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Abstract  

New product diffusion is critical to entrepreneurship. Without successful diffusion, the emergence of a 

new business is incomplete. Although we have several well-established models of the diffusion 

phenomenon, these models mainly describe the macro-level diffusion patterns after their ignition, 

thereby ignoring the ignition mechanism. This study conceptualizes an entrepreneur’s introduction of a 

new product and its diffusion as a generative emergence from a complexity science perspective and 

employs agent-based modeling and simulation (ABMS) to explain the full ignition-diffusion process, 

as well as ignition failures. In this study’s model, the ignition process is made of individual consumers’ 

heterogeneous thresholds and their relative levels of activities. These micro-level characteristics and 

behaviors influence the speed and scope of the diffusion at the macro-level. Our simulations reveal the 

minimum number of initial adopters required to ignite the diffusion process and show how an 

entrepreneur’s advertising campaign may accelerate the ignition and diffusion speed. The simulations 

also reveal how consumers’ negative word-of-mouth may reduce the diffusion scope. 

 

Keywords: ignition of new product diffusion, generative emergence, complexity science, agent-based 

modeling and simulation, word-of-mouth 
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1. Introduction 

New product diffusion is critical to entrepreneurship. It is hard for most entrepreneurs to have successful 

businesses without diffusion of their products, even if the entrepreneurs have developed flawless new 

products. For the entrepreneur’s venture to thrive, it is more important that their product is bought and 

used by consumers than it is that their product is perfect. Despite the importance of the new product 

diffusion, gaps in our knowledge remain regarding the critical conditions that ignite the diffusion 

process. Hence, the main purpose of this study is to identify the conditions that trigger this diffusion 

process, with particular emphasis on revealing the relative impact of entrepreneur’s advertising efforts 

and consumers’ word-of-mouth. In order to elaborate on this phenomenon and reveal how micro-level 

activities affect macro-level diffusion patterns, this study regards the ignition-diffusion process as an 

emergence process from a complexity science perspective.  

At the macro-level, decades of diffusion research have successfully described how new products 

spread through society (Bass, 1969; Garcia and Jager, 2011; Laciana, Rovere, and Podestá, 2013; 

Rogers, 2003). In particular, the S-curve innovation diffusion process originated by Bass is widely used 

and thoroughly researched as a representative aggregated-level model (see Kiesling, Günther, and 

Stummer, 2012 for a comprehensive review). The S-curve shape of the diffusion process after the 

ignition is so prevalent across a wide range of conditions that it is deemed a ‘stylized fact’ of marketing 

and entrepreneurship (see Arroyo and Khalifa, 2015). The term stylized fact is used to identify 

something that is a generally known macroscopic pattern or observation widely accepted to be an 

empirical truth. The term is derived from economics, but commonly used in diverse areas of business 

studies including marketing (Garcia, Rummel, and Hauser, 2007; Rand and Rust, 2011). 

In spite of their prevalence, the aggregated-level models of diffusion are often limited in similar 

ways. In particular, these models generally take ignition of the diffusion for granted or assume the 

ignition of diffusion as natural. However, this assumption may not be realistic, as many entrepreneurs 

fail to spread their products, contributing to the high death rate of new ventures. Without understanding 

of the diffusion ignition, it remains hard to predict diffusion speed or scope. This predictive challenge 

is a result of the complexity of the diffusion process including the complexity of the social interactions 
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between consumers. Moreover, these aggregated-level models lack explanatory power for the micro-

level mechanisms. While they can retrospectively describe the macro-level pattern by reproducing the 

stylized fact, it remains debatable whether they truly reflect the micro-level behaviors of heterogeneous 

individuals (Kiesling et al., 2012).  

Complexity science provides an effective theoretical perspective with which to explain the micro- 

and macro-level of several entrepreneurial processes (Crawford and Kreiser, 2015; Ireland and Gorod, 

2016; McMullen and Dimov, 2013; McKelvey, 2004). Within the complexity science perspective, 

Lichtenstein (2016) suggests ‘generative emergence’ as a central concept, which is the emergence of a 

larger pattern as a consequence of intentional behavior by individual agents, and presents five sequential 

phases for the generative emergence. In his sequential model, the cycle is initiated by the entrepreneur’s 

pursuit of value creation (phase 1), followed by cycles of tensions and experiments (phase 2) as the 

entrepreneur figures out how to gain market share, thereby increasing the size and complexity of the 

system. At some point, positive (and negative) feedback from others in the system reach a tipping point 

(phase 3), and a ‘new order’ emerges (phase 4) and stabilizes (phase 5). This study uses Lichtenstein’s 

sequential phases as a guide when modeling the new product diffusion process.  

To make the complexity science perspective more concrete, this study employs agent-based 

modeling and simulation (ABMS). ABMS has been proposed as an effective way to elaborate on 

theories in complexity sciences (Davis, Eisenhardt, and Bingham, 2007; Garcia, 2005; Kiesling et al., 

2012). It has a high degree of realism when applied to new product diffusion, because the behavioral 

models and attributes in the ABMS can account for the empirically observed heterogeneity of agents, 

their preferences and their activities at the micro-level, while reproducing the stylized fact at the macro-

level (Dooley, 2002). This study simulates individuals’ preferences and behaviors and how they 

aggregate to the S-curve new product diffusion process. The diffusion is situated in the online context 

for two reasons: (i) the Internet has become an essential platform for entrepreneurs to announce the 

launch of their new products and ventures and (ii) a substantial empirical literature on the structure of 

online social networks is now available. 
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While providing a relatively easy to follow demonstration of ABMS, this study addresses three 

significant issues. First, unlike prior studies, no initial adoption is assumed. Instead, initial adoption is 

a consequence of the entrepreneur’s advertising activities, compounded by word-of-mouth. Second, the 

ABMS includes heterogeneous characteristics related to the potential consumers’ likelihood to try a 

new product. Finally, social network structures are generated that are consistent with empirical data on 

online social networks as they simultaneously have power-law and small-world features (Crawford et 

al., 2015; Watts and Strogatz, 1998). 

This study contributes to entrepreneurship research and practice in three ways. First, it reinforces 

the validity of adopting a complexity science perspective to understand entrepreneurship, including the 

new product diffusion process. This perspective enables understanding the diffusion process as a multi-

level generative emergence. Second, it goes beyond providing only theoretical arguments for employing 

ABMS. It does this by demonstrating the mechanics of AMBS by linking empirically observed micro-

level attributes and activities to macro-level observations. The ABMS used here also include network 

structures with power-law and small-world properties that are empirically more accurate than prior 

ABMS studies. Lastly, the simulation results help quantify the relative impact of the entrepreneur’s and 

consumers’ activities on igniting and spreading the diffusion. These findings provide a foundation upon 

which to elaborate on theories of new product diffusion processes, and pursue practical insights into 

entrepreneurs’ attempts to ignite the diffusion of new products. 

 

2. Theoretical and Methodological Frameworks 

2.1. Complexity science 

The complexity science perspective regards ‘emergence’ as its conceptual anchor, where emergence is 

a process in which a new order is created at a higher level through agents’ activities at a lower level. In 

the entrepreneurship context, the emergence is manifested in several macro-level stylized facts, like the 

relative distribution of high growth firms, job creation and economic growth within or across regions 

(Brown, Mawson & Mason, 2017), all of which are outcomes of how entrepreneurs and other 

stakeholders act and interact within their ecosystem at the micro-level (Brown & Mason, 2017). This 
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emergence sometimes referred to as generative emergence because it is based on individuals’ intentional 

activities. 

Using Lichtenstein’s (2016) five phase model as a guide, phase 1 captures the intentions of the 

entrepreneur: “the cycle is initiated when an entrepreneur starts to pursue an idea for value creation, 

which enacts or takes advantage of an opportunity” (p. 47). For the emergence to be ignited and proceed, 

the entrepreneur must interact with other stakeholders (especially consumers). These interactions 

include validating the consumer’s needs (phase 2) and accumulating positive feedback (phase 3) until 

a tipping point, at which point the system reorganizes itself (phase 4) and stabilizes (phase 5). At a finer-

grained level of detail, these 5 phases may be mapped onto the 21 different complexity ‘ingredients’ 

(McKelvey, 2016), including tension, emergent phase transitions, heterogeneous agents, tiny initiating 

event, connections, bottom-up emergence, multi-level, and power-law phenomena (Crawford et al., 

2015; Shim, 2016).  

Adapted to the new product diffusion process, this sequential model reads as follows: The diffusion 

process is initiated by the entrepreneur’s introduction of a new product they believe that consumers will 

value (phase 1). Potential consumers to whom the new product is introduced or advertised are then 

placed in a state of tension between perceived utility and disutility of the new product before making a 

decision to try the product (phase 2). At some point, the entrepreneur’s advertising efforts are  

overshadowed by the (net) positive word-of-mouth among consumers, which then drives (or stalls) 

further diffusion (phase 3). Finally, the market reorganizes in favor or against the entrepreneur’s product 

(phase 4) and stabilizes at some level of market penetration (phase 5).  

 

2.2. Agent-based modeling and Simulation (ABMS) 

Analysis of complex systems may be separated into two streams (McKelvey, 2004; Edmonds and Moss, 

2004): (i) descriptive analyses for inductive theory development, and (ii) simulations and modeling for 

predictive theory testing and refinement. Descriptive complex systems analyses produce ‘thick’ 

descriptions of “causal plot lines” regarding how elements influence each other (McKelvey, 2004, p. 

330). Such descriptions, including diagrams, help visualize how actors in socio-economic systems 
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interact to create value (e.g., Garnsey and McGlade, 2006; Maine and Garnsey, 2006), and may form 

the basis of subsequent simulations studies. Simulation and modeling based analysis is focused on 

identifying the simplest possible system that can quantitatively predict nonlinear relations, emergence, 

phase-transitions and dynamics of systems over many time steps (Anderson, 1999; McKelvey, 2004; 

Crawford, 2009). Simulations are virtual environments implemented by computer programs, in which 

researchers reproduce actual systems, processes, and events. The benefit of simulations (versus field 

research) is that they provide researchers with the ability to control all the input variables and efficiently 

perform large numbers of repetitive tests (Anderson, 1999; Davis, Eisenhardt, and Bingham, 2007; 

Dooley and Van de Ven, 1999). Through such tests or what-if analyses, researchers can simulate 

plausible or even extreme scenarios by examining how variables change and what effect their change 

has on the overall system (Harrison et al., 2007).  

There are multiple modeling methods for simulations to consider, including discrete event 

modeling, system dynamics modeling, and agent-based modeling. Discrete event modeling regards a 

process as a sequence of discrete events. This modeling approach may account for the internal entities’ 

behaviors, but the entities only passively react to external events (Siebers et al., 2010). Thus, discrete 

event approach is less suitable for modeling complex autonomous systems where many stakeholders 

act independently and interact with each other like new product diffusion process. System dynamics 

modeling is very useful for analyzing the response of complex systems, as modeled by aggregated sub-

components in the system. However, system dynamics modeling does not explicitly model the 

behaviors and preferences of individuals in the system or their heterogeneity, and is therefore not well 

suited to studying the ignition of diffusion processes. ABMS is well suited to explain the micro-macro 

link between individuals and macro-level stylized facts because it can explicitly express heterogeneous 

activities and attributes of individuals and their interaction (Dooley, 2002). ABMS are particularly 

useful when the underpinning activities and attributes are based on empirical data (Corley, Jourdan, and 

Ingram, 2013). 

For agent-based simulation, the first step is to build an agent-based model (ABM) that imitates the 

actual behaviors of individuals on the basis of their complex and high-level cognitive information-
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processing capabilities and intrinsic temperament (North and Macal, 2007). This imitation requires 

explicitly defining attributes and behavioral rules for each agent in the ABM, including statistical 

variation of their attributes (i.e., heterogeneous agents) and thus also variation of when any given 

behavioral rule is activated. 

 

2.3. Bass model of innovation diffusion  

We benchmark the emergent pattern against the Bass model of innovation diffusion (Bass, 1969) as a 

macro-level model for new product diffusion. This model has been widely used, thoroughly researched, 

and verified in empirical settings (see also Kiesling et al., 2012). The S-curve pattern, governed by the 

Bass model has been observed across of a wide spectrum of products (Bass, 1969; Firth, Lawrence, and 

Clouse, 2006; Lim, Choi, and Park, 2003; Naseri and Elliott, 2013; Sultan, Farley, and Lehmann, 1990; 

Wong et al., 2011). Therefore, the S-curve pattern has been regarded as a stylized fact of new product 

diffusion. The Bass model describes the diffusion phenomenon as a combination of two adoption 

processes by consumers. On the one hand, adoption originates from consumers’ intrinsic tendency to 

try new things. On the other hand, adoption is influenced by other consumers’ adoptions as a contagious 

process. An empirical limitation of the Bass model is an assumption of the existence of a small 

proportion of the population, called ‘innovators’, who “decide to adopt an innovation independently of 

the decisions of other individuals in a social system” (Bass, 1969, p. 216) who then provide the cue for 

others to imitate their adoption.  

These two processes are represented in the Bass model by parameters p and q. The parameter p 

reflects people’s intrinsic tendency to try a new product, independent of the influence of other people 

in their network. The parameter q reflects imitation or social contagion, wherein the decision to adopt 

the new product is related to interactions with extant consumers or cumulative adopters in their network 

(e.g. word-of-mouth). At the aggregate level, the Bass model can be represented by the following 

equation that expresses the rate of adoption within a system at a given point in time as a function of p, 

q, and the proportion of cumulative adopters in the system, n+ (the + denotes adoption by n+ out of n 

people). 
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𝑑𝑛+

𝑑𝑡
= (𝑝 + 𝑞𝑛+)(1 − 𝑛+)  (Equation 1) 

In other words, for the remaining proportion of people who have not yet adopted the product (1 - 

n+), the rate at which people will adopt a new product (dn+/dt) is a function of the degree to which these 

people are intrinsically inclined to try the product (p) and the degree to which they are influenced by 

peers who have already adopted the product (qn+). As such, this model relies on average values of p 

and q, and remains relatively silent about what exactly happens at t = 0, when n+ = 0. Nonetheless, the 

equation accurately reproduces the stylized S-curve of cumulative adopters as a function of time as 

shown in Figure 1. 

 

Figure 1. Bass (1969) rate of adoption and cumulative adoption over time 

 

 

Key measures of diffusion are the time at which the rate of adoption is maximal (t*), and the time 

at which the increase of adoption rate is maximal (t**). The latter is also referred to as the ‘take-off 

time’ at which the product is starting to spread and there is the greatest acceleration of adoption. 

Conceptually, ‘take-off time’ is analogous to the tipping point between phase 3 and phase 4 in 

Lichtenstein’s model (2016).  
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3. Micro-Foundations and Assumptions 

This section reviews the micro-level empirical findings upon which this study’s ABM is based, and 

specifies model assumptions. 

 

3.1. Online advertising 

One key finding of studies on online advertising is regarding the exposure frequency of online 

advertising and its effectiveness. Frequent exposure of online advertising to a given individual increases 

the effectiveness of the advertising on that person, in terms of advertising recall, brand recognition, and 

brand awareness (Dreze and Hussherr, 2003). For example, a given individual’s cumulative click rate 

of a banner ad increases with the number of banner ad exposures, but then diminishes beyond a critical 

point at which the consumer is already familiar with the product (Broussard, 2000). Likewise, online 

purchasing increases with the number of online advertising exposures, again with diminishing returns 

(Manchanda et al., 2006). Importantly, these same studies also found considerable heterogeneity across 

consumers, with some people adopting sooner, and others later (or not at all), consistent with Rogers 

(2003) and Bass (1969). Based on these empirical observations, the ABM includes two modeling 

assumptions.  

• Assumption 1a. Each ad impression increases a potential consumer’s probability of new product 

adoption. 

• Assumption 1b. The additional impact of ads has an inverted-U shape. Each person has a 

threshold number of ad impressions at which a new ad impression has maximum impact, and 

this threshold is heterogeneous across consumers. 

 

3.2. Word-of-mouth 

After a consumer tries a new product, they may provide positive or negative word-of-mouth to their 

friends. Negative word-of-mouth significantly reduces the perceived credibility of advertising and 

purchasing intentions (Smith and Vogt, 1995). Empirical research showed that positive and negative 
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word-of-mouth were similar forms of advice-giving behavior, and that the impact of positive word-of-

mouth was generally greater than the impact of negative word-of-mouth, with the caveat that the relative 

impact depends on the product category (East, Hammond, and Lomax, 2008; East, Hammond, and 

Wright, 2007). Subtracting the negative word-of-mouth from the positive word-of-mouth creates a 

measure of net positive word-of-mouth. More recent research indicates that, when word-of-mouth 

mechanisms are present, a product’s quality is the most significant factor affecting the new product 

diffusion (Karakaya, Badur, and Aytekin, 2011). Based on these empirical observations, the ABM 

includes two assumptions regarding word-of-mouth.  

• Assumption 2a. Net positive word-of-mouth increases a given person’s probability of adopting 

a new product, and the relative impact of positive versus negative word-of-mouth varies by 

product category.  

• Assumption 2b. As with ads, the additional impact of word-of-mouth has an inverted-U shape. 

Each person has a threshold number of word-of-mouth impressions at which a new positive 

word-of-mouth has maximum impact, and this threshold is heterogeneous across people.   

 

3.3. Network structure 

Given the importance of interactions between potential consumers and consumers (e.g. word-of-mouth) 

in this process, the extent to which each individual is connected in their network plays a significant role. 

Prior research demonstrates that a network’s structural characteristics can have a significant effect on 

the breadth and speed of the diffusion process (Choi, Kim, and Lee, 2010; Opuszko and Ruhland, 2013). 

When modeling new product diffusion, it is therefore important that the simulated network structure 

closely resembles the empirical phenomenon. 

The structure of online social networks is relatively well documented as having highly skewed 

power-law (aka scale-free) degree distributions – a minority of people has many links to others while 

the majority of people have minimal links. This power-law network structure can be approximated using 

preferential attachment algorithms (e.g. Kunegis, Blattner, and Moser, 2013). However, purely power-

law structures are only a crude approximation of reality. Observations from Facebook (Ugander et al., 
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2011) and Twitter (Kwak et al., 2010) reveal that online social network structures also have small-

worlds features, such as short path lengths and high clustering coefficients.1 Interestingly, among the 

29 ABMS studies recently reviewed by Kiesling et al. (2012), none were specifically tailored to 

accurately reflect these clustering coefficients. Instead, most ABMs assumed lattice or simple small-

world network structures, which have lower validity (Barabasi, 2002; Kunegis, Blattner, and Moser, 

2013). The ABM used in this study addresses this gap by generating network structures that match the 

degree distributions and clustering coefficients observed by Ugander et al. (2011) or Kwak et al. (2010). 

More specifically to the influence of a given person’s network on their propensity to try a new product, 

this study makes one assumption.  

• Assumption 3. People are differentially sensitive to word-of-mouth (versus advertising) 

according to their network centrality. More central people are more sensitive to word-of-mouth, 

while peripheral people, by necessity, make more independent decisions, but the impact of 

word-of-mouth is at least the same as the impact of advertising (following Choi, Kim, and Lee, 

2010; Opuszko and Ruhland, 2013; Vilpponen, Winter, and Sundqvist, 2006). 

 

4. Agent-Based Model 

This subsection follows the principles of the Overview-Design-Details (or ODD) protocol to describe 

the ABM employed (Grimm et al., 2006; Grimm et al., 2010), as also reflected in Rand and Rust (2011). 

The ODD protocol was proposed for a rigorous representation of ABMs and consists of seven 

subsections of three general categories.  

 

4.1. Model description 

4.1.1. Purpose of the ABM 

                                                      

1  See also http://konect.uni-koblenz.de/plots/ for visual summaries of degree distributions and clustering 

coefficients across a wide range of social media websites. 

http://konect.uni-koblenz.de/plots/
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The purpose of the ABM is to explore the critical conditions for the ignition of new product diffusion 

and the relative impact of each agent’s micro-level behaviors, i.e. advertising versus word-of-mouth on 

the online diffusion process. 

 

4.1.2. Entities, state variables, and scales 

This ABM explicitly has only one type of entity (agent), i.e. consumers. The existence of the 

entrepreneur and the new product they are introducing are implicit to the ABM. Each consumer has six 

state variables (aka attributes), as also summarized in Table 1. 

 

Table 1. Entity and its state variables 

Entity State variable and meaning 

Consumer 

 

my-adoption-status 

    “Potential” – The consumer has not yet tried the product.  

    “Positive” | “Negative” – The consumer formed a positive [negative] opinion after adopting it. 

my-threshold 

    A minimum utility value that the consumer must perceive before deciding to try the product, 

    heterogeneously distributed across the consumers (ranging 0.2 - 0.8). 

my-marketing 

    1 – If the consumer is being targeted by the entrepreneur’s ad campaign. 

    0 – Otherwise. 

my-current-ads 

    The running total of periods for which the consumer is exposed to an ad. 

my-current-wom 

    The running total of periods for which the weighted net word-of-mouth is positive. 

my-alpha 

    The proportion to which a consumer’s decision is based on word-of-mouth,  

    calculated by ranking each consumer’s centrality (spread from 0.5 at periphery - 1 at centre). 
 

 

• The ‘my-adoption-status’ variable indicates whether a consumer has not yet tried the product 

(their status is “potential”), or whether the consumer has bought the product and formed a 

positive or negative opinion about it (their status is then changed to “positive” or “negative”, 

respectively).  

• Each consumer is assigned a random value (ranging from 0.2-0.8) of ‘my-threshold’, a 

minimum utility value that a consumer must perceive before deciding to try the product. The 

threshold is heterogeneously distributed across the consumers and reflects the tendency for 

some consumers to adopt earlier than others (Rogers, 2003). As explained in 4.1.5, this 
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threshold is compared against the cumulative impact of ads and word-of-mouth for a decision 

to be made. 

• Only some consumers are exposed to ads. If a consumer is being targeted by the entrepreneur’s 

ad campaign, then their ‘my-marketing’ attribute is set to 1, 0 if otherwise.  

• The running total of time periods for which a given consumer is exposed to an ad is recorded 

into their ‘my-current-ads’ variable (aka their total ad impressions).  

• Likewise, the running total of periods for which the weighted net word-of-mouth is positive for 

a given consumer are recorded into the consumer’s ‘my-current-wom’ variable. To calculate a 

weighted net word-of-mouth, the relative weight of negative (vs positive) word-of-mouth was 

considered prior to being totaled among immediate peers in a potential consumer’s network 

(Karakaya, Badur, and Aytekin, 2011).  

• The proportion to which a consumer’s decision to try the product based on social contagion 

(i.e., word-of-mouth) is a factor of how central they are. Peripheral people, by necessity, make 

decisions more independently. This proportion is described by a fixed ‘my-alpha’ parameter, 

which is calculated by measuring each consumer’s centrality, then ranking consumers by 

centrality, and normalizing the rank to a distribution of 0.5 to 1, with 0.5 being the most 

peripheral and 1 being the most central. Thus the influence of word-of-mouth is always greater 

than ads, with the most central people being influenced almost completely by their network, 

while those on the periphery make decisions based on nearly 50:50 relative influence of word-

of-mouth to ads. 

 

4.1.3. Initialization 

Before running each simulation, three general parameters are initialized – ‘ad-penetration’ (‘Ads’ for 

short), ‘chance-of-negative-wom’ (‘Nwom’ for short), and ‘relative-weight-of-nwom’ (‘Weight’ for 

short). The ‘Ads’ parameter defines what proportion of consumers in the network are exposed to the 

ads. This is analogous to the scope of the target market for the entrepreneur’s marketing campaign. The 

‘Nwom’ parameter defines the probability by which consumers form a negative opinion upon adopting 
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the product, thus reflecting the quality of the product. The ‘Weight’ parameter is a fixed value for each 

simulation with which we explore the relative impact of negative versus positive word-of-mouth 

(effectively modeling different product categories).  

Each simulation initializes the state variables specific to each consumer. All consumers’ ‘my-

adoption-status’ was set to “potential”, and their counters for ‘my-current-ads’ and ‘my-current-wom’ 

were set to zero. For a random selection of consumers, representing the proportion being marketed to 

according to ‘Ads,’ their ‘my-marketing’ variable was set to 1. For every complete run of simulation, 

the network structure is generated as per below. 

 

4.1.4 Network structure generation 

Each simulation consists of 1,000 agents who are connected in a single network. The link distribution 

of the agents has power-law and small-world properties that are representative of actual online social 

networks. To generate such a power-law and small-world network, the preferential attachment 

algorithm (Barabási and Albert, 1999; Kunegis, Blattner, and Moser, 2013) that is built into NetLogo’s 

NW Extension2 was modified. The unmodified preferential attachment generates a power-law network 

by adding one new agent at a time, and connecting them to only one other agent, with preference for 

connections to (central) agents who already have many connections.  

The algorithm was modified by specifying that, when a new agent was added and connected to an 

existing (more central) agent, the new agent was then also connected to a random subset of 50% of that 

existing agent’s connections (i.e., friends-of-friends). This modification created more clique-like 

structures and brought the average clustering coefficient closer to what was observed empirically (0.4-

0.6) while maintaining a degree distribution of a power-law network. This network was then modified 

further to increase the small-world properties (measured by the mean path length in the network) 

without significantly compromising the (power-law) degree distribution or (clique-like) clustering 

coefficient. This modification was done by adding 10% more connections between agents who were 

                                                      

2 Available for NetLogo version 5.0.5-RC1 at https://github.com/NetLogo/NW-Extension   

https://github.com/NetLogo/NW-Extension
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not already connected. These additional connections are analogous to weak ties in real networks. The 

resulting network generated usually had around 4,400 connections between the 1,000 agents, with 

realistic degree distributions, clustering coefficients and mean path lengths (as per Ugander et al., 2011; 

Kwak et al., 2010). Figure 2 illustrates the difference between a structure generated using only 

preferential attachment and a structure using the modified preferential attachment process. 

 

 
Figure 2. Network structure generation (Original preferential attachment vs. Modified preferential attachment) 

 

 

4.1.5. Process overview and scheduling 

At each time period, the simulation makes three types of calculations for each potential consumer. First 

it recalculates the running total of times a potential consumer has been exposed to an ad and (net 

weighted) positive word-of-mouth. These totals are then used to evaluate whether the potential 

consumer decides to adopt the new product. Lastly, upon adoption, the consumer generates a positive 

or negative opinion about the product. The simulation ends after 200 time steps or if all agents have 

adopted the innovation, whichever is first. These calculations are explained in greater detail below and 

visualized in Figure 3. 

 

 

Original preferential attachment Modified preferential attachment 

Preferential 

attachment 
Random subset of 

target’s ties 

Random weak ties 
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Figure 3. Process overview 

 

At each time period, each potential consumer who has ‘my-marketing’ set to 1, sees one more ad 

impression and increases their ‘my-current-ads’ counter by one. A potential consumer’s ‘my-current-

wom’ counter only increases by one if the number of ‘positive-opinions-nearby’ is greater than ‘Weight 

* negative-opinions-nearby’, where the counts of nearby (positive or negative) opinions are limited to 

each consumer’s direct contacts, and ‘Weight’ reflects the relative impact of negative versus positive 

impact (within range of observations by Karakaya, Badur, and Aytekin, 2011). Based on these variables, 

each consumer evaluates the perceived utility of the product to make a decision whether or not to adopt 

the product. Following the logic of the Bass model, but at the level of each potential consumer, the 

product is adopted if the overall perceived utility, U, is greater than their ‘my-threshold’ value, where 

U is the sum of the cumulative word-of-mouth (v) and the cumulative advertising (u). U is calculated 

as: 

U = α ·v + (1 – α) ·u     (Equation 2) 
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The α represents the individual’s relative impact of word-of-mouth versus advertising, and ranges 

between 0.5 to 1.0. The α represents each consumer’s ‘my-alpha’ variable according to the consumer’s 

centrality in the social network; as above, more peripheral consumers are less influenced by others 

around them. The variables v and u are logistic functions, where: 

𝑣 =
1

1 + exp (𝑚𝑦_𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒_𝑤𝑜𝑚 − 𝑚𝑦_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑤𝑜𝑚)
 (Equation 3) 

𝑢 =
1

1 + exp (𝑚𝑦_𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒_𝑎𝑑𝑠 − 𝑚𝑦_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑎𝑑𝑠)
     (Equation 4) 

As per assumptions 1b and 2b, the ‘my-effective-wom’ and ‘my-effective-ads’ are the points at 

which the incremental influence of an additional word-of-mouth or ad impressions are maximum, 

respectively. Before or after this point, each impression will only have a smaller marginal impact (e.g. 

early impressions are overlooked, and later ones are ignored). For simplicity, we assume all potential 

consumers have the same overall threshold number of exposures to the new product at which each 

additional exposure is most effective (‘average-criterion’ is set to 20 for all consumers). To account for 

peripheral consumers having to make decisions more independently, and central consumers being more 

susceptible to social contagion (consistent with assumption 3), this overall threshold is separated into a 

threshold for ads and for word-of-mouth according to each agent’s level of centrality in the network: 

my-effective-wom = average-criterion * my-alpha (Equation 5) 

my-effective-ads = average-criterion * (1 - my-alpha) (Equation 6) 

Using the above equations (2-6), a decision is made whether or not to adopt the new product. 

Consumers who adopt the new product then form an opinion about the actual utility of the product. The 

‘my-adoption-status’ variable of a consumer then becomes “negative” with the probability specified by 

the parameter ‘Nwom’, otherwise the variable becomes “positive”.  

 

4.1.6. Design concepts 

Our ABM includes individual decisions to adopt a new product that are based on the combined effects 

of ads and word-of-mouth in relation to each individual’s attributes and position in the network. The 

model implicitly assumes that consumers notice every ad and every nearby word-of-mouth review. 
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There are various ways in which we introduce heterogeneity and stochasticity in the ABM. First, for 

each complete simulation run, the network structure is generated using three separate stochastic steps. 

Each consumer’s position in the network then moderates the relative impact of word-of-mouth versus 

ad impressions. Second, each consumer is assigned a randomly distributed threshold of adoption (‘my-

threshold’), making some more likely to be early adopters, and some more likely to be laggards. Third, 

a random subset of consumers are exposed to the ads as specified by the ‘Ads’ parameter. Lastly, after 

a decision to adopt the product is made, a consumer’s negative opinion is formed with a probability 

according to the ‘Nwom’ parameter (else a positive opinion is formed). 

 

4.2. Experimentation with input parameters 

The present analysis involved 1,200 simulations, each lasting 200 time periods, generated by 

experimenting with 60 combinations of values for three input parameters, and repeating each of these 

combinations for 20 simulations.  Each simulation included a freshly generated structure of 1,000 agents 

(and thus also ‘my-alpha’), 3  a randomly generated ‘my-threshold’, and a new random subset of 

consumers who would see the ads according to the ‘Ads’ parameter. The simulations were run using the 

program NetLogo, which has a built-in option to vary the input parameters across simulations. The 

values of the parameters were chosen based on observations in the literature and practice, with the aim 

for the parameters to be within a plausible range; these simulations were not used to explore extreme 

scenarios that are highly unlikely to occur in reality. The three input parameters and their respective 

values were: 

• ‘Ads’ was set to {1%, 5%, 10%, and 20%}. When running social media campaigns, it is 

common for entrepreneurs to experiment with smaller campaigns to fine-tune messaging before 

aiming for a mass market. Targeting these percentages of a relatively small market of 1,000 

                                                      

3 As a separate test, we regenerated the structure multiple times, and confirmed that the aggregate topology (degree 

distributions and clustering coefficients) were practically the same across each structure.   
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potential consumers plausibly represents these common practices for entrepreneurs (Carson et 

al., 1995). 

•  ‘Nwom’ was set to {0%, 5%, 10%, 20%, and 30%}. This variable was varied to address a gap 

in our knowledge relating to the impact of negative word-of-mouth. Higher probabilities may 

be analogous to premature launches of faulty prototypes that are not yet ready for the mass 

market. 

• ‘Weight’ was set to {0.5, 1, and 2}. This parameter varied to explore the relative impact of 

negative versus positive word-of-mouth, and may also represent different product categories 

for which one outweighs the other (within range of observations by Karakaya, Badur, and 

Aytekin, 2011). The range was selected to represent equal and opposite ratios of negative to 

positive word-of-mouth impact (1:2, 1:1, and 2:1, respectively). These values correspond 

approximately to the range of relative impact of positive and negative word-of-mouth (East, 

Hammond, and Wright, 2007; East, Hammond, and Lomax, 2008). 

 

5. Simulation Results 

5.1.  ABM validation  

ABM validation is essential to confirm the simulated behaviors correspond to the empirical 

phenomenon. This can be classified into macroscopic and microscopic validation. Macroscopic 

validation deals with whether the aggregated simulation results correspond to the reality as a whole. 

The most common macroscopic validation is to compare the simulated results with the stylized facts 

observed in the field (Gilbert and Terna, 2000; Jansen and Ostrom, 2006; Takadama, Kawai, and 

Koyama, 2008).  

For this study, there are two stylized facts against which to validate the ABM: the S-curve of 

diffusion and the occurrence of failure to ignite diffusion. While the exploration of ignition failures is 

the main contribution of this study, we first establish the ABM ‘works’ and does not generate spurious 

results by validating the S-curve. To confirm the S-shaped diffusion pattern with respect to the Bass 
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model, the values of p, q, and nonlinear model fit are calculated using Wolfram Mathematica 9’s 

NonLinearModelFit function, which produced high R2 values. Of the 1,200 main simulations, there 

were 1,112 successful diffusion patterns and 88 diffusion failures, where failure has fewer than 12 

adopters out of 1000 consumers. For each of the successful diffusion processes, R2 ranged from 

95.443% to 99.997%, demonstrating high degrees of fit with the stylized S-curve. The p, q values for 

the fit curves ranged from 0.00000 to 0.00275, and from 0.02435 to 0.13727, respectively. These values 

are within the ranges observed in actual diffusion patterns reported throughout the literature (Bass, 1969; 

Bass, Krishnan, and Jain, 1994; Gatignon, Eliashberg, and Robertson, 1989; Laciana, Rovere, and 

Podestá, 2013). These results show that the ABM consistently and realistically reproduced the stylized 

S-curve of the new product diffusion phenomenon, contingent on successful ignition.  

Instead of visualizing all 1,112 successful diffusion curves, Table 2 summarizes the curves for the 

eight most extreme combinations of input parameters. Each major cell in the table includes a summary 

of the parameters for that sub-model, and a graph of the 20 simulations with those input parameters 

(marked A through H). The top row is based on the minimum Weight (0.5) and the bottom row is based 

on the maximum Weight (2.0). The first and third columns are based on the minimum Ads (1%), and 

the other columns are based on the maximum Ads (20%). Similarly, the first and second columns are 

based on the minimum Nwom (0%) and the other columns are based on the maximum Nwom (30%). In 

the graphs in each major cell, the X-axes denote time (up to 200 simulation periods across all graphs) 

and Y-axes denote the number of adopters (up to 1,000 consumers across all graphs). Form the fitted p 

and q values of the curves of each sub-model, a median value is calculated with which to create a median 

curve (drawn in a bold black line) that is then a representative curve of that sub-model. In addition to 

the statistical validation in the previous paragraph, the S-curvature in the simulation results and 

representative sub-model’s curves validate the first stylized fact. The graphs also visualize the variance 

within each sub-model, indicating moderate levels of sensitivity to the heterogeneity and stochasticity 

in the ABM summarized in the Design concepts section above.  
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Table 2. Diffusion patterns by input parameters 

Input 

Parameters 

Ads Nwom Weight Ads Nwom Weight Ads Nwom Weight Ads Nwom Weight 

1% 0% 0.5 20% 0% 0.5 1% 30% 0.5 20% 30% 0.5 

Diffusion 

Patterns 

A.

 

B.

 

C. 

 

D.

 

Input 

Parameters 

Ads Nwom Weight Ads Nwom Weight Ads Nwom Weight Ads Nwom Weight 

1% 0% 2.0 20% 0% 2.0 1% 30% 2.0 20% 30% 2.0 

Diffusion 

Patterns 

E.

 

F.

 

G.

 

H.

 
 

 

The second stylized fact under consideration is the existence of ignition failures, as reported 

throughout practice, while remaining under-researched. As stated by Mahajan, Muller and Wind (2000, 

p. vii), “new-product failure rates have variously been reported in the range of 40 to 90 percent.”  This 

study is less interested in the percentage of failures, and more interested in why they may occur, as 

explained by the factors in the ABM. Among 1,200 simulations, 88 simulations resulted in a diffusion 

failure, as illustrated in Figure 4. This figure shows the diffusion results of 20 simulations when ‘Ads’ 

is minimum (1%), ‘Nwom’ is maximum (30%), and ‘Weight’ is maximum (2.0), of which 11 cases 

were ignition failures. The X axis denotes time (up to 200 simulation periods) and Y axis denotes the 

number of adopters (capped at 600 consumers). The right portion of the figure magnifies the range up 

to 100 adopters. The presence of these failures confirms that the otherwise reliable ABM can produce 

diffusion failures, consistent with the second stylized fact. 

At the microscopic level, the behavioral rules and ranges of variables are based on the observations 

in the corresponding empirical literature as referenced above across multiple studies. We acknowledge 

a limitation that all variables are not simultaneously validated within the same study, noting that such a 

study may be outside the scope of journal length manuscripts or even most books. We therefore assume 

that the micro-validity of the ABM is sufficiently (but not absolutely) attained based on the 

aforementioned empirical studies. 
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Figure 4. Diffusion patterns including diffusion failures 

 

 

5.2.  Diffusion speed and scope 

Regression analysis of the 1,112 successful diffusion simulations reveals that the level of ads (‘Ads’) 

was the single most important factor influencing the speed of diffusion (compare also the graphs in 

Table 2 above, noting the left-shift in graph B versus graph A). As shown in the regression analysis 

results in Table 3, ‘Ads’ was the most significant factor for take-off time (t**) (β = -.8025), more than 

5 times higher than the impact of Nwom (β = .1577). 

 

Table 3. Results of Regression Analysis for Take-off Time and Time to max adoption rate (n = 1,112)  

 Take-off time (t**) Time to max adoption rate (t*) 

Variable Coef. Std. Err. Beta Coef. Std. Err. Beta 

Ads -1.6805 .0364 -.8025*** -1.6848 .0382 -.7580*** 

Nwom .2167 .0239 .1577*** .4827 .0251 .3309*** 

Weight2 .9968 .4847 .0556*__ .9398 .5081 .0494___ 

Nwom×Weight2 -.0657 .0291 -.0610*__ .0485 .0305 .0424___ 

Constant 71.4954 .5245  82.7826 .5498  

Adj R2   .6646   .6729 

‘Weight2’ is equal to ‘log2(Weight)’, and has values of {-1, 0, +1} 
*__ p < .05 
*** p < .001 

 

Figure 5 visualizes the effects of ads (‘Ads’) and negative word-of-mouth (‘Nwom’) on the take-

off time. This figure highlights that although the diffusion process is delayed slightly due to the 

likelihood of negative word-of-mouth, these effects are overshadowed by the impact of advertising (as 

a portion of the potential consumers).  
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Figure 5. Take-off time as a function of ads and negative word-of-mouth 

 

Regression analysis of the 1,112 successful diffusion simulations further reveals that the 

probability of negative word-of-mouth (‘Nwom’) significantly decreases the number of total adoption 

of a new product (compare also A and C in Table 2, above), and this effect was amplified by the 

product’s relative weight of negative (versus positive) word-of-mouth (‘Weight’) (compare also C and 

G in Table 2, above). In contrast, the level of ads (‘Ads’) had relatively low coefficient. As shown in 

Table 4, for total adoption, the most significant factors were ‘Nwom’ (β = -.7308) and the interaction 

term of ‘Nwom * Weight2’ (β = -.6879). 

 

Table 4. Results of Regression Analysis for Total Adoption (n = 1,112)  

 Total Adoption 

Variable Coef. Std. Err. Beta 

Ads 1.5553 .1325 .1083*** 

Nwom -6.8881 .0869 -.7308*** 

Weight2 9.7315 1.7633 .0791*** 

Nwom × Weight2 -5.0808 .1059 -.6879*** 

Constant 882.8361 1.9079  

Adj R2   .9056 

‘Weight2’ is equal to ‘log2(Weight)’, and has values of {-1, 0, +1} 
*** p < .001 

 

Figure 6 visualizes these results and shows the total adopters as a function of ‘Nwom’ and ‘Weight’. 

While advertising is a major component in our ABM, its impact was overshadowed by factors relating 

to word-of-mouth after the ‘seeding’ process. Because of the negligible effect of ‘Ads’ on the number 

of total adoption, we omit this variable when we visualize as a 3-dimensional surface. 
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Figure 6.  Total adopters as a function of negative word-of-mouth and weight 

 

 

5.3. Ignition of diffusion  

Of the 88 diffusion failures, 85 of them were for cases with 1% ‘Ads’ (the lowest level of ads), and the 

remaining three occurring in cases with a 5% value thereof. To better understand these diffusion 

failures, 750 additional simulations were performed for ‘Ads’ values from 0.1% to 5.0% in increments 

of 0.1%. Of these 750 simulations, 113 diffusion failures were reproduced, where the diffusion quickly 

and completely stalled with fewer than 12 adopters (applying the same ‘failure’ criterion as in the first 

1,200 simulations), for which it becomes irrelevant to analyze whether the handful of adopters followed 

an S-curve. All other (successful) simulations reproduced the S-curve. These additional failures can be 

grouped into three failure types: 

• No adopters: 68% of the failure cases. 

• Lone adopter: 15% of the failure cases. 94% of these lone adopters were negative.  

• Less than 12 adopters: 17% of the failure cases had 2-8 adopters. All but one case had 58-67% 

negative adopters.  

Logistic regression analysis of these 750 simulations (Table 5) revealed that ln(‘Ads’) is the most 

critical factor for ignition to occur. Greater ln(‘Ads’) decrease the probability of a diffusion failure 

significantly (z = -11.54) while greater ‘Nwom’ increases the probability significantly (z = 4.97) but 

less so.  

% of potential 

consumers 
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Table 5. Results of Logistic Regression Analysis for Diffusion Failure (n = 750)  

 Diffusion Failure  

Variable Odds Ratio (OR) Std. Err. Z  

Ln(Ads) 0.1462 .0244 -11.54*** 

Nwom 1.0654 .0136 4.97*** 

Weight2 0.5570 .1637 -1.99*__ 

Nwom × Weight2 1.0250 .0153 1.66___ 

Constant 0.1172 .0287 -8.78*** 

Pseudo R2   .3906 

‘Weight2’ is equal to ‘log2(Weight)’, and has values of {-1, 0, +1} 
*__ p < .05 
*** p < .001 
 

 

6. Discussion 

The ABM consistently and accurately reproduces both stylized facts of new product diffusion process: 

diffusion is follows the S-curve, but can also fail to ignite. These results contribute to establishing links 

between the micro-level behaviors and the macro-level phenomenon. Analysis of the micro-level 

parameters identifies that ignition is not automatic and therefore not to be taken for granted. Advertising 

activities are essential to ignite and accelerate the diffusion process at the introductory stages (phases 1 

and 2 in Lichtenstein, 2016). Table 5 shows that the likelihood of diffusion failure was mainly affected 

by insufficient levels of advertising (‘Ads’) and compounded by negative word-of-mouth (‘Nwom’).  

For ignition to lead to diffusion occur, a critical mass of adopters is required. The likelihood of 

securing such a critical mass is a factor of advertising, and compounded by positive word-of-mouth. 

Upon attaining such a critical mass of initial adopters, the diffusion process always proceeds with an S-

curve pattern. In the simulations in this study, the critical mass within a population of 1,000 customers 

appeared to be around 12. Further research is required to explore a relationship between the size of the 

population and this critical mass, and be beyond the scope of this study. The implication for igniting 

the diffusion process is that it may be more important to secure one real positive adopter than it is to 

identify and target many potential adopters. Because the critical mass of adopters is relatively low, these 

findings have implications for alternative approaches to advertising. For example, instead of advertising 

to strangers using conventional online advertising methods, entrepreneurs may activate their own 
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personal network to attract the critical mass of initial adopters to ignite the diffusion process.4 Therein 

resides another area for future research: modelling the entrepreneur as an agent within the network, 

including their connections. This could involve altering the likelihood of positive. 

Our results have several implications for practice. There are clear incentives to advertise 

intensively in the early stages of a new product launch, because the advertising may be the largest 

contributing factor to igniting the diffusion process and reaching the take-off faster. However, once the 

word-of-mouth process kicks in, continuing the ads may be a waste of resources and better spent on 

improving the product. Although this study assumed that the online advertising was an entrepreneur’s 

primary means to ignite the diffusion process, entrepreneurs may explore other means. For example, an 

entrepreneur may personally invite a small number of potential adopters from an intermediate stage of 

the new product development. By reflecting on the feedback received, the entrepreneur may have more 

chances to develop a new product that is more likely to receive more positive word-of-mouth. 

Given ignition of the diffusion process, advertising can increase the rate of diffusion and negative 

word-of-mouth becomes a critical factor in determining the range of diffusion at the maturity stage 

(phases 3 through 5 in Lichtenstein, 2016). Analysis of simulation data more precisely quantifies the 

relative impact of each of these variables. These results clearly showed the sequential impact of 

advertising and word-of-mouth. Word-of-mouth cannot spread without some minimum level of 

adoption due to advertising. Once word-of-mouth kicks in, advertising has little effect. Further use of 

an AMBS approach may thus help deepen our understanding of the sequential impact of advertising 

and word-of-mouth, and may be essential in exploring the optimal timing or duration of the advertising 

in future research projects.  

Network structure plays a significant role in the new product diffusion process, but remains an 

under-researched area (Choi, Kim, and Lee, 2010, Opuszko and Ruhland, 2013). As detailed in 3.3, this 

study employed a modified preferential attachment procedure in order to reproduce a plausible online 

network structure according to the simultaneous power-law and small-world features of actual online 

                                                      

4  Dropbox’s story popularizes the notion that word-of-mouth and virality trumps advertising: 

http://venturebeat.com/2010/10/27/dropbox-drew-houston-adwords/ (retrieved 24 Jul 2014) 

http://venturebeat.com/2010/10/27/dropbox-drew-houston-adwords/
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social networks. In small-world networks, word-of-mouth has more paths to follow and can bypass 

central consumers who may have formed a negative opinion about the product (Watts and Strogatz, 

1998). As a result, potential consumers have a greater chance to be encouraged to try the new products 

than in power-law networks without small-world features. The existence of small-world features in our 

ABM might determine the relatively small proportion of diffusion failures (88/1,200 in the main 

simulations, 113/750 in the additional simulations). In a future study, it would be useful to investigate 

the relationship between the level of small-world features of entrepreneur’s social networks (e.g. the 

number of weak ties) and the probability of the new product ignition and diffusion. 

 

7. Conclusion 

This study adopts a complexity science perspective using ABMS to increase our understanding of the 

micro-level factors and processes resulting in the ignition and diffusion of a new product. Unlike most 

other studies that start with an assumed proportion of initial adopters, the simulations assumed zero 

adoption as the initial conditions. An ABM was constructed based on attributes, behavioral rules and 

network structures from the empirical literature. This required introducing a new tactic to generate 

network structures that have power-law and small-world properties. Using this ABM, the results of 

1,112 simulations consistently and accurately reproduced the stylized S-curve at the macro-level with 

R2 values between 95.443% to 99.997%. Consistent with the reality of failed ignition of diffusion, the 

1,200 base-line simulations included 88 cases of failed ignition, as well as 113 failures out of 750 

additional simulations with more extreme values for the simulation’s input parameters.  

By using the ABMS, we were able to discern the conditions where the diffusion process ignited, 

and quantify the relative importance of advertising and word-of-mouth in different stages of the 

diffusion process. Analysis of the results reveals that the probability of diffusion failure decreases 

exponentially with every additional adopter. The impact of word-of-mouth is instantly significant as 

soon as even the first consumer adopts the innovation, albeit at a much lower magnitude. Nonetheless, 

for ad campaigns with minimal penetration, early negative word of mouth can instantly stop the 

diffusion process. 



Authors’ Final Draft for the Entrepreneurship Research Journal (2017)  

https://doi.org/10.1515/erj-2016-0014 

 

28 

 

Provided that ignition of diffusion occurs, advertising rate (as a % of population) has between 3.5 

and 7.6 times more impact than the likelihood of negative word-of-mouth on the speed of diffusion, as 

measured by time to maximum adoption and take-off time. Word-of-mouth becomes the main 

determining factor for total number of adoption in two ways: the likelihood of negative word-of-mouth 

(Nwom) and the relative impact of negative versus positive word-of-mouth (Weight). For lower ranges 

of either of these variables, both have relatively similar magnitude of impact on total adoption 

(coefficients of -6.89 for Nwom and 9.73 for Weight). The effects of more likely negative word-of-

mouth and greater weighting of it compound each other with a coefficient of -5,08 for Nwom*Weight. 

In comparison, Ad penetration is statistically significant for total adoption, but with a coefficient of 

1.55; much lower than the total effects related to word-of-mouth. Overall, adverting is crucial to igniting 

the process and plays an important role in achieving maximum adoption as quickly as possible. 

However, total adoption is almost completely dominated by word-of-mouth effects.  

Limitations and future research opportunities also exist in empirically validating the micro-

behavior within a single study. This may be done using field data, or by conducting experiments in 

controlled settings (e.g. Janssen and Ostrom, 2006). In order to discern essential mechanisms of new 

production diffusion processes including diffusion failure, this study assumed a closed system: the 

ABM used here only included one product by one entrepreneur and an isolated niche of 1,000 

consumers. Although this model is complex enough to reflect the stylized facts, there is therefore an 

opportunity to explore competitive dynamics with the introduction of a competing product. With a more 

competition oriented ABM, it would be beneficial to explore the relative benefits of pouring the 

entrepreneur’s limited resources into advertising to trigger adoption take-off earlier than the competitor, 

or into product development to develop a product that is more likely to spread further due to positive 

word-of-mouth. Regarding the advertising effects, this study assumed a non-linear cumulative effect of 

advertising and does not assume consumers’ forgetting behaviors over time. In future studies, the 

forgetting behavior may be jointly modelled based on empirical findings.  
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