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Abstract 
Load shedding enjoys increasing popularity as a way to reduce power consumption in buildings 
during hours of peak demand on the electricity grid. This practice has well known cost saving and 
reliability benefits for the grid, and the contracts utilities sign with their “interruptible” customers 
often pass on substantial electricity cost savings to participants. Less well-studied are the impacts 
of load shedding on building occupants, hence this study investigates those impacts on occupant 
comfort and adaptive behaviors. It documents experience in two office buildings located near 
Philadelphia (USA) that vary in terms of controllability and the set of adaptive actions available to 
occupants. An agent-based model (ABM) framework generalizes the case-study insights in a 
“what-if” format to support operational decision making by building managers and tenants. The 
framework, implemented in EnergyPlus and NetLogo, simulates occupants that have heterogeneous 
thermal and lighting preferences. The simulated occupants pursue local adaptive actions such as 
adjusting clothing or using portable fans when central building controls are not responsive, and 
experience organizational constraints, including a corporate dress code and miscommunication 
with building managers. The model predicts occupant decisions to act fairly well but has limited 
ability to predict which specific adaptive actions occupants will select. 
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1 Introduction 

The four major components of electricity demand in com-
mercial buildings are heating ventilation and air-conditioning 
(HVAC), lighting, plug loads, and non-component-specific 
features such as elevators (EIA 2016). Expected occupancy 
schedules drive all of these components, although climate 
conditions also strongly affect HVAC loads, and daylight 
availability can affect lighting loads. The peak electricity 
demand for most commercial buildings and electric power 
systems occurs on hot summer afternoons (except in 
heating-dominated climate zones) when buildings are at 
full occupancy and cooling loads are highest.  

The cost of serving peak electricity demand is typically 
much higher (2–10 x) than that of serving average demand 
because more generation, transmission, and distribution 
capacity is needed; and because low-capacity-factor peaking 
power plants often perform inefficiently and have high 

operating costs (Faruqui et al. 2012). Demand-side manage-
ment that attempts to re-shape and flatten the aggregate 
daily demand profile has long since entered the utility 
planner’s toolkit alongside planning for new power plants 
and power purchases (Cowart 2016). Load shedding, which 
attempts to shave or shift peak-hour electricity demand, is 
a well-established practice that is implemented indirectly, 
via time-of-use pricing or interruptible power contracts that 
call on customers to shed load in whatever ways they deem 
feasible, or directly, via direct load control of key items  
of equipment in buildings by the utility. In some markets, 
aggregators bundle together many buildings and thereby 
expand the degrees of freedom for responding to load 
shedding requests (Cappers et al. 2010). The economics of 
the aggregation business, and the incentives for utilities and 
direct customers to optimize their performance during load 
shedding events, are driving efforts to make buildings more 
controllable on an hour-by-hour basis (Stluka 2014). 
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Countries around the world have already incorporated 
load shedding as part of their initiatives for improving the 
operational security of electric power systems. Italy, for 
example, combined a load shedding strategy with other 
demand side management measures during its 2003 power 
outage (Capozza et al. 2005). In South Korea and South 
Africa, load shedding programs have been accepted and 
implemented. The implementation can be as simple as 
reducing peak-hour demand for various customers to avoid 
total electric system failure. Time-varying pricing strategies 
are also commonly implemented with load shedding strategies 
to reduce peak hour demand (Newsham and Bowker 2010). 
Sun et al. (2013) evaluate load shedding strategies using 
three cold thermal energy storage facilities, including 
building thermal mass, thermal energy storage system, and 
phase change material. Another variant of load shedding, 
Distributed Interruptible Load Shedding (DILS), is used in 
case of emergency by increasing the number of program 
participants to prevent total electrical system failure 
(Faranda 2007). In a typical commercial building with load 
shedding, a building manager responds to a request from the 
electric utility as the peak hour approaches. The demand for 
electricity during peak hours, such as 11:00 AM to 5:00 PM, 
is much higher than during non-peak periods, and demand 
charges vary between 35% and 65% of the total electricity 
bill. Load shedding implementation requires demand 
response control strategies for time-programmable activities 
and tariffs that aim to reduce peak electric loads, and hence, 
electricity costs (Huang 2007).The rise of fully-automated 
demand response, that does not require human intervention 
in adjusting the electric loads, becomes a challenge to 
occupant satisfaction and control system designers. The 
regulatory economists’ claim that electric loads in buildings 
can easily be reduced by 30% or more (Faruqui et al. 2012) 
needs testing in specific scenarios to determine whether 
building occupants notice and respond constructively, and 
that is the purpose of this paper.   

Studies on human factors in energy consumption and 
energy waste have received substantial attention in recent 
years (Toftum et al. 2009). Previous surveys, energy audits, 
and studies have shown that occupancy and occupant 
behaviors affect energy consumption (Seryak and Kissock 
2000; Masoso and Grobbler 2009; Mahdavi and Pröglhöf 
2009; Ouyang and Hokao 2009). In office buildings, occupants 
interface directly with plug loads such as computers, task 
lights, and other locally controllable equipment. Comfort 
perception, which is triggered by a change in the building’s 
environment, plays a major role when occupants adjust 
thermostats, open or close windows and blinds, turn on or 
off task lighting, or call their building manager (O’Brien 
and Gunay 2014). Building occupants may also change their 

expectations based on their comfort perceptions that could 
also lead to shifts in building energy use (Azar and Manessa 
2012b). Therefore, it is fair to say that building occupants 
play significant roles in determining a building’s energy 
consumption, and thus determine the success of advanced 
energy retrofits.  

Since occupant behaviors have been identified to be 
one of the factors influencing building energy use, building 
modelers have started to incorporate behavioral factors 
into building energy modeling efforts (Feng et al. 2015; 
Hong et al. 2015a). Modelers attempt to develop the closest 
representation of building occupant and behaviors to a real 
world building system (Hong et al. 2015b). The most used 
modeling technique is regression analysis that describes 
the probability of a given group behavior in response, for 
example, to thermal stimuli like indoor and outdoor tem-
perature (Yan et al. 2015). Building occupants may have 
heterogeneous responses to thermal stimuli. One such is 
window-opening behavior that has been used as a case study 
for several simulation modeling efforts (Nicol 2001; Rijal et 
al. 2007; Yun and Steemers 2008; Haldi and Robinson 2009). 
While regression-based occupant behavior models provide 
simple communication and implementation, most of the 
models have identifiable issues such as not accounting for 
adaptive behaviors and occupant interactions (Langevin 
et al. 2014).  

Modeling occupant comfort perception and occupant 
adaptive responses to a changing building environment is 
challenging (de Wilde 2014). Existing regression-based 
models are successful in estimating building energy use and 
occupant comfort. However, in real building operations, 
occupant perceptions of comfort and their responses change 
over time and vary across occupants (Gulbinas and Taylor 
2014). Building energy modeling software platforms, such 
as eQuest and EnergyPlus, typically account for occupant 
behavior in a limited fashion by adjusting building and 
equipment schedules and maximum occupancy assumptions. 
That approach assumes that all occupants perform a fixed 
set of adaptive responses, have similar schedules, and use 
energy at the same rate (EnergyPlus 2009; Hoes et al. 2009).  

Agent-Based Models (ABM) have been introduced to 
address the issues (Li and Wen 2014). In ABM, an agent 
represents a building occupant with personal attributes, 
interacting with other agents that may represent other 
occupants or a building manager or other individual 
entities that exist in the modeled building, or with building 
systems themselves. Personal characteristics and a set of 
adaptive actions that are attributable to each agent define 
the agent’s behaviors (Robinson et al. 2011; Macal and North 
2010). Andrews et al. (2011) adopt the Belief-Desire-Intention 
(BDI) framework to create an ABM model of building  
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occupant behavioral responses to lighting intensity. Azar and 
Menassa (2012a) model an interaction of building occupant 
agents in office buildings. Lee and Malkawi (2014) developed 
an ABM model to mimic adaptive behaviors to energy 
saving and thermal comfort. Langevin et al. (2014) develop 
a calibrated ABM model of building occupant behaviors 
based on Perceptual Control Theory. Several other ABM 
models also have been developed for different applications, 
such as the residential context (Chen et al. 2012; Kashif  
et al. 2011), and household water usage (Linkola et al. 2013; 
Chu et al. 2009). 

The application of ABM to load-shedding, to date, has 
considered only strategic actions of whole buildings or 
multi-building portfolios as unitary participants in utility 
load-shedding programs (Lim et al. 2014; Zhang and Li 
2014). Individual occupants within specific buildings have 
not been considered. The research gap this paper helps fill 
is to model building occupants’ reactions to load-shedding 
events. We focus specifically on characterizing building 
occupant behavior in commercial buildings under load 
shedding events.  

In Section 2 of this paper we develop an integrated 
ABM model which includes three major components: 
(1) simulation of individual building occupant perceptions, 
behaviors and satisfaction; (2) simulation of collective 
behavior and building manager-occupants communication; 
and (3) a parsimonious building energy model. In Section 3 
we present data on building performance and surveys of 
occupant perceptions and self-reported behavioral responses 
from two real-world commercial buildings for calibration 
and verification. Section 4 shares simulation results including 
calibration runs, verification runs, and hypothetical “what-if” 
scenarios. Section 5 discusses the results and Section 6 offers 
conclusions and recommendations for future research.  

2 Methods 

This section presents a simulation model in which 
heterogeneous occupants interact with one another in 
commercial buildings under load shedding conditions. 
Our ABM combines a building energy use model with 
heterogeneous occupants in a single methodological platform. 
In a set of simulation experiments, we start with a calibrated 
building energy model and modify its output file using side 
calculations driven by an ABM that simulates occupant 
behavior. These occupants have varied perceptions of thermal 
and lighting comfort conditions, leading to divergent adaptive 
behaviors. The occupants also vary in their roles and 
exchange information based on their roles. The building 
manager plays a major role in controlling building systems. 
An appendix shares additional modeling details. The 
appendix is in the Electronic Supplementary Material (ESM) 

of the online version of this paper. 
The main focus of the model is on occupant behavior 

in commercial buildings undergoing load shedding. The 
application domain of the model is for operating and 
retrofitting office buildings. We define the following 
modeling objectives: (1) simulate comfort perceptions and 
adaptive responses of heterogeneous occupants, and the 
building’s resulting energy consumption; (2) study the effects 
of controllability and communication among office building 
occupants under load shedding scenarios; and (3) verify the 
resulting ABM models with real post-occupancy survey data. 
The remainder of this section introduces the modeling 
framework and defines the scenarios. 

2.1 Modeling framework 

This section explains how we model the behavior of building 
occupants and building controllability during load-shedding. 
The agent-based model (ABM) is programmed in NetLogo 
to represent the occupant adaptive behaviors (Tisue and 
Wilensky 2004). NetLogo is a Java-based, object-oriented 
programming platform for ABM in which heterogeneous 
classes of computational agents follow rules for interactions 
with one another and their environments, and from which 
systemic outcomes such as building-wide energy consump-
tion emerge (Wilensky 1999). In our occupant behavior 
model, the adaptive behavior is estimated by a utility function 
that reflects a belief-desire-intention (BDI) framework 
(Andrews et al. 2011). This approach uses a multi-attribute 
utility function to select an adaptive action based on 
perceived environmental conditions. The (dis)utility function 
is defined by 4 parameters that occupants seek to minimize: 
environmental impact, effort, cost, and discomfort. 

Occupant utility = U(x) =ΣkiUi(xi) 

where, xi: performance level of attribute i (normalized by a 
max–min range); Ui(xi): single attribute utility for attribute 
i (the range is 0–1); ki: weighting constant for the utility   
of attribute i (the range is 0–1, Σki= 1); i: 1 (environmental 
impact), 2 (effort), 3 (cost), and 4 (discomfort). 
Thus occupant multi-attribute utility has a range from 0 to 1.  

The model also presents a multi-agent system (MAS) 
by taking into account communication between occupants, 
tenant representatives, and a building manager. In a building 
where occupants do not have access to adjust a thermostat, 
for example, they communicate their requests via a tenant 
representative to the building manager. The appendix (in the 
ESM), gives an overview of the modeling logic for occupant 
behavior.  

The occupant behavior model starts by reading several 
input files. The first is a multi-zone building model file, 
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created in EnergyPlus, which is used to initialize the building 
environmental conditions. The second is a comma-separated 
file of survey responses, containing a list of building 
occupants and their occupancy and preferences in regard 
to thermal and lighting comfort. The model continues with 
a building manager agent entering the building, followed 
by building occupant agents. The first building occupant 
agent who enters an empty zone, becomes the zone’s tenant 
representative. Tenant representatives are commonly 
present in multi-tenanted office buildings with open office 
space to interface with building managers. 

Building occupants take adaptive actions based on their 
perceptions of the building zone’s thermal and lighting 
comfort levels. Building zone controllability and com-
munication among agents influence occupants’ adaptive 
responses. Controllability and success-of-communication 
are stochastic variables whose mean values vary according 
to the scenario definition. Controllability is an exogenously 
set attribute of a building zone that offers either Local 
Control or No Control with a high probability. Success of 
Communication is an organizational attribute that is set 
exogenously to either Bad (low probability of successful 
communication) or Good (high probability of successful 
communication). For example, building occupants may 
not have control over thermostats and overhead lighting, 
resulting in them needing to call the building manager to 
perform adjustments. Figure 1, below, illustrates the locus 
of control among the three categories of occupant agent. 

Building occupant 

Building occupants have predefined characteristics that are 
set based on survey data and they follow specific rules to 
choose adaptive responses to environmental conditions they 
experience. There are 40 occupant-agents in each simulated 
building. These occupant agents are characterized based on 

the distribution of empirical data from a survey that includes 
thermal and lighting preferences. Beyond their comfort per-
ceptions, occupant behavior patterns also may be influenced 
by electricity cost, if they are cost-conscious. Occupants 
often do not have local control over their local environment, 
such as the ability to adjust a thermostat or overhead lighting. 
As illustrated in Fig. 2, an occupant prioritizes possible 
adaptive actions that include both actions that can be 
performed locally, such as using space heater or task light, 
and actions that require collective or aggregate action, 
such as adjusting the thermostat and overhead lighting. To 
implement an aggregate action, an occupant needs to ask a 
tenant representative to call the building manager in order 
to make adjustments to meet the desired environmental 
conditions.  

Tenant representative 

In this paper, tenant representatives make decisions of 
their own as well as decisions on behalf of the occupants in 
their zones (“aggregate” action). Similar to the individual 
occupant’s adaptive response, a tenant representative 
prioritizes possible adaptive actions based on weighted 
comfort level and electricity cost. Often, myriad requests 
for adjustment to environmental conditions are passed on 
to a building manager. Therefore, a tenant representative 
needs to adopt a specific decision mechanism to maintain 
the requests. We consider three types of decision processes. 
The first is a majority decision process, in which a decision 
is favored if a majority of occupants prefer it. The second 
one is a proportional decision process, in which the selection 
with the greatest additive utility is favored. The final one is 
a hierarchical decision process, in which decisions are 
structured based on priorities. As illustrated in Fig. 3, tenant 
representatives mediate the communication between building 
occupants and the building manager. 

 

Fig. 1 Locus of control of building occupants (Source: Adapted from Senick (2015)) 
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Building manager 

There is only one building manager that operates building- 
wide HVAC and lighting systems. A building manager 
receives requests from tenant representatives for environ-
mental adjustments in up to 47 designated building zones. 
A building manager also performs load shedding by respond-
ing to requests from the electric utility. Figure 4 illustrates a 
model of building manager’s adaptive behavior. 

2.2 Scenario analysis 

We exercise the simulation framework by examining 24 
scenarios. Two scenarios calibrate the model to a case 
study building under normal operation and load-shedding 
conditions (building “A”, Scenarios 1 and 13). Two more 
scenarios verify the model by testing its results against a 
second case study building under normal operation and 
load shedding conditions (building “B”, Scenarios 12 and 24). 

 
Fig. 2 Model of an occupant’s adaptive behavior 

 
Fig. 3 Model of a tenant representative’s adaptive behavior 
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Additional hypothetical “what-if?” scenarios explore the 
potential effects of organizational factors (communication, 
local control, and corporate dress code) on occupant comfort 
perceptions and adaptive actions.   

Empirical studies of two buildings, summarized in  
the next section, suggest that communication and local 
controllability influence occupant comfort perceptions 
and behavior. Hence we establish two local controllability 
scenarios as well as two communication scenarios, under 
which occupants’ requests are likely to be fulfilled by 
either tenant representatives or a building manager (good 
communication). Another component worth investigating 
based on the literature is a corporate dress code. In a typical 
corporate business office, occupants may be expected to 
wear business attire that is often heavier (suit with jacket) or 
lighter (skirt or short sleeves) than what occupants would 
choose if the office had a flexible dress code. Twenty-four 
scenarios with different types of communication, controlla-
bility, and clothing behavior are compared across buildings 
either experiencing a load-shedding event or not (Table 1). 

Two commercial office buildings that are located in the 
greater Philadelphia region form the empirical basis for 
these simulations. The two buildings have load shedding 
for both lighting and HVAC systems. The buildings are 
different from each other in the nature of the tenants, 
building system characteristics, time and scope of retrofit, 
and building control technologies. Each of the fieldwork 
sites conducted several load shedding events during 2012 
and we collected physical and perceptual data twice daily 
during those events and also during adjacent control days 

that had similar weather and building usage. We conducted 
baseline surveys of occupant attitudes, comfort preferences, 
and demographic characteristics prior to the load shedding 
experiments as described in Senick et al. (2013) which 
provides a full discussion of each case.  

2.3 Calibration case study (Building A) 

Building A is a three-story office building, constructed in 
2004, and has 76,692 (7,125 m2) gross square feet of floor 
area and is occupied by 227 people. It is a tenanted building 
owned by a real estate investment trust. The envelope 
consists of pre-cast masonry curtain walls with double-pane 
tinted windows and an insulated roof with a light-colored 
surface. Most interior lighting uses T-8 32 W lamps in 3-lamp 
enclosures. The HVAC system includes two 115 Ton DX 
units, fan-powered terminal boxes for perimeter zones and 
VAV boxes for interior zones, with electric reheat coils. 
The building has been retrofitted to include dimmable, IP- 
addressable lighting ballasts and low-wattage bulbs; variable 
frequency drives for selected fans in the packaged HVAC 
systems; retro-commissioning of the HVAC system; updated 
with more sensors and controls; and advanced building 
control and monitoring systems that are connected with an 
enterprise-wide system. This retrofit enables the building 
operator to perform remote load shedding but provides 
occupants with little direct control over environmental 
conditions. Most occupants follow a corporate dress code. We 
use a detailed, calibrated, 47-zone EnergyPlus model of this 
building in the simulations, plus occupant behavior data.  

 
Fig. 4 Model of a building manager’s adaptive behaviors 
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Table 1 Scenarios for simulation model 

Scenario Load Shedding 
Communica- 

tion 
Zone  

Control Clothing 

1 Non-LS Bad No Control Heavy Clothing

2 Non-LS Bad No Control Light Clothing 

3 Non-LS Bad No Control Allow Change 

4 Non-LS Bad Local Heavy Clothing

5 Non-LS Bad Local Light Clothing 

6 Non-LS Bad Local Allow Change 

7 Non-LS Good No Control Heavy Clothing

8 Non-LS Good No Control Light Clothing 

9 Non-LS Good No Control Allow Change 

10 Non-LS Good Local Heavy Clothing

11 Non-LS Good Local Light Clothing 

12 Non-LS Good Local Allow Change 

13 Load-Shedding Bad No Control Heavy Clothing

14 Load-Shedding Bad No Control Light Clothing 

15 Load-Shedding Bad No Control Allow Change 

16 Load-Shedding Bad Local Heavy Clothing

17 Load-Shedding Bad Local Light Clothing 

18 Load-Shedding Bad Local Allow Change 

19 Load-Shedding Good No Control Heavy Clothing

20 Load-Shedding Good No Control Light Clothing 

21 Load-Shedding Good No Control Allow Change 

22 Load-Shedding Good Local Heavy Clothing

23 Load-Shedding Good Local Light Clothing 

24 Load-Shedding Good Local Allow Change 

 
The simulation modeling efforts discussed in the next 

section rely on a detailed EnergyPlus model of Building A 
that was created based on fieldwork and measurements, 
and calibrated against measured energy data on a monthly 
and hourly basis (Wagner et al. 2014). The calibrated model 
tracked observed performance reasonably well (normalized 
mean bias error is −2.6%, coefficient of variation of root- 
mean-square error is 5.9%), although it overstates building 
energy use during the cooling season (Wagner et al. 2014). 
Figure 5 shows the modeled and measured peak day hourly 
electricity use for Building A under normal operation and 
load shedding conditions. See Wagner et al. (2014) for details 
on the construction and calibration of the EnergyPlus model 
for Building A. 

The operator of Building A conducted load-shedding 
experiments during 2012 in order to test for potential 
effects on occupant comfort perceptions. Normal building 
operations included a 0% lighting reduction and a cooling 
setpoint of 74.5 °F. The operator created a pre-defined load- 
shedding case in its building management system (BMS) 
that included a 10% lighting reduction and an increase in 
the cooling setpoint to 78.0 °F. The BMS recorded 

snapshots of electricity demand (kW), space temperature by 
zone, and percent lighting reduction before, during, and 
after each load shedding event.  

Our team conducted a baseline survey and a series of 
daily surveys to document occupant perceptions and self- 
reported behaviors during normal building operations and 
load shedding events. We share summary results in the 
next section. Occupant thermal perception is based on the 
ASHRAE’s predicted mean vote (PMV) measure with −3 
being cold, −2 being, −1 being slightly cool, 0 being neutral, 
+1 being slightly warm, +2 being warm, and +3 being hot. 
The figures simplify this scale into three categories: Too 
Cold (−3, −2), Neutral (−1, 0, +1), and Too Hot (+2, +3). 
See Senick et al.(2013) for additional details. 

Building A has limited local controllability. Therefore, 
a building manager needs to perform adjustments on 
thermostats and overhead lights whenever the occupants 
ask for such adjustments via their tenant representatives. 
This places a premium on successful communication from 
occupants to tenant representatives to the building manager, 
which the field research finds is limited. Occupants of this 
building work in a strict business setting with a traditional 
corporate dress code. Conditions found in Building A are 
therefore represented in the simulations by Scenarios 1 
(non-load-shedding) and 13 (load-shedding), which incor-
porate Bad Communication, No Local Control, and a dress 
code requiring Heavy Clothing that potentially affect both 
thermal and lighting behavior patterns.  

2.4 Verification case study (Building B) 

Building B is a research complex that was built in 1960 and 
it actually consists of 35 attached structures with varying 
ages and building envelopes. In the research complex, there 
are 755,540 (70,192 m2) square feet office space, laboratories, 
technical shops, and occupied by 450 employees. One of 
the office portions of this complex was selected to represent 
a building of approximately equivalent scale to Building A. 
In contrast to Building A, Building B has an owner-occupant 
and less integrated building systems; hence, the building 
manager is well known to the occupants and performs load 
shedding operations manually. Dress codes are flexible and 
there is much local control over thermostats and lights.  

This building manager, like his counterpart in Building 
A, conducted a set of load-shedding experiments during 
2012 and followed a similar load-shedding protocol. As in 
Building A, we used the BMS to track building system status 
and space temperatures in Building B, and we conducted a 
baseline survey and a series of daily surveys of occupants. 
For details see Senick et al. (2013). We share summary 
results in the next section.  

The EnergyPlus model of Building A was run repeatedly 
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to create a lookup table of results for different load shedding 
strategies, occupancy schedules, and internal loads. As a 
verification exercise, we modified Building A’s temperature 
and lighting setpoints, occupancy and equipment schedules, 
and occupant behaviors to reflect those in Building B and 
successfully replicated the essential patterns observed in the 
fieldwork. As a reminder, throughout this paper the focus 
is on innovative modeling of occupant behavior rather than 
capturing detailed building system performance. In the 
modeling, Scenarios 12 (non-load-shedding) and 24 (load- 
shedding), which incorporate Good Communication, Local 
Control, and a dress code that Allows Changes in clothing 
represent the conditions found in Building B. 

3 Results 

Simulation results for occupant perceptions and behavior 
comport well with the fieldwork findings. We examine 
illustrative results for the calibration scenarios (Building A, 
Scenarios 1 and 13), verification scenarios (Building B, 
Scenarios 12 and 24), and several what-ifs (Scenarios 2–11, 
14–23).  

3.1 Calibration runs (Building A, Scenarios 1 and 13) 

This section compares measured performance of Building A 
and its occupants to modeled results. It describes the simula-
tion results for Scenarios 1 and 13, “Bad Communication; 
No Local Control; Heavy Clothing Required”. Figure 5(a) 
compares the measured building-wide electricity con-
sumption in Building A during a control day, with normal 
building operations, to simulation results for Scenario 1, a 
non-load-shedding scenario. The Mean Absolute Percent 
Error (MAPE) for the hourly comparisons is 13%, with the 
greatest error in the evening hours when the model over- 
estimates electricity usage.  

Figure 5(b) compares the measured building-wide 
electricity consumption in Building A during a load-shedding 
day, to simulation results for Scenario 13, a load-shedding 
scenario. Here the MAPE is much higher (22%) because 
the model includes only one load-shedding event whereas 
two actually occurred. As the timing of BMS log-ins by the 
building managers confirms, there was a morning load- 
shedding event and another one in the afternoon. Visual 
inspection of Fig. 5(b) suggests that the modeled load- 
shedding event has a similar energy-reduction signature as 
the measured events.  

Figure 6(a) shows the modeled (Scenario 1) and measured 
average indoor space temperatures during a non-load- 
shedding control day in Building A, as well as the cooling 
setpoints and percent lighting load reduction. The MAPE 
for hourly comparisons between measured and modeled  

 
Fig. 5 (a) Building “A” measured and modeled (Scenario 1) hourly 
electricity use during Non-Load-Shedding Control Day; (b) Building 
“A” measured and modeled (Scenario 13) hourly electricity use 
and BMS Log-ins during Load-Shedding Day 

 
Fig. 6 (a) Building “A” measured and modeled (Scenario 1) space 
temperatures, cooling setpoints, and % lighting reduction during 
Non-Load-Shedding Day; (b) Building “A” measured and modeled 
(Scenario 13) space temperatures, cooling setpoints, and % lighting 
reduction during Load-Shedding Day 
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values is 1%. Figure 6(b) shows the same information for 
the load-shedding case (Scenario 13). Note again that the 
measured data show two load-shedding events whereas 
the model assumes only one event. Again, the MAPE for 
comparing measured and modeled hourly data is 1% using 
available data points. The space temperature increases during 
the load-shedding period. 

Figure 7(a) compares measured (based on surveys) and 
modeled occupant perceptions of thermal comfort during 
a non-load-shedding control day (Scenario 1) and a load- 
shedding day (Scenario 13) in Building A. Modeled results 
differ significantly from measured perceptions, with the 
model predicting that many occupants will feel too hot 
under both scenarios, whereas the measured results suggest 
more of a symmetrical distribution of occupants feeling too 
hot and too cold. A clue to the discrepant result is that 
measured occupant satisfaction with thermal conditions 
is higher during load shedding in comparison to during the 
non-load-shedding day, implying that Building A is normally 
over-cooled. The modeling instead delivers under-cooling. 
The verification run in Building B will further clarify this 
matter.  

 
Fig. 7 (a) Building “A” measured and modeled thermal comfort 
perceptions of occupants during Non-Load-Shedding Control Day 
(Scenario 1) and Load-Shedding Day (Scenario 13); (b) Building 
“A” measured and modeled adaptive actions by occupants during 
Non-Load-Shedding Control Day (Scenario 1) and Load-Shedding 
Day (Scenario 13) 

Figure 7(b) shows the measured and modeled relative 
prevalence of adaptive responses by occupants to thermal 
conditions in Building A on a non-load-shedding day 
(Scenario 1) and a load-shedding day (Scenario 13). The 
measured and modeled “no action,” “contact manager,”, and 
“adjust clothes” response percentages are in approximate 
agreement, with the model slightly understating those options, 
and the “use local heater/fan” options are substantially over- 
estimated by the model.  

The next set of figures shows intermediate results at 
several points in the modeling process to illustrate the 
relative roles of occupants, tenant representatives, and 
building managers in managing comfort outcomes. Figure 8 
shows occupant perceptions of thermal comfort at three 
different points in the adaptation process. The number of 
occupants feeling comfortable with the room temperature 
is lower at the beginning of each time tick. More occupants 
feel satisfied with the temperature after adaptive actions are 
performed. Adaptive actions that require consensus, that is, 
before the tenant representative is willing to act, adjusting 
thermostat in this case, are performed first and followed by 
actions performed by individual occupants (i.e. portable 
heater, portable fan, change clothes). Similar trends are 
found in the occupant lighting perception. As shown in 
Fig. 9, a greater number of occupants feel comfortable with 
the illuminance level in the room they occupy after they 
perform lighting adaptive actions. Adjusting overhead lighting 
that requires consensus or aggregate decision making 
precedes individual lighting adaptive actions that include 
adjusting task light and opening (or closing) window blinds. 
In Figs. 8–10, we only show results between hour 8 and 18 
when occupants are present in the building. 

In real-world building management, a building manager 
assumes an important role in adjusting centrally controlled 
building systems. One influencing factor is requests from the 
building occupants requesting adjustments, mostly related 
to their thermal and lighting comfort. As shown in Fig. 10, 
the building manager acts on requests from occupants to 
adjust either the thermostat or overhead lighting. In regards 
to thermal comfort, requests to adjust thermostats are common 
in the morning, when the HVAC systems are starting up, and 
during load-shedding events in the afternoon, in this example.  

In the simulation, occupants perform adaptive actions 
after either the building manager or the tenant representative 
adjusts the consensus-required actions. Occupants adjust 
portable heaters, portable fans, or clothing layers in order 
to meet their thermal comfort levels, as shown in Fig. 7(b). 
The tenant representative, who is also an occupant, may 
adjust the thermostat setpoint if provided with local control. 
In regards to lighting comfort, occupants adapt by adjusting 
task lights or window blinds. Tenant representative behavior 
includes adjusting the overhead lighting. 
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Fig. 10 Simulated building manager adaptive actions during load 
shedding in a building with poor communication and no local 
control (Scenario 13) 

3.2 Verification runs (Building B, Scenarios 12 and24) 

The verification runs apply the occupant behavior model 
that was calibrated with data from Building A and use it to 

predict outcomes in Building B. This section summarizes 
how the results compare to measured data from Building B. 
In Scenarios 12 and 24, “Good Communication; With Local 
Control; Allow Clothing Change”, which closely resembles 
Building B, it is expected to see more occupants feeling 
comfortable with the environment. In contrast to the 
simulations of Building A (Scenarios 1 and 13), more 
occupants are found to be comfortable after performing their 
own individual adaptive actions. Figure 11 shows measured 
(surveys of occupants in Building B) and modeled results 
(Scenario 12 and 24) for thermal comfort perceptions and 
adaptive actions by occupants. Figure 11(a) shows that 
measured thermal comfort perceptions are normally 
distributed in Building B. The model mimics that symmetry 
but produces less dispersion around the mean than in the 
measured results. Figure 11(b) shows that the model 
approximately simulates the prevalence of “no action,” “adjust 
clothes,” and “use local heater/fan” actions, but it fails to 
predict the measured level of “contact manager.” 

In Fig. 11(b), it is noticeable that controllability provides 
many options for individual occupant behavior. Building 
occupants perform almost all types of adaptive actions to  

 
Fig. 8 Simulated building occupant thermal perceptions (percent of occupant-hours) at three different points in adaptation process during
load shedding in a building with poor communication and no local control (Scenario 13) 

 
Fig. 9 Simulated building occupant lighting perceptions (percent of occupant-hours) at three different points in adaptation process during
load shedding in a building with poor communication and no local control (Scenario 13) 
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Fig. 11 (a) Building “B” measured and modeled thermal comfort 
perceptions of occupants during Non-Load-Shedding Control Day 
(Scenario 12) and Load-Shedding Day (Scenario 24); (b) Building 
“B” Measured and Modeled Adaptive Actions by Occupants during 
Non-Load-Shedding Control Day (Scenario 12) and Load-Shedding 
Day (Scenario 24) 

meet their thermal and lighting comfort levels. The tenant 
representative has control over thermostats and overhead 
lighting. 

3.3 Comparing Buildings A and B 

Figure 12 compares the measured and modeled lighting- 
related adaptive behaviors of occupants in Building A and 
B. In Building A, the model provides a good approximation 
of the “no action” and “adjust task light” actions, but it 
under-estimates the “overhead lights” and “adjust window 
blinds” actions. In Building B, the model also under-estimates 
the “adjust task light” action. 

As a final point of comparison, Fig. 13 shows that 
occupant satisfaction with lighting and thermal conditions 
is only slightly affected in a negative direction during load 
shedding events, with one counter-intuitive exception iden-
tified in Senick et al. (2013). Building A shows an increase 
in satisfaction with thermal conditions during load shedding. 
Investigation shows that this is because the building is 
over-cooled during baseline operation, hence load shedding  

 
Fig. 12 Buildings “A” and “B” measured and modeled lighting-related 
adaptive actions of occupants during Non-Load-Shedding Day 
(Scenarios 1 and 13) and Load-Shedding Day (Scenarios 12 and 24)  

 
Fig. 13 Observed mean satisfaction across surveyed occupants in 
Buildings A and B during control and load shedding days (0–100 
scale) 

brings conditions closer to what a majority of occupants 
prefer. Changes between control and load shedding days are 
also found by Senick et al. (2013) to be significant estimators 
for satisfaction, well-being, and productivity (positively for 
Building A, negatively for Building B).  

3.4 What-if scenarios 

One benefit of creating an occupant behavior simulation 
model is that it allows informed speculation about scenarios 
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that have not yet been empirically verified. This section 
explores the example of a hypothetical corporate dress 
code. Clothing choices influence the thermal comfort levels 
perceived by building occupants. In the model, thermal 
discomfort is measured as the number of occupants each 
hour who feel Too Hot or Too Cold on the simplified 
thermal comfort scale discussed earlier. The model measures 
lighting discomfort on a parallel basis. Figure 14 illustrates 
the influence of a hypothetical dress code on thermal 
comfort experienced during a load-shedding day in a building 
with good communication and local control. Occupants that 
are required to wear heavy clothing, such as a business suit 
are least comfortable, those required to light clothing (e.g., 
skirt, short sleeves) are more comfortable, but those who have 
flexibility in what they wear are the most comfortable. 

Figure 15 shows that dress codes interact with local 
control, at least when there is poor communication between 
occupants and the building manager. The effect is systematic. 
Local control always improves thermal comfort, especially 
when the dress code is flexible or requires a light outfit.  

Figure 16 summarizes the total daily thermal and lighting 
discomfort levels for Scenarios 1–24. Superior performance  

 

Fig. 14 Simulated effects of dress codes on occupant thermal 
discomfort during load shedding given good communication and 
local control (Scenarios 22–24) 

 
Fig. 15 Simulated effects of dress codes on daily total mean 
occupant thermal discomfort under buildings with controllability 
and no control, given poor communications (Scenarios 13–18) 

 
Fig. 16 Scatter plot of total daily thermal and lighting discomfort 
by scenario (Scenarios 1–24). 0 = Low discomfort, 500 = High 
discomfort 

is toward the lower left corner of the scatter plot (low thermal 
and lighting discomfort), and poor performance is toward 
the upper right corner. Arrows connect the non-load- 
shedding and load-shedding scenarios of each type, providing 
a visual portrayal of which combinations of local zone 
control, communication effectiveness between occupants and 
the building manager, and dress code requirements are most 
robust. The best performing non-load shedding scenario 
(9: good communication, no local control, and clothing 
flexibility) remains the best under load shedding (Scenario 21). 
The worst performing non-load shedding scenario (1: bad 
communication, no local control, heavy clothing required) 
also barely changes under load shedding (Scenario 13). By 
contrast, the scenario with good communication, no local 
control, and a requirement for heavy clothing shifts 
dramatically as the building goes from no load shedding 
(Scenario 7) to load shedding (Scenario 19), as do the 
Scenario 5-to-17 and 11-to-23 couplets. Generally, the point 
cloud shows that a flexible clothing policy is the surest way 
to reduce thermal discomfort. Good communication between 
occupants and the building manager reliably reduces lighting 
and thermal discomfort. Local zone control, by contrast, and 
somewhat surprisingly, does not guarantee less discomfort 
but it does reduce range of variation in lighting discomfort. 

4 Discussion 

The simulation model replicates the occupant/tenant 
representative/building manager/building system interac-
tions in a relatively transparent way that partially fits the 
evidence from fieldwork and surveys in two buildings. We 
do not want to overstate the accuracy of the model and 
claim only to have verified rather than validated the model. 
This is one cost of the ABM approach in comparison with 



Chandra Putra et al. / Building Simulation 

 

13

regression-based approaches. However, the model delivers 
abundant insights. 

Both the fieldwork and the simulations clearly show 
the importance of heterogeneous occupant perceptions 
and behaviors in understanding responses to load shedding 
events. Figures 8 and 9 usefully summarize the range of 
comfort perceptions that occupants have before any action, 
after an aggregate action such as adjusting a thermostat or 
overhead lighting system, and even after individual actions 
such as putting on a sweater or turning on a task light. 
Figures 7, 11, and 12 highlight the diverse set of actions 
chosen by occupants.  

A comparison of Figs. 7 and 11 also shows that local 
control over aggregate actions by a tenant representative 
(rather than remotely by a building manager) more quickly 
returns a greater number of occupants to comfortable 
conditions.  

Figure 10 is helpful for highlighting that the building 
manager’s control responsibilities extend well beyond the 
time frame of the load shedding event. Morning startup is 
an equally important time period for addressing occupant 
concerns. In contrast to owner-occupied buildings, most 
commercially leased spaces require a pretty tight range for 
temperature (thermal comfort), which can place contractual 
requirements in conflict with the thermal comfort preferences 
of some occupants. 

Some occupant actions shown in Figs. 7, 11, and 12 
represent positive adaptations but others are mal-adaptations 
in that using a portable fan or space heater, for example, 
increases electricity demand at the moment when the 
building manager is seeking to reduce demand. The electric 
power accounting framework within the ABM makes 
marginal adjustments to the EnergyPlus output lookup 
table to reflect these influences, and they are minor for the 
cases explored here. 

The least well validated aspect of the model appears  
to be the choice of adaptive actions taken by occupants in 
response to changing comfort conditions. While the “no 
action” option appears to be well modeled, the other potential 
actions chosen by the model do not closely reflect the evidence 
from case study buildings.  

Dress codes are not a normal topic in building simulation 
papers, but Figs. 14, 15 and 16 show the important interac-
tion between clothing choices and local control of comfort 
conditions. A flexible dress code gives occupants another 
degree of freedom when local control is not available. Post- 
Fukushima Japan famously deployed the “Super Cool Biz” 
summer dress code to give office building occupants more 
latitude during the frequent HVAC system curtailments 
required by the stressed TEPCO electric power system (Tools 
of Change 2012). This option could become more widely 
available.  

The robustness of specific operating practices across 
both normal conditions and load shedding is quite varied, 
as Fig. 16 shows. Some combinations of communication, 
local control, and dress codes perform better and are more 
stable than others. The implication is that building managers 
will want to investigate these dimensions of their buildings 
before implementing load-shedding programs.  

5 Conclusions 

This model allows building operators to explore several 
behavioral and organizational factors that will influence the 
success of load shedding activities. As the practice of active 
electricity demand management becomes widespread and 
increasingly automated, issues of occupant adaptations, 
local control, and communication will increase in relative 
importance. They will be especially relevant in remotely- 
managed, multi-tenanted office buildings where occupants 
are expected to conform to strict dress codes.  

We build confidence in this model by calibrating a 
building energy simulation modeling tool against a real 
building, linking the occupant behavior model to the building 
energy model, driving the occupant behavior model with 
survey responses from occupants of the subject building, 
and verifying that the occupant behavior scenario observed 
in a second building can also be approximated by the model. 
Many aspects of the model perform reasonably well in com-
parison to measured data, with the exception of the specific 
mix of adaptive actions occupants take in response to changing 
comfort conditions. This is an area for future research.  

Future applications can use this model as-is, as a practice 
tool; calibrate it to different buildings, locations, and 
occupants; or rebuild the model using a larger database of 
occupant behavior. Future research should explore the poten-
tial for occupant dashboards and other interactive displays 
that reduce communication problems and personalize the 
locus of control.  

What-if simulations to inform building operators 
represent a promising application area for occupant behavior 
simulation modeling. Operators can rehearse load shedding 
events and anticipate how to manage better the delicate 
interpersonal and organizational dynamics that accompany 
service interruptions.  
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