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Abstract—Widespread adoption of electric vehicles (EVs)
would significantly increase the overall electrical load demand
in power distribution networks. Hence, there is a need for
comprehensive planning of charging infrastructure in order to
prevent power failures or scenarios where there is a considerable
demand-supply mismatch. Accurately predicting the realistic
charging demand of EVs is an essential part of the infrastructure
planning. Charging demand of EVs is influenced by several
factors such as driver behavior, location of charging stations,
electricity pricing etc. In order to implement an optimal charging
infrastructure, it is important to consider all the relevant factors
which influence the charging demand of EVs. Several studies
have modelled and simulated the charging demands of individual
and groups of EVs. However, in many cases, the models do
not consider factors related to the social characteristics of EV
drivers. Other studies do not emphasize on economic elements.
This paper aims at evaluating the effects of the above factors on
EV charging demand using a simulation model. An agent-based
approach using NetLogo is employed in this paper to closely
mimic the human aggregate behaviour and its influence on the
load demand due to charging of EVs.

Index Terms—Agent based model, electric vehicles, complex
systems, load modelling, charging stations.

I. INTRODUCTION

The resurgence of electric vehicles (EVs) provides an oppor-
tunity to address prevailing concerns such as scarcity of energy
resources, increasing fuel prices, air pollution and global
warming. EVs are known to be more energy efficient when
compared with internal combustion engine vehicles (ICEVs)
[1]. The total cost of EV ownership can be lower when
compared with ICEVs. Globally, a growing number of people
are considering purchasing EVs. In this context, [2] revealed
a 42% yearly increase in EV sales. The 21°¢ century has seen
growing interest in EVs due to advances in battery technology
and greater emphasis on renewable energy [1]. With greater
EV penetration expected in the near future, the demand for
electricity is bound to increase as EVs require electrical energy
for charging their batteries. The authors of [3], [4] stated
that large scale adoption of EVs may help in improving
transportation sustainability. However, increased EV adoption
brings with it several challenges for grid planners. Apart from
the construction of charging infrastructure, system operators
need to plan for an increase in electricity demand. Household
electricity consumption can increase by up to 50% with the
addition of a single EV. The authors of [5], [6] proposed the
use of energy storage. However, due to a rapid rise in the
demand for EVs, many challenges are bound to arise with
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the extensive deployment of charging infrastructure. These
challenges, among others, include developing an appropriate
number of charging stations to cater to the large number of
EVs and optimizing the locations of these charging stations.
In this context, the charging behaviour of EV drivers is an
important parameter to be considered in the implementation
of a well planned charging infrastructure. Understanding the
factors which influence this charging behaviour is crucial in
developing strategies which promote efficient utilization of the
charging infrastructure.

A. Objective of this study

The objective of this study is to provide both qualitative and
quantitative insights into the charging behaviour of EV users.
It aims at creating a model which examines factors influencing
charging behaviours and predicts the charging demand of
different types of EVs under various circumstances. The end
result will facilitate an efficient process of identifying optimal
locations for charging stations thereby ensuring maximum
utilization of the charging infrastructure.

The rest of this paper is organized as follows: A review
of existing approaches is presented in Section II. Section
IIT describes the EV load model along with the details of
micro-level and macro-level parameters which influence EV
charging. Section IV explains the setup of the simulation
platform using NetLogo. Results obtained from the simulation
study are discussed in Section V followed by conclusions in
Section VI.

II. STATE-OF-ART

Various studies have been performed to assess the impact
of EVs on the grid [7], [8]. Several reliable and accurate
models have been developed to examine the complex charging
behaviours of EVs. A probabilistic constrained load flow
was proposed in [9] with the inclusion of wind energy in
the power system. In [10], two different algorithms were
proposed to address the issue of overwhelming peak load and
its impact on grid stability. The authors of [11] proposed the
use of the Monte Carlo method to model temporal and spatial
transportation behaviours. The authors of [12], [13] used a
bottom-up approach for modelling EV load while the authors
of [14], [15] employed a top-down approach. The bottom-up
approach in simulation models allows the analysis to begin
from individual elements and subsequently progress to the
entire system.

Though many studies in literature have considered mobility
patterns and electricity prices for EV load modelling, the
power demand required for charging EVs also depends on
other factors such as the initial State of Charge (SOC) of the
EV battery, charging duration, location of the charging station,
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charging start time, peak hours, previous charging records,
type of charging i.e. fast or slow, and driver experience.
Hence, predicting the charging demand of EVs is a non-trivial
problem. Various studies such as [16] and [17] have considered
charging processes and EV model characteristics. However,
the location of charging stations and driver’s experience were
neglected while simulating the EV charging load.

Among the different approaches available for EV load
modelling, short period models (SPM) have been widely used
in literature. In SPM, charging behavior is modelled with the
help of fixed scenarios such as uncontrolled charging [18],
delayed charging or smart charging using charge scheduling
algorithms [19]. The major drawback of these models is that
they yield predetermined results of charging demand. This
means that the accuracy of results due to the incorporation
of certain charging strategies and policies is presumed during
modelling. Instead, modelling should be explicit to test the
effectiveness of different charging strategies or policies.

Furthermore, a failure to consider travel patterns in these
models results in randomness not being captured which re-
duces model flexibility and responsiveness to various policies.
The authors of [20] used the ‘Feathers’ software for an
activity based model to generate 24h charging demand. For
this, the authors assigned a capacity equivalent to internal
combustion engines (ICEs) to their agents and mapped the
energy consumption equivalent to it. However, this model is
not sensitive to electricity prices because the travel schedules
are generated from independent ICEVs. The analysis presented
does not evaluate the effect of charging strategies on travel
patterns and vice versa.

Agent-based modelling (ABM) has been used in many
power system applications. The authors of [21] modeled dis-
tributed renewable energy generation and demand as different
agents. The energy transaction mechanism in power markets
was extended for these agents. The approach reduced energy
purchase costs by tracking the forecasted energy consumption
and generation. In [22], each distributed energy storage (DES)
was modelled as an agent. The communication between these
agents was implemented through the dynamic average consen-
sus method to retrieve the average SOC of DES. In [23], the
authors developed a price based demand response procedure
for day-ahead planning and decision-making in retail electrical
energy markets using an agent-based framework. Here, the
ABM approach was used to address issues of interoperability
and data privacy in retail power markets. The ABM approach
provides scope to add different charging behavior preferences
due to various policies and facilitates a study on the effect
of such policies on charging demand and charging station
planning.

A. Major Contributions

The major contributions of this paper may be summarized
as follows:

1. This paper proposes an ABM approach for predicting
the electricity demand for EV charging. Various factors
including initial State of Charge (SOC), charging duration,
charging station location, charging start time, peak hours,
previous charging records, varying electricity prices, types

of charging, and driver experience are considered while
developing the model. Unlike previous studies, the model
captures human behavioural tendencies in the context of an
EV owner’s decision making process regarding charging
location. Finally, the model also accounts for the complex
inter dependencies which exist between these factors. The
different modelling parameters are stochastic in nature
which allow the model to account for unpredictable charg-
ing behaviour.

2. The model proposed in this paper provides a framework to
analyze the effects of varying EV charging demand due to
different charging strategies and policies. This framework
would, among others, help in planning optimized locations
for EV charging stations.

3. A good charging demand forecast is the bedrock on which
several power system analyses can be based. The authors
have performed some preliminary power system analysis
by linking the proposed agent environment with an opti-
mal power flow problem using a modified IEEE 14-bus
network. This link opens up several possibilities to study
economic grid operation, charging strategies, congestion
analysis, identification of overloads in the system etc.
Strategies aimed at mitigating these issues can also be
studied in depth using this platform.

III. SYSTEM MODEL

In this paper, the ABM approach is used to model the
charging demand of EVs. It aims at assessing the behaviour of
the system as a whole. Agents are autonomous, able to interact
with each other and react to stimuli to achieve their goals. The
functioning of the system is not determined by design. Instead,
it is the result of the spontaneous and natural conduct of agents
in the environment [24]. The final aim of the ABM approach
is to find explanatory insights through the assessment of the
collective behaviour of agents in their natural environments
rather than finding practical solutions or solving engineering
problems by designing agents in a deliberate manner. The
spontaneous nature of the ABM approach allows the prediction
of human charging behaviour based on the different parameters
assigned. The model simulates and defines each EV through
its charging characteristics, mobility pattern and vehicle type.
This creates an interactive environment where decision making
and dissimilar circumstances are inculcated to produce a
realistic model that predicts charging demands of individual
as well as groups of EVs.

In this paper, the model is simulated using the NetLogo soft-
ware package [25] which is well suited for complex systems
analysis as it allows interactions among agents. Thousands
of agents can receive instructions simultaneously and operate
independently. The connections between macro and micro
mobility patterns that emerge from agent interactions can be
used for understanding EV charging behavior thereby leading
to the development of a hybrid modelling approach. With the
inclusion of a proper setup and all the factors which influence
the load model, it allows the charging demand to be analyzed.
This paper uses data and statistics in the context of Singapore
to test the proposed modelling approach.
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Fig. 1: Interdependency of EV charging system parameters
A. Type of model

Aggregate modelling has become an effective tool to sim-
ulate aggregate movement and behaviour in real life. Many
researchers have used microscopic and macroscopic mod-
elling approaches for dynamic environments. The macroscopic
model focuses on the overall pattern behaviour of the whole
human aggregate and increases simulation efficiency while
the microscopic method focuses on characteristics of indi-
viduals such as decision making and captures the accuracy
of individualistic behaviours [26]. In NetLogo, it is possible
for these two models to co-exist in order to leverage on
the individual strengths of both models. The agents (EVs) in
this model have their own specifications and make decisions
based on their objectives. For instance, the EV starts to look
for charging stations whenever the SOC of its battery falls
below 25% (a variable in the model whose value can be
changed to carry out detailed analysis). This demonstrates the
microscopic nature of the model as EVs act individually and
make decisions based on their own specifications. On the other
hand, this behaviour is constrained by the overall movement of
the human aggregate. For example, an EV user cannot charge
at a charging station if it is fully occupied. The parameter
‘Charging station availability’ is determined by the presence of
other EVs at the charging station. If all chargers at a particular
charging station are fully occupied, EV users can either decide
to queue and wait or find other charging stations. This would
further reduce the SOC of their batteries. These EVs would not
only influence and add to the load at other charging stations
but also increase the amount of energy required for their
charging and charging duration. These two parameters would
then influence the ‘Charging station availability’ parameter
for other EVs at various charging stations. This chain effect
is triggered by the action of a single EV and affects other
EVs in its vicinity. Another example would be during the

night when most private cars are parked overnight instead of
being driven on the roads. Such behaviour is considered on
the macro level as the EVs account for the presence of other
EVs; interact with each other and behave on a large scale. This
discussion emphasizes the need for this study as the usage
of the proposed model enables a comprehensive coverage of
factors at individual/micro and macro levels.

Fig. 1 shows the micro level decision variables in ‘circles’
and macro level decision variables in ‘squares’ along with their
inter dependencies in decision making for charging EVs by the
owners.

B. Micro level parameters

These parameters are associated with the individual be-
haviour of each EV and its driver.

1) Category of EV: The EVs are classified into two cat-
egories - private and commercial. Private EVs are similar
to personal vehicles while commercial EVs mainly comprise
electric taxis [27]. Such a categorization is necessary to
distinguish between different behaviors exhibited by vehicles
in each category. Private EVs can be modelled using trends
of office hours and carpark statistics at residential complexes
and shopping malls. Electric taxis tend to operate for 24h with
different shifts. Hence, private EV models cannot be used for
modelling electric taxis.

2) Range anxiety and battery capacity: The battery capaci-
ties of EVs affects the range anxiety as larger battery capacities
enable EVs to travel longer distances without quickly depleting
their batteries. This gives greater assurance to the driver since
the chances of quickly running out of energy decreases with an
increase in battery capacity. The results in [28] show that there
is an inverse relationship between range anxiety and battery
capacity.

3) Initial SOC, (SOC;): Assuming that the same charging
power is used, charging duration naturally increases with a
lower SOC;. EV owners would normally prefer to charge
their batteries to at least 80% SOC before leaving the charging
station. Thus, with a lower SOC;, a longer duration is required
for EVs to complete charging. In this simulation study, SOC;
is initially allocated as a random value following a normal
distribution between 50% to 90%.

4) Final SOC (SOCYy): SOCy depends on the type of
EV and total distance the EV owner intends to travel before
the next charging event. It is assumed that commercial EVs
will always attempt to get a full charge in minimum time.
For private EVs, the distance travelled by an EV after the
last charge is estimated based on a typical probability density
function (PDF) with an average travel distance of 50km and
standard deviation of 10km. An average travel distance of
280km and standard deviation of 50km are considered for
commercial EVs [29]. EV users can also enter the desired
SOCY} in the simulation platform in real-time.

The SOC of an EV SOC*® varies from the SOC after it
leaves a charging station at the end of one charging event
(denoted by SOC%) to the SOC when it reaches a charging
station for the next charging event (denoted by SOC,) based
on the speed and acceleration of the EV as described in the
following paragraphs.

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2018.2823321, IEEE

Transactions on Industrial Informatics

TABLE I: Mechanical parameters for EV discharge power
calculation [30]-[34]

M;, 1415 kg Az 28m? | Cyps 0.29
MLeaf 1500 kg A]_eaf 2.74 II]2 Cd,Lea[ 0.28
MSoul 1580 kg ASoul 2.51 m2 Cd,Soul 0.35
P 1.196 kg/m® | C; 0.025 a 0

Paux | 700 W s 90% Mm 93%

Based on the road forces acting on the EV, the mechanical
power required by the EV PS¥ in Watt can be calculated as
follows [30]:

Py = MjapVy + Mjg(Vysina + C; cos a)
1 ey
+5Ca4;0Vi

where M; represents the mass of an EV (kg) of type
7, V represents the speed of the EV (m/s), a represents
the acceleration of the EV (m/s?), g represents gravitational
acceleration (9.8 m/s?), Cy,; represents the aerodynamic drag
coefficient of an EV of type j, A; represents the frontal area
of an EV of type j (m?), p represents air density (kg/m?)
and C, represents the coefficient of rolling resistance for a
tarmacadam road [30]. Further, o represents the gradient of
the road whose value is taken as O in this work. In other
words, the roads considered in this work are assumed to have
zero gradient. The road gradients at different locations can be
easily modified subject to availability of data from the relevant
authorities. Table I provides the values of all the parameters
used in (1) for the 3 types of EVs considered in this work -
BMW i3, Nissan Leaf and Kia SoulEV. All the time varying
variables are denoted using (-); during minute k.

Based on the mechanical power required, the following
equation calculates the electric power to be provided to the
EV’s electric motor (P£') by factoring in the motor efficiency
(Mm), EV auxiliary power requirement (Pa,x) and battery
efficiency (1y):

Pok
:,‘;c = — + PAux (2)
Tlm
SOCE — SO0 | — Lk 3
k= E=17 B 60 3)
ASOCSE — ek 4
£ Bey 60 @
N
SOC; = SOC; — >~ ASOCY (5)
k=0

where N represents the number of samples during the total
duration of the trip.

The energy consumed (E*®) per unit kilometer distance (d)
travelled by the EV during its last trip can be calculated in
kWh/km as follows:

N pey
ev _ 1 Y=o Py, ©6)
60000 d 1,

4

5) Mode of charging: In the proposed model, EVs can
choose between fast charging or slow charging depending on
the category of EV as well as the distance and time remaining
to reach the destination.

6) Charging time: A longer charging duration results in
the charging slot being occupied for a longer period of time.
Other EVs that intend to charge may in turn re-route or travel
longer distances in search of charging stations with vacant
charging slots. This causes a further reduction in their SOC;
values. The charging time parameter acts at both microscopic
and macroscopic levels. Three different types of EVs are used
in the proposed model and their details are provided in Table
II.

The open circuit voltage (OCV) of the battery pack
was obtained from the standard battery models available in
MATLAB-Simulink [35] and curve fitting (smoothing spline)
was used for deriving a relationship between OCV and SOC.

Vocvsoc = f(SOC) @)

where f is given by,

argmin f, f = Z(Vocv - f(500))?

+(1 —p)/ (dz(gfgc))Zd(SOC) ®

where p represents the smoothing factor. p can be varied
between 0 and 1 for varying the smoothness of the fit wherein
0 results in a linear fit and 1 results in a piece-wise cubic

polynomial fit. Furthermore, p can also be selected as =
&

where h represents the average difference between the data
points.

Let I.. be the current required in constant current (CC)
mode. P..soc, which represents the power required in CC
mode (for a particular SOC) is given by the following
equation:

Pecsoc = Vocvsoc - Iec 9

The charging current in constant voltage (CV) mode at time
instant n is given by the following equation:

I,=1I,_1— Islope (10)

where I ope represents the slope of current decrements in the
CV mode. Ijope is calculated from the time required in the CV
region for each EV (a fixed value determined based on the EV
characteristics [31]-[33]). The charging power required in CV
mode is calculated as follows:

Y

The charging power at any time instant n is given by the
following equation:

Peysoc = Vocvsoc - In

Pb,n

Tle

P, =

12)

where P,, represents the AC power supplied and 7. represents
the converter efficiency (considered as 0.95). I3, ,, can be either
Peysoc or Pecsoc depending on the status of the EV battery.
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Fig. 2: Fast charging characteristics of EV batteries
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Fig. 3: Slow charging characteristics of EV batteries

The SOC increment is calculated using the following equa-

tion:
P,
Py..60

where SOC,, represents the increased SOC; SOC,,_; repre-
sents the SOC before supplying P, and Pj. represents the
power at 1C with one minute resolution.

Using the above equations, the charging curve of an EV can
be generated and the charging time can be determined based
on the number of samples. For fast charging, typical charging
powers and charging times are shown in Fig. 2 for the three
types of EVs considering SOC; as 20%. For slow charging,
the typical charging powers and charging times are shown in
Fig. 3.

7) Parking duration: This parameter varies based on differ-
ent scenarios such as: i) the office carpark is occupied during
office hours ii) shopping mall and restaurant carparks are
occupied during evening hours and iii) residential carparks are
occupied during night hours. An example of real-time carpark
statistics in a Singapore shopping complex is shown in Fig. 4
[36]. This parameter provides a more realistic perspective of
EV usage behaviour. If an EV is parked for a longer duration,
it may prefer to charge in slow charging mode instead of fast
charging mode. This could reduce the peak demand as well
as enable cost savings through better utilization of off-peak
electricity prices.

SOC,, = S0OC,_; + { 13)

H

Fig. 4: Carpark occupancy in shopping mall, Singapore [36]

TABLE II: EV Battery specifications [31]-[33]

EV Model Battery Capacity Bey  P¢' (Fast) P¢ (Slow)
BMW i3 18.8 kWh 35.89 kW 5.4 kW

Nissan Leaf 24kWh 38.76 kW 6.3 kW

Kia SoulEV 27kWh 39.1 kW 5.1 kW

8) Range anxiety and driver experience: Range anxiety
refers to the fear of not reaching the destination before the
EV’s battery gets depleted. As the driver’s experience with
the EV grows, it results in a reduction in the overestimation of
range requirement [37]. This means that drivers become more
experienced in predicting the EV’s range in relation to their
range requirements thereby leading to a reduction in range
anxiety.

During the modelling process, the critical SOC is defined as
a new parameter which refers to the lowest permissible SOC
of the EV. Below this SOC, the driver will choose to enter
the charging station to charge the EV. It is directly affected
by range anxiety as a higher range anxiety usually results in
a higher critical SOC. The authors of [37] also demonstrated
that range anxiety has a direct relation to charging behaviour
as EV drivers have a tendency to charge very frequently and
to charge longer than required. This mindset indirectly leads
to higher critical SOC levels as drivers charge unnecessarily
most of the time. In the simulation model described in this
paper, the driver’s experience varies with respect to a normal
distribution with ;=7 and 0=3 among the total number of EVs
in the model. The experience level 10 (highest) defined in the
model means that the driver will only search for a charging
station when SOC approaches 25%. This percentage has been
increased in steps of 5% with each level of decrease in driver
experience, up to level 1 (lowest).

C. Macro level parameters

These parameters are associated with the group behavior of
EVs and their drivers. The presence of EVs at one location will
influence the behavior of other EVs present in their vicinity.
This aggregated behavior is implemented using the following
parameters.

1) Availability of slots in charging stations: Before EVs
enter a charging station, the availability of vacant charging
slots is checked. If there are no vacant slots, the EV will
not enter. Thus, it can be seen that EV behaviour is not only
affected by its own characteristics but is also dependent on
the other EVs around it. This affects the SOC; of the EV as
the charging event gets delayed while the SOC continues to
deplete.

2) Speed of EVs: The speed of an EV changes according to
the vehicles that are around it. It accelerates whenever there are
no vehicles ahead of it and only decelerates when the speeds
of the cars ahead are lower. It stops when the speed of the
car ahead is zero. Another situation where speed is important
is when EVs move backwards, either out of charging stations
or parking lots. In such cases, EVs check for other cars to
avoid any accidents. Therefore, speed is another factor which
largely depends on the interaction of an individual EV with
EVs other than itself. It has a direct relationship with the SOC
of EVs since the calculation of SOC accounts for the physical
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TABLE III: System parameters
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Fig. 5: Typical probability distribution of EV charging

distance travelled which involves the speed factor.

Each patch, which is a unit of distance in the simulation
platform, is converted into km with respect to the duration
of movement of EVs and the speed setting of EVs in the
simulation platform. The speeds of EVs can be observed in
real time during simulation.

3) Number of EVs: This parameter is critical for deploying
EVs. The number of residential and office places as well as
the number of charging stations in a particular region can only
accommodate a certain number of EVs. Beyond this threshold,
charging stations will be overburdened and EVs would start
queuing up for empty slots thereby causing further charging
delays. Hence, while planning the number of charging stations
in any area, it should be ensured that the maximum number of
EVs serviced by each charging station is below this threshold
value.

4) Type of Day: EV usage patterns are different on week-
days and weekends. On weekdays, the usage of private EVs
is mainly governed by office hours. On the other hand, dur-
ing weekends, shopping malls and residential carparks show
maximum activity [36].

5) Purpose of travel: This determines the selection of
charging stations located en route to the destination. The daily
commute to the workplace might result in charging near office
charging stations while weekend activities might result in
charging either at food centres, shopping malls or residences.

6) Charging cost: Peak hour periods affect the price of
charging indirectly. They do not directly alter the price of
charging but rather cause a change in the mindset of drivers.
During peak hours, drivers tend to disregard the charging price
since they are more concerned with getting an empty slot in
the charging station. This relationship demonstrates the social
aspect of the model as human behaviours are incorporated into
it.

7) Peak Hours: During peak hours, there is a reduced price
barrier since people normally disregard the price as getting
a charging slot becomes priority. Critical SOC increases as
drivers hold less regard for their SOC and prioritize getting a
charging slot during peak hours. Typical peak hours used in
the model are as follows:

o The standard office peak hours are 8am-10am and Spm-7pm
on weekdays. This is in accordance with the daily office
shift timings in Singapore which are usually from 08:30am

Electricity

price $0.20 /kWh Charging station peak hours

Number of EVs 120 Office p=90=2

u=17,0 =2

Private EVs 70% Mall pnw=20,0=3

Commercial EVs 30% Food p=l20=2

center p=20,0 =2

Driver experience (Levz;l- 7=) Sl; =7 Residential n=2,0=4

Fast charging EV 0% T f D Weekd:

ast charging EVs of total EVs ype of Day eekday

- 05:30pm. EVs start looking for offices and office carparks
once office peak hours begin.

o The standard mall peak hour period is set between 1lam-
10pm on weekends. Data from [36] shows that there is a
sharp decrease in the number of available parking slots in
most malls between 11lam-2pm and 7pm-10pm. Hence, this
period is chosen as the standard peak period for malls. As
the price barrier decreases, critical SOC increases and EVs
start looking for malls during this period.

o Residential peak hours are set as 10pm-7am on weekdays.
Usually, prices for residential charging stations are lower
than commercial charging stations.

o The peak hour periods for food centres are set between
12pm-2pm and 6pm-8pm on both weekdays and weekends.

For all four types of places i.e. office, mall, residential and
food centre, the peak timings can either be typical standard
timings as mentioned above and shown in Fig. 5 or can be
manually changed within the simulation platform based on the
requirements of any condition. This provides a greater scope to
analyze the impact of varying peak timings on the EV charging
load demand.

IV. SIMULATION PLATFORM SETUP

All macro level and micro level parameters are simulated
using the NetLogo software package [25] to emulate real life
human decisions by incorporating human behavioral tenden-
cies towards EV charging. The simulation platform developed
in this paper is shown in Fig. 6. The model consists of a 6X6
grid i.e., 36 blocks. Each block can be selected to function as
a residential charging station (RCS), office charging station
(OCS), food centre charging station (FCS), shopping mall
charging station (MCS), carpark (CP) or residential block
(‘None’). The user interface is designed to allow users to
select parameters based on statistical data for any region under
consideration. This data represents various probabilities and
proportions of decision variables in the macro and micro level
operation of EVs as mentioned in Table III.

In this model, charging stations equipped with 10 chargers
are located at the following blocks (R-Row, C-Column):
OCS @R3C3; FCS @R4C4; RCS @R1C1 and @R6C6 and
Carparks at @R2C1, @R1C2, @R2C2, @R3C2, @R4C2,
@R4C3, @R3C4, @R3C5, @R4C5, @R5C5, @R6CS,
@R5C6. The remaining blocks are set as housing blocks i.e.
‘None’.

The path tracing algorithm is designed such that when the
EV decides to charge its battery based on the SOC, driver
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Fig. 6: Overview of EV charging system using NetLogo
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Fig. 7: Load calculation process at EV charging station

experience etc., the minimum distance to reach all charging
stations is calculated based on the current location of EV and
the locations of all nearby charging stations. Among all the
charging stations, the EV moves towards the nearest charging
station which is analogous to a real world scenario wherein
refueling stations are chosen based on navigation devices.
If the charging station is found to be fully occupied upon
arrival, the EV cannot wait or queue up. The distances to
the nearest charging stations are calculated again and the EV
moves towards the next charging station located at minimum
travel distance. This ensures that the EV battery does not get
depleted completely.

Private EVs charged in OCS will get parked in office

Fig. 8: Typical EV characteristics in model

carparks during office hours (8:30am-5:30pm). The private
EVs charged at RCS during the night remain parked in residen-
tial carparks during the night. On the other hand, commercial
EVs are restricted from parking at office and residential
carparks after charging at OCS and RCS respectively. They
continue to operate for 24h in different shifts. This provision
avoids a situation of private EVs being unnecessarily driven
on the roads thereby creating a more realistic EV mobility
pattern.

The load modelling process at each charging station is
illustrated in Fig. 7. The charging load at each charging station
is calculated and each EV charger’s status is updated every 3
seconds.

The model is developed with the following provisions to
make it adaptive for generating EV charging load demand for
any region and situation:

o Number of EVs and ratio of private EVs to commercial EVs
can be set manually.

o Driver experience levels, EV models and ratio of fast
chargers to slow chargers can be defined based on the
demographic projections of any region.

o Battery charging characteristics of different EVs can be
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added.

« Function of each block in the grid can be defined based on
the geographical map of any city. The entire grid is scalable.
Hence, the proposed model is well suited for large scale EV
modelling applications.

o Peak and off-peak periods can be defined for various charg-
ing stations based on local requirements and site conditions.

« Electricity prices can be set at individual charging stations to
study the effects of varying electricity prices on EV charging
behavior.

o Each EV can be observed individually for its path tracing,
energy consumption as well as charging preferences and bat-
tery characteristics. This enables a precise extraction of the
mobility pattern. Fig. 8 shows the details of a typical EV’s
characteristics which can be monitored during simulation.

V. RESULTS

The proposed model is simulated for several days over a
24h time period from 12 midnight to 11:59pm. After the agents
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Fig. 11: Total charging load for least EV driver experience

started following the charging process routine, the results were
extracted and plotted as shown in Fig. 9. This procedure
is used to eliminate errors arising from the initialization
of system parameters. The total power demand due to the
charging process of all EVs considering all charging stations in
the system is shown in Plot(I) of Fig. 9. The overall charging
demand from office charging stations is shown in Plot(Il)
whereas Plot(IIl) of Fig. 9 shows the charging demand from
residential charging stations. It is observed from Fig. 9 that
the ABM approach for determining the EV charging demand
generates results which are close to reality.

1. The charging load near offices is higher during office
hours since EVs are charged at residential charging stations
during the night.

2. Residential EV charging starts after office hours at approx-
imately 8pm and decreases close to the beginning of office
hours on the next day i.e. at 8am.

Electricity prices are considered to be the same for all
charging station during this simulation. The key inference from
the simulation is that when human behaviour is included while
predicting EV charging demand, the peak demand occurs
between 12:00 noon and 2:00pm. However, the predicted
charging demand of EVs depends on the choice of parameters
as shown in Table III. For example, with all other parameters
remaining the same, if the ratio of private to commercial EVs
is changed to 20% of private EVs and 80% of commercial
EVs, the total charging demand will change significantly as is
shown in Fig. 10. The EV charging demand is spread across
the day. It is observed that the ratio of private to commercial
EVs has a significant impact on the EV charging demand
pattern. The influence of driver experience on the total EV
charging demand and its pattern is shown in Fig. 11. It can
be observed that with all other parameters kept the same, if
the driver experience is changed to the lowest level i.e. Level
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1, the charging demand and the charging pattern changes.
Occurrence of demand peaks increases with a decrease in
driver experience.

To assess the impact of peak pricing on charging load at
various charging stations, all other conditions in Table III are
retained and electricity prices are varied as shown in Fig.
12 for different charging stations. A localized peak price of
0.30 SGD/kWh is imposed during hours when the respective
charging stations encounter peak charging demand. For ex-
ample, from Fig. 12, it is evident that the OCS imposes peak
prices during times of maximum load demand during morning
and evening hours. The study, while not necessarily fully
consistent with electricity market principles, provides insights
into how EV owners could behave when localized peak prices
are charged and how it could impact their decisions regarding
preferred charging locations and charging times. Fig. 13 shows
the charging power requirement at RCS with and without peak
hour pricing. It can be observed that a significant portion of
the charging load at RCS has been shifted to off-peak hours.
The inference from this observation is that EV users prefer
not to charge during high price hours and prefer to charge
their vehicles during off-peak hours. It can also be observed
that the average peak power has reduced from 33.51 kW
to 20.98 kW. Hence, the two-tier pricing has a considerable
impact on the behaviour of EV drivers in RCS. Similarly from
Fig. 14, a reduction in the peak power requirement at OCS
can be observed and the charging demand is distributed more
uniformly than without peak power pricing. Furthermore, a
significant reduction in peak power from 44.69 kW to 29.68
kW can be observed from Fig. 14. It may be inferred that
the EV charging demand is influenced by electricity prices
and EV users prefer to charge at charging stations with
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Fig. 14: Effect of rise in price during peak hours at OCS

lower prices. This analysis not only helps in identifying the
loading requirements of charging stations but also has other
applications. For example, based on the predicted behaviour,
appropriate demand response strategies could be designed.
Another application of this study is in the sizing of renewable
energy sources and stationary energy storage systems (ESS)
which could provide support to the distribution grid in case
of overloading caused by a particular charging station. Each
of these applications is interesting in its own right and merits
thorough investigation which is outside the scope of this paper.

It is pertinent to mention at this juncture that in all the above
cases, both micro and macro level parameters are taken into
consideration.

A. Application in ESS sizing

The results obtained from the simulation platform may be
extended for various applications such as RES sizing and
ESS sizing. Here, the case of ESS sizing is presented as an
application of the extended results.

The PV system in this case-study is of 75 kWpeq rated
capacity and is selected based on the guidelines issued by
Singapore’s Land Transport Authority (LTA) [38] for an area
required for 20 parking lots. Figs. 15 and 16 show box-plots
of the energy required at the OCS and energy generated by
the PV system respectively. It may be noted that Fig. 15 is
obtained from NetLogo simulations performed over a period
of time and Fig. 16 is obtained from real solar irradiance data
[39] by using the formulation mentioned below.

The power output from a PV system at the j** interval in
a given day is calculated as follows:

SI;
le = va,peal«ﬁ-[l — B (Tamb,j — Tamb,rated)] (14)
Pj = 7700nv~5PV-7]MpPT,Pj1 (15)

where S1; is the measured solar irradiance during the 4t time
interval; 3, is the coefficient of temperature for the module’s
efficiency; Tymp,; 1s the measured ambient temperature during
the j”‘ time interval; Ti,,p.rateq 1 rated ambient temperature
(30°C) and Py pear 1s the maximum power generated under
standard test conditions [40]. le is the power output from the
solar PV system during the j“L interval before considering
power conversion efficiency and P; is the power output
after considering power conversion efficiency. 7cony, 0Py
and ny ppr represent the efficiency of converter, de-rating
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factor for PV panels and efficiency of maximum power point
tracking (MPPT) respectively. The value of 1)cony-0pv -NarpPT
is considered to be 0.85 [40].

The objective chosen for sizing the energy storage system
is to avoid a condition where the solar PV generation is higher
than the total EV load and the ESS capacity is not sufficient to
store the surplus energy. This is a realistic condition wherein
the charging station operators would prefer some flexibility
to charge/discharge the ESS based on market conditions. The
ESS designed for such conditions will cater for worst case
scenarios. However, the operation can be optimized using
methods such as the one proposed in [6]. The size of the ESS
is given by the following equation:

24
Sizepss = »  Epys — Egi , VERSS — By > 0 (16)
i=1

For this application, the ESS capacity is given by the area
under the curve shown in Fig. 17 for Epy" — Eg% > 0 and
it is calculated to be 419 kWh.

B. Electrical Grid Mapping

In this section, the authors map the agent environment
to an exemplar electrical grid to demonstrate the practical
applicability of the charging demand prediction model de-
veloped in this paper. A modified IEEE 14-bus system is
chosen as the exemplar electrical grid in this study. It is
assumed that residential charging stations are located at buses
2 and 9; office charging station is located at bus 3 and food
centre charging station is located at bus 4. It is assumed
that EV charging loads constitute 5.2% of the total system

Energy (kWh)

——Maximum Energy from PV
- - -Minimum Energy required for EVs

12 14 16
Time (hours)

Fig. 17: Energy Storage requirement at OCS

TABLE IV: Diesel Generator Parameters

24

a b C P, min P, max

Gen | Bus | (q) | sW) | $&W2) | W) | (kW)
T 3 [ 80 | 003 | 0000000 | 100 | 3000
2 8 [ 200 | 0.06 | 0.000002 | 100 | 3000
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load demand [41]. The charging stations are located at buses
which have a relatively larger connected load. To make the
network more suitable to be used as distribution grid, the line
resistance values were increased to 5 times the standard p.u.
values provided in the MATPOWER [42] case files. The line
reactance p.u. values were left unchanged. The total system
load was divided among the buses in the same ratio as the
original MATPOWER case file. The modified 14-bus network
is operated as a microgrid with some embedded generation
present in the microgrid as well. It is assumed that bus 1 has
a point of common coupling (PCC) with the main utility grid
with a maximum real power exchange capacity of IMW; buses
2, 3, 4 and 9 have solar PV power plants with capacities of
150kW, 75kW, 75kW and 150kW respectively; buses 3 and
4 have energy storage systems with capacities of 420kW and
300kW respectively. Diesel generators of 3MW capacity were
placed at buses 3 and 8 respectively. The base value for the
simulation was considered as 8000kVA. The parameters of the
diesel generators are provided in Table IV [43]. In Table IV, a,
b and c are fuel cost curve coefficients while P,,,;,, and P44
are minimum and maximum powers produced by the diesel
generator respectively.

The MATPOWER package is used in Octave to solve
the optimal power flow (OPF) problem for this network.
Charging load demands generated by the agents in Netlogo
are provided as inputs for solving the OPF problem. The
OPF problem was solved for different kinds of system loads
ranging from high charging load to low charging load. For the
network configuration mentioned in the previous paragraph, it
was observed that the OPF converged without any difficulty.
Moreover, no voltage overloads were observed at any of the
buses. The network configuration especially the placement of
generators was however finalized after extensive trial and error
attempts using MATPOWER. Techniques such as the Jump
and Shift method described in [43] may be used to combine
the scheduling (unit commitment) and OPF problems to verify
the feasibility of scheduling results.
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C. Sensitivity Analysis

Three important parameters - charging type, driver expe-
rience and ratio of commercial to private EVs were used
to perform sensitivity analysis on the model developed in
this paper. The results of the analysis are presented in Figs.
18, 19 and 20. From Fig. 18, it is observed that the daily
average charging load demand increases with an increase in
the proportion of fast chargers in the system. This is intuitive
since the power drawn by fast chargers is more when compared
with slow chargers. Moreover, from Fig. 19, it is observed
that the daily average charging load demand also increases
with an increase in the proportion of commercial EVs in the
system. This is also quite natural since commercial EVs are
assumed to operate 24h hours a day in shifts as opposed to
private EVs which operate only for a limited number of hours
every day. The average energy consumed by commercial EVs
is therefore higher when compared with private EVs. On the
flip side, from Fig. 20, it is observed that the daily average
charging load demand decreases when driver experience goes
up since EV users are more aware about their vehicle range
and do not resort to panic charging before battery SOC drops
to its critical level. Overall, the sensitivity analysis reaffirms
the hypotheses presented earlier in the paper regarding the
influence of various parameters on EV charging load demand.

VI. CONCLUSION

In this paper, a simulation model to predict the charging
demand of EVs based on various essential parameters was
proposed. The results emphasize the practical applicability of
the ABM based approach to predict the charging demand of
EVs. The ABM approach accounted for various aspects of EV
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charging including technical, social and economic parameters
to ensure reliable results. The simulations were carried out
for a 24-hour period over several days. Individual and total
power demands were determined for various scenarios to
enable further analysis in real world situations. Furthermore,
the proposed model also facilitated the analysis of both
commercial EVs and private EVs by accounting for their
respective usage patterns. The model developed in this paper
was used for sizing RES and ESS. The agent environment was
also linked with the electrical network by solving the optimal
power flow problem for an exemplar power system. Hence, the
model presented in this paper overcame various disadvantages
inherent in existing models by accounting for the influence of
human aggregate behaviour on the overall charging demand
of EVs. In future, the approach presented in this work can be
validated using measured data from government agencies such
as Singapore’s Land Transport Authority or private charging
station operators and EV fleet owners. Three important pa-
rameters were selected in this paper for performing sensitivity
analysis. In future, a comprehensive sensitivity analysis can be
performed by considering a wider selection of variables. For
sensitivity analysis, fuzzy membership functions can be used
to represent the different variables being studied.

REFERENCES

[1] D. B. Richardson, “Electric vehicles and the electric grid: A review
of modeling approaches, impacts, and renewable energy integration,”
Renew. Sustainable Energy Rev., vol. 19, pp. 247 — 254, 2013.

[2] “Global plug-in sales for 2016 [Online]. http://www.ev-
volumes.com/country/total-world-plug-in-vehicle-volumes/.

[31 W. Su, H. Eichi, W. Zeng, and M. Y. Chow, “A survey on the
electrification of transportation in a smart grid environment,” IEEE
Trans. Ind. Informat., vol. 8, pp. 1-10, Feb 2012.

[4] Z. Darabi and M. Ferdowsi, “An event-based simulation framework to
examine the response of power grid to the charging demand of plug-in
hybrid electric vehicles,” IEEE Trans. Ind. Informat., vol. 10, pp. 313—
322, Feb 2014.

[5] F. Kennel, D. GAfrges, and S. Liu, “Energy management for smart
grids with electric vehicles based on hierarchical mpe,” IEEE Trans.
Ind. Informat., vol. 9, pp. 1528-1537, Aug 2013.

[6] K. Chaudhari, A. Ukil, K. N. Kumar, U. Manandhar, and S. K.
Kollimalla, “Hybrid optimization for economic deployment of ess in
pv-integrated ev charging stations,” IEEE Transactions on Industrial
Informatics, vol. 14, pp. 106-116, Jan 2018.

[71 A. Rabiee, H. F. Farahani, M. Khalili, J. Aghaei, and K. M. Muttaqi,
“Integration of plug-in electric vehicles into microgrids as energy and
reactive power providers in market environment,” IEEE Trans. Ind.
Informat., vol. 12, pp. 1312-1320, Aug 2016.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2018.2823321, IEEE

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Industrial Informatics

E. Akhavan-Rezai, M. F. Shaaban, E. F. El-Saadany, and F. Karray,
“Managing demand for plug-in electric vehicles in unbalanced 1v sys-
tems with photovoltaics,” IEEE Trans. Ind. Informat., vol. 13, pp. 1057—
1067, June 2017.

J. G. Vlachogiannis, “Probabilistic constrained load flow considering
integration of wind power generation and electric vehicles,” IEEE Trans.
Power Syst., vol. 24, pp. 1808-1817, Nov 2009.

N. Rotering and M. Ilic, “Optimal charge control of plug-in hybrid
electric vehicles in deregulated electricity markets,” IEEE Trans. Power
Syst., vol. 26, pp. 1021-1029, Aug 2011.

X. Dong, Y. Mu, H. Jia, J. Wu, and X. Yu, “Planning of fast ev charging
stations on a round freeway,” IEEE Trans. Sustain. Energy, vol. 7,
pp. 1452-1461, Oct 2016.

R. A. Waraich, M. D. Galus, C. Dobler, M. Balmer, G. Andersson,
and K. W. Axhausen, “Plug-in hybrid electric vehicles and smart
grids: Investigations based on a microsimulation,” Trans. Res. Part C:
Emerging Technologies, vol. 28, pp. 74 — 86, 2013.

M. D. Galus and G. Andersson, “Demand management of grid connected
plug-in hybrid electric vehicles (phev),” in 2008 IEEE Energy 2030
Conf., pp. 1-8, Nov 2008.

E. Valsera-Naranjo, D. Martinez-Vicente, A. Sumper, R. VillafAifila-
Robles, and A. SudriAi-Andreu, “Deterministic and probabilistic as-
sessment of the impact of the electrical vehicles on the power grid,” in
2011 IEEE Power and Energy Soc. Gen. Meeting, pp. 1-8, July 2011.
A. Maitra, J. Taylor, D. Brooks, M. Alexander, and M. Duvall, “Integrat-
ing plug-in- electric vehicles with the distribution system,” in CIRED
2009 - 20th Int. Conf. and Exhibition on Electricity Distribution - Part
1, pp. 1-5, June 2009.

K. Qian, C. Zhou, M. Allan, and Y. Yuan, “Modeling of load demand
due to ev battery charging in distribution systems,” IEEE Trans. Power
Syst., vol. 26, pp. 802-810, May 2011.

E. C. Kara, J. S. Macdonald, D. Black, M. BAl’rges, G. Hug, and
S. Kiliccote, “Estimating the benefits of electric vehicle smart charging
at non-residential locations: A data-driven approach,” Applied Energy,
vol. 155, pp. 515 — 525, 2015.

K. Chaudhari and A. Ukil, “Energy storage management for ev charging
stations: Comparison between uncoordinated and statistical charging
loads,” in 42nd Annual Conf. of the IEEE Ind. Electron. Soc. (IECON),
October 2016.

K. N. Kumar, B. Sivaneasan, and P. L. So, “Impact of priority criteria on
electric vehicle charge scheduling,” IEEE Trans. Transport. Electrific.,
vol. 1, pp. 200-210, Oct 2015.

L. Knapen, B. Kochan, T. Bellemans, D. Janssens, and G. Wets,
“Activity based models for countrywide electric vehicle power demand
calculation,” in 2011 IEEE First Int. Workshop on Smart Grid Modeling
and Simulation (SGMS), pp. 13-18, Oct 2011.

Y. Zheng, D. J. Hill, and Z. Y. Dong, “Multi-agent optimal allocation
of energy storage systems in distribution systems,” IEEE Transactions
on Sustainable Energy, vol. PP, no. 99, pp. 1-1, 2017.

C. Li, E. A. A. Coelho, T. Dragicevic, J. M. Guerrero, and J. C.
Vasquez, “Multiagent-based distributed state of charge balancing control
for distributed energy storage units in ac microgrids,” IEEE Transactions
on Industry Applications, vol. 53, pp. 2369-2381, May 2017.

K. Dehghanpour, H. Nehrir, J. Sheppard, and N. Kelly, “Agent-based
modeling of retail electrical energy markets with demand response,”
IEEE Transactions on Smart Grid, vol. PP, no. 99, pp. 1-1, 2017.

T. Salamon, Design of Agent-based Models: Developing Computer
Simulations for a Better Understanding of Social Processes. Academic
series, Tomas Bruckner, 2011.

U. Wilensky, “Netlogo,” http://ccl.northwestern.edu/netlogo/, Center for
Connected Learning and Computer-Based Modeling, Northwestern Uni-
versity, Evanston, IL, 1999.

C. Rabiaa and C. Foudil, “Toward a hybrid approach for crowd
simulation,” Int. Journal of Advanced Computer Science and Applica-
tions(IJACSA), vol. 7, no. 1, 2016.

“All-electric taxi fleet may hit the roads soon.” Straits Times, Published
on Jun 12, 2016 [Online]. http://www.straitstimes.com/singapore/all-
electric-taxi-fleet-may-hit-the-roads-soon.

D. Knutsen and O. Willen, “Master’s thesis on ‘a study of electric
vehicle charging patterns and range anxiety’.” [Online]. http://www.diva-
portal.org/smash/get/diva2:626048/FULLTEXTO1.pdf, Accessed on: 5th
May 2017.

“Singapore  land transport: Statistics  in  brief = 2015.”
[Online].Available:https://www.lta.gov.sg/content/dam/ltaweb/corp/
PublicationsResearch/files/FactsandFigures/Statistics\%20in\%20Brief\
%202015\%20FINAL.pdf.

[30]

(31]

[32]

[33]

[34]

[35]

(36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

12
“Module 2: Dynamics of electric and hybrid vehicles.” In-
troduction to Hybrid and Electric Vehicles [Online]. Available:

http://mptel.ac.in/courses/108103009/download/M2.pdf.

BMW, “i3 technical data - range and charge time.” [Online]. Available:
http://www.bmw.com/com/en/newvehicles/i/i3/2013/showroom.html
Accessed on: 5th May 2017.

N. leaf, “Range charging - how to charge.” [Online]. Avail-
able: http://www.nissan.co.uk/GB/en/vehicle/electric-vehicles/leaf.html,
Accessed on: 5th May 2017.

K. S. EV, “Battery technical specifications.” [Online]. Available:
https://www.kia.com/us/k3/content/media/all/vehicles/soul-
ev/brochures/Soul_EV_2017.pdf, Accessed on: 5Sth May 2017.

B. Sanden, Systems Perspectives on Electromobility. Chalmers Publica-
tion Library, 2013.

N. Omar, M. A. Monem, Y. Firouz, J. Salminen, J. Smekens, O. Hegazy,
H. Gaulous, G. Mulder, P. V. den Bossche, T. Coosemans, and J. V.
Mierlo, “Lithium iron phosphate based battery - assessment of the
aging parameters and development of cycle life model,” Applied Energy,
vol. 113, pp. 1575 — 1585, 2014.

“Realtime statistics of singapore carparks.” [Online].
http://www.comp.nus.edu.sg/ josepht/carpark.htmltitle-25, Accessed on:
Sth May 2017.

T. Franke and J. F. Krems, “What drives range preferences in elec-
tric vehicle users?,” Transport Policy, vol. 30, pp. 56 — 62, 2013.
http://doi.org/10.1016/j.tranpol.2013.07.005.
“Code of practice for vehicle
in development proposals.”

parking
[Online].

provision
Available:

https://www.lta.gov.sg/content/dam/ltaweb/corp/Industry/files/VPCOP2011.pdf,

Accessed on: 5th May 2017.

“Solar irradiation data.” [Online]. Available: http://www.solar-
repository.sg/pv-systems-database, Accessed on: 5th May 2017.

N. K. Kandasamy, K. Kandasamy, and K. J. Tseng, “Loss-of-life
investigation of ev batteries used as smart energy storage for commercial
building-based solar photovoltaic systems,” IET Electrical Systems in
Transportation, vol. 7, no. 3, pp. 223-229, 2017.
“E-mobility technology roadmap.” National
mate Change Secretariat [Online].
https://www.nccs.gov.sg/sites/nccs/files/Roadmap_E-M_1.pdf.
R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “Mat-
power: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Transactions on Power Systems,
vol. 26, pp. 12-19, Feb 2011.

S. X. Chen and H. B. Gooi, “Jump and shift method for multi-objective
optimization,” IEEE Transactions on Industrial Electronics, vol. 58,
pp- 45384548, Oct 2011.

Cli-
Available:

Kalpesh Chaudhari (S’15) received his B.E. in
electrical engineering from Sardar Patel College of
Engineering, Mumbai, India, in 2013. He worked
as a Design Engineer with Jacobs Engineering ,
Mumbai, India between 2013 and 2014 specializing
in substation and distribution grid designing for
petrochemical refineries. He is currently a doctoral
student at the School of Electrical Engineering in
Nanyang Technological University, Singapore. His
research interests include modelling of electrical
vehicle charging loads and optimization of energy

storage systems for charging stations.

K Nandha Kumar (M’11) received his B.E. degree
in electrical and electronics engineering from Anna
University, Chennai, India, in 2008. He worked as
Senior Design Engineer in Larsen and Toubro Ltd
between 2008 and 2010. He received his Ph.D.
degree from Nanyang Technological University, Sin-
gapore in 2016. He joined Nanyang Technological
University, Singapore as Research Engineer in 2015,
then upgraded to Research Fellow position in 2016.
He is currently working with Singapore University
of Technology and Design as Postdoctoral Research

Fellow. His research interests include electric vehicles, energy storage, smart
grids, demand response management, data-driven modeling, load management
and cyber-physical systems.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2018.2823321, IEEE
Transactions on Industrial Informatics

13

Ashok Krishnan (S’14) received the B. Tech. de-
gree in Electrical and Electronics Engineering from
Amrita Vishwa Vidyapeetham University, India, in
2012. From 2012 to 2013, he was a Projects Exec-
utive with Mytrah Energy India Limited, a leading
Independent Power Producer. In 2014, he joined the
School of Electrical and Electronic Engineering at
Nanyang Technological University, Singapore where
he is currently working towards the PhD degree. His
research interests include power system scheduling,
microgrids and multi-energy systems.

Abhisek Ukil (S’05-M’06-SM’10) received the B.E.
(Hons) degree in electrical engineering from Ja-
davpur University, Kolkata, India, in 2000, the M.Sc.
degree in electronic systems and engineering man-
agement from the University of Bolton, Bolton,
U.K., in 2004, and the Ph.D. degree from the Pre-
toria (Tshwane) University of Technology, Pretoria,
South Africa, in 2006, with a focus on automated
disturbance analysis in power systems.

From 2006 to 2013, he was a Principal Scientist
with the ABB Corporate Research Center, Baden,
Switzerland, where he led several projects on smart grid, protection, control,
and condition monitoring, including first worldwide prototype of directional
protection relay using only current for smart grid. From 2013 to 2017, he
was an Assistant Professor with the School of Electrical and Electronic
Engineering, Nanyang Technological University, Singapore, where he led a
group of 20 researchers with several industrial collaborations. From 2000
to 2002, he was Software Engineer at InterralT, India. He is currently a
Senior Lecturer with the Department of Electrical and Computer Engineering,
The University of Auckland, Auckland, New Zealand. He is an Inventor
of ten patents, and has authored over 150 refereed papers, a monograph,
and two chapters. His current research interests include smart grid, dc grid,
protection and control, energy efficiency, renewable energy and integration,
energy storage, and condition monitoring.

TTT =  Gooi Hoay Beng (SM’95) received the B.S. degree
in EE from National Taiwan University in 1978;
< the M.S. degree in EE from University of New
Brunswick in 1980; and the Ph.D. degree in EE
from Ohio State University in 1983. From 1983 to
1985, he was an Assistant Professor with Lafayette
College, Easton. From 1985 to 1991, he was a Senior
Engineer with Empros (now Siemens), Minneapolis,
where he was responsible for the design and testing
\\X coordination of domestic and international energy
- management system projects. In 1991, he joined
the School of Electrical and Electronic Engineering, Nanyang Technological
University, Singapore, as a Senior Lecturer. Since 1999, he has been an
Associate Professor. He was the Deputy Head of Power Engineering Division
during 2008-2014. He has been an Editor of IEEE Transactions on Power
Systems since 2016. His current research interests include microgrid energy
management systems dealing with storage, renewable energy sources, elec-
tricity market and spinning reserve.

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



