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a b s t r a c t 

Simulation models are becoming an increasingly popular tool for the analysis and opti- 

mization of complex real systems in different fields. Finding an optimal system design re- 

quires performing a large sweep over the parameter space in an organized way. Hence, the 

model optimization process is extremely demanding from a computational point of view, 

as it requires careful, time-consuming, complex orchestration of coordinated executions. In 

this paper, we present the design of SOF (Simulation Optimization and exploration Frame- 

work in the cloud), a framework which exploits the computing power of a cloud compu- 

tational environment in order to carry out effective and efficient simulation optimization 

strategies. SOF offers several attractive features. Firstly, SOF requires “zero configuration”, 

as it does not require any additional software installed on the remote node; only standard 

Apache Hadoop and SSH access are sufficient. Secondly, SOF is transparent to the user, 

since the user is totally unaware that the system operates on a distributed environment. 

Finally, SOF is highly customizable and programmable, since it enables the running of dif- 

ferent simulation optimization scenarios using diverse programming languages – provided 

that the hosting platform supports them – and different simulation toolkits, as developed 

by the modeler. The tool has been fully developed and is available on a public repository 1 

under the terms of the open source Apache License. It has been tested and validated on 

several private platforms, such as a dedicated cluster of workstations, as well as on pub- 

lic platforms, including the Hortonworks Data Platform and Amazon Web Services Elastic 

MapReduce solution. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

1. Introduction 

Complex system simulation is gaining relevance in business and academic fields as a powerful experimental tool for

research and management. Simulations are mainly used to analyze behaviors that are too complex to be studied analytically,
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Table 1 

Simulation-optimization algorithms can be divided into four computational categories (a list 

of example SO algorithms is presented). The goal of this paper is to provide a framework 

that allows rapid deployment of computational infrastructure supporting all of the proposed 

categories - with particular focus on the parallel simulation-optimization problem. 

Parameter space Computation type 

Sequential (single thread) Parallel (multi-process) 

discrete KG [20] , NHH [37] , NSGS [35] 

IZ [35] , PGS [9] OCBA [11] 

VIP [12] SKG, AKG, AOCBA [27] 

continuous Stochastic Krigging [5] GP-BUCB [16] , 

RSM [33] EI ( μ, λ) [26] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or too costly to be tested experimentally [28] . The representation of such complex systems results in a mathematical model

comprising several parameters. Hence, the question arises as to how changes in model parameter values influence model

output (simulation meta-modeling, e.g. [6] ) and how to find model parameter values that yield minimum (maximum) model

output (simulation-optimization e.g. see [19,47] ). Considering the multi-dimensionality of the parameter space, exploring

parameter values and determining the optimal parameters configuration is by no means an easy undertaking and requires

extensive computing power. 

In this paper a software framework for Simulations Optimization (SO) is developed. SO is understood as techniques

studied for ascertaining the parameters of the model that minimize (or maximize) given criteria (one or many), which can

only be computed by performing a simulation run — see [25,47] . There are several approaches to addressing simulation-

optimization problems depending on model type. Simulation-optimization model types can be classified either by algorithm

type or by computation type. 

The following set SO model classes are considered in the literature (see [7,19] ): (1) Ranking and Selection, (2) Response

Surface Methodology (RSM), (3) Gradient-Based Procedures, (4) Random Search, (5) Sample Path (6) Optimization and Meta-

heuristics. Since many methods exist for parallel simulation-optimization there is a need for a general computational ap-

proach to manage such a process. 

From a computational point of view, the problems considered in the literature can be classified according to decision

space (continuous and discrete) and parallelization (single-threaded vs multi-threaded). Most simulation-optimization poli-

cies assume sequential data processing and hence do not allow for parallelization. To illustrate the proposed classification

approach a list of sample simulation-optimization algorithms and their classes has been presented in Table 1 . 

Branke et al. [9] note that since several approaches are available for simulation-optimization, a researcher should choose

the one which has the best performance for a given problem. However, in the case of parallel, distributed algorithms, im-

plementing the appropriate computational infrastructure is a very sophisticated task. The goal of this paper is to provide a

distributed software framework that will streamline this complex process. 

There are several frameworks for distributed computing including MPI, task management platforms such as SGE, and

Hadoop. Ni et al. [36] compare MapReduce applicability with a message passing interface (MPI). They found out that MapRe-

duce has a much higher overhead – in particular in scenarios where running simulations requires large amount of input data

(they give a geographic system simulation as an example). However, they also note that the MapReduce model is much more

appropriate for cloud computing environments, like Amazon EC2, where nodes might become unavailable during computa-

tions. Indeed, Apache Hadoop [44] offers built-in protection against core failures by having the master core periodically

detect the status of worker cores and re-launch failed map or reduce tasks. Moreover, the Hadoop distributed file system

(HDFS) [44] , which is used by Apache Hadoop to keep MapReduce input and output, also maintains replicates of data blocks

to ensure that no data is lost as a result of a single hardware failure. Therefore, the increased overhead of those fault toler-

ance mechanisms is often offset by the decrease in cost of using cheaper resources. 

This raises the need for tools which exploit the computing power of parallel systems to improve the effectiveness and

the efficiency of SO strategies. The crucial characteristics of such tools are: zero configuration, ease of use, programmability

and efficiency . Zero configuration and ease of use are required because both the design and the use of SO strategies are per-

formed by domain experts, who are seldom computer scientists and have limited knowledge of managing modern parallel

infrastructures. Programmability is mandatory because different models usually require different SO strategies. Finally, the

system must be efficient in order to meet the huge demand for computing power. 

In the paper the specific problem of introducing or evaluating new ways to explore the parameters space is addressed

— a support tool to perform the parameters space exploration and SO on stochastic simulation model is developed. The

proposed framework exploits the computing power of a cloud computational environment in order to quickly carry out

simulation exploration and/or optimization strategies. 

The applicability of the proposed SOF framework will be illustrated by an agent-based simulation model (ABSM). ABSM

enables the reproduction of complex and significant aspects of real phenomena by defining a small set of simple rules

regulating how agents interact in social structures and how information is spread from agent to agent. Agent-based models

have been successfully applied in several fields such as biology, sociology, economics, military and infrastructure – for a
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review of ABSM applications see [32] . Since ABSMs are the most complicated simulation model types [10,15,28] , there are

several libraries and frameworks that speed up and facilitate the tasks of developing and testing simulations have been

developed. Some examples are NetLogo [48] , AnyLogic [7] , MASON [30] and Repast [39,42] . Note that the applicability of

SOF the framework developed in this paper is not limited only to ABSM, but rather it is considered as a representative

complex simulation use case scenario. 

The framework that will be described in Section 4 has been fully developed and is available on a public repository [63] .

The framework has been validated on several private platforms, such as a dedicated cluster of workstations, as well as on

public platforms, including the Hortonworks Data Platform and Amazon Web Services Elastic MapReduce (EMR) solution.

Section 5 reports the results of several experiment performed on the framework in order to assess its effectiveness and

efficiency. 

2. Background 

2.1. Simulations 

A Simulation is an attempt to reproduce the behaviour of a real-life system over time. A system is understood as “a set

of interrelated elements”, where each element is connected to every other element, either directly or indirectly [2] . Law

[28] defines a simulation as “numerically exercising the model for the inputs in question to see how they affect the output

measures of performance”. Hence, the goal of simulation is to experiment with a model of a system – observe, understand,

infer and answer “what if” questions about the system. Simulations can either be used to design a novel system or for

predicting the effect of changes to an existing system [11] . The main advantage of simulation is that it can be used to

explore certain behaviour without causing disruption to the actual system. 

2.2. Model parameter space exploration and simulation optimization 

The simulation modeler usually needs to execute a large number of simulations in order to find the optimal configuration

of input parameters (that is, the configuration which allows them to imitate the desired system). This process is named

Parameter Space Exploration (PSE) or parameter sweep. Simulation results are evaluated using an objective (evaluating)

function which associates a score with each simulation performed with a given set of parameters. As the number of the

parameters of a model increases, the parameter space to be explored expands exponentially and it becomes unfeasible

to handle the parameter space exploration process - which comprises parameters selection, simulations run and output

evaluations - manually. Moreover, the feedback obtained from the simulation of previous configurations can be used to

select future configurations to be simulated and evaluated. This circular process: (a) choice of initial configurations, (b)

execution, (c) evaluation and (d) selection of new candidates, is referred to as the Simulation Optimization (SO) process

[4,11,18,34,47] , which can be formally presented as 

min 

x ∈ D 
�(x ) , 

where D ⊆� is the feasible decision space, � is the entire parameters space, x ∈ D is a 1-dimensional vector having size δ
representing a single configuration ( δ is the number of parameters of the considered simulation), and �( x ) is a function

being estimated using simulation. The feasible decision space D can be either discrete or continuous. 

Generally, the problem has a single objective (i.e., �( x ) ∈ R ), although multi-objective optimization problems ( �( x ) ∈ R n )

can also be considered. For the remainder of the paper single-objective optimization problems are considered; however, the

proposed methodology can easily be applied to multi-objective optimization in a similar fashion, as described in [8] . The

stochastic nature of simulation means that the output of a simulation run is not deterministic and an expected value for it

is calculated as E [�(x, ε)] , where �( x , ε) is the result of a stochastic simulation run on configuration x and a random feed

ε. Finally, �(x ) = f (E [�(x, ε)]) is calculated, where f ( · ) is a function that evaluates the result of a simulation and calculates

a single rank value. For instance, in [11] , the value of E [ ·] is estimated as a mean result of r ≥ 1 simulation runs. 

2.3. Distributed computing in the cloud 

It should be noted that the kind of computation needed for an SO process resembles an instance of the well known

bag-of-tasks application [1] , i.e., an application made of a collection of independent tasks, to be scheduled on a master–

worker platform. Nevertheless, a mechanism for the distribution of the task and the collection of results is required. Hence,

we believe that SO processes can readily be deployed by exploiting the MapReduce (MP) programming model. Moreover,

an SO process potentially requires several optimization loops in which a large amount of data is generated. One aspect that

is of particular significance is the amount of inputs and outputs generated in the SO process that must be managed in

a distributed storage environment. In the following we briefly introduce the MapReduce paradigm and Apache Hadoop. A

natural cost-effective choice for distributed computations is the cloud that we discuss in the last subsection. 
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2.3.1. Mapreduce paradigm overview 

MapReduce (MP) [13] is a programming model, proposed by Google, for processing large data sets by exploiting par-

allel/distributed computations on a set of loosely coupled machines. MP is based on two principal functions named Map

and Reduce , commonly used in functional programming languages such as Lisp. Each function takes a collection of inputs

pairs, expressed as a key/value combination, to compute some transformation on it. The Map function produces a collec-

tion of intermediate results while the Reduce function merges the intermediate results into a new collection of key/value

pairs. Historically, MP has been used for indexing and calculating PageRank, but since its creation the research community

has adopted the programming model for several purposes, in particular, when the amount of computation is large and the

whole computation can be easily decomposed into smaller independent tasks. 

2.3.2. Apache Hadoop 

Apache Hadoop is an open-source alternative to the Google technologies: Google File System [22] and MapReduce [13] .

Hadoop is the top-level of many subprojects comprising Hadoop Distributed File System (HDFS) and MapReduce . HDFS is a

distributed filesystem that enables storage of a huge dataset across a distributed system. HDFS is designed to accommodate

the following requirements [44] : Large Data Sets, Simple Coherency Model, Moving Computation is Cheaper than Moving Data (it

attempts to assign a computation to a node that maintains the data instead of move the data around the nodes), Portability

Across Heterogeneous Hardware and Software Platforms and Hardware Failure . Hadoop defines a specification for the Map

and Reduce functions, the developers must provide the input/output specific and the implementations of Map and Reduce

functions, often referred as mappers and reducers. Then the framework manages all the functionality needed to run an

MP application, such as job execution, parallelization, and coordination. A typical MP program, as implemented on Hadoop,

starts on a single node that launches and manages the execution of the entire distributed program on the distributed system.

Subsequently, several components operate at different stages: 

- Splitter, handles the single data source providing input pairs (key/value) to mappers. 

- Mapper, processes a key/value pair to generate a set of intermediate key/value pairs. 

- Combiner, also called “Local Reducer” (optional). It can help in cutting down the amount of data exchanged between

Mappers and Reducers. 

- Partitioner, also called the “Shuffle Operation”. It ensures that records with the same key will be assigned to the same

Reducer. 

- Reducer, gathers the results of the computation and concludes the job, giving output as the new collection of key/value

pairs, typically stored in the HDFS. 

2.3.3. Cloud computing 

Cloud computing is developing very quickly as a tool to orchestrate high volume and high scale computational jobs.

The cloud services offered by major companies (Amazon AWS, Microsoft Azure, Google Cloud Platform) make it possible to

provision several thousands of computing cores within just minutes. The pay-as-you go model, combined with hourly billing

for the provisioned computing power, is a perfect fit for any SO computational problem. The computational cluster can be

scaled to match the complexity of the SO problem and hence provide the answer within a short time. 

3. Related work 

Since the proposed framework involves different topics, we will present the related works in three sections: Distributed

computing frameworks, Parameter Space Exploration on existing tools and Parameter Space Exploration libraries and frame-

works. 

3.1. Distributed computing frameworks 

The evolution of computer science in the last two decades has been characterized by the architectural shift that has

brought the centralized computation paradigm toward distributed architectures, where data processing and data storing are

cooperatively performed on several nodes, interconnected by a network. 

Performing distributed computation is a significant challenge which involves job decomposition, task assignment and

machine synchronization. In the following, we will briefly revise some distributed computing frameworks. See also [46] for

a detailed discussion. MPI (Message Passing Interface) [21] provides a language independent standard allowing process com-

munication. MPI provides a real implementation of the message passing protocol in any distributed computing system. This

approach, requires a detailed knowledge of the considered systems while the robustness of the system has to be guaranteed

by dedicated procedures. Apache Spark [53] is an in-memory distributed data analysis platform, primarily targeted at speed-

ing up batch analysis jobs, iterative machine learning jobs, interactive query and graph processing. Apache Storm [54] is a

free and open source distributed real-time computation system, focused on stream processing. Hadoop [44] is a framework

or ecosystem of components, intended for carrying out batch analytics or a simple distributed task over a massive amount of

distributed data. We decided to adopt Hadoop because: (1) the SO process can easily be translated into MapReduce model,

which guarantees inherent scalability of the framework; (2) it provides a robust environment to ensure that no data is lost
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as a result of a bounded number of failures; (3) it provides a distributed filesystem that enables storage of algorithms and

input/output data. 

3.2. Parameter space exploration on existing tools 

Several ABM platforms enable modelers to automatically perform simulations in order to explore a pre-defined param-

eter space. The parameter space is defined using specific tools that enable selection of the parameters, their range and

increment/decrement values, or selection by a simple list of values. Further details about the PSE on existing ABM toolkits

are listed below: 

• NetLogo [48] provides both GUI (BehaviorSpace [59] ) and command line based batch run capabilities. NetLogo has a

Behavior Search tool [45] , which enables the use of a predefined set of model exploration heuristics (e.g. simulated

annealing, genetic algorithms) for running a PSE on NetLogo models. 

• AnyLogic [7] is a proprietary multi-method simulation toolkit. It supports agent-based, discrete event, and system dy-

namics simulation methodologies. The AnyLogic engine Java API enables the user to perform “Experiments”, including

optimization, calibration, and user-defined custom experiments. (It is worth mentioning that many of the advanced ca-

pabilities are available only for AnyLogic Professional and University Researcher editions.) 

• MASON simulation library [30] offers a set of capabilities for creating ABSMs. Its modularity allows MASON models to be

called either via the command line or as libraries from Java-based programs for model exploration purposes. 

• Repast Simphony , [38] is the Java based toolkit of the Repast Suite. Repast Simphony has a batch functionality which

divides a given parameter space into discrete sets of parameter values and executes simulations over those discrete

sets in parallel. The simulations can be run on a local machine, on remote machines accessible through secure shell

(ssh), in the cloud (e.g., Amazon EC2) or on some combination of the three. Using an InstanceRunner interface, Repast

Simphony models can be launched by other control applications such as a bash, Portable Batch System (PBS), or Swift

scripts. 

None of the ABSM toolkits on their own offer the capabilities or scope, in terms of flexible, simple integration of exter-

nal model exploration tools and performance on massively parallel computing resources, that the SOF framework aims to

provide. 

3.3. Parameter space exploration libraries and frameworks 

In the following, the existing Parameter Space Exploration (PSE) or, in general, Simulation Optimization (SO) libraries and

frameworks are briefly discussed. While most can be used as standalone tools, some of these can be used as libraries to

introduce PSE/SO modules within a given ABSM framework. Most of the following software falls under the metaheuristics

umbrella. For an overview of metaheuristics see [31] , for reviews of more metaheuristics frameworks see [41] and for parallel

metaheuristics frameworks see [3] . 

• OptQuest [61] is proprietary simulation optimization engine developed by OptTek Systems for metaheuristic optimization.

OptQuest is also directly integrated into a number of ABSM and simulation tools (e.g., AnyLogic). 

• Industrial Strength COMPASS (ISC) [51] is a library for discrete event simulation which combines metaheuristics with

stochastic search algorithms. 

• ECJ [56] is an open source (AFL v3) research system for evolutionary computation. ECJ can be used for developing evolu-

tionary algorithms and general integration of simulation code on massively parallel systems. ECJ can be integrated with

Java based simulation code (e.g., written with MASON or Repast Simphony) and is designed to be highly flexible: all

structures in the system are arranged to be easily modifiable. 

• ParadisEO [62] , published under the CeCILL license, and MALLBA [58] , published under a non-commercial license, are

libraries of frameworks for combinatorial optimization that can deal with parallel metaheuristics methods. 

• Dakota [55] combines a number of optimization, design of experiment and uncertainty quantification libraries developed

by Sandia National Laboratories (e.g., DDACE, HOPSPACK), in addition to other external libraries. Dakota can be used on

machines from desktops to massively parallel computers. 

Closely related to this work are Extreme-scale Model Exploration With Swift/T (EMEWS) [40] , Open MOdeL Experiment

(OpenMOLE) [43] and Model Exploration ModulE (MEME) [23] . EMEWS [40] uses the general-purpose parallel scripting lan-

guage Swift [49] to generate highly concurrent simulation workflows. These workflows enable the integration of external

PSE algorithms to coordinate the running and evaluation of large numbers of simulations, in addition to making the SO

process easy to implement. OpenMOLE [43] provides an execution platform that distributes simulation experiments on high

performance computing environments using a domain-specific language (DSL) that is an extension of the Scala program-

ming language. MEME [23] is based on virtual hosts specifically prepared for simulation experiments, deployed on EC2 (the

Amazon Elastic Cloud). 

Table 2 summarizes the characteristics of the competitor frameworks. The table shows that only EMEWS enable the user

to perform several loops in order to run a Simulation Optimization algorithm. On the other hand, EMEWS uses Swift, which

needs a dedicated installation and configuration. Unlike such systems, our tool is specifically designed for the optimization
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Table 2 

Frameworks’ comparison table. 

Type Multi-lang. Zero-conf. Easy to use Program. Tutorial 

EMEWS SO � — — � � 

a 

OpenMOLE PSE � — � � � 

b 

MEME PSE — — � — na 

a EMEWS tutorials are available at http://www.mcs.anl.gov/ ∼emews/tutorial/ . 
b OpenMOLE tutorials are available at https://www.openmole.org/Tutorials.html . 

Fig. 1. SOF Work Cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

of simulations using an evolutionary computing strategy. Furthermore, we have designed SOF to be deployed on any Hadoop

installation; only SSH access to the hosting platform is required. Moreover, our tool provides an easy-to-use environment

devoted to domain experts who are seldom computer scientists and have limited knowledge of managing a modern parallel

infrastructure or of developing parallel code. 

4. Simulation exploration and Optimization Framework for the cloud (SOF) 

We present the Simulation exploration and Optimization Framework for the cloud (SOF), a framework that allows us to run

and collect results for two kinds of optimization scenarios: parameter space exploration (PSE) and simulation optimization

(SO). 

Fig. 1 depicts the SOF work cycle, which comprises three phases: selection, parallel simulation and evaluation. SOF pro-

vides a set of functionality that allows developers to construct their own simulation optimization strategy. We designed the

framework based on the following objectives: 

- Zero configuration: the framework neither requires the installation nor the configuration of any additional software, only

Hadoop and SSH access to the hosting platform are required. 

- Ease of use: the tool is transparent to the user, since the user is totally unaware that the system operates on a dis-

tributed environment. 

- Programmability: both the simulation implementation and the simulation optimization functionalities can be imple-

mented using different simulation toolkits (MASON, NetLogo, etc.) and/or by exploiting different programming lan-

guages, provided that the hosting platform supports them. 

- Efficiency: by executing several independent tasks (simulations) concurrently, the framework adequately exploits the
resources available on the hosting platforms. 

http://www.mcs.anl.gov/~emews/tutorial/
https://www.openmole.org/Tutorials.html
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4.1. Scenarios 

In the following we will presents two algorithms – inspired by evolutionary algorithms [14] – which define the simula-

tion optimization scenarios. The following symbols are used in the algorithms description: 

- �, parameters space; 

- D ⊆�, feasible decision space; 

- X ⊆ D is a set of configurations from the feasible decision space D , X = { x 1 , x 2 , . . . , : x i ∈ D } ; 
- r denotes the number of simulation run; 

- �( x , ε) denotes the results of a stochastic simulation run on configuration x and a random feed ε; 

- E [ · · · ] denotes the expected results of a set of stochastic simulation run; 

- Y is the set of expected simulation results corresponding to the configuration in X . 

- t is the current optimization loop; 

- Γ contains the ranking values associated with the configurations in X ; 

PSE algorithm (PSE) 

The PSE scenario describes a generic process of simulation optimization where a fixed set of configuration X is executed

and all the corresponding results are collected. The Algorithm 4.1 performs this task and also handles stochastic simulations,

which require several execution runs (with a different random seed) and the estimate of the expected values. The Algorithm

4.1 performs r simulations for each point x i ∈ X and collects the simulation results in a set Y . 

SO algorithm (SO). The simulation optimization is a general case of PSE and corresponds to the execution of several loops

of the PSE algorithm. For each optimization loop t , the set of configurations to be executed and evaluated, X t , depends on

the results obtained from the previous loops. Each optimization loop uses the function f _ Selection (·, ·, ·) to generate a novel

set of configurations. At the end of each loop, the function f _ Ev aluate (·) computes the ranking values associated with each

configuration in X t . The SO algorithm ends when the selection function returns an empty set. 

A contributor who implements an SO package needs to provide a functional mechanism for the definition of the feasible

decision space D and the implementation of both the f _ Selection and f _ Ev aluate functions. 

Then the modeler wishing to use an implementation of SO, developed for SOF, must provide: 
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- the definition of D according to the mechanism provided by the SO package; 

- a stochastic simulation model �( x , ε); 

- all the parameters required by the f _ Selection ( . . . ) and f _ Ev aluate ( . . . ) functions. 

4.2. SOF work cycle 

The SOF architecture has been designed according to the Work Cycle shown in Fig. 1 and the algorithms shown in

Section 4.1 . The framework is divided into three functional blocks: the User Front-end ( Fig. 1 , left); the SOF core , which

acts as a controller ( Fig. 1 , middle); the computational resources ( Fig. 1 , right). 

The User front-end is implemented as a web or a standalone application through which the user provides the inputs to

the system: Simulation Implementation, Selection Function, Evaluation Function . In order to ensure flexibility, we also include

in the request to the system an XML schema for the description of Domain ( Parameters Domain ), Input ( Simulation Input ),

Output ( Simulation Output ) and Rating ( Simulation Rating ). The application level of SOF provides a tool to easily generate the

XML files needed. The execution of the system is described by the loop shown in Fig. 1 . We summarize it in the following

key phases: 

1. User request . The user submits the Simulation Implementation , the Selection Function and the Evaluation Function written

using any language supported by the cloud environment. Then s/he defines the Parameters Domain, the Simulation Input,

Output and Rating format in XML using the SOF XML schema. 

2. Selection . The system processes the request using the Selection Function and generates a set of parameters according to

the XML schema defined by the user. 

3. Spread . The generated XML inputs are dynamically assigned to the computational resources. We note that our system

delegates to the distributed computing environment (Hadoop in our case) both scheduling and load balancing of tasks

(simulations). 

4. Collect . When all the simulation runs complete, the computation state is synchronized and the outputs are collected at

the SOF core system according to the XML schema defined by the user, through a set of messages exchanged between

the computational resources and the core system. 

5. Evaluation phase . The system applies the evaluation function to the collected outputs and generates the rating (again in

the desired XML format). 

After the evaluation phase, the system returns to the selection phase, which, also using the evaluation results obtained

during the preceding steps, generates a new set of XML inputs. Obviously, the selection function also includes a stopping

rule (for instance an empty set of parameters) which allows termination of the SO process. 

During the spread phases, the framework executes a large number of simulations in order to achieve the results of a PSE

or an SO scenario. The challenge is “How to elaborate a large number of inputs, on a distributed system, in order to en-

sure fault tolerance and good performance, even for different SO processes running concurrently?”. We believe that a good

solution to this question is to leverage the Apache Hadoop framework. Apache Hadoop, briefly described in Section 2.3 ,

provides some tools for managing MapReduce applications and the HDFS File System. It also provides a set of Java libraries

for writing MapReduce applications. According to the language used by the Simulation Implementation, it will be possible

to run the MapReduce application in several ways. For instance, when the implementation is written in Java (eg, MASON) is

it possible to write a MapReduce application that initializes the simulation at code level by using mechanisms like Java Re-

flection. Other frameworks, like Netlogo, provide a Java library for executing simulations from a Java application. Eventually,

in the case of generic implementations, the setting of simulation parameters is performed using the Java Runtime to set the

input as command line arguments of the executable. 

4.3. SOF architecture 

As shown in Fig. 2 , the system workflow presents two main entities: the SOF client and the remote host (on which

Apache Hadoop is installed). The SOF architecture is divided into three main software components: 

- the SOF front-end (client side), which is the SOF application for running and managing the simulation on the Hadoop

infrastructure; 

- the Hadoop layer (remote side), which comprises software and libraries provided by the Hadoop infrastructure; 

- the SOF core composed of five functional blocks, which are used on both the client and the remote side. 

SOF core. The main objective of the SOF core is to ensure flexibility in terms of the ability to use any Hadoop installation

on-the-fly without requiring a specific configuration of Hadoop infrastructure or a particular software installation on the

remote host. The SOF core uses the Secure SHell (SSH) protocol for the communication between the client and remote host

so as to ensure the highest level of flexibility and a secure consolidated communication mechanism. Further details about

what the SOF core comprises are given below: 

- Parameters Manager: defines the XML schema of the Parameters Domain Definition, Simulation Input Definition, Simulation

Output Definition and Simulation Rating Definition . It also provides routines for creating, managing and verifying the

XML files. 



116 M. Carillo et al. / Simulation Modelling Practice and Theory 83 (2018) 108–123 

Fig. 2. SOF - Hadoop architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- File System: defines the structure of the SOF Environment, which comprises the directories hierarchy on the HDFS,

Remote and Client hosts. This block exposes routines to obtain the paths of a simulation, a simulation loop or for

temporary files and folders on both the remote and client hosts. 

- HDFS Manager: is responsible for monitoring and creating files on the HDFS. 

- MapReduce (SOF process) and Asynchronous Executor (SOF-RUNNER): allow execution of the SO algorithm on a Hadoop

environment. 

- Simulation manager: is the fundamental block in the SOF architecture and provides the routines for executing and

monitoring simulations. This block uses SSH to invoke an asynchronous execution of the SOF-RUNNER. When an SO

process is started, the remote process ID is stored in the XML simulation descriptor file on the HDFS. In this way it is

always possible to monitor the SO process on the remote machine and it is also possible to stop/restart or abort the

SO process. 

SOF–Hadoop interaction. SOF has been designed under the assumption that the remote host is a Unix machine. There-

fore, the interactions between the client, remote host and Hadoop system are made using SSH and Unix commands. An

important contribution of this work is that we present a novel approach to managing SO processes by embedding them in

the MapReduce paradigm. 

For SOF use case we use ABSM, hence we consider three types of simulation frameworks: MASON, NetLogo and simula-

tions implemented without a programmatic framework (generic). The first two are the most relevant ABSM frameworks in

the ABSM community; the latter refers to any application executable on the computation host. 

In the following we describe in detail the interaction between the SOF core and Hadoop. The main events in the system

are: 

- User Login: After the user login on the Remote machine, the system automatically builds a new SOF Environment on

the Remote machine and the HDFS and copies two programs onto the remote machine: SOF and SOF-RUNNER. SOF is

the MapReduce application specialized for execution, on Hadoop, of MASON, NetLogo or a generic simulation frame-

work. SOF-RUNNER is the SOF process manager, responsible for executing the PSE or SO algorithm exploiting the

SOF MapReduce application. The Simulation Environment allows the storage of all request and output files for the

simulation process. The structure of the Simulation Environment is defined by the SOF File System; 

- Simulation Creation: The user prepares the Simulation Environment exploiting the features provided by the SOF fron-

tend. Subsequently, all simulation files — Simulation Implementation, Selection Function, Evaluation Function, Parameters 

Domain Definition, Simulation Input Definition, Simulation Output Definition and Simulation Rating Definition are copied

onto the HDFS using the structure defined by the SOF File System; 

- Simulation Submission: The SOF core provides a routine to run a new process that launches the SOF-RUNNER via SSH

on a particular simulation. The SOF-RUNNER executes the PSE or SO algorithm, exploiting the Selection Function and

the SOF MapReduce application on the Hadoop infrastructure, for parallel execution of the Simulation Implementation

and the Evaluation Phase. 

Due to the asynchronous nature of the system and decoupling from the Hadoop infrastructure, all states of the pro-

cesses are visible only by reading the state of the SOF Environment , which comprises the Simulation Environment of all the

SO processes in the system. On the HDFS, the SOF Environment contains the state of the simulation and the state of the
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Fig. 3. Parameter Space embedding in MP and Simulation Optimization embedding in MP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

optimization loop for any SO process. On the Remote machine the SOF Environment stores the state of the SOF-RUNNER

process: in this way it is also possible to stop/restart or abort any SO process. SOF has been designed for the concurrent op-

timization of different simulations performed by one or many users. In order to avoid the concurrency issues, SOF separates

Simulation Environments and assigns unique identifiers for each SO process. 

MapReduce paradigm embedding. The computation schema of an SO process, as mentioned above, resembles the well

known paradigm MapReduce. In particular, we consider the parameter space � as a dataset of Key/Value, where the Keys

are the input IDs and the Values are a feasible set of values for the simulation parameters. Two main transformations of

the inputs are considered: transform the input x ∈ � into the simulation output �( x ) and evaluate the simulation output

f ( �( x )). The first transformation requires the execution of the simulation on the desired set of parameters, while the second

transformation evaluates the output using an evaluating function ( f _ Ev aluate (·) ) according to the SO adopted scenario (see

Section 4.1 ). 

The SOF-RUNNER, depicted in Fig. 3 , performs the following steps: 

1. It executes the selection function using the Java Runtime. The selection function takes three arguments: the path to the

input sets already executed, the path to the rating corresponding to the input sets executed, and the path where the

function creates the novel input set. 

2. When the selection function ends, the SOF-RUNNER transforms the input set from XML format to a standard format for

the Hadoop MapReduce application and copies it on the HDFS (this is not strictly necessary because the latest version of

Hadoop also supports XML input, yet to ensure compatibility with a larger number of Hadoop clusters we favor the use

of a standard format). 

3. It launches the SOF MapReduce application. The MapReduce application (SOF) consists of two main routines, map and

reduce , as described in Section 2.3 : 

(a) the map routine corresponds to executing the simulation and generating an output XML file, which represents the

final state of the executed simulation; 

(b) the reduce routine executes the evaluation function, using the Java Runtime. The evaluation function takes two argu-

ments: the path of the output XML files and the path where the function creates the rating XML file. 

4. When the evaluation function ends the reducer saves the rating XML file on the HDFS. 

The mapper routine should be specialized according to the specific simulation framework used. For MASON and NetLogo,

the system can automatically read the final state of the simulation and generate the output XML. In order to ensure this

kind of functionality, the system requires the definition of the XML format for the input and the output files. Such files do

not contain any values for the parameters but are needed just to inform the system about the names of the parameters to be
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Table 3 

Completion time (s) with different test settings where n 

is the number of simulations performed per loop and p 

is the number of cluster nodes. 

p / n 20 0 0 40 0 0 80 0 0 16,0 0 0 32,0 0 0 

1 1817 3109 6615 12,516 25656 

2 1330 2517 3620 6562 13,420 

4 1058 1440 2471 4093 7854 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

initialized at the beginning of the simulation and to be returned at the end. In the case of a generic simulation framework,

the modeler of the simulation is responsible for generating the output files using a specific XML format in a predefined

output folder. 

It is worth mentioning that although the system is designed for Hadoop, by changing the SOF application it is still possible to

use the system on other environments for distributed computing [1] . 

5. Evaluation 

In the following section, we describe the benchmarks used to evaluate SOF scalability on a Hadoop cluster machine and

present a genuine use case on a cloud computing provider: Amazon EMR. 

5.1. Scalability evaluation on a Hadoop cluster machine 

We have tested a simple SO process using the NetLogo Fire model [50] . This model simulates the spread of a fire through

a forest. It shows that the fire-s chance of reaching a particular point in a forest (e.g. right border) depends critically on the

density of trees. This is an example of a common feature of complex systems, the presence of a non-linear threshold or

critical parameter. In particular, at 59% density, the fire has a 50/50 chance of reaching the right edge. The Fire model has

also been used to validate the OpenMOLE platform [43] . 

Since we are evaluating the performance of the framework, the SO process is based on an empty f _ Ev aluate (·) function,

while the f _ Selection (·, ·, ·) function generates a set of n configurations for the first 10 loops and an empty set at the end

of the 10 th loop, so that the SO process terminates. Each configuration consists of the density parameter and a seed for the

random number generator. All the simulations perform 10 0 0 simulation steps. 

The Simulation Environment. Simulations have been performed on a Hadoop cluster of four nodes, each equipped as

follows: 

• Hardware: 

− CPUs: 2 x Intel(R) Xeon(R) CPU E5-2680 @ 2.70 GHz (#core 16, #threads 32) 

− RAM: 256GB 

− Network: adapters Intel Corporation I350Gigabit 

• Software: 

− Ubuntu 12.04.4 LTS (GNU/Linux 3.11.0-15-generic x86_64) 

− Java JDK 1.6.25 

− Apache Hadoop 2.4.0 

Experimental results. We executed 12 test setting experiments, varying both the number of cluster nodes ( p ∈ {1, 2, 4})

and the number of configurations generated per loop ( n ∈ {20 0 0, 40 0 0, 80 0 0, 16, 0 0 0, 32, 0 0 0}). Such values have been

selected in order to analyze both the strong and weak scalability of the framework. Table 3 depicts the completion time in

seconds required for the execution of each test. Results show that the system scales fairly well, especially when the number

of configurations is large. This result was unsurprising given that the tasks are all independent and do not generate any

communication overhead. 

Strong and Weak Scalability . In order to better evaluate the scalability efficiency of the framework, we computed both the

weak and strong scaling efficiency. 

The strong scaling efficiency measures the capability of the framework to complete a set of simulations in a reason-

able amount of time. In order to compute the strong scalability efficiency, the problem size stays fixed but the number of

processing elements are increased. The strong scalability efficiency (as a percentage of the optimum) is given by 

t 1 ,n 
p × t p,n 

× 100% 

where t i, n denotes the completion time to perform the overall set of n simulations using i cluster nodes. In our cases the

strong scaling efficiency ranges from 42.93% ( p = 4 , n = 20 0 0 ) and 95.59% ( p = 2 , n = 32 , 0 0 0 ). 

The weak scaling efficiency measures the capability of the framework to solve larger problems as the number of process-

ing elements increases. In order to compute the strong scalability efficiency, the problem size assigned to each processing
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element stays constant and additional elements are used to solve a larger problem. The weak scalability efficiency (as a

percentage of the optimum) is given by 

t 1 ,n 
t p,n ×p 

× 100% 

and in our cases is equal to 100% (for p = 2 and n = 80 0 0 ) and 73.53% (for p = 4 and n = 20 0 0 ). Finally, on the larger

problem ( n = 32 , 0 0 0 ) the speedup measured as 

S p = 

t 1 ,n 
t p,n 

is S 2 = 1 . 91 and S 4 = 3 . 27 . 

5.2. SOF genuine use case 

Optimal Computing Budget Allocation. For the real case evaluation we have chosen a Ranking and Selection SO problem

class. We show how the proposed SOF framework can be integrated with the classic Optimal Computing Budget Allocation

(OCBA) mechanism [11] . Since in our solution each worker takes a single additional simulation to evaluate and the standard

OCBA is not numerically stable for computational budgets equal to 1, we used the purified OCBA approach proposed in [27] .

Please note that the SOF framework provides a general abstract mechanism for running SO computations - hence the OCBA

model is here just a proof-of-concept example. 

OCBA allocates every solution a certain number of replications in the initial loop to obtain a general idea about these

solutions. Then, over successive loops the best candidate solutions are analyzed with greater detail (increasing the number of

replications). The classic OCBA mechanism is unsuitable when the solution space is large, continuous, or even unbounded.

To tackle this problem several OCBA integrations with search algorithms have been developed (see [29] and references

quoted therein). In the OCBA mechanism n points are considered. In the first step of the procedure, for each point k, k ≥ 2,

simulations are run. Next, for each design point i , i = 1 . . . n, the mean value μi and the standard deviation σ i , are calculated.

Finally, for a given computational budget T, μi and σ i , new computations allocations m i are calculated where m 1 + . . . + m n =
T . Further details can be found in [24] and implementation details for small computational budget increments can be found

in [27] . Full implementation source code is available in the SOF GitHub repository [63] . 

Simulation model. We have tested a simple SO process using the Wealth Distribution model [60] . 

The model simulates the “rich get richer” effect in the distribution of wealth. It is adapted from Epstein & Axtell’s “Sug-

arscape” model [17] but uses grain instead of sugar. The field is a bi-dimensional space of 50 × 50 patches. Each patch has an

amount of grain and a grain capacity (the amount of grain it can grow). People collect grain from the patches, and eat the

grain to survive. How much grain each person accumulates constitutes his or her wealth. The model begins with a roughly

equal wealth distribution. The people then wander around the landscape gathering as much grain as they can. Each person

attempts to move in the direction where the most grain lies. 

The model is characterized by several parameters. Among them, in our experiment we look for an optimization of the

following parameters: 

• PERCENT-BEST-LAND, which determines the initial density of patches that are seeded with the maximum amount of

grain. It ranges from 5 to 25%; 

• NUM-GRAIN-GROWN, which determines how much grain is grown after a certain number of ticks. It ranges from 1 to

10; 

• LIFE-EXPECTANCY-MAX is the longest number of ticks that a person can possibly live. It ranges from 1 to 100; 

We assume that the modeler aims at maximizing the inequality of wealth. We measured the inequality of the system

using the Gini-Index. The Gini-Index is a measure of statistical dispersion intended to represent the income or wealth dis-

tribution, and is the most commonly used measure of inequality. The Gini-Index ranges from 0 to 1. A Gini-Index of 0

expresses perfect equality, where all values are the same. A Gini-Index of 1 expresses maximal inequality among values

(e.g., where only one person has all the income or consumption, and all others have none). 

The Simulation Environment. Simulations have been performed on Amazon Elastic MapReduce (Amazon EMR) which

exploits Amazon Web Services (AWS). 

Amazon Web Services (AWS) is a scalable and highly reliable cloud computing infrastructure that offers on demand cloud

computing infrastructure. AWS provides different services on the cloud. In this work, we are interested in the web services

that enable either the modeler or the developer to run their simulation on the cloud. The Amazon Elastic Compute Cloud

(Amazon EC2) provides resizable computing capacity in the cloud. In terms of abstraction layers, Amazon EC2 is an instance

of the Infrastructure as a Service (IaaS) model, where the Amazon infrastructure is seen as a complete virtual environment

which allows execution of different instances of virtual machines. 

Amazon Elastic MapReduce (Amazon EMR) [52] is a cluster of virtual servers running on the Amazon cloud. It is managed

using the open-source framework Apache Hadoop. Amazon EMR enables Hadoop applications to work seamlessly with AWS.

The EMR architecture assumes that a Hadoop clusters running on Amazon EMR uses EC2 instances as virtual Linux servers.

One of these virtual servers acts as the master node of the Hadoop cluster and the others as slave nodes. AWS recommends
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Table 4 

Amazon EC2 general purpose instances comparison. 

Name Memory Processor vCPUs Instance Storage Network Speed Linux on Demand cost 

m1.medium 3.75GB Xeon E5-2650 1 vCPUs 410GB HDD Moderate $ 0.087 hourly 

m1.large 7.5GB Xeon E5-2650 2 vCPUs 840GB (2 × 420GB HDD) Moderate $ 0.175 hourly 

m1.xlarge 15.0GB Xeon E5-2650 4 vCPUs 1680GB (4 × 420GB HDD) High $ 0.350 hourly 

m3.xlarge 15.0GB Xeon E5-2670 v2 4 vCPUs 80GB (2 × 40GB SSD) High $ 0.266 hourly 

m3.2xlarge 30.0GB Xeon E5-2670 v2 8 vCPUs 160GB (2 × 80GB SSD) High $ 0.532 hourly 

c4.2xlarge 15.0GB Xeon E5-2666 v3 8 vCPUs EBS only High $ 0.398 hourly 

m4.2xlarge 32.0GB Xeon E5-2686 v4 8 vCPUs EBS only High $ 0.431 hourly 

r4.2xlarge 61.0GB Xeon E5-2686 v4 8 vCPUs EBS only Up to 10 Gigabit $ 0.532 hourly 

Table 5 

Time in seconds and cost ($) required by the first loop of the SO process evaluating 20 0 0 simulation configurations. 

Name vCPUs Number of Slave instances 

2 4 8 16 32 64 128 

time cost time cost time cost time cost time cost time cost time cost 

(s) ($) (s) ($) (s) ($) (s) ($) (s) ($) (s) ($) (s) ($) 

m1.medium 1 3572 0.26 2070 0.25 1099 0.24 678 0.28 553 0.44 420 0.66 377 1.18 

m1.large 2 2043 0.30 1193 0.29 728 0.32 494 0.41 345 0.55 306 0.96 246 1.54 

m1.xlarge 4 1288 0.38 806 0.39 550 0.48 520 0.86 4 4 4 1.42 465 2.94 427 5.35 

m3.xlarge 4 1100 0.24 591 0.22 400 0.27 305 0.38 207 0.50 173 0.83 121 1.15 

m3.2xlarge 8 626 0.28 383 0.28 294 0.39 315 0.79 303 1.48 270 2.59 301 5.74 

c4.2xlarge 8 628 0.21 278 0.15 208 0.21 159 0.30 103 0.37 92 1.31 94 1.34 

m4.2xlarge 8 554 0.18 356 0.20 261 0.26 275 0.52 277 1.01 283 2.04 292 4.18 

r4.2xlarge 8 591 0.26 319 0.24 217 0.29 172 0.43 113 0.55 99 0.95 113 2.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to use the Amazon S3 storage service in place of HDFS service for persistent data storage in Hadoop cluster — this approach

enables a significant cost reduction. EMR cluster performance can be continuously monitored with the CloudWatch service.

In turn, the CloudWatch service can be integrated with autoscaling services — EMR Hadoop cluster slave nodes can be

automatically added on-the-fly once the cluster performance is insufficient. 

Simulations have been performed using p ∈ {2, 4, 8, 16, 32, 64, 128} slave nodes plus 1 master node, us-

ing different Amazon EC2 instance types . In particular, we chose all the instance types from the general pur-

pose instance class : { m 1. medium, m 1. large, m 1. xlarge, m 3. xlarge, m 3.2 xlarge } plus one instance type for each of

the remaining instance classes: c 4.2 xlarge , which belong to the class Compute optimized, m 4.2 xlarge , which be-

long to the class Memory optimized and r 4.2 xlarge , which belong the class Storage optimized . Overall, I =
{ m 1 .medium, m 1 .large, m 1 .xlarge, m 3 .xlarge, m 3 . 2 xlarge, c4 . 2 xlarge, m 4 . 2 xlarge, r4 . 2 xlarge } . 

The features of each instance type are reported in Table 4 : 

Experimental results. We executed 56 experiments evaluating 8 Amazon EC2 instance types with 2,4,8,16,32,64,128 slave

nodes — see Table 5 . 

All the experiments were conducted on a population of 10 0 0 agents. The SO process is composed of 10 loops, evaluating

at most 200 stochastic simulation configurations per loop with at most 10 simulation replicas (varying the random seed).

Overall, at most 20 0 0 simulation runs are executed for each loop. 

For each experiment we collected the timing and the maximum obtained Gini-Index. All the experiments were able to

find an optimal (or nearly optimal) configuration, which in our case corresponds to a Gini-Index equal to 0.506. In terms

of speed, the following table gives the timing recorded during the first loop (which in each experiment comprises 20 0 0

simulation runs). 

The table also shows the per loop cost of each configuration setting. Results show that the costs increase gradually

(almost constant up to 16 slave nodes) for low powerful instances while they tend to increase with the number of instances

on powerful instances. 

Comparing the different instances, it is worth noting that the best choice seems to be the c4.2xlarge instance type which

provides the best performance both in terms of efficiency (only 92s to perform the first loop, using 64 slave instances) and

in terms of cost (only $ 0.15 to perform the first loop, using 4 slave instances). 

Fig. 4 depicts the trend of both the price and the time required by experiments on the c4.2xlarge instance type, according

to the number of vCPUs used. Specifically, the X axis represents the number of vCPUs used, the price trend is shown by

histograms whose scale is presented on the left hand side of the figure, and finally the time required by experiments shown

by the curve whose scale is presented on the right hand side of the figure. 
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Fig. 4. Price vs Time trends on the c4.2xlarge instance using up to 1024 vCPUs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

This paper presents the design and implementation of SOF, a framework which exploits the computing power of a cloud

computational environment in order to accomplish effective and efficient simulation optimization strategies. The framework

has been specifically designed for ABM simulation, in particular for the MASON and NetLogo Simulation Environments, but

supports any simulation executable, provided that the hosting platform supports them. Two simulation scenarios, Param-

eter Space Exploration and Simulation Optimization, have been deployed. We have showed how to embed these kinds of

scenarios in a distributed computation using a consolidated infrastructure for distributed computing. SOF offers the follow-

ing interesting features: (i) “zero configuration”: SOF does not require any additional installation on the remote host – only

Apache Hadoop and SSH access are needed to set-up and run the system; (ii) ease of use : the user is totally unaware that the

system operates on a distributed environment, so SOF does not require specific skills on the part of users; (iii) programma-

bility : SOF allows the user to run different simulation toolkits and/or exploit diverse programming languages. Preliminary

evaluations show that the system is scalable, especially when the SO process involves a large number of concurrent inde-

pendent simulations. We have validated the proposed framework with an agent-based simulation model, but the proposed

approach can be use to run and find optimal parameters for simulation models of any type. The tool has been fully devel-

oped and is available on a public GitHub repository [63] under the Apache public license. It has been tested and validated

on top of several private platforms, such as a dedicated cluster of workstations, as well as public platforms, including the

Hortonworks Data Platform [57] and Amazon Web Services EMR solution. SOF also includes both a command line interface

and a GUI client, which can be used either by a contributor – designing an SO package – or by a modeler – to set-up and

run an SO process. 
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