
Obstacle Evasion Algorithm for Clustering Tasks
with Mobile Robot

César Giovany Pachón Suescún1 , Carlos Javier Enciso Aragón1 ,
Marco Antonio Jinete Gómez1 , and Robinson Jiménez Moreno2(✉)

1 Universidad Piloto de Colombia, Bogotá, D.C, Colombia
{cesar-pachon1,carlos-enciso,marco-jinete}@upc.edu.co

2 Universidad Militar Nueva Granada, Bogotá, D.C, Colombia
robinson.jimenez@unimilitar.edu.co

Abstract. This paper presents a proposal of obstacle evasion oriented to mobile
robots in clustering tasks. For this case, polar coordinates are set for the movement
of the mobile, the possible obstacles in the path are determined and imaginary
boundaries are generated in each possible obstacle in order to delimit the path of
the mobile between them. The algorithm developed under the Netlogo program‐
ming environment makes it possible to perform evasion and reach the clustering
point efficiently.
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1 Introduction

Clustering algorithms allow to perform different tasks of pattern recognition in data
clustering, for instance, in [1], clustering validation techniques using cancer datasets are
presented. However, clustering techniques are not biased only to datasets hence they are
now being projected to navigation applications. For example, in [2], path-clustering
techniques based on spatiotemporal restrictions are performed.

The analysis of trajectories and clustering of them has strong applications in systems
of video surveillance [3], e.g., to determine trends in a particular path that can determine
human-vehicle intersections and avoid accidents. Because of this, clustering applica‐
tions can be found for vehicle [4] or aircraft trajectories [5].

Another application of clustering techniques in path planning is given in mobile
robotics, where there are developments that seek to generate trajectories based on
obstacle evasion to go from one point to another, as is the case of [6], also this is the
objective proposed in [7], but in the latter case, a fuzzy clustering technique is used to
delimit boundaries that will set the possible paths of the robotic mobile.

Algorithms such as those presented in [8, 9], which are based on a matrix system
from the images captured in order to generate a path, generate a relatively high compu‐
tational cost if they are implanted in programming languages not optimal for the use of
matrices. In addition, they may be affected with the resolution in which the image is
captured, since the larger the image, the longer the processing time. There are projects
such as those implemented in [10] which use a global camera, or as seen in [11] that use
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a local camera, causing in this way that the strategy for the path planning has a depend‐
ence of the location of the camera. Investigations focused on the clustering of objects
[12], in which the clustering zone depends more on the initial location of the objects to
be grouped, can cause them to lose their usefulness in real applications where objects
are needed in a particular zone.

Many of the simulations that exist in both the path planning and in clustering of
objects usually obviate situations that can occur in an implementation in a real envi‐
ronment, as is the method of interaction with the medium [13], the intercommunication
schemes between robotic agents [14] and collision with obstacles. In this project it was
sought to take into account this type of situations, for which it was necessary to determine
a procedure that was implemented in the general algorithm, which focused on the avoid‐
ance of obstacles for clustering tasks with easy adaptability to systems with global and
local camera, scalability to a real environment and, because it has been developed in a
generic way, it may allow its validation in multi-robot environments and collaborative
applications.

This paper is developed in three sections, the first presents the materials and the
methods used, the second presents the analysis of results and the final section gives the
conclusions reached.

2 Materials and Methods

This paper discusses the development of an algorithm of evasion and clustering for a
single mobile robotic agent, which must perform the path planning for its displacement
from an object to the final location, avoiding obstacles in the path. The algorithm is
developed in the NetLogo simulation environment, in order to verify its correct operation
and to be able to have a future collaborative working environment, which is the strength
of such simulation software, to work with multiple agents of the same or different class.

The projection of the algorithm starts from the initial idea of an agent that has a
camera and, through image processing, locates objects with known dimensions in the
work area, obtaining their polar coordinates with respect to the agent. This is the starting
point of the algorithm, i.e. it starts from the base that the position of the objects with
respect to the agent is known as well as the coordinates of the point of clustering. The
agent must generate a strategy to move from each object to the point of clustering, then
go to another object and return to the point of clustering and thus to finish the groupable
objects. In Fig. 1, it can be seen the agent, the objects represented as a magenta square
and the clustering area as a green square.

The initial problem that arises in the development of the algorithm is how to go from
a point A (current location of the mobile) to a point B (location of the object), and then
from the point B to a point C (clustering location) (Fig. 1). Because the polar coordinates
are known at each of the points (B and C), where the agent must go, the agent would
only need to rotate an angle α and move a distance h1 to move to point B (see Fig. 2).
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Fig. 2. Translation from point A to point B

Now it is desired to go from point B to point C, but the origin of the system and the
orientation of the plane changed, therefore, it must be calculated the new position of C
with respect to the new point of origin that is now located in B, taking into account the
angle at which the agent is rotated.

For this calculation, the initial positions of A, B, C can be taken. Observing in
Fig. 1, the coordinates of A are (0, 0), but to calculate the coordinates of B and C, which
are (X1, Y1) and (X2, Y2) respectively, it is necessary to perform the conversion of the
known polar coordinates to rectangular ones, (see Fig. 3).

Fig. 3. Conversion from polar coordinates to Cartesian

Once these values are known, a subtraction is performed between the coordinates of
C and those of B, with Eq. (1).

NC = (X2, Y2) − (X1, Y1) (1)

In this way, the coordinates of B and those of C can be taken as (0, 0) and as NC,
respectively. Now to calculate h3, which refers to the displacement from B to C, the
magnitude of NC is calculated in (2).

Fig. 1. Work area.
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h3 = |NC| (2)

Part of what is sought in this algorithm is to determine the different possible paths
and which of them is the shortest, both translational and rotationally. When the agent
rotates, it has two possibilities, the first is to rotate to the right and the second to the left,
it will always be sought to rotate to the side where the angular displacement is the
shortest, so if it is desired to calculate the angle of rotation from B to C, it must be
assumed that the orientation of the agent is at 0°. With the function Atan2, the shortest
angle can be calculated from 0°, but NetLogo lacks this function, so a simple Atan and
a conditional are used, in order to achieve the same results as with the Atan2. If the angle
is greater than 180°, 360° is subtracted from this angle, otherwise, if it is minor, no
changes are made. The angle ∝1 is subtracted from the result obtained in order to know
the total angle that must be rotated to be in orientation to C. After calculating h3 and
∝2, it can be proceeded to rotate and move the agent to C (see Fig. 4). In this way if there
were a point D, and we wanted to go from C to D, it would be proceeded to perform the
same procedure that was done from B to C.

Fig. 4. Translation from point B to point C

The way in which it was decided to address the problem of collisions was proposing
imaginary borders around each object, where their dimensions will be at least the radius
of rotation of the mobile agent to implement, plus an extra safety factor given in centi‐
meters, which can vary from 0 to the value that is deemed convenient, in order to ensure
that, at any point on the frontier to which the agent is addressed, it will not collide with
the object in question. To better understand a case of evasion, it will be made an analysis
based on the possible scenario that can be observed in Fig. 5.

Fig. 5. Example of evasion

If it is wanted to go to object 3 and then take it to the clustering area, the agent would
have to be able to evade the other objects, which would become obstacles for the agent.
The first step to achieve this goal is to identify possible obstacles. The first parameter is
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if any of the objects is a distance greater than the target, then this is discarded as a possible
obstacle. The next parameter refers to the maximum angle that the objects could be with
respect to the objective, in order to discard those that exceed that angle in later calcu‐
lations since these objects would not affect in the trajectory. In Fig. 6 it is possible to
analyze a case in which an object is as close as possible to the agent, without hindering
its rotation. If the agent wants to move to another point, the maximum angle that must
be rotated to avoid colliding or that the object may obstruct the rotation of the agent after
translation is 90°, therefore, this angular value is assigned as the maximum that objects
can be relative to the target, so that they can be considered as possible obstacles.

Fig. 6. Minimum angle to avoid an obstacle.

To calculate the angle between the target and each of the obstacles, this will be equal
to the scalar product between the two vectors, divided by the product of their modules,
and from this result, the arc cosine is calculated in (3).

cos−1
⎛⎜⎜⎝
⃖⃖⃖⃖⃗obj ⋅ ⃖⃖⃖⃖⃖⃗obs||| ⃖⃖⃖⃖⃗obj

||||||⃖⃖⃖⃖⃖⃗obs
|||
⎞⎟⎟⎠ (3)

Where ⃖⃖⃖⃖⃗obj refers to the target vector and ⃖⃖⃖⃖⃖⃗obs to the obstacle vector.
Only objects that become possible obstacles in the path, the calculation of their

borders is made. In Fig. 7, it can be seen that objects 1, 4 and 5 have points which
represent the vertexes of their boundary.

Fig. 7. Boundaries

In this case, the objects 5 and 1 share borders, therefore, when sharing borders are
considered both as a single obstacle, and a new boundary is defined which will take into
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account for its dimensions the maximum and minimum points between boundaries of 5
and 1.

In Fig. 8a a special case is presented in which object A and B share boundaries but
do not share with object C. In this case a new boundary is formed between the merging
of A and B, this new resulting boundary shares boundaries with C (see Fig. 8b), therefore,
in the algorithm designed, once two obstacles are merged it is proceeded to compare if
this union shares a border with another obstacle, if so, they are combined again. Conse‐
quently, when C shares boundaries with the fusion between A and B, they generate a
new one, and, what were initially 3 obstacles, are now treated as one (see Fig. 8c). This
boundary treatment will avoid complex inter-object calculations of escape routes.

Fig. 8. Boundary union.

Once the final boundaries are set, which for reasons of simulation it is obviated to
have to draw them, it is proceeded to calculate which are the possible obstacles that
remained, in this case are 2 (object 4 and the union between 5 and 1), after this it is
proceeded to calculate if the angle ∝ is contained between the maximum and minimum
angles that form the boundaries of each obstacle with respect to the agent, (see Fig. 9).

Fig. 9. Obstacles identification.

In this case only the union between 5 and 1 interfere with the trajectory of the agent,
as 4 does not interfere, it is not considered as an obstacle. In case there are two or more
obstacles that interfere in the path, only the one closest to the agent will be taken into
account. Once the obstacle that interferes is identified, the evasion algorithm is
performed. In this phase, 4 possible ways of evading the obstacle are established, these
forms depend on the position of the object with respect to the agent (see Fig. 10).
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• For case 1, it must be sought which is the lower corner of the obstacle boundary that
is closest to the target.

• For case 2, it must be sought which is the upper corner of the obstacle boundary that
is closest to the target.

• For case 3, it must be sought which is the left corner of the obstacle boundary that is
closest to the target.

• For case 4, it must be sought which is the right corner of the obstacle boundary that
is closest to the target.

Fig. 10. Evasion cases.

Once the case is detected, it is proceed to move the agent to this point, in this example
it can be seen that it is the case 1, and the lower corner closest to the target is the lower
right, (see Fig. 11a).

Fig. 11. Trajectory of evasion

Subsequently, the agent is moved to the corresponding point b, in this case b1, as can
be seen in Fig. 11b.

Once this point has been reached, it is necessary to calculate again whether there
may be obstacles between the agent and the target, if this is the case, the same procedure
for identifying and avoiding obstacles must be repeated. Since this is not the case, it is
calculated the displacement to be made by the agent to the target, and move to this target
point, (see Fig. 11c).

Finally, it is proceeded to calculate the path to the clustering zone, in which it must
be also taken into account if there may be obstacles, if they exist, the evasion is done
under the same algorithm, but since this is not the case, once the angle of rotation and
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the distance to be displaced have been calculated, the agent is taken along with the target
to the clustering zone, (see Fig. 12).

Fig. 12. Displacement to the clustering zone.

Subsequent to this, in order to avoid having to evade a high number of obstacles, in
the algorithm once the first object is taken to the clustering zone, the agent will bring
the other objects from the closest to the farthest.

The case presented above refers if the agent was first for a specific object, but finally
what is sought with this algorithm is to determine the shortest joint path, taking into
account both linear and angular displacements. Therefore, an equation must be proposed
in which the different possibilities of paths are calculated, and then compared and go
through the shortest path, which is shown in (4).

Trajectory = Traag→obi
+ Traobi→za + 2 ∗

((∑numob

n=1
Trsza→obn

)
− Trsza→obi

)
(4)

Where:

• Traag→obi
 is a path from the agent to the object i.

• Traobi→za is path from object i to the clustering zone.
• numob refers to the number of objects in the environment.
• Trsza→obn

 is the unobstructed path from the clustering zone to an object n.
• Trsza→obi

 is the path without obstacles from the clustering zone to the object i.

In the equation it is initially assumed that the agent will be moved to get an object
i, therefore, to take it to the clustering zone, it must be calculated the path to this object,
and then from the object to the clustering zone. Whenever it is referred to trajectory, it
is taken into account the displaced both linearly and angularly. As it is wanted to take
all objects to this area, after carrying the first one, it should go from the closest to the
farthest, therefore a summation of the paths from the zone of clustering up to each of
the objects is proposed assuming that there are no obstacles, since it will go from the
nearest to the farthest, to this sum it is subtracted the value of the trajectory without
obstacles of the clustering zone until the object i, since it has already gone for that object,
this result is multiplied by two because the path of the object n to the clustering zone
must also be taken into account.

This calculation will be done by varying i from 1 to the number of objects. From all
the results, it is calculated which is the smallest and therefore the value that had i in that
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result will be the object by which the agent must first be displaced in order to perform
the shortest path.

3 Analysis and Results

For the validation of the algorithm, an interface was designed in which different variables
related to the work area of the clustering task can be entered, (see Fig. 13).

Fig. 13. NetLogo interface. (Color figure online)

In the parameters of the agent, it must be entered half the length and half the width
of the mobile agent, since with these values the radius of rotation will be calculated and
the boundaries will be established. In the evasion parameters, half the width of the
objects is entered and a wanted extra safety factor to be added to the size of the boun‐
daries. For the practical case, an ultrasound sensor that directionally detects the distance
to the obstacle and this safety factor, delimits the maximum approach of the mobile to
the object.

For the execution of the program, the initial position of the agent must be set, besides
the zone of the surroundings where it is desired to group the objects, and finally the
number of objects that are desired, they will come out with random coordinates inside
the work area (area delimited by the red frame Fig. 13).

The operation of the algorithm can be seen in [15, 16], where, in a first situation, the
agent groups up to 10 objects, and in the other, how the safety factor can cause the
boundaries of the objects to merge and consequently the agent has a different path.

In all the tests except 3 specific situations, it was possible to group all the objects in
the zone set, the situations that were presented are:

• The initial objective is contained within the boundaries of obstacles
• The agent is located at the boundary of the obstacles
• If a safety factor is entered high enough to cause the agent to be unable to move

properly within the work area.

In order to check the speed of execution of the calculation of the trajectory according
to the set evasion and clustering method, it is proceeded to propose four different
scenarios in which the position of the clustering zone is changed in order to verify if this
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change can significantly affect the execution times, or these are due to some other factor,
(see Fig. 14).

Fig. 14. Test scenarios

In order to accurately set the execution times, taking into account that in each test
the positions of the objects change randomly, five different tests were performed for the
same number of objects in each scenario. It should be noted that the tests were performed
on a computer that does not operate the simulation in real-time, which can cause that
the time increases if it is implemented in an embedded system due to its hardware limi‐
tations. In Table 1, the results obtained in each of the four situations can be observed,
by varying the number of objects to be grouped.

Table 1. Processing time

Situa on Objects Number Time 1(ms) Time 2(ms) Time 3(ms) Time 4(ms) Time 5(ms) Average Time(ms)
1 5 10 9 12 8 9 9,6
1 10 21 19 24 18 25 21,4
1 15 36 37 36 35 37 36,2
1 20 57 51 53 62 57 56
2 5 8 9 11 7 8 8,6
2 10 18 18 22 16 16 18
2 15 38 33 39 42 35 37,4
2 20 56 49 53 53 55 53,2
3 5 7 10 8 7 9 8,2
3 10 19 20 17 15 14 17
3 15 42 30 32 41 42 37,4
3 20 60 56 68 51 59 58,8
4 5 10 10 7 7 8 8,4
4 10 19 17 21 17 20 18,8
4 15 33 42 41 33 41 38
4 20 53 59 57 63 53 57

As it can be seen in Table 1, the average times for different scenarios and the same
number of objects do not vary significantly from one situation to another. The algorithm
speed presents an approximate linear behavior between the average time and the number
of objects, obtaining in the present situations of Table 1 a correlation higher than 0.97
between the data with respect to a trend line generated.

4 Conclusions

In the simulations performed, 3 specific cases were presented in which the algorithm
was not as expected. In order to avoid the second situation corresponding to the fact that
the agent was confined within the boundaries of the obstacles, it is advised to locate the
initial position of the agent at the border or outside of the work area. For the third situa‐
tion, a safety factor is entered that is high enough to cause the agent not to be able to
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move correctly in the work zone, so it is advisable that, according to the measures of
the agent to be implemented, empirical tests are made to decide which the most appro‐
priate safety factor is.

It is advised that, in case of an actual implementation, the clustering zone should be
outside the work area, since it could present cases in which the accumulation of objects
is such that interferes with the correct operation of the algorithm.

Observing in the simulations of the situations presented in Table 1, the execution
times do not vary depending on the initial distance to which the agent is from the clus‐
tering zone, but of the obstacles that would be generated in the calculation of the most
optimal path.

It should be noted that the algorithm is developed under conditions of reasonable
use, including agent dimensions, number of objects and their size, safety factor, work
area dimensions, among others. Therefore, setting appropriate ranges for the execution
of the algorithm will depend on the user.

With the developed algorithm it is sought that this only needs the initial location of
the objects with respect to the agent, causing in this way not to depend on the resolution
of the image or on the image processing algorithm that previously would be imple‐
mented. In addition, it can be implemented with both global and local cameras, thus
presenting greater adaptability to different types of clustering projects. It even allows
the user to be the one to decide where they want the clustering zone, thus expanding
their adaptation to real situations. If it is analyzed the processing times, it can be thought
about the feasibility of adapting the algorithm to one with real-time image processing,
thus allowing the development of human-machine interaction, multi-agent or collabo‐
rative algorithms.
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