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Abstract Forty 4th and 9th grade students participated individually in tutorial interviews

centered on a problem-solving activity designed for learning basic algebra mechanics

through diagrammatic modeling of an engaging narrative about a buccaneering giant

burying and unearthing her treasure on a desert island. Participants were randomly

assigned to experimental (Discovery) and control (No-Discovery) conditions. Mixed-

method analyses revealed greater learning gains for Discovery participants. Elaborating on

a heuristic activity architecture for technology-based guided-discovery learning (Chase and

Abrahamson 2015), we reveal a network of interrelated inferential constraints that learners

iteratively calibrate as they each refine and reflect on their evolving models. We track the

emergence of these constraints by analyzing annotated transcriptions of two case-study

student sessions and argue for their constituting role in conceptual development.
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Telling a kid a secret he can find out himself is not only bad teaching, it is a crime. Have you ever observed

how keen six year olds are to discover and reinvent things and how you can disappoint them if you betray

some secret too early? Twelve year olds are different; they got used to imposed solutions, they ask for

solutions without trying.

(Freudenthal 1971, p. 424)
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Background and objectives

Discovery-based pedagogical design instantiates Piaget’s theory of learning

Jean Piaget believed that ‘‘children are active thinkers, constantly trying to construct more

advanced understandings of the world’’ (1968, p. 45). Piaget’s conviction, derived from a

career of clinical experiments, epitomizes his theory of genetic epistemology, a theory of

learning that in turn has inspired an educational approach known as constructivism. Within

the domain of mathematics education, constructivists believe that students learn best when

conditions enable them to arrive via guided problem solving at normative cultural–his-

torical notions and procedures. Indeed, constructivist educational scholars have contended

that teaching young children arithmetic algorithms directly is harmful—it denies them a

chance to ground the content each in their own subjective understandings while, even

worse, training them to ignore their own thinking (Kamii and Dominick 1998). A protégé

of Piaget, Seymour Papert asserted that students best construct concepts when they con-

struct artifacts, whether concrete or virtual (Papert 1980).

Since Piaget, some steps have been taken towards implementing constructivist peda-

gogy in Science, Technology, Engineering, and Mathematics (STEM) classrooms. This

trend is led by scholars, designers, and teachers seeking alternatives to the standard

instructional sequence wherein the teacher demonstrates a set of procedures and then the

students practice these procedures (‘‘tell and practice,’’ see Schwartz et al. 2011). Airing

his concerns with this approach, Catrambone (1998) notes, ‘‘Students tend to memorize the

details of how equations are filled out rather than learning the deeper, conceptual

knowledge’’ (p. 356).

Alternatives to ‘‘tell and practice’’ are designed for students to solve problems by way of

first inventing procedures (Roll et al. 2011), discovering critical features of the problem

(Kamii and DeClark 1985), formulating incipient models of the situation (Gravemeijer

1999), or analyzing their peers’ work (Kapur 2010), and only then receiving explicit

instruction, whether from human instructors or technology-enabled automated supports

(Chase and Abrahamson 2015). These discovery-based approaches each uniquely attempt

to foster experiences wherein the student actively constructs his or her understanding of a

situation through task-oriented interactions with pedagogical resources carefully selected

or created for these activities. Specifically, the activities are typically crafted so as to

facilitate students’ reinvention of essential STEM principles by way of engaging their

naturalistic inquisitiveness; soliciting, challenging, and surfacing their implicit assump-

tions and situated know-how; and then offering and negotiating with them new forms of

organizing and representing their actions and reasoning.

Discovery-based learning is, by definition, the process of mobilizing one’s agency in

becoming aware of a new idea or developing a new skill (Jong and Joolingen 1998), such

as when engaging successfully in the types of activities described above. Catering for this

process, the educator must bear in mind not only a particular educational point of arrival

but also the students’ point of departure and ports of call along the way. Just how this is

accomplished by educators as well as the efficacy of this approach for students is still a

matter of debate in the STEM education research literature (Kirschner et al. 2006; Klahr

and Nigam 2004). This paper offers a view on mathematics discovery learning, a view we

have found promising in light of its empirical corroboration of pedagogical consequences.

From this view, we propose to uncover what we mean when we talk about discovery in

discovery-based learning.
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Developing conceptual transparency for early algebra: a design research
project

The thesis of this paper is situated in a larger research program investigating issues of

design, teaching, and learning in mathematics education. In the particular research project

motivating the thesis presented herein, we have been seeking to evaluate a general design

architecture for discovery-based learning. At the center of the project is an activity design

for basic algebra mechanics. The design is called Giant Steps for Algebra (Chase and

Abrahamson 2015). Initially, the Giant Steps for Algebra activity design was implemented

in the form of concrete objects (Chase and Abrahamson 2013). Later, it was re-imple-

mented in a dedicated microworld (Chase and Abrahamson 2015).

Within the Giant Steps for Algebra (GS4A) activity design, participants are presented

with a narrative about hidden treasure and are tasked to find the treasure through modeling

the narrative, using available interface functionalities, in the form of a depictive diagram,

which they can adjust (see Fig. 1). Their diagrammatic solution can be viewed as a situated

proto-algebraic proposition. Note, in Fig. 1, that each giant step subtends exactly 3

‘‘meters.’’ Students infer that the treasure is buried 11 meters away from the Start flag.

In analyzing students’ interactions with the instructional materials available in GS4A,

we sought to understand how particular materials led to students’ apparent understandings

of early algebra principles. Similar to Martin and Schwartz (2005), we theorized the

students’ manipulation actions as cases of adapting the environment so as to extend and

distribute the prolem-solving process over the available media (see also Kirsh 2010). We

sought thus to articulate students’ alleged implicit know-how that becomes expressed and

elaborated through these actions (cf. Karmiloff–Smith and Inhelder 1975 on ‘‘theory-in-

action’’; Ryle 1945; Vergnaud 2009 on ‘‘theorems-in-action’’; see also the philosophical

work of Brandom, in Bakker and Derry 2011).

As we explain below, our cycles of empirical research efforts to understand children’s

cognitive development of mathematical concepts led us to attempt to delineate this type of

modeling-based know-how fragments; fragments that, once coordinated, appear to capture

a major piece of what we would be comfortable as calling a know-how-based conceptual

system undergirding some particular mathematical concept, such as algebra.

“A giant has stolen the elves’ treasure. Help the 
elves find their treasure! Here is what we know. 
On the first day, a giant walked 3 steps and 
then another 2 meters, where she buried 
treasure. On the next day, she began at the 
same point and wanted to bury more treasure in 
exactly the same place, but she was not sure 
where that place was. She walked 4 steps and 
then, feeling she’d gone too far, she walked 
back one meter. Yes! She found the treasure!”

Fig. 1 A sample narrative in the Giant Steps for Algebra (on the left), and a student’s representation of this
narrative using the GS4A modeling platform (on the right). This narrative instantiates the algebraic
proposition of 3x ? 2 = 4x - 1. On both Day 1 (above the line) and Day 2 (below the line) the giant
traveled from the Start flag on the left to the End flag on the right. Red arcs represent giant steps (the
variable x), green arcs represent meters (the integer units). Students use interface tools to build and revise
the diagram
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In theorizing students’ conceptual understanding of mathematical subject matter as

grounded in their modeling know-how, we are suggesting a view of mathematical

knowledge as a knowledge of how mathematical procedures ‘‘work,’’ just as some children

know how bridges, stop-action movies, or computer programs work because they built

those artifacts themselves. This view of mathematical procedures as artifacts a student can

build and use is inspired by Goldstein and Papert (1977), who called to facilitate student

learning by creating conditions wherein concepts are ‘‘glass boxes’’ rather than ‘‘black

boxes,’’ thereby enabling the learner to build subjective transparency.

Transparency is a theoretical construct premised on a sociocultural epistemology, by

which conceptual knowledge is deeply implicated in the pragmatic actions that agents

perform using relevant cultural tools. As an analytic device, the construct of transparency

enables educational researchers to characterize a student’s emerging content learning by

tracking her evolving understanding for how specific elements of the mediating artifacts

she is generating and using, such as mathematical representations, procedures, and

manipulatives, function to facilitate the accomplishment of task goals (Hancock 1995;

Meira 1998). The construct was developed by scholars inspired by constructivist per-

spectives. In particular, the construct has been utilized by educational researchers to

support arguments for the effectiveness of pedagogical designs that enable students to

build and tinker with artifacts. The construct therefore appeared to be an appropriate choice

for our own project, as we moved forward.

In the course of analyzing empirical data of students working in this environment, we

applied the transparency construct to develop a principled analytic system for implicating

relations between students’ actions with artifacts and their understanding of the content.

This effort led to the articulation of a set of situated micro-skills—bits of context-specific

know-how—that the students apparently elicited, developed, and refined as they utilized

available artifacts to solve assigned problems. That is, we were implicating students’

conceptual transparency of early algebra mechanics by determining their emergent hands-

on routines for using elements of the microworld as means of accomplishing localized task

goals (see also Gravemeijer 1999). We conjectured that this set of situated know-how

captures much of what we mean when we say a student understands a concept. We called

each routine a situated intermediary learning objective, or SILO for short.

Our choice of the term ‘situated’ is in dialogue with the theory of situated cognition

(Greeno 1998), in the sense that we acknowledge the inherent situated quality of human

reasoning and learning, as well as with mathematics education research that has availed of

situated-ness to support problem-solving specifically for Algebra (Walkington et al. 2013).

For sure, Piaget’s genetic epistemology corroborates the notion of situativity by virtue of

insisting on the emergence of knowledge from goal-oriented interactions in the natural and

cultural ecology (e.g., his work on moral development through engaging in playground

games, Piaget 1965). As educational designers, we conceptualize the engineering of

learning environments as creating theoretically informed and developmentally appropriate

opportunities for the emergence of situated knowing in line with our pedagogical objec-

tives. As such, learning environments can be perceived as just that—ad hoc micro-

ecologies set up by cultural agents explicitly so as to simulate opportunities for students to

construct new understanding through exploration and adaptation. As von Glasersfeld

(1992) insisted, teachers play important roles in mediating individual students’ adaptive

construction of knowledge. More generally, we are urged by Cole and Wertsch (1996) to

transcend any would-be incompatibility of Piagetian and Vygotskian perspectives so as to

formulate a more complete understanding of mathematical ontogenesis in the sociocultural
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context. For further discussion that problematizes naı̈ve interpretations of situated-ness as

they pertain to educational praxis, see Lave (1992) and Brousseau (1997).

Situated Intermediary Learning Objectives (SILOs) in Giant Steps
for Algebra

The SILO—Situated Intermediary Learning Objective—is a hypothetical construct that

characterizes the nature, process, and pedagogical objectives of students’ emerging content

understandings within discovery-based activities. SILOs thus offer designers, teachers, and

analysts traction on the phenomenon of students’ discovery-based learning. SILOs are

intermediary in the sense that they are very much bound to the environment whence they

are enacted, even as they are sufficiently schematic so as potentially to enable reflection,

reification, and transfer. In that sense, they are much like situated abstractions (Noss and

Hoyle 1996). Notably, when we label students’ know-how, we do not imply that the

students would describe their knowledge as such. Rather, the SILOs function for the

design-research analyst as a means of perceiving in students’ pragmatic operations with the

available artifacts the emergence of the activity’s target content knowledge. Reciprocally,

our domain analysis (of algebra) serves to offer candidate ‘‘things students should know’’

about the domain, and we search in our data for possible signs of these things as marking

the development of SILOs. For researchers investigating a new content domain through

implementing a new design, the set of SILOs coalesces iteratively through qualitative

analysis. In turn, the set of SILOs serves the researchers as filters for sifting through the

empirical data to foreground and monitor a web of ontogenetic veins leading from the

students’ first encounter with the task and through to mastery (cf. Pirie and Kieren 1994).

Students act on features in their environment (the GS4A interface) and then interpret their

actions, a process of physically distributing their thinking (Martin and Schwartz 2005)

through epistemic action (Kirsh 1996) and then responding to these enacted ‘theories-in-

action’ (‘‘see–move–see,’’ Bamberger and Schön 1983, 1991). Observing this process

enables us to examine students’ iterative micro-experiments that gradually contribute to the

emergence of the set of SILOs that constitute their knowledge state with respect to the

design’s target content.

Qualitative analyses of students’ behaviors, including their actions and multimodal

utterance during the activity as well as in post-intervention assessments, led us to articulate

three SILOs in GS4A:

1. Consistent measures All variable units (giant steps) and all fixed units (meters) are

respectively uniform in size both within and between expressions (days);

2. Equivalent expressions The two expressions (Day 1 and Day 2) are of identical

magnitude—they share the ‘‘Start’’ and the ‘‘End’’ points, so that they subtend

precisely the same linear extent (even though the total distance traveled may differ

between days, such as when a giant oversteps and then goes back);

3. Shared frame of reference The variable quantity (giant steps) can be described in terms

of the unit quantity (meters).

Note how we have attempted to articulate the SILOs in language that is both sufficiently

situated so as to index specific operations within a particular microworld and sufficiently

general so as to offer potential insight into analogous work on other early algebra prob-

lems. As cognitive constructs, the SILOs thus hover in an epistemic space between the

locally pragmatic and the conceptually generative. In articulating the set of SILOs that

emerge from a single activity design for some target content domain, we cannot claim with
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conviction that these particular SILOs encompass everything one needs to know about that

domain, yet these SILOs do appear to capture concisely much of what students need to

figure out within our particular environment: they distil the GS4A problem-solving

mechanics that constitute the student’s subjective transparency of the target concept, even

as the students are literally and mentally constructing the concept.

The above synopsis of our earlier work brings us to the present. Until now, we have

conceptualized the SILOs as a set of independently emerging situated micro-routines for

modeling a problem narrative. In the current study, we explore the possibility that the

SILOs are not only a set but a network. That is, we now believe that though these things-to-

know can each be described as logically independent, their subjective construction is

ontogenetically interdependent. In particular, we will argue that the SILOs emerge itera-

tively, with each SILO constraining the emergence and calibration of the other SILOs. We

are thus revisiting our empirical data with an eye on monitoring the gradual networking of

a coherent, inter-calibrated SILO knowledge state.

The Methods section, below, will offer more context on the study and then further

explain the idea of an emerging network of constraints. Then in the Results section we will

present qualitative analyses of two juxtaposed case studies of participant students working

under different experimental conditions. We will present these empirical data in the form

of a chain of screen-capture images to depict students’ diagrammatic actions as mediated

by the hypothesized state of their SILO network. The Discussion section will summarize

our findings to argue for a view of discovery-based mathematics knowledge as a network

of mutually constraining situated know-how emerging from iterated actions of problem-

solving construction and reflection. Finally, the Conclusions section will offer closing

comments and implications for educational theory and practice.

Method

This paper reports on results from a follow-up re-analysis of a corpus of data generated in

the context of a design-based research project. Due to space constraints of this journal

issue, we refer readers to our earlier publications for information about the GS4A design

rationale, where we cite the educational-research literature informing our work. Those

publications also detail our design-based research method, including interview and analysis

methodology. The current paper will present only as much details as is necessary for the

reader to contextualize the episodes we report and analyze in this particular study.

The original project was conducted in the design-based approach to empirical research.

This approach combines a framework for engineering products through iterative design

cycles with methods for inferring generalizations germane to the science of learning (Cobb

et al. 2003; Edelson 2002). Working in this iterative process enabled us to investigate the

domain of algebra in search of potential explanations for why it is difficult for students to

access, ultimately developing a conjecture that led to a proposed educational design, Giant

Steps for Algebra. The empirical data discussed herein were collected using a task-based

semi-structured interview protocol (Clement 2000; Ginsburg 1997). These data were

treated using micro-analysis techniques (diSessa 2007; Kuhn 1995; Parnafes and diSessa

2013; Siegler and Crowley 1991).

A total of 40 Grade 4 and Grade 9 students participated individually in the study. Within

each age group, participants were randomly assigned to one of two conditions, Discovery

and No-Discovery, balancing as much as possible for gender as well as for ability levels as
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reported by their teachers. In both conditions students were asked to solve the same

problems using an open number-line-like representation that is grounded in the work of

Dickinson and Eade (2004). For the Discovery students, modeling was labor intensive,

because the computer did not scaffold the production of any of the SILOs. Only after the

students had articulated (either via verbal or repeated production) how a particular SILO

operates did the interface ‘level-up’ and automate this functionality for the students. For

example, Discovery students had to toil to make the giant steps equivalent (SILO 1), but

once they phrased that principle, the tutor took measures so that the computer enabled them

to adjust the size of giant steps uniformly. These design choices are the operationalization

of our pedagogical framework for building subjective transparency. We refer to this

pedagogical approach as Reverse Scaffolding (Chase and Abrahamson 2015). No-Dis-

covery students, on the other hand, received ab initio the automatic implementation of all

the SILOs (see Appendix A for more details about each level).

After completing the set of 9 GS4A problems (see Appendix A), all participants solved

a set of 5 post-intervention assessment items (see Appendix B). These items were designed

to measure the participants’ subjective transparency for the structural properties of the

problem, that is, to measure their attainment of, and fluency with the SILOs identified

through this project. The items consisted of New-Context problems designed to measure

for the application of learned skills (transfer) and In-Context problems that targeted the

SILOs directly within the familiar GS4A setting.

Once all the data were gathered, we employed interaction-analysis techniques (Jordan

and Henderson 1995) to search for patterns across the data corpus. Using the video and

screencast data, we were able to code participants’ interactions with the GS4A interface in

terms of their knowledge per the set of SILOs (see below). The SILOs also served as

scoring criteria for measuring individual students’ achievement on the post-activity

assessments, with each SILO further graded into achievement levels.

For the current study, we hoped in particular to implicate students’ micro-behaviors as

driven by their insights into properties of the model they were building. Drawing on a study

of architects’ modeling process (Schön 1992), we expected to observe chains of ‘‘see–

move–see.’’ That is, you observe what you have created, make a change based on your

observation, and then observe the results of the change, and so on. We hoped thus to

characterize each change in students’ knowledge state as evolving through inferred logical

micro-implications from perceived structural features in the virtual diagrams they them-

selves were creating. As such, the notion of knowledge state is akin to a family of theories,

such as theory-in-action (Karmiloff-Smith and Inhelder 1975; Vergnaud 1994, 2009) and

cognitive anthropological analyses of problem-solving with material models (Bamberger

and Schön 1983). The term ‘state’ is a theoretical construct that should connote a current

configuration of a multi-node knowledge structure—a configuration that changes itera-

tively in response to students’ new insights. We conjectured that these diagrammatic

constraints on modeling action would operate not only within the SILOs but across SILOs,

so that we could argue for conceptual growth as the dynamical and systemic coalescing of

a network of mutually constraining modeling micro-routines. By tracking patterns of inter-

constraint calibration within each study participant, we would then compare these patterns

across participants in each condition.

We developed a coding system to represent micro-events of students calibrating the

SILOs (see Fig. 2). We encode each shift in a participant’s diagrammatic goal as an event.

Within an event, each SILO is represented by a circle. In this study, there are three SILOs.

SILO 1 is an exception—it is subdivided into two parts during the activity, as corre-

sponding to the diagrammatic units in question, meters and giant steps. Each SILO can be
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marked so as to indicate whether students’ behaviors have been analyzed as contravening

that SILO (7), adhering to that SILO (4), or ignoring that SILO (—). Thus each event is a

snapshot of the participant’s implicit working hypotheses at that moment, their knowledge

state. An arrow indicates when a participant’s action expresses a particular SILO yet is

constrained by another SILO, as if characteristics of one SILO are influencing another

SILO, where the arrow signifies the directionality of this influence. For example, the image

in Fig. 2 encodes some event where, to our analysis, the participant has looked at her

diagram and is alerted to a logical or practical problem relevant to SILO 2 (she detected in

her diagram unequal spatial extents for Day 1 and Day 2). To correct this problem, she

reenacts SILO 1 (e.g., she uniformly adjusts the spatial extent of all the ‘‘meters’’ in the

diagram) as constrained by SILO 2 (ensuring equivalent total extents for the two ‘‘days’’).

We observed patterns in the network’s evolution, where most often SILO 2 influenced a re-

enactment of SILO 1 as described above. The arrows describe the participants’ emerging

implicative association between SILOs. The network consolidates through recurrence,

evaluation, and articulation of these implicative associations.

By encoding the videography of individual students’ work in the GS4A learning

environment as a sequence of events, we intended to evaluate whether the modeling

process is a concatenation of see–move–see iterations. Such a finding would enable us

tentatively to expand our claims about how discovery learning transpires, at least in this

activity design.

Results

As reported in earlier publications (Chase and Abrahamson 2015), quantitative analysis

revealed the main effect that participants in the Discovery condition achieved better than

their No-Discovery peers on the post-activity assessment items. These results were per-

sistent across all three post-assessment categories (In-Context, Transfer, and Overall). We

concluded that the discovery-based activity architecture increased student outcomes in our

study. Qualitative analyses suggested that Discovery students’ conceptual advantages

Event #

Fig. 2 Example of the analytic representation format used in the analysis section. On the left: a legend of
three SILOs. On the right: a particular configuration of these same three SILOs. Each SILO is either inactive
(—), implemented (4), or violated (7). The arrow depicts an emergent disequlibrium informing a
diagrammic goal within the GS4A interface, which the student then acts upon (violation of SILO 2
implicated violation of SILO 1 [meters], which the student then corrected by adjusting the location of screen
elements, all the while operating within the constraints of SILO 2)
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could be attributed with specificity to their discovery experiences: what they built, they

understood (Chase and Abrahamson 2015).

The remainder of this section presents results from our new round of qualitative re-

analysis on the data corpus. We present two event-based comparisons of students’ mod-

eling process in the Discovery and No-Discovery conditions. The vignettes are organized

as matched pairs, with compatible Discovery and No-Discovery participants who were

working on the same items. This juxtaposition will serve to highlight critical differences

relevant to each study condition. For the comparison, we have selected two 4th grade

participants who each exemplifies behaviors typical of their respective study condition and

ability group. Both participants were characterized by their teacher as performing at mid-

level in mathematics.

Item 2: comparison

We will begin with Frankie, who is working in the Discovery condition. She is working on

Item 2, where the narrative instantiates the algebraic proposition 3x-3 = 2x ? 2. We will

begin by unpacking each Event in the form of a more detailed annotated transcription, so as

to warrant our inferences regarding Frankie’s succession of knowledge states.

Like many of her study-condition peers, Frankie began by building giant steps and

meters of approximately the same size and relationship as in the previous item (see Fig. 3).

Having almost completed her first attempt, Frankie realized that her model was prob-

lematic. Event 1 captures her realization of dissonance between her current approach to

solving the problem and some unintended consequences. In particular Frankie realizes that

by pursuing her current plan of action she would impugn SILO 2. Event 1 signifies a new

knowledge state that will result in Frankie generating a new diagrammatic goal moving

forward.

Frankie Item 2

Event # 1 2 3 4

Model

Utterance Frankie: I’m already past the 
end [her cursor scrolls 
over the end of the Day 1 
model, which her Day 2 
model has already skipped 
over].

Frankie: Yeah, so the meters 
are probably…. [her
cursor scrolls from the end 
node on Day 1 towards the 
right, and circles where 
the end of Day 2 could 
be].

Frankie: Can I go back to day 1?
Res.: Yeah, you can do whatever you 

want.
Frankie: [she begins by deleting Day 2 

of her model, then returning to 
Day 1, and remodeling the meters 
much smaller].

Res.: What are you trying to do?
Frankie: I’m trying to make it look…I 

don’t know
Res.: It looks like you’re trying to 

make the meters smaller.
Frankie: Yeah.

Frankie: So how many meters did 
she bury it from the 
starting point? I think this 
time it is 4.

Res: Really?
Frankie: Oh no, 5, 5 meters.

Knowledge 

State

Fig. 3 Complete overview of all Events for Frankie during Item 2
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Frankie’s model in Event 1 accurately represents giant steps and meters each as a

consistent measure, therefore SILO 1 is encoded with a checkmark. Her utterance and the

actions taken with the cursor indicate her realization that SILO 2 could thus not be

achieved; therefore SILO 2 is encoded with an X. Frankie does not attend to SILO 3, and

so it is encoded with a dash. Looking at Frankie’s diagram reveals that during Event 1 she

modeled a spatial relationship where 1 giant step is approximately 2 meters. This implicit

hypothesis is surfaced and called into question once Frankie imagines how her model

would look if completed. Frankie must react to this anticipated error by generating a

revised diagrammatic goal. Thus, per our analytic conjecture, perceptual features in a

student’s diagram may iteratively constrain the evolution of another SILO. Immediately

following, Frankie makes a small action indicating that she is considering a possible repair

to the violation that had just occurred. This is captured in Event 2. She moves her cursor

from where the current model ends on Day 1 to a location where Day 2 could end, thus

tentatively reconciling SILO 2. This is encoded as an arrow indicating the new constraint

that satisfying SILO 2 places on Frankie’s diagrammatic goals, specifically how she

models the meters.

Frankie then begins making this imaginary projection into reality (see Kirsh 2009), as

captured in Event 3. First, she must remove some elements from her current model,

including all of Day 2 material. As for Day 1 material, she keeps the giant steps intact but

alters the meters.

Frankie’s revised hypothesis is calibrated to the new constraint she has just discovered.

Her new diagrammatic approach is consistent with her previous approach, with only one

slight adjustment: She must modify the spatial relationship between the meters and the

giant steps. Frankie continues to model her meters consistently. But in order to satisfy

SILO 2, she keeps making her meters smaller and smaller, toggling between Day 1 and

Day 2, until the days’ respective ends are finally collocated (see Event 4). Frankie then

correctly calculates the location of the buried treasure. In this vignette we see that Frankie

vacillates between attending to the size of the meters (SILO 1) and the relative spatial

extent of the two days (SILO 2). Frankie does not change or comment on the size of the

variable (SILO 1: giant steps)—this diagrammatic figure appears to be an immutable fea-

ture of her model. Rather, we have witnessed how a breakdown in implementing the

diagrammatic constraints of equivalent expressions (SILO 2) stimulated Frankie to re-

implement and thus calibrate the principle of consistent measures (SILO 1—meters).

As a point of comparison, Zula is working in the No-Discovery condition (see Fig. 4).

Bear in mind that in this condition the computer is automating the production of consistent

giant steps and meters. At first glance, it may appear as though there are many similarities

between Zula and Frankie, however, the differences between the students become evident

as the activity progresses. Zula is also working on Item 2 (3x - 3 = 2x ? 2). She models

the entire narrative. She then determines that her model cannot be accurate because the

Day 1 and Day 2 end nodes are not collocated. This is a similar realization to that of

Frankie.

In order to repair the impugned SILO 2, Zula contracts the Day 2 model to the left so as

to near its end node to the Day 1 end node. However, this action does not result in any new

information, as the model still does not satisfy the SILO 2 requirement.

Then Zula pauses and expands the size of the giant steps, which auto-expands the entire

model, until the two days’ respective ends are collocated. Event 3 introduces one con-

straint, as Zula must adjust her diagram to satisfy SILO 2. She can accomplish this

diagrammatic goal by changing the size of the giant steps. This is encoded as an arrow

from SILO 2 to SILO 1 in Event 3. Once Zula has repaired her model, she is able to
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calculate the size of the giant steps and determine a correct solution. Event 4 captures this

process as well as her struggle to calculate an accurate solution.

After entering ‘‘15’’ as a solution, Zula returns to her model and eventually calculates 12

as her solution. Zula had neglected to account for the negative integer on Day 1, as the

giant went back 3 meters. In this vignette we saw that Zula only has one occasion where

her actions result in feedback that is contrary to her anticipated outcomes. This occurred in

Event 2. We may tentatively submit that the No-Discovery condition may offer reduced

occasion for participants to engage in a see-move-see sequence that results in inter-cali-

bration of the SILOs.

Item 4: comparison

In this next section we will compare the work of Frankie and Zula on Item 4, a narrative

that corresponds with the equation ‘‘3x ? 2 = 4x - 1’’. We will begin with Frankie. She

has moved into the Level 2 of the Discovery condition (see Appendix A for details about

the levels). In Level 2 the interface generates equivalent meters automatically but the user

still controls the size of each individual giant step. Frankie begins by modeling Day 1

entirely and then advances to Day 2 and models only the giant steps (see Fig. 5). In this

initial pass at solving the problem, Frankie is focusing on generating consistent giant steps

across Day 1 and Day 2 of her model.

Before she even completed the model Frankie realized that if she continued to build this

model using her existing parameters, once completed it would violate SILO 2, ‘‘equivalent

expressions.’’ This infraction propels a revised diagrammatic goal.

Frankie’s next move, captured here in Event 2, is to delete what she had modeled for

Day 2 and begin again. Her reconstructed model no longer impugns SILO 2. This is

encoded with the arrow in Event 3, Fig. 5. However, her revised approach involves

changing the giant steps on Day 2, so that they extend further to the right (see Fig. 5). Her

attempt to repair Event 2 resulted in a new violation. Frankie’s revision now fractures her

Zula Item 2

Event # 1 2 3 4

Model

Utterance Zula: That wouldn’t work.
Because she buried the
treasure here [scrolls
over the final node on
Day 1].

Zula: You need to make it like that 
[pauses]. No, like there 
[stretching] there [stretching], 
there.

Zula: On Day 1 she goes back 3, and 
on Day 2 she goes forward 2, 
and they have to line up…. 
[Reads] “so how many meters 
away is the treasure buried 
from the starting point”…. If 
there were 5 [scrolls over the 
giant step that is subtended by 
5 meters], then 5, 10, 15. [She 
enters 15 and gets feedback 
that this is incorrect]

Diagram

Fig. 4 Overview of all Events for Zula during Item 2
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notion of consistent measures. It takes Frankie some time to recognize why this model

(Event 3) is faulty.

After some unsuccessful attempts to calculate the distance in meters, Frankie sees that

her model cannot work and begins moving the giant-step nodes on top of each other. Event

3 returns Frankie to a newly calibrated inter-constrained execution in which SILO 1 can be

corrected without disrupting SILO 2.

Then Frankie attempts to calculate the size of a giant step in meters. In Fig. 5, Event 4

we see that Frankie attempts to establish a shared frame of reference, but that her dia-

grammatic imperfections briefly cause some confusion. Almost immediately following, in

Event 5, we observe that she sees beyond what she produced to her intended diagram. She

establishes the shared frame of reference, SILO 3, and is able to calculate the correct

solution.

We now join Zula working on Item 4 (see Fig. 6). She begins by modeling the complete

narrative and then looks at it and determines that it is not accurate. This change in her

knowledge state is captured in Event 1. Zula then stretches the model until the ends are

collocated, as seen in Event 2. She then focuses on the shared frame of reference (SILO 3),

establishes the size of a giant step, and calculates a solution to the problem, as seen in

Event 3.

Zula is not confronted with any feedback from her model or her modeling actions that

would implicate a particular violation or necessitate a diagrammatic repair. While she does

not immediately satisfy the criterion for establishing equivalent expressions (SILO 2), she

can do so without experiencing further constraint on or from other parts of the network.

Post-activity assessment item comparison

Up to this point in the comparison of Frankie (Discovery condition) and Zula (No-Dis-

covery condition), we see that there are discernable differences; in particular Frankie’s

Frankie Item 4

Event # 1 2 3 4 5

Model

Utterance Frankie: Well she is in the
same spot. [Frankie
moves her cursor in an
arc, where the 4th giant
step could go. Then she
hovers her cursor over
the last node in her
Day 1 model,
indicating that if she
took a 4th giant step
forward, as the story
suggests, and 1 meter
back, the model would
not work].

Frankie: Ok, so that is about 
the same [referring to 
the collocation of the 
Day 1 and Day 2 
ends]. So how many 
meters? [She begins 
to calculate the total 
distance from the start 
in meters].

Frankie: Well how do I 
make them 
bigger? [she
hoovers over the 
giant step on the 
far right, because 
this one is much 
bigger than the 
others.]

Frankie: These look like 3 
meters, and these 
look like 2 
meters.

Res: Did the story say 
anything about 
extra small giant 
steps?

Frankie: No, I just drew 
them like that. 
So actually 3 
meters

Frankie: No, I just 
drew them 
like that. So 
actually 3 
meters. [She 
then 
calculates the 
correct 
response]

Diagram

Fig. 5 Overview of all Events for Frankie during Item 4
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event sequences are longer and more varied. It is during the post-activity assessments that

these differences become more evident. Frankie is working on one of the post-activity

assessment items, the Two Buildings problem (see Appendix B). She begins by reading

through the problem and then points to the text about Building A that has 10 floors and a 20

foot spire. (Building B, which is equally tall, has 11 floors and a 10 foot spire.)

Frankie’s initial attempt at establishing equivalency between the two buildings is to

vary the size of what should be conceptualized as a consistent measure (see Fig. 7). Thus,

Event 1 captures her initial knowledge state.

Zula Item 4

Event # 1 2 3

Model

Utterance Zula: She did not bury it in the

same place.

Zula: So, have to fix it [she stretches the 
model until the ends are
collocated]. There.

Zula: So 3 [points to the final giant step 
that is subtended by 3 meters] 6, 
9. No wait, she buried her 
treasure here [points to the 
shared final node] so 2, plus 3 is 
5, plus 3 is 8, plus 3 is 11. 11.

Diagram

Fig. 6 Overview of all Events for Zula during Item 4

Frankie Two Buildings

Event # 1 2 3 4

Model

Utterance Frankie: These floors [building A] 
will have to be bigger than 
these floors [points to the 
text describing building B].

Res.: Why?
Frankie: Because 11 and 10. Wait, 
Floors are like stories?
Res.: Exactly, like when you go up 
in an elevator…
Frankie: So they don’t have to be

the same size.

Frankie: Actually they do 
[referring to the height of the 
floors].
Frankie: So the building is the 

same height, or the 
Spire. Are they 
talking about the 
building and the 
spire? Like together

Res.: Yeah

Res.: So you’re saying that the 
floors have to be 
different sizes.

Frankie: yeah.
Res.: Is that typically how it 

would be in a building?
Frankie: No.

Frankie: [begins rereading the prompt] 
Well, then, there’s, the spire is 
10 feet tall. So this one 
[Building B] would be like half 
the size of it [Building A]. But 
this building [referring to 
Building B] would have to be, 
let’s say this building is bigger 
[draws another floor]

Res.: So it’s bigger by one floor?
Frankie: Yeah [pointing to the top of 

Building B with her pencil].
Diagram

Fig. 7 Frankie’s encoding and transcript for the Two Building transfer problem
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Immediately afterwards, Frankie revises her approach and decides that the floors do

need to be consistent across both buildings. Subsequently, she turns her attention to the

overall challenge of establishing equivalency and verifies her interpretation of the prob-

lem’s components. This is captured in Event 2.

Frankie then begins to diagram her thinking. She starts by drawing Building A. She is

unsure how tall to draw the spire. She begins by drawing a second building that is the same

height as the first, excluding the spire. In Event 3 we can observe how Frankie reverts to

varying the size of the floors between buildings in order to establish overall equivalency.

Immediately after Event 4, Frankie returns to the text. She rereads the narrative and

comes to the conclusion that it is possible for the floors to be the same height across each

building because the spires are different heights. Frankie redraws the top of Building B (on

the right) and adjusts the height of the spire. Frankie has discovered how SILO 1 and SILO

2 can co-obtain.

In Event 5 (see Fig. 8), Frankie looks at each component of her diagram and then

determines the shared frame of reference, in this case the height of a floor. This signals a

change in Frankie’s knowledge state, as exemplified in Event 5. She has determined a

shared frame of reference by examining the constraints of her diagram. Immediately

following, Event 6, the researcher asks Frankie to explain her thinking. This vignette

exemplifies the iterative nature of the inter-constraint calibration that characterizes dis-

covery in this context. The participant often conceptualizes one of the constraints as

central, then shifts attention to another constraint and cannot immediately satisfy both

constraints. It seems that through the process of recognizing how one of the SILOs has

been contravened the participant gains a better understanding of this particular SILO and in

particular how it networks the set of considerations for solving this contextual problem.

Additionally, Frankie uses her model as a way to check her reasoning and provide herself

with feedback that enables her to make the necessary micro-adjustments along the way.

This is very different from the behavior we see from participants in the No-Discovery

condition, such as Zula.

Frankie Two Buildings Event 5 Frankie Two Buildings Event 6

Res.: So you just drew this one bigger by one floor, why?
Frankie: Cause it has 11 floors.
Res.: And this spire is 10 feet?
Frankie: yeah
Res.: And this spire is 20 feet? And it goes all the way to here.
Frankie: Yup
Res.: And then the rest is all the same?
Frankie: Yup…then this would have to be 10 feet [pointing to the 11th floor on building B]

Res.: Why?
Frankie: Because it wouldn’t be the same [points to the spires of the 

building] Because this is 10 [her pointer finger to tap on 
the spire of building B] and this is 10 [uses her middle 
finger to tap on at the 11th floor of building B], and it is the 
same [moves her fingers over to the 20 foot spire on 
Building A, and taps them both together], and then it was 
just be the same on the rest.

Fig. 8 Frankie’s drawing, encoding, and transcript Events 5 and 6 in the Two-Buildings transfer problem
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Zula is also working on the Two Building post-activity assessment item (see Fig. 9). She

has read through the story and begins drawing out the scenario. Her first move is to draw

two rectangles that are the same size, then subdivide them into ‘floors’ (see Event 1). This

diagrammatic goal inadvertently neglects SILO 2.

In Event 2 Zula reminds herself that Building B is indeed taller, because it has 11 floors.

She draws a line across the top of both buildings to indicate this. This action brings her

focus to SILO 2.

In Event 3 we observe that Zula proceeds by modeling the spires on each building and

then performing a series of calculations, leading her to the conclusion that the buildings are

actually not the same height, thus negating SILO 2. Her calculations do not attempt to

establish a shared frame of reference, thus negating SILO 3.

Immediately following Event 3, the researcher asks Zula to explain her reasoning. This

opportunity to interrogate her reasoning helps Zula recognize that she was confusing floors

and feet, and this brings her back to calculating the height of each floor (Event 4). Zula

returns to her drawing and determines that 19 ft. is the height of each floor, which is

incorrect.

In contrast to Frankie, Zula does not use the model she is creating so as to reflect, to

calibrate her thinking, or generate a new and more nuanced approach. She does not

generate new diagrammatic goals when faced with inconsistencies, which in turn inhibits

her development of new knowledge states as the activity progresses.

Discussion

The Giant Steps for Algebra learning environment, including its source materials, assigned

task, means of production, and facilitation techniques, was designed with the explicit

objective of enabling students to bring to bear common sense in assembling piecemeal

what become diagrammatic instantiations of the target content, early algebra, complete

with its structural, relational, and functional coherence. That is, we designed for students to

build a transparent algebra, where all the procedural operations are logically necessary,

Zula Two Buildings Event 1 Zula Two Buildings Event 2

Zula: Ok so there’s a building [draws both boxes the same height] and it has 
1,2,3….[counts out 11 floors on building B and 10 on building A]

Zula: But then this one is higher because it is 11 floors [draws a line 
across the top of both of them]

Zula Two Buildings Event 3 Zula Two Buildings Event 4

Zula: Then this one [building A] has a spire that is 20. So 20 minus 11 is…... No 
20 plus 30, and then 30 minus 11. is 29. No 19. So right now this 
[building A] is 19 feet taller. And then this [building B] has a spire that 
is 10. And 10 plus 19 is 29. So they are not the same height.

Res.: How do you know that.
Zula: Because if this one is 10 feet [points to building A]…Oh this one is 10 

floors. We don’t know how big the floors are.

Fig. 9 Zula’s diagrams, encoding and transcripts for two buildings transfer problem, all Events
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given one’s tacit know-how about how things are in the world and vis-à-vis the recursively

emerging figural constraints of the model they were constructing. Thus, for a moment do

we not claim that students discovered algebra ‘‘on their own’’—claiming that would be a

travesty of the entire design philosophy, agenda, rationale, and procedure. On the contrary,

we regard the learning process, replete with tutorial interaction, as exemplifying heavy-

handed sociocultural mediation of mathematics knowledge. However, this mediation is

largely premeditated, embedded in the learning environment. Rather than spoon-feeding

forms and dictating procedures, we created conditions for students to encounter cognitive

challenges whose pragmatic solution amounted to learning core notions of the target

content. Our objective in this paper has been to characterize the piecemeal assemblage of

the new conceptual elements, which we call situated intermediary learning objectives

(SILOs), not as independent thrusts but as interdependent, iterative, pragmatic adjustments

of construction micro-routines vis-à-vis emerging features of the solution models into an

inter-calibrated network. The network is composed of two primary features, the nodes and

the rays. The three nodes are the SILOs, and the rays signify implicative associations

between nodes or how each SILO constrains the other.

The methodological rationale of the study was to hypothesize differences between the

learning gains of students who engaged in the experimental Discovery mode of the activity,

per our descriptions above, and those who engaged in solving the same problems only that

the technological environment relieved them from the efforts of figuring out best micro-

modeling practices. As such, No-Discovery students received ready-made tools, in a

manner that we believed reflects mainstream-classroom instructional experiences. As

researchers, we were intent on evaluating whether our hypothesis would bear out in the

form of manifest differences in the learning gains of the two groups (the main effect), and

we further aspired to implicate differences in the process that led to these diverging

outcomes. Moreover, we hoped that we could learn more about the nature of discovery

learning by virtue of grounded-theory characterization of observed differences in process.

This paper expressed results of analyzing and juxtaposing case-study accounts of the

experimental and control groups’ recorded behaviors.

Our quantitative and qualitative analyses supported claims for greater learning among

Discovery as compared to No-Discovery students (Chase and Abrahamson 2015). Our

further qualitative analyses presented herein now exemplify how in the absence of ready-

made interaction functions, Discovery participants were obliged themselves to intuit, infer,

determine, construct, and inter-calibrate features of the mathematical system. By way of

contrast, participants in the No-Discovery condition, who received the interaction features

ready-made, did not experience as much insight into the embedded mathematical princi-

ples. Indeed, their individual SILOs were not as manifest or articulated and their set of

SILOs was not as inter-constraining.

The results of this study further highlight the importance of differentiating between

learning to use a tool and using a tool to learn. In many cases, No-Discovery participants

developed a know-how (Ryle 1945) that was situated in the particular immediate context

and subsumed the tool. What is more, they could articulate how they were using this

available tool to solve the problem at hand: They used the ready-made interface features

and often understood the relationship between their mousing actions and changes on the

screen. However their understanding was only ‘‘screen deep.’’ For example, No-Discovery

participants understood that the tool could stretch or shrink giant steps, but not how this

action functions within the larger mathematical system. Learning how to operate a tool did

not lead to compatible opportunities to develop subjective transparency of the mathe-

matical system. The tool’s ready-made utilities were never interrogated with respect to
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problems of practice that the tools each solved. The utilities were conceptualized as

manipulative features, not as solutions. Just as in the case of bicycle gears, one can become

highly skilled in using an artifact’s utilities without ever questioning their rationale or

build, without looking under the hood. Using a ready-made tool does not necessitate the

development of situated intermediary learning objectives (SILOs).

By contrast, participants in the Discovery condition had to enact and formulate inter-

action goals and then compensate for the tool’s shortcomings; only once they had artic-

ulated these compensatory strategies did the experimenter supplement those repair

strategies into the tool as built-in utility features. Through this process, the participants

came to understand their own ideas with more clarity and, in so doing, achieve greater

fidelity with the target concepts. Thus the Discovery condition enabled participants to

encounter a problem of practice, enact their solution, and ultimately articulate and confirm

it. The process of first needing a particular tool and only then receiving it created increased

opportunities to develop subjective transparency of the emergent mathematical system.

We infer that learning to use a tool is a learning activity that does not necessitate that

the participants encounter the problem of practice nor articulate how the built-in features of

an artifact enable their success. Furthermore, knowing how to operate a tool does not

guarantee a seeing and understanding of the cultural–historical disciplinary knowledge

embedded in the tool (see also Meira 2002). On the other hand, using a tool to learn

implies that users build new knowledge by engineering improvements to imperfect tools,

where these engineering micro-solutions embody the design’s learning objective. In this

paper we have exemplified and explicated the process of using a tool to learn. Although the

process is premeditated by the designer, for the student this process is not teleological or

concept-oriented—it could not be, because the students do not know what the concept in

question might be. Rather, the process is problem driven and detail-oriented; with each

modeling operation giving rise to material (or virtual) features that, in turn, require

modification to modeling routines and emergent heuristics. Conceptual knowledge is a

reflective mastery of the sum total of these interdependent heuristics (cf. Bereiter 1985, on

the ‘‘learning paradox’’).

This paper contributes to the discovery-based learning landscape in three ways. We

propose a pedagogical vision, a heuristic design framework, and an epistemological

framework. Firstly, our pedagogical methodology is focused on building subjective

transparency as our characterization of discovery. Secondly, we developed a heuristic

design framework that outlines a procedure for determining the SILOs underlying a target

concept through a combination of top-down cognitive domain analysis and bottom-up

micro-ethnographic analyses of clinical interviews. Our activity architecture iteratively

implements the target content in a discovery-based learning environment including

materials and activities. Finally we have proposed an epistemological framework for

characterizing, representing, and monitoring the emergence of mathematical knowledge.

These three aspects of the project—pedagogy, design, and epistemology—cohere around

the proposed construct of the SILO.

While we used technology to implement this particular design, we believe that it is not

necessary. Stepping back, we realize that our use of technology in building the learning

environment required of us to articulate a theory of interactive learning, paying close

attention to the implications of automation when designing for discovery. However, this

theory may well obtain and generalize to other media for mathematics instruction. More

generally, this methodical approach to the design and evaluation of instructional envi-

ronments involving student construction of systems may support research efforts to

investigate student STEM learning in activities that explicitly foster and foreground

Searching for buried treasure: uncovering discovery…

123



student assembly of functional systems, as in fabrication laboratories associated with the

Maker movement.

Limitations

The construct of SILOs emerged in the particular context of this design-based research

study. As of yet, we have no evidence to substantiate a claim that other let alone all

mathematics content can be conceptualized via its SILOs. Furthermore, even if we could

determine a new content domain’s SILOs, we cannot as yet state that those specified SILOs

would be conducive for inter-calibration, as discussed in this study. Additionally, this study

presents an activity that was delivered individually and outside of the classroom, and we

recognize that we therefore cannot predict how this activity and inter-calibration would

emerge in classroom settings. We sincerely hope that our work will inspire further research

and scaling into other domains and settings of mathematics and, perhaps more broadly,

STEM education.

Conclusions

In earlier publications, we put forth a framework for educational designers to build

interactive technology by which students reinvent mathematical subject matter content

through diagrammatic modeling of a problem-based source narrative (Chase and Abra-

hamson 2015). The framework specifies how to embed within interactive technology a

task-oriented activity sequence for the iterative development of conceptual transparency

for target mathematical content. This paper extended our framework through qualitative re-

analysis of empirical data to characterize students’ learning process as iteratively cali-

brating a set of modeling micro-routines in light of emergent constraints imposed by

features of their own diagrammatic models. This network of calibrated constraints both

comes to constitute students’ understanding for the meaning of the content and organizes

their prospective problem solving for appropriate situations. If in previous publications we

portrayed students’ emerging content knowledge as a set of situated intermediary learning

objectives (SILOs) per se, we now can explain how these SILOs inter-coalesce into a tight

action-oriented cognitive structure, a network of mutually constraining SILOs. We hope

this keener analysis of the learning process will be of use to educational researchers and

designers.

These are early days to evaluate the scope and reach of the inter-calibrated SILO model

of learning as a means of explaining discovery-based pedagogy, both its theory and

practice. To the extent that researchers explore these ideas further, we anticipate the utility

of doing so in the context of learning environments that are geared to elicit students’

relevant experiential resources, even skills as simple as walking or clapping hands together

(Zohar et al. 2017).
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Appendix A

Schematic listing of intervention items for both study conditions as well
as activity sequence and interface functionality for each condition

Items Condition

Item Annotated narrative and algebraic expression. Discovery No
discovery

1 Four giant steps forward. Then three giant steps forward and
two meters forward.

4x = 3x ? 2

All manual All
automatic

2 Three giant steps forward and three meters back. Two giant
steps forward and then two meters forward

3x-3 = 2x ? 2

All manual All
automatic

3 One giant steps forward and then eight meters. Two giant
steps and then six meters.

1x ? 8 = 2x ? 6

All manual All
automatic

Transition to level 2

4 Three giant steps forward and then two more meters. Four
giant steps forward and then one meter back.

3x ? 2 = 4x - 1

Manual giant steps
automatic meters

All
automatic

5 Three giant steps forward and then three meters back. One
giant step forward and then one more meter.

3x - 3 = x?1

Manual giant steps
automatic meters

All
automatic

6 Two meters forward, then two giant steps forward, then three
meters forward. One giant steps forward, then one meter
forward, then two giant steps forward, then one meter
forward.

2 ? 2x ? 3 = x ? 1?2x ? 1
(2x ? 5 = 3x ? 2)

Manual giant steps
automatic meters

All
automatic

Transition to level 3

7 Five meters forward and three giants steps back. Two giant
steps forward.

5 - 3x = 2x

All automatic All
automatic

8 Two giant steps forward and four meters back. The one giant
steps forward and three meters back.

2x - 4 = x - 3

All automatic All
automatic

9 Three meters forward, then two giant steps, then four meters.
Then two meters and three giants steps.

3 ? 2x ? 4 = 2 ? 3x

All automatic All
automatic
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Appendix B

Post-intervention items for both study conditions

New-context problems

The two buildings problem

Two buildings are built next to each other and are exactly the same height. One building is

10 floors and has a spire that is 20 feet on top of it. The other building is 11 floors and has a

spire that is 10 feet on top of it.

How tall are the buildings?

What do you need to do to solve this problem?

The turtle years problem

My turtle, named Yurtle, is being tricky and won’t tell me how old she is.

Help me figure out how old she is in human years.

Yesterday she told me that she has lived 3 turtle years and 2 human years. She also told

her 4th turtle year will begin in 3 human years.
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In-context problems

In this screenshot a hypothetical user created inconsistent meters. The study participant

must: (a) identify the user’s error; (b) redraw the scenario with consistent meters; and

(c) determine the treasure’s location.

In this screenshot a hypothetical user created inconsistent giant steps (variables). The study

participant must: (a) identify the error; (b) redraw the scenario with consistent giant steps;

and (c) determine the treasure’s location.

In this screenshot a hypothetical user did not represent equivalence. The study participant

must: (a) identify this error; (b) redraw the scenario with matching end-points; and

(c) determine the treasure’s location.
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