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Abstract 1 

What evolutionary account explains our capacity to reason mathematically? Identifying the 2 
biological provenance of mathematical thinking would bear on education, because we could 3 
then design learning environments that simulate ecologically authentic conditions for 4 
leveraging this universal phylogenetic inclination. The ancient mechanism coopted for 5 
mathematical activity, I propose, is our fundamental organismic capacity to improve our 6 
sensorimotor engagement with the environment by detecting, generating, and maintaining 7 
goal-oriented perceptual structures regulating action, whether actual or imaginary. As such, 8 
the phenomenology of grasping a mathematical notion is literally that—gripping the 9 
environment in a new way that promotes interaction. To argue for the plausibility of my 10 
thesis, I first survey embodiment literature to implicate cognition as constituted in 11 
perceptuomotor engagement. Then, I summarize findings from a design-based research 12 
project investigating relations between learning to move in new ways and learning to reason 13 
mathematically about these conceptual choreographies. As such, the project proposes 14 
educational implications of enactivist evolutionary biology. 15 

16 



 

Grasp Actually: An Evolutionist Argument for Enactivist Mathematics Education 17 

My interest in immediate coping does not mean that I deny 18 
the importance of deliberation and analysis. My point is that 19 
it is important to understand the role and relevance of both 20 
cognitive modes. (Varela, 1999, p. 18) 21 

Preamble: Attentional Anchors Grounding Mathematical Notions 22 

The reader is kindly invited to partake in a brief activity that should help us immediately establish 23 
some essential common ground with regards to a key hypothetical construct, an attentional anchor, 24 
that is thematic to the argument put forth in this paper. Please imagine a large L-shape inscribed on 25 
your desk. You may wish to mark this L-shape on paper, but you need not. The L-shape is composed 26 
of a vertical line and a horizontal line. Viewed as a y-axis and x-axis, respectively, this L suggests the 27 
first quadrant of the Cartesian plane. Your task is as follows. Place the index fingertips of both your 28 
left-hand (LH) and right-hand (RH) at the origin (the L’s corner). Now, move LH up/down along the y-29 
axis, even as you move RH right/left along the x-axis, with the additional caveat that RH’s distance 30 
from the origin is always double LH’s distance from the origin. In a sense, you are asked to move RH 31 
twice as fast as LH, thus coordinating your hands’ motor action simultaneously, orthogonally, 32 
proportionately. 33 

Most people find it quite challenging to enact this bimanual movement. Yet, as we have learned from 34 
the mouths of our 10-year-old study participants, performing this task can be dramatically facilitated, 35 
if you now introduce an auxiliary construction into the activity space. Begin by positioning LH and RH 36 
at any pair of 1:2 distances from the origin. Now, imagine a diagonal line connecting LH and RH. 37 
Notice this diagonal’s acute angle with the x-axis. Then, move this imaginary LH–RH diagonal 38 
connector to the right, all the while keeping constant its angle to the horizontal axis. It is as though 39 
you are dilating a right triangle composed of two legs extending along the axes and an elongating 40 
diagonal as the hypotenuse. When we track the eye gaze of people engaged in this activity, we note 41 
that their attention deflects away from their hands and onto the diagonal, as though it is a new thing 42 
that they are handling. This new phenomenal object has inherent properties, such as its length, and it 43 
has relational properties, such as its angle with the x-axis. As you displace this object along a 44 
horizontal trajectory, you keep its relational property of angularity invariant. You are thus self-45 
imposing a constraint on how you may move this object. Moreover, you can describe this imaginary 46 
object, get another person to perceive it (as I have got you to perceive it), see it as part of a larger 47 
mathematical composition (the right triangle), and even copy it with a pencil onto paper, measure it, 48 
and so on. 49 

How should we think of what you have just experienced and accomplished? Specifically, as you 50 
reflect on your engagement in this task, what is your phenomenology of your own cognitive activity? 51 
You were presented with a motor-control task. As you attempted to perform this task, you may have 52 
realized that it was taxing your cognitive capacity to coordinate two independent motor actions, to 53 
the point where it felt that meeting task requirements might require a different approach. I then 54 
offered you instructions for modifying how you were attending to the situation. This new attentional 55 
orientation toward your immediate environment gave you a new grip on the world: Perhaps 56 
perceiving the diagonal line let you enact the LH–RH 1:2 movement more effectively and smoothly. 57 



 

Hutto and Sánchez–García (2015) call these perceptual orientations, which facilitate the enactment 58 
of movement, attentional anchors—these orientations selectively foreground elements, regions, or 59 
other aspects of the environment to tighten our purposive interactions with the world. Attentional 60 
anchors may be discovered, as in the case of our study participants (Abrahamson & Trninic, 2015), 61 
cued (Liao & Masters, 2001; Newell & Ranganathan, 2010), as in our orthogonal-lines activity just 62 
now, or co-constructed (Shvarts & Abrahamson, 2019), as in tutorial sessions. Abrahamson and 63 
Sánchez–García (2016) claim that attentional anchors, while instrumental in solving motor-control 64 
impasses and thus enabling new feats in the physical practices, can also be experienced as new 65 
ontologies that reveal mathematical patterns, similar to the dilating right-triangles in our task. 66 
Duijzer, Shayan, Bakker, van der Schaaf, and Abrahamson (2017) used eye-tracking instruments to 67 
document the variety of attentional anchors that mathematics students discover spontaneously as 68 
their means of solving bimanual motor-control tasks. Bongers, Alberto, and Bakker (2018) have 69 
documented students creating paper-and-pencil representations of their attentional anchors, such as 70 
drawing the imaginary diagonal line, measuring it, and elaborating on this construction through 71 
arithmetic procedures. Similar results have been demonstrated with regards to other mathematical 72 
concepts, such as geometrical area (Shvarts, 2017), trigonometric functions (Alberto, Bakker, 73 
Walker–van Aalst, Boon, & Drijvers, 2019), and parabolas (Shvarts & Abrahamson, 2019). 74 

It thus appears that students can get a first grip on mathematical concepts by spontaneously 75 
conjuring new ways of attending to the environment (Hutto, Kirchhoff, & Abrahamson, 2015). 76 
Elsewhere, we have discussed these empirical findings from various theoretical perspectives, 77 
including ecological dynamics, enactivism, constructivism, and sociocultural theory, as these bear on 78 
mathematics-education research (for a review, see Abrahamson 2019). In the current conceptual 79 
paper, we step back to ask, What are the implications of these findings more broadly, with respect to 80 
epistemological theories of mathematical knowledge? At least within the learning environments that 81 
we have designed and investigated, it would appear that our natural capacity to improve our grip on 82 
the material or virtual environment by changing our perceptual orientation toward it could be 83 
implicated as our cognitive means of first grasping mathematical concepts. To the extent that this 84 
model is demonstrable more broadly across learning environments and concepts, and to the extent 85 
that empirical research continues to substantiate this model, one might then consider that the 86 
cultural practice of mathematical reasoning coopts the cognitive capacity for improving our 87 
perceptuomotor engagement in the environment. Ancient cognitive wherewithal is thus re-88 
instrumentalized to meet emergent cultural needs. The objective of our paper is to develop this idea 89 
of mathematical cognition as utilizing evolutionarily endowed perceptuomotor capacity. 90 

Objective: Motivating an Evolutionary Account of Mathematical Thinking 91 

What do we do when we do mathematics? The thrust of this paper is to promote the thesis that 92 
mathematical thinking, while, perhaps, a specialized cultural activity, draws on mundane cognitive 93 
capacity. Mathematical thinking draws on our biological species’ cognitive inclination to adapt our 94 
attentional orientation towards the environment to improve the efficacy of our purposive 95 
sensorimotor interactions. As such, when we learn new mathematical ideas, we use our primordial 96 
knack to get a better grip on stuff we’re handling, whether to eat it, control it, ply it, or wield it. 97 

I will argue for this position along conceptual, theoretical, and empirical veins. The conceptual vein 98 
looks to the foundations of evolutionary biology to motivate the premise that a species’ rarified 99 
cognitive skill can evolve as a co-opting of existing neural architecture. The theoretical vein will draw 100 



 

on literature from cognitive developmental psychology and enactivist philosophy that supports a 101 
view of cognition as constituted in situated, purposeful, multimodal interactions with the 102 
environment. The empirical vein will draw on analyses of data from design-based research studies of 103 
mathematical teaching and learning that evidence the emergence of attentional patterns regulating 104 
the motor enactment of complex bimanual movement—movement that is then pinned down as 105 
mathematical structure. 106 

A research problem concerning the origins of mathematical reasoning is worth considering, I 107 
maintain, both for its apparent intellectual merit and potential broader impact. Understanding the 108 
evolutionary roots of mathematical reasoning would advance the philosophy and theory of cognitive 109 
science, because the answers could inform the development of explanatory models accounting for 110 
qualities, prerequisites, processes, prospects, and limitations of mathematical reasoning. In turn, if 111 
we knew what this evolved capacity is, what it is for, and how it operates “in the wild,” perhaps we 112 
could better leverage it in the classroom. We could create and facilitate learning environments 113 
designed to let students exercise and appreciate this natural capacity, so that they can get and use 114 
mathematical ideas and create their own. 115 

Introduction: Conceptual Rationale for an Evolutionary Theory of Mathematical Cognition 116 

In his paradigm-changing On the Origin of Species by Means of Natural Selection, Charles Darwin 117 
(1859) posits the following to account for observed morphological variability in organic forms of an 118 
avian species distributed geographically over multiple habitats across an archipelago.  119 

[T]hese [material organic] parts [are] perhaps very simple in form; ….then natural selection, 120 
acting on some originally created form, will account for the infinite diversity in structure and 121 
function [of the forms]….Any change in function, which can be effected by insensibly small 122 
steps, is within the power of natural selection (pp. 435–456). 123 

More than a century later, Stephen Jay Gould and Elisabeth Vrba published in Paleobiology an article 124 
that put forth the neologism exaptations—species’ biological “characters, evolved for other usages 125 
(or for no function at all), and later ‘coopted’ for their current role” (Gould & Vrba, 1982, p. 6). Unlike 126 
the more familiar adaptations, where “Natural selection shapes the character for a current use” (p. 127 
5), exaptations coopt biological characters in one of two manners: (1) “A character, previously 128 
shaped by natural selection for a particular function (an adaptation), is coopted for a new use”; or (2) 129 
“A character whose origin cannot be ascribed to the direct action of natural selection (a 130 
nonaptation), is coopted for a current use” (p. 5). 131 

132 
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 134 

Figure 1. A black heron canopy-feeding: the bird coopts its flight-bound feathers as an embodied 135 
parasol casting shadow on water, thus greatly improving its sight of any fish below the surface. 136 
Humans perform an analog action, when they cup their hand over their eyes to shield the sun. 137 

A classic example of Type 1 exaptation is the mutation of feathers: originally selected for their 138 
thermoregulatory function, feathers featured only much later through the evolutionary eons in their 139 
now-emblematic flight effect (Gould & Vrba, 1982). In fact, feathers also play myriad non-aeronautic 140 
roles that include enhancing hearing, producing sounds, snow-sliding, and canopy-feeding: some 141 
birds who prey on fish raise their plumage above their heads as an opaque awning that enshadows 142 
the water beneath them, thus facilitating their vision under the surface that otherwise reflects 143 
ambient light (see Figure 1). Notably, to configure a canopy serving the fishing function, the heron 144 
recruits kinesiological forms originally adapted for enacting the flight function.1 As such, in order to 145 
understand how a species employs a perceptuomotor capacity to accomplish an exapted function, we 146 
examine how it accomplishes the form’s vestigial vocational function. 147 

Here I draw an analogy from canopy feeding, putting forth that mathematical reasoning, too, exapts 148 
an earlier form for a new function. Mathematical reasoning, I propose, exapts our ancient capacity to 149 
adapt our perceptual orientation toward the environment, which is what biological organisms 150 
constantly do to improve their physical engagement with the environment. This ancient cognitive 151 
form was originally selected for, because it functioned to promote organisms’ existentially efficacious 152 
interactions in the material–biological ecology (Maturana & Varela, 1992). In turn, this ancient form 153 
was exapted in the service of cultural practices that require attending in specialized ways to the 154 
environment so as to perceive mathematical structures inherent therein, as we demonstrated in the 155 
case of the diagonal attentional anchor. Yet, the thesis holds, this cognitive capacity, being exapted, 156 
is still perceptuomotor, just as perceiving the diagonal line served to organize the coordination of 157 
bimanual movement. If this thesis is true, then expert mathematical perception, even of static images 158 
on blackboards or in textbooks, is cognitively constituted as perceiving-for-acting. And we perceive 159 
new mathematical structures, because we are attempting to move in a new way. 160 

What might all this mean for mathematics education? In our earlier exercise, we enhanced your 161 
motor coordination by highlighting for you a new Gestalt, the diagonal line, which we then framed as 162 

                                                             
1 In analyzing ‘aptations,’ Gould and Vrba (1982) associate function with adaptations and effect with 
exaptations. For simplicity, I will use function more broadly to include effects, thus designating any apparent 
ecological utility of biological forms, where forms include all genetic organic structures or characters (e.g., 
material organs, neural architecture). 



 

bearing mathematical meanings. If we are to put this theory to practice, then instructional design 163 
should simulate for students ecologically authentic experiences that solicit and accommodate ancient 164 
biological forms that evolved to tighten our sensorimotor grip on the world. To bring about 165 
conceptual learning, educational activities should present action tasks that are designed such that 166 
the targeted perceptual change comes about as a cognitive solution to a motor problem. In turn, 167 
introducing educational activities that invite students to introspect into their own perceptuomotor 168 
phenomenology is an opportunity for a cultural shift, whereby we lay bare for students the 169 
epistemological rationales motivating their mathematics curriculum. That is, philosophical and 170 
theoretical ideas underlying an enactivist pedagogical design rationale should be made transparent 171 
to students engaging in these activities. In particular, classroom discourse should acknowledge, 172 
legitimize, valorize, and leverage our perceptuomotor phenomenology of mathematical reasoning as 173 
a collective resource for learning. This conclusion would offer radically different implications for 174 
mathematics education than would an epistemological model of mathematical reasoning as the 175 
amodal generation and processing of abstract static entities. 176 

I am scarcely the first to query the evolutionary sources of cultural practice (Malafouris, 2013). In this 177 
tradition, we will trace the footsteps of Casasanto (2010; see also Jelec, 2014) to consider the 178 
evolutionary theory of exaptation as an approach to implicating the ecological roots of mathematics. 179 
The evolved biological form of interest in this inquiry is the cognitive capacity for adapting sensory 180 
perception to organize hands-on motor action. It is this capacity, I hypothesize, that enables us to 181 
learn mathematical ideas. 182 

Below, I will situate this paper within a tradition of form–function scholarship in the research field of 183 
cognitive developmental psychology oriented on questions of mathematics education. 184 

Form Changes Function in Mathematical Practice: A View From Sociocultural Theory 185 

Darwin’s seminal evolutionary model pertains to ecological relations between biological forms and 186 
their contextual functions. The model thus motivates scholarship on characters of anatomy, 187 
metabolism, and kinesiology as these adapt vis-à-vis ecological constraints on foraging, predation, 188 
and procreation. Yet one could plausibly extrapolate the form–function principle of natural selection 189 
as it obtains in primordial flora and fauna to homo sapiens’ sociocultural phylogeny, including the 190 
functional evolution of practice-based artifacts taken as forms. Indeed, Saxe (2012) developed a 191 
theoretical model grounded in form–function dialectics as his analytic means of investigating gradual 192 
adaptive changes in a people’s cultural practices. 193 

194 
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Figure 2. Form–function shifts in Oksapmin’s 27-body counting system. (a) In Oksapmin communities 196 
in central Papua New Guinea, the fingers, arms, shoulders, and facial features anchor a sequence of 197 
27 enumerative actions -- the completion of the 27-body part enumeration culminates in an 198 
exclamation of a fist-raised “fu!” (see: https://culturecognition.com/new-page-3); (b) foreign 199 
currency, shillings and pounds (20 shillings = 1 pound), colonized the Oksapmin collective practices of 200 
economic exchange; subsequently (c) the “fu” cardinal utterance, traditionally sounded at the 201 
completion of the 27 tally process, traveled to the 20th position, marking the enumerative completion 202 
of 20 shillings in a pound; thus, “fu” shifted in function, now marking the 20th body part and the 203 
equivalent of a 1-pound note, and a count of pounds could be expressed as a count of “fu’s”; (d) 204 
when Papua New Guinea became independent, the country issued a new currency in which a 2-Kina 205 
note was the equivalent of a pound, and the 2-Kina note became a “fu”); subsequently, using the 206 
body-part name applied to 2-kina notes (e.g., a count of three 2-kina notes was the equivalent of 6-207 
kina) led to yet a new function for “fu”—a doubling of the value of a body part—thus, shoulder (10th 208 
body part) followed by “fu” indicated 20-kina or double the value of the 10th body part, a new 209 
doubling function for “fu.” 210 

Saxe is a cognitive developmental anthropologist interested in the origin, transformation, and travel 211 
of cultural forms. His studies comprise multi-time-scale laminated analyses of historical evolutions in 212 
form–function relations, where a collective of people adapts its social enactment of situated cultural 213 
practice amidst shifting ecological contingencies. For example, he demonstrated how the Oksapmin 214 
people of Papua New Guinea accommodated their indigenous counting practice, which uses multiple 215 
body parts in tallying the cardinality of a set and conducting rudimentary arithmetic, to assimilate 216 
features of colonial currency they had to engage (see Figure 2; Saxe, 2012). Notably, the cultural 217 
form “fu,” whose utterance signifies completion of an embodied tally, relocated from the 27th 218 



 

embodied landmark to the 20th, previously non-descript point, thus assimilating the new currency’s 219 
calculus (20 shilling = 1 pound). Later, when the Papua New Guinea currency was introduced, the 220 
new 2-kina note replaced the 1-pound note. Consequently, the function of “fu” shifted once more to 221 
serve as a multiplicative operator—“fu” now expressed doubling the value of the 10th body tally, the 222 
shoulder, which now tallied 1 kina. 223 

A fundamental assumption in evolutionary biology as well as in its applications to anthropology is 224 
that the originary function of a form may no longer subsist, once the form takes on new functions. As 225 
the Oksapmin young are schooled in now-prevalent Hindu–Arabic base-ten mathematics, “fu” might 226 
still persevere as a cultural form, perhaps to index a doubling function. This nuanced etymological 227 
exaptation may or may not conserve enactive traces of body-based tallying. Presumably, the cultural 228 
form “fu” could henceforth function without tacit collective reference to its ancestral enactive 229 
sources, so much so that knowing the history of those previous functions may bear little to no 230 
pedagogical utility. 231 

In contrast to anthropological examination of cultural forms that emerge and transform in social 232 
ecologies, the current article examines our species’ embodied cognitive forms that matured eons 233 
before cultural practices or material artifacts sprouted in our evolutionary niche (Malafouris, 2013). 234 
Though tacit and prelinguistic, ancient enactive forms bear explanatory power in analyzing how we 235 
approach contemporary tasks, whether physical (Wilson & Golonka, 2013), logical (Smith, Thelen, 236 
Titzer, & McLin, 1999), or symbolical (Landy & Goldstone, 2007). If we knew what ancient embodied 237 
cognitive form engenders mathematical insight and how this form functions, we could imagine a 238 
mathematics pedagogy that fosters the active engagement of this form. I submit that ascertaining 239 
the embodied cognitive form of mathematical insight is now within our reach. My objective, here, is 240 
to frame a research program that develops theories and methodologies to capture the mechanisms 241 
of this putative form. I believe this cognitive embodied form is our capacity to modify our perceptual 242 
orientation toward the environment to improve our motor engagement.  243 

In the following theoretical section, after a brief framing of the research program, I will attempt to 244 
defend my hypothesis by drawing on the following ideas: 245 

1. Genetic epistemology (Piaget, 1968), in particular the notion of perceptual routines that 246 
emerge through sensorimotor activity as a means of guiding motor action; and 247 

2. The philosophy of enactivist cognition (Varela, Thompson, & Rosch, 1991) that looks to 248 
eschew kneejerk allusions both to representations in the head and to objective objects in the 249 
environment, instead looking to forge an epistemological theory constituted on intrinsically 250 
relational bonds. In a radicalized version of this theory (Hutto & Myin, 2013, 2017), 251 
perceptual attention is proposed as an operational interface between self and 252 
environment—attention constitutes a sufficient construct for building explanatory models of 253 
the mind. 254 

Building on these resources, I put forth that we improve our operative grip on the concrete 255 
environment by adapting our attentional routines toward selected features of the environment. 256 
These features may be in flux, either independent of us or as a direct result of our actions on the 257 
environment. Though dynamical, these structures bear some invariant collective property respecting 258 
stable relations between their elements—our attentional routines enable us to engage these 259 
dynamical structures. Such was the case with the diagonal line: as we moved it, we kept it at a 260 
constant angle to the horizontal line. It is these dynamically invariant perceptual structures, the 261 



 

attentional anchors, I believe, that we think about, with, and through, when we think 262 
mathematically.  263 

Stepping back, this article draws on the construct of exaptation to promote a theoretical implication 264 
of primordial biological forms as critical to the task of modeling modern cognitive functions. This 265 
argumentative grammar is grounded in epistemological philosophy, which I now outline. 266 

Theoretical Antecedents to a View of Knowing as Gripping 267 

How should we think about learning? This section situates this paper’s pursuit of an evolutionary 268 
account for mathematical reasoning within a larger research program to promote mathematics 269 
education through understanding the nature and potential of cognitive development in the 270 
sociocultural context. A theoretical commitment to attentional anchors as critical cognitive vehicles 271 
of mathematical reasoning motivates efforts both to inquire into literatures supporting this view and, 272 
through this inquiry, to take practical measures toward occasioning opportunities for students to 273 
develop attentional anchors relevant to the mathematical concepts they are to learn. 274 

The logical premise of any theory of mathematics learning is to identify and model organic and 275 
ecological structures and mechanisms accounting for observed developmental changes in individuals’ 276 
manifest skill. Yet, what ontologies of structure and mechanism should we examine? What events 277 
account for developmental change? What should be the unit of analysis in investigating these events’ 278 
developmental processes (Araújo, Davids, & Renshaw, 2020; Damşa & Jornet, 2020)—should we look 279 
at a student alone or a student-in-interaction-with-a-teacher-and-peers? Thus, who are the 280 
participants in these events, what resources do they draw on, and how is development 281 
accomplished? To build an evolutionary account of mathematical reasoning, we must first identify an 282 
epistemological model that will serve as our theoretical substrate. 283 

This article subscribes to the dialectical approach to theorizing teaching and learning (diSessa, Levin, 284 
& Brown, 2015)—an approach that looks to combine the legacies of both Piaget and Vygotsky in 285 
theorizing individuals’ construction of cognitive structure as a sociocultural achievement. I propose 286 
to call this theoretical approach enculturated epigenesis, so as to capture and foreground a 287 
commitment to the complementary lenses of both Piagetian and Vygotskian theory. Theories of 288 
enculturated epigenesis go beyond simplistic Piaget-vs.-Vygotsky antinomy (Cole & Wertsch, 1996) to 289 
model how participating in the guided social enactment of cultural practice occasions for learners 290 
opportunities both to recruit their early developed know-how and to attribute disciplinary meaning 291 
to any new structures emerging from these experiences (Abrahamson, 2009; Flood, 2018; Shvarts & 292 
Abrahamson, 2019). 293 

This article also subscribes to transformative approaches to theorizing teaching and learning. 294 
Stetsenko (2017) argues for an historically authentic revisionist reading of Vygotsky as rallying 295 
societies to promote their own ongoing reconfiguration by means of educating their young for 296 
revolutionist agency. I propose a view of design-based research as a transformative paradigm that 297 
aspires to mobilize positive cultural change by both implicating and tackling problems of pedagogy 298 
(Cobb et al., 2003). As such, when they engineer experimental responses to problems of pedagogy, 299 
design-based educational researchers ask not what personal resources participants draw on per se 300 
when participating in the social enactment of curriculum as currently practiced but—301 
transformatively—what resources they should draw on. A transformative orientation to educational 302 
practice invites critical evaluation of mainstream curriculum and the innovation of design solutions 303 



 

attentive to students’ early ways of knowing (Abrahamson & Chase, 2020). As such, transformative 304 
design straddles the cultural–cognitive saddle of enculturated epigenesis to ask both “What are 305 
students to know?” and “What personal resources could we tap so as to foster this knowing?” 306 

Yet what are these alleged personal resources that educational innovators hope to tap? That is, as 307 
we design learning environments, including media, tasks, and facilitation protocols, what “principles 308 
of biological cognitive systems” (Glenberg, 2006, p. 271) should we cater to? This section overviews 309 
two intellectual strains, constructivism and enactivism, to argue that they converge on a similar 310 
epistemological account of knowledge as situated coping routines that emerge from purposeful 311 
interaction with the environment. This interactionist account of knowledge, I claim, could inform 312 
which principles of biological cognitive systems design-based researchers ought to solicit to engage 313 
students in learning activities that are to ground mathematical concepts. Specifically, mathematics 314 
learning environments should draw on students’ innate cognitive capacity to improve their 315 
sensorimotor engagement with the environment (Abrahamson & Trninic, 2015; Nathan & 316 
Walkington, 2017; Ottmar & Landy, 2017). Reframed from the viewpoint of evolutionary biology, 317 
mathematics educators should tap cognitive forms governing our pervasive capacity for 318 
perceptuomotor enactment of ecologically coupled movement. It is these ancient organismic forms, I 319 
maintain, that humanity exapted to function in beholding, apprehending, and manipulating 320 
mathematical objects and, as such, it is these forms that educational practice should draw on for 321 
students to ground their mathematics learning. 322 

Genetic Epistemology and Radical Constructivism 323 

Piaget’s grand research program, genetic epistemology, purports to model how genotypical material 324 
potentiates phenotypical intelligence. In Biology and Knowledge, Piaget (1968) explains human 325 
cognitive ontogenesis as an epigenetic developmental process. Humans begin life without any innate 326 
knowledge per se but with an innate capacity to learn through interaction. Namely, learning 327 
transpires through and for interacting with the environment. Knowledge, as such, is not a 328 
representation of things as they are. Rather, knowledge—or, better, knowing—is inherently an 329 
actionable capacity to interact with the environment when the environment appears appropriate for 330 
those actions. 331 

Knowing does not really imply making a copy of reality but, rather, reacting to it and 332 
transforming it (either apparently or effectively) in such a way as to include it functionally in 333 
the transformation systems with which these acts are linked. (p. 6) 334 

When an organism engages the environment as amenable for acting upon in some particular way, 335 
the organism is perceiving the environment: the organism is attending to the environment as 336 
soliciting particular motor action. Through exploration, pruning, and tuning, this manner of attending 337 
stabilizes—it has become formed or constructed as a cognitive structure, and it will more likely guide 338 
future encounters of similar purpose and in similar context. Perceptual construction of the sensory 339 
manifold is not arbitrary but, rather, intentional, contextual, selective, and synthetic. The act of 340 
perceiving is the organism spontaneously devising and organizing a for-action readiness toward the 341 
environment. Importantly, perception is not “in the head,” just as it is not “in the world.” Rather, 342 
perception is intrinsically relational, an ad hoc subjective sensorimotor configuration that solicits, 343 
stages, and guides interaction. Perception is the situated instantiation of knowing (Turner, 1973). In 344 
turn, perceptually guided interaction is where learning transpires: interaction shapes and modifies 345 



 

cognitive coordinations between apparent environmental structure and possible motor behavior. 346 
Piaget calls this coordination an action schema. This malleable functional form of knowing is the 347 
crucible of intelligence. 348 

Importantly, whereas biological capacity to apply action schemata is innate, the action schemata 349 
themselves are to develop through the individual’s sensorimotor interactions. 350 

[Actions] reproduce themselves exactly if there is the same interest in a similar situation, but 351 
they are differentiated or else form a new combination if the need or the situation alters. We 352 
shall apply the term “action schemata” to whatever, in an action, can thus be transposed, 353 
generalized, or differentiated from one situation to another: in other words, whatever there 354 
is in common between various repetitions or superpositions of the same action….[M]ost 355 
schemata, instead of corresponding to a complete inherited apparatus, are built up a bit at a 356 
time, and even give rise themselves to differentiations, by adaption to a modified situation or 357 
by multiple and varying combinations…” (Piaget, 1968, pp. 7–8) 358 

Thus, as an infant begins to grip objects, the perceptual spectrum of grippable things expands the 359 
multidimensional span of actionable gripping capacity. In Piaget’s terms, the sensorimotor gripping 360 
schema accommodates through-and-for assimilating the sensory display as prehensible. The gripping 361 
form progressively fields objects that vary in color, size, shape, heat, texture, weight, orientation, etc.  362 

Still, there is an epistemic gap between doing and thinking, or, if you will, there are different ways of 363 
knowing: the objects we grip are not initially objects we can reflect on. For the pre-reflective mind, 364 
per Piaget, even as we attend to the environment, we do not initially parse it as things—we have not 365 
yet objectified the objects we are engaging. Rather, as similarly theorized in various strands of 366 
phenomenological philosophy that elaborate on Franz Brentano’s notion of intentionality, the acting 367 
mind tacitly perceives objects as psychological objectives of motor intentionality (Dreyfus & Dreyfus, 368 
1999; Merleau–Ponty, 1964), as perceptual–functional types mediating intentionality (Husserl, in 369 
Boer, 1978), or as ready-to-hand facets of dasein, namely, immersed intentionality (Heidegger, 370 
1962). Objects of pre-reflective motor intentionality (Sheets–Johnstone, 2015) change their ontic 371 
status, when we step back from operating on or through them and, instead, attend to them in a 372 
reflective epistemic mode (Koschmann, Kuuti, & Hickman, 1998). “[I]t is during breakdowns that the 373 
concrete is born” (Varela, 1999, p. 11). Yet one need not wait for breakdown to reflect on what we 374 
are manipulating––through appropriate training, mindful attention to the immersing environment 375 
can be solicited deliberately (Petitmengin, 2007). 376 

Inspired more so by Piaget’s theory of genetic epistemology than by his cognitive developmental 377 
psychology studies per se, and building on von Glasersfeld (1987), radical-constructivist scholars of 378 
mathematics education have sought to hone core principles of Piaget’s theory and apply these 379 
principles in modeling the development of mathematical concepts. These clarifications of Piaget’s 380 
theory insisted that whereas Piaget implicated interaction as the source of intelligence, he denied 381 
that what we learn about the world could be viewed as a representation of the world. Explicitly, they 382 
argued for an “interactionist but not representationalist view of mathematical knowing and 383 
teaching” (Steffe & Kieren, 1994, p. 728). This view inveighs against “Cartesian anxiety” yet concedes 384 
that, nevertheless, these interactionally borne non-representationalist objects of knowing come 385 
forth as bonafide mathematical objects through social interaction, namely “languaging” (pp. 723–386 



 

724). Ergo, radical constructivists are sanguine about the prospects of theorizing enculturated 387 
epigenesis.  388 

Yet what might a truly radical-constructivist pedagogy look like? How would mathematics educators 389 
assemble a learning environment that fosters mathematics knowing founded on engaging motor 390 
intentionality prior to languaging these experiences? That is, what curriculum could solicit our 391 
species’ paleobiological forms that have been exapted for mathematical reasoning? Before 392 
addressing this question, we will now briefly discuss another intellectual strand that, though rising 393 
from a confluence of cognitive science and Buddhist philosophy, shares with genetic epistemology 394 
and phenomenology an implication of cognition as rooted in sensorimotor activity.  395 

Enactivism 396 

Increasingly, since the closing decades of the 20th century, cognitive science has been undergoing an 397 
embodied turn (Nagataki & Hirose, 2007, pp. 223–224). This embodied turn, asserts Varela (1999), is 398 
exemplified in the enactivist thesis. 399 

[T]here are strong indications that within the loose federation of sciences dealing with 400 
knowledge and cognition—the cognitive sciences—the conviction is slowly growing that….a 401 
radical paradigm shift is imminent. At the very center of this emerging view is the conviction 402 
that the proper units of knowledge are primarily concrete, embodied, incorporated, lived; 403 
that knowledge is about situatedness; and that the uniqueness of knowledge, its historicity 404 
and context, is not a “noise” concealing an abstract configuration in its true essence. The 405 
concrete is not a step toward something else: it is both where we are and how we get to 406 
where we will be. (p. 7) 407 

He then defines the essence of embodied cognition. 408 

Embodied entails the following: (1) cognition dependent upon the kinds of experience that 409 
come from having a body with various sensorimotor capacities; and (2) individual 410 
sensorimotor capacities that are themselves embedded in a more encompassing biological 411 
and cultural context. (p. 12) 412 

Homing into a distinctive thesis of the enactivist approach, Varela asserts the following, which speaks 413 
to the ecological fit between the organism and the environment it may perceive. 414 

In the enactive approach reality is not a given: it is perceiver-dependent, not because the 415 
perceiver “constructs” it as he or she pleases, but because what counts as a relevant world is 416 
inseparable from the structure of the perceiver. (p. 13) 417 

In particular, Varela explains, “what counts as a relevant world” is contingent on the organism’s goal 418 
in interacting with the environment, namely what the organism is attempting to actuate. 419 

[P]erception does not consist in the recovery of a pre-given world, but rather in the 420 
perceptual guidance of action in a world that is inseparable from our sensorimotor 421 
capacities. (p. 17) 422 

Critically for our discussion of grasping mathematical objects, Varela believes that “’higher’ cognitive 423 
structures also emerge from recurrent patterns of perceptually guided action” (p. 17). Not unlike 424 



 

Piaget, Maturana and Varela (1987/1992) sought to build an ambitious theory of human cognition, 425 
including “higher” cognition, on an evolutionary implication of organisms’ sensorimotor adaptive 426 
capacity. Indeed, enactivists appreciate parallels between their project and genetic epistemology: 427 

By studying how children shape their worlds through sensorimotor actions, [Piaget] has done 428 
nothing less than study how the constitution of a perceptual object is grounded in ontogeny. 429 
Piaget successfully introduced the notion that cognition—even at what seems to be its 430 
highest level—is grounded in the concrete activity of the whole organism, that is, in 431 
sensorimotor coupling. In short: the world is not something that is given to us but something 432 
we engage in by moving, touching, breathing, and eating. This is what I call cognition as 433 
enaction since enaction connotes this bringing forth by concrete handling. (Varela, 1999, p. 434 
8). 435 

Yet, enactivists posit that their epistemology improves on Piaget’s. Enactivist reading of Piaget 436 
queries his cognitive construct of a schema, as though it is an insufficiently-radical still-in-the-head 437 
ontology, whereas enactivist knowing is a systemic expression of the organism–environment 438 
intrinsically relational duality (for a similar dismissal of Piaget, see de Freitas & Sinclair, 2014; for a 439 
rebuttal, see Abrahamson, Shayan, Bakker, & van der Schaaf, 2016, pp. 240–241; Turner, 1973). As 440 
such, enactivism would be more akin to ecological psychology, albeit the jury is still out on that 441 
alleged kinship (Di Paolo, Chemero, Heras–Escribano, & McGann, 2020). Notwithstanding, in sifting 442 
through these theory innuendos, one can discern a confluence of genetic epistemology and 443 
enactivism:  444 

In a nutshell, the enactive approach consists of two points: (1) perception consists in 445 
perceptually guided action and (2) cognitive structures emerge from the recurrent 446 
sensorimotor patterns that enable action to be perceptually guided. (Varela, Thompson, & 447 
Rosch, 1991, pp. 172–173) 448 

As such, enactivists would plausibly advocate for educational practice where students participate in 449 
perceptuomotor activities that occasion the emergence of conceptually critical cognitive structures 450 
(Hutto, Kirchhoff, & Abrahamson, 2015). Indeed, that enactivist philosophy could bear on 451 
transformative educational research is not lost upon its evangelists. In the words of enactivist 452 
epistemologist Petitmengin (2007): 453 

[A]re our teaching methods well adapted? For at present, teaching consists in most cases of 454 
transmitting conceptual and discursive contents of knowledge. The intention is to fix a 455 
meaning, not to initiate a movement. Which teaching methods, instead of transmitting 456 
contents, could elicit the gestures which allow access to the source experience that gives 457 
these contents coherence and meaning? Such a teaching approach, based more on initiation 458 
than transmission, by enabling children and students to come into contact with the depth of 459 
their experience, could re-enchant the classroom. (p. 79, original italics) 460 

This enactivist gauntlet to pedagogy was historically picked up by Pirie and Kieren (1992, 1994), 461 
mathematics-education researchers who sought to implicate an alleged “primitive knowing,” namely, 462 
sensorimotor dynamical–imagistic know-how, as structuring students’ reasoning about formal 463 
concepts (for reviews, see Reid, 2014; Simmt & Kieren, 2015). And while, perhaps, disagreeing on 464 
nuances of theory, enactivist math-ed researchers journey on a not-too-dissimilar path as their neo-465 
Piagetian colleagues (Arnon et al., 2013; Kazunga & Bansilal, 2020). They all seek to foster 466 



 

mathematics learning through concrete or virtual sensorimotor experiences (Sarama & Clements, 467 
2009). They all conceptualize cognitive structures coming forth from perception-for-action, namely, 468 
the action of manipulating the environment. Thinking is engaging the environment, whether that 469 
which we are handling is concrete, virtual, imaginary (MacIntyre, Madan, Brick, Beckmann, & Moran, 470 
2019), or some combination thereof (Hutto & Sánchez–García, 2015; Kirsh, 2013; Liao & Masters, 471 
2001).  472 

We have surveyed constructivist and enactivist theory of conceptual learning. These positions all 473 
agree that “cognitive structures emerge from the recurrent sensorimotor patterns that enable action 474 
to be perceptually guided” (Varela, Thompson, & Rosch, 1991, p. 173). These cognitive structures are 475 
imputed to encompass “higher” forms of cognition, such as mathematical notions. We thus submit 476 
that comprehending mathematical objects is constituted in prehending perceptual structures. That is, 477 
individuals’ experience of coming to grips with a mathematical idea is phenomenologically similar to 478 
that of gripping the environment in a way that promotes efficient interaction—in both cases, what is 479 
at stake is figuring out how to attend to the actual or imaginary percept so as to operate it in accord 480 
with one’s objectives, as in the case of the diagonal line. As such, for any mathematical concept, the 481 
phenomenology of reasoning about it is grounded in a particular perception-for-action. Yet for this 482 
theoretical conviction to become a pedagogical reality, we further submit, educational designers 483 
must determine which specific perception-for-action could underlie the particular mathematical 484 
notion they are targeting; in turn, one must then determine which actions could give rise to that 485 
perception-for-action; next, one must create an activity that would elicit that action; and finally, one 486 
must devise a means for students to signify their emergent cognitive structures as mathematically 487 
meaningful (Abrahamson, 2014; Abrahamson et al., 2020; Abrahamson, Dutton, & Bakker, in press).  488 

We now turn from the conceptual and theoretical sections of this paper to the empirical section, 489 
where we will demonstrate our thesis in the context of an embodied-design research project that 490 
seeks to create for students of mathematical concepts “source experience that gives these contents 491 
coherence and meaning” (Petitmengin, 2007, p. 79). This project, we argue, solicits students’ exapted 492 
capacity to form new perceptions-for-action that rise to the concrete as cognitive structures 493 
cultivated into mathematical ontologies. 494 

Evidence: Findings from Design-Based Research of the Mathematics Imagery Trainer 495 

Inspired by the embodied turn in the cognitive sciences, in particular by radical-constructivist and 496 
enactivist theories of epistemology, the Embodied Design Research Laboratory at the University of 497 
California Berkeley has been evaluating a theoretical view of mathematical reasoning as grounded in 498 
perceptuomotor activity (Abrahamson, 2019). Operating as a design-based research program, the 499 
objective has been to foster, document, and analyze students’ multimodal phenomenology of 500 
developing perceptuomotor capacity to enact movement forms that instantiate mathematical 501 
concepts (Abrahamson & Trninic, 2015). For example, raising both hands such that they move at 502 
different speeds instantiates proportional equivalence. Understanding a mathematical concept, as 503 
such, would be predicated on figuring out how to move in a new way—if you can’t move it, you don’t 504 
get it—and yet, to move in a new way, you must perceive the environment in a new way 505 
(Abrahamson & Sánchez-García, 2016). 506 

Perception is both necessary and sufficient for effecting motor action. Empirical research on 507 
perception, action, and cognition (Mechsner, Kerzel, Knoblich, & Prinz, 2001; Mechsner, 2003, 2004) 508 



 

has demonstrated the pivotal role of perception in organizing the enactment of complex motor 509 
action. This body of research rejects prior beliefs that the development of manual skills depends on 510 
improving motor coordination. As such, Mechsner’s persuasive empirical research suggests that our 511 
theorization of physical-skill learning should shy away from modeling a would-be motor coordination 512 
as the learning objective, instead looking to the individual’s apprehension of previously unattended 513 
perceptual Gestalts as discovered ways of orienting to the environment. 514 

From Perception-for-Action to Mathematical Signification 515 

The research program does not mitigate the role of symbolic registers in mathematical practice 516 
(Ernest, 2008). Rather, the program seeks to explain the micro-process of mathematics learning as 517 
two-stepped (Abrahamson, 2015): (1) developing a new perceptuomotor capacity (primitive 518 
knowing, Pirie & Kieren, 1992, 1994; a presymbolic notion, Radford, 2013; know-how, Ryle, 1945; a 519 
concept image, Tall & Vinner, 1981; immediate coping, Varela, 1999; a theorem-in-action, Vergnaud, 520 
2009); and then (2) re-perceiving the movement form with respect to disciplinary frames of 521 
reference—that is, analyzing, modeling, and describing the form using quantitative measures and 522 
arithmetic routines to depict its constituent components, calculate relations between the 523 
components, determine invariant properties of the dynamical form, and extrapolate descriptors of 524 
the form’s potential manifestations beyond the immediate context of the particular activity’s 525 
situated constraints (Abrahamson, Trninic, Gutiérrez, Huth, & Lee, 2011). As such, the design 526 
program abides with the thesis that all knowing begins from movement (Sheets–Johnstone, 2015), 527 
including mathematical knowing. 528 

Along the designed process of enculturated epigenesis, a critical pedagogical phase is the 529 
mathematical signification of perceptual forms, similar to speaking of the diagonal line and viewing it 530 
as a hypothenuse. As will soon be exemplified, this process begins in our activities, when the teacher 531 
introduces supplementary resources into the students’ working space (Abrahamson, Gutiérrez, 532 
Charoenying, Negrete, & Bumbacher, 2012; Flood, 2018; Shvarts & Abrahamson, 2019). In particular, 533 
the teacher may introduce symbolic artifacts—rudimentary mathematical tools, such as a grid, 534 
which, laid onto the working space, could potentiate a Cartesian coordinate plane onto an otherwise 535 
continuous space. Initially, students recognize in these new resources utilities for getting the job 536 
done according to the original activity task—whether to facilitate their performance of a challenging 537 
bimanual coordination or to better enable them to monitor and discuss their strategy. But, in the 538 
course of appropriating these new resources into their perceptuomotor attentional routines, the 539 
students become dependent on these resources for enacting movements and reflecting on this 540 
enactment. The resources, which initially serve unreflective doing, thus emerge as frames of 541 
reference for reflective mathematical practice. Consequently, features of dynamical enactment 542 
become pinned down as specified static locations that can be named and measured. It is thus that 543 
moving in a new way becomes the grounding referent of a new mathematical concept. 544 

The Mathematics Imagery Trainer 545 

The empirical context for this research program to evaluate mathematical reasoning as 546 
perceptuomotor capacity is centered on a type of learning environment called the Mathematics 547 
Imagery Trainer (hence, the “Trainer”). The Trainer can be conceptualized as what Reed and Bril 548 
(1996), combining their respective perspectives from ecological psychology and intercultural 549 
developmental psychology, call a field of promoted action, that is, a socio-material space that 550 



 

occasions opportunities for novices to develop culturally valued dexterity through encountering and 551 
overcoming staged motor-control problems. As a field of promoted action, the Trainer constitutes an 552 
activity architecture where students learn to move in new ways through attempting to perform a 553 
motor-control task that requires developing new perceptions of the environment (Abrahamson & 554 
Trninic, 2015): to move in a new way, you need to perceive in a new way (Mechsner et al., 2001). 555 

Working with the Trainer, students face the task of manipulating selected features of the 556 
environment so as to effect a goal state, such as causing a screen to turn green. There are many ways 557 
to effect the Trainer’s goal state, and students must figure out how to move while keeping the 558 
Trainer consistently in its goal state. By way of analogy, imagine you are participating in a most 559 
peculiar salsa lesson, where all the instructor does is let you know whenever your body is positioned 560 
appropriately—you would need to “dot-to-dot” from one correct position to the next, until you 561 
figure out the overall choreography, at which point you will no longer need the teacher. 562 

As Trainer students explore how to move smoothly “in green,” they increasingly self-impose 563 
constraints on their degrees of freedom, so that their movement increasingly approximates the 564 
task’s targeted form (Abrahamson & Abdu, 2020). Reflecting on this new know-how, students 565 
articulate how one should move to perform the task. In so doing, students refer to the perceptual 566 
patterns they are attending to. These attentional anchors often combine actual and imaginary 567 
percepts into a gestalt. For example, in raising their hands such that the hands move at different 568 
speeds, students often report they are attending to the spatial interval between their hands—they 569 
increase this interval as they raise their hands. In response, the activity facilitator introduces 570 
mathematical instruments into the movement space, such as a grid. Students perceive in these 571 
instruments potentials for enhancing the enactment, evaluation, or explanation of their movement 572 
strategy. Yet in the course of utilizing the instruments’ perceived affordances, the students shift into 573 
mathematical perceptions, where the instruments become frames of reference (Abrahamson et al., 574 
2011). For example, students who had explained that they are simultaneously raising and increasing 575 
the interval between their hands will now shift into a motor-action plan using the grid lines as interim 576 
destinations: they raise their hands sequentially by different increments, with one hand rising in 577 
larger increments than the other, which results in an increasing interval between the rising hands. 578 

579 
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 581 

Figure 3a. Lars, a 14 years-old low-tracked prevocational-education Dutch student, gestures an 582 
imaginary diagonal line connecting his projected points of contact on the axes. 583 

 584 

     

Figure 3b. Lars uses an emergent attentional anchor to guide proportional bimanual coordination: he 585 
is keeping parallel the imaginary line between his fingertips.  586 

 587 
We have now come full circle back to the activity that gives rise to the spontaneous apprehension of 588 
a diagonal line that one imagines as a means of coordinating a complex bimanual movement. Eye-589 
tracking studies (Duijzer, Shayan, Bakker, van der Schaaf, & Abrahamson, 2017) have corroborated 590 
data from our semi-structured clinical-interviews (Abrahamson et al., 2011): to solve Trainer motor-591 
control problems, students spontaneously generate new perception-for-action gestalts (Mechsner, 592 
2003), the attentional anchors. Recall that an attentional anchor is a perceptual orientation toward 593 
the environment that enables the enactment of a goal movement by guiding the coordinated 594 
generation of constituent motor actions. Whether discovered or taught, attentional anchors 595 
constitute cognitive solutions to motor-control problems. Students refer to these constructed 596 
figments as bonafide objects they are manipulating. Figure 3 presents screenshot sequences 597 
featuring a typical behavior in Trainer activities. In this Mathematics Imagery Trainer for Proportion, 598 
the Orthogonals activity, which was engineered and trialed by Abrahamson’s Dutch collaborators, 599 
students are to maintain their screen green by simultaneously moving their left hand up/down and 600 
their right hand right/left, that is, along orthogonal axes (Figure 3, Abrahamson et al., 2016). The 601 
screen is green when the hands’ respective distances from the bottom-left origin point relate by the 602 
unknown ratio, here 1:2. Similar to numerous other students, Lars spontaneously discerned and 603 
described an imaginary diagonal line connecting his left-hand and right-hand index fingers (Figure 604 
3a). Lars maintains green by moving this imaginary diagonal line to the right, taking measures to 605 
keep it at a constant angularity to the base axis (Figure 3b). 606 

Across several Trainer evaluation studies for different mathematical domains, we are consistently 607 
gathering empirical data supporting the intriguing finding that attentional anchors emerge 608 
spontaneously as students’ perceptual solution to the motor problem of coordinating the enactment 609 
of complex, often bimanual movement forms in our designed activities. The activity then occasions 610 
for students, like Lars, guided opportunities to reflect on how they are attending to the sensory 611 
manifold as they move their hands and to verbalize and draw these images. In sum, perception-for-612 
action rises from the sensory manifold in the service of moving effectively in a field of promoted 613 
action, to become cognitive structure of mathematical reasoning. As we have suggested, these 614 



 

nuanced sensations of immediate coping are initially ineffable yet, through appropriate guidance, 615 
can come forth as apprehensible experience that is accessible to conscious reflection and languaging 616 
(Morgan & Abrahamson, 2016). As such, Trainer studies demonstrate the plausibility of theorizing 617 
our phenomenology of mathematical objects as action-oriented perceptions of the environment. 618 
Mathematical reasoning, thus, can be designed so as to draw on an action-oriented perceptuomotor 619 
mechanism that, I believe, is the very same mechanism that evolved for interacting with the natural 620 
environment. It is in this sense that mathematical practice exapts an ancient cognitive capacity. 621 

Conclusion 622 

[T]he roots of logical thought are not to be found in 623 
language alone, even though language coordinations 624 
are important, but are to be found more generally in 625 
the coordination of actions. (Piaget, 1968, p. 18) 626 

Ontologically, mathematical objects are imaginary and intangible, yet, phenomenologically, 627 
mathematical objects are concrete for those who handle them (Wilensky, 1991). Mathematical 628 
reasoning, like any other form of reasoning, draws on cognitive capacity that originally evolved in the 629 
service of motor action (Melser, 2004). Mathematical reasoning draws on the same cerebral 630 
processes as motor action, so that, neurally, mathematical objects are treated as prehensible 631 
ontologies (McGilchrist, 2012). Like the black heron who exapted aerial kinesiology for aquatic 632 
predation, so, this paper has argued through theoretical consideration and empirical evidence, 633 
humanity exapted for mathematical practice its ecologically adaptive capacity to formulate action-634 
oriented sensory perceptions of the environment. 635 

Still, this has been an argument about enculturated epigenesis, so how does culture figure in? When 636 
we study a mathematical concept, as in the case of the Mathematics Imagery Trainer, the concept is 637 
not objectively new. The concept has preexisted us as a cultural legacy embedded in ongoing goal-638 
oriented practice, just like the case of material artifacts, such as any mundane utensil we learn to 639 
use. And similar to operating material objects, in learning mathematics we need to learn how to 640 
move in a new way that achieves our task objective while satisfying the interaction constraints 641 
imposed by the cultural forms we engage. As such, humans endow legacy skills through engaging the 642 
young in guided activities using cultural artifacts, whether these are material or immaterial forms 643 
(Malafouris, 2013; Rogoff, 1990; Saxe, 2012; Tomasello, 2019). Thus, on the one hand, the literatures 644 
of ecological perception (Gibson, 1966, 1977; Turvey, 2019) and movement science (MacIntyre et al., 645 
2019) assert that all organisms share in the capacity to develop action-oriented perceptions of the 646 
environment, which is how we learn to move in new ways. Yet, on the other hand, human 647 
civilization’s existential, material, and social circumstances, co-constituted with our species evolving 648 
cognitive–linguistic capacities, has occasioned us opportunities to hone this perceptual 649 
phenomenology into non-arbitrary ‘things’ that we language forth into our discourse, inscribe onto 650 
our environment, and thus distribute over artifacts, people, and time. We thus come to partake 651 
skillfully in cultural practice, including its action and discourse.  652 

Mathematical objects are the stuff that mathematical practice is ultimately about—they are the 653 
symbol-grounding referents (cf. Harnad, 1990). Mathematical practice elaborates formally on these 654 
pre-symbolic notions (Radford, 2013): bringing them forth through action and gesture into language 655 
(Roth, 2014), framing and imbuing them with new meanings (Bartolini Bussi & Mariotti, 2008), and 656 



 

converting and treating them through cascades of inter-signifying semiotic registers (Duval, 2006). 657 
This referential duality of mathematical concepts—as action and symbol, that is, as encompassing 658 
multimodal image schema in tandem with their formal definitions and semiotic presentations—has 659 
been discussed by mathematicians (Davis & Hersh, 1981; Tao, 2016), ethnographers of mathematical 660 
practice (Hadamard, 1945), and educational researchers (Nemirovsky, & Ferrara, 2009; Presmeg, 661 
1992; Schön, 1981; Sfard, 1991; Tall & Vinner, 1981). Indeed, it has never been my intention to shrug 662 
the colossal semiotic cathedral of mathematical praxis. To wit, following Varela (1999), “My interest 663 
in immediate coping does not mean that I deny the importance of deliberation and analysis. My 664 
point is that it is important to understand the role and relevance of both cognitive modes” (p. 18). 665 
Focusing on immediate coping, this article has been concerned with perceptuomotor orientations to 666 
the environment that give rise and lend meaning to mathematical thinking. Thus, the biological form 667 
I have proposed as undergirding mathematical cognition bears phenomenological quality—it is a 668 
lived experience of perceiving and acting, an embodied cognitive form of enactment. As such, this 669 
proposal can be understood by way of the following juxtaposition with a competing theory. 670 

Our phenomenology of mathematical ontologies as quasi-realistic entities is not due to some 671 
linguistic or pre-linguistic projection from an experiential source domain to some would-be abstract 672 
target domain, as delineated in the cognitive semantics theory of conceptual metaphor (cf. Lakoff & 673 
Núñez, 2000). In fact, mathematical activity does not activate language areas of the brain at all 674 
(Amalric & Dehaene, 2016). Rather, we literally experience mathematical ontologies as quasi-realistic 675 
entities, because human experience of imaginary entities evolved from the experience of real 676 
entities. To know is to grasp (cf. McGilchrist, 2012). As such, our use of spatial–temporal multimodal 677 
language in talking about mathematical objects is not because of the semiotic process of linguistic 678 
articulation (cf. Núñez, Edwards, & Matos, 1999)—it is about the fundamental phenomenological 679 
experience that would be articulated to begin with, that is, grasping, literally (Abrahamson, 2004, 680 
2007). When metaphorical language is used to communicate a mathematical experience, this is not 681 
because mathematical concepts are metaphorical (cf. Gallagher & Lindgren, 2105)—that would be a 682 
category error—but because metaphor is a means of fostering for others the enactive sensorimotor 683 
explorations that would lead them to developing concordant perceptions (Abrahamson, 2020; 684 
Abrahamson, Sánchez-García, & Smyth, 2016; Tao, 2016). As such, having a sense of knowing is 685 
feeling that one has got a grasp on a situation (see Trninic, 2018, on Vygotsky’s notion of kinesthetic 686 
sensations). To emphasize, it is not the case that we make mathematical ideas real through 687 
projecting metaphor. Rather, mathematical ideas seem real and possibly true to us when they are 688 
grounded in the experience of grasping, actually. Mathematical objects emerge from multimodal 689 
perceptuomotor solutions to situated problems of interacting adaptively with the ecology, whether 690 
natural, cultural, social, or combinations thereof (Abrahamson & Trninic, 2015). 691 

I have proposed that mathematical thinking is possible due to our biological capacity to develop an 692 
enactive grip on the world, that enactive grips on the world operate similar in the case of imaginary 693 
objects, and that mathematical thinking, as such, is grounded in attentional anchors—dynamically 694 
invariant perceptual orientations that guide our action on the environment. This proposal differs 695 
from proposals from cognitive neuroscience that focus on innate and early developed 696 
spatiotemporal and enumerative capacities (Dehaene & Brannon, 2011) or the implication of more 697 
advanced quantitative reasoning as elaborations on simple approximations (Jacob, Vallentin, & 698 
Nieder, 2012). These vying proposals—the phenomenological and the neuroscientific—I believe, 699 
should be in dialogue. For example, elsewhere I have discussed mathematics education as drawing 700 



 

on what I called perceptually privileged intensive quantities, that is, our apparently innate sensitivity 701 
to magnitudes of formal structure a/b, such as likelihood, slope, and density (Abrahamson, 2012; see 702 
also Thacker, 2019; Xu & Garcia, 2008). But for this dialogue to be productive, I wager, we should not 703 
shy from epistemological issues surrounding the phenomenology of mathematics, because how we 704 
think mathematically must surely inform how we teach mathematics. 705 

706 
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