years. The NPV of 

the total savings that the consumer agent will perceive in leasing 

(NPVl(saving)) from the solar installer is the difference between the 

present value of the total savings it perceives in monthly energy 

bills over the next 25 years (Pb(mbs)) and the present value of all 

the monthly leasing cost that the consumer will pay in leasing 

rooftop in those years. NPVl(saving) is given by (11).  

𝐼𝑖  =  𝑆𝑖𝑊𝑡 ( 1 −  𝐼𝑇𝐶𝑡) (8) 

𝑃𝑙(𝑚𝑎𝑖𝑛𝑡) = 0.33𝐼𝑖 ∑ (
1 

1 + 𝑃𝐷𝑆
)

300

𝑛=1

𝑛−1

 (9) 

𝐼𝑖 + 𝑃𝑙(𝑚𝑎𝑖𝑛𝑡) =  𝑀𝑖 ∑ (
1 

1 + 𝑃𝐷𝑆
)

300

𝑛=1

𝑛−1

 (10) 

𝑁𝑃𝑉𝑙(𝑠𝑎𝑣𝑖𝑛𝑔) = 𝑃𝑏(𝑚𝑏𝑠) − 𝑀𝑖 ∑ (
1 

1 + 𝑃𝐷𝑖
)

300

𝑛=1

𝑛−1

 (11) 

NPV (community solar) - It is assumed that if a consumer 

agent enrolls in a community solar project, it pays a fixed 

premium (Cp) per unit of energy in addition to the conventional 

electricity rate at the time of adoption (Ct), and that the total unit 

price that the agent pays (Cp+ Ct) is kept constant for the life of 

the community solar project. The present value of the total 

monthly bills the consumer agent will pay if it chooses to 

participate in the community solar project (PCS) at time t is given 

by (12). However, if the consumer agent continues to buy 

electricity from the utility company through conventional sources, 

then the present value of its future monthly bills (P0) is given by 

(13). The NPV of total savings at time t for enrolling in a 

community solar project (NPVCS(saving)) is the difference between 

the present value of maintaining the status quo and the present 

value of enrolling in the community solar, given by (14).  
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𝑃𝐶𝑆 = 𝑄𝑖(𝐶𝑡 + 𝐶𝑝) ∑ (
1 

1 + 𝑃𝐷𝑖
)

300

𝑛=1

𝑛−1

 (12) 

𝑃𝑜 = 𝑄𝑖𝐶𝑡 ∑ (
1 + 𝑃𝐺𝑖

1 + 𝑃𝐷𝑖
)

300

𝑛=1

𝑛−1

 (13) 

𝑁𝑃𝑉𝐶𝑆(𝑠𝑎𝑣𝑖𝑛𝑔) =  𝑃0 − 𝑃𝐶𝑆 (14) 

 Sub-model 3 – Consumer Agent Decision – For a consumer 

agent to adopt a renewable energy model, the agent’s awareness 

index must be greater than 0.8, and the NPV of the renewable 

energy model must be greater than 0. Renters and apartment 

owner agents will adopt community solar if their NPV of 

community solar is greater than 0 and their awareness index (AWi) 

is greater than 0.8. However, if the awareness index (AWi) of a 

house-owner agent is greater than 0.8 and the NPV is greater than 

0 for multiple renewable energy models, its final decision to adopt 

a particular renewable energy model will depend on its current 

level of perceived complexity (PCi) in buying rooftop PV, its 

ownership index (Oi), and its current age risk level (ARi).  

For each house-owner agent in each time-step, a random 

number is generated between 0 and 1, and if the number is less 

than the agent’s Oi value, then the agent will prefer the rooftop PV 

option (either buy or lease) over the community solar project. If 

this number is greater than Oi, the agent’s preferences for rooftop 

PV and community solar will be equal. In any of the above cases, 

if a house-owner agent favors rooftop PV over community solar, 

its decision to adopt rooftop PV will depend on its current age risk 

level (ARi), and its current perceived complexity (PCi). A random 

number is again generated between 0 and 1. If the number is less 

than the current age risk level (ARi) of the agent, it will adopt 

rooftop PV (either buy or lease), otherwise it will not adopt 

rooftop PV. The agent’s final decision between buying or leasing 

rooftop PV depends on the agent’s current perceived complexity 

(PCi) in buying rooftop PV. If a random number generated 

between 0 and 1 is greater than the agent current perceived 

complexity (PCi), it will favor buying rooftop PV; otherwise, it 

will lease rooftop PV.  

3 EXPERIMENTATION AND RESULTS 

The ABM was used to test the effects of varying several financial, 

attitudinal, and demographic factors on the consumer agents’ 

adoption of renewable energy models and the utility company’s 

revenue. For each experiment, 50 replications of 270 monthly 

time-steps each were run. The initial 30 time-steps were used as a 

warm-up period to allow the system to stabilize, and the output 

metric values for the remaining 240 time-steps (i.e., 20 years), 

averaged over 50 replications, were analyzed.  

Table 2 summarizes the five experimental scenarios that 

were tested. Two factors were varied: visual interactions between 

the consumer agents (enabled or not enabled) and the status of a 

community solar project (not available or available at different 

premium prices (Cp)). In all of these experimental scenarios, it 

was assumed that if an agent does not adopt rooftop PV or 

participate in a community solar project, it will buy electricity 

through conventional sources from the utility company. The 

income tax credit was initialized to be 30% and was reduced to 

26% after 90 time-steps, to 22% after 102 time-steps, and to 10% 

after 114 time-steps. This reduction in income tax credit reflects 

the current federal rebate policies for rooftop PV consumers. The 

discount rate of the solar installer (PDS) is assumed to be 10% 

annually for all scenarios. The outputs of interest are the total 

number of rooftop PV adopters, the utility company’s revenue, the 

total green power added in the system, and the degree of 

participation in the community solar project by renters, apartment 

owners, and house-owners that cannot adopt rooftop PV due to 

structural constraints. 

Figures 3 and 4 show snapshots of the NetLogo interface for 

a typical replication of Scenario 2, in which only rooftop PV is 

available for the consumers to adopt, and for Scenario 4, in which 

both rooftop PV and community solar options are available, 

respectively. The consumer agents highlighted in green are the 

rooftop PV adopters that leased their systems, those in red are 

rooftop PV buyers, and agents in blue are community solar 

participants at the end of 270 time-steps. These output metrics 

from the interactive interface were used in the verification of the 

model. For example, the snapshot from Scenario 2 (Figure 3) 

shows that none of the agents in community 5 adopted rooftop PV 

for this particular replication. However, the Scenario 4 snapshot 

(Figure 4) shows that there were four rooftop PV adopters in 

community 5. The visual interface allowed for the verification of 

this result:  the awareness index values (AWi) of these four agents 

were low in Scenario 2, due to insufficient social interactions.  

Figure 5 shows the number of rooftop PV adopters (buy or 

lease) in each time-step over 20 years for each of the five 

experimental scenarios. There is a noticeable difference in the 

number of rooftop PV adopters with and without visual 

interactions enabled (Scenario 1 vs 2). Interestingly, the final 

number of rooftop PV adopters in the experimental scenarios with 

both rooftop PV and community solar options available 

(Scenarios 3, 4, and 5) was greater than the final number of 

rooftop PV adopters in Scenario 2. This is because more 

consumer agents that are capable of adopting rooftop PV (i.e., 

house-owner agents without any structural constraints) exceeded 

the threshold awareness index (AWi), due to the greater number of 

total solar adopters overall (including both rooftop PV and 

community solar).  

Table 2 – Experimental scenarios. 

 Visual Interactions Cp (¢/ kWh) 

Scenario 1  × NA 

Scenario 2 ✓ NA 

Scenario 3 ✓ 8 

Scenario 4 ✓ 10 

Scenario 5 ✓ 12 
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Figure 3: Snapshot of the NetLogo model in Scenario 2 - when 

consumers can adopt only rooftop PV (either buy or lease).  

 

Figure 4: Snapshot of the NetLogo model in Scenario 4 – when 

consumers can adopt rooftop PV (buy or lease) as well as 

participate in a community solar project. 

Figure 6 shows a comparison of the utility company’s total 

revenue (in $ million) at the end of the final time-step for each 

experimental scenario, and Figure 7 shows the total capacity of 

community solar (in kW) that the utility company needed to add 

for scenario 3-5. These types of outputs could potentially help a 

utility company to decide on the capacity of community solar it 

will need to satisfy customer demand for renewable energy, while 

also meeting their revenue targets. 

The utility’s revenue in Scenario 1 is greater than its revenue 

in Scenario 2 because there are fewer rooftop PV adopters in 

Scenario 1. However, in the scenarios with both rooftop PV and 

community solar options available (Scenarios 3, 4, and 5), the 

utility’s revenue is the greatest for Scenario 3, despite having the 

greatest number of rooftop PV adopters. This was a consequence 

of greater consumer participation in the community solar program 

in Scenario 3, which increased overall greater revenues due to 

community solar price premiums (Cp). 

 

Figure 5: Number of consumer agents adopting rooftop PV in 

Scenario 1-5. 

 

Figure 6: The utility’s revenue in the final time-step for 

Scenarios 1-5. 

Scenario 3 also yielded the maximum participation of 

apartment owners/renters unable adopt rooftop PV (Figure 8). 

This result would be of interest to the utility, in support of its 

efforts to address policymakers’ equity concerns. The total green 

power added (in kW) by the rooftop PV adopters and the utility 

company through the community solar project at the end of 20 

years is shown in Figure 9 for each experimental scenario. 
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Scenario 3, with the greatest number of rooftop PV and 

community solar adopters, added the most units of green power.  

 

Figure 7: Total required community solar capacity for 

Scenarios 3-5. 

 

Figure 8: Participation of renters/apartment owners in the 

community solar project in Scenarios 3-5. 

 

Figure 9: Total green power added to the system through 

rooftop PV or community solar project in Scenarios 1-5. 

These results suggest that, for these specific model parameter 

values and experimental conditions, Scenario 3 (i.e., providing the 

community solar option for consumers with Cp equal to 8 ¢/kWh) 

would not only help to alleviate utility revenue losses due to 

rooftop PV adoption, but it would also address equity concerns 

and satisfy the utility’s renewable energy portfolio requirement. 

4 CONCLUSIONS 

This paper describes an ABM that was developed to demonstrate 

the importance of incorporating consumer-adoption modeling into 

a utility company’s expansion planning approach. Consumer-

adoption modeling can help utility companies determine the right 

mix of alternative renewable energy models for its customers in 

the long term. This modeling framework also has the potential to 

help utility companies identify tradeoffs and meet specific goals, 

such as alleviating revenue losses due to rooftop PV adoption, 

increasing participation in distributed generation by consumers 

who cannot adopt rooftop PV, or both. The conceptual model 

described in this paper will serve as a starting point for future 

research. In particular, there are several behavioral theories (e.g., 

theory of planned behavior, value-based norm theory, diffusion of 

innovation) and social network structures (e.g., community 

structure, small-world) that map to factors that are known to affect 

consumers’ solar adoption decisions. These will be used to 

develop agent architectures for different consumer and utility 

personas, which will provide a foundation for an ABM that can be 

validated using empirical data from a region that has introduced 

an alternative renewable energy model.  
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Appendix A 

Table A1: Consumer agent state variables. 

State 

variables 
Description Possible values 

Static/ 

Dynamic 
Source 

i Unique number assigned to each agent 0 - 299 Static N/A 

Ci Community identification number  0 - 6 Static N/A 

Ai Age level  0 - 8 Dynamic 
Derived from Data USA 

(https://datausa.io/) 

Ii Income level  0 - 15 Static 
Derived from Data USA 

(https://datausa.io/) 

Ei Education level  0 - 5 Static 
Derived from Data USA 

(https://datausa.io/) 

Ri  Race level  0 - 7  Static 
Derived from Data USA 

(https://datausa.io/) 

Qi Monthly residential electricity consumption N (873,50) Static  
Derived from Electricity Local 

(https://www.electricitylocal.com/) 

AWi Awareness index  0 - 1 Dynamic Assumption  

PCi Perceived complexity index  0 - 1 Dynamic Assumption 

Oi Energy infrastructure ownership index  0 - 1 Static Assumption 

ARi Age risk index  0 - 1  Dynamic Assumption 

Si  
Size of the solar panel array agent for rooftop 

PV or community solar project  
Qi /100 Static Assumption 

Ti  Agent type  0 - 4 Static Literature [27] 

PGi Perceived annual growth rate of electricity  0 - 5% Static Assumption 

PDi  Perceived annual discount rate 1 - 9% Static Assumption 

PMi 

Perceived annual maintenance cost involved in 

rooftop PV as a percentage of total installation 

cost 

0 - 0.5% Static Assumption 

AFi 
Affordability factor associated with buying 

rooftop PV system 
0 - 1 Static Assumption 
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