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A B S T R A C T

We developed an agent-based model to simulate a signaling cascade which allowed us to focus on the behavior of
each class of agents independently of the other classes except when they were in physical contact. A critical piece
was the ratio of the populations of agents that interact with one another, not their absolute values. This ratio
reflects the effects of the density of each agent in the biological cascade as well as their size and velocity. Although
the system can be used for any signaling cascade in any cell type, to validate the system we modeled Toll-like
receptor (TLR) signaling in two very different types of cells; tumor cells and white blood cells. The iterative
process of using experimental data to improve a computational model, and using predictions from the model to
design additional experiments strengthened our understanding of how TLR signaling differs between normal
white blood cells and tumor cells. The model and experimental data showed that some of the differences between
the tumor cells and normal white blood cells were related to NFκB and TAB3 levels, and also suggested that tumor
cells lacked IRAKM-dependent feedback inhibition as a negative regulator of TLR signaling. Finally, we found that
these different cell types had distinctly different responses when exposed to two signals indicating that a more
biologically relevant model and experimental system should address activation of multiple interconnected
signaling cascades, the complexity of which further reinforces the need for a combined computational and mo-
lecular approach.
1. Introduction

There are several approaches that are commonly used to model
complex cell signaling cascades including mathematical and agent-based
systems [1–5]. These types of systems are extremely useful because they
allow simulations to be run and data to be generated, and the results can
be validated against experimental results. Here we developed an agent-
based model to simulate a signaling cascade which allowed us to focus
on the behavior of each class of agents independently of the other types of
agents except when they were in physical contact. A critical piece was the
ratio of the populations of agents that interact with one another, not their
absolute values. This ratio reflects the density of each agent in the bio-
logical cascade as well as their size and velocity. We also developed a tool
[6] that could be used to generate agent-based simulation models of
signaling cascades. The tool does not require the user to have program-
ming knowledge or skills and can be used by biologists who have
; TAB3, TGF-beta activated kinase 1/
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knowledge and understanding of the cascades. The biologist has to pro-
vide the tool with a description of the signaling cascade which is used to
generate a NetLogo program which is then executed to generate simu-
lation results. The tool has the advantage of allowing biologists to focus
on model construction rather than programming and also greatly speeds
up the process of developing an executable model. The modeler specifies
the populations, generates the simulation results, and compares them to
the lab results as well as past simulation results. Although the system can
be used for any signaling cascade in any cell type, to validate the system
we modeled the Toll-like receptor (TLR) signaling cascade in two very
different cell types; tumor cells and white blood cells.

TLR signaling contributes to tumor progression, and yet TLR agonists
are also currently being evaluated for cancer immunotherapy. Because
we lack a complete understanding of how TLR agonists differentially
impact tumor cells and white blood cells, and because this lack of un-
derstanding can have serious implications if TLR signaling is modulated
MAP3K7 binding protein 3; TLR, toll-like receptor; NFκB, nuclear factor κB.
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in a tumor setting where both types of cells are present, we wanted to
gain a deeper understanding of how this signaling cascade differed be-
tween these two cell types. To study the relationship between TLR
signaling and cancer we focused on the TLR4 signaling cascade in 4T1
murine mammary carcinoma because it is a highly aggressive and met-
astatic tumor often used as a model for stage IV disease in patients with
breast cancer [7]. CCL2 was assessed not only because it is downstream
of the TLR4 signaling cascade, but also because CCL2 expression has been
correlated with breast cancer progression in humans [8–10]. DC were
used as a control because they serve as excellent antigen presenting cells,
they make a strong response to TLR agonists, their signaling cascades
have been well described, and TLR agonist treated DC are being used for
cancer immunotherapy [11,12].

The model that we constructed is an agent-based model where each
component is represented as an agent [13]. We took this approach rather
than using a more mathematically oriented approach that would require
information such as diffusion speed and size of components, as well as
equations to describe the interactions between the components. We did
not possess much of this information about the components and the
agent-based approach allowed us to create computational models that
would let us explore our understanding of the interactions. The only
information necessary with our agent-based approach was a set of rules
[14] describing how each component (agent) moves in 3D space and how
each component behaves when it interacts with another component in
the signaling cascade.

The tradeoff with the agent-based approach is that it may require
carrying out more simulations before one can determine the conditions
(relative populations of the agents) that yield simulation results that
match the lab (experimental) results. Yet, our model allows a user to
change the level of any of the TLR signaling proteins and quickly deter-
mine how the altered protein levels influence CCL2 expression. As a
result, our model can be used to rank the importance of any protein in the
signaling cascade. For instance, the model can be used to predict what
happens in response to a TLR agonist if any of the TLR signaling proteins
are up- or down-regulated. We learned that although the tumor cells
expressed lower levels of many of the TLR signaling components than DC
they did not exhibit lower TLR signaling capabilities. The model and
experimental data indicated that this was related to NFκB and TAB3
levels, and a lack of IRAKM-dependent negative feedback signaling in the
tumor cells. Moreover, we found that the tumor cells and DC differed in
response when exposed to two concurrent signals. Along this same line,
Moreno et al., [15] recently reported that activation of two TLR signaling
cascades had a different outcome than activation of a single TLR
signaling cascade. They reported that dual TLR7 and TLR9 signaling
impaired NFκB activation. And, Han et al. [16] recently reported cross-
talk between the hypoxia-inducible factor �1 (HIF-1), and TLR3 and
TLR4 signaling cascades. These data, along with our findings here, sug-
gest that a greater understanding of signaling differences between tumor
cells and normal white blood cells should take into account multiple
interconnected signaling cascades, and reinforces the need for a com-
bined experimental and computational approach as investigators move
away from studying single signaling cascades in isolation.

2. Materials and methods

2.1. Cells and mice

4T1 murine mammary carcinoma were maintained in complete RPMI
(cRPMI) (RPMI 1640, Lonza, Walkersville, MD) supplemented with 10%
heat-inactivated fetal bovine serum (Lonza), glutamine (2mM, Lonza),
penicillin (100U/mL, Lonza), streptomycin (100 μg/mL, Lonza), nones-
sential amino acids (Sigma, St. Lois, MO), 2-mercaptoethanol
(5� 10�5 M, Sigma), and sodium pyruvate (1mM, Lonza). DC were
generated from femurs and tibias from Balb/c mice and were cultured at
1� 106 cells/ml in cRPMI with GM-CSF (20 ng/ml, Peprotech, Rocky
Hill, NJ) and IL-4 (10 ng/ml, Peprotech) with one ml/well in 24-well
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tissue culture dishes (Costar, Fisher, Pittsburgh, PA). Themedia with GM-
CSF and IL-4 was replaced every 2–3 days. After 7–8 days, CD11cþ DC
were purified using CD11c microbeads and MS positive selection col-
umns (Miltenyi Biotec, Auburn, CA). Balb/c mice were bred on site and
housed in a thoren caging system (Thoren Caging Systems Inc., Hazleton,
PA). Food and water were provided ad libitum. All mice were used in
accordance with an Institutional Animal Care and Use Committee
approved protocol that followed the guidelines for ethical conduct in care
and use of animals.

2.2. Treatment with TLR agonist

Lipopolysaccharide (LPS) from Escherichia coli K12 (Invivogen, San
Diego, CA) was used as a TLR4 agonist. Stocks were prepared in sterile
water, aliquoted and stored at �20 �C in sterile microcentrifuge tubes.
For TLR agonist treatment, 1� 106 tumor cells or DC were cultured in 24
well culture plates at 1ml/well with or without the TLR agonist and
incubated at 37 �C, 5% CO2. Twenty four hours later RNA was collected
from the cells and supernatants were harvested to assess CCL2 gene or
protein expression respectively. To assess IL-1β expression the cells were
treated for 24 h with LPS and then another 24 h with ATP (Invivogen) or
nigericin (Invivogen) before harvesting supernatants.

2.3. Quantitative reverse transcriptase polymerase chain reaction

Gene expression was analyzed by qRT-PCR. For this purpose, RNA
was isolated from approximately 1� 106 cells using the Aurum Total
RNA Mini Kit (Bio-Rad Laboratories, Hercules, CA) according to manu-
facturer's instructions. Briefly, the cells were lysed, RNAwas bound to the
column, treated with DNase, and following several washes, RNA was
eluted and stored at �20 �C. Complementary DNA was generated using
the iScript cDNA synthesis kit (Bio Rad Laboratories). For this purpose
15ul RNA, 4ul 5x iScript buffer and 1ul iScript reverse transcriptase were
combined in a 0.5ml microcentrifuge tube and placed in a thermal cycler
(MiniCycler, MJ Research Watertown, MA). The reaction conditions
consisted of 25 �C for 5min, 42 �C for 30min, and then 85 �C for 5min.
All samples were stored at�20 �C prior to qRT-PCR. An aliquot (0.5ul) of
cDNA was amplified in a reaction with 1x iQ SYBR Green Supermix (Bio-
Rad Laboratories) and 200 nM gene specific primers. The reaction con-
ditions consisted of 40 cycles of a two-step PCR reaction with 94 �C for
10 s, and 68 �C for 30 s on an iQ5 Real Time PCR Detection System (Bio-
Rad Laboratories). Gene specific primers (Table 1) were synthesized by
Integrated DNA Technologies (Coralville, IA) and analyzed for specificity
with the NCBI Blast Program. The housekeeping gene gapdh was used to
establish normalized expression (ΔΔCT).

2.4. ELISA

Supernatants harvested from cells were centrifuged at 400� g to
remove particulate matter and stored at �20 �C. For analysis of culture
supernatants CCL2 and IL-1β specific quantikine colorimetric sandwich
ELISAs were used according to manufacturer's instructions (R&D Sys-
tems, Minneapolis, MN).

2.5. Western blot

To analyze protein expression 5� 106 cells were washed three times
with ice-cold phosphate buffered saline (PBS), resuspended in 150uL of
buffer A (10mM Hepes (Sigma), 10mM KCl (Sigma), 0.1mM EDTA
(Sigma), 0.1mM EGTA (Sigma)), supplemented with the protease in-
hibitors aprotinin, leupeptin, chymostatin, and pefabloc (Roche Molec-
ular Biochemicals, Indianapolis, IN) and placed on ice. Following a
15min incubation, 10uL of 10% Nonidet P-40 (Sigma) was added. The
samples were vortexed for 10 s, and centrifuged 15,000� g at 4 �C for
1min. The pellets were washed one time with buffer A and then resus-
pended in 75ul buffer B (25% glycerol, 20mM Hepes (Sigma), 0.4M



Table 1
Gene specific primers.

gene forward primer 50 to 30 reverse primers 50 to 30

gapdh cttccgtgttcctacccccaatgt gcctgcttcaccaccttcttgatgt
TLR4 agtgccccgctttcacctctg caataaccttccggctcttgtgga
MYD88 cctgaccccactcgcagtttgt tgcgcgacttcagctccttca
IRAK2 tggagtgaagcagatgtcgtcca ttgaaggcgaaggccacacc
IRAK4 tccgtaatgcctatgccgaagcta tggaaccgagtgtcgctgga
TRAF6 tgcaaggagaatatgacagccacctc gcgtccatgacctcttcgtggtt
TAK1 tgacaggcacaagccagattgaga tgagtgctggtaggcggacaaga
TAB1 atggctgtcgtggcagtccttc tcctcgttctcggtggtgtggt
TAB2 cctcattggtcaacagccagacct atctcctgcggtggcattgg
TAB3 gttctcctgctcagattggcatcc ggcatggacacctccacatcagt
IKKa cctgcatctagcagccatccttg tcagccaccaacactcctgca
IKKb tggcacaatcaggcgacagg aggcaccagcggtctctgttctt
IKKg cggaagctggctcagttgca ttgctggagctgttgcctcagat
p50 tcgccttggcatccaccat cggccagcaacatcttcacatc
p52 acgagaacggagacacgccact tctggtgcaggtggttggtgag
p65 tcaccggcctcatccacatg ttgctccaggtctcgcttcttca
cREL tggtgtcagcgacttgagtgcat cagaggccgagtagatagcatgttgac
RELB tgccattgagcggaagatcca tccatgcggtgcagatgtcc
JUN aaggcagagaggaagcgcatga ctgagcatgttggccgtgga
FOS agcgcagagcatcggcagaa attccggcacttggctgca
ATF2 cagccagccacctccactacagaa ctgctcttcttcgacggccact
STAT5 tggcagaaccggcagcagat tccgtgatggtggcgttgac
CEPBb caaggccaagaagacggtggac cttgtgctgcgtctccaggttg
ETS1 tgagccgtggccttcgctacta tacatccagcatggcgtgca
CCL2 tcatgcttctgggcctgctgt ctcattgggatcatcttgctggtg
MYD88s gcatcgcgccggaactttt gccggatcatctcctgcaca
RP105 ctgccgtgtttgagggtctctgt caggtgagtggctgttaggtccagtt
IRAKM tgcgggacctcctcatggaa ttggccttcgttgccacaca
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NaCl (Sigma), 1 mM EDTA (Sigma), 1 mM EGTA (Sigma)) supplemented
with the protease inhibitors aprotinin, leupeptin, chymostatin, and
pefabloc (Roche Molecular Biochemicals), and then sonicated for 30 s.
After a 10min. centrifugation at 15,000� g the supernatants containing
the nuclear proteins were transferred to new tubes, NuPAGE LDS sample
buffer was added, and the samples were stored at �20 �C. For analysis
SDS PAGE gels (12.5%, Fisher) were loaded with 15uL of proteins,
electrophoresed, and transferred to PVDF membranes (Fisher). The
membranes were blocked at room temperature in PBS with 5% powdered
milk (Carnation) and 0.05% Tween 20 (Sigma) for 2 h. Primary anti-
bodies (10μg) specific for histone 3, NFκB p50, p52, p65, cREL and RELB
(Santa Cruz Biotechnology, Santa Cruz, CA) were added, and the blots
were incubated at room temperature for 1 h followed by an overnight
incubation at 4 �C. After washing four times with blocking buffer, a
horse-radish-peroxidase-conjugated secondary antibody (Santa Cruz)
was added and the blots were incubated for 2 h at room temperature.
Following four washes, proteins were visualized by enhanced chem-
iluminesence on a gel documentation system (Bio-Rad Laboratories).
Densitometry data were normalized to actin and nuclear histone 3 levels
which showed similar expression patterns.

2.6. RNA interference

Tumor cells were cultured in 24 well culture plates at 1� 104 cells/
well in cRPMI without antibiotics and incubated at 37 �C, 5% CO2.
Twenty four hours later the media was replaced and the cells were
transfected with 80pmole siRNA specific for NFκB p52, p65, RELB,
IRAKM, or scrambled siRNA as a control (Santa Cruz) with 6ul lipid
transfection reagent (Santa Cruz). After another 24 h incubation the
media was replaced and LPS (0, 1, 10, 100 ng/ml) was added. Cell su-
pernatants or RNA were harvested 24 h later to assess CCL2 levels.

2.7. Computer programming and model

We developed an agent-based simulation model to simulate the TLR4
cascade. Each of the components of the model (TLR4, MYD88, IRAK2,
etc.) were represented as a class of agents. The behavior of each class of
agents was specified by a set of rules that described the behavior of the
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agent under various circumstances, e.g., how it moves in 3 dimensions
and what changes when it encounters (is in physical contact with)
another agent of a different class.

The agent-based modeling approach (as compared to a mathematical
modeling-based approach [4]) allowed us to (1) focus on the behavior of
each class of agents independently of the other classes except when they
were in physical contact, (2) develop a simulation model even though we
did not have all of the specific data/knowledge about the agents, e. g,
diffusion rates. The movement of the agents is similar to that of Brownian
motion. Even though we did not have specific interaction rates for the
agents, we computationally determined the effects of the cascade
through simulations and compared them with experimental results from
the lab. Through iterative trials, we determined the relative ratios of the
agent populations in the model that led to results that matched those of
the lab experiments. The ratios of the agent populations accounted for
differences such as the size and velocity of the agents when determining
how frequently interactions between agents occurred.

2.7.1. Using the model
For this specific cascade model, TLR4 was set in the cell surface,

MYD88 and associated signaling proteins in the cytoplasm and the CCL2
gene in the nucleus. The signaling cascade began when LPS bound to
TLR4 and was followed by subsequent protein-to-protein interactions
leading to phosphorylation of the NFκB/IKBα complex. Once activated,
NFκB entered the nucleus and bound to the CCL2 promoter inducing
transcription.

The initial simulation model was built by hand (custom program-
ming) and it was a tedious process with many places where bugs
occurred. However, we gained knowledge about modeling cascades and
we subsequently developed a tool [6] that could be used to generate
agent-based simulation models of signaling cascades. The tool does not
require the user to have programming knowledge or skills and can be
used by biologists who have knowledge and understanding of the cas-
cades. The biologist has to provide the tool with a description of the
signaling cascade which is used to generate a NetLogo program which is
then executed to generate simulation results.

The primary tasks of the modeler (biologist) are to (1) specify the
model, and (2) to validate the simulation results against the experimental
results. Specifying the model requires that the modeler decide which
parts of the cascade (agents) are “essential” and have to be included in
the model while other agents are left out. These decisions are crucial
because they affect both the accuracy of the model (leaving out an
essential agent renders the model invalid) and the efficiency with which
results are derived (including too many agents greatly increases the
computational time). Once the model is specified, the next step is to state
the initial conditions. Primarily this step is concerned with specifying the
initial population of each of the agents. This is done through the NetLogo
interface where boxes have been created (with default values) for each of
the agents. The critical piece is the ratio of the populations of agents that
interact with one another, not their absolute values. This ratio reflects the
effects of the density of each agent in the biological cascade as well as
their size and velocity. The modeler specifies the populations, generates
the simulation results, and compares them to the lab results as well as
past simulation results. Results from the comparison are used to deter-
mine how to adjust the populations on the next simulation so as to
generate results that are a better match for the lab results. This process is
repeated until the modeler is satisfied.

2.7.2. Building the model
The process of constructing an agent based model of a biochemical

cascade is similar to that of building a directed cyclic graph or network
graph. Each node in the graph represents either a component or an
interaction between two components. This results in the production of a
new component and/or the participating components changing state. To
build a model, the user (biologist) has to specify the components and the
interactions in the cascade.
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Fig. 1. 4T1 and DC elicit a distinct response to LPS. In order to determine how much CCL2
was produced by 4T1 and DC we quantified the amount of CCL2 produced by the cells
following LPS treatment. For this purpose 4T1 and DC were treated with LPS (10 ng/ml)
for 24–72 h and qRT-PCR was used to measure the amount of CCL2 mRNA produced by
the cells. The data represent the average and standard error of at least three separate
experiments. Where indicated (*) p < .05 using Student's t-Test relative to DC.
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To start, the user describes all the components in the cascade by
giving each one a unique name and a location (external to the cell, cell
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Fig. 2. Most of the genes encoding TLR signaling proteins were expressed at lower levels in 4T1
signaling proteins from TLR4 through the NFκB transcriptional factors. For all data gapdh was u
standard error of three separate experiments. Where indicated (*) p < .05 using Student's t-Tes
transcription of CCL2.
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membrane, cytoplasm, nucleus) and then selecting a shape and color so
that it can be visually distinguished. The next step is to describe the in-
teractions in the cascade by giving each one a unique name, the names of
the participating components and the resulting component if any. In
addition, the user has to specify any enabling or disabling (inhibitory)
interactions. If there is a component that should travel to another loca-
tion (e.g. from the cytoplasm into the nucleus) after an interaction, then a
new component is added to the list of components and this new
component in the nucleus is created as a result of the interaction.

The tool that we developed will then create a NetLogo programwhere
the “world” is divided into the four spaces - outside the cell, cell mem-
brane, cytoplasm, nucleus - and the component classes are instantiated in
their specified spaces. During each simulation time step, each component
will move in a random direction in the 3-D world. For each interaction in
the model, the tool generates code that will check if instances of the
specified components are physically adjacent and if they are, the pre-
conditions are then validated (the enabling interactions have occurred
and the disabling interactions have not). If all the conditions are met, the
interaction happens and the components change state and new compo-
nents are created as described by the interaction. In general, the
participating components will maintain their new state for some pre-
determined number of time steps and then revert to the original state.
Created components will exist for a pre-determined number of time steps
and then will decay.
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The tool has the advantage of allowing biologists to focus on model
construction rather than programming and also greatly speeds up the
process of developing an executable model. The tool is written in the
Scala language (version 2.12.6) and runs on the Ubuntu (16.04) oper-
ating system. The executable NetLogo programs were generated for the
NetLogo 6.0.1 environment.

3. Results

3.1. Tumor cells and DC exhibit a distinct response to a TLR4 agonist

To study the relationship between TLR signaling and cancer we
focused on the TLR4 signaling cascade in 4T1 murine mammary carci-
noma because it is a highly aggressive and metastatic tumor often used as
a model for stage IV disease in patients with breast cancer [7]. CCL2 was
assessed not only because it is downstream of the TLR4 signaling cascade,
but also because CCL2 expression has been correlated with breast cancer
progression in humans [8–10]. DC were used as a control because they
serve as excellent antigen presenting cells, theymake a strong response to
TLR agonists, their signaling cascades have been well described, and TLR
agonist treated DC are being used for cancer immunotherapy [11,12]. We
found that DC made a strong initial response to the TLR4 agonist LPS at
24 h, and then the response decreased after 48 and 72 h of treatment
(Fig. 1). On the contrary, the tumor cells exhibited a small response at
24 h, but then the response increased after 48 and 72 h of treatment
(Fig. 1). These data showed that the tumor cells and DC responded in a
Fig. 3. The model. A simplified model (a, b) shows two TLR4 signaling cascades in the presence
data) by 1000 to mimic cellular levels of TLR signaling proteins for the actual model. The mod
plasma membrane. The signaling cascades culminate in NFκB entering the nucleus to transcribe C
DC. Data for 350,000 time steps for each simulation is shown.
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distinct manner to a TLR4 agonist. We combined a computational and
molecular approach to pursue possible reasons for this difference.

3.2. Modeling the TLR signaling cascade

To construct a model of the TLR signaling cascade we quantitated
mRNA levels encoding 18 different TLR signaling proteins using quan-
titative RT-PCR. The majority (14/18) of the genes examined were
expressed at significantly greater levels by DC. The data showed that
TLR4, as well as other signaling proteins located near the cell surface
(MYD88, IRAK2, IRAK4 and TRAF6), were expressed at significantly
greater levels by DC (Fig. 2a), while TAB3, NFκB p52 and p65 were
expressed at greater levels by 4T1 (Fig. 2b and c). How these components
interact functionally in the cell and model is shown in Fig. 2d. Initially,
the cascade would begin when LPS binds TLR4 which would then result
in recruitment of the adaptor MYD88. Once MYD88 binds TLR4 then
IRAK2 and IRAK4 are able to bind MYD88 resulting in recruitment and
activation of TRAF6. The TRAF6/TAB/TAK complex can then inactivate
the NFκB inhibitor (IKBa) allowing NFκB to enter the nucleus and tran-
scribe CCL2. The relative gene expression levels from the qRT-PCR were
used to create a NetLogo model. The input boxes allowed the numbers to
be changed so that cellular responses to LPS with different levels of TLR
signaling proteins could be modeled, and the sliders allowed the number
of specific proteins recruited per signaling cascade to be adjusted.

Because there were so many proteins in the model we compared two
different size worlds, each of which represented a single cell, to
of two molecules of LPS. (c) We multiplied the relative gene concentration levels (qRT-PCR
el shows the outside of the cell where LPS interacts with TLR4 on the outer leaflet of the
CL2. (d) The model was used to determine how much CCL2 could be produced by 4T1 and



C.W. Liew et al. Computers in Biology and Medicine 93 (2018) 56–65
determine whether the density of the proteins affected the outcome of the
simulation. 4T1 had a total of 9305 TLR signaling proteins in the cyto-
plasm and 190 TLR4 in the plasma membrane. DC had 13,000 TLR
signaling proteins in the cytoplasm and 1000 TLR4 in the plasma mem-
brane so that the numbers were relative to the qRT-PCR data (Fig. 2a–c).
The volume of the big world (200� 62 x 64) was three times larger than
the volume of the small world (70� 62 x 64). The big world had a protein
concentration of 0.0117 proteins/unit3 in 4T1 and 0.0164 proteins/unit3

in DC, while the small world had a protein concentration of 0.0335
proteins/unit3 in 4T1 and 0.0468 proteins/unit3 in DC. In order to
determine howmuch CCL2 could be produced by the 4T1 and DCmodels
we ran each simulation for 500,000 steps. Snapshots of the model while
running are shown in Fig. 3a–c. The model shows the outside of the cell
where LPS interacts with TLR4 on the outer leaflet of the plasma mem-
brane. The signaling cascades culminate in NFκB entering the nucleus to
transcribe CCL2. Expression of CCL2 upon exposing the “cell” to LPS
(running the model) indicated that there were no basic programming
flaws and that the model was functional (Fig. 3d). The data showed that
the size of the modeled world did not affect CCL2 expression (data not
shown), yet data from the model (Fig. 3d) did not recapitulate data from
the laboratory experiment (Fig. 1).
3.3. Assessing the importance of NFkB

Because elevated levels of NFκB have been associated with many
tumors [17–19], and because NFκB is a transcriptional factor for CCL2
[20], we wanted to determine the extent to which NFκB levels were
associated with TLR4-induced CCL2 expression by the tumor cells and
whether modulating NFκB levels in the model would allow the modeling
data to recapitulate the experimental data. To evaluate the importance of
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NFκB for CCL2 production in the model we ran the simulation after
altering NFκB levels in 4T1 and DC. Intriguingly, the tumor cells and DC
responded differently to altered NFκB levels in the model. CCL2
expression by 4T1 was generally increased when NFκB levels were
increased, whereas CCL2 expression by DC was generally decreased
when NFκB levels were increased (Fig. 4a). These data showed that NFκB
levels were important for CCL2 expression in the model, but that we
could not modulate NFκB levels in a manner that would allow the data
from the model to recapitulate the experimental data. Because of these
results we further explored the importance of NFκB experimentally.
Initially we confirmed that the mRNA levels found by qRT-PCR (Fig. 2c)
were consistent with proteins levels. For this purpose we assessed the
relative levels of NFκB p50, p52, p65, cREL and RELB by western blot
(Fig. 4b). Densitometry analysis of the data revealed a pattern of protein
expression similar to mRNA expression (Figs. 4c and 2c). RELB was the
one exception which exhibited lower mRNA levels compared to the DC
(Fig. 2c), but higher protein levels (Fig. 4c). To experimentally evaluate
whether any of the NFκB proteins were important for CCL2 expression by
the tumor cells we used RNA interference and found that targeting NFκB
p65 led to a significant decrease in CCL2 expression following LPS
treatment (Fig. 4d). Collectively, these data indicated that NFκB levels, as
evaluated with the model and laboratory experiments, were important
for CCL2 production, but that modulating NFκB levels could not help
align the modeling data with the experimental data.
3.4. Additional improvements to the model

One protein that could be modulated to better align the modeling and
experimental data was TAB3. When TAB3 levels were modulated in the
4T1 model we found that there was not much difference in CCL2
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expression except at the highest level of TAB3 (2500) for which there was
no CCL2 expression (Fig. 5a). Modulating TAB3 levels in the DC model
showed results similar to what was found when NFκB levels were
modulated in DC; increasing the level of TAB3 resulted in lower CCL2
expression (Fig. 5b). Moreover, when comparing the level of CCL2
expression when there was a high level of TAB3 in 4T1 and a low level of
TAB3 in DC, which was similar to the experimental data (Fig. 2b), we
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found that DC initially expressed more CCL2 than 4T1, and there was a
delayed increase in CCL2 expression by 4T1 (Fig. 5c). These data from
the model looked similar to the experimental data (Fig. 1) which also
showed DC initially expressed more CCL2 than 4T1, and there was a
delayed increase in CCL2 expression by 4T1. We also investigated
whether modulating NFκB levels with the new TAB3 levels could further
improve the model and found that increasing NFκB levels resulted in
lower levels of CCL2 production for 4T1, and made the CCL2 levels rise
and fall faster in DC. In short, modulating NFκB levels could not improve
the model beyond what is shown in Fig. 5c.

One final improvement to the model was to incorporate negative
regulation of TLR signaling. To determine how to model negative regu-
lation of TLR signaling we began with DC since they make a prototypical
response to TLR agonists. We screened DC for expression of three possible
negative regulators of TLR signaling; MYD88s, RP-105 and IRAKM.
IRAKM expression increased 48–72 h following TLR4 agonist treatment;
the pattern expected of a negative regulator (Fig. 6a). IRAKM was not
expressed by the tumor cells even after 72 h of agonist treatment
(Fig. 6b). Moreover, if IRAKM expression was blocked in DC with siRNA
then after 72 h of LPS treatment the relative expression of CCL2 by DC
was 15� 6.0, similar to the relative expression of CCL2 by 4T1 which
was 16� 4.9 (Fig. 6c). In short, inhibition of this negative regulator
resulted in maintaining elevated levels of CCL2 expression. These data
are consistent with the ability of IRAKM to function as a negative regu-
lator of TLR signaling in DC, and suggest that this negative regulator was
missing in the tumor cells. Incorporating IRAKM as a negative regulator
further improved the ability of the model to recapitulate the experi-
mental data. When IRAKMwas added to the model DC initially expressed
more CCL2 than 4T1, and then as CCL2 expression decreased in DC the
CCL2 expression increased in 4T1 (Fig. 6d); results that were similar to
the experimental data (Fig. 1).

3.5. Other factors not taken into account by the model

Although we included NFκB in the model as a transcriptional factor
for CCL2, in reality the CCL2 promoter includes binding sites for addi-
tional transcriptional factors. We investigated expression of other CCL2
transcriptional factors to delineate whether there were additional dif-
ferences between the tumor cells and DC that we did not incorporate into
the model. This analysis revealed that 4T1 expressed significantly more
mRNA encoding JUN, FOS and ETS1 than DC, and significantly less
STAT5 and CEPBb than DC (Fig. 7a).

Finally, we investigated a combination of two signaling cascades and
expression of another pro-inflammatory cytokine. For this purpose we
stimulated 4T1 and DC with the TLR4 agonist LPS followed by either
nigericin or ATP to activate inflammasome signaling and assessed pro-
duction of IL-1β. In this case DC produced significantly more IL-1β than
4T1 (Fig. 7b). Assessing IL-1β expression in the tumor cells over a range
of times (24–120 h) failed to reveal detectable IL-1β expression (data not
shown). Thus, the signaling cascades culminating in IL-1β expression did
not appear functional in the tumor cells. Overall, these data indicate that
incorporating additional transcriptional factors, and additional signaling
cascades into the model may improve the versatility and utility of the
model.

4. Discussion

Previously we reported that varying the dose, length, or frequency of
LPS treatment led to different TLR signaling responses in 4T1 and DC,
and that this may have been related to differential expression of TLR4,
CD14, MYD88 and TRAM [21]. We also found that, depending upon the
conditions, TLR signaling could either enhance or suppress tumor growth
[21]. Subsequently, we explored the effects of reducing TLR4 andMYD88
expression in mammary carcinoma and found that it led to slower tumor
progression, and a decrease in CCL2 expression [22]. Because of the
complexity of the TLR signaling cascade, and because this lack of
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understanding can have serious implications if TLR signaling is modu-
lated in a tumor setting where both types of cells are present, we set out
to create a computational model of the TLR4 signaling cascade that could
be used to gain a greater understanding of how this signaling cascade
differs between tumor cells and normal white blood cells.

The term world in NetLogo was used to describe the modeled “cell”
and its components. In the early stages we began with a base model made
in a 2 dimensional (2D) world (the modeled cell). We then changed the
model into 3D because the 2D world could not accommodate the amount
of TLR4 on the cell surface, and the 3D system reflects a more accurate
model of a cell where proteins are capable of moving along 3 dimensions.
Protein motion was modeled as Brownian motion and was confirmed by
tracking protein movement using “pen-down” to insure that movement
was random and distributed throughout the cell. We also explored
different sizes of the world and chose the dimensions that allowed dis-
tribution of proteins so that they did not overlap with one another. One
goal for the model was versatility. For instance, the user could change the
level of any signaling protein by changing the level in the NetLogo boxes
or adjusting the sliders to regulate the amount of proteins recruited per
signaling cascade. Thus, anyone could adjust the TLR signaling compo-
nents to the level found in their particular cell line and then the model
would show howmuch CCL2 would be produced upon exposure to a TLR
agonist.

Once generated, the model was used to determine how much CCL2
DC and 4T1 would produce upon TLR signaling. In short, after adjusting
the level of TAB3 we were able to generate data with the model that were
similar to the experimental data. Incorporation of IRAKM as a negative
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regulator of TLR signaling further improved the ability of the model to
generate data that were more consistent with the experimental data. This
negative feedback is particularly important for cells of the defense system
such as DC since too much, or prolonged inflammation can be detri-
mental to the host [23,24]. The lack of IRAKM as a negative regulator for
TLR signaling in 4T1 was also interesting because many tumors consti-
tutively express pro-inflammatory proteins which contribute to the
chronic inflammation associated with many cancers [25,26]. The lack of
feedback inhibition in tumor cells may help explain these findings.

One aspect difficult to reconcile is that we used mRNA levels to
predict protein levels. While we did not assess all of the proteins, we did
directly compare mRNA and protein levels for NFκB and, with the
exception of RELB, we found strong agreement between the numbers.
The discrepancy with RELBmay be due to the extremely low levels of this
protein to begin with. Although more work is needed to determine how
protein concentrations coincide with RNA levels for other proteins used
in the model we believe qRT-PCR data is the most simple and automatic
way to set the model parameters since it is reliable and widely available
to biologists. While other methods (i.e. RNA Seq, western blot, gener-
ating cell lines with transcriptional reporter systems) can be used, these
methods are slower, more costly, more variable between different labs,
and not as widely available as qRT-PCR.

We identified several ways that the model may be further improved to
provide more accurate predictions of CCL2 production. For instance, one
way to improve the model would be to address where the proteins are
located within the cell. For our model, we segregated proteins to the
plasma membrane, cytoplasm, or nucleus allowing proteins to migrate
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freely within these areas by Brownian movement. This approach is not
optimal for all of the TLR signaling components which may be prefer-
entially localized to particular areas of the cell. As a result, adding a
cytoskeletal network and organelles would allow proteins to be localized
to more confined regions of the cell and may also further improve the
model. Perhaps the most critical and complex issue to address is the in-
teractions between multiple signaling cascades. Our model did not take
into account CCL2 transcriptional factors other than NFκB. JUN, FOS and
ETS1 were expressed at significantly greater levels by the tumor cells
than DC, while STAT5 and CEPBb were expressed at significantly lower
levels. Determining the role of these transcriptional factors using gel shift
assays and site directed mutagenesis would be crucial to determining the
importance of these transcriptional factors for CCL2 production. Incor-
poration of such data may be used to generate an even more realistic
model for TLR signaling. Yet, this would also require a much more so-
phisticated model which would allow multiple interconnected signaling
cascades to interact. Indeed, our data, and the data of others, support the
contention that signaling through two signaling cascades may result in a
different response than a signal through one cascade. Since a cell would
likely encounter multiple signals at any given time under normal con-
ditions in vivo a computational modeling-based approach to evaluating
how, and the extent to which multiple cascades interact may reveal a
more complete understanding of cell signaling. We are currently working
on a system that will allow this.

In summary, our model allows a user to change the level of any of the
TLR signaling proteins and quickly learn how the altered protein levels
64
influence CCL2 expression. The data from the model was capable of
recapitulating the data from the laboratory experiments. While devel-
oping the model we learned that NFκB, TAB3, and negative feedback
were important for modeling CCL2 expression. The experimental data
suggested that the tumor cells lacked negative regulation of TLR
signaling. This is an area that requires further study because if similar
results are found in additional tumor cell lines then these data may help
explain why many tumors constitutively express pro-inflammatory cy-
tokines and contribute to chronic inflammatory responses [25,26]. We
are currently working on an experimental system that will allow us to
stimulate and evaluate the outcome of multiple interconnected signaling
cascades as well as a more versatile model that allows assessment of
multiple interconnected signaling cascades. Overall, while we continue
to improve the model, this study shows the practicality and utility of
combining a modeling and experimental approach for unraveling
signaling cascades.
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