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Abstract
Preventing adverse health outcomes is complex due to the multi-level contexts and social systems in which these phenomena 
occur. To capture both the systemic effects, local determinants, and individual-level risks and protective factors simultane-
ously, the prevention field has called for adoption of system science methods in general and agent-based models (ABMs) 
specifically. While these models can provide unique and timely insight into the potential of prevention strategies, an ABM’s 
ability to do so depends strongly on its accuracy in capturing the phenomenon. Furthermore, for ABMs to be useful, they need 
to be accepted by and available to decision-makers and other stakeholders. These two attributes of accuracy and acceptability 
are key components of open science. To ensure the creation of high-fidelity models and reliability in their outcomes and 
consequent model-based decision-making, we present a set of recommendations for adopting and using this novel method. 
We recommend ways to include stakeholders throughout the modeling process, as well as ways to conduct model verifica-
tion, validation, and replication. Examples from HIV and overdose prevention work illustrate how these recommendations 
can be applied.
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Introduction

Prevention research has made many advances in the last 
two decades, following a path taken by medical science 
beginning in the 1960s in building an empirical knowl-
edge with rigorous testing of well-defined preventive 
interventions against standard conditions or against other 
competing interventions (Hill, 1961). The conduct of these 

rigorous experiments, conducted as efficacy or effective-
ness trials, has been well established (Brown et al., 2009). 
Implementation research and practice build on these ear-
lier phases of the traditional translational pipeline (Brown 
et al., 2017), by taking into account unique features of 
the delivery system and target population (Aarons et al., 
2017). Communities and organizations involved in large-
scale implementation research can benefit greatly from the 
knowledge gained regarding how best to deliver evidence-
based preventive interventions in their communities. How-
ever, until evaluation of implementation strategies becomes 
more widespread with implementation and hybrid trials 
(Brown et al., 2017), their long duration and generally lim-
ited number of tested contexts negate their value to policy 
makers who need to make informed decisions in a timely 
manner to prevent impending adverse health outcomes. 
Perhaps, nowhere is this limitation more apparent than the 
national 10-year timescale for Ending the HIV Epidemic 
(EHE). This requires local decision-makers to reduce 
new infections with long-term strategies that achieve the 
right balance between direct protection of those without 
infection and preventing transmission from those already 
infected (i.e., Treatment as Prevention). Decision-makers 
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cannot wait to act until rigorous implementation trials are 
complete. This is one place where complex system simu-
lation models that include the etiology of disease, the 
evidence-based interventions, the implementation strate-
gies, and local data can provide the knowledge required 
for optimal actions.

The call for complex systems simulation modeling, and 
more generally systems science and engineering methods 
(Carey et al., 2015; Czaja et al., 2016; Lich et al., 2012; 
Mabry & Kaplan, 2013; Valente et al., 2015; Wang et al., 
2016), to better understand and address these complexi-
ties in the development and implementation of prevention 
programs, has been extensive. Yet, uptake specifically of 
agent-based modeling (ABM), a core system science meth-
odology that is particularly useful for informing system-level 
prevention decision-making, is lagging as evidenced by few 
examples in recent years.

ABMs are computational simulation models that capture 
the behavior and interactions of individuals; among one 
another, with their local social, physical, and/or virtual envi-
ronments, and within their larger social systems (Wilensky & 
Rand, 2015). They are useful for understanding how system 
trends emerge from the underlying characteristics, behaviors 
and interactions of individuals, the environment, and the 
systems in which they are embedded. ABMs are designed 
to incorporate heterogeneity of individuals, which allows 
individual risk and protective factors to be studied. What is 
more, by modeling the embeddedness of these individuals 
in their social context and social systems, context-specific 
risk and protective factors can be included into these models 
in a natural way. The capacity for ABM simulations to run 
with varied types of interventions and different implementa-
tion strategies allows for prediction of their impact against 
appropriate counterfactuals, producing contrasts between the 
effects of factors that are often too difficult and too expen-
sive to obtain empirically. Simulations can also inform how 
to remove health disparities by comparing impact on dif-
ferent populations who experience various levels of risks, 
geographic or network positions, or environmental exposures. 
For example, the effectiveness of a universal classroom-based 
intervention to prevent conduct disorder appears to have a 
stronger impact when there is a higher prevalence of aggres-
sive/disruptive behavior (Rubow et al., 2018), so ABM simu-
lations could inform schools about the program’s likely level 
of benefit relative to its cost. The computational nature of 
ABMs allows them to capture the dynamics in a system well 
into the future; thus, these models can provide a predictive 
lens that is particularly useful to explore the future impact of 
preventive strategies in time horizons that are often impracti-
cal in applied research. These characteristics allow ABMs to 
describe emergent behavior under various systemic pertur-
bations, making the practice of ABM a timely and resource-
efficient tool to explore the effects of potential preventive 

interventions and the implementation strategies needed to 
support their delivery.

There are two general types of ABM: theory-driven and 
high-fidelity models. When limited local data are available, 
ABMs can be used for “theory-driven modeling” (Wilensky 
& Rand, 2015), which aims to capture the drivers of behavior 
within a complex system and identify potential risk groups 
and levers of change that steer a system toward a desirable 
outcome state. Identification of such levers in itself can be 
valuable for decision support and to rule in or out certain 
implementation options.

Despite the important insights gained from theory-
generating models, such knowledge may be insufficient 
to inform how best to implement evidence-based preven-
tion programs within a local context. Effective strategies 
encapsulate the local context, local networks and dynamics 
that are known to affect the implementation process, and 
individual-level risk and protective factors, which can only 
be captured by integrating local data into the model. Thus, 
high-fidelity models are particularly suitable for forecast-
ing an implementation strategy’s impact at a local level. 
For example, we know that continued use of pre-exposure 
prophylaxis (PrEP), a medication to prevent contraction of 
HIV for those at high risk, is highly effective in preventing 
HIV spread through sexual transmission among men who 
have sex with men (McCormack et al., 2016). Yet, fully 
understanding the impact of PrEP interventions requires 
knowledge of local characteristics, including community 
viral load, extent of disparities, and behavior within sexual 
networks. High-fidelity models embrace the complexity 
in the system, capture critical contextual factors affecting 
proximal and distal prevention outcomes, and are aligned 
with the local context by integrating field data (Vermeer 
et al., 2020).

While high-fidelity simulations from ABMs can help inform 
decisions, it will only be useful if it provides accurate projec-
tions and is acceptable to decision-makers. These are core com-
ponents of open science. Open science, defined in this paper as 
“… transparent and accessible knowledge that is shared and 
developed through collaborative networks (Vicente-Saez & 
Martinez-Fuentes, 2018),” provides both a vision and a mecha-
nism for producing not only accurate models but also ones that 
are accepted, trusted, owned, and used by policy makers, com-
munity coalitions, and organizations to make informed deci-
sions. As open science often addresses the interplay between 
humans and systems for organizing and presenting information, 
it is highly relevant for model-based decision support. They 
both require rigor and transparency. Not only will the models 
need to accurately represent the phenomenon being studied, the 
process by which these models are created, documented, and 
shared should facilitate replication and provide a foundation 
on which the field as a whole can grow. The call for increased 
adoption of systems science, and ABM in particular, needs 
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recommendations describing the practices for doing so in a 
rigorous manner, which we provide below.

ABMs have unique ways of generating scientific evidence 
that differ from those used in standard statistical modeling 
of empirical data. In particular, “agents” are instantiated, 
assigned attributes, and interact with others and their envi-
ronments according to rules, so one cannot directly examine 
the goodness-of-fit across individuals in the way longitudi-
nal datasets offer. Consequently, there are unique aspects of 
open science that are appropriate for high-fidelity ABMs. 
ABMs have their own ways of addressing validity, reliabil-
ity of outcomes, replicability, sharing of source code, and 
standards of reporting (Collins et al., 2015; Grimm et al., 
2006; Wilensky & Rand, 2007).

Based on our shared experiences in developing the most 
widely used ABM platform (Wilensky, 1999), and over a 
decade of contributions to the push for reliable ABMs (e.g., 
Vermeer et al., 2020; Wilensky & Rand, 2007), we identified 
three major themes that we use to structure the recommenda-
tions presented in this manuscript: (1) ensuring model valid-
ity, (2) facilitating replication, and (3) acceptance, adoption, 
ownership, and use by stakeholders. The first two of these 
address how models can be understood by model builders 
and scientific reviewers, while the last focuses primarily on 
stakeholders who have deep understanding of the local con-
texts but not necessarily the modeling methodology.

Recommendations for Ensuring Model 
Validity

We define validity of an ABM as the extent to which a model 
behaves in accordance to observed and intended dynamics. 
For ABMs, and computational models in general, checking 
validity has two primary components: model verification and 
model validation (Rand & Rust, 2011; Wilensky & Rand, 
2007). Model verification involves checking whether the 
translation into code is in line with the conceptual model 
(i.e., Does the model do what it intends to do?). Model vali-
dation consists of checking whether model behaviors are 
realistic and align with the observed phenomenon in the 
real world. While model verification should naturally occur 
for all ABMs to prevent erroneous behavior in the code, 
high-fidelity models used in prevention place a premium on 
capturing realistic dynamics; as such, a particularly strong 
emphasis on model validation is warranted for these models.

Validate Both on the Agent and System Level

ABMs are fundamentally built by describing behaviors of 
the individuals as they interact with one another and their 
environments. By design, they will cross multiple levels 
as system-level behaviors emerge without being formally 

specified in the model, which not only makes ABMs a natu-
ral fit to consider the social systems in which we live, but 
also provides the opportunity to validate the model at mul-
tiple levels.

Validation of a model occurs when the model matches the 
phenomenon the model aims to capture. Multiple standards 
for what is considered an adequate match can be chosen 
(Wilensky & Rand, 2007), but alignment needs to occur at 
the level of emergent (e.g., HIV incidence rate) or system-
level behavior (e.g., the proportion of the population receiv-
ing rapid HIV care among those testing positive). Beyond 
this traditional system-level validation, high-fidelity ABMs 
can also validate the behavior of individuals that give rise 
to such dynamics. By basing individual behaviors on local 
field data (e.g., sexual networks), and comparing the mod-
eled individual-level dynamics with observed ones, one can 
examine the overall accuracy by which the individual-level 
dynamics are modeled as well as the variance in such behav-
iors (Wilensky & Rand, 2015).

Whenever possible, we recommend high-fidelity 
ABMs to leverage validation using a two-step process. In 
the first stage, the model should be built using validated 
individual-level behaviors based on observed heterogene-
ity in individual-level field data (e.g., demographic char-
acteristics of partners, condom use) to ensure the valid-
ity of individual-level mechanisms. In the second stage, 
one should test if these individual-level dynamics in fact 
yield the emergence of realistic system-level dynamics 
and explain the phenomenon observed.

We note that the feasibility of validating ABMs on the 
individual level is strongly conditional upon availability of 
local data. As such, the capacity to do so will expand with 
increased sharing of data between research and policy maker 
partners, thereby making science more transparent and open. 
While individual-level data to date might not be readily 
available in all contexts, and might be too costly to collect 
for modeling studies, leveraging existing research data is a 
valuable alternative. When individual-level data are unavail-
able, one may need to draw from a reasonable distribution, 
for which the impact can be tested in sensitivity analysis.

We describe the process of modeling a sexual network 
module in a Chicago-focused HIV prevention model as an 
example of how multi-level validation could be leveraged in 
practice. In this model, the primary mode of HIV transmis-
sion is sexual interactions; as such, this model relies on a 
network of sexual encounters where infections can occur. 
In our modeling, we begin with an individual level, which 
closely follows individual’s decision-making for seeking 
partners. In this approach, we used individual-level part-
nership formation data from a large, longitudinal study 
of Chicago men-who-have-sex-with-men (MSM) sexual 
encounters (Mustanski et al., 2019). Individual histories 
of partner formation and dissolution were used to generate 
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agent behaviors and partner selection over time (i.e., match-
ing real world data). Oftentimes, such networks are modeled 
by taking global network-level characteristics, such as the 
degree distribution (the distribution of number of ties) or 
the assortativity rate (the extent to which individuals part-
ner with individuals like themselves) and translating these 
into distributions of rates of partnership formation and 
partner choice (Jenness et al., 2018). While this alternative 
approach aims to generate networks that match system-level 
characteristic of the networks (e.g., assortativity rate), it 
potentially misses structural details in the network that are 
critical for spreading dynamics (Vermeer et al., 2016). Our 
recommendation is to generate individual agent-level data 
as accurately as possible and check validity by comparing 
the simulated distribution of emergent properties and system 
behavior against observed values (e.g., confirm that the 95% 
confidence interval of simulated emergent behavior includes 
the observed value). We can test a range of system-level 
measures such as degree distribution and assortative rate to 
validate a model.

Integrate Local Data to Increase Model Fidelity

Similar to integrating validated individual mechanisms, 
inclusion of local contextual factors is key to ensuring the 
ABM is sufficiently high fidelity for the context it studies. 
Parallel to the community-based developmental epidemiol-
ogy approach that has long been used in prevention science 
(Brown & Liao, 1999; Kellam et al., 1991), we argue that 
modelers should use local data whenever possible and prac-
tical to represent variations in person, place, and time that 
occur within a locale. For example, input of demographics, 
residence, and mobility of agents should closely match that 
of the community and its geography. For example, we used 
as one input the racial distributions in each of Chicago’s 
77 neighborhoods. While embedding local data makes 
models more context specific, the increased fidelity that 
is derived from doing so generally outweighs the loss of 
generalizability, especially for models that aim to support 
local decision-making. For such decisions, the importance 
of understanding the local dynamics and (potential) barriers 
to implementation will be critical, suggesting the use indi-
vidual data alone will not suffice, and such data need to also 
be specific to the context that is being modeled.

When developing an ABM, it is possible that we dis-
cover inaccuracies. The previously mentioned network mod-
ule based on a Chicago-based cohort study is one example, 
where we found that inclusion of only individual-level risk 
factors was insufficient to account for the observed dispari-
ties in HIV incidence and prevalence for African Ameri-
cans and Latinos compared to non-Latino whites. To cap-
ture disparities more accurately, we included a module that 
accounted for the racially segregated neighborhood (and by 

extension, social) structure of Chicago, and community-level 
viral load, defined as the proportion of people in that neigh-
borhood with HIV multiplied by the proportion who were 
not virally suppressed. By integrating these local dynam-
ics and data, the model not only becomes more realistic, 
it also becomes more tailored to the local setting. As such, 
integration of local data into a model increases the model 
fidelity and the actionability of its outcomes for prevention. 
While the model itself become more specific via inclusion 
of local data, we note that the method of building and tailor-
ing models to their context remains generalizable. As such, 
building these models and reporting on the process of doing 
so should be seen as methodological contributions to preven-
tion and modeling sciences that can be scaled up or out with 
local data from other systems and locales. To facilitate these 
adaptations, we recommend that both the context-related and 
individual-level input components be included but distinct 
from the core model code. By this, we mean that parameter 
values in the code are represented by an expression and that 
this expression is defined (based on field data) in a separate 
input module. In separating input data and code, only the 
module responsible for translating data into expressions will 
need to be adapted when local data from a different context 
is used, while the functional model code remains intact.

Report the Model Validation Process

For high-fidelity models in particular, their strong reliance 
on field data ensures that model validation is a natural part 
of the model-building process. Although model validation 
might be the norm during model building, few reports of 
these efforts are documented or shared with peers. By under-
reporting the process of model building, much of the prior 
work of evaluating the validity of the model (and its results) 
is discarded during the publication process. This exclusion 
obscures much of the logic employed during model building 
and the assumptions that underlie the model. These pieces 
of information are critical when attempting to replicate, 
modify, or build upon the model. To improve the scientific 
method of modeling to support prevention, we recommend 
reporting not only the final model and its outcomes, but 
also the major steps in the process of model building itself, 
including the efforts undertaken to validate the behavior of 
the modules within a model and the system-level behaviors. 
The recently developed TRAnsparent and Comprehensive 
Ecological modeling documentation guidelines, or in short 
TRACE (Grimm et al., 2014), support the reporting of the 
model-building processes by presenting model builders a 
structure and language to adopt in their documentation of 
activities undertaken as part of the building process. TRACE 
asks modelers to keep a notebook of their model-building 
efforts and organize it using 8 main elements: Problem for-
mulation, Model description, Data evaluation, Conceptual 
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model evaluation, Implementation verification, Model out-
put verification, Model analysis and application, and Model 
output corroboration (Ayllón et al., 2021; Grimm et al., 
2014). This structure can then be leveraged to present an 
overview of efforts. By leveraging recent developments in 
the capability of dynamic documents, these notebooks can 
be made interactive, and a true blend of code snippets, com-
ments, and results, which can be staggered with various lev-
els of details to fit the need of both modeling experts as well 
as relative novices. These capabilities increase the share-
ability and readability of such documents to such an extent 
that they can be used for the evaluation of rigor and validity.

While tracking model development using TRACE adds 
to the burden of model documentation during the model-
building process, the upfront time commitment for tracking 
and tagging is paid back with dividends during the process 
of generating model documentation for publication. Moreo-
ver, the resulting documentation and shared model valida-
tion process increase the validity of the model itself, the 
rigor in the modeling process, and the transparency of the 
method used. TRACE documentation is geared toward ongo-
ing modification and adaptation of models, openly present-
ing the modeling artifacts as building blocks for an ongoing 
scientific process, and facilitating replication in the process. 
For this reason, we highly recommend the use of tools such 
as TRACE. Effective use of TRACE requires it to be adopted 
from the onset of model development and, as such, reported 
use to date is low. While still in its infancy in terms of adop-
tion, given the benefits described above, we expect tools like 
TRACE to become an established standard in the reporting 
the model development and model validation process in the 
coming years. Especially in prevention science, which puts 
a premium on validated high-fidelity models, the adoption 
of TRACE as a standard will help ensure the rigor of the 
models used and the trust in using modeling results for pre-
vention decision-making.

Report Misalignments and Model Shortcomings

As George Box famously said: “all models are wrong, 
but some are more useful than others.” While our efforts 
in building the Chicago HIV model have revealed that 
accurately integrating local individual-level data can yield 
extremely accurate high-fidelity models, models by their 
very nature abstract some of the complexity. Consequently, 
it is likely that some discrepancies will occur between mod-
eled and observed behaviors. While reporting the validation 
process using TRACE presents an opportunity to identify 
such misalignments, there is no explicit section that ensures 
this is in fact done. Combined with an external pressure to 
disseminate appealing modeling outcomes, one runs the 
risk of misalignment being buried rather than being used as 
ongoing lessons. As such, we recommend devoting a section 

in the Model Analysis and Model Output Corroboration sec-
tions of TRACE that specifically highlight misalignment, 
their hypothesized causes, and potential ways they could be 
improved. Specifically acknowledging early misalignments 
and appropriate solutions ensures a critical look at the model 
and helps identify missed critical dimensions or variables, 
which may prove critical for both for decision-makers and 
for model building.

Early in our Chicago EHE model building, for example, 
we had accurate projections of 1-year incident cases, but 
inaccuracies in classifying the incident cases by race/ethnic-
ity. While including community viral load and community 
poverty improved the models’ outcomes of incidence rate 
by race/ethnicity, our model only partially captured the dis-
parities observed in practice. On one hand, this observation 
supports statements that traditional risk and protective fac-
tors (which are included in the model) do not explain the 
observed disparities; on the other hand it highlights the need 
for our model to improve on integrating social determinants 
of health. Consequently, the current version of the model 
foregoes making any claims about disparities and explicitly 
states this specific shortcoming in the model descriptions. 
Currently, our development aims to better understand and 
integrate social determinants of health to support this model 
to be used to make claims about addressing disparities, as it 
was originally intended.

Use Model Fitting with Caution

A common modeling practice is to obscure or “address” dis-
crepancies in alignment by introducing one or more fitting 
terms—what is pejoratively described in computer science 
as a “kluge factor.” The purpose of including such terms is 
to ensure the model generates results that are aligned with 
observed outcomes. Generally, the arguments for including 
such fitting terms are uncertainties in the input data, incor-
rect modeling assumptions, or exclusion of important vari-
ables. While there are cases in which these arguments are 
warranted and model fitting can be a legitimate strategy for 
model improvement, for ABM in general, and high-fidelity 
models specifically, such a strategy is generally undesirable 
because fitting a model’s outcomes goes against the notion 
of validation on multiple levels. While model results can 
sometimes seem more appealing, the process of fitting can 
obscure details needed to objectively use models for decision 
support and prevention.

In summarizing this section, we recommend that model 
documentation should include a clear distinction between 
ways that the model uses input data. One classification 
would distinguish situations in which the individual-level 
data are directly entered (e.g., each agent inherits one indi-
vidual’s longitudinal state data over time), parameters are 
derived to represent the distribution of individual-level data 
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(e.g., modeling the distribution of times to formation of new 
sexual relationship), parameters are copied from previous 
studies (e.g., rate of HIV infection per sexual encounter), 
and input parameters are optimized to validate an aspect 
of the model (e.g., kluge factors that are added to improve 
predictions).

Present Outcome Variation

High-fidelity ABMs are generally stochastic, meaning they 
incorporate some form of randomness in the behaviors 
within the model. Such randomness can stem from draws 
from a distribution, or a random order in which individu-
als are activated. As a result, there can be path dependence 
and uncertainty about model outcomes. When uncertainty 
is combined with feedback loops, non-linear dynamics, and 
complex interactions within these models, it has the poten-
tial to cause substantial variations in outcomes across model 
runs. The norm for addressing variance in the outcomes is 
to use multiple repetitions of a given set of parameters and 
to report the average results across them. While considering 
the mean outcome is an effective way of summarizing the 
outcomes over multiple repetitions, it is incorrect to assume 
that this mean behavior is representative or even likely to 
occur in the system being modeled or the real-world phe-
nomena on which it is based. The fact is that variation in the 
outcomes generates a range of behaviors that can occur, and 
ignoring such variance by presenting only mean behaviors 
provides a false sense of the stability of these behaviors. 
Awareness of the fact that mean behavior might not be the 
most representative, or even useful, outcome is critical for 
interpreting model results, especially for decision support.

In reporting model behaviors, we explicitly call for pro-
viding relevant quantiles (e.g., median, maximum, and 
minimum) and other summary statistics in TRACE’s Model 
Analysis section. For example, consider checking whether 
the distribution of R simulated incident counts Y1, …, YR 
is in agreement with the observed number of incident cases 
1  year later, N. A straightforward comparison would be 
to form a 95% confidence interval, for the difference, i.e., 
(Ȳ − N) ± 1.96

√

var(Y)∕R + N  and see if it contains the null 
value of 0. This would reveal if the mean of the simulation 
deviates from the observed value, taking into account vari-
ation in both the simulations and the observed value. More 
relevant statistical indices would examine how variable the 
individual simulations were. For example, we could compute 
the number of simulations where the individual confidence 
intervals (Y

i
− N) ± 1.96

√

Y
i
+ N excluded 0. Simulations 

having only 5% of these intervals exclude 0 are numerically 
aligned to the observed data, but models with 10–15% exclu-
sions are reasonably representative as well. Alternatively, pre-
senting the distribution of simulated effect sizes, i.e., ratios 

(Y
i
− N)∕

√

Y
i
+ N  , would show the full range of simulated 

versus observed differences.

Evaluate Model Robustness

We want to highlight one core piece of the TRACE spe-
cifically. The key purpose of the Model Analysis section in 
TRACE is to report the robustness of the modeled outcomes, 
which is key to understanding how to use modeled results in 
decision-making. Similar to the variation across runs caused 
by stochasticity, the model robustness refers to the extent to 
which model dynamics and outcomes will vary as a result of 
perturbations in the modules or inputs used. There are multi-
ple reasons why uncertainty exists regarding the implementa-
tion of a mechanism or module. Either the input data used to 
calibrate the module is weaker or unavailable, or the exact 
functioning of a mechanism is not clearly documented and one 
interpretation was selected. Regardless of the cause, the aim 
is to report the impact of such uncertainties on the outcomes 
and in the interpretation of model results. As such, a sensitiv-
ity analysis should always be conducted in which one perturbs 
the less robust parameters or mechanisms in the model and 
analyzes the impact of such changes on model outcomes.

This sensitivity analysis should be reported as part of any 
dissemination of modeling results as it provides an indica-
tor of the overall stability of model outcomes. While highly 
sensitive models are not necessarily problematic, it is vital to 
know the extent to which a model’s outcomes are conditional 
upon the chosen parameterization or behavior. A more cau-
tious interpretation of results is appropriate for highly sensitive 
models, warranting a more critical look at the validation of its 
mechanisms, and potentially relying more on its relative effects 
rather than the effect sizes. In contrast, highly robust results 
can mitigate potential concerns relating to validation of the 
model. As a sensitivity analysis by design examines the impact 
of perturbations to a system, it is an invaluable tool for iden-
tifying critical levers for changing systemic behavior. Addi-
tionally, it is likely to provide bounds to the extent to which 
certain intervention can change systemic behavior. Both pieces 
of information are useful for decision-makers, but can only be 
leveraged if sensitivity analysis becomes a central piece of the 
modeling outcomes reported. Consequently, we recommend 
sensitivity analysis to be a key element of the modeling effort 
for any ABM used in the prevention science domain.

Recommendations for Facilitating 
Replication

Replication has been a core practice of the scientific method 
for as long as research has been conducted. By replicating 
experiments and comparing results across independent stud-
ies, scientists have been able to verify protocols and findings 
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and create reliable knowledge for future research to build 
upon. As such, replication has been a foundational princi-
ple allowing for accumulation of knowledge. For simulation 
models, which by their very nature create a virtual repre-
sentation of the phenomenon under study, replication is a 
natural way of checking the accuracy of the behaviors of 
these models; therefore, it is a natural process that accounts 
for model verification and model validation. When model 
accuracy comes at a premium, as is the case when high-
fidelity models are used for decision support and preven-
tion, ensuring reliability of model dynamics by means of 
replication becomes critically important. What is more, 
the need for replication of such models is higher than ever 
before. Without replication, we cannot have confidence in 
model findings, thus risking the integrity of the foundation 
of the body of work. Adopting ABM without replication can 
degrade the credibility of the method as a whole and hamper 
the potential of it to advance prevention science. To ensure 
the potential of ABM in prevention can be reached, we pre-
sent recommendations on how to facilitate replication below.

Support a Culture of Replication

While the value of replication has long been recognized in 
modeling literature (Axtell et al., 1996; Edmonds & Hales, 
2003; Thiele & Grimm, 2015; Wilensky & Rand, 2007, 
2015), there is a surprisingly limited amount of replication 
and validation of ABMs in the literature. This limited pres-
ence can be attributed in a large part to poor attribution of 
value to replication studies and an incentive structure in the 
publication culture that primarily rewards novelty.

Currently, journals are most like to publish research when 
it presents novel or counterintuitive results. Replication stud-
ies, by definition being neither original nor aimed at adding 
new knowledge, are poorly aligned with this dominant view 
of what is publishable research. For replication to play a 
viable part in our scientific process, this perspective of what 
is considered valuable for science will need to change. Rep-
lication efforts will need to be both embraced in publication 
culture and credited as solidifying the existing knowledge 
base.

Checking the conclusions of each high-fidelity ABM by 
full replication is highly impractical owing to the extreme 
effort such an effort would require. Our own project of com-
pletely replicating a high-fidelity HIV model (Vermeer et al., 
2020) spanned a period of 18 months, involved three team 
members, and required multiple communications between 
our team and the original model creation team, and involved 
sharing of models, source code, and proper documentation. 
Although modular replication (see next section) can reduce 
some of this load, it remains infeasible for replication to 

become a systematic part of the peer review process, espe-
cially for high-fidelity models.

While integrating replication as part of the review process 
is a bridge too far, there are changes that can be made to 
improve current publishing standards. We recommend pub-
lishers to require documentation to include TRACE (Grimm 
et al., 2014) and The Overview Design Details standard 
(ODD) (Grimm et al., 2006, 2010) for all published models. 
In doing so publishers can create a pull for more rigorous 
models, allow for better replication of these models, and 
hold modelers accountable for their process, not just the 
results, of modeling.

Leverage Modularity

In our process of replicating a high-fidelity model for HIV 
prevention, we found that leveraging modularity can reduce 
the efforts required for replication. High-fidelity models are 
complex and capture a multitude of dimensions and contex-
tual factors. With many dimensions come many interactions, 
making fully understanding dynamics and model struc-
ture difficult for high-fidelity models. Dividing the model  
code into smaller segments, which we refer to as modules, 
and replicating one module at a time reduce the complex-
ity of the replication process. Each module’s behavior can 
be verified without the need to completely understand the 
complete model. Model builders can facilitate this process 
by building their models with a modular structure in mind, 
writing sections of code that are distinct into modules and 
explicitly highlighting the interaction between such mod-
ules. The adoption of functional code lends itself well for 
building modular structures, as by definition each function 
is structured to have defined inputs and outputs, allowing it 
to be specified as a module. An added benefit of fixing input 
and output structures is that each module can be altered or 
replaced with a updated version whenever new knowledge 
or data becomes available without impacting the remainder 
of the model, facilitating tailoring of the model in future 
modifications. Consequently, modular models and functional 
code allow for both easier integration of new knowledge, 
easier model validation, and better grasping the structure of 
a high-fidelity model, all of which can be leveraged to ease 
the replication process.

Standardize Model Documentation

A sense of model hierarchy and structure is required to lev-
erage modularity during replication. Such insight can only 
be conveyed efficiently by appropriate standardized model 
documentation. ODD (Grimm et al., 2006, 2010) is a widely 
adopted standard for documentation of ABMs and is rapidly 
gaining traction. While we strongly encourage the use of this 

838 Prevention Science  (2022) 23:832–843

1 3



standard, many of the details and interactions that occur in 
high-fidelity models are encapsulated into the “sub-models” 
section, which makes it fall short in providing an overview 
of the model structure (Grimm et al., 2020). Consequently, 
we recommend inclusion of a modular flow diagram in the 
Overview section of the ODD protocol. Such a diagram 
depicts the modules present in the model and connects the 
modules that impact one another. In doing so, it presents a 
graphical overview of the model structure that complements 
the process overview, which is generally described by means 
of pseudo code. Presenting such an overview not only facili-
tates the modularization of the model during replication, it 
also provides a structure that can be followed and referred 
back to when describing sub-models in the documentation. 
Displaying both a modular flow diagram and sub-model 
structure aids in understanding a high-fidelity model.

Make Model Code Publicly Available

Complex (social) systems often exhibit non-linear behaviors 
and tipping points that are sensitive to small differences in 
model details. As such, high-fidelity model replications can 
potentially produce different results even if they are very simi-
lar to the original. Such a lack of robustness would be impor-
tant to know. Exact replication across platforms and languages 
is known to be extremely difficult (e.g., Miodownika et al., 
2010) and is further hampered by the inherent difficulties in 
model reporting. Given the sheer amount of description needed 
to capture all nuances and interactions of a high-fidelity model, 
even the best documentation is likely to fall short in provid-
ing the details needed for perfect replication. This makes it 
nearly inevitable that differences will occur during translation 
from text to code. The ambiguity in the translation process 
dictates that replication of high-fidelity models require sources 
of information that go beyond a plain English description of 
the model.

For this reason, we recommend three additional resources 
to be made available for replicators. First, the aforemen-
tioned documentation of the model validation process. Sec-
ond, for model builders to be available for potential ques-
tions from replicators. Our replication efforts have shown 
that being able to tap this “insider knowledge” allows for 
a much more dynamic interpretation of the documentation 
and address questions relating to interpretation of the writ-
ten word, which is extremely valuable during the translation 
process (Vermeer et al., 2020). And third, model code needs 
to be made available as part of the dissemination process. 
Sharing of code has two major advantages. It is the only way 
to guarantee what the model is doing, as the actual machine 
interpreted code can be viewed and compared. Moreover, the 
availability of model code allows one to do model verifica-
tion concurrently with the replication process. While we can 
do validation based on observed module or model outcomes, 

verification requires a look at the actual code being imple-
mented and thus can only occur when such code is shared.

Sharing code has long been the gold standard within the 
modeling domain. However, while generally being perceived 
as widely beneficial (Collins et al., 2015), it is far from the 
being the norm. Only in recent years have we observed a 
change in policy, with sharing of model code more often 
seen as a required element for dissemination of results—a 
trend we strongly encourage.

Share Input Data when Possible

In line with creating transparency and facilitating replication 
by sharing model code, we also encourage the inclusion of 
input data as part of the material being shared. As stated by 
the editors of the journal Science (Hanson et al., 2011), “It 
is obvious that making data widely available is an essen-
tial element of scientific research. The scientific community 
strives to meet its basic responsibilities toward transpar-
ency, standardization, and data archiving.” However, input 
data often contains individual-level characteristics, has pro-
prietary elements, or is not owned by the model builders. 
The inability to share data, regardless of the reason, poses 
a potential tension as local nuances in this data are likely to 
affect modeled behavior and are required to assess the valid-
ity of the model in capturing the local context and individual 
behaviors. Consequently, in cases where raw data cannot 
be made publicly available, we suggest taking advantage of 
advances in data curation (Borgman, 2012; Hanson et al., 
2011; Kum et al., 2011; Olson et al., 2008; Palmer et al., 
2007) such as engaging in a process of preparing input data 
in the form of summary statistics and distributions that can 
be shared as part of the publication process, as well as pre-
paring and archiving data (Whitlock, 2011). We recommend 
including owners of the data as coauthors in dissemination, 
as this promotes data sharing (where input data may be 
requested) and engenders confidence that the data will be 
used appropriately.

Community Acceptance, Adoption, Ownership, 
and Use of Model‑Based Decision‑Making

Many policy makers are familiar with and use “data driven 
decision-making,” a core of epidemiology that is based on 
efficacy/effectiveness evidence-based findings. We envision 
another tier that we call “model driven decision-making.” 
This approach relies on simulation studies and “what-if” 
alternatives to answer community needs that extend the 
existing evidence base across time and context in ways that 
field trials can never complete in time for timely decision-
making. While the creation of high-fidelity models should 
go hand-in-hand with the use of models for decision support, 
it will be policy makers and community representatives, not 
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the model builders, who will be making decisions to act 
upon the modeled results. As such, the high-fidelity mod-
eling approach specifically, and the open science movement 
in general, cannot ignore the role of policy makers and com-
munity opinion leaders in its standards. We argue that for 
models to be used for decision support, those developing 
the models need to partner with community partners and 
other stakeholders, work under the aegis of their organiza-
tions and systems, and facilitate understanding and use of 
these models to make decisions. Given this goal, it will be 
critical to engage stakeholders early in the model-building 
process rather than to see them as merely the recipients of 
the results.

We provide an example of this approach through our 
modeling efforts to study the impact of COVID-19 on opi-
oid use-related mortality in Pinellas FL. We became mem-
bers of the local task force that was assembled to reduce 
overdose deaths. The task force included treatment provid-
ers, service system leaders, community advocates, and the 
county health department as partners. Some of the financial 
resources of this study (provided by the National Institute on 
Drug Abuse (NIDA)) were used to support weekly feedback 
from the task force’s two co-chairs, following principles of 
community-engaged research in prevention (Brown et al., 
2012; Kellam, 2012). The benefits we observed from this 
practice were twofold. First, working with the local experts 
allowed us to identify and prioritize interventions and imple-
mentation strategies that are feasible (e.g., what programs 
can be funded legally by local, state, or federal government 
dollars). Being immersed in the field, our partners had the 
best sense of which modeled mechanisms were realistic or 

not, allowing for a rich source of model validation during 
the model-building process. Second, community questions 
were translated into model experiments, answering specific 
questions for which our stakeholders lacked the answer, and 
directly impacted their activities. Providing a direct response 
to the local needs facilitated community acceptance and 
adoption of the model during the decision-making process.

We argue that when models are built for supporting stake-
holder decision-making, these stakeholders should be made 
a part of the model-building process. Researchers cannot 
afford to ignore stakeholders’ value as resources, nor their 
role in the dissemination to and adoption of the practices. 
Instead, stakeholders should be engaged throughout the 
modeling process to ensure the model’s practical relevance 
and impact.

Conclusion

The call for increased adoption of systems science methods 
in general, and agent-based simulation models specifically, 
in prevention science can only be successful when adoption 
of this novel methodology is done with sufficient rigor. In 
this paper, we presented a set of recommendations, summa-
rized in Table 1, to guide the field in doing just so.

What becomes evident when considering this set of rec-
ommendations as a whole is that it represents an effort to  
be more transparent and open in what is modeled and how 
it is modeled. These recommendations consider one’s mod-
eling work as part of a larger process of building a general-
izable knowledge base, to extend from and build upon, and 

Table 1  Overview of recommendations for rigorous high-fidelity agent-based modeling in prevention science

Subdomains Action steps

1
Ensuring model validity

a. Validate both on the agent and system level - Build models using agent behaviors based on individual data and validate 
emerging system dynamics

b. Increase model fidelity by integrating local data - Build models using data that is specific to the context that is studied
c. Report the validation process - Adopt TRACE standard to report the modeling and validation process
d. Report misalignments and model shortcomings - Include a specific on misalignments, in the Model Output Corroboration section 

of TRACE
e. Use model fitting with caution - Caution against including fitting terms without a good reason
f. Present outcome variance - Always present a distribution of results and discuss the variability of model 

outcomes
g. Evaluate model robustness - Always include a sensitivity analysis as part of disseminated modeling results

2
Facilitating replication

a. Support a culture of replication - Require ODD and TRACE documents as part of the publication process
b. Leverage modularity - Reduce complexity of replication by replicating one module at a time
c. Standardize model documentation - Adopt ODD in documentation

- Include a modular flow diagram in the Overview section of the ODD
d. Make model code publicly available - Share as many artifacts of the modeling process as possible, including 

TRACE, ODD, and modeling code, and input data
- Be willing to answer additional validation and replication questions

e. Share input data when possible

3
Acceptance, adoption, ownership, 

and use by stakeholders

a. Include community partners in the model-building 
process

- Partner with community stakeholders as early as possible in the modeling 
process

- Focus on answering locally relevant questions
- Leverage local stakeholder knowledge for model validation
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ultimately support the rigor of the method and the field as a 
whole. While this perspective is highly relevant for preven-
tion science as it embarks on integrating a novel methodol-
ogy into its repertoire, it should be noted that such guidance 
generalizes to complex systems beyond the boundaries of 
prevention science. Moreover, sharing models and data, pre-
senting more detailed reports of validation processes, and 
setting standards for reporting (both the model and its out-
comes) all facilitate replication and align with fundamental 
notions of open science.

While we have noted several benefits of ABM, we should 
emphasize it is not the silver bullet for all prevention science 
problems. We consider ABM to contribute to studies where 
the system or phenomenon studied entails at least one the 
following four characteristics: (1) multiple levels of behavior 
or organization; (2) interactions among the elements of the 
system; (3) environmental attributes that impact behaviors; 
or (4) heterogeneity influences observed behavior. Without 
these characteristics, adoption of ABM, while still feasible, 
is likely of little additional value to alternative methods.

We also note that there are many prevention settings that are 
ripe for, but have yet to use, ABM in any comprehensive way. 
For example, we are exploring how peer leader and network-
based interventions can succeed or fail and the impact of what 
we call multiplicative interventions (Brown et al., Under review). 
There is little empirical knowledge of how many peer leaders are 
needed and where they should be situated in the school friend-
ship network to touch the lives of those who are on the periphery 
where the most suicidal youth are typically located (Pickering 
et al., 2018). Simulation models can fill in gaps that randomized 
trials can never answer.

Another challenging prevention issue that could benefit 
from ABM is to model factors that would contribute to equity 
for minoritized and low-income populations (McNulty et al., 
2019). Prevention science has largely focused on intervening 
to promote the health of individuals who experience dispari-
ties, such as sexual and gender minorities. Intervention trials 
that target these populations are easier to conduct than those 
that could take on broader social inequalities that result from 
structural racism, sexism, and homophobia, but these broader 
interventions may be necessary to shift population disparities. 
ABMs could contribute important knowledge about which 
social strategies could work to achieve equitable implementa-
tion in service of eliminating health disparities (Smith et al., 
In Press). Finally, we note that ABMs could provide valuable 
information for social strategies to increase the use of vaccines 
and other biomedical interventions for prevention, especially 
in communities of color.
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