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Abstract  
In this paper, we present a computer-simulation-based classroom unit designed to improve students’ 
causal reasoning about the effects of urban planning. Based on data collected in three separate 
implementations of this unit, we use Association Rule Mining (ARM) to assist in Knowledge Analysis 
(KA) of students’ responses to pre- and post-questions. We first define causal-nodes as a construct, 
and then qualitatively identify distinct causal-nodes in students’ responses. We then validate these 
nodes quantitatively within and between students’ responses. Finally, we compare changes in the 
association rules between these causal-nodes between pre- and post-responses in order to find 
changes in students’ explanations. This paper makes two distinct contributions: first, it shows a 
productive use of an existing computational method to aid in the analysis of conceptual change. Second, 
it contributes towards better understanding how to design for and analyse causal reasoning in social 
science education. 
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Causal Reasoning in the Social Studies 
The College, Career, and Civic Life (C3) Framework for Social Studies State Standards (NCSS, 2013) 
presents a new framework for K-12 social studies, emphasizing ‘student explanations’ and ‘complex 
causal reasoning’ in Social Studies. However, in contrast to a similar move in science education (NGSS 
Lead States, 2013), design and implementation of social studies curricular activities that focus on causal 
reasoning are presently understudied. This leaves two gaps that we think are important in the literature: 
first, how do we design to encourage and strengthen causal reasoning in social studies; and second, 
how do we study this thinking in a social studies context? 

In this paper we hope to contribute to these currently understudied goal by presenting a computationally-
assisted Knowledge Analysis (diSessa & Sherin, 2015) of students’ causal-explanations in response to 
pre- and post-questions as part of a unit of our own design, in which students used a computer 
simulation to learn about urban planning. The simulation and accompanying activities were designed to 
help students think causally about the social impact of urban planning decisions. Analysing students 
pre- and post-question responses, we identify a set of causal-nodes and use Association Rule Mining 
(ARM)  (Agrawal, Imieliński, & Swami, 1993) to look at how, at the classroom-level, these nodes are 
reorganized between pre- and post-responses. Based on our findings and discussion, we claim that 
ARM is a particularly well-suited approach to helping us in the analysis of student reasoning with a 
piecemeal view of knowledge and learning, and that it potentially can help us scale up Knowledge 
Analysis to larger dataset than it has currently been applied to. 

Research Questions 
In this paper, we address the following questions, 



Constructionism 2018, Vilnius, Lithuania 

275 

 

1. How can we design activities that improve students complex causal reasoning about social 
issues? 

2. What are the constituent parts of students’ causal-explanations when responding to questions 
about city planning? 

3. How are these parts assembled into larger explanation-structures, and how can ARM help us make 
sense of change in these explanatory structures? 

Why Association Rule Mining for Knowledge Analysis? 
Knowledge Analysis takes a piecemeal approach to understanding the mental representations of 
knowledge, and views reasoning as the assembly of these pieces in-the-moment (diSessa, 2002; 
diSessa & Sherin, 2015; diSessa & Sherin, 1998; Sherin, 2006; Sherin, Krakowski, & Lee, 2012). The 
purpose of KA is to provide an analytical space for better understanding knowledge and learning: In this 
view, briefly, learning is the acquisition of new knowledge pieces into a learners’ repertoire, and/or 
changes in the assembled constellations of these pieces. An important feature of a single knowledge 
piece, is that it can be combined with other knowledge pieces into essentially different, larger structures, 
and that the meaning of a network of knowledge pieces is an emergent property of these manifold 
structures. 

Likely due to the fine-grained nature of KA, most KA-oriented studies are based on somewhat small 
sample sizes. Recent work has moved to include more computational methods in the Learning Sciences 
(Martin & Sherin, 2013; Sherin, 2013). In contrast to Educational Data Mining’s focus on quantitatively 
assessing student thinking, this work has primarily focused on using computational methods to 
qualitatively better understand the process of learning or the constituent parts of conceptual change 
(Berland, Baker, & Blikstein, 2014; Blikstein, 2011), and on utilizing the power of computation to scale 
up the size of data. In this paper, we propose to use Association Rule Mining for a similar purpose: as 
a method for assisting us in a Knowledge Analysis, both as an approach to validating the causal-nodes 
that we identify in students, and as a way of scaling up KA to help us look at learning at the classroom-
level.  

Association Rule Mining (Agrawal et al., 1993) is a method for understanding co-occurrences between 
elements in a set of data. More specifically, an ARM-analysis takes a set of ‘transactions’ that each 
include some elements, and then calculates, across all these transactions, how well the presence of 
one particular element in a transaction predicts the presence of another element in a transaction. We 
believe that ARM’s focus on looking at the co-occurrence of individual items makes it particularly well-
suited for helping us in analyses of students thinking with a piecemeal view of knowledge: If we view 
student whole explanations as transactions, and knowledge-pieces as the individual elements in these 
transactions, we can use ARM to better understand the changes in students’ reasoning both at the 
individual- and at the classroom-level by calculating if and how these pieces are reassembled over time. 

Previous use of simulation in urban planning education 
Simulations have been used for SimCity in particular has received attention since the early-1990s as a 
teaching tool in formal education that involves urban planning or thinking about cities (Adams, 1998; 
Dorn, 1989; Gaber, 2007; Kolson, 1996; Pahl, 1991).  Early uses of SimCity focused on two different 
aspects. The first sought to make a general case for using commercial computer simulations games in 
education (Shaffer, Squire, Halverson, & Gee, 2004; Shaffer, 2006; Shaffer, 2006; Squire, 2003) and 
sought to show how the well-designed and engaging commercial games would make school fun for 
children. The other focused on simulation literacy (Gee, 2003, 2007; Turkle, 1997), and its specific 
interest was in how (or if) children engaged with the ideological assumptions programmed into the city. 
More recent work has focused using SimCity in formal urban planning education at the college or 
graduate level: how to align SimCity with formal curriculum and use it as an introductory tools at the 
college and graduate level (Bereitschaft, 2016; Devisch, 2008); how SimCity can help urban planning 
students engage with their own creativity (Kim & Shin, 2016); or as a reflective tool to improve on urban 
planning pedagogy itself (Kim & Shin, 2016). 
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However, while simulation of causal mechanisms are at the very core of the representational power of 
simulation games  (Frasca, 2001, 2003; Squire, 2003), none of the reviewed work has focused 
specifically on causal reasoning. Thus, while simulations in general and SimCity in particular have seen 
use in education, this work does not address the specific need created by NCSS (2013) for a conceptual 
framework for analysing and measuring learners’ complex causal reasoning. One aim and contribution 
of this paper is to fill out this gap in the literature and explore how to design simulations to help students 
improve on their complex causal reasoning about complex social phenomena. We previously reported 
on qualitative findings from pilot data from this study (Hjorth & Wilensky, 2014a, 2014b; Hjorth & Krist, 
2016), but have now collected enough data to take quantitative approaches like this as well. 

The Design & Study 
The data in this paper come from a unit that we designed on Urban Development and Regional Planning 
and which we implemented during two quarters at the undergraduate level at a mid-sized, private 
research university in a metropolitan area in the American Midwest. The course was called, ‘Introduction 
to Social Policy’ and is required for Social Policy majors. Students were given course credit equivalent 
to one course essay for participating. In this paper, we focus on students’ pre- and post-responses to a 
question about how urban planning affects the distribution of commute times for different income groups. 
Over the span of three implementations, a total of 60 students consented. We sent out the pre-
questionnaire 10 days before class in which we used the model, and we sent out the post-questionnaire 
10 days after class had finished, and students typically responded within two days. Not all students 
responded to our questions, and we had some attrition between pre- and post-, and during students’ 
responding to questionnaires due to technical problems. In the end, we had 41 students who responded 
to both the pre- and the post-question. 

Our Design and Activity 
We designed a unit that ran over the span of two class periods in which students use a NetLogo 
(Wilensky, 1999) simulation to build cities. Before the simulation activity, the professor (who was not 
part of the research team) first led a 45-minute discussion about why people live where they live. The 
purpose of this discussion was to cue students’ causal reasoning about the role of human decisions, 
and how these decisions play a causal role in the emergence of economically segregated 
neighborhoods. Students then worked together in groups of three over a period of about an hour and a 
half, using the simulation. 

The simulation and activity were designed to help students iteratively improve their causal-
understanding. We did this by letting students iteratively articulate a causal-explanation, test it, and 
potentially revise it. This was achieved by designing an iterative, four-phase activity:  

1. The Design Phase 
The primary purpose of the design phase was to prompt students to reason causally about how to 
design a city that meets a set of measurable policy goals. Students were first asked to write a set goals 
for their city. This included specifying which one of three policy outcomes – commute times, local 
neighbourhood school funding, and access to parks & leisure areas – to focus on, and setting 
measurable goals for that outcome. Examples include, “We want everybody to have less than 30-minute 
commute time”, or “We want the poorest 20% to have as much funding for schools as the wealthiest 
20%”. They would then be asked to describe how they would achieve these goals. Students responded 
along the lines of, “We will put highways everywhere so there are enough roads for everybody”, or “We 
will put parks all over the city to make it attractive for wealthy people to live anywhere so their property 
taxes are spread out across the city.” (Schools are primarily funded through property taxes in most of 
the US.) 

2. The Implementation Phase 
During the Implantation Phase, students built their cities inside the simulation. The simulation is 
designed to let students do this in various ways: Students designate zoning in the city, specifying the 
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density of dwellings, and making certain areas more or less desirable and relatedly more or less 
expensive to live in. They can also put parks in the city, or build railroads or highways for people to 
commute on. Finally, they designate certain parts of the city as ‘Industrial areas’ where jobs will be 
located. 

3. The Growing Phase 
The purpose of the Growing Phase was to let students see the dynamic effects of their design decisions. 
During the Growing Phase, the computer model simulates and visualize how (AI-based) computer-
agents move into the city that students built. These agents have different income levels and different 
job locations and make decisions about where to live based on affordability, desirability, and distance 
to their job. When agents move into an area, their income is reflected in the house prices of nearby 
areas, so if a wealthy person moves into a neighbourhood, house prices go up, and vice versa. Agents 
also use the roads near them to go to work, and the more agents use a road, the more congested it 
gets, making nearby areas less attractive.  

4. The Data Analysis Phase 
The purpose of the Data Analysis phase was two-fold: first, it was for students to use data as a means 
of assessing the success of their city; and second, for students to potentially revise their causal-
understanding of the model in the cases when their cities did not meet their policy goals. There are two 
different ways in which data can be visualized in the model: one is spatial, and the other is with bar 
charts. They provide different perspectives on the same questions, but it is often necessary to look at 
both in order to really make sense of how the city evolved. Bar charts showed how each income decile 
was affected by each of the three policy outcomes measures, and the map helped students visualize 
the geographic distribution of how people were impacted by the policy outcomes. 

Data & Analysis 
The student responses that we focus on in this paper were all in response to the question,  

“Can you explain why a wealthy person’s income might make their commute time longer than 
a poor person’s?”  
A conventional explanation, consistent with real-world data, could include a variety of factors and sound 
something along the lines of, “In American cities, higher-income people often live in suburbs, because 
they can afford to buy houses there, and because they can afford to own cars that allow them to 
commute between their workplace in the city and the suburbs that often have no public transit options. 
They choose to do so because they want to live in places that they perceive as safe, and have well-
funded public schools. High paying jobs are often located in the downtown areas of cities, and 
consequently high-income people must make the commute in and out, often on congested roads due 
to the number of people who also commute in and out at the same time”. While it is true that some high-
income people live closer to their jobs than some low-income people – in part because they can afford 
more freedom to choose where to live, and where to work – the result is nonetheless that higher income 
people typically have longer commutes, but with a large spread in a bimodal distribution. We were 
curious about how students would reason about it exactly because it contrasts many people’s initial 
assumption that a higher income leads to more desirable outcomes by all measures. 

While some KA-approaches have strict, conceptual selection criteria for the pieces they identify 
(diSessa, 1993), in this study, we take a pragmatic and somewhat promiscuous approach to identifying 
the individual knowledge-pieces. Rather than looking for a particular grain size or ontogenetic origin, we 
used ‘causality’ as a sensitizing concept (Miles & Huberman, 1994) when identifying knowledge-pieces 
in students’ explanations, and looked for parts of their explanation that we could put “because… “ in 
front of. Because our knowledge-pieces relate to students’ reasoning about causality, and inspired by 
Sherin, Krakowski and Lee’s (Sherin et al., 2012) node-mode approach towards a more permissive 
inclusion of students’ knowledge-pieces, in the following, we will refer to them as ‘causal-nodes’. 
Further, we will refer to the process of using a casual-node when constructing an explanation as 
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‘activating’ that causal-node, and we call the process of combining causal-nodes into larger explanations 
as ‘co-activating’ those causal-nodes. 

Causal-Nodes and Student Response Examples 
To give the reader a sense of what causal-nodes in our data look like, we provide some examples of 
student responses and connect them to our causal-nodes. The student responses are always 
reproduced in full, and as the student wrote them. Across all 82 responses (41 pre- and post-responses) 
our first round of coding identified 21 different causal-nodes. We iteratively condensed this set twice, 
eliminating similar codes, eventually arriving at a total of 9 different causal-nodes. Table 1 provides a 
description of all nine causal-nodes, grouped by what we think of as three interesting types: the first 
relates to the geographic location of people and their jobs. The next group relates to how a person’s 
income affects their actual commute – either by influencing their available modes of transportation, or 
things that affect their commute speed. The final type relates to the wants or desires of people, and how 
having money better allows high income people to fulfill them.  

As Table 1 (next page) shows, the most frequent causal-nodes were the ones that deal with the 
geographic location of people and jobs. Consider the following response, 

A wealthy person has greater freedom to choose where to live and often wealthier neighborhoods are 
in suburbs away from urban areas. (S2-post) 

In this response, we see two different causal-nodes: first, that money gives people more choice, and 
second, that suburban areas in which wealthy people choose to live are geographically far from urban 
areas. However, the response does not explicate exactly how these two causal-nodes end up resulting 
in longer commute times for higher income people. In contrast, consider this elaborate student 
response, 

Often wealthy people live in a suburb outside of the city because they can afford a house 
out there and the schools are often better. They also often work in the city at a job that is 
paying them enough to be able to afford to live in the suburbs. Another big thing is that more 
wealthy people can afford a car or are able to pay for the train everyday so that they can 
live far away from their work. (S7-post) 

This response contains the same two causal-nodes as the previous response: people with more money 
have more choice, and they choose to live in suburbs. However, we see additional causal-nodes in this 
response: first, the response explicitly states that their jobs can be in the city; second, that this causes 
them to have to travel a larger geographical distance; and finally, that owning a car is expensive and 
that wealthy people can afford to own one (or afford to take commuter trains.) These were somewhat 
typical responses, but they show how he different constellations of casual-nodes can result in different 
responses, or in similar kinds of responses with variations in what students focus on. We also saw 
responses that focused more on practical issues relating to the process of commuting, 

A wealthy person probably commutes by driving his or her own car.  A person in a car is 
subject to traffic from stoplights and other vehicles.  Trains, on the other hand, can travel at 
a quicker rate and also don't have to stop at lights or wait for other vehicles. (S37-post) 

This response does not activate any of the geographic location-related nodes, but focuses purely on 
the commute-related ones. However, we also saw some responses that seemed to activate different 
causal-nodes that included perceived differences between why wealthy people choose to do what they 
do, even in the face of a longer commute time, 

If they choose to live in a suburb or nice area that is farther for work because of the 
neighborhood or home or school system. They also more likely have ways to commute 
comfortably and efficiently. (S23-post) 

Students that reasoned about why wealthy people make the choices that they do often focused on their 
perceived better school systems, more green areas or nicer houses in suburbs. But we also saw a few 
responses that essentialized different characteristics or desires in low- and high-income people. For 
instance, in this response, 
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They might have more time to spend on leisure, and might not be in a rush. Since they make 
enough money, they don't have to work as much. (S10-pre) 

Table 1. Causal-nodes and descriptive statistics 

the student seems to construct an explanation around an assumption that higher income people 
somehow don’t feel the same sense of urgency, or that they have a different set of preferences around 
their choices when it comes to commute times.  

As the examples above hopefully illustrate, we saw a large variety in the types of student responses, 
and in the ways in which we see them activate and co-activate various causal-nodes. Some student 
responses only included causal-nodes from one or two of the three causal-node groups, while others 
mixed them across groups.  

Validation: Are these Knowledge-Pieces? 
KA views knowledge as constructed in the moment through the assembly of knowledge pieces. 
However, it does of course not view this process as random. Rather, taking a Knowledge Analysis 
approach to making sense of student reasoning, we would expect to see three different properties 
relating to the consistency of the nodes that we identify: 

Node_I
D 

Causal-Nodes (‘Because…’) Pre-
frequency 

Post-
frequency 

Within-
person 
stability 

Combinability 

Group 1: Geographic/Spatial Location 

0 High income people live in suburbs 
/ low income people live in the 
cities 

0.73 0.83 1.13 8 / 8 

1 Jobs are located in cities, not in 
suburbs 0.46 0.49 1.19 8 / 8 

2 High income people may live 
further from workplaces / Low 
income people might live closer to 
workplaces 

0.63 0.59 1.12 8 / 8 

Group 2: Commute-Related  

3 Buying/owning a car is expensive 0.1 0.1 5.12 7 / 8 

4 High income people more likely to 
own and commute by car 0.1 0.05 5.12 5 / 8 

5 Expressways/highways can be 
congested, or driving can be slow 0.34 0.2 2.56 7 / 8 

Group 3: Desires or Possibilities relating to Income 

6 High income people have more 
choice / low-income people have 
less choice 

0.59 0.59 1.14 8 / 8 

7 Wealthy people care less about 
commute time / are willing to 
commute longer 

0.12 0.07 2.73 6 / 8 

8 People want to live in safe areas or 
places with more space or green 
areas or better schools or nicer 
houses 

0.39 0.34 1.1 7 / 8 
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The pieces should be found somewhat frequently in a specific population that reasons about a given 
domain or question (i.e. ‘frequency between people’). This would indicate that these are more general 
thinking-bits, and not only parts of one person’s idiosyncratic way of thinking. 
The pieces should be generatively combinable, meaning they should be combinable into different kinds 
of explanations (i.e. frequency between different explanations). This would indicate that they are truly 
‘pieces’, and not in themselves larger explanations. Finally, 
Even though individuals might acquire new nodes and/or reorganize their existing ones, we would 
expect there to be some degree of stability in the knowledge-nodes that students activate when 
responding to a similar question in a short timeframe (i.e. ‘frequency within people’). This would indicate 
that these are parts of somewhat stable knowledge structures, and not completely randomly selected 
when the student is prompted to answer a question. 

Validating Frequency Between People 
This criterion is straight forward to validate. We calculated the frequency of each node in pre- and post-
responses. The results can be seen in Error! Reference source not found. in respectively pre- and 
post-frequency. We see that even the least frequent of our codes appear in at least 10% of responses 
in either pre- or post. While the exact cut off for this rule is contestable, we believe that seeing the 
activation of a causal-node at some point in time across 10% of responses seems like a reasonable 
number. 

Validating Frequency between Different Explanations 
There are two different ways in which this can be validated. First, a very simple quantitative statistic 
showing with how many of the other 8 causal-nodes that we see each node co-occur. In the 
‘combinability’-column in Error! Reference source not found., we show how many other causal-nodes 
we see each causal-node co-occur with across all responses. Even the least frequent causal-nodes (3 
and 4) are used respectively with 7 and 5 of the other 8 casual-nodes, suggesting that these nodes can 
be mixed and matched in many different ways. Second, as we showed in the previous section, causal-
nodes were combined into different constellations of explanations that changed the function of the of 
the individual causal-node in the larger reasoning structure. In other words, we see this combinability 
both quantitatively and qualitatively. 

Validating Frequency Within People  
Finally, we expect there to be some stability in the causal-nodes individuals activate in their pre- and 
post-responses. What we should address then is, does activating a causal-node in a pre-response 
better predict that a person also activates it in their post-response than we would expect to see if people 
randomly activated causal-nodes in their responses. For each of the causal-nodes, we calculated the 
conditional probability that people who activated it in their pre-response also activated it in their post-
response and divided by the frequency of that causal-node in post-responses. If this ratio is greater than 
1, we see a higher than expected frequency amongst people who also activated the node in their pre-
response. As can be seen in the “stability” column, all causal-nodes had a higher than expected degree 
of stability between pre- and post-responses.  

Findings: Association Rule Changes 
Now that we have identified students’ causal-nodes and hopefully made a convincing argument that 
these are, indeed, knowledge-pieces of some sort, we can run an Association Rule Mining on our data. 
The primary output of an ARM are so-called association-rules. They take the form of, “if a student 
activated causal-nodes X and Y, we observed that they also activated causal-nodes A and B with a 
confidence of P, a support of S, and a lift of L”. ARM calculates the association-rules for all possible 
combinations across all responses. Since we have 10 different codes, and each of them can either be 
present or not, we end up with a total of 2^10 = 1,024 combinations – too many rules to read through in 
any meaningful way. ARM assists us in navigating this large analytical space by providing three metrics, 
confidence, support, and lift, that each help identify interesting and important rules: Confidence 
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calculates how well the presence of one set of causal-nodes predicts another set of rules, or more 
formally: the conditional probability that a set of causal-nodes are activated, given the activation of 
another set of causal-nodes. However, confidence does not consider the aggregate frequencies of 
causal-nodes, and thus it often overestimates the confidence with which a less frequent causal-node 
predicts a more frequent one and vice versa.  

Table 2. Two Examples of Association Rules (bolded text indicates why they were chosen) 

Support and lift help us filter out rules in two related ways: support simply calculates how often, across 
the dataset, we see a particular combination of causal-nodes. Lift enhances the confidence 
measurement by calculating the ratio between observed confidence and the expected confidence, given 
the independent probabilities of each of the two sets of codes. (This is the same approach we used for 
calculating the within-person stability in the previous section.)  Consequently, as we are interested in 
looking at changes in how students co-activate causal-nodes, the immediately most important 
measurement is change in lift between pre- and post-responses, but looking at lift isolated in pre- or in 
post- can also help us understand what kinds of constellations of causal-nodes students bring to the 
unit, and which ones they leave with. We ran an ARM for pre- and post-responses separately, and then 
calculated the changes to confidence, support and lift between pre- and post-rules. To find interesting 
and frequent rules, we filtered out rules that had less than .15 support, and included only combinations 
that we observed in at least 7 out of 41 responses in both pre- and post-responses. A full account of all 
interesting rules is outside the scope of this paper, but in the following, we will give two examples of 
interesting rules, explain why we think they are interesting and why we chose them, and discuss what 
they tell us about changes in students’ thinking at the classroom level. 

R1: Connecting Job Location with Choice and Relative Distances 
R1 in Table 2 shows that students who reasoned that jobs are located in cities and not in suburbs were 
much more likely in the post-response than those who said so in the pre-response, to also say that high 
income people may live further from workplaces, and that high-income people have more choice. We 
chose this rule because it had the highest change in delta in our ARM. Of course, even when lift takes 
into account the expected frequencies, this change could have happened simply because fewer people 
activated any of the three causal-nodes in their post-responses, and those that did could be the ones 
spuriously “pulling up” the association rule. However, Table 1 tells us that the frequencies of all three 
codes are fairly stable from pre- to post- at the classroom level, and in Table 2 we even see a modest 
increase in support for R1, showing that in absolute numbers, more people co-activated the three 
causal-nodes in their pre-responses. To us, this indicates that R1 points to a robust change in students’ 
thinking at the classroom level towards connecting the location of typically higher-paying jobs with the 
choice and relative commute distances of higher income. 

Qualitatively, this is a particularly interesting rule to us, because it gets at the part of the question that 
most people find counter-intuitive: that high-income people often have longer commutes that low-
income people. Indeed, one of the reasons we designed the simulation activity was to let students 
change the infrastructure and the zoning of the city – including the relative position of residential zones 
and workplaces – to see how common city design patterns (e.g. dense city centres, “green” suburbs far 
away) lead to this distribution of commute times. While any firm conclusions about causality in this 
change in thinking would rely on a closer analysis of students’ activities during the simulation unit, we 
speculate that the focus on placement of zones in the model helped make this aspect of the 
phenomenon more salient to students.  

Rule 
Lift Confidence Support 

Pre Post Delta Pre Post Delta Pre Post Delta 

R1 1->2&6 0.84 1.17 0.3 0.37 0.40 0.03 0.17 0.20 0.02 

R2 1->0&8 1.21 1.37 0.15 0.47 0.40 -0.07 0.22 0.20 -0.02 
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Rule 2: Connecting Job Location & And the Desirability of Suburban Life 
R2 speaks to the relationship between causal-nodes 1, and 0 and 8. We chose this rule for two reasons: 
first, R2 has the highest lift in post-responses that we identified in any rule, and second, it is interesting 
because while we see a positive change in lift, we see a drop in confidence between pre- and post-. R2 
shows that students who said that jobs are located in cities and not in suburbs were more likely than 
expected to also say that wealthy people live in suburbs and that people want to live in places with 
green areas or good schools. However, as mentioned, we see an absolute drop in confidence, or 
predictive power, for this rule between pre- and post-. The drop in confidence on its own could mean 
that more people are activating causal-node 1 in the post-responses without an increase in the co-
activation of causal-nodes 0 and 8 in post-, or that fewer people are co-activating causal-nodes 0 and 
8 in the post-responses without a corresponding drop in the activation of causal-node 1. Table 1 shows 
that we do see an increase in the activation of causal-node 1 and a drop in causal node 8 between pre- 
and post-. However, we see an increase in causal node 0. To us, this is a good example of why looking 
at lift tells a more nuanced story, and why it is sometimes easier to read association rules backwards 
when trying to make sense of them: While slightly fewer people co-activated all three causal-nodes in 
the post-response, the strongest predictor of whether someone did was whether they activated causal-
node 1. In other words, this shows a convergence across the classroom on the inclusion of causal-node 
1 by those who also co-activated causal-nodes 0 and 8. 

Qualitatively, this rule is interesting to us, because it shows how students reason not just about the 
relative position of jobs and residential areas or about high-income people having more choices. It also 
shows how they perform a kind of meta-reasoning or perspective-taking: reasoning about how other 
people reason about where to live, and how students then activate this reasoning with the rest of causal-
nodes. While we do see a strengthening of this particular association rule, we see an overall drop in the 
activation of causal-node 8. We think perspective-taking is important when reasoning about policy 
outcomes, and had hoped that our design would have encouraged more of this thinking. We speculate 
that this might be due to how the underlying logic of the AI agents in the simulation activity was hidden 
from students, and will in future implementations explore how we can forefront the AI and make this 
aspect more visible to students. 

Discussion, Limitations, and Conclusion 
Using Association Rule Mining helped us better identify interesting patterns in changes in students’ 
assembly of causal-nodes into larger explanatory structures, and gave us both some statistics and a 
vocabulary for measuring and discussing which of these changes were interesting and significant. We 
found that students’ responses seemed converge around particular co-activations, and we speculated 
how the collaborative simulation activity might have influenced their thinking, and how we could improve 
on the design. We hope to have provided evidence for our assertion that Association Rule Mining can 
be a powerful addition to the qualitative researchers’ toolbelt when taking a Knowledge Analysis-inspired 
view of knowledge. In particular, we hope to have shown that ARM can be used in combination with 
manual qualitative coding to both validate the knowledge-pieces identified at the level of individual 
students, and show changes in the assembly at the classroom level. 

In contrast to KA’s focus on conceptual change at the level of individuals, we only looked at within-
student changes when we validated the stability of individual causal-nodes. In future work, we hope to 
use ARM to first identify important changes at the classroom level, and then use this as a starting point 
for a more in-depth analysis of the reorganization of knowledge-pieces at the level of individual students. 
In additional contrast to KA, our knowledge pieces are somewhat less fine-grained, and as we 
mentioned previously, we took a very permissive approach to coding students’ responses. We hope in 
the future to apply ARM to a both more fine-grained, and more conceptually coherently uniform set of 
knowledge-pieces. 

Because this use of ARM is new, we have limited understanding of exactly how to interpret the stability 
and change in changes in thinking at the classroom level. Our baseline for comparing changes is always 
the expected outcome, i.e. the general frequency of a set of causal-nodes in the post-responses. 
However, we hope to do similar kinds of analyses on more data from this and other reasoning tasks 
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over longer periods of time, and start work on better understanding and measuring the change and 
stability in knowledge structures, and potentially develop more generally applicable measures. 

 An important limitation of this study is that students were all attending a private mid-western 
university, and almost all students reported to have grown up in suburbs. Consequently, the causal-
nodes that we identified should be considered expressions of a particular, and fairly limited experience 
of the world. We hope to expand on this by collecting similar data from other socio-economic or 
geographic groups. 

We do not wish to claim that an ARM can stand on its own as an analysis of student reasoning. But we 
believe that it provides a tool for measuring and discussing changes in thinking at the classroom level 
while still anchoring the unit of analysis in a KA-approach to knowledge and thinking that respects the 
multitude ways in which students can assemble their knowledge. Consequently, we hope that it will find 
an appropriate place in the computational methods toolbelt of the Learning Sciences. 
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