Netlogo <<=

NetLogo 4.1 User Manual

NetLogo 4.1 User Manual

Table of Contents

What iS NeTLOGO?....cerrirrmrrrrsssmnrisssssnsrsssssmsssssssnms s ssssmsssessssms s sasssnnssssssmsnsesssnnessessannessassnnnsssssnnnns 1
Y= L0 (==Y 1
right and License Inform 1 3
[[A (O (=Y (=1 (=) 1 07= 3
ACKNOWIEAQMENESeeeeeeeee e ettt e ettt e e e e e et e e e e e e e e et e e e e e e e e e s annnnnneeeeeaeeeeannnnneees 3
A= 0T o TN o= 1S P PRRRP 3
Behavior [ToT AT = 3
e =TI [0 T [T01 1T 3
Thir AV [T A T=T= = 4
L AL et e ————— 4
MersenNNETWISIEIFAST........uoiiieiee et e e e e e s e e e e e e e e eaaaaaas 4
o) 5
YL AN = o) = PSR 5
7= T [= PP 5

N o = 5
Y10 VAT =t o0 o [o 6

[0 = To | [= Yo =TT oY o TR 6
O G i e e e e e e e eeaeeeeee e aaaateaa———————— 7
Y= DG | 8
N LY T 8
o PSR 9

Pi 01721 =) 9

TS Topol 1N 10

BN IS o= 10
AVA Advan IMaging APL Version 1.1.3.. ..ot e e 11
Apach [00T0010] TSI @70 Yo /=Y 11
Apach karta H L= 11
Apach [aTnaToY TSI Mo Yo (o 110 o P 12
R0 A= 13
Version 4.1 (DeCemMbEr 2009)uuuuuuuruuuuuuuruuuruunruueeunrerneearrrasranrsrasre.——.———————————————————————————————. 13
Version 4.0.5 (December 2009)......ccceeieeeeuuiieeeeeeeeeeeeeirea e e e e e e e ee et e e e e e e e e e eerr e aaaareeeraa—_ 15
Version 4.0.4 (November 2008)........ccceeeeeuuuieeeeeeeeeeeeeiiaeeeeeeeeeeeerasaaaeeeeeeeeessaaaaaeeeeesseeesannns 15
Version 4.0 (September 2007) ... cuuuueeiiieeieeeeeeeeeeeieete e e e e e e s s e e e e e e e s s s eaae e e e ennnrreeees 15
Version 3.1 (ADFL 2006).ccceueeeeeeeeeeeeeeieeeee e e e e e e e e e e e e e e s s ae e e e e e e e e e e reaaeeeeennnrranees 17
Version 3.0 (September 2005)cuuu i iiieiiee e e eeriie e e e e e e e e e e e e e e nnraeees 17
Version 2.1 (DeCEMDEr 2004).......uuuuuuruueruuuruuuuuuneuneeeareuseeanrrasranrrra—..——————————————.———.———————————————.- 17
Version 2.0.2 (AUQUSE 2004)........eiiiieeeeiiiiieeie e e e e e et e e e e e e s sss e e e e e e e e s s e e e e e e e e nnnareeees 18
Version 2.0 (DeCEMDEr 2003).....uuuuuuuuruuuruuuruunruunruunrenrernreaneeasranrsranrra—..——————————————.———————————————.- 18
Version 1.3 (JUNE 2003).....uuuuuuuuuuuuuuuuutuuntuuneunsesseeaasraaseaaeeae..as.aa—..a——.———.———————.—rrrrr.m.———..- 18
Version 1.2 (IMarch 20038)........uuuuuuuuuuuueuuntuuuruuneuuneunrreaeeresearr.a—.a.——.———————————————.—...——.—.—.————————————.- 18
Version 1.1 (JUIY 2002)......cceiieeieiiieeeeeeeiieieeee e e e e e eee e e e e e e e s s ansaaeeeeeeeeesaannneeeeaaeeeeennnnreeees 18
Version 1.0 (ARFl 2002).......ccueeiiiieee e et e e e e e e et e e e e e e s sss e e e e e e e e e e e e aeeeeeannrreeees 18
mR =Y 1101 01 = 19
m R 1E=YaT=Y A T AY o) o1 [To7= i) o N 19

NetLogo 4.1 User Manual

Table of Contents

Y= Lo 1 TN 19

L@ =T 0] =110 0 1= PR 19

m R irements: SaAVed ADRPIEES.oiiiue e 19

m R 1= AT 1 E] N 19
Technical Java Details for Window £ 19
L0 1T T T 1= 21
Known [l 0015 21
Lan L0 TTAT= 01U Lo =R 21

L@ 1= 0T o PR 21
WiIiNAOWS-0NIY DUGS -..eeeeeieeeeeiiee et e e e e e e e e e e e s e e e e e e e e e e nnnnneeeeas 21

Y=o (o T a oY 1 VA o1 Lo = 21
LINUX/UNDX-0ONIY DUGS. .. eteeeeeiiiieeeeiiiieeeeiieeeessieeeeesseeeeeesnseeeessnsaeaeesnseeeeennnseeeeannseneesannsnneens 22
KNown iSSUES WIth HUDINET........cooieeeie ettt e e et e e e e e e e e e e s e e e eaeees 22

02 11 7= T £ T [0 23
LAY L= o T Y1 (=N 23

E k 10T T = (o 23
=] 010 (1o = 11 o P RPERR 23
mple M I - T /7 25
N = = /PRSP 25

O] 0= 11T o TSR 27
Thinking With MOGEIS.....ceeeeeieiiiieee et e e e e e e e e e e e e e e e s e nnnneeeeeas 28

LAY L= LA AN T AN 28
Tutorial #1: M LS et teee e e e e ree e rremn e renmurreamaarreamaaErremasEEEremasEErenSSEEEEeannSErrannaurrennannrrennnnnn 29
mple Model: Wolf Sh Pr 1o o 29
ntrolling the M . B 1S 30
Controlling speed: SPEEA SHABK.ciiieeeeiiieee et e e e e e s e e e e e e e snnreeeeeas 31
Adjustin iNQS: Sliders and SWILCHES........uuiiiiiii e eea 31
hering Information: PI 210 LY (o] AT oY= 33

[0 £ N 33
Y10 T (0 =N 34
CoNtrolliNG the VIBW....cciii ittt e e e et e e e e e e s s e e e e e e e e e ennnneeeeeas 34
BTSN oo =Y FS 1 o /PRSP 38

00T 0 LY. (0T 1= 38
PerspeCtive DEIMOScoiieiieiiieee e ettt e e e e e s e e e e e e e e s e e e e e e e e e nnnreeeeas 38
rricular M S 38

(@00 [T = 10101][PR 38

HubN m X0 AV (== 38

LAY L = LA AN T AN 38
Tutorial #2: COMMANAS...c.uiiirmmurrrremnarrremnsrrrennssrresns—rrann——rrams——rrennsssrrennsssrrransssrrannsssrrannssserannns 39
Mple Model: Traffic BASIC......uuuiiiieuuiiiiiie et e e e e e e e e e e st e e e raaanaeaes 39

Th mman 010 39
WOrKIing WIth COlOFS. ...eeeieeeeeiiiieiiee e e ettt e et e e e e e e s e e e e e e e s s eeeeaeeeeennnnnneeeeas 42

NetLogo 4.1 User Manual

Table of Contents

Tutorial #2: Comman
Agent Monitors and Agen AP 110 1) £ 44
LAY L = LA AN T AN 48
B 01 (oY F= 1 I 2 T o 0 Yo = o L1 1= 49
AQENtS AN PrOCEAUIESeeiiuieiieiieeeeeeesettee et ee e e e e e e et e e e eeeeessanseaeeeeeeeeeasannsnneeeaaeeesaannnneneens 49
Making the Setup DULIONueiiiiieii e e e e 49
Making the g0 DUHON. ... e e e e e e e e e e e ean 52
Experimenting With COMMEANAS........cooiieueiiiie e e e e e et e e e e e e e e e e e e eeaanss 53
PatChes and VAriGDIES.couuuiiieiee et eaa e e e enaanss 54
BT RN 7=T =1 o L= 55
V10 T (0 =T 57
witch nd | T 59
More pr 15N 61
[0 1T PR 62
Tick 1 (= N 65
me mor 1 66
LAY L = LA AT 4 AN 67
A 210 1) G O eY a1 01 1<) (=T o]0 Yo [68
Interf o = 71
Y T 71
hart: NetlL =T AT T 71
B 1= o =TT 73
Interf 1= o 74
Working with Interface EIEMENTS.ccouviiiiiiiiiiiiee e 74
hart: Interf B oo 1 oY= T 75
The 2D AN BD VIBWS....u. ettt et e et e e et a e e e et e e e e st eeseaaaeeesaannsesrernneaes 76
mman 10110 N 80
[0 £ TN 82
110 =T R 83
PN e = 1 A1V T (o PR 83
RN o)A aaF= Lo a T 171 o Y 85
INformation Tab MarKUD.........oiieeiiiiiie et e e e e e e e e e e e s eb e e e e eaaneeeeens 86
LAY AN £ T N 86
R 0Y01=Ye [U10=Y-T = o 86
Incl Y= T T 89
L= 1110 o 89
TaTe L= a L AN U (o] P2 (07> | 90
Programmin o =S 91
Y0 = 1 PRSP 91
(01010 11 (=)= 92
AT A=Y= o) L= 94
[0 0] =R 95
A= TR 98
FAY 0 = 1= SRR 100
T =YY [102

NetLogo 4.1 User Manual

Table of Contents

Programmin i
[T = T2 =To [T 103
110 = 104
1= 105
= 110
R r=Tale [o] TN 1T 0] 0= =Y 112
FAN T P2 Y0 =] 1= = (o PP 113
o Yor=1 I = TaTe (0] 01 AT=1 TN 113
B I T4 F= T = o= PR 113
T T =T 0T TSR 114
Tick 01 =) T 114
LAY L =T T (o 01T 114
= Lo 10 A= I [0 115
RV 1T o To F= 1 (=P RRRR 115
CoNtiNUOUS UDAALES ...eeeeeeiiiieieiiiee ettt ettt e e e e e e e e e e s e nnnneeeeeeeeeeananns 115
I e o F= TS To U o0 =1 (T P PPRRR 116
hoosin 1010 T 0 116
a0 18T PSRRI 117
700 1= 120
1o PR 121
1T 1 122
Y10 YT 123
Y £ 1= 0] 1AV PSRRI 124
1972 17 0o PSSR 124
B o] o] oo LY/ 126
I 130
P O 0T (o1 U 1 =) 0.1 A 132
1T 134
YT o T T o 10 = 1= PR 134
1172) 135
[0 0] £ 135
N L0 AT = TR 135
ST (0 PSSR 135
Lo =T 1 (L1 = 135
S To1o] o= TP PP PP 136
(0700810 01=) 01 1= 136
S (0 Lo (1= 136
mman nd r = = 136
mpar 1= 10 Yo [0 =TT 137
B =1 5114 Y T 10 o = 139
ince NetlL O 139

NetLogo 4.1 User Manual

Table of Contents
Transition Guide

The -at PEMIEIVES.....ee e e e e e e e e e e e e e eeaeeas 141
TR 141

I T 1Y 7= OSSR 143
ST = =] 143

B T 0T U1 (=) 144
VieW Update MOAES.uueeiiieeeieiiiiiiee e e ettt e e e e s et e e e e e e e s e e e e e e e e e e s nnnneeeeeaeens 144

1T = 145

I U 0i0] 0T =R 146

P =1 £=T= A o U 1o o PSR 147
(G = 0] o] = 147
T2 147
HubN T2 = 147
PerformManCe Of LIiSES......ciiiuuuiiiiiiee ettt e e e e e e e e e e e aaa s 148

ince NetL 0T 148
FAY 0 = 1= PRSP 148
L1720 o PRSP 148
Random turil [0 [T F= 1= 148
1Y o 0] = 151
YT AT =T =T o) o] = PR 151
PN Lo T iTo Yo =Y 1 == 151

e =Y 15110 1= T 151

ing an altern jar | 1o o 151

A= R (=10 [0 110=) 001 01 =TT 152
TaTo I A TSI a0 a1 A=) 6= (o] o 152
Increasing the available MEMOIY..........iiiiiieee e e e s 152

E resn rted in L 152
h o 11 (oY S €T | o = 153
in 1= N 153

[aaTo o a T aTo =T A F= T 0T T 153
reating an itin 118 SNAPES. ...coveiiieee e e 155
0 Yo T 155
oAV =L £ T 156
verl 10T BT A F=T 0 1=)= 156
T o 156
[0 0] £ 156
(@11 A=Y 0T U110] 1= 156

h o o 156
T o] To = TS 7= o = PSPPSR 157
reating an itiNG HNK SNADES .. .cceeeeiieeeee e e e e e e e e e e e e e e eeaaa s 157
hanging link sh (0] 1<) 111 TR 157

ing sh inam ettt e e e a e e e ra e e ra e araaas 158
BehaVviorSpace GUIAE.......ccccurrrrrmiiisssnmnnnssrnsssssssmmsss s sssssssssssmsss s s sssssssssssnsssssnssssssssnsnnssnnsssssssnnnnns 159
What is Behavior e e e e e e eeee— e e e e e e e era e era e raaas 159
Why Behavior e e e e eee e —earea e e reaeeereaeeaerraeeaeraaas 159

NetLogo 4.1 User Manual

Table of Contents

_BehaviorSpace Guide
i [0 XV LAY 0 1 < 160
Managing experiment SEIUDS uuuieii i e e et e e e e e e e e e e e e e e e e e 160
reating an expPerimMeENt SEEUDccvuuiiiieie et ee et e et e e e e et e e s et e e e s eea e eseeraaeaees 160
RUNNing an @XPELIMENEuuiiiiieiiiiiiiieee e e e et e e e e e e e e e e e s eeee e e e e e ennnneeees 162
J oYz TaToT=Ye MU I=Y= o [164
Running from th MMANA NG .. ieeeee it e e e e e e e e e e s e e e e e esaneaees 164
in XPEHMENES 1N XML ..ceeniieee e e e e e e e e e e e et e e e e aaaa s 166
(@0 0100 11T To Y PP 167
ST 10T o= N oo Lo L= 167
System DyNamiCS GUIE......uuurrrrummmrrrrrmsssissnmnnnsssssssssssssnssssssssssssssssssnssssssssssssnnnnnnsssssssssssnnnnnnsnns 169
What is the NetlL M DyNamicS MOAEIEI2........ueieieeeeeeeee e 169
Basi 107 0 1= 169
00T 0 LY/ (0T 1= 170
i [0V AT T 170
D= o =T 4 T 7= o PP 170
R 0Y01=Ye [U10=Y-T 1= o 173
Th m Dynamics M ler and NetLogQ.....ccueiiiieiiiiiiee et 174
Tutorial; Wolf-Sh Pr 1o o TR 174
1:Sh Repr 1o o 174
2: NetlL a1 C=T0 [17= 110 177
11 (=Y o Aol =T =1 1o o PRSP 178
HubN o = 181
NAerstanding HUBNET.iiiii e e e e e e e e e et e e e e eba e e eeeaas 181
AN 1= 0T T ORI 181
[0] o N = A AN (0] 11 1= ([181
(@0 0] 0101 (=] ol m 0] 0] A = SRR 182
F o Y= 182
L1 £ 182
e T=To 01T 0 T= 11 PR 182
a0 =T = (o VA1 182
HubN RN L0] IO 01 1= 183
(O =T 0 72 o] 0] = PSPPI 184
B C0T0] o1 1=1=1 a0 Yo) 112 o 184
KNOWN LIMIEATIONS ..evuniieeeie ettt e et e e et e e e e e e e e e eaa e e s seaa e e s esanneeaees 185
FoTU] P2 (o Tl 11 0] A =) 185
lculator HubNet for TI-Navi TR 185
B2 Lo a1 10 1 €] o o YRR 186
HubNet AUthoring GUIAEeiiiiiiiieieee et e e e e e e e e e e e e e e e e eaanes 186
€ 1= =] o P SRR 186
HubNet AuthOring GUIdE......ccccuririiirsssmmmnrrirnsssssssmnsnsssssssssssssss s sssssssssssss s s esssssssssnmnnsssensssssnnnnns 187
neral HUBNet INfOrmMation...........oiiieeee et e e e e e e e eaaas 187
Coding HUDBNEE ACHVIEIES.uveeeeeeeeee e e e e e e 187
S 1= (1] SRR 187
Receiving messages from ClENES..........ueiiiieiiiiiiieieee e 188

vi

NetLogo 4.1 User Manual

Table of Contents
HubNet Authoring Guide

nding m =T =T 190
=110 [T PRSP 190
lculator HUBNet INformation........coeeeuuiiiiiiee e e e e e eaaas 191
m I HUDNET INfOrMation.......cuvueiiiieie e e e e e eaees 191
How To Mak =Y o [0 (=Y 7= o7 = 191
View TR TSI O 112 1 £ 191

licking iN the VIEW ON ClENES ... ciiieiiiiiete ettt et e e e e e e e e e e e e s e eeraaeaees 192
Pl [T TSI O 1= (= 192

o o [10 193
rting | 0T 193

MAC OS X OF WINAOWS....ceuuniiiiieiiie et ee et ee et e e e e et e e e e eaa e e e seaa s e s seaasessesaaeesessnneenes 193

[T a 10D = Talo I Y1 1<) =TT 193

ing | T 193

Where 1008 are StOIEA.ceeiiii i e e e e e e e e e eeeaeeas 193

How to configure the 10gQing OULPUL........cvvreiiiiiiiieieee e 195

Advan AN T0 0T =0 o TR 196
L0011« |10 o 1T = 197
Starting a Java VIM for NEetLOQQcieeiiiiiieeiee et e e e e e e e 197
Recommen ions for both land h [ESS. . it 197
Additional recommen ions for oY1 L S 197

(O =T 01 V0] 0T aTo o [1=T03 (o) /PP 198

Example (with L ettt ettt e e e — e e e ea e e ra e e rr e e rra e e e raa e araaaas 198

=101 0 SN A=Y= 1o 11T T T 199
Exampl m 12T) 201

L0 1) U110 o 202
MathematiCaA LiNK.......c.ccciiiiremmiirremmirrseserrsesss s rssss e sns s rannsssrrennsssssannsssrsennsssssennnssssennnssnssnnn 203
LAY L = LA ST 203

Wh I o [0 Y7 203
RT3 =11 P2 oY 203

L0 ST o = PR 204
KNOWI ISSUEBScuuniieiette ettt e ettt e e et e e e e e e et e e e sea e e e ea s e e e sesaaeesesbaneeeessnnsseeeenns 205

LT (=0 1= 205

Intr ing NetL 3 207
Intr 1o o T 207

B I IR o T o 207

B T (o T = R 209

(=Y o N AR 9= o | PP 209

FAQ (Fr ntly Ask 10 013 TR 214

n | mak h FIUrtles tranSIUCENT 2.cooveiieiee e 214

Commands and BEPOMEISuuuiiiieieiiiiiiieei e e e e e et e e e e e e e e e e e e e e e eeees 215
Turtle-related PIMITIVESeeeeeeeiiiiiiiee e e e e e s r e e e e e e eeeeeeeas 215

T T LT = T =1 o) = 215
UL S, ettt ettt e et e e et ea e e raa e e raan s 216

Vii

NetLogo 4.1 User Manual

Table of Contents

L 216
0101117 216

0 216
istancexyz diStanCeXYZ-NMOWIED.......uuuieiierueeeeetieeeeerteeeeeeaeeereaeeereaaeeesesaeserarnaeaees 216

B e e e e et —are e eeeee e e e eea e e eea e ara e raaas 217
fACE TACEXYZ .. e 217
e e e e eee e et —eeeeta—eetetaeeeretaeeeeeaeteeeeaaeeereteeeara e aaraaas 217
12 217
T 218
MAX-PZCOF MN=DZCOL. .. eeeeeeesuueereeeeeaeeeeaasneeeeeeeeessaaaannsseeeeeaeeeaaasnsseeeeeaessesannsssseeeeeesaaannns 218

N e e e e et eeeet——ereaa—eeee e eeeeea e e ret e e ara e araras 218
Neighbors NEIGNDOISE ..o e e e e e e e e 218

0 219
rbit-down orbit-left orbit-right Orbit-Up.........coviieeeeiieeeee e 219

P e e e et —ere e eeeee e e e eea e e rea e ara e raaas 219
07 1 (] PP 219

0 T 221
72100 [0 1.1 0 00 | 221

S T 222
SO XY Z e 222
ST 223
Lo Lo XY I 11 o TR 223
T 224
world- D e e e e e — e e — e e re e e e e e raaas 224
A 224
4 00 (T 224
4 (=3 .13 [0 T 0 o [227
USING EXTENSIONS. ..ot e ettt ettt e e e et e e e e e e et e e e e e e e e e ennnnnaeeeeeeeeannnns 227
Where extensions are 10Cated.ooeuuuiiiiiiiee e e 227
7AYo 0] 1= PP 228
WItING EXEENSIONS. .. veeeeeeeeeeeiiee ettt et e e e e e e s e e e e e e e e e et e e e e e e e e e nnnnneeees 228
T 101172 PP 228
11410 [T PRSP 228

B T (o = 229

=T I o 7= 232
Extension developmMENt tiDS......ccuu it e e e e e e e e e e e s 234

{70 a1 01110 235
Arr [70 I 17 1 o =30 2T (=) 0 1) Lo o 1 237
LAY L L= AT (o U F=T= 237
[[0V (0 N U< 237
Limitation on L8 KBS . et 237

FAN = VA== 1101][RR 237
=1 o (SN = (0] o) [238
LN 7= Y 1110 11 AT SRR 238
ArAY frOM-IST ..o 238

viii

In

NetLogo 4.1 User Manual

Table of Contents

|

E

-]
1
-]
1
<

-]
-]
-]
=

=3
=
3
]

NetLogo 4.1 User Manual

Table of Contents

NetL L nd th Board Extension
ing th A (=T 1110 o 251
Exampl f Netl ogolab m S 251
(@0 0100 11T To = o= APPSR 251
A SIMPle SENSING PIOJECE ...evreeeiiiiitiiiiie e et e e e e e e s e e e e e e e nnneeeeeeeeas 253
10 AT LY== 255
00QODUISI-VAIUE. ...ttt s et ese s et esean s esesesnnnenesesens 255
o [0 o [0 Ie] [0 1= = RO PPRRRR 255
6 [0 [0 0] o] o PP 255
o o]0 [0 10 1= o /N PP PPPPPRRTI 256
[0 [0 0T | PP 256
o (0o [0 101101 oo CeTe Y L= 256
9000:0UtPUE-DOM-OFf....eeeee e 256
: 10 1 o0) 0 N 256
: 010l (1A=)= TN 257
: 0101 NP2 1741 AT I 1T N 257
_9000:1alK-10-OULPUL-DOIS ... 257
o [0]0 0 o[0T o FE TP PP 258
oo l0 [0 J=T=] 1T o] S PP P O PPPPPPTI 258
o [0 0 [0 Y= o1 1 ol 1410 Yo [P PPRRRR 258
set- 0101 01017 259
o 10151 Gl 112100 [259
[01 1 L= S L (=Y 1T o o 261
L= 1110 o 261
L0 ST o = PR 261
=141 PR 261
10 AT LY== 261
o] (o) 11 =Y o= |- PP 261
PIOfIler:eXCIUSIVE-EIME.ciiieieiiieeiee e e e e e e as 262
PrOfIleriNCIUSIVE-EIME.ceiiiieiiieee e e eeeeas 262
o]0 11 =Y 41 7= 1 PP 262
o] (011 =Y 41 (o o PP 262
o]0 11 =Y 0 (=== PP 262
o]0 11 =Y 4 =) 0 Yo | 1 S PP 262
ST 4 (=] 011 o) o O 265
i [0 XV (0 T 1T 265
TN T FT=T U == 266
(€ IS o] 11417 SRR 266
Coordinate System PrMITIVESuueeeerreriiiiiiiiiiiee e e e e e e eee e 266
Dataset PriMtIVES.uu it et e e e e e e e e e e e e e e e e b e e e eaanaaas 266
VectorDataset PrimitiVES oo et e e e e e e e e s 266
RasterDataset PrimMitiVES.c.cceeeieeeee et e e e e e e e e e e aan s 266
Drawing PrMIEIVES.ceeiiiiiieeeeie ettt e e e e s e e e e e e e e e e e e e e e e e nnnnneees 266
Coordinate System PrimitIVEScueeeiieiiiieeieee et e e e 267
QiS:Set-tranStOrMAION.ueeeeeeee e 267
iS:8et-tranSfOrMAatION-AS........ceueiiiiiie e e e e e e e e ees 267

NetLogo 4.1 User Manual

Table of Contents

Extension

QiS:SEE-WOIIA-ENVEIOPE.eeeeeeeeeieiiiiei et e e e e e e e e e e e e e nnnneeeeeaeeas 268
QiS:Set-WOrld-eNVEIOPE-AS.....ccii ittt e e e e e e as 268
[0 TESIR o1 0 =T 1 177=) 0] o 1= PSP 268
_QISIBNVEIOPRE-OF e e e e e 268
QiS:enVelope-UNION-OF.......coiiiiiiiiii e 269
Qis:10ad-coOrdiNAtE-SYSIEML . .eei i 269
is:set-coordinate- 1 269
DN P2 oY= Al d 10 TN 270
o T [0 Y=o o F= 7= <= ORI 270
0 T (0 (0 === = P PPRRR 270
[0S 177 = o) S SSPRS 270
_QISIDAICN-GALASEEvvveeeeeececee ettt 270
o T (00 =T =) P PPERR 271
[0 FS [T e == T USRS 271
VectorDataset PrimitiVES......ccuuu ittt e e e e e e e e e e s e e e e s e eaaaeeaees 271
_QIS:SNAPE-AYDE-OF ... e 271
(oIS 0T 0) o1 AV 1= 1A= TR 271
QIS fEATUIE-NIST-OF.....ee e 271
QUSVEIEX-NISTS-0OF ..o 271
[0 LS =Y 1100 o) RO 272
(01T [To7= 0 1 o) RSOSSN 272
(oIS 0T 0] o1 AV 7= | L1 = PR 272
QISHINA-TEAIUIES ... 272
QiS:fiNd-0NE-fEATUIE.eeeeiieeee e 272
QiSHINA-1ESS-ENAN ... 273
is:find-gr 1= TR 273
[0 LS 11T 7= T o = PRSP 273
(oIS o 0] oY=Y o AVl 2111111000 o PP 273
(oIS 0 0] oY o AVl 1 F= V.4 11 0T o PP 273
o TES00= o] o] 1Y 070 V7= - Lo [S PPRPR 274
gis:coverage-minimum-thresSholdooooiiiiiiiii e 274
gis:set-coverage-minimum-threshold...........c.eueiiiiiieiiiee e 274
gis:coverage-maximum-threshold...........ooooeiiiiiiiie e 274
gis:set-coverage-maximum-threshold............c..eeeeviiiiiiiiiiiie e 274
[0TSR (] 1= o1 £ 3/ 275
[0 LS 172 1= 275
QiS:CONAINEA-DY 2 ... e 275
QiS:haVe-TelatiONSNID?. .. .eeeeiiieee e e e e e e e e e e nraeeeen 276
QIS relatioNSNID-0OF .. .eeeeeeeee e e 277
[0 TS 1] 1= o 11T R 278
RasterDataset PrimMitiVES.oiiieue e et e e e e e e e e e e e e e s e e eeans 278
F3 YL oo) R 279
QUSINEIGNE-OF. ..o e e 279
[0 IS 7= Y (=T 7= | 11 Y PSP 279
is:set-r V7= U= YR 279
QIS MINIMUM-OF ..o e e e e e e s e e e e as 279
QIS MAXIMUM-OF ..o e e e e e e e e e e e e e as 279

Xi

NetLogo 4.1 User Manual

Table of Contents

Extension

gis:sampling-Method-0Of...........oooiiii e 279
gis:set-sampling-MeETNOdoooiieiieeee e 280
(oIS 7= Y (=T Y= 111016][~ PP 280
QiS:raster-World-ENVEIODE..........ci e ettt e e e e e e as 281
0 10 (=Y | (S 7= L1 (=) PSRRI 281
[0TSR = =10 o] = PO 281
[0 1S T0) 210 17 PP 281
[0 TESI= 0] 0 Y2 = 1= (=) PO 282
Drawing PriMIEIVES. ... uueeeeeeiee e ettt e e e e e e e e e e e e e e e e e e ennnnneeeeeeeeeaanns 282
130 (7= LT LT L0 070 [0 TR 282
T ST o [= AL AT o) (o AR 283
[0 ES o 17\ PRSP 283
0 S 1 PSPPSR 283
13 Y= 111 R 283
IS MPOI-WIMS-AIrAWING. ...vuueeieetneeeetteeeeeeteeeeeteeeeesa e eeeeaaeesseaaasesreaaaeesesanessrarnesaees 283
ACKNOWIEAQMENESeeeeeeeee ettt ee e e et e e e e e e et e e e e e e s e e e e e e e e e e snnnneeeeaaeeeeennnnneees 284
FAQ (Frequently Asked QUESHIONS)......cccurrrrsmmrrssssmrrssssmsssssssnnsssssssmsessssssmsssssssnnsssssssnsesssssnnnns 285
B T T=T3 1o T 285
L T=T 0= = | 285
Downl T 285
7AYo o] 1= RO 285
0T 21T PRSP 286
L0 ST Lo = SO PPERRR 286
0T 7= .01 11T 1T PRSP 286
T AP VA0] 0 Y= o YOS 287
e =Y 15110 1= 287
L T=T 1= = | 287
WHhy iS it Called NEILOGO De et e e e e e e e e e e r e e e eaanaas 287
How do | cite NetL in an mi TTo¥= 1110 0 287
How lci m | from the M Is Library in lication?......cooeveevveeieeiieeeeeee, 287
Where and when was NetL I e e e e e aaan 287
What programming language was NetLogo Written in?.........coooveiiiiiieeee i, 287
What's the difference between Starl ogo. MacStarl ogo. StarlLogoT, and Netlogo?...288
nder what license is NetlL. rel ? ls th 1 vailable?........cccoee.... 288
Do you offer any workshops or other training opportunities for NetLogo?................... 288
Are there any NetlL X S 2ttt e e e e raaas 289

Is NetlL vailable in nish version, Chin version rlan her
A=Y 6110] A TR =1 (oL A 289
Is NetlL mpil r interpr TR 289
H nyon iltam 0 289
Are Netl ogo models runs scientifically reproducible?............coooviiiiiiiieeeeeeniiciiieeeeenn 289
Will NetLogo and NetlLogo 3D remain Separate?........ccccvveeeeeeiiiiiiiiieieeee e eeeeeeeeee e 290
Are old versions of NetlL ill 6020 1 290
19011 a1 0 Y= T 12T PR 290
n | have multiple versions of NetL install h me time?....cooovvvveeeeeeeeennnn. 290
I'm on NIX m and | can't untar th wnl CWRHY 2 e, 291

Xii

NetLogo 4.1 User Manual

Table of Contents

FAQ (Fr ntly Ask ion
How do | install NetL. n n e e 291

When running my m I n let, | he following error:
java.lang. fMemoryError: Java heap SPaCEe.........ocevveeeeieeiieieeieeeie e eeeann 292
nlmake my m | availabl n let while keeping th ret?............ 292
nam | sav n | import-world. file- n. an her comman
hat r LT TST 292
When | tried | ing my m | n let | n error like:
java.lang.ClassFormatError: Incompatible magic value.........cccooevevveeiieieveeeeeenennnn. 292
0112110 PSRRI 292
n | run NetL from D. a network drive, or B drive?....ooooiieeeeeeeee, 293
Why is NetL much slower when | unplug my Windows | e 293
How come Netl.ogo won't start up on my Lmux maghlng? ... 293
When | tr rt NetL n Windows | rror "The JVM Idn
L1 7= 11 (=T R (=] o PRSP 293
n | run NetL from th mmand line, with h L e, 294
D NetlL k van f multiple pr 3 294
n | distri NetlL m | run r I r or grid of com [S?iiieiieeennn. 294
Is there any way to recover lost work if NetLogo crashes or freezes?............ccuuee. 294
L0 ST o = PR 294
When | move th lider all the w he right. wh my m | m
] (0] o SRR 294
nl he m "PAINT" INThE VIBW 2. .o 295
How bi nmy m | be? How many turtl h I r ns. an
ncanmy m | con in’? ... 295
nl I T A L= I Yo 0 1/ 296
My model runs slowly. How I i e e 296
n | have more than one m I n 10T A 296
nlchan he choi inach FONTNE TV 2. e 296
n | divi h formy m I in veral fileS?. ..., 296
g (0T 7= 010110 11T T PSRRI 297
How is the NetL lan ifferent from th rlL n rLogoT
lan ? How | convert m rL rL Tm | to Netl A 297
How he NetlL lan iffer from hrL .. 297
How come my m Ifrm n earlier NetL nwrkrlh 297
Wh m hav har T | | 297
How | take the n iv f (101001 01=) o R 297
My turtle mov frwr 1 it's still on th m N WHhY?. oo, 297
How 1 k rtl N CBNEEIS e e 298
paig -ahead 1 |§ rgpgrtlngl e same patch my turtle is already standing on. Why?....298
w 1 give MY TUIIES "VISION" 2. .ceeeee et e e e e e e e e e s 299
n n wh iN the drawing [aYEI2......ccuue i 299
I'm ing numbers like 0.1 4 and 0.7 in f0.1an
0.8, WV Y 2 ettt e e e e e e e e e e e e e a e nrreeeeeeeeeaaann 299

Xiii

NetLogo 4.1 User Manual

Table of Contents

FAQ (Fr ntly Ask ion
Th mentation hat random-fl 1 might return will never return 1.
What if | want 1 incl et e e e araaa 299
How can | keep two turtles from occupying the same patch?........cccccovviiiienennnnnis 299
How can | fin if rtle i e e r s 299
Does Netlogo NAVE ArfayS?....cooee e i ettt e e e e e e e e e e e ennneees 300
Does Netlogo have hash tables or associative arrays?.......cccecveeeeercieeeeeiiieee e 300
How can | ifferen h "neighborh " (circular, Von Neumann, Moor
B,) e, 300
How can | convert an agentset to a list of agents. or vice versa?.........ccccovveeeeeeeennnes 300
How do | L10] 1= o] 0 1 AR 300
T AP AV T0]] 0 Y= o YT RE 301
Why are the rows in my Behavior le resul forder?.....ccoeeiviiieieiiiinnnnn. 301
How Im € FUNS EVEIY N HICKS 2 . et e e e e e e e e 301
I'm varyin | | variable | lared in the Pr r i n't work.

Xiv

NetLogo 4.1 User Manual

Table of Contents

r -<breed>-to cr -
-to cr -<breed>-from cr -
-from
r -<breed>-with cr -
-with cr -link-to cr -links-
create-link-from create-links-from create-link-with create-links-with..............c..........

r -turtl rt cr -<br D PP

create-tempPOrary-PIOt-DEN.oi e

XV

NetLogo 4.1 User Manual

Table of Contents

XVi

NetLogo 4.1 User Manual

Table of Contents

=

00 A= o (= G =TS (6 [X PR

=

X,

3
N

|

S BB B

E

|

E:—
=
%Z
N

-y
1
<
|
<
=

E
=

o 1=

|
[N = == o R i I R -}
- [

c B
. =

=.

i T i e Y o N o B e I) Y Y Y o R o R s I N Y e Y e R e R e

-y
=
-y

in-
-neighbor? iN-lINK-NEIANDOI? . .o e e
in-
-nNeighbors iN-lNK-NEIANDOIS. . .cuueeee e
in-<br 110 A M AT 18] 1) 1.0 TR

NetLogo 4.1 User Manual

Table of Contents

XVviii

NetLogo 4.1 User Manual

Table of Contents

movie-grab-view movie-grab-interface...........oouuueiiiiiiii i
MOVIE-SEE-TraAME-TALE.ceeee i e e e e e e e e e e e e e eaaeeeees
L0 AV AT =1 = AR
L0 AV AT = = L TR
MY-<breeds> MY-INKS ... ciiiiieiiiiiiie et e s e e e e e s e s e e e e e e e eeanns

my-in-<br o N[11 TSR
my-out-<br 010 1 UL e 111 YRR

XiX

N

XX

L

NetLogo 4.1 User Manual

Table of Contents

Dictionar
0= L (o 1= ST PPRRRR 377
07 1[0 T T 11T PRSI 377
0o o PR 377
n-down n-er Lo 3 0 377
01270 T = 378
Y74 = 378
0] =1 0T PSRRI 378
0] =1 0T o] o O PPRRRR 378
o) [0 P PPRPR 379
0] o) 7= 11T PP PPR 379
0110 0= 1 Y 1] (37 PEOPPR 379
o] (o) &0 =T e [0 1YY o] (o) 0= 1 | PP 379
1o oYY =1 = R 379
0] 0] 1 /PSR 379
plot-x-min plot-x-max plot-y-min PIOt-Y-MaXceereeeeriiiiiiieeeeee e eee e 380
0701 11 PSPPI 380
=Y 0] <110 o R 380
10 N 381
XCOr N 381
... 381
71810 [0) 1 PR 381
75 TaT0 (o) 00 1[0 Y= | TR 382
random-exponential random-gamma random-normal random-poiSSON.........ceeeeeeennnes 382
random-PXCOL FANAOMIDYCOEueeeeeeeeesaunreeneereeesaaaanneneeeeeeeeesaannneeeeeeaessesansseeeeeeeesaaannns 383
751810 (0] 8 =YY =) N 383
r=TaTe (o]0 o1 Tl 7= 110 (0] 1 1Y 10 PP 383
=210 0] 1 111110 PSSP 384
=Yoo} 384
[0= 11 L0 1= AR 385
121010)V 385
remove- TT 0T 1= 386
0210010 AV (= 1.2 386
=] 01T PP PPTT PP 386
0= 0] F= o 1 (= 0. PSP 387
=] o1 o S PP PPTR PP 387
oY= 01 41 01= 101 1A= £ SRR 387
YT 110] < €= 387
YT i 111101 AR 388
[T P41 1 [0 PR 388
SV L= =T 388
0| o P PPEPR 388
o 1= 388
10 T 101 TR 389
70 01 PR 389
10010 TR 389
0 390
0T AT=) | AR 390

NetLogo 4.1 User Manual

Table of Contents

Dictionar
... 390
Y0z 1L oT0) [0 390
BT 1 391
: [T T070] [0) 391
LYo (=T 10T =T Y= N 391
T 392
-current-dir /2 392
oY= o0 =Y 01 o) [PO 392
Y= o U L= 01][0] 0= PP 393
o L= 1= 101 =] =1 01 393
-hi =T 10 0= £ 393
LYo [A1 T0] s A T==T= Y 394
S PAICN-SIZE ..o 394
oY= o) (o) 0= 0 o o PP 394
oY= o) (o) 0= 1 (=) 7= | PR 394
oY= o) (o) 0= 1.0 o = PP RPR 394
set-plot-x-range Set-Plot-Y-rANQEueiiieeiiiiiiiiiiie e 395
Y= 0L PSPPSR 395
=0 [) A 395
=] =T o= OO PO 395
ST 07 0TSSP PPEPR 396
£ 0 396
L] L0 (11 (== (R 396
Lo 0 1] 397
L= U1 = 397
T 1 397
BT 74 397
T o A 397
ST o /PRSP 398
r rout-<br S et e e eeaeeaeeeaeeeaeeeaeeeaeeeaeranteanerantrateateeaaeeaeeenterneeaneeaneraaeaaeen 398
<o | P PPRPR 399
1 7211101 o PRSPPI 399
12T 0] O] T PP URPPPPPPPPRR 399
(810 F= 0 e [SXVAF= 1110 o VR 399
= £ (1o PR 400
= (0 o TP PPRPR 400
= o) = o3 P PPRRRR 400
li 1T 400
ract-h 10T 401
=1 401
N R 401
= 401
LT T0 SR T= =T 402
(o] 402
1o o= T V2= | L0 < TR 402
T2 402
(1 402

XXii

NetLogo 4.1 User Manual

Table of Contents

L 10T L= TR 403

10T N 403

(o 403

-r 5 404

L(0 X V= (0 T 404
L0072 10 53PS 405

L1 1 405

LT Lo = 405

LT 1= 405
rtles-at <br g er= | T 406

[T =) (IR 0] (=1=T0 el A1=) (= 406

rtles-on <br 0] N 406
rtles-own <br 011111 1 407

177 0TS PPRPR 407
L T 407
[BTaL0 [T=Y03 =Y0 11012 0] 1= o R 408
01T = TR 408
UPNIILUDNIIA. ... e e e st e e e e e e s e e e e e e e s e e nnrreeeeeeeeeannnns 408
r-dir /2N 409

U= a1 409
BT S AT] = TR 409

1S =Y e 1] o OO URRRRR 410
15T L0 [410
BT e] 1= o) TR 410

AT Lo T el 110 1/ 411
T 411
A 2= L= 0= 411
T 411
72 1 411

LT (0] 411

LT =1 (0] 1= Y 412
L1112 412
LT o 412
21 413
<breed>-With NK-WIth..........ccuuiiiiieee e e e e e e e e e e e e eaaas 413

11 7=) 413
L1101 413

i A [oYors | =Y ale (o]0 010 1=) TN 414
WithOUE-INEEITUDEION. ..o e e 414
L7160 o 414
WOrld-Width WOrld-NEIGNt.e i e e e e e 415

LTTL 7= 070 [0 PR 415
L1 = Y 415

K et eeeeeaeeeeeeaaeeeeeeaaeeeeeetaeessesaseestetateetettaeteeteeeetetearrtaarearaaraararas 416
oo 416
(o 416
/2T 416

NetLogo 4.1 User Manual

Table of Contents

17707 PP 416
TSP RRROPRRROTIN 417
R T TSSO 417

XXiii

NetLogo 4.1 User Manual

XXiV

What is NetLogo?

NetLogo is a programmable modeling environment for simulating natural and social phenomena. It
was authored by Uri Wilensky in 1999 and has been in continuous development ever since at the
Center for Connected Learning and Computer-Based Modeling.

NetLogo is particularly well suited for modeling complex systems developing over time. Modelers
can give instructions to hundreds or thousands of "agents" all operating independently. This makes
it possible to explore the connection between the micro-level behavior of individuals and the
macro-level patterns that emerge from the interaction of many individuals.

NetLogo lets students open simulations and "play" with them, exploring their behavior under
various conditions. It is also an authoring environment which enables students, teachers and
curriculum developers to create their own models. NetLogo is simple enough that students and
teachers can easily run simulations or even build their own. And, it is advanced enough to serve as
a powerful tool for researchers in many fields.

NetLogo has extensive documentation and tutorials. It also comes with a Models Library, which is a
large collection of pre-written simulations that can be used and modified. These simulations address
many content areas in the natural and social sciences, including biology and medicine, physics and
chemistry, mathematics and computer science, and economics and social psychology. Several
model-based inquiry curricula using NetLogo are currently under development.

NetLogo can also power a classroom participatory-simulation tool called HubNet. Through the use
of networked computers or handheld devices such as Texas Instruments graphing calculators, each
student can control an agent in a simulation. Follow this link for more information.

NetLogo is the next generation of the series of multi-agent modeling languages that started with
StarlLogo. It builds off the functionality of our product StarLogoT and adds significant new features
and a redesigned language and user interface. NetLogo runs on the Java virtual machine, so it
works on all major platforms (Mac, Windows, Linux, et al). It is run as a standalone application, or
from the command line. Models and HubNet activities can be run as Java applets in a web browser.

Features

e System:
¢ Cross-platform: runs on Mac, Windows, Linux, et al
e Language:
¢ Fully programmable
+ Simple language structure
¢ Language is Logo dialect extended to support agents
+ Mobile agents (turtles) move over a grid of stationary agents (patches)
¢ Link agents connect turtles to make networks, graphs, and aggregates
¢ Large vocabulary of built-in language primitives
¢ Double precision floating point math
¢ Runs are exactly reproducible cross-platform
e Environment:
¢ View your model in either 2D and 3D
¢ Scalable and rotatable vector shapes

What is NetLogo? 1

NetLogo 4.1 User Manual

¢ Turtle and patch labels

+ Command center for on-the-fly interaction

¢ Interface builder w/ buttons, sliders, switches, choosers, monitors, text boxes, notes,
output area

¢ Speed slider lets you fast forward your model or see it in slow motion

¢ Powerful and flexible plotting system

¢ Info tab for annotating your model

¢ HubNet: participatory simulations using networked devices

¢ Agent monitors for inspecting and controlling agents

¢ Export and import functions (export data, save and restore state of model, make a
movie)

¢ BehaviorSpace, an open source tool used to collect data from multiple parallel runs
of a model

¢ System Dynamics Modeler

¢ Experimental NetLogo 3D application allows modeling 3D worlds

¢ Headless mode allows doing batch runs from the command line

e Web:

+ Models and HubNet clients can be saved as applets to be embedded in web pages

(note: some features are not available in applets, for example 3D)
e APIs:

¢ controlling API allows embedding NetLogo in a surrounding application

¢ extensions API allows adding new commands and reporters to the NetLogo
language; open source example extensions are included

What is NetLogo?

Copyright and License Information

How to reference

To reference NetLogo in academic publications, please use: Wilensky, U. (1999). NetLogo.

http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL.

Acknowledgments

The CCL gratefully acknowledges over a decade of support for our NetLogo work. Much of that
support came from the National Science Foundation -- grant numbers REC-9814682 and
REC-0126227, with further support from REC-0003285, REC-0115699, DRL-0196044,
CCF-ITR-0326542, DRL-REC/ROLE-0440113, SBE-0624318, EEC-0648316, 11S-0713619,
DRL-RED-9552950, and DRL-REC-9632612. Additional support came from the Spencer
Foundation, Texas Instruments, and the Brady Fund.

NetLogo license
Copyright 1999-2009 by Uri Wilensky. All rights reserved.

The NetLogo software, models and documentation are distributed free of charge for use by the
public to explore and construct models. Permission to copy or modify the NetLogo software, models
and documentation for educational and research purposes only and without fee is hereby granted,
provided that this copyright notice and the original author's name appears on all copies and
supporting documentation. For any other uses of this software, in original or modified form, including
but not limited to distribution in whole or in part, specific prior permission must be obtained from Uri
Wilensky. The software, models and documentation shall not be used, rewritten, or adapted as the
basis of a commercial software or hardware product without first obtaining appropriate licenses from
Uri Wilensky. We make no representations about the suitability of this software for any purpose. It is
provided "as is" without express or implied warranty.

BehaviorSpace license

Copyright 2009 by Uri Wilensky. All rights reserved.

BehaviorSpace is free and open source software. You can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License (LGPL) as published by the Free Software

Foundation, either version 3 of the License, or (at your option) any later version.

A copy of the LGPL is included in the NetLogo distribution. See also http:/www.gnu.org/licenses/.

Extension licenses

The extensions included with NetLogo are free and open source software. The exact copyright and
licensing information varies from extension to extension. See the README file in each extension
directory.

Copyright and License Information 3

http://ccl.northwestern.edu/netlogo/
http://www.gnu.org/licenses/

NetLogo 4.1 User Manual

Third party licenses

Scala

Some parts of NetLogo are written in the Scala language and use the Scala standard libraries. The
license for Scala is as follows:

Copyright (c) 2002-2008 EPFL, Lausanne, unless otherwise specified. All rights reserved.

This software was developed by the Programming Methods Laboratory of the Swiss Federal
Institute of Technology (EPFL), Lausanne, Switzerland.

Permission to use, copy, modify, and distribute this software in source or binary form for any
purpose with or without fee is hereby granted, provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the EPFL nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MersenneTwisterFast

For random number generation, NetLogo uses the MersenneTwisterFast class by Sean Luke. The
copyright for that code is as follows:

Copyright (c) 2003 by Sean Luke.
Portions copyright (c) 1993 by Michael Lecuyer.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided

4 Copyright and License Information

NetLogo 4.1 User Manual

with the distribution.

¢ Neither the name of the copyright owners, their employers, nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Colt

Parts of NetLogo (specifically, the random-gamma primitive) are based on code from the Colt library
(http://acs.lbl.gov/~hoschek/colt/). The copyright for that code is as follows:

Copyright 1999 CERN - European Organization for Nuclear Research. Permission to use, copy,
modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation. CERN makes no
representations about the suitability of this software for any purpose. It is provided "as is" without
expressed or implied warranty.

MRJ Adapter

NetLogo uses the MRJ Adapter library, which is Copyright (c) 2003-2005 Steve Roy
<sroy@roydesign.net>. The library is covered by the Artistic License,

http://homepage.mac.com/sroy/artisticlicense.html. MRJ Adapter is available from

http://hom .mac.com/sroy/mrj r/.

Quaqua

NetLogo uses the Quaqua Look and Feel library, which is Copyright (c) 2003-2005 Werner
Randelshofer, http://www.randelshofer.ch/, werner.randelshofer@bluewin.ch, All Rights Reserved.
The library is covered by the GNU LGPL (Lesser General Public License). The text of that license is
included in the "docs" folder which accompanies the NetLogo download, and is also available from

http://www.gnu.org/copyleft/lesser.html .
JHotDraw

For the system dynamics modeler, NetLogo uses the JHotDraw library, which is Copyright (c) 1996,
1997 by IFA Informatik and Erich Gamma. The library is covered by the GNU LGPL (Lesser
General Public License). The text of that license is included in the "docs" folder which accompanies

the NetLogo download, and is also available from http:/www.gnu.org/copyleft/lesser.html .

Copyright and License Information 5

http://acs.lbl.gov/~hoschek/colt/
http://homepage.mac.com/sroy/artisticlicense.html
http://homepage.mac.com/sroy/mrjadapter/
http://www.randelshofer.ch/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html

NetLogo 4.1 User Manual

MovieEncoder

For movie-making, NetLogo uses code adapted from sim.util.media.MovieEncoder.java by Sean
Luke, distributed under the MASON Open Source License. The copyright for that code is as follows:

This software is Copyright 2003 by Sean Luke. Portions Copyright 2003 by Gabriel Catalin Balan,
Liviu Panait, Sean Paus, and Dan Kuebrich. All Rights Reserved.

Developed in Conjunction with the George Mason University Center for Social Complexity

By using the source code, binary code files, or related data included in this distribution, you agree to
the following terms of usage for this software distribution. All but a few source code files in this
distribution fall under this license; the exceptions contain open source licenses embedded in the
source code files themselves. In this license the Authors means the Copyright Holders listed above,
and the license itself is Copyright 2003 by Sean Luke.

The Authors hereby grant you a world-wide, royalty-free, non-exclusive license, subject to third
party intellectual property claims:

to use, reproduce, modify, display, perform, sublicense and distribute all or any portion of the source
code or binary form of this software or related data with or without modifications, or as part of a
larger work; and under patents now or hereafter owned or controlled by the Authors, to make, have
made, use and sell ("Utilize") all or any portion of the source code or binary form of this software or
related data, but solely to the extent that any such patent is reasonably necessary to enable you to
Utilize all or any portion of the source code or binary form of this software or related data, and not to
any greater extent that may be necessary to Utilize further modifications or combinations.

In return you agree to the following conditions:

If you redistribute all or any portion of the source code of this software or related data, it must retain
the above copyright notice and this license and disclaimer. If you redistribute all or any portion of
this code in binary form, you must include the above copyright notice and this license and disclaimer
in the documentation and/or other materials provided with the distribution, and must indicate the use
of this software in a prominent, publically accessible location of the larger work. You must not use
the Authors's names to endorse or promote products derived from this software without the specific
prior written permission of the Authors.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS, NOR THEIR EMPLOYERS, NOR GEORGE MASON
UNIVERSITY, BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

JpeglmagesToMovie

For movie-making, NetLogo uses code adapted from JpeglmagesToMovie.java by Sun
Microsystems. The copyright for that code is as follows:

6 Copyright and License Information

NetLogo 4.1 User Manual
Copyright (c) 1999-2001 Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use, modify and redistribute
this software in source and binary code form, provided that i) this copyright notice and license
appear on all copies of the software; and ii) Licensee does not utilize the software in a manner
which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

This software is not designed or intended for use in on-line control of aircraft, air traffic, aircraft
navigation or aircraft communications; or in the design, construction, operation or maintenance of
any nuclear facility. Licensee represents and warrants that it will not use or redistribute the Software
for such purposes.

JOGL

For 3D graphics rendering, NetLogo uses JOGL, a Java API for OpenGL. For more information
about JOGL, see http:/jogl.dev.java.net/. The library is distributed under the BSD license:

Copyright (c) 2003-2006 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

- Redistribution of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

- Redistribution in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of Sun Microsystems, Inc. or the names of contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") AND
ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT

Copyright and License Information 7

http://jogl.dev.java.net/

NetLogo 4.1 User Manual

OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR
PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF
SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that this software is not designed or intended for use in the design, construction,
operation or maintenance of any nuclear facility.

Matrix3D

For 3D matrix operations, NetLogo uses the Matrix3D class. It is distributed under the following
license:

Copyright (c) 1994-1996 Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use, modify and redistribute
this software in source and binary code form, provided that i) this copyright notice and license
appear on all copies of the software; and ii) Licensee does not utilize the software in a manner
which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

This software is not designed or intended for use in on-line control of aircraft, air traffic, aircraft
navigation or aircraft communications; or in the design, construction, operation or maintenance of

any nuclear facility. Licensee represents and warrants that it will not use or redistribute the Software
for such purposes.

ASM

For Java bytecode generation, NetLogo uses the ASM library. It is distributed under the following
license:

Copyright (c) 2000-2005 INRIA, France Telecom. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

8 Copyright and License Information

NetLogo 4.1 User Manual

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the copyright holders nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Log4j
For logging, NetLogo uses the Log4j library. The copyright and license for the library are as follows:
Copyright 1999-2005 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www. he.org/licenses/LICENSE-2.

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and
limitations under the License.

PicoContainer

For dependency injection, NetLogo uses the PicoContainer library. The copyright and license for the
library are as follows:

Copyright (c) 2003-2004, PicoContainer Organization All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

Copyright and License Information 9

http://www.apache.org/licenses/LICENSE-2.0

NetLogo 4.1 User Manual

¢ Neither the name of the PicoContainer Organization nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

JTS Topology Suite
Copyright (c) 2001 Vivid Solutions

The library is covered by the GNU LGPL (Lesser General Public License). The text of that license is
included in the "docs" folder which accompanies the NetLogo download, and is also available from

http://www.gnu.org/copyleft/lesser.html.
JScience

Java(TM) Tools and Libraries for the Advancement of Sciences. Copyright (C) 2006 - JScience All
rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice and include this
license agreement.

e Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

10 Copyright and License Information

http://www.gnu.org/copyleft/lesser.html
http://jscience.org/

NetLogo 4.1 User Manual
JAVA Advanced Imaging API, Version 1.1.3

DISTRIBUTION BY DEVELOPERS. Subject to the terms and conditions of the Software License
Agreement and the obligations, restrictions, and exceptions set forth below, You may reproduce and
distribute the portions of Software identified below ("each a Redistributable"), provided that you
comply with the following (note that You may be entitled to reproduce and distribute other portions
of the Software not defined here as a Redistributable under certain other licenses as described in
the THIRDPARTYLICENSEREADME):

(a) You distribute the Redistributable complete and unmodified and only bundled as part of Your
applets and applications ("Programs"),

(b) You do not distribute additional software intended to replace any component(s) of the
Redistributable,

(c) You do not remove or alter any proprietary legends or notices contained in or on the
Redistributable.

(d) You only distribute the Redistributable subject to a license agreement that protects Sun's
interests consistent with the terms contained in the Software License Agreement, and

(e) You agree to defend and indemnify Sun and its licensors from and against any damages, costs,
liabilities, settlement amounts and/or expenses (including attorneys' fees) incurred in connection
with any claim, lawsuit or action by any third party that arises or results from the use or distribution
of any and all Programs and/or Redistributable.

Apache Commons Codec
Copyright 2001-2008 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www. he.org/licenses/LICENSE-2.

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and
limitations under the License.

Apache Jakarta HttpClient

Copyright 1999-2007 Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www. he.org/licenses/LICENSE-2.

Unless required by applicable law or agreed to in writing, software distributed under the License is

distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and

Copyright and License Information 11

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

NetLogo 4.1 User Manual

limitations under the License.

Apache Commons Logging
Copyright 2003-2007 Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www. he.org/licenses/LICENSE-2.

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and
limitations under the License.

12 Copyright and License Information

http://www.apache.org/licenses/LICENSE-2.0

What's New?

Feedback from users is very valuable to us in designing and improving NetLogo. We'd like to hear
from you. Please send comments, suggestions, and questions to feedback@ccl.northwestern.edu,
and bug reports to bugs@ccl.northwestern.edu.

Version 4.1 (December 2009)

e system:
¢ NetLogo 3D is no longer a separate download (but is still a separate application)
¢ Java 5 or higher is now required
¢ NetlLogo and its applets no longer support Mac OS X 10.2, Mac OS X 10.3, Windows
98, or Windows ME
+ the Windows installer and launcher are new and should be compatible with more
systems
+ on Windows, we now bundle Java 6 (instead of Java 5)
¢ on 64-bit Linux, 3D now works
¢ on Mac OS X, the application now works with 64-bit Java (though by default it still
runs in 32-bit)
¢ BehaviorSpace is now free and open source software (under the LGPL)
e features:
¢ BehaviorSpace is now multi-threaded so runs happen in parallel
+ Controlling APl now supports embedding of models in a surrounding application
¢ automatic indenter for code in the Procedures tab
+ Models Library dialog now offers searching
¢ links, turtles, and the drawing may now be partially transparent (RGB colors only, 2D
view only)
¢ agent monitors now include a mini-view centered on the agent
¢ extensions that use additional jars now work in applets
+ the sound extension is now supported in applets
¢ new resize-world and set-patch-size commands allow changing the
dimensions of the patch grid
+ applet web pages now include color-coded Procedures tab contents
¢ new bitmap and QTJ (QuickTime for Java) extensions allow importing image and
video data
+ the GoGo extension now supports "burst mode"
+ the 3D and 2D views may now both be active at the same time (for 2D models)
+ improved look-and-feel on Linux
e language changes:
¢ set [variable] of ... isnolongerallowed;use ask ... [set variable
] instead
¢ the with-min and with-max primitives now have the same precedence as with
e user interface changes:
¢ new menu item on Tools menu closes all agent monitors
¢ new NetLogo Users Group item on Help menu
+ the snap-to-grid setting in the Interface tab is now saved with the model
¢ turning off turtle and link shapes is no longer supported
¢ improved fonts on Windows
e bug fixes:

What's New? 13

mailto:feedback@ccl.northwestern.edu
mailto:bugs@ccl.northwestern.edu

NetLogo 4.1 User Manual

¢ a single web page may now contain multiple NetLogo applets
¢ the __includes keyword now works in applets
¢ the profiler extension is now much faster
+ fixed system dynamics modeler bug where incorrectly parenthesized code was
generated for some expressions
+ fixed system dynamics modeler bug where some models did not work correctly when
run in headless mode
¢ the array and table extensions are now fully compatible with exporting and importing
worlds
¢ some link primitives are now faster on dense networks
¢ fixed bug where using the precision primitive with negative precisions could give
non-integer results
improved error detection on extremely large integers
fixed bug in forward primitive in non-toroidal worlds
fixed bug where link agentsets sometimes behaved incorrectly when links died
fixed bug in world importing where links stored in agent variables weren't imported
correctly
¢ fixed bug in run and runresult primitives where running the same string from
different procedures could cause a Java exception
+ fixed bug where in some situations zero wasn't always considered equal to itself (e.g.
in the remove—duplicates primitive)
+ fixed bug affecting 3D models where 1ayout-circle and tie could cause a Java
exception
+ fixed bug where the NetLogo window tended to jump between monitors on
multiple-monitor systems
+ fixed bug in text editing where a single edit sometimes required multiple Undo
actions to undo
¢ fixed bug where export-interface didn't always work properly on Windows and
Linux
+ fixed bug where extensions that use native libraries (e.g. GoGo) could not be
reloaded
e HubNet:
+ the HubNet client is now available as a Java applet which can be embedded in web
pages, so users can participate in an activity without installing NetLogo
¢ new feature: support for individualized client views, via:
0 client overrides (hubnet-send-override)
0 client perspectives (hubnet-send-watch, hubnet-send-follow)
¢ new commands hubnet-send-message, hubnet-broadcast-message,
hubnet-send-clear—-output, and hubnet-broadcast-clear—output
¢ new event type: mouse up events are now sent
¢ fixed longstanding performance issue that was causing activities to use excessive
amounts of bandwidth (especially activities with many monitors)
assorted bugfixes to view mirroring and plot mirroring
removed obsolete hubnet-send-view command
new activity: Memory HubNet
improved activity: Sampler (overhauled, now verified)
improved Code Example: Template
¢ new Code Examples: Client Perspective Example, Client Overrides Example
* models:
+ NIELS suite of electromagnetism models expanded and revamped, and is now found
in Curricular Models

¢
¢
¢
¢

* & & o o

What's New?

NetLogo 4.1 User Manual

new biology model: Sunflower Emergent
new social science models: Sugarscape 1, 2 and 3
new computer science models: Simulated Annealing, PageRank
new game: Projectile Attack
new code examples: Move Towards Target Example, Transparency Example
new evolution model: Bug Hunt Drift (in Curricular Models)
new ProbLab probability models (in Curricular Models): Histo Blocks, 4 Blocks, 4
Block Stalagmites, 4 Block Two Stalagmites, Sampler Solo
¢ improved evolution models: Bug Hunt Camouflage (includes RGB genes, measure of
genetic variance), Bird Breeder (conceptual fix), Bug Hunt Speeds (overhaul)
+ improved Biology models: Daisyworld (bugfix), Flocking (bugfix), Wolf Sheep
Predation (bugfix)
¢ improved Earth Science model: Percolation (colors, clarified info)
+ improved Computer Science models: Artificial Neural Net (code overhaul), Dining
Philosophers (simplified)
¢ improved chemistry models: Simple Kinetics 1 & 2 (bugfix), Connected Chemistry 3
Circular Particles (bugfix)
¢ improved code examples: Moore and Von Neumann Example (simpler code)
¢ BehaviorSpace fixes:
¢ stop conditions now run without affecting the main random generator
¢ reduced memory usage when not generating spreadsheet output
¢ aborting an experiment no longer discards accumulated spreadsheet output
¢ the options for running from the command line have changed (table output is no
longer generated by default)
¢ improved error reporting when running headless
e extensions API:
¢ the interfaces in org.nlogo.api involving agents and agentsets now have many
additional methods
¢ extensions that define custom data types can now add support for import and export
of those types
¢ extension primitives may now take a variable number of inputs
¢ an example extension written in Scala is now included

Version 4.0.5 (December 2009)

e bugfixes

Version 4.0.4 (November 2008)

¢ GIS extension for handling geographic data
e applets now include "powered by NetLogo" notice, linked to NetLogo site
e bugfixes

Version 4.0 (September 2007)

o features:
+ most models now run somewhat faster:
¢ while results vary from model to model, typical speedup is around 1.5x

® & & & & o o

What's New? 15

16

NetLogo 4.1 User Manual

¢ the speedup comes from an improved compiler that now partially compiles
NetLogo code into Java byte code
¢ links are now their own type of agent, alongside turtles and patches; this is useful for
network models, geometry models, and much else
¢ new Link Shapes Editor lets you control the appearance of links
¢ logging allows researchers to record students' actions for later analysis
¢ built in tick counter for keeping track of model time (see language changes, below)
¢ new view update system:
0 there are now two view update modes, tick-based and continuous
¢ continuous is the default when you start up NetLogo; tick-based is the default
for most models in the Models Library; continuous update mode is useful for
non-tick based models like Termites, but may also be useful during
debugging
0 tick-based updates are faster for most models and avoid displaying
intermediate state
¢ buttons no longer have a "force view update" checkbox; most models should
use tick and/or display instead
¢ improved speed slider:
¢ you can now use the slider to "fast forward" a model (by updating the view
less often)
¢ in tick-based update mode, going slower pauses between ticks rather than
showing intermediate states
¢ in continuous update mode, going slower shows intermediate states; you can
even go so slow you can watch agents move one at a time
¢ new input boxes in Interface tab permit entering text, numbers, colors, or NetLogo
code as model parameters
¢ arrays and hash tables are now supported via extensions (see Arrays & Tables
section of User Manual)
+ new profiler extension lets you measure the running times of your procedures
¢ new experimental __includes keyword allows splitting model code into multiple
source files
¢ color variables can now contain either a NetLogo color or an RGB color (as a list of
three numbers)
¢ programmable slider bounds (you can now use any NetLogo reporter as the min,
max, or increment of a slider)
¢ exporting the world now includes all plot data, and when you import a world the
contents of plots are restored
+ the sound extension can now play audio files in addition to MIDI sounds
¢ notes, monitors and output areas now have editable font size
¢ the color of text in notes is now editable, and a note's background may now
optionally be transparent
¢ "Snap to Grid" in Interface tab
¢ added menu items (and F1 keyboard shortcut) for quickly accessing NetLogo
Dictionary
¢ sliders may now be vertical or horizontal
+ model files with unsaved changes are auto-saved to a temporary files directory, in
case of freezes/crashes
¢ HubNet clients are much easier to edit now (the client is no longer a separate model)
+ Mathematica-NetLogo link provides a real-time link between Mathematica and
NetLogo, for controlling model runs and visualizing and analyzing results after the
fact or in real time

What's New?

NetLogo 4.1 User Manual

¢ the run and runresult primitives are now drastically faster when called repeatedly
on the same string

¢ internally, lists are now represented as linked lists, not arrays

¢ plotting is now supported when running headless

e language changes:

¢ the ask command now always runs "without interruption”; if you need the old-style
concurrent behavior, use ask—-concurrent

¢ turtle who numbers are now never reused until clear-turtles or clear—-all

¢ all numbers are now represented internally using double precision floating point

¢ the + operator only adds numbers now; it doesn't work on strings or lists anymore;
models must be changed by hand to use word instead for strings and sentence
instead for numbers

¢ create—turtles now makes turtles with random headings and colors; to get
evenly spaced turtles with sequential colors and id numbers use
create-ordered-turtles (cro for short)

¢ extension primitives must now (by default) be referred to using the extension name,
e.g. sound:drums instead of just drums

¢ new uphill, uphill4, downhill, and downhill4 commands for doing
hill-climbing replace old reporters with same names

¢ new tick counter primitives: tick, ticks, tick—-advance, reset-ticks

¢ new primitive of replaces VARIABLE-of, value-from, values-from

¢ other new primitives: al1?, other, move-to, turtle-set, patch-set,
link-set, no-turtles, no-patches, no-links, tie,untie, min-n-of,
max-n-of, with-local-randomness, file-flush, base-colors,
plot-pen-exists?, import-pcolors—-rgb, netlogo—-applet?

Version 3.1 (April 2006)

e topologies (wrapping at world edges now optional)
e automatically randomized ordering of agentsets
e experimental link primitives

Version 3.0 (September 2005)

¢ 3D view (for 2D models)

e System Dynamics Modeler

e follow, ride and watch commands for tracking particular agents

e "drawing layer" for marks left by turtles

e GoGo extension for robotics and devices

e buttons take turns now (instead of interleaving their code with each other)

Version 2.1 (December 2004)

¢ "headless" mode for command line operation

e "action keys" let buttons be triggered by keypresses
e makes QuickTime movies of models

e add "output area" to models

® new primitives including 1let and carefully

What's New? 17

NetLogo 4.1 User Manual
Version 2.0.2 (August 2004)

e extensions API for writing commands and reporters in Java
e controlling API for controlling NetLogo from external Java code
¢ sound extension for making sounds and music

Version 2.0 (December 2003)

e full support for Mac OS X and Linux

e Windows 95, MacOS 8/9 no longer supported

e fast, flicker-free, non-grid-based graphics

e strict math mode for identical results cross-platform

Version 1.3 (June 2003)

e view control strip

e choosers

¢ new primitives including run, runresult, map, foreach, filter, reduce
e some primitives accept a variable number of inputs

Version 1.2 (March 2003)

e computer HubNet

Version 1.1 (July 2002)

e "Save as Applet"

e printer support

* Procedures menu

e scrollable Interface tab

Version 1.0 (April 2002)

e initial release (after a series of betas)

18 What's New?

System Requirements
NetLogo runs on almost any current computer.

If you have any trouble with NetLogo not working, write bugs@ccl.northwestern.edu.
System Requirements: Application

Windows
NetLogo runs on Windows 7, Vista, 2000, and XP.

The NetLogo installer for Windows installs Java 6 for NetLogo's private use only. Other programs on
your computer are not affected.

Mac OS X

Mac OS X 10.4 or newer is required. (NetLogo 4.0 was the last version to support 10.3 and 10.2.)

We recommend you use Software Update to ensure that you have the latest Java.

Other platforms

NetLogo should work on any platform on which Java 5 or later is installed. Java 6 or later is strongly
recommended. (If you have any trouble, you may want to make sure that you are using the official
Java from Sun, and not some alternate implementation.)

You start NetLogo by running the provided net 1ogo. sh script. (Double-clicking NetLogo.jar may
appear at first to work, but is not recommended.)

System Requirements: Saved Applets

NetLogo models saved as Java applets should work in any web browser where Java 5 (or later) is
installed.

System Requirements: 3D

Occasionally an older, less powerful system is not able to use the 3D view or NetLogo 3D. Try it and
see.

Some systems can use 3D but can't switch to full-screen mode. It depends on the graphics card or
controller. (For example, the ATl Radeon IGP 345 and Intel 82845 probably will not work.)

Technical Java Details for Windows Users

Most Windows users should choose the standard NetLogo download, which includes a bundled
Java 6 which is for NetLogo's private use only; other programs on your computer are not affected.

System Requirements 19

mailto:bugs@ccl.northwestern.edu

NetLogo 4.1 User Manual

There are two reasons you might want to use the alternate download, without bundled Java:
1. You want a smaller download so it arrives faster and uses up less space on your hard drive.
2. For specific technical reasons of your own, you want to run NetLogo using a different Java
than the one we bundle.

If you think the alternate download might be appropriate for you, please read the following.

Even if you already have Java installed on your computer, using that Java may make NetLogo run
slowly.

For maximum performance, NetLogo uses a special option called the "server" VM. The default Java
Runtime Environment (JRE) installer from Sun does not install this option. It is only included in
Sun's Java Development Kit (JDK).

If you are not a Java developer, then you probably have the JRE, not the JDK, and if you use it with
NetLogo, models will run substantially slower.

20 System Requirements

Known Issues

If NetLogo malfunctions, please send us a bug report. See the "Contacting Us" section for
instructions.

Known bugs (all systems)
Language/engine bugs

e The run and runresult primitives are often not able to read or set variables created with
let.

¢ Not all mathematical operations are checked, so it's possible to get "Infinity" or "NaN" (Not a
Number) as an answer without a runtime error being signaled

* A bug in Java causes patch colors imported using import-pcolors to be brighter than the
original if the original image has a grayscale palette. To work around this issue, convert the
image file to an RGB palette.

e import-pcolors may give slightly different results when running on Java 6 as compared
to Java 5.

Other bugs

¢ Out-of-memory conditions are not handled gracefully

e the "Snap to Grid" feature is disabled when zoomed in or out

e Drawing and then erasing a line in the drawing may not erase every pixel exactly.

¢ 3D graphics don't work on _some graphics configurations; on others 3D works but 3D full
screen mode doesn't.

¢ The size of the fonts used in a model's interface can vary somewhat from computer to
computer and from platform. As a result, text that fits in a given space on one computer may
not fit in another. To avoid this problem, it is advisable to leave some extra space in the
sizes of buttons, sliders, etc.

e When running a model headless (from the command line), if the model was created in an
earlier NetLogo version, it may not work properly. Use the GUI to open and resave the
model in the current NetLogo version before running it headless.

Windows-only bugs

e On some laptops, the Procedures and Info tabs may become garbled when you scroll them.
To avoid this bug, reduce the size of the NetLogo window and/or reduce the color depth of
your monitor (e.g. change from 32-bit to 16- or 8-bit color). This is a bug in Java itself, not in
NetLogo per se. For technical details on the bug, see
http://developer.java.sun.com/developer/bugParade/ /4763448 .html (free registration
required). NetLogo users are encouraged to visit that site and vote for Sun to fix this bug.

Macintosh-only bugs

e When opening a model from the Finder (by double-clicking on it, or dragging it onto the
NetLogo icon), if NetLogo is not already running, then the model may or may not open; the
bug is intermittent. (If NetLogo is already running, the model always opens.)

Known Issues 21

http://developer.java.sun.com/developer/bugParade/bugs/4763448.html

NetLogo 4.1 User Manual
Linux/UNIX-only bugs

e We have discovered a problem on Linux where the "exp" reporter sometimes returns a
slightly different answer (differing only in the last decimal place) for the same input.
According to an engineer at Sun, this should only happen on Linux kernel versions 2.4.19
and earlier, but we have observed the problem on more recent kernel versions. We assume
the problem is Linux-specific and does not happen on other Unix-based systems. We are not
sure if the problem ever occurs in practice during actual NetLogo model runs, or only occurs
in the context of our testing regimen. The bug in the Sun's Java VM, and not in NetLogo
itself. We hope that only the "exp" reporter is affected, but we can't be entirely certain of this.
NetLogo users are encouraged to visit
http://developer.java.sun.com/developer/bugParade/ /5023712.html (free registration
required) and vote for Sun to fix this bug.

¢ |f NetLogo cannot find the font Lucida, menus will be illegible. This has been known to
happen on Fedora Core 3, after upgrading packages. Restarting the X Font Server (xfs) has
resolved the problem in all reported cases.

Known issues with HubNet

See the HubNet Guide for a list of known HubNet issues.

22 Known Issues

http://developer.java.sun.com/developer/bugParade/bugs/5023712.html

Contacting Us

Feedback from users is very valuable to us in designing and improving NetLogo. We'd like to hear

from you.

Web Site

Our web site at ccl.northwestern.edu includes our mailing address and phone number. It also has

information about our staff and our various research activities.

Feedback, Questions, Etc.

If you need help with your model, consider posting to the NetLogo users group at

http://groups.yahoo.com/group/netlogo-users/.

We also have a group specifically for educators at

http://gr .yahoo.com/group/netlogo- rs/.

If you have feedback, suggestions, or questions, write us at feedback@ccl.northwestern.edu.

Reporting Bugs

If you would like to report a bug that you find in NetLogo, write to bugs@ccl.northwestern.edu.
When submitting a bug report, please try to include as much of the following information as

possible:

e A complete description of the problem and how it occurred.

e The NetLogo model or code you are having trouble with. If possible, attach a complete
model.

e Your system information: NetLogo version, OS version, Java version, and so on. (This
information is available from NetLogo's "About NetLogo" menu item, then clicking the

System tab. In saved applets, the same information is available by control-clicking (Mac) or

right-clicking the white background of the applet.)

e Any error messages that were displayed. Please copy and paste the entire error message

into your email, or make a screen capture if you are unable to copy and paste.

Contacting Us

http://ccl.northwestern.edu/
http://groups.yahoo.com/group/netlogo-users/
http://groups.yahoo.com/group/netlogo-educators/
mailto:feedback@ccl.northwestern.edu
mailto:bugs@ccl.northwestern.edu

24

NetLogo 4.1 User Manual

Contacting Us

Sample Model: Party

This activity is designed to get you thinking about computer modeling and how you can use it. It also
gives you some insight into the NetLogo software. We encourage beginning users to start with this
activity.

At a Party

Have you ever been at a party and noticed how people cluster in groups? You may have also
noticed that people do not stay within one group, but move throughout the party. As individuals
move around the party, the groups change. If you watched these changes over time, you would
notice patterns forming.

For example, in social settings, people tend to exhibit different behavior than when they are at work
or home. Individuals who are confident within their work environment may become shy and timid at
a social gathering. And others who are quiet and reserved at work may be the "party starter" with
friends.

The patterns may also depend on what kind of gathering it is. In some settings, people are trained
to organize themselves into mixed groups; for example, party games or school-like activities. But in
a non-structured atmosphere, people tend to group in a more random manner.

Is there any type of pattern to this kind of grouping?

Let's take a closer look at this question by using the computer to model human behavior at a party.
NetLogo's "Party" model looks specifically at the question of grouping by gender at parties: why do
groups tend to form that are mostly men, or mostly women?

Let's use NetLogo to explore this question.

What to do:

1. Start NetLogo.
2. Choose "Models Library" from the File menu.

NetLogo BEIEN Edit Tools Zoon

Bl New %N
4 Open... #£0 |
Models Library ¥M
it Delet
I[B—“E Save Y _[
Save As...

Save As Applet...

Print... o

3. Open the "Social Science" folder.
4. Click on the model called "Party".

Sample Model: Party 25

NetLogo 4.1 User Manual

5. Press the "open" button.

6. Wait for the model to finish loading

7. (optional) Make the NetLogo window bigger so you can see everything.
8. Press the "setup" button.

In the view, you will see pink and blue lines with numbers:

10 15 13 12 18 14 15 18 17

These lines represent mingling groups at a party. Men are represented in blue, women in pink. The
numbers are the total number of people in each group.

Do all the groups have about the same number of people?
Do all the groups have about the same number of each sex?

Let's say you are having a party and invited 150 people. You are wondering how people will gather
together. Suppose 10 groups form at the party.

How do you think they will group?

Instead of asking 150 of your closest friends to gather and randomly group, let's have the computer
simulate this situation for us.

What to do:

1. Press the "go" button. (Pressing "go" again will stop the model manually.)
2. Observe the movement of people until the model stops.
3. Waitch the plots to see what's happening in another way.

Now how many people are in each group?

Originally, you may have thought 150 people splitting into 10 groups, would result in about 15
people in each group. From the model, we see that people did not divide up evenly into the 10
groups -- instead, some groups became very small, whereas other groups became very large. Also,
the party changed over time from all mixed groups of men and women to all single-sex groups.

What could explain this?

There are lots of possible answers to this question about what happens at real parties. The designer
of this simulation thought that groups at parties don't just form randomly. The groups are determined
by how the individuals at the party behave. The designer chose to focus on a particular variable,
called "tolerance":

26 Sample Model: Party

NetLogo 4.1 User Manual

tolerance 25.0%

Tolerance is defined here as the percentage of people of the opposite sex an individual is
"comfortable" with. If the individual is in a group that has a higher percentage of people of the
opposite sex than their tolerance allows, then they become "uncomfortable" and leave the group to
find another group.

For example, if the tolerance level is set at 25%, then males are only "comfortable" in groups that
are less than 25% female, and females are only "comfortable" in groups that are less than 25%
male.

As individuals become "uncomfortable" and leave groups, they move into new groups, which may
cause some people in that group to become "uncomfortable” in turn. This chain reaction continues
until everyone at the party is "comfortable" in their group.

Note that in the model, "tolerance” is not fixed. You, the user, can use the tolerance "slider" to try
different tolerance percentages and see what the outcome is when you start the model over again.

How to start over:

1. If the "go" button is pressed (black), then the model is still running. Press the
button again to stop it.

2. Adjust the "tolerance" slider to a new value by dragging its red handle.

3. Press the "setup" button to reset the model.

4. Press the "go" button to start the model running again.

Challenge

As the host of the party, you would like to see both men and women mingling within the groups.
Adjust the tolerance slider on the side of the view to get all groups to be mixed as an end result.

To make sure all groups of 10 have both sexes, at what level should we set the tolerance?
Test your predictions on the model.

Can you see any other factors or variables that might affect the male to female ratio within each
group?

Make predictions and test your ideas within this model. Feel free to manipulate more than one
variable at a time.

As you are testing your hypotheses, you will notice that patterns are emerging from the data. For
example, if you keep the number of people at the party constant but gradually increase the
tolerance level, more mixed groups appear.

How high does the tolerance value have to be before you get mixed groups?

What percent tolerance tends to produce what percentage of mixing?

Sample Model: Party 27

NetLogo 4.1 User Manual
Thinking With Models

Using NetLogo to model situations like this party scenario allows you to experiment with a system in
a rapid and flexible way that would be difficult to do in a real world situation. Modeling also gives
you the opportunity to observe a situation or circumstance with less prejudice -- as you can examine
the underlying dynamics of a situation. You may find that as you model more and more, many of
your preconceived ideas about various phenomena will be challenged. For example, a surprising
result of the Party model is that even if tolerance is relatively high, a great deal of separation
between the sexes occurs.

This is a classic example of an "emergent" phenomenon, where a group pattern results from the
interaction of many individuals. This idea of "emergent" phenomena can be applied to almost any
subject.

What other emergent phenomena can you think of?

To see more examples and gain a deeper understanding of this concept and how NetLogo helps
learners explore it, you may wish to explore NetLogo's Models Library. It contains models that
demonstrate these ideas in systems of all kinds.

For a longer discussion of emergence and how NetLogo helps learners explore it, see "Modeling
Nature's Emergent Patterns with Multi-agent Languages” (Wilensky, 2001).

What's Next?

The section of the User Manual called Tutorial #1: Running Models goes into more detail about how
to use the other models in the Models Library.

If you want to learn how to explore the models at a deeper level, Tutorial #2: Commands will
introduce you to the NetLogo modeling language.

Eventually, you'll be ready for Tutorial #3: Procedures, where you can learn how to alter and extend
existing models to give them new behaviors, and build your own models.

28 Sample Model: Party

http://ccl.northwestern.edu/uri/public_html/papers/MEE/
http://ccl.northwestern.edu/uri/public_html/papers/MEE/

Tutorial #1: Models

If you read the Sample Model: Party section, you got a brief introduction to what it's like to interact
with a NetLogo model. This section will go into more depth about the features that are available
while you're exploring the models in the Models Library.

Throughout all of the tutorials, we'll be asking you to make predictions about what the effects of
making changes to the models will be. Keep in mind that the effects are often surprising. We think
these surprises are exciting and provide excellent opportunities for learning.

Some people have found it helpful to print out the tutorials in order to work through them. When the

tutorials are printed out, there's more room on your computer screen for the NetLogo model you're
looking at.

Sample Model: Wolf Sheep Predation

We'll open one of the Sample Models and explore it in detail. Let's try a biology model: Wolf Sheep
Predation, a predator-prey population model.

¢ Open the Models Library from the File menu.

NetLogo BEIEN Edit Tools Zoon

) | New #N tl
4 Open... #0
Models Library ¥M
rj Deletd [
sl Save ®s L
Save As...

Save As Applet...

Print... o

e Choose "Wolf Sheep Predation" from the Biology section and press "Open".

The Interface tab will fill up with lots of buttons, switches, sliders and monitors. These interface
elements allow you to interact with the model. Buttons are blue; they set up, start, and stop the
model. Sliders and switches are green; they alter model settings. Monitors and plots are beige; they
display data.

If you'd like to make the window larger so that everything is easier to see, you can use the zoom
menu at the top of the window.

When you first open the model, you will notice that the view is empty (all black). To begin the model,
you will first need to set it up.

Tutorial #1: Models 29

NetLogo 4.1 User Manual

¢ Press the "setup" button.
What do you see appear in the view?
¢ Press the "go" button to start the simulation.
As the model is running, what is happening to the wolf and sheep populations?

¢ Press the "go" button to stop the model.

Controlling the Model: Buttons

When a button is pressed, the model responds with an action. A button can be a "once" button, or a
"forever" button. You can tell the difference between these two types of buttons by a symbol on the
face of the button. Forever buttons have two arrows in the bottom right corners, like this:

90 ~

Once buttons don't have the arrows, like this:

setup

Once buttons do one action and then stop. When the action is finished, the button pops back up.

Forever buttons do an action over and over again. When you want the action to stop, press the
button again. It will finish the current action, then pop back up.

Most models, including Wolf Sheep Predation, have a once button called "setup" and a forever
button called "go". Many models also have a once button called "go once" or "step once" which is
like "go" except that it advances the model by one tick (time step) instead of over and over. Using a
once button like this lets you watch the progress of the model more closely.

Stopping a forever button is the normal way to stop a model. It's safe to pause a model by stopping
a forever button, then make it go on by pressing the button again. You can also stop a model with
the "Halt" item on the Tools menu, but you should only do this if the model is stuck for some reason.
Using "Halt" may interrupt the model in the middle of an action, and as the result the model could
get confused.

e If you like, experiment with the "setup" and "go" buttons in the Wolf Sheep
Predation model.

Do you ever get different results if you run the model several times with the same
settings?

30 Tutorial #1: Models

NetLogo 4.1 User Manual
Controlling speed: Speed Slider

The speed slider allows you to control the speed of a model, that is, the speed at which turtles
move, patches change color, and so on.

£

Krf

normal speed

When you move the slider to the left the model slows down so there are longer pauses between
each tick (time step). That makes it easier to see what is happening. You might even slow the
model down so far as to see exactly what a single turtle is doing.

When you move the speed slider to the right of the center the model will speed up. NetLogo will
start skipping frames, that is, it won't update the view at the end of every tick, only some ticks.
Showing the state of the world takes time, so showing it less often means the model progresses
faster.

Note that if you push the speed slider well to the right, the view update may update so frequently
that the model appears to have slowed down. It hasn't, as you can see by watching the tick counter.
Only the frequency of updates has lessened.

Adjusting Settings: Sliders and Switches

The settings within a model give you an opportunity to work out different scenarios or hypotheses.
Altering the settings and then running the model to see how it reacts to those changes can give you
a deeper understanding of the phenomena being modeled. Switches and sliders give you access to
a model's settings.

Here are the switches and sliders in Wolf Sheep Predation:

0N show-energy?

setup 90 o Off
Crass settings
On oo | | [
off ¢ grass-regrowth-time 30
Sheep settings Waolf settings
[——
initial-number-sheep 100 initial-number-wolves 50
N —
sheep-gain-from-food 4 || wolf-gain-from-food 20
I
sheep-reproduce 4% || wolf-reproduce 5%

Let's experiment with their effect on the behavior of the model.

Tutorial #1: Models 31

NetLogo 4.1 User Manual

e Open Wolf Sheep Predation if it's not open already.

¢ Press "setup” and "go" and let the model run for about a 100 time-ticks.
(Note: there is a readout of the number of ticks right above the plot.)

¢ Stop the model by pressing the "go" button.

What happened to the sheep over time?

Let's take a look and see what would happen to the sheep if we change one of the
settings.

e Turn the "grass?" switch on.
¢ Press "setup” and "go" and let the model run for a similar amount of time as
before.

What did this switch do to the model? Was the outcome the same as your previous
run?

Just like buttons, switches have information attached to them. Their information is set up in an on/off
format. Switches turn on/off a separate set of directions. These directions are usually not necessary
for the model to run, but might add another dimension to the model. Turning the "grass?" switch on
affected the outcome of the model. Prior to this run, the growth of the grass stayed constant. This is
not a realistic look at the predator-prey relationship; so by setting and turning on a grass growth
rate, we were able to model all three factors: sheep, wolf and grass populations.

Another type of setting is called a slider.

Sliders are a different type of setting then a switch. A switch has two values: on or off. A slider has a
range of numeric values that can be adjusted. For example, the "initial-number-sheep" slider has a
minimum value of 0 and a maximum value of 250. The model could run with 0 sheep or it could run
with 250 sheep, or anywhere in between. Try this out and see what happens. As you move the
marker from the minimum to the maximum value, the number on the right side of the slider changes;
this is the number the slider is currently set to.

Let's investigate Wolf Sheep Predation's sliders.

¢ Read the contents of the Information tab, located above the toolbar, to learn
what each of this models' sliders represents.

The Information tab offers guidance and insight into the model. Within this tab you will find an
explanation of the model, suggestions on things to try, and other information. You may want to read
the Information tab before running a model, or you might want to just start experimenting, then look
at the Information tab later.

What would happen to the sheep population if there was more initial sheep and less
initial wolves at the beginning of the simulation?

e Turn the "grass?" switch off.
¢ Set the "initial-number-sheep" slider to 100.

32 Tutorial #1: Models

NetLogo 4.1 User Manual

o Set the "initial-number-wolves" slider to 20.
¢ Press "setup" and then "go".
o | et the model run for about 100 time-ticks.

Try running the model several times with these settings.
What happened to the sheep population?

Did this outcome surprise you? What other sliders or switches can be adjusted to
help out the sheep population?

¢ Set "initial-number-sheep" to 80 and "initial-number-wolves" to 50. (This is
close to how they were when you first opened the model.)

¢ Set "sheep-reproduce” to 10.0%.

¢ Press "setup" and then "go".

e Let the model run for about 100 time ticks.

What happened to the wolves in this run?

When you open a model, all the sliders and switches are on a default setting. If you open a new
model or exit the program, your changed settings will not be saved, unless you choose to save
them.

(Note: in addition to sliders and switches, some models have a third kind of setting, called a
chooser. The Wolf Sheep Predation doesn't have any of these, though.)

Gathering Information: Plots and Monitors

A purpose to modeling is to gather data on a subject or topic that would be very difficult to do in a
laboratory situation. NetLogo has two main ways of displaying data to the user: plots and monitors.

Plots

The plot in Wolf Sheep Predation contains three lines: sheep, wolves, and grass / 4. (The grass
count is divided by four so it doesn't make the plot too tall.) The lines show what's happening in the
model over time. To see which line is which, click on "Pens" in the upper right corner of the plot
window to open the plot pens legend. A key appears that indicates what each line is plotting. In this
case, it's the population counts.

When a plot gets close to becoming filled up, the horizontal axis increases in size and all of the data
from before gets squeezed into a smaller space. In this way, more room is made for the plot to
grow.

If you want to save the data from a plot to view or analyze it in another program, you can use the
"Export Plot" item on the File menu. It saves this information to your computer in a format that can
by read back by spreadsheet and database programs such as Excel. You can also export a plot by
control-clicking (Mac) or right-clicking (Windows) it and choosing "Export..." from the popup menu.

Tutorial #1: Models 33

NetLogo 4.1 User Manual

Monitors

Monitors are another method of displaying information in a model. Here are the monitors in Wolf
Sheep Predation:

time-ticks sheep | wolves ‘ grass [/ 4
0 0 |0 |0

The monitor labeled "time-ticks" tells us how much time has passed in the model. The other
monitors show us the population of sheep and wolves, and the amount of grass. (Remember, the
amount of grass is divided by four to keep the plot from getting too tall.)

The numbers displayed in the monitors update continuously as the model runs, whereas the plots
show you data from the whole course of the model run.

Note that NetLogo has also another kind of monitor, called "agent monitors". These will be
introduced in Tutorial #2.

Controlling the View

If you look at the interface tab, you'll see a strip of controls along the top edge in the toolbar. These
controls change various aspects of the view.

Let's experiment with the effect of these controls.

¢ Press "setup" and then "go" to start the model running.
¢ As the model runs, move the speed slider to the left.

What happens?

This slider is helpful if a model is running too fast for you to see what's going on in
detail.

¢ Move the speed slider to the middle.
e Try moving the speed slider to the right.
¢ Now try checking and unchecking the view updates checkbox.

What happens?

Fast forwarding the model and turning off view updates are useful if you're impatient and want a
model to run faster. Fast forwarding (moving the speed slider to the right) drops view updates so the
model can run fast, since updating the view takes time that could be used for running the model
itself.

When view updates are off completely, the model continues to run in the background, and plots and
monitors still update; but if you want to see what's happening, you need to turn view updates back
on by rechecking the box. Many models run much faster when view updates are off; for others, it
makes little difference.

34 Tutorial #1: Models

The size of the view is determined by five separate settings: Min and Max X, Min and Max Y and
Patch Size. Let's take a look at what happens when we change the size of the view in the "Wolf

Sheep Predation" model.

NetLogo 4.1 User Manual

There are more model settings than there's room for in the toolbar. The "Settings..." button lets you

get to the rest of the settings.

World

Location of origin: Center

minimum x coordinate for patches

max-pxcor 25

maximum x coordinate for patches

minimum y coordinate for patches

max-pycor 25

maximum y coordinate for patches

View

* Press the "Settings..." button in the toolbar.
A dialog box will open containing all the settings for the view:

Model Settings

Torus: 51 x 51
Z World wraps horizontally

Z World wraps vertically

Patch size 9

measured in pixels
Tick counter

z Show tick counter

Font size 14

of labels on agents

Tick counter label ticks

Patch size?

Tutorial #1: Models

.__; Cancel ;__. .__; Apply ;__. 'E'

What are the current settings for max-pxcor, min-pxcor, max-pycor, min-pycor, and
¢ Press "cancel" to make this window go away without changing the settings.
¢ Place your mouse pointer next to, but still outside of, the view.

You will notice that the pointer turns into a crosshair.

¢ Hold down the mouse button and drag the crosshair over the view.

35

NetLogo 4.1 User Manual

The view is now selected, which you know because it is now surrounded by a gray
border.

¢ Drag one of the square black "handles". The handles are found on the edges
and at the corners of the view.

¢ Unselect the view by clicking anywhere in the white background of the
Interface tab.

¢ Press the "Settings..." button again and look at the settings.

What numbers changed?

What numbers didn't change?

The NetLogo world is a two dimensional grid of "patches". Patches are the individual squares in the
grid.

In Wolf Sheep Predation, when the "grass?" switch is on the individual patches are easily seen,
because some of them are green, while others are brown.

Think of the patches as being like square tiles in a room with a tile floor. By default, exactly in the
middle of the room is a tile labeled (0,0); meaning that if the room was divided in half one way and
then the other way, these two dividing lines would intersect on this tile. We now have a coordinate
system that will help us locate objects within the room:

How many tiles away is the (0,0) tile from the right side of the room?

How many tiles away is the (0,0) tile from the left side of the room?

In NetLogo, the number of tiles from right to left is called world-width. And the number of tiles from
top to bottom is world-height. These humbers are defined by top, bottom, left and right boundaries.

36 Tutorial #1: Models

NetLogo 4.1 User Manual

world-width

min-pxcor max-pxcor

max-pycor

world-height {0,0)

min-pycor

In these diagrams, max-pxcor is 3 , min-pxcor is -3, max-pycor is 2 and min-pycor is -2.

When you change the patch size, the number of patches (tiles) doesn't change, the patches only get
larger or smaller on the screen.

Let's look at the effect of changing the minimum and maximum coordinates in the world.

¢ Using the Settings dialog that is still open, change max-pxcor to 30 and
max-pycor value to 10. Notice that min-pxcor and min-pycor change too.
That's because by default the origin (0,0) is in the center of the world.
What happened to the shape of the view?
¢ Press the "setup" button.

Now you can see the new patches you have created.

¢ Edit the view by pressing the "Settings..." button again.
e Change the patch size to 20 and press "OK".

What happened to the size of the view? Did its shape change?

Editing the view also lets you change other settings. Feel free to experiment with these.

Tutorial #1: Models 37

NetLogo 4.1 User Manual

Once you are done exploring the Wolf Sheep Predation model, you may want to take some time just
to explore some of the other models available in the Models Library.

The Models Library

The library contains five sections: Sample Models, Perspective Demos, Curricular Models, Code
Examples, and HubNet Computer Activities.

Sample Models

The Sample Models section is organized by subject area and currently contains more than 210
models. We are continuously working on adding new models to it, so come visit this section at a
later date to view the new additions to the library.

Some of the folders in Sample Models have folders inside them labeled "(unverified)". These

models are complete and functional, but are still in the process of being reviewed for content,
accuracy, and quality of code.

Perspective Demos

These models are all models that are also in Sample Models, however, they are slightly modified to
demonstrate NetLogo's perspective features.

Curricular Models
These are models designed to be used in schools in the context of curricula developed by the CCL
at Northwestern University. Some of these are models are also listed under Sample Models; others

are unique to this section. See the info tabs of the models for more information on the curricula they
go with.

Code Examples
These are simple demonstrations of particular features of NetLogo. They'll be useful to you later

when you're extending existing models or building new ones. For example, if you wanted to put a
histogram within your model, you'd look at "Histogram Example" to find out how.

HubNet Computer Activities

This section contains participatory simulations for use in the classroom. For more information about
HubNet, see the HubNet Guide.

What's Next?

If you want to learn how to explore models at a deeper level, Tutorial #2: Commands will introduce
you to the NetLogo modeling language.

In Tutorial #3: Procedures you can learn how to alter and extend existing models and build your
own models.

38 Tutorial #1: Models

Tutorial #2: Commands

In Tutorial #1, you had the opportunity to view some of the NetLogo models, and you have
successfully navigated your way through opening and running models, pressing buttons, changing
slider and switch values, and gathering information from a model using plots and monitors. In this
section, the focus will start to shift from observing models to manipulating models. You will start to
see the inner workings of the models and be able to change how they look.

Sample Model: Traffic Basic

¢ Go to the Models Library (File menu).

¢ Open up Traffic Basic, found in the "Social Science" section.

¢ Run the model for a couple minutes to get a feel for it.

¢ Consult the Information tab for any questions you may have about this model.

In this model, you will notice one red car in a stream of blue cars. The stream of cars are all moving
in the same direction. Every so often they "pile up" and stop moving. This is modeling how traffic
jams can form without any cause such as an accident, a broken bridge, or an overturned truck. No
"centralized cause" is needed for a traffic jam to form.

You may alter the settings and observe a few runs to get a full understanding of the model.

As you are using the Traffic Basic model, have you noticed any additions you would
like to make to the model?

Looking at the Traffic Basic model, you may notice the environment is fairly simple; a black
background with a white street and number of blue cars and one red car. Changes that could be
made to the model include: changing the color and shape of the cars, adding a house or street light,
creating a stop light, or even creating another lane of traffic. Some of these suggested changes are
cosmetic and would enhance the look of the model while the others are more behavioral. We will be
focusing more on the simpler or cosmetic changes throughout most of this tutorial. (Tutorial #3 will
go into greater detail about behavioral changes, which require changing the Procedures tab.)

To make these simple changes we will be using the Command Center.

The Command Center

The Command Center is located in the Interface Tab and allows you to enter commands or
directions to the model. Commands are instructions you can give to NetLogo's agents: turtles,
patches, links, and the observer. (Refer to the Interface Guide for details explaining the different
parts of the Command Center.)

Tutorial #2: Commands 39

NetLogo 4.1 User Manual

40

In Traffic Basic:

¢ Press the "setup" button.

¢ | ocate the Command Center.

¢ Click the mouse in the white box at the bottom of the Command Center.
¢ Type the text shown here:

Command Center @[Clear
observer> ask patches [| set pcolor yellow]| ~

¢ Press the return key.
What happened to the View?

You may have noticed the background of the View has turned all yellow and the street
has disappeared.

Why didn't the cars turn yellow too?

Looking back at the command that was written, we asked only the patches to change their
color. In this model, the cars are represented by a different kind of agent, called "turtles".
Therefore, the cars did not received these instructions and thus did not change.

What happened in the Command Center?

You may have noticed that the command you just typed is now displayed in the white box
in the middle of the Command Center as shown below:

Command Center P Clear
observer> ask patches [set pcolor yellow]

observer= -

¢ Type in the white box at the bottom of the Command Center the text shown below:

Command Center [Clear
observer> ask patches [set pcolor yellow]

observer> ask turtles |[| set color brown]| 7

Tutorial #2: Commands

NetLogo 4.1 User Manual

Was the result what you expected?

Your View should have a yellow background with a line of brown cars in the middle:

The NetLogo world is a two dimensional world that is made up of turtles, patches and an observer.
The patches create the ground in which the turtles can move around on and the observer is a being
that oversee everything that is going on in the world. (For a detailed description and specifics about
this world, refer to the NetLogo Programming Guide.)

In the Command Center, we have the ability to give the observer a command, the turtles a
command, or the patches a command. We choose between these options by using the popup menu
located in the bottom left corner of the Command Center. You can also use the tab key on your
keyboard to cycle through the different options.

¢ |[n the Command Center, click on the "observer>" in the bottom left corner:

Command Center (| Clear |

observer> ask patches [set pcolor yellow]
observer> ask turtles [set color brown]

obser——" -

—P
patches
links
or use Tab key

e Choose "turtles" from the popup menu.

e Type set color pink and press return.

¢ Press the tab key until you see "patches>" in the bottom left corner.
e Type set pcolor white and press return.

What does the View look like now?

Do you notice any differences between these two commands and the observer
commands from earlier?

Tutorial #2: Commands 41

NetLogo 4.1 User Manual

The observer oversees the world and therefore can give a command to the patches or turtles using
ask. Like in the first example (observer> ask patches [set pcolor yellow]), the observer
has to ask the patches to set their pcolor to yellow. But when a command is directly given to a group
of agents like in the second example (patches> set pcolor white), you only have to give the
command itself.

* Press "setup".

What happened?

Why did the View revert back to the old version, with the black background and white road? Upon
pressing the "setup" button, the model will reconfigure itself back to the settings outlined in the
Procedures tab. The Command Center is not often used to permanently change the model. It is
most often used as a tool to customize current models and allows for you to manipulate the
NetLogo world to further answer those "What if" questions that pop up as you are investigating the
models. (The Procedures tab is explained in the next tutorial, and in the Programming Guide.)

Now that we have familiarized ourselves with the Command Center, let's look at some more details
about how colors work in NetLogo.

Working With Colors

You may have noticed in the previous section that we used two different words for changing color:
color and pcolor.

What is the difference between color and pcolor?

e Choose "turtles" from the popup menu in the Command Center (or use the
tab key).
e Type set color blue and press return.

What happened to the cars?

Think about what you did to make the cars turn blue, and try to make the patches
turn red.

If you try to ask the patches to set color red, an error message occurs:

Command Center W@ Clear

turtles> set color yellow
ERROR: You can't use COLOR in a patch
context, because COLOR is turtle-only.

patches= set color red b

e Type set pcolor red instead and press return.

42 Tutorial #2: Commands

NetLogo 4.1 User Manual

We call color and pcolor "variables". Some commands and variables are specific to turtles and
some are specific to patches. For example, the color variable is a turtle variable, while the
pcolor variable is a patch variable.

Go ahead and practice altering the colors of the turtles and patches using the set command and
these two variables.

To be able to make more changes to the colors of turtles and patches, or shall we say cars and
backgrounds, we need to gain a little insight into how NetLogo deals with colors.

In NetLogo, all colors have a numeric value. In all of the exercises we have been using the name of
the color. This is because NetLogo recognizes 16 different color names. This does not mean that
NetLogo only recognizes 16 colors. There are many shades in between these colors that can be
used too. Here's a chart that shows the whole NetLogo color space:

black white = %.9

gray = 5 7 g 9 3.9
red = 15 4 18 19 1%.9
grange = 25 27 28 29 229
brown = 35 44 38 39 349
yellow = 45 47 48 48 45,9
green = 53 = 5B 59 5%.9
lime = &5 &6f BE B9 54.9

turquoise = 75 ff T8 79 78.9

cyan = 85 a4 88 89 BSO
sky = 85 9F S8 99 559
blue = 185 107 108 109 1099

violet = 115 3¢ 118 119 1159

magenta = 125 128 129 1259

pink = 135 130 131 132 133 135 136 137 138 139 13829

To get a color that doesn't have its own name, you just refer to it by a number instead, or by adding
or subtracting a number from a name. For example, when you type set color red, this does the
same thing as if you had typed set color 15. And you can get a lighter or darker version of the
same color by using a number that is a little larger or a little smaller, as follows.

¢ Choose "patches" from the popup menu in the Command Center (or use the
tab key).
e Type set pcolor red - 2 (The spacing around the "-" is important.)

Tutorial #2: Commands 43

NetLogo 4.1 User Manual

By subtracting from red, you make it darker.
e Type set pcolor red + 2

By adding to red, you make it lighter.

You can use this technique on any of the colors listed in the chart.

Agent Monitors and Agent Commanders

In the previous activity, we used the set command to change the colors of all the cars. But if you
recall, the original model contained one red car amongst a group of blue cars. Let's look at how to
change only one car's color.

¢ Press "setup" to get the red car to reappear.

e |f you are on a Macintosh, hold down the Control key and click on the red car.
On other operating systems, click on the red car with the right mouse button.

e |f there is another turtle close to the red turtle you'll see more than one turtle
listed at the bottom of the menu. Move your mouse over the turtle selections,
notice when your mouse highlights a turtle menu item that turtle is highlighted
in the view. Select "inspect turtle” from the sub-menu for the red turtle.

A turtle monitor for that car will appear:

44 Tutorial #2: Commands

NetLogo 4.1 User Manual

who
color

heading

xoor

yoor
shape

label-color
breed
hidden?
size

pen-size

speed
speed-limit

speed-min

1

15

98

-22.819848429529475

@

"car”

label "

9.9

turtles

false

1

1

pen-mode

ug

@.1649588621167962

1

@

The mini-view at the top of the agent monitor will always stay centered this agent. You can zoom
the view in and out using the slider below the view and you can watch this turtle in the main view by
pressing the "watch me" button.

Taking a closer look at this turtle monitor, we can see all of the variables that belong to the red car.
A variable is a place that holds a value that can be changed. Remember when it was mentioned
that all colors are represented in the computer as numbers? The same is true for the agents. For
example, every turtle has an ID number we call its "who number".

Let's take a closer look at the turtle monitor:

Tutorial #2:

Commands

NetLogo 4.1 User Manual

What is this turtle's who number?
What color is this turtle?

What shape is this turtle?

This turtle monitor is showing a turtle who that has a who number of 0, a color of 15 (red -- see
above chart), and the shape of a car.

There are two other ways to open a turtle monitor besides right-clicking (or control-clicking,
depending on your operating system). One way is to choose "Turtle Monitor" from the Tools menu,
then type the who number of the turtle you want to inspect into the "who" field and press return. The
other way is to type inspect turtle 0 (or other who number) into the Command Center.

You close a turtle monitor by clicking the close box in the upper left hand corner (Macintosh) or
upper right hand corner (other operating systems).

Now that we know more about Agent Monitors, we have three ways to change an individual turtle's
color.

One way is to use the box called an Agent Commander found at the bottom of an Agent Monitor.
You type commands here, just like in the Command Center, but the commands you type here are
only done by this particular turtle.

¢ In the Agent Commander of the Turtle Monitor for turtle 0, type set color
pink.

What happens in the View?

Did anything change in the Turtle Monitor?

A second way to change one turtle's color is to go directly to the color variable in the Turtle Monitor
and change the value.

¢ Select the text to the right of "color" in the Turtle Monitor.
e Type in a new color such as green + 2.

What happened?

The third way to change an individual turtle's or patch's color is to use the observer. Since, the
observer oversees the NetLogo world, it can give commands that affect individual turtles, as well as
groups of turtles.

46 Tutorial #2: Commands

NetLogo 4.1 User Manual

¢ In the Command Center, select "observer" from the popup menu (or use the
tab key).
e Type ask turtle 0 [set color blue] and press return.

What happens?

Just as there are Turtle Monitors, there are also Patch Monitors. Patch monitors work
very similarly to Turtle Monitors.

Can you make a patch monitor and use it to change the color of a single patch?

If you try to have the observer ask patch 0 [set pcolor blue], you'll get an error message:

Command Center | Clear

ERROR: Expected a number here, rather than
a list or block.

patches> ask patch @ [set pcolor blue] -

To ask an individual turtle to do something, we use its who number. But patches don't have who
numbers, therefore we need to refer to them some other way.

Remember, patches are arranged on a coordinate system. Two numbers are needed to plot a point
on a graph: an x-axis value and a y-axis value. Patch locations are designated in the same way as
plotting a point.

¢ Open a patch monitor for any patch.

Tutorial #2: Commands 47

NetLogo 4.1 User Manual

pxcor -19

pycor @
poelor 2.9
plabel

plabel-color 2.2

The monitor shows that for the patch in the picture, its pxcor variable is -19 and its
pycor variable is 0. If we go back to the analogy of the coordinate plane and wanted
to plot this point, the point would be found in the lower left quadrant of the coordinate
plane where x=-19 and y=0.

To tell this particular patch to change color, use its coordinates.

¢ In the bottom of the patch monitor, enter set pcolor blue and press
return.

Typing a command in a turtle or patch monitor addresses only that turtle or patch.
You can also talk to a single patch from the Command Center:

¢ In the Command Center, enter ask patch -19 0 [set pcolor green]
and press return.

What's Next?

At this point, you may want to take some time to try out the techniques you've learned on some of
the other models in the Models Library.

In Tutorial #3: Procedures you can learn how to alter and extend existing models and build your
own models.

48 Tutorial #2: Commands

Tutorial #3: Procedures

This tutorial leads you through the process of building a complete model, built up stage by stage,
with every step explained along the way.

Agents and procedures

In Tutorial #2, you learned how to use the command center and agent monitors to inspect and
modify agents and make them do things. Now you're ready to learn about the real heart of a
NetLogo model: the Procedures tab.

You've already used types of agents you can give commands to in NetLogo: patches, turtles, links,
and the observer. Patches are stationary and arranged in a grid. Turtles move over that grid. Links
connect two turtles. The observer oversees everything that's going on and does whatever the
turtles, patches and links can't do for themselves.

All four types of agents can run NetLogo commands. All three can also run "procedures”. A
procedure combines a series of NetLogo commands into a single new command that you define.

You will now learn to write procedures that make turtles move, eat, reproduce, and die. You will also

learn how to make monitors, sliders, and plots. The model we'll build is a simple ecosystem model
not unlike parts of Wolf Sheep Predation from Tutorial #1.

Making the setup button

To start a new model, select "New" from the File menu. Then begin by creating a setup button:

¢ Click the "Button" icon in the toolbar at the top of the Interface tab.

¢ Click wherever you want the button to appear in the empty white area of the
Interface tab.

¢ A dialog box for editing the button opens. Type setup in the box labeled
"Commands".

¢ Press the OK button when you're done; the dialog box closes.

Now you have a setup button. Pressing the button runs a procedure called "setup". A procedure is a
sequence of NetLogo commands that we assign a new name. We haven't defined that procedure
yet (we will soon). Because the button refers to a procedure that doesn't exist yet, the button turns
red:

Tutorial #3: Procedures 49

NetLogo 4.1 User Manual

f Interface | Information Procedures |
- ' - view updates
g ﬁ + "abc Button I - _..E _ P _
Edit Delete Add continuous 'T]

normal speed

u n n 4o ticks:0
setup P
| | | |

If you want to see the actual error message, click the button.

Now we'll create the "setup" procedure, so the error message will go away:

o Switch to the Procedures tab.
¢ Type the following:

to setup

clear-all

create-turtles 100

ask turtles [setxy random-xcor random-ycor]
end

When you're done, the Procedures tab looks like this:

re o6 MetlLogo — Untitled

" Interface Information Puwedures}

21 Y, | e
Find... Check

to setup
clear-all
create-turtles 106
ask turtles
[0 setxy random-xcor random-ycor]|
end

Note that the lines are indented different amounts. Most people find it helpful to indent their code
like this, but it is not mandatory. It makes the code easier to read and change. Your procedure
began with the word o and ended with the word end. Every new procedure you create will begin
and end with these two words.

Let's look at what you typed in and see what each line of your procedure does:
® to setup begins defining a procedure named "setup".

eclear—all resets the world to an initial, empty state. All the patches turn black and any
turtles you might have created disappear. Basically, it wipes the slate clean for a new model

50 Tutorial #3: Procedures

NetLogo 4.1 User Manual

run.

e create—turtles 100 creates 100 turtles. They start out standing at the origin, that is, the
center of patch 0,0.

e ask turtles [...] tellseach turtle to run, independently, the commands inside the
brackets. (Every command in NetLogo is run by some agent. ask is a command too. Here,
the observer is running the ask command itself, in turn causing the turtles to run
commands.)

e setxy random-xcor random-ycor iSacommand using "reporters". A reporter, as
opposed to a command, reports a result. First each turtle runs the reporter random-xcor
which will report a random number from the allowable range of turtle coordinates along the X
axis. Then each turtle runs the reporter random-ycor, same for the Y axis. Finally each
turtle runs the set xy command with those two numbers as inputs. That makes the turtle
move to the point with those coordinates.

e end completes the definition of the "setup" procedure.

When you're done typing, switch to the Interface tab and press the setup button you made before.
You will see the turtles scattered around the world:

Press setup a couple more times, and see how the arrangement of turtles is different each time.
Note that some turtles may be right on top of each other.

Think a bit about what you needed to do to make this happen. You needed to make a button in the
interface and make a procedure that the button uses. The button only worked once you completed
both of these separate steps. In the remainder of this tutorial, you will often have to complete two or
more similar steps to add another feature to the model. If something doesn't appear to work after
you completed what you thought is the final step for that new feature, continue to read ahead to see
if there is still more to do. After reading ahead for a couple of paragraphs, you should then go back

Tutorial #3: Procedures 51

NetLogo 4.1 User Manual

over the directions to see if there is any step you might have missed.

Making the go button

Now make a button called "go". Follow the same steps you used to make the setup button, except:

e For Commands enter go instead of setup.
¢ Check the "forever" checkbox in the edit dialog.

- ¢ -
setup

8enNna Button
Agentis) "Observer Fv ! @Fureuer
Commands

go

Display name

Action key

|‘: Cancel I fDK) y

The "forever" checkbox makes the button stay down once pressed, so its commands run over and

over again, not just once.

e Then add a go procedure to the Procedures tab:

to go
move-turtles
end

But what is move-turtles? Is it a primitive (in other words, built-in to NetLogo), like clear—all
is? No, it's another procedure that you're about to add. So far, you have introduced two procedures

that you added yourself: setup and go.

e Add the move-turtles procedure after the goprocedure:

to go

52

Tutorial #3: Procedures

NetLogo 4.1 User Manual

move-turtles
end

to move-turtles
ask turtles [
right random 360
forward 1
1

end

Note there are no spaces around the dash in move-turtles. In Tutorial #2 we used red - 2,
with spaces, in order to subtract two numbers, but here we want move-turtles, without spaces.
The "-" combines "move" and "turtles" into a single name.

Here is what each command in the move-turtles procedure does:

e ask turtles [...] says thateach turtle should run the commands in the brackets.

e right random 360 is another command that uses a reporter. First, each turtle picks a
random whole number between 0 and 359. (random doesn't include the number you give it
as a possible result.) Then the turtle turns right this number of degrees.

e forward 1 makes the turtle move forward one step.

Why couldn't we have just written all of these commands in go instead of in a separate procedure?
We could have, but during the course of building your project, it's likely that you'll add many other
parts. We'd like to keep go as simple as possible, so that it is easy to understand. Eventually, it will
include many other things you want to have happen as the model runs, such as calculating
something or plotting the results. Each of these things to do will have its own procedure and each
procedure will have its own unique name.

The 'go’ button you made in the Interface tab is a forever button, meaning that it will continually run
its commands until you shut it off (by clicking on it again). After you have pressed 'setup’ once, to
create the turtles, press the 'go' button. Watch what happens. Turn it off, and you'll see that all the
turtles stop in their tracks.

Note that if a turtle moves off the edge of the world, it "wraps", that is, it appears on the other side.
(This is the default behavior. It can be changed; see the Topology section of the Programming
Guide for more information.)

Experimenting with commands

We suggest you start experimenting with other turtle commands.

Type commands into the Command Center (like turtles> set color red), or add commands
to setup, go, Or move-turtles.

Note that when you enter commands in the Command Center, you must choose turtles>,
patches>, or observer> in the popup menu on the left, depending on which agents are going to
run the commands. It's just like using ask turtles or ask patches, but saves typing. You can
also use the tab key to switch agent types, which you might find more convenient than using the
menu.

Tutorial #3: Procedures 53

NetLogo 4.1 User Manual

You might try typing turtles> pen-down into the Command Center and then pressing the go

button.

Also, inside the move-turtles procedure you can try changing right random 360
random 45.

to right

Play around. It's easy and the results are immediate and visible -- one of NetLogo's many strengths.

When you feel you've done enough experimenting for now, you're ready to continue improving the

model you are building.

Patches and variables

Now we've got 100 turtles aimlessly moving around, completely unaware of anything else around
them. Let's make things a little more interesting by giving these turtles a nice background against

which to move.

e Go back to the setup procedure. We can rewrite it as follows:

to setup
clear—-all
setup-patches
setup-turtles
end
¢ The new definition of setup refers to two new procedures. To define

setup-patches, add this:

to setup-patches
ask patches [set pcolor green]
end

The setup-patches procedure sets the color of every patch to green to start with.
(A turtle's color variable is coloxr; a patch's is pcolor.)

The only part remaining in our new 'setup’ that is still undefined is setup-turtles.

¢ Add this procedure too:

to setup-turtles

create-turtles 100

ask turtles [setxy random-xcor random-ycor]
end

Did you notice that the new setup-turtles procedure has most of the same
commands as the old setup procedure?

o Switch back to the Interface tab.
¢ Press the setup button.

Voila! A lush NetLogo landscape complete with turtles and green patches appears:

54 Tutorial #3

: Procedures

NetLogo 4.1 User Manual

After seeing the new setup procedure work a few times, you may find it helpful to read through the
procedure definitions again.

Turtle variables

So we have some turtles running around on a landscape, but they aren't doing anything with it. Let's
add some interaction between the turtles and the patches.

We'll make the turtles eat "grass" (the green patches), reproduce, and die. The grass will gradually
grow back after it is eaten.

We'll need a way of controlling when a turtle reproduces and dies. We'll determine that by keeping
track of how much "energy" each turtle has. To do that we need to add a new turtle variable.

You've already seen built-in turtle variables like color. To make a new turtle variable, we add a
turtles—own declaration at the top of the Procedures tab, before all the procedures. Call it
energy.

turtles-own [energy]
to go
move-turtles

eat—-grass
end

Let's use this newly defined variable (energy) to allow the turtles to eat.

Tutorial #3: Procedures 55

NetLogo 4.1 User Manual

¢ Switch to the Procedures tab.
¢ Rewrite the go procedure as follows:

to go
move—-turtles
eat—-grass
end

¢ Add a new eat—grass procedure:

to eat—-grass
ask turtles [
if pcolor = green |
set pcolor black
set energy (energy + 10)
]
]

end

We are using the if£ command for the first time. Look at the code carefully. Each turtle,

when it runs

these commands, compares the value of the patch color it is on (pcolor) to the value for green.
(A turtle has direct access to the variables of the patch it is standing on.) If the patch color is green,
the comparison reports t rue, and only then will the turtle runs the commands inside the brackets
(otherwise it skips them). The commands make the turtle change the patch color to black and
increase its own energy by 10. The patch turns black to signify that the grass at that spot has been

eaten and the turtle is given more energy, from having just eaten the grass.

Next, let's make the movement of turtles use up some of the turtle's energy.

o Rewrite move-turtles as follows:

to move-turtles
ask turtles [
right random 360
forward 1
set energy energy - 1
]

end

As each turtle wanders, it will lose one unit of energy at each step.

¢ Switch to the Interface tab now and press the setup button and the go button.

You'll see the patches turn black as turtles travel over them.

56 Tutorial #3

: Procedures

NetLogo 4.1 User Manual

Monitors

Next you will create two monitors in the Interface tab with the Toolbar. (You make them just like
buttons and sliders, using the monitor icon on the Toolbar.) Let's make the first monitor now.

e Create a monitor, using the monitor icon on the Toolbar and click on an open
spot in the Interface.

A dialog box will appear.

¢ In the dialog box type: count turtles (see image below).
¢ Press the OK button to close the dialog box.

Tutorial #3: Procedures 57

NetLogo 4.1 User Manual

L2 tickso

go ~

LT
count turtles 8ne Monitor

50

Reporter
count turtles

Display name

Decimal places 3 Font Size |11

(Cancel) G—GI(—’ y

full precision is 17

turtles is an "agentset", the set of all turtles. count tells us how many agents are in that set.

Let's make the second monitor now:

¢ Create a monitor, using the monitor icon on the Toolbar and click on an open
spot in the Interface.

A dialog box will appear.

¢ In the Reporter section of the dialog box type: count patches with
[pcolor = green] (seeimage below).

¢ In the Display name section of the dialog box type: green patches

* Press the OK button to close the dialog box.

58 Tutorial #3: Procedures

NetLogo 4.1 User Manual

%2 tickso

setup

count turtles green patches
50 1225

806
Reporter
kount patches with [pcolor = green]

Monitor

Display name green patches

Decimal places 3 Font Size |11

(Cancel) (—-ﬁl(—) y

full precision is 17

Here we're using count again to see how many agents are in an agentset. patches is the set of
all the patches, but we don't just want to know how many patches there are total, we want to know
how many of them are green. That's what with does; it makes a smaller agentset of just those
agents for whom the condition in the brackets is true. The condition is pcolor = green, so that
gives us just the green patches.

Now we have two monitors that will report how many turtles and green patches we have, to help us
track what's going on in our model. As the model runs, the numbers in the monitors will
automatically change.

¢ Use the setup and go buttons and watch the numbers in the monitors change.

Switches and labels

The turtles aren't just turning the patches black; they're also gaining and losing energy. As the
model runs, try using a turtle monitor to watch one turtle's energy go up and down.

It would be nicer if we could see every turtle's energy all the time. We will now do exactly that, and
add a switch so we can turn the extra visual information on and off.

e To create a switch, click on the switch icon on the Toolbar (in the Interface
tab) and click on an open spot in the Interface.

A dialog box will appear.

Tutorial #3: Procedures 59

NetLogo 4.1 User Manual

¢ In the Global variable section of the dialog box type: show-energy? Don't
forget to include the question mark in the name. (See image below.)

Gy § ticks:0

setup 90 .

count turtles green patches
50 1225

1800

Switch

Eg% show-energy?

Global variable | show-energy?

(Cancel) (—-ﬁl(—-)

e Now go back to the 'go' procedure using the Procedures tab with the Toolbar.
¢ Rewrite the eat—grass procedure as follows:

to eat-grass
ask turtles [
if pcolor = green |
set pcolor black
set energy (energy + 10)
]
ifelse show-energy?
[set label energy |
[set label ""]
]

end

The eat-grass procedure introduces the ifelse command. Look at the code carefully. Each
turtle, when it runs these new commands, checks the value of show-energy? (determined by the
switch). If the switch is on, comparison is true and the turtle will run the commands inside the first
set of brackets. In this case, it assigns the value for the energy to the label of the turtle. If the
comparison is false (the switch is off) then the turtle runs the commands inside the second set of
brackets. In this case, it removes the text labels (by setting the label of the turtle to be nothing).

(In NetLogo, a piece of text is called a "string". A string is a sequence of letters and other
characters, written between double quotes. Here we have two double quotes right next to each
other, with nothing in between them. That's an empty string. If a turtle's label is an empty string, no
text is attached to the turtle.)

e Test this in the Interface tab, by running the model (using the setup and go
buttons) switching the show-energy? switch back and forth.

When the switch is on, you'll see the energy of each turtle go up each time it eats grass. You'll also
see its energy going down whenever it moves.

60 Tutorial #3: Procedures

NetLogo 4.1 User Manual

15000

2500 -
0L

400.0

sooia il
7000 2004 —cH i
i 75000 I!&!D-wu

.-'44:":!‘55':' g ﬂh a5

4ﬂ@&ﬂh

H [etifier
SO0
oo

A .

40050

More procedures

Now our turtles are eating; let's make them reproduce and die, too. Let's also make the grass grow
back. We'll add all three of these of these behaviors now, by making three separate procedures,
one for each behavior.

e Go to the Procedures tab.
¢ Rewrite the go procedure as follows:

to go
move-turtles
eat—-grass
reproduce
check-death
regrow—grass
end

e Add the procedures for reproduce, check—-death, and regrow—grass as
shown below:

to reproduce
ask turtles [
if energy > 50 [
set energy energy - 50
hatch 1 [set energy 50]

Tutorial #3: Procedures 61

NetLogo 4.1 User Manual

end

to check-death
ask turtles [
if energy <= 0 [die]
1

end

to regrow—-grass
ask patches [
if random 100 < 3 [set pcolor green]
]

end

Each of these procedures uses the i £ command. Each turtle, when it runs check-death it will
check to see if its energy is less or equal to 0. If this is true, then the turtle is told to die (die is a
NetLogo primitive).

When each turtle runs reproduce, it checks the value of the turtle's energy variable. If it is greater
than 50, then the turtle runs the commands inside the first set of brackets. In this case, it decreases
the turtle's energy by 50, then 'hatches' a new turtle with an energy of 50. The hatch command is a
NetLogo primitive which looks like this: hat ch number [commands]. This turtle creates number
new turtles, each identical to its parent, and asks the new turtle(s) that have been hatched to run
commands. You can use the commands to give the new turtles different colors, headings, or
whatever. In our case we run one command. We set the energy for the newly hatched turtle to be
50.

When each patch runs regrow—-grass it will check to see if a random integer from 0 to 99 is less
than 3. If so, the patch color is set to green. This will happen 3% of the time (on average) for each
patch, since there are three numbers (0, 1, and 2) out of 100 possible that are less than 3.

¢ Switch to the Interface tab now and press the setup and go buttons.

You should see some interesting behavior in your model now. Some turtles die off, some new
turtles are created (hatched), and some grass grows back. This is exactly what we set out to do.

If you continue to watch your monitors in your model, you will see that the count turtles and green
patches monitors both fluctuate. Is this pattern of fluctuation predictable? Is there a relationship
between the variables?

It'd be nice if we had a easier way to track the changes in the model behavior over time. NetLogo
allows us to plot data as we go along. That will be our next step.

Plotting

To make plotting work, we'll need to create a plot in the Interface tab, and set some settings in it.
Then we'll add one more procedure to the Procedures tab, which will update the plot for us.

Let's do the Procedures tab part first.

62 Tutorial #3: Procedures

NetLogo 4.1 User Manual

e Change setup to call the new procedure, do-plots, which we're about to
add:

to setup
clear—-all
setup-patches
setup-turtles
do-plots

end

¢ Also, change go to call the do-plots procedure:

to go
move—turtles
eat—-grass
check-death
reproduce
regrow—grass
do-plots
end
¢ Now add the new procedure. What we're plotting will be be the number of
turtles and the number of green patches versus time. At each time step (a

single run through the go procedure) these values are added to the plot.

to do-plots
set—-current-plot "Totals"
set—-current-plot—-pen "turtles"
plot count turtles
set—-current-plot-pen "grass"
plot count patches with [pcolor = green]
end

Note that we use the plot command to add the next point to a plot. However, before doing that, we
need to tell NetLogo two things. First, we need to specify what plot we will be using (since later our
model might have more than one plot) and second, we need to specify which pen we want to plot
with (we will be using two pens on this plot).

The plot command moves the current plot pen to the point that has an X coordinate equal to 1
greater than the previously plotted X coordinate and a Y coordinate equal to the value given in the
plot command (in the first case, the number of turtles, and in the second case, the number of green
patches). As the pens move they each draw a line.

In order for set—current-plot "Totals" to work, you'll have to add a plot to your model in the
Interface tab, then edit it so its name is the same name used in the procedures. Even one extra
space in the name will throw it off -- it must be exactly the same in both places.

¢ Create a plot, using the plot icon on the Toolbar and click on an open spot in
the Interface.

¢ Set its Name to "Totals" (see image below)

¢ Set the X axis label to "time"

e Set the Y axis label to "total"

Tutorial #3: Procedures 63

NetLogo 4.1 User Manual

e0n Plot

Mame Totals

X axis label time Xmin 0O Xmax 10
¥ axis label totals ¥ min |0 ¥ max 10

™ Auto plot?

Plot Pens Choose Pen to Edit : default |+] (Rename) (Delete ;) (Create ;)

Color :black %] Mode Line B: Interval 1.0 ™ Show in Legend

l.: Custom Color... :'J

(Cancel) G-GK-;

Next you will need to create two pens.

¢ With the Plot dialog box still open, press the 'Create’ button in the Plot dialog,
to create a new pen.

¢ Enter the name of this pen as "turtles" and press OK in the "Enter Pen Name"
dialog. (see image below)

¢ Press the 'Create’ button in the Plot dialog again, to create a second new pen.

¢ Enter the name of this pen as "grass" and press OK in the "Enter Pen Name"
dialog. (see image below)

¢ Select the color for this pen and change it to green.

¢ Select OK in the Plot dialog box.

000 Plot

MName Totals

X axis label time Xmin 0 X max 10

Y axis label totals Y min 0 Y max 10

v Auto plot?

Plot Pens Choose Pen to Edit :turtles =] (Rename) Delete (Create)
Color ' black + enn ' Enter Pen Name - egend
(Custom Color...] Enter a name for the pen:

LB]

‘grass p
-

(Cancel) H

64 Tutorial #3: Procedures

NetLogo 4.1 User Manual

Note that when you create the plot you can also set the minimum and maximum values on the X
and Y axes. You'll want to leave the "Autoplot?" checkbox checked, so that if anything you plot
exceeds the minimum and maximum values for the axes, the axes will automatically grow so you
can see all the data.

e Setup and run the model again.

You can now watch the plot being drawn as the model is running. Your plot should
have the general shape of the one below, though your plot might not look exactly the
same.

Remember that we left "Autoplot?” on. This allows the plot to readjust itself when it
runs out of room.

Totals Pens

0 time 738

If you forget which pen is which, click on the Pens label on the top right corner of the plot. You might
try running the model several times to see what aspects of the plot are the same and which are
different.

Tick counter

To make comparisons between plots from one model run and another, it is often useful to do the
comparison for the same length of model run. Learning how to stop or start an action at a specific
time can help make this happen by stopping the model at the same point each model run. Keeping
track of how many times the go procedure is run is a useful way to cue these actions.

To keep track of this, we will use NetLogo's built-in tick counter.

e Change the go procedure:

to go
if ticks >= 500 [stop]
move-turtles
eat—-grass
check-death
reproduce
regrow—grass
tick
do-plots
end

Tutorial #3: Procedures 65

NetLogo 4.1 User Manual

¢ Now setup and run the model.

The graph and model won't keep running forever. They should stop automatically when the tick
counter in the Interface tab's toolbar reaches 500.

The tick command advances the tick counter by 1. ticks is a reporter which reports the current
value of the tick counter. clear—al1 takes care of resetting the tick counter to 0 when a new run
starts.

Note that we put tick before do-plots. That's so if we write plotting code that uses the value of
the tick counter, it will see the new value, not the old value. (In this tutorial we won't actually write
any code like that, but nonetheless, it is generally good practice to call £ick after your agents have
done their actions but before you plot.)

Now that your model uses ticks, you'll probably want to use the menu at the top of the Interface tab
to change from "continuous" updates to "tick-based" updates. That means that NetLogo will only
update (that is, redraw) the view (that is, the display area where you see your agents) between
ticks, never in the middle of a tick. This makes your model run faster and ensures a consistent
appearance (since the updates will happen at consistent times). See the Programming Guide for a
fuller discussion of view updates.

Some more details

First, instead of always using 100 turtles, you can have a variable number of turtles.

¢ Make a slider variable called 'number', using the monitor icon on the Toolbar
and click on an open spot in the Interface. Try changing the minimum and
maximum values in the slider.

e Then inside of setup-turtles, instead of create-turtles 100 you can

type:

to setup-turtles

create-turtles number

ask turtles [setxy random-xcor random-ycor]
end

Test this change and compare how having more or fewer turtles initially affect the plots over time.

Second, wouldn't it be nice to adjust the energy the turtles gain and lose as they eat grass and
reproduce?

e Make a slider called energy-from-grass.
¢ Make another slider called birth-energy.
¢ Then, inside of eat-grass, make this change:

to eat—-grass

66 Tutorial #3: Procedures

NetLogo 4.1 User Manual

ask turtles [
if pcolor = green |
set pcolor black
set energy (energy + energy-from-grass)
]
ifelse show-energy?
[set label energy |
[set label ""]
]

end
¢ And, inside of reproduce, make this change:

to reproduce
ask turtles [
if energy > birth-energy [
set energy energy - birth-energy
hatch 1 [set energy birth-energy]
]
]

end

Finally, what other slider could you add to vary how often grass grows back? Are there rules you
can add to the movement of the turtles or to the newly hatched turtles that happen only at certain
times? Try writing them.

What's next?

So now you have a simple model of an ecosystem. Patches grow grass; turtles wander, eat the
grass, reproduce, and die. You have created an interface containing buttons, sliders, switches,
monitors, and plots. You've even written a series of procedures to give the turtles something to do.

That's where this tutorial leaves off.

If you'd like to look at some more documentation about NetLogo, the Interface Guide section of the
manual walks you through every element of the NetLogo interface in order and explains its function.
For a detailed description and specifics about writing procedures, refer to the Programming Guide.
All of the primitives are listed and described in the the NetLogo Dictionary.

Also, you can continue experimenting with and expanding this model if you'd like, experimenting
with different variables and behaviors for the agents.

Alternatively, you may want to revisit the first model in the tutorial, Wolf Sheep Predation. This is the
model you used in Tutorial #1.Inthe Wolf Sheep Predation model, you saw sheep move
around, consume resources that are replenished occasionally (grass), reproduce under certain
conditions, and die if they ran out of resources. But that model had another type of creature moving
around -- wolves. The addition of wolves requires some additional procedures and some new
primitives. Wolves and sheep are two different "breeds" of turtle. To see how to use breeds, study
Wolf Sheep Predation.

Alternatively, you can look at other models (including the many models in the Code Examples
section of the Models Library) or even go ahead and build your own model. You don't even have to
model anything. It can be interesting just to watch patches and turtles forming patterns, to try to
create a game to play, or whatever.

Tutorial #3: Procedures 67

NetLogo 4.1 User Manual

Hopefully you have learned some things, both in terms of the NetLogo language and about how to
go about building a model. The entire set of procedures that was created above is shown below.

Appendix: Complete code

The complete model is also available in NetLogo's Models Library, in the Code Examples section.
It's called "Tutorial 3".

Notice that this listing is full of "comments”, which begin with semicolons. Comments let you mix an
explanation the code right in with the code itself. You might use comments to help others
understand your model, or you might use them as notes to yourself.

In the Procedures tab, comments are gray, so your eyes can pick them out easily.

turtles-own [energy] ;; for keeping track of when the turtle is ready
;; to reproduce and when it will die

to setup
clear-all
setup-patches
setup-turtles
do-plots

end

to setup-patches
ask patches [set pcolor green]

end

to setup-turtles

create-turtles number ;; uses the value of the number slider to create turtles
ask turtles [setxy random-xcor random-ycor]

end

to go
if ticks >= 500 [stop] ;; stop after 500 ticks

move-turtles
eat—-grass
check-death
reproduce
regrow-grass
tick ;7 1ncrease the tick counter by 1 each time through
do-plots
end

to move-turtles
ask turtles [
right random 360
forward 1
set energy energy - 1 ;; when the turtle moves it looses one unit of energy
]

end

to eat—grass
ask turtles [
if pcolor = green [
set pcolor black
;; the value of energy-from-grass slider is added to energy
set energy (energy + energy-from-grass)

68 Tutorial #3: Procedures

NetLogo 4.1 User Manual

]

ifelse show-energy?
[set label energy] ;; the label is set to be the value of the energy
[set label ""] ;; the label is set to an empty text value

]

end

to reproduce
ask turtles [
if energy > birth-energy [
set energy energy - birth-energy ;; take away birth-energy to give birth
hatch 1 [set energy birth-energy] ;; give this birth-energy to the offspring
]
]

end

to check-death
ask turtles [
if energy <= 0 [die] ;; removes the turtle if it has no energy left
]

end

to regrow—-grass
ask patches [;; 3 out of 100 times, the patch color is set to green
if random 100 < 3 [set pcolor green]
]

end

to do-plots
set-current-plot "Totals" ;; which plot we want to use next

set-current-plot-pen "turtles" ;; which pen we want to use next
plot count turtles ;; what will be plotted by the current pen
set-current-plot-pen "grass" ;; which pen we want to use next

plot count patches with [pcolor = green] ;; what will be plotted by the current pen

end

Tutorial #3: Procedures

69

70

NetLogo 4.1 User Manual

Tutorial #3: Procedures

Interface Guide

This section of the manual walks you through every element of the NetLogo interface in order and
explains its function.

In NetLogo, you have the choice of viewing models found in the Models Library, adding to existing
models, or creating your own models. The NetLogo interface was designed to meet all these needs.

The interface can be divided into two main parts: NetLogo menus, and the main NetLogo window.
The main window is divided into tabs.

* Menus

e Tabs

e Interface Tab
¢ Working with Interface Elements
¢ The 2D and 3D Views
¢ Command Center

¢ Plots

+ Sliders

¢ Agent Monitors
¢ Information Tab
e Procedures Tab
¢ Includes Menu

Menus

On Macs, if you are running the NetLogo application, the menubar is located at the top of the
screen. On other platforms, the menubar is found at the top of the NetLogo window.

File Edit Tools Zoom Tabs Help
NetLogo — Untitled

The functions available from the menus in the menubar are listed in the following chart.

Chart: NetLogo Menus

File
New Starts a new model.
Open Opens any NetLogo model on your computer.
Models Library A collection of demonstration models.
Save Save the current model.
Save As Save the current model using a different name.

Save As Applet Used to save a web page in HTML format that has your model
embedded in it as a Java "applet".

Print Sends the contents of the currently showing tab to your printer.

Export World Saves all variables, the current state of all turtles and patches, the
drawing , the plots, the output area and the random state information to
a file.

Interface Guide 71

NetLogo 4.1 User Manual

Export Plot Saves the data in a plot to a file.

Export All Plots Saves the data in all the plots to a file.

Export View Save a picture of the current view (2D or 3D) to a file (in PNG format).

Export Interface [Save a picture of the current Interface tab. (in PNG format)

Export Output Save the contents of the output area or the output section of the
command center to a file.

Import World Load a file that was saved by Export World.

Import Patch Load an image into the patches; see the import-pcolors command.

Colors

Import Patch Load an image into the patches using RGB colors; see the

Colors RGB import-pcolors-rgb command.

Import Drawing

Load an image into the drawing, see the import-drawing command.

Import HubNet
Client Interface

Load the interface from another model into the HubNet Client Editor.

Quit

Exits NetLogo. (On Macs, this item is on the NetLogo menu instead.)

Edit

Cut Cuts out or removes the selected text and temporarily saves it to the
clipboard.

Copy Copies the selected text.

Paste Places the clipboard text where cursor is currently located.

Delete Deletes selected text.

Undo Undo last text editing action you performed.

Redo Redo last undo action you performed.

Select All Select all the text in the active window.

Find Finds a word or sequence of characters within the Information or
Procedures tabs.

Find Next Find the next occurrence of the word or sequence you last used Find
with.

Shift Left / Used in the Procedures tab to change the indentation level of code.

Shift Right

Comment / Used in the Procedures tab to add or remove semicolons from code

Uncomment (semicolons are used in NetLogo code to indicate comments).

Snap To Grid When enabled new widgets stay on a 5 pixel grid so it is easier to line
them up. (Note: this feature is disabled when zoomed in or out.)

Tools

Halt Stops all running code, including buttons and the command center.
(Warning: since the code is interrupted in the middle of whatever it was
doing, you may get unexpected results if you try to continue running the
model without first pressing "setup” to start the model run over.)

Globals Monitor |Displays the values of all global variables.

Turtle Monitor Displays the values of all of the variables in a particular turtle. You can
can also edit the values of the turtle's variables and issue commands to
the turtle. (You can also open a turtle monitor via the View; see the View
section below.)

Patch Monitor Displays the values of all of the variables in a particular patch. You can
can also edit the values of the patch's variables and issue commands to

72 Interface Guide

NetLogo 4.1 User Manual

the patch. (You can also open a patch monitor via the View; see the
View section below.)

Link Monitor

Displays the values of all of the variables in a particular link. You can

can also edit the values of the link's variables and issue commands to
the link. (You can also open a link monitor via the View; see the View
section below.)

Close All Agent

Closes all open agent monitor windows.

Monitors

Hide/Show Makes the command center visible or invisible. (Note that the command
Command Center |center can also be shown or hidden, or resized, with the mouse.)

3D View Opens the 3D view. See the Views section for more information.

Color Swatches

Opens the Color Swatches. See the Color Section of the Programming
Guide for details.

Turtle Shapes

Draw turtle shapes. See the Shapes Editor Guide for more information.

Editor
Link Shapes Editor |Draw link shapes. See the Shapes Editor Guide for more information.
BehaviorSpace Runs the model over and over with different settings. See the

[BehaviorSpace Guide for more information.

System Dynamics
Modeler

Opens the System Dynamics Modeler. See the System Dynamics
Modeler Guide for more details.

HubNet Client

Opens the HubNet Client Editor. See the HubNet Authoring Guide for

Editor more details.
HubNet Control Disabled if no HubNet activity is open. See the HubNet Guide for more
Center information.
Zoom
Larger Increase the overall screen size of the model. Useful on large monitors
or when using a projector in front of a group.
Normal Size Reset the screen size of the model to the normal size.
Smaller Decrease the overall screen size of the model.
Tabs This menu offers keyboard shortcuts for each of the tabs. (On Macs, it's
Command 1 through Command 3. On Windows, it's Control 1 through
Control 3.)
Help
About NetLogo Information on the current NetLogo version the user is running. (On
Macs, this menu item is on the NetLogo menu instead.)
Look Up In Opens a browser with the dictionary entry for the selected command or
Dictionary reporter.
NetLogo User Opens this manual in a web browser.
Manual
NetLogo Dictionary|Opens the NetLogo Dictionary in a web browser.
Tabs

At the top of NetLogo's main window are three tabs labeled "Interface", "Information" and
"Procedures” . Only one tab at a time can be visible, but you can switch between them by clicking
on the tabs at the top of the window.

Interface Guide

73

NetLogo 4.1 User Manual

{ Interface | Information Procedures

- Y - view updates —
{? rj * I "'I‘JY E : P x I (settings...)
Edit Delete Add continuous 'v! e

normal speed

Right below the row of tabs is a toolbar containing a row of controls. The controls available vary
from tab to tab.

Interface Tab

The Interface tab is where you watch your model run. It also has tools you can use to inspect and
alter what's going on inside the model.

When you first open NetLogo, the Interface tab is empty except for the View, where the turtles and
patches appear, and the Command Center, which allows you to issue NetLogo commands.

Working with Interface Elements

The toolbar on the Interface tab contains buttons that let you edit, delete, and create items in the
Interface tab and a menu that lets you select different interface items (such as buttons and sliders).

R e] |
Ec Delete Add -

' “are Button
St Slider
o Switch
¥ Chooser
== Input
Monitor
" Plot
E=1 Output
s Note

The buttons in the toolbar are described below.

Adding: To add an interface element, select the element from the the drop down menu. Note that
the Add button becomes pressed. Then click on the white area below the toolbar. (If the menu is
already showing the right type, you can just press the Add button instead of using the menu again.)

Selecting: To select an interface element, drag a rectangle around it with your mouse. A gray
border will appear around the element to indicate that it is selected.

Selecting multiple items: You can select multiple interface elements at the same time by including
them in the rectangle you drag. If multiple elements are selected, one of them is the "key" item,
which means that if you use the "Edit" or "Delete" buttons on the Interface Toolbar, only the key
item is affected. The key item is indicated by a darker gray border than the other items.

74 Interface Guide

NetLogo 4.1 User Manual

Unselecting: To unselect all interface elements, click the mouse on the white background of the
Interface tab. To unselect an individual element, control-click (Macintosh) or right-click (other
systems) the element and choose "Unselect" from the popup menu.

Editing: To change the characteristics of an interface element, select the element, then press the
"Edit" button on the Interface Toolbar. You may also double click the element once it is selected. A
third way to edit an element is to control-click (Macintosh) or right-click (other systems) it and
choose "Edit" from the popup menu. If you use this last method, it is not necessary to select the
element first.

Moving: Select the interface element, then drag it with your mouse to its new location. If you hold
down the shift key while dragging, the element will move only straight up and down or straight left
and right.

Resizing: Select the interface element, then drag the black "handles" in the selection border.
Deleting: Select the element or elements you want to delete, then press the "Delete" button on the
Interface Toolbar. You may also delete an element by control-clicking (Macintosh) or right-clicking
(other systems) it and choosing "Delete" from the popup menu. If you use this latter method, it is not
necessary to select the element first.

To learn more about the different kinds of interface elements, refer to the chart below.

Chart: Interface Toolbar

Icon & Name Description

*i< Button Buttons can be either once-only buttons or forever buttons. When you click on
a once button, it executes its instructions once. The forever button executes
the instructions over and over, until you click on the button again to stop the
action. If you have assigned an action key to the button, pressing the
corresponding keyboard key will act just like a button press when the button is
in focus. Buttons with action keys have a letter in the upper right corner of the
button to show what the action key is. If the input cursor is in another interface
element such as the Command Center, pressing the action key won't trigger
the button. The letter in the upper right hand corner of the button will be
dimmed in this situation. To enable action keys, click in the white background
of the Interface tab.

et Slider Sliders are global variables, which are accessible by all agents. They are used
in models as a quick way to change a variable without having to recode the
procedure every time. Instead, the user moves the slider to a value and
observes what happens in the model.

@8 Switch Switches are a visual representation for a true/false variable. The user is asked
to set the variable to either on (true) or off (false) by flipping the switch.

¥ Chooser |Choosers let the user choose a value for a global variable from a list of
choices, presented in a drop down menu.

= Input Input Boxes are global variables that contain strings or numbers. The model
author chooses what types of values the user can enter. Input boxes can be
set to check the syntax of a string for commands or reporters. Number input

Interface Guide 75

NetLogo 4.1 User Manual

boxes read any type of constant number expression which allows a more open
way to express numbers than a slider. Color input boxes offer a NetLogo color
chooser to the user.

%< Monitor |Monitors display the value of any expression. The expression could be a
variable, a complex expression, or a call to a reporter. Monitors automatically
update several times per second.

abe

Plot Plots are real-time graphs of data the model is generating.

Output The output area is a scrolling area of text which can be used to create a log of
activity in the model. A model may only have one output area.

s Note Notes lets you add informative text labels to the Interface tab. The contents of
notes do not change as the model runs.

The other controls in the Interface Toolbar allow you to control the view updates and various other
model properties.

) # view updates

= I (Settings)
T " continuous |'%] —
normal speed \

e The slider lets you control how fast the model runs. Slower can be valuable since some
models run so fast that it's hard to see what's going on. You can also fast forward the model
by moving the slider to the right, and reducing the frequency of view updates.

e The view updates check box controls whether view updates happen at all.

e The update mode menu allows you to switch between continuous and tick-based update
modes.

e The Settings button allows you to change model settings.

"Continuous" updates means that NetLogo updates (that is, redraws) the view many times a
second, regardless of what is going on in the model. "Tick-based" updates means that the view only
updates when the tick counter advances. (For a fuller discussion of view updates, see the
Programming Guide.)

The 2D and 3D Views

The large black square in the Interface tab is the 2D view. It's a visual representation of the NetLogo
world of turtles and patches. Initially it's all black because the patches are black and there are no
turtles yet. You can open the 3D View, another visual representation of the world, by clicking on the
"3D" button in the View Control Strip.

/K| 2 ¢ ticks: 0

The three sets of black arrows in the upper left let you change the size of the world. When the origin
is centered the world will grow in increments of two, adding one to the maximum and subtracting
one from the minimum. If one of the edges is set to 0 the world will grow by one in the other
direction to keep the origin along the edge. If the origin is at a custom location the black arrows will
be disabled.

There are a number of settings associated with the Views. There are a few ways of changing the
settings: by using the control strip along the top edge of the View, or by editing the 2D View, as

76 Interface Guide

NetLogo 4.1 User Manual

described in the "Working With Interface Elements" section above, or pressing the "Settings..."
button in the toolbar.

Notice that the control strip in the 3D View combines the ticks counter from the 2D view control strip
and the controls from the right portion of the interface toolbar.

: . ™ view updates e
ticks: 0 o - - — I | Settings... |
continuous 'T] _

normal speed —_

Here are the settings for the View (accessible by editing the View, or by pressing the "Settings..."
button in the Interface Toolbar):

Model Settings

World

&

Location of origin: Center
L S ———

min-pxcor -16

minimum x coordinate for patches

max-pxcor 16
maximum x coordinate for patches
min-pycor -16

minimum y coordinate for patches

max-pycor 16 Torus: 33 x 33

maximum y coordinate for patches

ZWurld wraps horizontally
ZWurld wraps vertically

View
Patch size 13 Font size 10
measured in pixels of labels on agents

Tick counter

W Show tick counter

Tick counter label ticks

I\: Cancel :,I I\: Apply :,I I\: Ok :,I

Notice that the settings are broken up into three groups. There are world, view, and ticks counter
settings. World settings affect the properties of the world that the turtles live in (changing them may
require resetting the world). View and tick counter settings only affect the appearance, changing
them will not affect the outcome of the model.

The world settings allow you to define the boundaries and topology of the world. At the top of the left
side of the world panel you can choose a location for the origin of the world either "Center",
"Corner", "Edge", or "Custom". By default the world has a center configuration where (0,0) is at the
center of the world and the user defines the number of patches from the center to the right and left
boundaries and the number of patches from the center to the top and bottom boundaries. For

Interface Guide 77

NetLogo 4.1 User Manual

Example: If you set Max-Pxcor = 10 Min-Pxcor will automatically be set to -10 thus there are 10
patches to the left of the origin and 10 patches to the right of patch 0 0.

A Corner configuration allows the user to define the location of the origin as one of the corners of
the world, upper left, upper right, lower left, or lower right. Then you define the far boundary in the x
and y directions. For example if you choose to put the origin in the lower left corner of the world you
define the right and top (positive) boundaries.

Edge mode allows you to place the origin along one of the edges (x or y) then define the far
boundary in that direction and both boundaries in the other. For example if you select edge mode
along the bottom of the world, you must also define the top boundary, as well as the left and the
right.

Finally, Custom mode allows the user to place the origin at any location in the world, though patch 0
0 must still exist in the world.

As you change the settings you will notice that the changes you make are reflected in the preview
on the right side of the panel which shows the origin and the boundaries. The width and height of
the world are displayed below the preview.

Also below the preview there are two checkboxes, the world wrap settings. These allow you to
control the topology of the world. Notice when you click the check boxes the preview indicates
which directions allow wrapping, and the name of the topology is displayed next to the world
dimensions. See the Topology Section of the Programming Guide for more information.

The view settings allow you to customize the look of the view without changing the world. Changing
view settings will never force a world reset. To change the size of the 2D View adjust the "Patch
Size" setting, measured in pixels. This does not change the number of patches, only how large the
patches appear in the 2D View. (Note that the patch size does not affect the 3D View, as you can
simply make the 3D View larger by making the window larger.)

The "Smooth edges" checkbox controls the use of anti-aliasing in the 3D view only and only
appears when editing from the 3D view. It will make the lines appear less jagged but it will slow
down the model.

Tick counter settings control the appearance of the tick counter which is visible (or not) in the view
control strip.

Turtle, patch and link monitors are easily available through the View, just control-click (Macintosh)
or right-click (other systems) on the turtle or patch you want to inspect, and choose "inspect turtle

." or "inspect patch ..." from the popup menu. You can also watch, follow or ride a turtle by
selecting the appropriate item in the turtle sub-menu. (Turtle, patch and link monitors can also be
opened from the Tools menu or by using the inspect command.)

Some NetLogo models let you interact with the turtles and patches with your mouse by clicking and
dragging in the View.

Manipulating the 3D View

At the bottom of the window there are buttons to move the observer, or change the perspective from
which you are looking at the world.

78 Interface Guide

NetLogo 4.1 User Manual

m Zoom I Move | Interact‘ ’Reset Perspective‘ ’ Full Screen ‘

A blue cross appears at the current focus point as you are adjusting these settings. The little blue
triangle will always point up the positive y-axis, so you can orient yourself in case you get lost. It's
easy to do!

To look at the world from a different angle, press the "rotate" button click and drag the mouse up,
down, left, or right. The observer will continue to face the same point as before (where the blue
cross is) but its position in the relation to the xy-plane will change.

To move closer or farther away from the world or the agent you are watching, following or riding,
press the "zoom" button and drag up and down along the 3D View. (Note when you are in follow or
ride mode zooming will switch you between ride and follow, since ride is just a special case of follow
where the distance at which you are following is 0.)

To change the position of the observer without changing the direction it is facing select the "move"
button and drag the mouse up, down, left, and right inside the 3D View while holding down the
mouse button.

To allow the mouse position and state to be passed to the model select the "interact" button and it
will function just as the mouse does in the 2D view.

To return the observer and focus point to their default positions press the "Reset Perspective"
button (or use the reset-perspective command).

Fullscreen Mode
To enter fullscreen mode, press the "Full Screen" button, to exit fullscreen mode, press the Esc key.

Note: Fullscreen mode doesn't work on some computers. It depends on what kind of graphics card

you have. See the System Requirements for details.
3D Shapes

Some shapes have true 3D counterparts (a 3D circle is actually a sphere) in the 3D view so they
are automatically mapped to that shape.

Shape name |3D shape
default 3D turtle shape
circle sphere

dot small sphere
square cube

triangle cone

Interface Guide 79

NetLogo 4.1 User Manual

line 3D line
cylinder 3D cylinder
line-half 3D line-half
car 3D car

All other shapes are interpreted from their 2D shapes. If a shape is a rotatable shape it is assumed
to be a top view and it is extruded as if through a cookie cutter and oriented parallel to the xy-plane,
as in Ants.

If a shape is non-rotatable it is assumed to be a side view so it is drawn always facing the observer
(and with no thickness), as in Wolf Sheep Predation.

Command Center

The Command Center allows you to issue commands directly, without adding them to the model's
procedures. (Commands are instructions you give to the agents in your model.) This is useful for
inspecting and manipulating agents on the fly.

(Tutorial #2: Commands is an introduction to using commands in the Command Center.)

Let's take a look at the design of the Command Center.

80 Interface Guide

NetLogo 4.1 User Manual

Command Center | Clear

turtles> set color red

patches> set pcolor white

observer> ask turtle 18 [set color blue]
observer> ask turtle 1 [set color blue]

ohserver= crt 10 i

The smaller box, below the large box, is where you type a command. After typing it press the Return
or Enter key to run it.

To the left of where you type is a popup menu that initially says "observer>". You can choose either
observer, turtles, or patches, to specify which agents run the command you type.

Tip: a quicker way to change between observer, turtles, and patches is to use the tab key on your
keyboard.

Accessing previous commands

After you type a command, it appears in the large scrolling box above the command line. You can
use Copy on the Edit menu in this area to copy commands and then paste them elsewhere, such as
the Procedures tab.

You can also access previous commands using the history popup menu, which is the small
downward pointing triangle to the right of where you type commands. Click on the triangle and a
menu of previously typed commands appears, so you can pick one to use again.

Tip: a quicker way to access previous commands is with the up and down arrow keys on your
keyboard.

Clearing

To clear the large scrolling area containing previous commands and output, click "clear" in the top
right corner.

To clear the history popup menu, choose "Clear History" on that menu.
Arranging

You can hide and show the command center using the Hide Command Center and Show Command
Center items on the Tools menu.

To resize the command center, drag the bar that separates it from the model interface. Or, click one
of the little arrows on the right end of the bar to make the command center either very big or hidden
altogether.

To switch between a vertical command center and a horizontal one, click the button with the
double-headed arrow, just to the left of "Clear".

Interface Guide 81

NetLogo 4.1 User Manual
Plots
To show or hide a plot's pens legend, click on the word "Pens" in the upper right corner of a plot.
If you move the mouse over the white area of a plot, the x and y coordinates of the mouse location
will appear. (Note that the mouse location might not correspond exactly to any actual data points in
the plot. If you need to know the exact coordinates of plotted points, use the Export Plot menu item

and inspect the resulting file in another program.)

When you create a plot, as with all widgets, the edit dialog automatically appears.

00 Plot

Mame | plot 1

X axis label X min 0.0 X max 10.0

Y axis label ¥ min 0.0 ¥ max 10.0

@Aumplm?

Plot Pens Choose Pen to Edit | default =5] I‘\ Rename Jl Delete (" Create)
Colar " black |:] Mode :@ Interval 1.0 EShcw in Legend
I\ Custom Color... JI

(Cancel) (-GH

Many of the fields are fairly self explanatory, the name of the plot, labels for the x and y axes, and
ranges for the axes.

If Autoplot? is checked the x and y changes will automatically readjust as points are added to the
plot if they are outside the current range.

In the plot pens section of the dialog you can create and customize different pens in this plot. You
must always have a least one pen in every plot. You start out with one named "default" you
probably want to rename it something that is meaningful in the model.

All the items in the box below the pen name are settings relevant to that particular pen.

e Set the color to one of the NetLogo base hues or a custom color using the color swatches.

¢ Mode allows you to change the appearance of the plot pen, line, bar (like a bar chart), or
point (like line except the points are not connected)

e Interval is the amount by which x advances every time you use plot y

e |f the Show in Legend checkbox is checked the selected pen will be a part of the legend in
the upper right hand corner of the plot (which can be revealed by clicking on the word "Pens"
on the plot itself).

For more detailed information on how each of these features works you can see the Plotting Section
of the Programming Guide.

82 Interface Guide

NetLogo 4.1 User Manual
Sliders

Sliders define global variables, they are provided as an easy way to change the value of these
global variables without changing the underlying code. When you place a slider in the Interface tab
the edit dialog automatically opens, as with all widgets. Most of the fields will be familiar. However, it
is important to notice the the minimum, maximum and increment fields will take any reporter
expression, not just constants. So, for example, you could make the minimum min-pxcor and the
maximum max-pxcor and the slider bounds will automatically adjust when you change the size of
the world.

O Slider

GClobal variable | my-slider

Minimum Increment Maximum
‘min-pxcor 11 " 'max-pxcor
Value 50 © Units {optional) .

[lvertical?
(Cancel)
Agent Monitors
You can open agent monitors though the Tools Menu or by using the inspect command. Agent

monitors display both the values of all the variables for a particular agent and a mini-view that
displays the agent a small radius around it.

Interface Guide 83

NetLogo 4.1 User Manual

pxcor -13

pycor -12
poolor 125
plabel
plabel-color 2.9

| ==

You can zoom in or out using the slider beneath the view and you can watch the agent using the
watch-me button.

watch-me| G

Below the slider the current values of the each agent variable is displayed. You can enter new
values directly into the fields on the right. It will be as if, for example, the code set pcolor
had been executed.

-

pxcor -13

pycor -12
poolor 135
plabel "
plabel-color 2.9

Below agent variable area there is a mini-command center. Rather that executing code as the
observer, or talking to all of the turtles, patches, or links the code entered in this command center is
executed by only by this agent.

i set pcolor blue o

You can close the agent monitors by clicking the box in the upper left corner or by press escape. If
you hold down shift while you click the box all open agent monitors will close or you can close all the

84 Interface Guide

NetLogo 4.1 User Manual

agent monitors using the "Close All Monitors" option in the Tools Menu.

Information Tab

The Information tab provides an introduction to the model and an explanation of how to use it,
things to explore, ways to extend the model, and NetLogo features.

e o6 Metlogo — Wolf Sheep Predation
" Interface Infermation | Procedures)
2 7
Find... Edit
WHAT IS IT?

This model explores the stability of predator-prey ecosystems. Such a system is called
unstable if it tends to result in extinction for one or more species involved. In contrast, a
system is stable if it tends to maintain itself over time, despite fluctuations in population sizes.

HOW IT WORKS

There are two main variations to this model.

In the first variation, wolves and sheep wander randomly around the landscape, while the
wolves look for sheep to prey on. Each step costs the wolves energy, and they must eat
sheep in order to replenish their energy - when they run out of energy they die. To allow the

maniilatinm ta reantinne aaskh sl A chaasn hae a fivad arakhahilifu AF ranradiisins at aasanh e

We recommend reading the Information tab before starting the model. The Information tab explains
what system is being modeled and how the model was created. This display of the Information tab

is not editable. To edit the content of the Info tab click the "Edit" button or double click on a word
which will also scroll you to the location you clicked on and highlight the word.

enoe NetLogo — Wolf Sheep Predation

Interface Information | Procedures
Find... E

WHAT IS IT?

This model explores the stability of predator-prey ecosystems. Such a system is called
unstable if it tends to result in extinction for one or more species involved. In
contrast, a system is stable if it tends to maintain itself owver time, despite
fluctuations in population sizes.

HOW IT WORKS

Thara aAre +wn mAain wvariatinne +n Fhic mndal

Interface Guide

85

NetLogo 4.1 User Manual

You can edit the text in this view as in any text editor. However, a few different forms will be
displayed specially when you switch out of the edit view.

Information Tab Markup

lower case letters
become section
headers.

Description Edit Mode View Mode
Lines that come after
blank lines and contain
capital letters and no WHAT IS IT WHAT |S IT

Any line that has only
dashes is omitted.

Anything beginning
with "http://" becomes
a clickable hyperlink.

http://ccl.northwestern.edu

http://ccl.northwestern.edu

E-mail addresses
become clickable
"mailto:" links.

bugs@ccl.northwestern.edu

|.northw rn.

Lines that begin with
the pipe '|' (shift +
backslash '\') become
monospaced text. This
is useful for diagrams
and formulas.

| this is preformatted text
|you can put spacesin it

this is preformatted text
you can put spaces in

To return to the normal view, click the edit button.

Procedures Tab

This tab is the workspace where the code for the model is stored. Commands you only want to use
immediately go in the Command Center; commands you want to save and use later, over and over

again, are found in the Procedures tab.

86

Interface Guide

http://ccl.northwesten.edu
mailto:bugs@ccl.northwestern.edu

NetLogo 4.1 User Manual
Interface Information - Procedures |

{ J
ﬁ « I I # Indent automatically
Find... Check

;3 Sheep and wolves are both breeds of turtle.

breed [sheep a-sheep] ;; sheep is its own plural, so we use "a-sheep" as the singular.
breed [wolves wolf]
turtles-own [energy] ;s both wolves and sheep have energy

patches-own [countdown]

to setup
clear-all
ask patches [set pcolor green]
3 check GRAS57 switch.
3 Lf 1t is true, then grass grows and the sheep eat it
;3 1f it false, then the sheep don't need to eat
if grass? [
ask patches [
set countdown random grass-regrowth-time ;; initialize grass grow clocks randomly
set pcolor one-of [green brown]
]
]
set-default-shape sheep "sheep”
create-sheep initial-number-sheep ;; create the sheep, then initialize their wvariables
L
set color white
set size 1.5 ;; easier to see
set label-color blue - 2
set energy random (2 * sheep-gain-from-food)
setxy random-xcor random-ycor

To determine if the code has any errors, you may press the "Check" button. If there are any syntax
errors, the Procedures tab will turn red and the code that contains the error will be highlighted and a
comment will appear in the top box. Switching tabs also causes the code to be checked and any
errors will be shown, so if you switch tabs, pressing the Check button first isn't necessary.

Interface Guide 87

NetLogo 4.1 User Manual

Interface Information Procedures }

ﬁ « I I M Indent automatically
Find... Check

™ Nothing named BALCK has been defined

create-wolves initial-number-wolves ;; create the wolwves, then initialize their wvariables

L
set color balck
set size 1.5 ;; easier to see
set energy random (2 * wolf-gain-from-food)
setxy random-xcor random-ycor

J

display-labels

update-plot

end

to go
if not any? turtles [stop]
ask sheep [
move
if grass? [
set energy energy - 1 ;; deduct energy for sheep only if grass? switch is on
eat-grass
]
death
reproduce-sheep
]

To find a fragment of code in the procedures, click on the "Find" button in the Procedures Toolbar
and the Find dialog will appear.

NGNS Find

Find: sheep

Replace with: wolves

E lgnore case E Wrap around

I\ Replace All jl I\ Replace /. I\ Replace & Find /. I\ Previous /. (Next }

You may enter either a word or phrase to find or a word or phrase to find and one to replace it with.
The "Ignore case" checkbox controls whether the capitalization must be the same to indicate a
match. If the "Wrap around" checkbox is checked the entire Procedures tab will be checked for the
phrase, starting at the cursor position, when it reaches the end it will return to the top, otherwise
only the area from the cursor position to the end of the Procedures tab will be searched. The "Next"
and "Previous" buttons will move down and up to find another occurrence of the search phrase.
"Replace" changes the currently selected phrase with the replace phrase and "Replace & Find"
changes the selected phrase and moves to the next occurrence. "Replace all" will change all
instances of the the find phrase in the search area with the replace phrase.

88 Interface Guide

NetLogo 4.1 User Manual

To find a particular procedure definition in your code, use the "Procedures" popup menu in the
Procedures Toolbar. The menu lists all procedures in alphabetical order.

The "Shift Left", "Shift Right", "Comment", and "Uncomment" items on the Edit menu are used in the
procedures tab to change the indentation level of your code or add and remove semicolons, which
mark comments, from sections of code.

For more information about writing procedures, read Tutorial #3: Procedures and the Programming
Guide.

Includes Menu

When you add the __includes keyword to a model a menu to the right of the procedures menu
appears. This is the includes menu which lists all the NetLogo source files (.nls) included in this file
(either .nlogo or .nls).

ﬂ W I | Procedures v| | Includes v|

Find... Check

__includes ["foo.nls"]|

You can click on the file names in the menu to open a new tab containing that file, or you can open
new files, or files in the file system using the other New Source File and Open Source File
respectively.

New Source File
Open Source File...

Once you've opened new tabs you can navigate them similarly to the other tabs. They are
accessible from the Tabs menu and you can use the keyboard to move from tab to tab (Command +
number on Mac, Control + number on other operating systems).

Interface 31 titled

-
e Information 382 jocedures fo-n.nls}
T Procedures #3

oonls s
Caution

The includes facility is new and experimental. Nonetheless, we think some users will find it useful.

Interface Guide 89

NetLogo 4.1 User Manual

Indent Automatically

When the Indent Automatically checkbox is selected NetLogo will automatically attempt to align your
code in an easy to read format. For example, when you open a set of square brackets "[" (perhaps
after an if statement), NetLogo will automatically add spaces so that the following lines of code are
two space further indented than the bracket. When you close the square brackets the closing
bracket will be lined up with the matching open bracket.

to setup
clear-all
cregte-turtles 5

set color red
set shape "circle”

]

end

NetLogo will try to indent the code as you type but you can also press the tab key anywhere on any
line to manually ask NetLogo to indent the line properly, or you can highlight entire regions of code
and press the tab key to re-indent.

90 Interface Guide

Programming Guide

This section describes the NetLogo programming language.

The Code Example models mentioned throughout can be found in the Code Examples section of
the Models Library.

e Agents

e Procedures

e Variables

e Colors

e Ask

e Agentsets

* Breeds

e Buttons

o Lists

* Math

e Random Numbers
e Turtle Shapes

e Link Shapes

e Tick Counter

e View Updates

e Plotting

e Strin

e Qutput

e File /1O

e Movi

e Perspective

e Drawing

* Topology

e Link

e Ask-Concurrent
oTi

e Multiple source files
e Syntax

Agents

The NetLogo world is made up of agents. Agents are beings that can follow instructions. Each agent
can carry out its own activity, all simultaneously.

In NetLogo, there are four types of agents: turtles, patches, links, and the observer. Turtles are
agents that move around in the world. The world is two dimensional and is divided up into a grid of
patches. Each patch is a square piece of "ground" over which turtles can move. Links are agents
that connect two turtles. The observer doesn't have a location -- you can imagine it as looking out
over the world of turtles and patches.

When NetLogo starts up, there are no turtles yet. The observer can make new turtles. Patches can
make new turtles too. (Patches can't move, but otherwise they're just as "alive" as turtles and the

Programming Guide 91

NetLogo 4.1 User Manual

observer are.)

Patches have coordinates. The patch at coordinates (0, 0) is called the origin and the coordinates of
the other patches are the horizontal and vertical distances from this one. We call the patch's
coordinates pxcor and pycor. Just like in the standard mathematical coordinate plane, pxcor
increases as you move to the right and pycor increases as you move up.

The total number of patches is determined by the settings min-—pxcor, max—pxcor, min-pycor,
and max-pycor When NetLogo starts up, min-pxcor, max—pxcor, min-pycor, and max—pyvcor
are -16, 16, -16, and 16 respectively. This means that pxcor and pycor both range from -16 to 16,
so there are 33 times 33, or 1089 patches total. (You can change the number of patches with the
Settings button.)

Turtles have coordinates t00: xcor and ycor. A patch's coordinates are always integers, but a
turtle's coordinates can have decimals. This means that a turtle can be positioned at any point
within its patch; it doesn't have to be in the center of the patch.

Links do not have coordinates, instead they have two endpoints (each a turtle). Links appear
between the two endpoints, along the shortest path possible even if that means wrapping around
the world.

The way the world of patches is connected can change. By default the world is a torus which means
it isn't bounded, but "wraps" -- so when a turtle moves past the edge of the world, it disappears and
reappears on the opposite edge and every patch has the same number of "neighbor" patches; if
you're a patch on the edge of the world, some of your "neighbors" are on the opposite edge.
However, you can change the wrap settings with the Settings button. If wrapping is not allowed in a
given direction then in that direction (x or y) the world is bounded. Patches along that boundary will
have fewer than 8 neighbors and turtles will not move beyond the edge of the world. See the
Topology section for more information.

Procedures

In NetLogo, commands and reporters tell agents what to do. A command is an action for an agent
to carry out. A reporter computes a result and report it.

Most commands begin with verbs ("create”, "die", "jump", "inspect", "
are nouns or noun phrases.

clear"), while most reporters
Commands and reporters built into NetLogo are called primitives. The Netlogo Dictionary has a
complete list of built-in commands and reporters.

Commands and reporters you define yourself are called procedures. Each procedure has a name,
preceded by the keyword to. The keyword end marks the end of the commands in the procedure.

Once you define a procedure, you can use it elsewhere in your program.

Many commands and reporters take inputs -- values that the command or reporter uses in carrying
out its actions.

Examples: Here are two command procedures:

92 Programming Guide

NetLogo 4.1 User Manual

to setup

clear-all ;; clear the world

crt 10 ;; make 10 new turtles
end
to go

ask turtles

[fd 1 ;; all turtles move forward one step
rt random 10 ;; ...and turn a random amount

1t random 10]
end

Note the use of semicolons to add "comments" to the program. Comments make your program
easier to read and understand.

In this program,

e setup and go are user-defined commands.

eclear—all, crt ("create turtles"), ask, 1t ("left turn"), and ct ("right turn") are all primitive
commands.

e random and turtles are primitive reporters. zandom takes a single number as an input
and reports a random integer that is less than the input (in this case, between 0 and 9).
turtles reports the agentset consisting of all the turtles. (We'll explain about agentsets
later.)

setup and go can be called by other procedures or by buttons. Many NetLogo models have a once
button that calls a procedure called setup, and a forever button that calls a procedure called go.

In NetLogo, you must specify which agents -- turtles, patches, links, or the observer -- are to run
each command. (If you don't specify, the code is run by the observer.) In the code above, the
observer uses ask to make the set of all turtles run the commands between the square brackets.

clear—all and crt can only be run by the observer. £d, on the other hand, can only be run by
turtles. Some other commands and reporters, such as set, can be run by different agent types.

Here are some more advanced features you can take advantage of when defining your own
procedures.

Procedures with inputs

Your own procedures can take inputs, just like primitives do. To create a procedure that accepts
inputs, include a list of input names in square brackets after the procedure name. For example:

to draw-polygon [num-sides len]
pen—-down
repeat num-sides
[£fd len
rt 360 / num-sides]
end

Elsewhere in the program, you could ask turtles to each draw an octagon with a side length equal to
its who number:

ask turtles [draw-polygon 8 who]

Programming Guide 93

NetLogo 4.1 User Manual

Reporter procedures

Just like you can define your own commands, you can define your own reporters. You must do two
special things. First, use to-report instead of to to begin your procedure. Then, in the body of
the procedure, use report to report the value you want to report.

to-report absolute-value [number]
ifelse number >= 0
[report number]
[report (- number)]
end

Variables

Agent variables

Agent variables are places to store values (such as numbers) in an agent. An agent variable can be
a global variable, a turtle variable, a patch variable, or a link variable.

If a variable is a global variable, there is only one value for the variable, and every agent can access
it. You can think of global variables as belonging to the observer.

Turtle, patch, and link variables are different. Each turtle has its own value for every turtle variable,
and each patch has its own value for every patch variable, and the same for links.

Some variables are built into NetLogo. For example, all turtles have a color variable, and all
patches have a pcolor variable. (The patch variable begins with "p" so it doesn't get confused with
the turtle variable.) If you set the variable, the turtle or patch changes color. (See next section for
details.)

Other built-in turtle variables including xcor, ycor, and heading. Other built-in patch variables
include pxcor and pycor. (There is a complete list here.)

You can also define your own variables. You can make a global variable by adding a switch or a
slider to your model, or by using the globals keyword at the beginning of your code, like this:

globals [score]

You can also define new turtle, patch and link variables using the turtles—own , patches—own
and links—own keywords, like this:

turtles-own [energy speed]
patches-own [friction]
links-own [strength]

These variables can then be used freely in your model. Use the set command to set them. (If you
don't set them, they'll start out storing a value of zero.)

Global variables can be read and set at any time by any agent. As well, a turtle can read and set
patch variables of the patch it is standing on. For example, this code:

ask turtles [set pcolor red]

94 Programming Guide

NetLogo 4.1 User Manual

causes every turtle to make the patch it is standing on red. (Because patch variables are shared by
turtles in this way, you can't have a turtle variable and a patch variable with the same name.)

In other situations where you want an agent to read a different agent's variable, you can use of.
Example:

show [color] of turtle 5
;7 prints current color of turtle with who number 5

You can also use of with a more complicated expression than just a variable name, for example:

show [xcor + ycor] of turtle 5
;7 prints the sum of the x and y coordinates of
;; turtle with who number 5

Local variables

A local variable is defined and used only in the context of a particular procedure or part of a
procedure. To create a local variable, use the 1et command. You can use this command
anywhere. If you use it at the top of a procedure, the variable will exist throughout the procedure. If
you use it inside a set of square brackets, for example inside an "ask", then it will exist only inside
those brackets.

to swap-colors [turtlel turtle2]
let temp [color] of turtlel

ask turtlel [set color [color] of turtle2]
ask turtle2 [set color temp]
end

NetLogo represents colors in different ways. First, as numbers in the range 0 to 140, with the
exception of 140 itself. Below is a chart showing the range of colors you can use in NetLogo.

Programming Guide 95

NetLogo 4.1 User Manual

bla white = %.9

gray = 5 g 9 3.9
red = 15 1§ 19 1%.9
grange = 25 28 29 229
brown = 35 38 39 349
yellow = 45 48 49 45,9
green = 53 58 59 5%.9
lime = &5 EE B9 54.9

turquoise = 75 78 79 78.9

cyan = 85 B8 89 83,9
sky = 85 98 99 859
blue = 185 168 109 1089

violet = 115 118 11% 1159

magenta = 125 128 129 1259

pink = 135 131 132 133 135 136 137 138 139 13829

The chart shows that:

e Some of the colors have names. (You can use these names in your code.)

e Every named color except black and white has a number ending in 5.

¢ On either side of each named color are darker and lighter shades of the color.
¢ 0 is pure black. 9.9 is pure white.

¢ 10, 20, and so on are all so dark they appear black.

¢ 19.9, 29.9 and so on are all so light they appear white.

Code Example: The color chart was made in NetLogo with the Color Chart Example
model.

If you use a number outside the 0 to 140 range, NetLogo will repeatedly add or subtract 140 from
the number until it is in the 0 to 140 range. For example, 25 is orange, so 165, 305, 445, and so on
are orange too, and so are -115, -255, -395, etc. This calculation is done automatically whenever

yo
ca

u set the turtle variable color or the patch variable pcolor. Should you need to perform this
Iculation in some other context, use the wrap—coloxr primitive.

If you want a color that's not on the chart, more can be found between the integers. For example,

26
in

.5 is a shade of orange halfway between 26 and 27. This doesn't mean you can make any color
NetLogo; the NetLogo color space is only a subset of all possible colors. It contains only a fixed

set of discrete hues (one hue per row of the chart). Starting from one of those hues, you can either

de
bo
co

96

crease its brightness (darken it) or decrease its saturation (lighten it), but you cannot decrease
th brightness and saturation. Also, only the first digit after the decimal point is significant. Thus,
lor values are rounded down to the next 0.1, so for example, there's no visible difference between

Programming Guide

NetLogo 4.1 User Manual
26.5 and 26.52 or 26.58.

Color primitives

There are a few primitives that are helpful for working with colors.

We have already mentioned the wrap—color primitive.

The scale-color primitive is useful for converting numeric data into colors.

shade—of2 will tell you if two colors are "shades" of the same basic hue. For example, shade-of?
orange 27 is true, because 27 is a lighter shade of orange.

Code Example: Scale-color Example demonstrates the scale-color reporter.

RGB and RGBA Colors

NetLogo also represents colors as RGB (red/green/blue) lists and RGBA (red/green/blue/alpha)
lists. When using RGB colors the full range of colors is available to you. RGBA colors allow all the
colors that RGB allows and you can also vary the transparency of a color. RGB and RGBA lists are
made up of three or four integers, respectively, between 0 and 255 if a number is outside that range
255 is repeatedly subtracted until it is in the range. You can set any color variables in NetLogo
(color for turtles and links and pcolor for patches) to an RGB list and that agent will be rendered
appropriately. So you can set the color of patch 0 0 to pure red using the following code:

set pcolor [255 0 0]

Turtles, links, and labels can all contain RGBA lists as their color variables, however, patches
cannot have RGBA pcolors You can set the color of a turtle to be approximately half transparent
pure red with the following code:

set color [255 0 0 125]

You can convert between RGB, HSB (hue/saturation/brightness), and NetLogo colors using
approximate—hsb and approximate—rgb from RGB/HSB to NetLogo colors, and
extract—-hsb and extract—rgb in the opposite direction. You can use rgb to generate rgb lists
and hsb to convert from an HSB color to RGB.

Since many colors are missing from the NetLogo color space, approximate—hsb and
approximate—rgb often can't give you the exact color you ask for, but they try to come as close
as possible.

You can change any turtle from it's existing NetLogo color to a half transparent version of that color
using:

set color lput 125 extract-rgb color

Code Examples: HSB and RGB Example (lets you experiment with the HSB and
RGB color systems), Transparency Example

Programming Guide 97

NetLogo 4.1 User Manual

Color Swatches dialog

The Color Swatches dialog helps you experiment with and choose colors. Open it by choosing Color
Swatches on the Tools Menu.

8ene Color Swatches

- whita = 9.9999 A Praviaw

] 8 99949

gray =5

rad=15 18 18 19.9949

aranga = 25 n 29 pLL:

brown =35 aa 13 1999494

yallow = 45 4 43 43,9998 A

graan =55 59 59,3344

lima = 65 83 89.9339

urquoisa =75 3 733549

cyan = 85 i a3 49,9999 A
shy =195

blua =105

-] - 949994

104 109 109.99494

violet=115 118 119 119.9944

maganta = 125 128 129 1243354

pink = 135 131 - 1w 128 18 1ssss [

(Cup\r selected culurj}lblack ™ Numbers |@ 10) 0.50) D_1| Increment

When you click on a color swatch (or a color button), that color will be shown against other colors. In
the bottom left, the code for the currently selected color is displayed (for example, red + 2) so you
can copy and paste it into your code. On the bottom right there are three increment options, 1, 0.5,
and 0.1. These numbers indicate the difference between two adjacent swatches. When the
increment is 1 there are 10 different shades in each row; when the increment is 0.1 there are 100
different shades in each row. 0.5 is an intermediate setting.

Ask

NetLogo uses the ask command to give commands to turtles, patches, and links. All code to be run
by turtles must be located in a turtle "context". You can establish a turtle context in any of three
ways:

e In a button, by choosing "Turtles" from the popup menu. Any code you put in the button will
be run by all turtles.

e In the Command Center, by choosing "Turtles" from the popup menu. Any commands you
enter will be run by all the turtles.

¢ By using ask turtles.

The same goes for patches, links, and the observer, except that you cannot ask the observer. Any
code that is not inside any ask is by default observer code.

98 Programming Guide

NetLogo 4.1 User Manual

Here's an example of the use of ask in a NetLogo procedure:

to setup
clear-all
crt 100 ;; create 100 turtles with random headings
ask turtles
[set color red ;5 turn them red
fd 50] ;7 spread them around
ask patches
[if pxcor > 0 ;; patches on the right side
[set pcolor green]] ;; of the view turn green
end

The models in the Models Library are full of other examples. A good place to start looking is in the
Code Examples section.

Usually, the observer uses ask to ask all turtles, all patches or all links to run commands. You can
also use ask to have an individual turtle, patch or link run commands. The reporters turtle,
patch, link and patch—at are useful for this technique. For example:

to setup
clear-all
crt 3 ;; make 3 turtles
ask turtle 0 ;; tell the first one...
[£fd 1] ;; ...to go forward
ask turtle 1 ;; tell the second one...
[set color green] ;7 ...to become green
ask turtle 2 ;; tell the third one...
[rt 90] ;7 ...to turn right
ask patch 2 -2 ;; ask the patch at (2,-2)
[set pcolor blue] ;7 ...to become blue
ask turtle 0 ;; ask the first turtle
[ask patch-at 1 0 ;7 ...to ask patch to the east
[set pcolor red]] ;7 ...to become red
ask turtle 0 ;; tell the first turtle...
[create-link-with turtle 1] ;; ...make a link with the second
ask link 0 1 ;; tell the link between turtle 0 and 1
[set color blue] ;7 ...to become blue
end

Every turtle created has a who number. The first turtle created is number 0, the second turtle
number 1, and so forth. The turtle primitive reporter takes a who number as an input, and reports
the turtle with that who number. The patch primitive reporter takes values for pxcor and pycor and
reports the patch with those coordinates. The 1ink primitive takes two inputs, the who numbers of
the two turtles it connects. And the patch—at primitive reporter takes offsets: distances, in the x
and y directions, from the first agent. In the example above, the turtle with who number 0 is asked to
get the patch east (and no patches north) of itself.

You can also select a subset of turtles, or a subset of patches, or a subset of links and ask them to
do something. This involves a concept called "agentsets". The next section explains this concept in
detail.

When you ask a set of agents to run more than one command, each agent must finish before the

next agent starts. One agent runs all of the commands, then the next agent runs all of them, and so
on. For example, if you write:

Programming Guide 99

NetLogo 4.1 User Manual
ask turtles

[fd 1
set color red]

first one turtle moves and turns red, then another turtle moves and turns red, and so on.

But if you write it this way:

ask turtles [fd 1]
ask turtles [set color red]

first all of the turtles move. After they have all moved, they all turn red.

(Another form of the ask command, with a different ordering rule, is also available. See
Ask-Concurrent below.)

Agentsets

An agentset is exactly what its name implies, a set of agents. An agentset can contain either turtles,
patches or links, but not more than one type at once.

An agentset is not in any particular order. In fact, it's always in a random order. And every time you
use it, the agentset is in a different random order. This helps you keep your model from treating any
particular turtles, patches or links differently from any others (unless you want them to be). Since
the order is random every time, no one agent always gets to go first.

You've seen the turtles primitive, which reports the agentset of all turtles, the patches primitive,
which reports the agentset of all patches and the Links primitive which reports the agentset of all
links.

But what's powerful about the agentset concept is that you can construct agentsets that contain only
some turtles, some patches or some links. For example, all the red turtles, or the patches with pxcor
evenly divisible by five, or the turtles in the first quadrant that are on a green patch or the links
connected to turtle 0. These agentsets can then be used by ask or by various reporters that take
agentsets as inputs.

One way istouse turtles—here Or turtles—at, to make an agentset containing only the turtles
on my patch, or only the turtles on some other patch at some x and y offsets. There's also
turtles—on SO you can get the set of turtles standing on a given patch or set of patches, or the set
of turtles standing on the same patch as a given turtle or set of turtles.

Here are some more examples of how to make agentsets:

;7 all other turtles:

other turtles

;; all other turtles on this patch:
other turtles-here

;5 all red turtles:

turtles with [color = red]
;7 all red turtles on my patch
turtles—-here with [color = red]

;7 patches on right side of view
patches with [pxcor > 0]

100 Programming Guide

NetLogo 4.1 User Manual

;7 all turtles less than 3 patches away
turtles in-radius 3
;; the four patches to the east, north, west, and south

patches at-points [[1 0] [0 1] [-1 O] [O -17]
;7 shorthand for those four patches
neighbors4

;; turtles in the first quadrant that are on a green patch
turtles with [(xcor > 0) and (ycor > 0)

and (pcolor = green)]
;7 turtles standing on my neighboring four patches
turtles-on neighbors4
;; all the links connected to turtle 0
[my-1links] of turtle O

Note the use of other to exclude the calling agent. This is common.

Once you have created an agentset, here are some simple things you can do:
e Use ask to make the agents in the agentset do something
e Use any? to see if the agentset is empty

e Use al12 to see if every agent in an agentset satisfies a condition.
e Use count to find out exactly how many agents are in the set

And here are some more complex things you can do:

e Pick a random agent from the set using cne—of. For example, we can make a randomly
chosen turtle turn green:

ask one-of turtles [set color green]
Or tell a randomly chosen patch to sprout a new turtle:

ask one-of patches [sprout 1]
e Use the max—one—of ormin—one—of reporters to find out which agent is the most or least
along some scale. For example, to remove the richest turtle, you could say

ask max—-one—-of turtles [sum assets] [die]
e Make a histogram of the agentset using the histogram command (in combination with of).
e Use of to make a list of values, one for each agent in the agentset. Then use one of
NetLogo's list primitives to do something with the list. (See the "Lists" section below.) For
example, to find out how rich turtles are on the average, you could say

show mean [sum assets] of turtles

e Use turtle—set, patch—set and link—set reporters to make new agentsets by
gathering together agents from a variety of possible sources.

e Check whether two agentsets are equal using = or ! =.

e Use member? to see whether a particular agent is a member of an agentset.

This only scratches the surface. See the Models Library for many more examples, and consult the
NetLogo Dictionary for more information about all of the agentset primitives.

More examples of using agentsets are provided in the individual entries for these primitives in the

NetLogo Dictionary. In developing familiarity with programming in NetLogo, it is important to begin
to think of compound commands in terms of how each element passes information to the next one.

Programming Guide 101

NetLogo 4.1 User Manual

Agentsets are an important part of this conceptual scheme and provide the NetLogo developer with
a lot of power and flexibility, as well as being more similar to natural language.

Code Example: Ask Ordering Example

Earlier, we said that agentsets are always in random order, a different random order every time. If
you need your agents to do something in a fixed order, you need to make a list of the agents
instead. See the Lists section below.

Breeds

NetLogo allows you to define different "breeds" of turtles and breeds of links. Once you have
defined breeds, you can go on and make the different breeds behave differently. For example, you
could have breeds called sheep and wolves, and have the wolves try to eat the sheep or you
could have link breeds called st reets and sidewalks where foot traffic is routed on sidewalks
and car traffic is routed on streets.

You define turtle breeds using the breed keyword, at the top of the Procedures tab, before any
procedures:

breed [wolves wolf]
breed [sheep a-sheep]

You can refer to a member of the breed using the singular form, just like the turtle reporter.
When printed, members of the breed will be labeled with the singular name.

Some commands and reporters have the plural name of the breed in them, such as
create—<breeds>. Others have the singular name of the breed in them, such as <breed>

The order in which breeds are declared is also the order order in which they are layered in the view.
So breeds defined later will appear on top of breeds defined earlier; in this example, sheep will be
drawn over wolves.

When you define a breed such as sheep, an agentset for that breed is automatically created, so
that all of the agentset capabilities described above are immediately available with the sheep
agentset.

The following new primitives are also automatically available once you define a breed:

create—sheep, hatch-sheep, sprout—sheep, sheep-here, sheep—-at, sheep-on, and
is—a-sheep?.

Also, you can use sheep—own to define new turtle variables that only turtles of the given breed
have.

A turtle's breed agentset is stored in the breed turtle variable. So you can test a turtle's breed, like
this:

if breed = wolves [...]

102 Programming Guide

NetLogo 4.1 User Manual

Note also that turtles can change breeds. A wolf doesn't have to remain a wolf its whole life. Let's
change a random wolf into a sheep:

ask one-of wolves [set breed sheep]

The set —default-shape primitive is useful for associating certain turtle shapes with certain
breeds. See the section on shapes below.

Here is a quick example of using breeds:

breed [mice mouse]
breed [frogs frog]
mice—-own [cheese]
to setup
clear-all
create-mice 50
[set color white
set cheese random 10]
create-frogs 50
[set color green]
end

Code Example: Breeds and Shapes Example

Link Breeds

Link breeds are very similar to turtle breeds, however, there are a few differences.

When you declare a link breed you must declare whether it is a breed of directed or undirected links
by using the directed-1link-breed and undirected-1ink-breed keywords.

directed-link-breed [streets street]
undirected-link-breed [friendships friendship]

once you have created a breeded link you cannot create unbreeded links and vice versa. (You can,
however, have directed and undirected links in the same world, just not in the same breed)

Unlike with turtle breeds the singular breed name is required for link breeds, as many of the link
commands and reports use the singular name, such as <l1ink-breed>-neighbor?.

The following primitives are also automatically available once you define a directed link breed:
create—-street—fromcreate-streets—fromcreate-street-tocreate-streets-to
in-street-neighbor? in-street—-neighbors in-street-frommy—-in-streets
my—out—-streets out—street-neighbor? ocut—-street-neighbors out—-street-to

And the following are automatically available when you define an undirected link breed:

create—-friendship-with create—-friendships—-with friendship-neighbor?
friendship-neighbors friendship-withmy-friendships

Just as with turtle breeds the order in which link breeds are declared defines the order in which the
links are drawn, so the friendships will always be on top of streets (if for some reason these breeds
were in the same model). You can also use <1ink-breeds>-own to declare variables of each link

Programming Guide 103

NetLogo 4.1 User Manual

breed separately.

You can change the breed of links, like turtles, however, you cannot the breed of links to be
unbreeded links, to prevent having breeded and unbreeded links in the same world.

ask one-of friendships [set breed streets]
ask one-of friendships [set breed links] ;; produces a runtime error

set—default—shape may also be used with link breeds to associate it with a particular link shape.

Code Example: Link Breeds Example

Buttons

Buttons in the interface tab provide an easy way to control the model. Typically a model will have at
least a "setup" button, to set up the initial state of the world, and a "go" button to make the model
run continuously. Some models will have additional buttons that perform other actions.

A button contains some NetLogo code. That code is run when you press the button.

A button may be either a "once button", or a "forever button". You can control this by editing the
button and checking or unchecking the "Forever" checkbox. Once buttons run their code once, then
stop and pop back up. Forever buttons keep running their code over and over again, until either the
code hits the st op command, or you press the button again to stop it. If you stop the button, the
code doesn't get interrupted. The button waits until the code has finished, then pops up.

Normally, a button is labeled with the code that it runs. For example, a button that says "go" on it
usually contains the code "go", which means "run the go procedure". (Procedures are defined in the
Procedures tab; see below.) But you can also edit a button and enter a "display name" for the
button, which is a text that appears on the button instead of the code. You might use this feature if
you think the actual code would be confusing to your users.

When you put code in a button, you must also specify which agents you want to run that code. You
can choose to have the observer run the code, or all turtles, or all patches, or all links. (If you want
the code to be run by only some turtles or some patches, you could make an observer button, and
then have the observer use the ask command to ask only some of the turtles or patches to do
something.)

When you edit a button, you have the option to assign an "action key". This makes that key on the
keyboard behave just like a button press. If the button is a forever button, it will stay down until the
key is pressed again (or the button is clicked). Action keys are particularly useful for games or any
model where rapid triggering of buttons is needed.

Buttons take turns

More than one button can be pressed at a time. If this happens, the buttons "take turns", which
means that only one button runs at a time. Each button runs its code all the way through once while
the other buttons wait, then the next button gets its turn.

In the following examples, "setup" is a once button and "go" is a forever button.

104 Programming Guide

NetLogo 4.1 User Manual

Example #1: The user presses "setup"”, then presses "go" immediately, before the "setup” has
popped back up. Result: "setup” finishes before "go" starts.

Example #2: While the "go" button is down, the user presses "setup". Result: the "go" button
finishes its current iteration. Then the "setup" button runs. Then "go" starts running again.

Example #3: The user has two forever buttons down at the same time. Result: first one button runs
its code all the way through, then the other runs its code all the way through, and so on, alternating.

Note that if one button gets stuck in an infinite loop, then no other buttons will run.
Turtle, patch, and link forever buttons

There is a subtle difference between putting commands in a turtle, patch or link forever button, and
putting the same commands in an observer button that does ask turtles, ask patches or ask
links. An "ask" doesn't complete until all of the agents have finished running all of the commands
in the "ask". So the agents, as they all run the commands concurrently, can be out of sync with each
other, but they all sync up again at the end of the ask. The same isn't true of turtle, patch and link
forever buttons. Since ask was not used, each turtle or patch runs the given code over and over
again, so they can become (and remain) out of sync with each other.

At present, this capability is very rarely used in the models in our Models Library. A model that does
use the capability is the Termites model, in the Biology section of Sample Models. The "go" button
is a turtle forever button, so each termite proceeds independently of every other termite, and the
observer is not involved at all. This means that if, for example, you wanted to add a plot to the
model, you would need to add a second forever button (an observer forever button), and run both
forever buttons at the same time. Note also that a model like this cannot be used with
BehaviorSpace.

At present, NetLogo has no way for one forever button to start another. Buttons are only started
when you press them.

Lists

In the simplest models, each variable holds only one piece of information, usually a number or a
string. The list feature lets you store multiple pieces of information in a single variable by collecting
those pieces of information in a list. Each value in the list can be any type of value: a number, or a
string, an agent or agentset, or even another list.

Lists allow for the convenient packaging of information in NetLogo. If your agents carry out a
repetitive calculation on multiple variables, it might be easier to have a list variable, instead of
multiple number variables. Several primitives simplify the process of performing the same
computation on each value in a list.

The NetlLogo Dictionary has a section that lists all of the list-related primitives.

Constant lists

You can make a list by simply putting the values you want in the list between brackets, like this: set
mylist [2 4 6 8]. Note thatthe individual values are separated by spaces. You can make lists

Programming Guide 105

NetLogo 4.1 User Manual

that contain numbers and strings this way, as well as lists within lists, for example [[2 4] [3
511.

The empty list is written by putting nothing between the brackets, like this: [].
Building lists on the fly
If you want to make a list in which the values are determined by reporters, as opposed to being a

series of constants, use the 1ist reporter. The 1ist reporter accepts two other reporters, runs
them, and reports the results as a list.

If | wanted a list to contain two random values, | might use the following code:

set random-list list (random 10) (random 20)

This will set random-1ist to a new list of two random integers each time it runs.

To make longer or shorter lists, you can use the 1ist reporter with fewer or more than two inputs,
but in order to do so, you must enclose the entire call in parentheses, e.g.:

(list random 10)
(list random 10 random 20 random 30)

For more information, see Varying number of inputs.

Some kinds of lists are most easily built using the n—values reporter, which allows you to construct
a list of a specific length by repeatedly running a given reporter. You can make a list of the same
value repeated, or all the numbers in a range, or a lot of random numbers, or many other
possibilities. See dictionary entry for details and examples.

The of primitive lets you construct a list from an agentset. It reports a list containing each agent's
value for the given reporter. (The reporter could be a simple variable name, or a more complex
expression -- even a call to a procedure defined using to—report.) A common idiom is

max [...] of turtles
sum [...] of turtles
and so on.

You can combine two or more lists using the sentence reporter, which concatenates lists by
combining their contents into a single, larger list. Like List, sentence normally takes two inputs,
but can accept any number of inputs if the call is surrounded by parentheses.

Changing list items

Technically, lists can't be modified, but you can construct new lists based on old lists. If you want
the new list to replace the old list, use set. For example:

set mylist [2 7 5 Bob [3 0 -2]]

; mylist is now [2 7 5 Bob [3 0 -2]]
set mylist replace-item 2 mylist 10

; mylist is now [2 7 10 Bob [3 0 -21]]

106 Programming Guide

NetLogo 4.1 User Manual

The replace—item reporter takes three inputs. The first input specifies which item in the list is to
be changed. 0 means the first item, 1 means the second item, and so forth.

To add an item, say 42, to the end of a list, use the 1put reporter. (£put adds an item to the
beginning of a list.)

set mylist lput 42 mylist
; mylist is now [2 7 10 Bob [3 0 -2] 42]

But what if you changed your mind? The but—-1ast (bl for short) reporter reports all the list items
but the last.

set mylist but-last mylist
; mylist is now [2 7 10 Bob [3 0 -2]]

Suppose you want to get rid of item 0, the 2 at the beginning of the list.

set mylist but-first mylist
; mylist is now [7 10 Bob [3 0 -2]]

Suppose you wanted to change the third item that's nested inside item 3 from -2 to 97 The key is to
realize that the name that can be used to call the nested list [3 0 -2] is item 3 mylist. Then the

replace—item reporter can be nested to change the list-within-a-list. The parentheses are added
for clarity.

set mylist (replace-item 3 mylist
(replace—-item 2 (item 3 mylist) 9))
; mylist is now [7 10 Bob [3 0 9]]

Iterating over lists

If you want to do some operation on each item in a list in turn, the foreach command and the map
reporter may be helpful.

foreach is used to run a command or commands on each item in a list. It takes an input list and a
block of commands, like this:

foreach [2 4 6]
[crt 2
show (word "created " ? " turtles")]
=> created 2 turtles
=> created 4 turtles
=> created 6 turtles

In the block, the variable 2 holds the current value from the input list.

Here are some more examples of foreach:

foreach [1 2 3] [ask turtles [fd ?]]
;; turtles move forward 6 patches
foreach [true false true true] [ask turtles [if 2 [£fd 1 1 1 1]

;; turtles move forward 3 patches

Programming Guide 107

NetLogo 4.1 User Manual

map is similar to foreach, but it is a reporter. It takes an input list and another reporter. Note that
unlike foreach, the reporter comes first, like this:

show map [round ?] [1.2 2.2 2.7]
;5 prints [1 2 3]

map reports a list containing the results of applying the reporter to each item in the input list. Again,
use 2 to refer to the current item in the list.

Here is another example of map:

show map [? < 0] [1 -1 3 4 -2 -10]
;7 prints [false true false false true true]

foreach and map won't necessarily be useful in every situation in which you want to operate on an
entire list. In some situations, you may need to use some other technique such as a loop using
repeat Or while, Or a recursive procedure.

The sort-by primitive uses a similar syntax to map and foreach, except that since the reporter
needs to compare two objects, the two special variables 21 and 22 are used in place of 2.

Here is an example of sort—-by:

show sort-by [?1 < ?22] [4 1 3 2]
;5 prints [1 2 3 4]

Varying number of inputs

Some commands and reporters involving lists and strings may take a varying number of inputs. In
these cases, in order to pass them a number of inputs other than their default, the primitive and its
inputs must be surrounded by parentheses. Here are some examples:

show list 1 2

=> [1 2]

show (list 1 2 3 4)
=> [1 2 3 4]

show (list)

=> []

Note that each of these special commands has a default number of inputs for which no parentheses
are required. The primitives which have this capability are 1ist, word, sentence, map, and
foreach.

Lists of agents

Earlier, we said that agentsets are always in random order, a different random order every time. If
you need your agents to do something in a fixed order, you need to make a list of the agents
instead.

There are two primitives that help you do this, sort and sort-by.

Both sort and sort-by can take an agentset as input. The result is always a new list, containing
the same agents as the agentset did, but in a particular order.

108 Programming Guide

NetLogo 4.1 User Manual

If you use sort on an agentset of turtles, the result is a list of turtles sorted in ascending order by
who number.

If you use sort on an agentset of patches, the result is a list of patches sorted left-to-right,
top-to-bottom.

If you use sort on an agentset of links, the result is a list of links, sorted in ascending order first by
endl then by end2 any remaining ties are resolved by breed in the order they are declared in the
procedures tab.

If you need descending order instead, you can combine reverse with sort, for example reverse
sort turtles.

If you want your agents to be ordered by some other criterion than the standard ones sort uses,
you'll need to use sort-by instead.

Here's an example:

sort-by [[size] of ?1 < [size] of ?2] turtles

This returns a list of turtles sorted in ascending order by their turtle variable size.

Asking a list of agents

Once you have a list of agents, you might want to ask them each to do something. To do this, use
the foreach and ask commands in combination, like this:

foreach sort turtles [
ask ? [

]
]

This will ask each turtle in ascending order by who number. Substitute "patches" for "turtles" to ask
patches in left-to-right, top-to-bottom order.

If you use foreach like this, the agents in the list run the commands inside the ask sequentially, not
concurrently. Each agent finishes the commands before the next agent begins them.

Note that you can't use ask directly on a list of turtles. ask only works with agentsets and single
agents.

Performance of lists

If your model makes especially heavy use of lists, especially long lists, you may need to know the
speed of the various NetLogo list operations, to help you write code that runs fast.

NetlLogo lists are "singly linked" lists. This is a technical term from computer science that means
that when NetLogo needs to find an item in a list, it must start at the beginning of the list and go
from item to item until it finds the one it wants. For example, to find the 100th item, NetLogo must
step through the previous 99 items, one at a time.

Programming Guide 109

NetLogo 4.1 User Manual

It also means that certain operations are especially efficient, namely operations at the front of the
list. The £irst, but—first, and fput reporters are all very fast; they take the same amount of
time to run, no matter how long the list is. So if you're building up a list by adding items to it one at a
time, it's much faster to use fput than lput. (If that causes your list to end up backwards from how
you wanted it, you can always use reverse to reverse the list once you're done building it.)

The length reporter is also fast; NetLogo always keeps track of how long every list is, so it never
needs to actually measure.

Examples of reporters which are slower on longer lists include item, lput, but-last, last, and
one—of.

Math

All numbers in NetLogo are stored internally as double precision floating point numbers, as defined
in the IEEE 754 standard. They are 64 bit numbers consisting of one sign bit, an 11-bit exponent,
and a 52-bit mantissa. See the IEEE 754 standard for details.

An "integer" in NetLogo is simply a number that happens to have no fractional part. No distinction is
made between 3 and 3.0; they are the same number. (This is the same as how most people use
numbers in everyday contexts, but different from some programming languages. Some languages
treat integers and floating point numbers as distinct types.)

Integers are always printed by NetLogo without the trailing ".0":

show 1.5 + 1.5
observer: 3

If a number with a fractional part is supplied in a context where an integer is expected, the fractional
part is simply discarded. So for example, crt 3.5 creates three turtles; the extra 0.5 is ignored.

The range of integers is +/-9007199254740992 (253, about 9 quadrillion). Calculations that exceed
this range will not cause runtime errors, but precision will be lost when the least significant (binary)
digits are rounded off in order fit the number into 64 bits. With very large numbers, this rounding can
result in imprecise answers which may be surprising:

show 2 ~ 60 + 1 = 2 » 60
=> true

Calculations with smaller numbers can also produce surprising results if they involve fractional
quantities, since not all fractions can be precisely represented and roundoff may occur. For
example:

show 1l / 6 +1/6+1/6+1/6+1/6+1/ 6

=> 0.9999999999999999

show 1l /9+1/9+1/9+1/9+1/9+1/9+1/9+1/9+1/ 9
=> 1.0000000000000002

Any operation which produces the special quantities "infinity" or "not a number" will cause a runtime
error.

Scientific notation

110 Programming Guide

NetLogo 4.1 User Manual

Very large or very small floating point numbers are displayed by NetLogo using "scientific notation".
Examples:

show 0.000000000001

=> 1.0E-12

show 50000000000000000000
=> 5.0E19

Numbers in scientific notation are distinguished by the presence of the letter E (for "exponent”). It
means "times ten to the power of", so for example, 1.0E-12 means 1.0 times 10 to the -12 power:

show 1.0 * 10 ~ -12
=> 1.0E-12

You can also use scientific notation yourself in NetLogo code:

show 3.0E6

=> 3000000

show 8.123456789E6
=> 8123456.789
show 8.123456789E7
=> 8.123456789E7
show 3.0E1l6

=> 3.0El6

show 8.0E-3

=> 0.0080

show 8.0E-4

=> 8.0E-4

These examples show that numbers with fractional parts are displayed using scientific notation if the
exponent is less than -3 or greater than 6. Numbers outside of NetLogo's integer range of
-9007199254740992 to 9007199254740992 (+/-2"53) are also always shown in scientific notation:

show 2 »~ 60
=> 1.15292150460684698E18

When entering a number, the letter E may be either upper or lowercase. When printing a number,
NetLogo always uses an uppercase E:

show 4.5e20
=> 4.5E20

Floating point accuracy

Because numbers in NetLogo are subject to the limitations of how floating point numbers are
represented in binary, you may get answers that are slightly inaccurate. For example:

show 0.1 + 0.1 + 0.1

=> 0.30000000000000004
show cos 90

=> 6.123233995736766E-17

This is an inherent issue with floating point arithmetic; it occurs in all programming languages that
use floating point numbers.

Programming Guide 111

NetLogo 4.1 User Manual

If you are dealing with fixed precision quantities, for example dollars and cents, a common
technique is to use only integers (cents) internally, then divide by 100 to get a result in dollars for
display.

If you must use floating point numbers, then in some situations you may need to replace a
straightforward equality test suchas if x = 1 [...] with atestthat tolerates slight
imprecision, for example i1f abs (x - 1) < 0.0001 [... 1.

Also, the precision primitive is handy for rounding off numbers for display purposes. NetLogo
monitors round the numbers they display to a configurable number of decimal places, too.

Random Numbers

The random numbers used by NetLogo are what is called "pseudo-random". (This is typical in
computer programming.) That means they appear random, but are in fact generated by a
deterministic process. "Deterministic" means that you get the same results every time, if you start
with the same random "seed". We'll explain in a minute what we mean by "seed".

In the context of scientific modeling, pseudo-random numbers are actually desirable. That's
because it's important that a scientific experiment be reproducible -- so anyone can try it themselves
and get the same result that you got. Since NetLogo uses pseudo-random numbers, the
"experiments" that you do with it can be reproduced by others.

Here's how it works. NetLogo's random number generator can be started with a certain seed value,
which can be any integer. Once the generator has been "seeded" with the random-seed
command, it always generates the same sequence of random numbers from then on. For example,
if you run these commands:

random-seed 137
show random 100
show random 100
show random 100

You will always get the numbers 95, 7, and 54 in that order.

Note, however, that you're only guaranteed to get those same numbers if you're using the same
version of NetLogo. Sometimes when we make a new version of NetLogo the random number
generator changes. (Presently, we use a generator known as the Mersenne Twister.)

To create a number suitable for seeding the random number generator, use the new—seed reporter.
new—seed creates a seed, evenly distributed over the space of possible seeds, based on the
current date and time. It never reports the same seed twice in a row.

Code Example: Random Seed Example

If you don't set the random seed yourself, NetLogo sets it to a value based on the current date and
time. There is no way to find out what random seed it chose, so if you want your model run to be
reproducible, you must set the random seed yourself ahead of time.

112 Programming Guide

NetLogo 4.1 User Manual

The NetLogo primitives with "random" in their names (random, random-float, and so on) aren't the
only ones that use pseudo-random numbers. Many other operations also make random choices.
For example, agentsets are always in random order, one—of and n—of choose agents randomly,
the sprout command creates turtles with random colors and headings, and the downhill reporter
chooses a random patch when there's a tie. All of these random choices are governed by the
random seed as well, so model runs can be reproducible.

In addition to the uniformly distributed random integers and floating point numbers generated by
random and random-float, NetLogo also offers several other random distributions. See the
dictionary entries for random—normal, random—poisson, random—exponential, and
random—gamma.

Auxiliary generator
Code run by buttons or from the command center uses the main random number generator.
Code in monitors uses an auxiliary random generator, so even if a monitor does a calculation that

uses random numbers, the outcome of the model is not affected. The same is true of code in
sliders.

Local randomness

You may want to explicitly specify that a section of code does not affect the state of the main
random generator, so the outcome of the model is not affected. The with—local-randomness
command is provided for this purpose. See its entry in the NetLogo Dictionary for more information.

Turtle shapes

In NetLogo, turtle shapes are vector shapes. They are built up from basic geometric shapes;
squares, circles, and lines, rather than a grid of pixels. Vector shapes are fully scalable and
rotatable. NetLogo caches bitmap images of vector shapes size 1, 1.5, and 2 in order to speed up
execution.

A turtle's shape is stored in its shape variable and can be set using the set command.

New turtles have a shape of "default". The set —default-shape primitive is useful for changing
the default turtle shape to a different shape, or having a different default turtle shape for each breed
of turtle.

The shapes primitive reports a list of currently available turtle shapes in the model. This is useful if,
for example, you want to assign a random shape to a turtle:

ask turtles [set shape one-of shapes]

Use the Turtle Shapes Editor to create your own turtle shapes, or to add shapes to your model from
our shapes library, or to transfer shapes between models. For more information, see the Shapes
Editor section of this manual.

The thickness of the lines used to draw the vector shapes can be controlled by the
set—line-thickness primitive.

Programming Guide 113

NetLogo 4.1 User Manual

Code Examples: Breeds and Shapes Example, Shape Animation Example

Link Shapes

Link Shapes are similar to turtle shapes, only you use the Link Shape Editor to create and edit
them. Link shapes consist of between 0 and 3 lines which can have different patterns and a
direction indicator that is composed of the same elements as turtle shapes. Links also have a
shape variable that can be set to any link shape that is in the model. By default links have the
"default" shape, though you can change that using set-default—-shape. The 1link-shapes
reporter reports all the link shapes included in the current model.

The thickness of the lines in the link shape is controlled by the thickness link variable.

Tick Counter

In many NetLogo models, time passes in discrete steps, called "ticks". NetLogo includes a built-in
tick counter so you can keep track of how many ticks have passed.

The current value of the tick counter is shown above the view. (You can use the Settings button to
hide the tick counter, or change the word "ticks" to something else.)

In code, to retrieve the current value of the tick counter, use the ticks reporter. The tick
command advances the tick counter by 1. The clear—all command resets the tick counter to 0. If
you want to reset the counter to 0 without clearing everything, use the reset-ticks command.

If your model is set to use tick-based updates, then the £ ick command will usually also update the
view. See the next section, View Updates.

When to tick

We suggest using the £ick command after your agents have completed all their movements and
actions, but before you plot or calculate statistics. That way, if the plotting or calculating code refers
to the tick counter, it will get the new value, reflecting that the tick is now complete. Example:

to go
ask turtles [move]
ask patches [grow]
tick
do-plots

end

to do-plots
plotxy ticks count turtles
end

By putting tick before do—-plots, the plotting code gets the right value of the tick counter when it
uses the ticks reporter.

114 Programming Guide

NetLogo 4.1 User Manual

Fractional ticks

In most models, the tick counter starts at 0 and goes up 1 at a time, from integer to integer. But it's
also possible for the tick counter to take on in-between floating point values.

To advance the tick counter by a fractional amount, use the £ick—-advance command. This
command takes a numeric input specifying how far to advance the tick counter.

A typical use of fractional ticks is to approximate continuous or curved motion. See, for example, the
GaslLab models in the Models Library (under Chemistry & Physics). These models calculate the
exact time at which a future event is to occur, then advance the tick counter to exactly that time.

View Updates

The "view" in NetLogo lets you see the agents in your model on your computer's screen. As your
agents move and change, you see them moving and changing in the view.

Of course, you can't really see your agents directly. The view is a picture that NetLogo paints,
showing you how your agents look at a particular instant. Once that instant passes and your agents
move and change some more, that picture needs to be repainted to reflect the new state of the
world. Repainting the picture is called "updating” the view.

When does the view get updated? This section discusses how NetLogo decides when to update the
view, and how you can influence when it gets updated.

NetLogo offers two updates modes, "continuous" updates and "tick-based" updates. You can switch
between NetLogo's two view update modes using a popup menu at the top of the Interface tab.

Continuous updates are the default when you start up NetLogo or start a new model. Nearly every
model in our Models Library, however, uses tick-based updates.

Continuous updates are simplest, but tick-based updates give you more control over when and how
often updates happen.

It's important exactly when an update happens, because when updates happen determines what
you see on the screen. If an update comes at an unexpected time, you may see something
unexpected -- perhaps something confusing or misleading.

It's also important how often updates happen, because updates take time. The more time NetLogo

spends updating the view, the slower your model will run. With fewer updates, your model runs
faster.

Continuous updates

Continuous updates are very simple. With continuous updates, NetLogo updates the view a certain
number of times per second -- by default, 50 times a second when the speed slider is in the default,
middle setting.

If you move the speed slider to a slower setting, NetLogo will update more than 50 times a second,
effectively slowing down the model. On a faster setting, NetLogo will update less than 50 times a

Programming Guide 115

NetLogo 4.1 User Manual

second. On the fastest setting, updates will be separated by several seconds.

At extremely slow settings, NetLogo will be updating so often that you will see your agents moving
(or changing color, etc.) one at a time.

If you need to temporarily shut off continuous updates, use the no-display command. The
display command turns updates back on, and also forces an immediate update (unless the user
is fast-forwarding the model using the speed slider).

Tick-based updates

As discussed above in the Tick Counter section, in many NetLogo models, time passes in discrete
steps, called "ticks". Typically, you want the view to update once per tick, between ticks. That's the
default behavior with tick-based updates.

If you want additional view updates, you can force an update using the display command. (The
update may be skipped if the user is fast-forwarding the model using the speed slider.)

You don't have to use the tick counter to use tick-based updates. If the tick counter never advances,
the view will update only when you use the display command.

If you move the speed slider to a faster setting, NetLogo will skip some of the updates that would
ordinarily have happened. Moving the speed slider to a slower setting doesn't cause additional
updates; rather, it makes NetLogo pause after each update. The slower the setting, the longer the
pause.

Even under tick-based updates, the view also updates whenever a button in the interface pops up
(both once and forever buttons) and when a command entered in the Command Center finishes. So
it's not necessary to add the display command to once buttons that don't advance the tick
counter. Many forever buttons that don't advance the tick counter do need to use the display
command. An example in the Models Library is the Life model (under Computer Science -> Cellular
Automata). The forever buttons that let the user draw in the view use the display command so the
user can see what they are drawing, even though the tick counter is not advancing.

Choosing a mode
Advantages of tick-based updates over continuous updates include:

1. Consistent, predictable view update behavior which does not vary from computer to
computer or from run to run.

2. Continuous updates can confuse the user of your model by letting them see model states
they aren't supposed to see, which may be misleading.

3. Increased speed. Updating the view takes time, so if one update per tick is enough, then
enforcing than there is only one update per tick will make your model faster.

4. Since setup buttons don't advance the tick counter, they are unaffected by the speed slider;
this is normally the desired behavior.

As mentioned above, most models in our Models Library now uses tick-based updates.

116 Programming Guide

NetLogo 4.1 User Manual

Continuous updates are useful for models in which execution is not divided into short, discrete
phases. An example in the Models Library is Termites. (See also, however, the State Machine
Example model, which shows how to re-code Termites using ticks.)

Even for models that would normally be set to tick-based updates, it may be useful to switch to
continuous updates temporarily for debugging purposes. Seeing what's going on within a tick,
instead of only seeing the end result of a tick, could help with troubleshooting. After switching to
continuous updates, you may want to use the speed slider to slow the model down until you see
your agents moving one at a time. Don't forget to change back to tick-based updates when you are
done, as the choice of update mode is saved with the model.

Plotting

NetLogo's plotting features let you create plots to help you understand what's going on in your
model.

Before you can plot, you need to create one or more plots in the Interface tab. Each plot should
have a unique name. You'll be using its name to refer to it in your code in the Procedures tab.

For more information on using and editing plots in the Interface tab, see the Interface Guide.
Specifying a plot
If you only have one plot in your model, then you can start plotting to it right away. But if you have

more than one plot, you have to specify which one you want to plot to. To do this, use the
set—current—plot command with the name of the plot enclosed in double quotes, like this:

set—-current-plot "Distance vs. Time"

You must supply the name of the plot exactly as you typed it when you created the plot. Note that
later if you change the name of the plot, you'll also have to update the set—current-plot callsin
your model to use the new name. (Copy and paste can be helpful here.)

Specifying a pen

When you make a new plot, it just has one pen in it. If the current plot only has one plot pen, then
you can start plotting to it right away.

But you can also have multiple pens in a plot. You can create additional pens by editing the plot and
using the controls in the "Plot Pens" section at the bottom of the edit dialog. Each pen should have
a unique name. You'll be using its name to refer to it in your code in the Procedures tab.

For a plot with multiple pens, you have to specify which pen you want to plot with. If you don't
specify a pen, plotting will take place with the first pen in the plot. To plot with a different pen, use
the set—current-plot—pen command with the name of the pen enclosed in double quotes, like
this:

set-current-plot-pen "distance"

Plotting points

Programming Guide 117

NetLogo 4.1 User Manual

The two basic commands for actually plotting things are plot and plotxy.

With plot you need only specify the y value you want plotted. The x value will automatically be 0
for the first point you plot, 1 for the second, and so on. (That's if the plot pen's "interval" is the
default value of 1; you can change the interval.)

The plot command is especially handy when you want your model to plot a new point at every
time step. Example:

to setup

plot count turtles
end

to go

plot count turtles
end

Note that in this example we plot from both the "setup" and "go" procedures. That's because we
want our plot to include the initial state of the system. We plot at the end of the "go" procedure, not
the beginning, because we want the plot always to be up to date after the go button stops.

If you need to specify both the x and y values of the point you want plotted, then use plotxy
instead.

Code Example: Plotting Example

Other kinds of plots
By default, NetLogo plot pens plot in line mode, so that the points you plot are connected by a line.
If you want to move the pen without plotting, you can use the plot-—pen—up command. After this

command is issued, the plot and plotxy commands move the pen but do not actually draw
anything. Once the pen is where you want it, use plot—pen—down to put the pen back down.

If you want to plot individual points instead of lines, or you want to draw bars instead of lines or
points, you need to change the plot pen's "mode". Three modes are available: line, bar, and point.
Line is the default mode.

Normally, you change a pen's mode by editing the plot. This changes the pen's default mode. It's
also possible to change the pen's mode temporarily using the set-plot-pen-mode command.
That command takes a number as input: O for line, 1 for bar, 2 for point.

Histograms

A histogram is a special kind of plot that measures how frequently certain values, or values in
certain ranges, occur in a collection of numbers that arise in your model.

For example, suppose the turtles in your model have an age variable. You could create a histogram
of the distribution of ages among your turtles with the hi st ogram command, like this:

118 Programming Guide

NetLogo 4.1 User Manual

histogram [age] of turtles

The numbers you want to histogram don't have to come from an agentset; they could be any list of
numbers.

Note that using the histogram command doesn't automatically switch the current plot pen to bar
mode. If you want bars, you have to set the plot pen to bar mode yourself. (As we said before, you
can change a pen's default mode by editing the plot in the Interface tab.)

The width of the bars in a histogram is controlled by the plot pen's interval. You can set a plot pen's
default interval by editing the plot in the Interface tab. You can also change the interval temporarily

with the set—plot—pen—interval command or the set—histogram—num-bars. If you use the
latter command, NetLogo will set the interval appropriately so as to fit the specified number of bars

within the plot's current x range.

Code Example: Histogram Example

Clearing and resetting

You can clear the current plot with the clear—plot command, or clear every plot in your model
with clear—all-plots. The clear—all command also clears all plots, in addition to clearing
everything else in your model.

If you only want to remove only the points that the current plot pen has drawn, use
plot—-pen—-reset.

When a whole plot is cleared, or when a pen is reset, that doesn't just remove the data that has
been plotted. It also restores the plot or pen to its default settings, as they were specified in the
Interface tab when the plot was created or last edited. Therefore, the effects of such commands as
set-plot—x-range and set—plot—pen—color are only temporary.

Ranges and autoplotting

The default x and y ranges for a plot are fixed numbers, but they can be changed at setup time or
as the model runs.

To change the ranges at any time, use set—plot-x—range and set—plot—y—range. Or, you
can let the ranges grow automatically. Either way, when the plot is cleared the ranges will return to
their default values.

By default, all NetLogo plots have the "autoplotting" feature enabled. This means that if the model
tries to plot a point which is outside the current displayed range, the range of the plot will grow along
one or both axes so that the new point is visible.

In the hope that the ranges won't have to change every time a new point is added, when the ranges
grow they leave some extra room: 25% if growing horizontally, 10% if growing vertically.

If you want to turn off this feature, edit the plot and uncheck the Autoplot checkbox. At present, it is
not possible to enable or disable this feature only on one axis; it always applies to both axes.

Programming Guide 119

NetLogo 4.1 User Manual

Temporary plot pens

Most plots can get along with a fixed number of pens. But some plots have more complex needs;
they may need to have the number of pens vary depending on conditions. In such cases, you can
make "temporary" plot pens from code and then plot with them. These pens are called "temporary"
because they vanish when the plot is cleared (by the clear—plot, clear—-all-plots, oOr
clear—all commands).

To create a temporary plot pen, use the create—temporarv-plot—pen command. Once the pen
has been created, you can use it like any ordinary pen. By default, the new pen is down, is black in
color, has an interval of 1, and plots in line mode. Commands are available to change all of these
settings; see the Plotting section of the NetLogo Dictionary.

Using a Legend

You can show the legend of a plot by selecting the "Show legend" checkbox in the edit dialog. If you
don't want a particular pen to show up in the legend you can uncheck the "Show in Legend"
checkbox for that pen also in the edit dialog.

Conclusion

Not every aspect of NetLogo's plotting system has been explained here. See the Plotting section of
the NetLogo Dictionary for information on additional commands and reporters related to plotting.

Many of the Sample Models in the Models Library illustrate various advanced plotting techniques.
Also check out the following code examples:

Code Examples: Plot Axis Example, Plot Smoothing Example, Rolling Plot Example

Strings
To input a constant string in NetLogo, surround it with double quotes.
The empty string is written by putting nothing between the quotes, like this: " .

Most of the list primitives work on strings as well:

but-first "string" => "tring"
but-last "string" => "strin"
empty? "" => true

empty? "string" => false
first "string" => "g"

item 2 "string" => "r"

last "string" => "g"

length "string" => 6

member? "s" "string" => true
member? "rin" "string" => true
member? "ron" "string" => false
position "s" "string" => 0
position "rin" "string" => 2
position "ron" "string" => false
remove "r" "string" => "sting"

120 Programming Guide

NetLogo 4.1 User Manual

remove "s" "strings" => "tring"
replace-item 3 "string" "o" => "strong"
reverse "string" => "gnirts"

A few primitives are specific to strings, such as is—string?, substring, and word:

is-string? "string" => true
is-string? 37 => false
substring "string" 2 5 => "rin"
word "tur" "tle" => "turtle"

Strings can be compared using the =, =, <, >, <=, and >= operators.

If you need to embed a special character in a string, use the following escape sequences:
e \n = newline
e\t =tab

e \" = double quote
¢ \\ = backslash

Output

This section is about output to the screen. Output to the screen can also be later saved to a file
using the export-output command. If you need a more flexible method of writing data to external
files, see the next section, Eile 1/0.

The basic commands for generating output to the screen in NetLogo are print, show, type, and
write. These commands send their output to the Command Center.

For full details on these four commands, see their entries in the NetLogo Dictionary. Here is how
they are typically used:

e print is useful in most situations.

e show lets you see which agent is printing what.

* type lets you print several things on the same line.

e write lets you print values in a format which can be read back in using £ile—read.

A NetLogo model may optionally have an "output area" in its Interface tab, separate from the
Command Center. To send output there instead of the Command Center, use the cutput-print,

ocutput-show, output-type, and output-write commands.

The output area can be cleared with the clear—output command and saved to a file with
export—output. The contents of the output area will be saved by the export-world command.
The import-world command will clear the output area and set its contents to the value in
imported world file. It should be noted that large amounts of data being sent to the output area can
increase the size of your exported worlds.

”youuseoutput—print,output—show,output—type,output—write,clear—output,or
export—output in a model which does not have a separate output area, then the commands

apply to the output portion of the Command Center.

Programming Guide 121

NetLogo 4.1 User Manual
File I/0

In NetLogo, there is a set of primitives that give you the power to interact with outside files. They all
begin with the prefix file-.

There are two main modes when dealing with files: reading and writing. The difference is the
direction of the flow of data. When you are reading in information from a file, data that is stored in
the file flows into your model. On the other hand, writing allows data to flow out of your model and
into a file.

When a NetLogo model runs as an applet within a web browser, it will only be able to read data
from files which are in the same directory on the server as the model file. Applets cannot write to
any files.

When working with files, always begin by using the primitive £ile—-open. This specifies which file
you will be interacting with. None of the other primitives work unless you open a file first.

The next file- primitive you use dictates which mode the file will be in until the file is closed, reading
or writing. To switch modes, close and then reopen the file.

The reading primitives include file—read, file—read-line, file-read-characters, and
file—at—end? Note that the file must exist already before you can open it for reading.

Code Examples: File Input Example

The primitives for writing are similar to the primitives that print things in the Command Center,
except that the output gets saved to a file. They include file-print, file—show, file—type,
and file-write. Note that you can never "overwrite" data. In other words, if you attempt to write
to a file with existing data, all new data will be appended to the end of the file. (If you want to
overwrite a file, use £ile—delete to delete it, then open it for writing.)

Code Examples: File Output Example

When you are finished using a file, you can use the command £ile—close to end your session
with the file. If you wish to remove the file afterwards, use the primitive £ile-delete to delete it.
To close multiple opened files, one needs to first select the file by using £ile-open before closing
it.

;7 Open 3 files

file-open "myfilel.txt"
file-open "myfile2.txt"
file-open "myfile3.txt"

;; Now close the 3 files
file-close

file-open "myfile2.txt"
file-close

file-open "myfilel.txt"
file-close

Or, if you know you just want to close every file, you can use file—close—all.

122 Programming Guide

NetLogo 4.1 User Manual

Two primitives worth noting are file-write and f£ile—read . These primitives are designed to
easily save and retrieve NetLogo constants such as numbers, lists, booleans, and strings. file-write
will always output the variable in such a manner that file-read will be able to interpret it correctly.

file-open "myfile.txt" ;; Opening file for writing
ask turtles

[file-write xcor file-write ycor]
file-close

file-open "myfile.txt" ;; Opening file for reading
ask turtles

[setxy file-read file-read]
file-close

Code Examples: File Input Example and File Output Example

Letting the user choose

The user—directory,user—file,and user—new—file primitives are useful when you want
the user to choose a file or directory for your code to operate on.

Movies
This section describes how to capture a QuickTime movie of a NetLogo model.

First, use the movie—start command to start a new movie. The filename you provide should end
with .mov, the extension for QuickTime movies.

To add a frame to your movie, use either movie—grab-view Or movie—grab—interface,
depending on whether you want the movie to show just the current view, or the entire Interface tab.
In a single movie, you must use only one movie-grab- primitive or the other; you can't mix them.

When you're done adding frames, use movie—close.

;; export a 30 frame movie of the view

setup

movie-start "out.mov"

movie—-grab-view ;; show the initial state
repeat 30

[go

movie-grab-view]
movie-close

By default, a movie will play back at 15 frames per second. To make a movie with a different frame
rate, call movie—set—-frame-rate with a different number of frames per second. You must set the
frame rate after movie—start but before grabbing any frames.

To check the frame rate of your movie, or to see how many frames you've grabbed, call
movie-status, which reports a string that describes the state of the current movie.

To throw away a movie and delete the movie file, call movie—cancel.

Programming Guide 123

NetLogo 4.1 User Manual

Code Example: Movie Example

NetLogo movies are exported as uncompressed QuickTime files. To play a QuickTime movie, you
can use QuickTime Player, a free download from Apple.

Since the movies are not compressed, they can take up a lot of disk space. You will probably want
to compress your movies with third-party software. The software may give you a choice of different
kinds of compression. Some kinds of compression are lossless, while others are lossy. "Lossy"
means that in order to make the files smaller, some of the detail in the movie is lost. Depending on
the nature of your model, you may want to avoid using lossy compression, for example if the view
contains fine pixel-level detail.

One software package that can compress QuickTime movies on both the Mac and Windows
platforms is QuickTime Pro. On Macs, iMovie works as well. PNG compression is a good choice for
lossless compression.

Perspective

The 2D and the 3D view show the world from the perspective of the observer. By default the
observer is looking down on the world from the positive z-axis at the origin. You can change the
perspective of the observer by using the fol1low, ride and watch observer commands and
follow-me, ride—me and watch-me turtle commands. When in follow or ride mode the observer
moves with the subject agent around the world. The difference between follow and ride is only
visible in the 3D view. In the 3D view the user can change the distance behind the agent using the
mouse. When the observer is following at zero distance from the agent it is actually riding the agent.
When the observer is in watch mode it tracks the movements of one turtle without moving. In both
views you will see a spotlight appear on the subject and in the 3D view the observer will turn to face
the subject. To determine which agent is the focus you can use the subject reporter.

Code Example: Perspective Example

Drawing

The drawing is a layer where turtles can make visible marks.

In the view, the drawing appears on top of the patches but underneath the turtles. Initially, the
drawing is empty and transparent.

You can see the drawing, but the turtles (and patches) can't. They can't sense the drawing or react
to it. The drawing is just for people to look at.

Turtles can draw and erase lines in the drawing using the pen—down and pen—erase commands.
When a turtle's pen is down (or erasing), the turtle draws (or erases) a line behind it whenever it
moves. The lines are the same color as the turtle. To stop drawing (or erasing), use pen—up.

Lines drawn by turtles are normally one pixel thick. If you want a different thickness, set the

pen—size turtle variable to a different number before drawing (or erasing). In new turtles, the
variable is setto 1.

124 Programming Guide

http://www.apple.com/quicktime/download/

NetLogo 4.1 User Manual

Lines made when a turtle moves in a way that doesn't fix a direction, such as with setxy or
move—to, the shortest path line that obeys the topology will be drawn.

Here's some turtles which have made a drawing over a grid of randomly shaded patches. Notice
how the turtles cover the lines and the lines cover the patch colors. The pen-size used here was
2:

The stamp command lets a turtle leave an image of itself behind in the drawing and stamp-erase
lets it remove the pixels below it in the drawing.

To erase the whole drawing, use the observer commmand clear—-drawing. (You can also use
clear—all, which clears everything else to0o0.)

Importing an image

The observer command import-drawing command allows you to import an image file from disk
into the drawing.

import-drawing is useful only for providing a backdrop for people to look at. If you want turtles
and patches to react to the image, you should use import—-pcolors Or import—pcolors—rgb
instead.
Comparison to other Logos
Drawing works somewhat differently in NetLogo than some other Logos.
Notable differences include:
e New turtles' pens are up, not down.
¢ Instead of using a fence command to confine the turtle inside boundaries, in NetLogo you
edit the world and turn wrapping off.
e There is n0 screen—-color, bgcolor, Or setbg. You can make a solid background by
coloring the patches, e.g. ask patches [set pcolor blue].

Drawing features not supported by NetLogo:

Programming Guide 125

NetLogo 4.1 User Manual

e There is no window command. This is used in some other Logos to let the turtle roam over
an infinite plane.
e There is no flood or £i11 command to fill an enclosed area with color.

Topology

The topology of the NetLogo world has four potential values, torus, box, vertical cylinder, or
horizontal cylinder. The topology is controlled by enabling or disabling wrapping in the x ory
directions. The default world is a torus, as were all NetLogo worlds before NetLogo 3.1.

A torus wraps in both directions, meaning that the top and bottom edges of the world are connected
and the left and right edges are connected. So if a turtle moves beyond the right edge of the world it
appears again on the left and the same for the top and bottom.

A box does not wrap in either direction. The world is bounded so turtles that try to move off the edge
of the world cannot. Note that the patches around edge of the world have fewer than eight
neighbors; the corners have three and the rest have five.

Horizontal and vertical cylinders wrap in one direction but not the other. A horizontal cylinder wraps
vertically, so the top of the world is connected to the bottom. but the left and right edges are
bounded. A vertical cylinder is the opposite; it wraps horizontally so the left and right edges are
connected, but the top and bottom edges are bounded.

Code Example: Neighbors Example

Since NetLogo 3.0 there have been settings to enable wrapping visually, so if a turtle shape extends
past an edge, part of the shape will appear on the other edge of the view. (Turtles themselves are
points that take up no space, so they cannot be on both sides of the world at once, but in the view,
they appear to take up space because they have a shape.)

Wrapping also affects how the view looks when you are following a turtle. On a torus, wherever the
turtle goes, you will always see the whole world around it:

{0,-2)

(=1,1) (0,1)

(-1,0) (0,0 (1,00 tj.-'-_h[:/ 1-2,0)

(-1,-1) (0,-1)

126 Programming Guide

NetLogo 4.1 User Manual

Whereas in a box or cylinder the world has edges, so the areas past those edges show up in the
view as gray:

Y

(-1,0) (0,0 (1,00

t0,-1) (1,-1)

Code Example: Termites Perspective Demo (torus), Ants Perspective Demo (box)

Instead of 3.0's settings that only control the appearance of wrapping in the view, NetLogo 3.1 has
settings that control whether the world actually wraps or not, that is, whether opposite edges are in
fact connected. These new wrapping settings determine the world topology, that is, whether the
world is a torus, box, or cylinder. This affects the behavior and not just the visual appearance of the
model.

In the past, model authors were required to write extra code to simulate a box world, with the aid of
special "no-wrap" primitives. No-wrap versions were provided for distance(xy), in-radius, in-cone,
face(xy), and towards(xy). In 3.1 the special no-wrap versions are no longer necessary. Instead, the
topology controls whether the primitives wrap or not. They always use the shortest path allowed by
the topology. For example, the distance from the center of the patches in the bottom right corner
(min-pxcor, min-pycor) and the upper left corner (max-pxcor, max-pycor) will be as follows for each
topology given that the min and max pxcor and pycor are +/-2:

e Torus - sgrt(2) ~ 1.414 (this will be the same for all world sizes since the patches are directly
diagonal to each other in a torus.)

¢ Box - sqgrt(world-width"2 + world-height*2) ~ 7.07

e Vertical Cylinder - sqrt(world-height*2 + 1) ~ 5.099

e Horizontal Cylinder - sgrt(world-width*2 + 1) ~ 5.099

All the other primitives will act similarly to distance. If you formerly used no-wrap primitives in your
model we recommend removing them and changing the topology of the world instead.

There are a number of reasons to change your model to use topologies rather than no-wrap
primitives.

First, we expect if you are using no-wrap primitives, you are actually modeling a world that is not a
torus. If you use a topology that matches the world you are modeling NetLogo does automatic

Programming Guide 127

NetLogo 4.1 User Manual

bounds checking for you, it should make your life easier, your code simpler to understand and it
adds visual cues to help the model user understand what you are modeling. Note that even with
no-wrap primitives it was very difficult to model cylinders since the no-wrap primitives report the
distance or heading when wrapping is not allowed in either direction.

You might have bugs in your model. If you are using a combination of no-wrap and wrap primitives,
either it doesn't matter for some reason or there is a bug in your model (we found a few bugs in our
models). For example, the Conductor model compared distance-no-wrap to distance to determine
whether the next position is wrapped around the world, in which case the electron exits the system.
This is a clever way to solve the problem, but unfortunately it is flawed. Electrons that wrap in the y
direction were also exiting the system which is incorrect in this case. The only correct way to exit is
to reach the cathode at the left end of the wire.

If you remove no-wrap commands the topology is no longer hard coded into the model so it's easier
to test out your model on a different shape of world without a lot of extra coding (you may have to
add a few extra checks to go from torus to box, this is explained more in-depth in the How to
convert section.)

Note that though we've removed the no-wrap primitives from the dictionary they are still available for
you to use; we did this so that old models don't have to be changed in order to run.

How to convert your model

When you first open up your model in 3.1 NetLogo will automatically change all cases of (
-screen—-edge—x) tomin-pxcor and all cases of screen—-edge-x t0 max—-pxcor (and
similarly for y) Though this is not directly related to the topology changes, you may also want to
think about whether moving the origin off-center makes sense in your model at this time. Before
NetLogo 3.1 the world had to be symmetrical around the origin, thus, the world had to have an odd
width and height. This is no longer true since you may use any min and max combinations you wish,
given that the point (0,0) still exists in the world. If you are logically only modeling in one or two
quadrants, or if it makes your code simpler to only use positive numbers you might want to consider
changing your model. If you've modeled something that requires and even grid you'll certainly want
to remove the programming hacks required to make that possible in the past.

Code Examples: Lattice Gas Automaton, Binomial Rabbits, Rugby

For NetLogo 3.1 we added new primitives which are essential if you change the topology, and quite
convenient even if you don't. random-pxcor, random-pycor, random-xcor, and random-ycor
report random values within the range between maximum and minimum (x and y). In older versions
of NetLogo we often relied on wrapping to place turtles randomly across the world by writing set xy
random-float screen-size-x random-float screen-size-y.However, if wrapping is
not allowed in one direction or the other this no longer works (you get a runtime error for trying to
place turtles outside the world). Regardless of topology, it is simpler and more straight forward to
use setxy random-xcor random-ycor instead.

To convert a model to use a topology you must first decide what settings best describe the world. If
the answer is not immediately obvious to you based on the real world, (a room is a box, a wire is a
cylinder) there are a few clues that will help you. If anywhere in the code you are checking the
bounds of the world or if some patches are not considered neighbors of the patches on the other
side of the view it is likely that you are not using a torus. If you check bounds in both the x and y

128 Programming Guide

NetLogo 4.1 User Manual

directions it's a box, in the x direction only, a horizontal cylinder, the y a vertical cylinder.

If you use no-wrap primitives you are probably not modeling a torus, however, be careful with this
criterion if you use a mix of no-wrap and wrap primitives. It may be that you were using a no-wrap
primitive for a visual element but the rest of the NetLogo world is still a torus.

After you've determined the topology and changed it by editing the view, you may have to make a
few small changes to the code. If you've decided that the world is a torus you probably don't have to
make any changes at all. If your model only uses patch neighbors and diffuse you probably will not
need to make many changes.

If your model has turtles that move around your next step is to determine what happens to them
when they reach the edge of the world. There are a few common options: the turtle is reflected back
into the world (either systematically or randomly), the turtle exits the system (dies), or the turtle is
hidden. It is no longer necessary to check the bounds using turtle coordinates, instead we can just
ask NetLogo if a turtle is at the edge of the world. There are a couple ways of doing this, the
simplest is to use the can—-move? primitive.

if not can-move? distance [rt 180]

can-move? merely returns true if the position distance in front of the turtle is inside the NetLogo
world, false otherwise. In this case, if the turtle is at the edge of the world it simple goes back the
way it came. You can also use patch-ahead 1 != nobody in place of can—move?. If you need
to do something smarter that simply turning around it may be useful to use patch—at with dx and

dy.

if patch-at dx 0 = nobody [
set heading (- heading)

]

if patch-at 0 dy = nobody [
set heading (180 - heading)

]

This tests whether the turtle is hitting a horizontal or vertical wall and bounces off that wall.

In some models if a turtle can't move forward it simply dies (exits the system, like in Conductor or
Mousetraps).

if not can-move? distance[die]

If you are moving turtles using setxy rather than forward you should test to make sure the patch you
are about to move to exists since setxy throws a runtime error if it is given coordinates outside the
world. This is a common situation when the model is simulating an infinite plane and turtles outside
the view should simply be hidden.

let new-x new-value-of-xcor
let new-y new-value-of-ycor

ifelse patch-at (new-x - xcor) (new-y - ycor) = nobody
[hide-turtle]
[setxy new-x new-y
show—-turtle]

Programming Guide 129

NetLogo 4.1 User Manual

Several models in the Models Library use this technique, Gravitation, N-Bodies, and Electrostatics
are good examples.

By using a different topology you get diffuse for free (which was fairly difficult to do in the past).
Each patch diffuses and equal amount of the diffuse variable to each of its neighbors, if it has fewer
than 8 neighbors (or 4 if you are using diffuse4) the remainder stays on the diffusing patch. This
means that the overall sum of patch-variable across the world remains constant. If you had special
code to handle diffuse then you can remove it. However, if you want the diffuse matter to still fall off
the edges of the world as it would on an infinite plane you still need to clear the edges each step as
in the Diffuse Off Edges Example.

Links

A link is an agent that connects two turtles. The two turtles are called nodes. The link is always
drawn as a line between the two turtles. Links do not have a location as turtles do, they are not
considered to be on any patch and you cannot find the distance from a link to another point.

There are two flavors of links, undirected and directed. A directed link is out of, or from, one node
and into, or to, another node. The relationship of a parent to a child could be modeled as a directed
link. An undirected link appears the same to both nodes, each node has a link with another node.
The relationship between spouses, or siblings, could be modeled as an undirected link.

There is a global agentset of all links, just as with turtles and patches. You can create undirected
links using the create-link-with and create—1inks-with commands; and directed links
using the create—-link—to, create—links—to, create—link—from, and
create—links—from commands. Once the first link has been created directed or undirected, all
unbreeded links must match (links also support breeds, much like turtles, which will be discussed
shortly); it's impossible to have two unbreeded links where one is directed and the other is
undirected. A runtime error occurs if you try to do it. (If all unbreeded links die, then you can create
links of that breed that are different in flavor from the previous links.)

In general, primitives that work with directed links have "in", "out", "to", and "from" in their names.
Undirected ones either omit these or use "with".

Link breeds, like turtle breeds, allow you to define different types of links in your model. Link breeds
must either be directed or undirected, unlike unbreeded links this is defined at compile time rather
than run time. You declare link breeds using the keywords undirected-link-breed and
directed-link—-breed. Breeded links can be created using the commands
create—<breed>—with and create—<breeds>-with for undirected breeds and the commands
create—<breed>-to, create—<breeds>-to, create—<breed>—from, and
create—<breeds>-from for directed links.

There cannot be more than one undirected link of the same breed (or two unbreeded links) between
a pair of agents, nor more than one directed link of the same breed in the same direction between a
pair of agents. You can have two directed links of the same breed (or two unbreeded links) between
a pair if they are in opposite directions.

Layouts

130 Programming Guide

NetLogo 4.1 User Manual

As part of our network support we have also added several different primitives that will help you to
visualize the networks. The simplest is layvout—circle which evenly spaces the agents around
the center of the world given a radius.

layout—radial is a good layout if you have something like a tree structure, though even if there
are some cycles in the tree it will still work, though as there are more and more cycles it will
probably not look as good. layout—radial takes a root agent to be the central node places it at
(0,0) and arranges the nodes connected to it in a concentric pattern. Nodes one degree away from
the root will be arranged in a circular pattern around the central node and the next level around
those nodes and so on. layout—radial will attempt to account for asymmetrical graphs and give
more space to branches that are wider. layout—radial also takes a breed as an input so you use
one breed of links to layout the network and not another.

Given a set of anchor nodes layvout—tutte places all the other nodes at the center of mass of the
nodes it is linked to. The anchor set is automatically arranged in a circle layout with a user defined
radius and the other nodes will converge into place (this of course means that you may have to run
it several times before the layout is stable.)

Programming Guide 131

NetLogo 4.1 User Manual

layout—springand ___lavout-magspring are quite similar and are useful for many kinds of
networks. The drawback is that they are relatively slow since they take many iterations to converge.
In both layouts the links act as springs that pull the nodes they connect toward each other and the
nodes repel each other. In the magnetic spring there is also a magnetic field pulling the nodes in a
compass direction you choose. The strength of all of these forces are controlled by inputs to the
primitives. These inputs will always have a value between 0 and 1; keep in mind that very small
changes can still affect the appearance of the network. The springs also have a length (in patch
units), however, because of all the forces involved the nodes will not end up exactly that distance
from each other. The magnetic spring layout also has a boolean input, bidirectional?, which
indicates whether the springs should push in both directions parallel to the magnetic field; if it is true
the networks will be more evenly spaced.

Code Examples:Network Example, Network Import Example, Giant Component,
Small Worlds, Preferential Attachment

Ask-Concurrent

In previous versions of NetLogo, ask was concurrent by default. As of NetLogo 4.0, ask is serial,
that is, the agents run the commands inside the ask one at a time.

132 Programming Guide

NetLogo 4.1 User Manual

The following information describes the behavior of the ask—concurrent command, which
behaves the way the old ask behaved.

ask-concurrent produces simulated concurrency via a mechanism of turn-taking. The first agent
takes a turn, then the second agent takes a turn, and so on until every agent in the asked agentset
has had a turn. Then we go back to the first agent. This continues until all of the agents have
finished running all of the commands.

An agent's "turn" ends when it performs an action that affects the state of the world, such as
moving, or creating a turtle, or changing the value of a global, turtle, patch, or link variable. (Setting
a local variable doesn't count.)

The forward (£d) and back (bk) commands are treated specially. When used inside
ask-—concurrent, these commands can take multiple turns to execute. During its turn, the turtle
can only move by one step. Thus, for example, £d 20 is equivalent to repeat 20 [fd 1 1,
where the turtle's turn ends after each run of £d. If the distance specified isn't an integer, the last
fraction of step takes a full turn. So for example £d 20.3 is equivalentto repeat 20 [fd 1]
fd 0.3.

The jump command always takes exactly one turn, regardless of distance.

To understand the difference between ask and ask—concurrent, consider the following two
commands:

ask turtles [fd 5]
ask—-concurrent turtles [fd 5]

With ask, the first turtle takes ten steps forward, then the second turtle takes ten steps forward, and
So on.

With ask—concurrent, all of the turtles take one step forward. Then they all take a second step,
and so on. Thus, the latter command is equivalent to:

repeat 5 [ask turtles [fd 1]]

Code Example: Ask-Concurrent Example shows the difference between ask and
ask-concurrent.

The behavior of ask—concurrent cannot always be so simply reproduced using ask, as in this
example. Consider this command:

ask—concurrent turtles [fd random 10]

In order to get the same behavior using ask, we would have to write:

turtles—-own [steps]
ask turtles [set steps random 10]
while [any? turtles with [steps > 0]] [
ask turtles with [steps > 0] [
fd 1
set steps steps - 1
]

Programming Guide 133

NetLogo 4.1 User Manual

]

To prolong an agent's "turn", use the without—interruption command. (The command blocks
inside some commands, such as create—turtles and hatch, have an implied

without—interruption around them.)

Note that the behavior of ask—concurrent is completely deterministic. Given the same code and
the same initial conditions, the same thing will always happen (if you are using the same version of
NetLogo and begin your model run with the same random seed).

In general, we suggest you write your model so that it does not depend on the exact details of how
ask—concurrent works. We make no guarantees that its semantics will remain the same in future
versions of NetLogo.

Tie

Tie connects two turtles so that the movement of one turtles affects the location and heading of
another. Tie is a property of links so there must be a link between two turtles to create a tie
relationship.

When a link's tie—mode is set to "fixed" or "free" endl and end?2 are tied together. If the link is
directed end1 is the "root agent" and end2 is the "leaf agent". That is when endl moves (using £d,
jump, setxy, etc.) end2 also moves the same distance and direction. However when end2 moves
it does not affect endl.

If the link is undirected it is a reciprocal tie relationship, meaning, if either turtle moves the other
turtle will also move. So depending on which turtle is moving either turtle can be considered the root
or the leaf. The root turtle is always the turtle that initiates the movement.

When the root turtle turns right or left, the leaf turtle rotates around the root turtle the same amount
as if a stiff were attaching the turtles. When tie-mode is set to "fixed" the heading of the leaf turtle
changes by the same amount. If the tie-mode is set to "free" the heading of the leaf turtle is
unchanged.

The tie—mode of a link can be set to "fixed" using the t ie command and set to "none" (meaning
the turtles are no longer tied) using untie to set the mode to "free" you need to: set tie-mode
"free".

Code Example: Tie System Example

Multiple source files

The __includes keyword allows you to use multiple source files in a single NetLogo model.

The keyword begins with two underscores to indicate that the feature is experimental and may
change in future NetLogo releases.

When you open a model that uses the __includes keyword, or if you add it to the top of a model
and hit the Check button, the includes menu will appear in the toolbar. From the includes menu you

134 Programming Guide

NetLogo 4.1 User Manual

can select from the files included in this model.

When you open included files they appear in additional procedures tabs. See the Interface Guide for
more details.

You can have anything in external source files (.n1s) that you would normally put in the procedures
tab: globals, breed, turtles—own, patches—own, breeds—own, procedure definitions, etc.
Note though that these declarations all share the same namespace. That is, if you declare a global
my-global in the procedures tab you cannot declare a global (or anything else) with the name
my-global in any file that is included in the model. my-global will be accessible from all the
included files. The same would be true if my—global were declared in one of the included files.

Syntax

Colors

In the Procedures tab and elsewhere in the NetLogo user interface, program code is color-coded by
the following scheme:

e Keywords are green

e Constants are orange

e Comments are gray

¢ Primitive commands are blue
e Primitive reporters are purple
e Everything else is black

Notice

The remainder of this section contains technical terminology which will be unfamiliar to some
readers.

Keywords

The only keywords in the language are globals, breed, turtles—own, patches—own, to,
to-report, and end, plus extensions and the experimental __includes keyword. (Built-in
primitive names may not be shadowed or redefined, so they are effectively a kind of keyword as
well.)

Identifiers

All primitives, global and agent variable names, and procedure names share a single global
case-insensitive namespace; local names (Let variables and the names of procedure inputs) may
not shadow global names or each other. ldentifiers may contain letters, digits, and the following
ASCII characters:

L2ERI> /SN s

Non-ASCII characters are not currently allowed in identifiers. (We realize this is troublesome for
international users and plan to address the issue in a future release.)

Programming Guide 135

NetLogo 4.1 User Manual

Some primitive names begin with two underscores to indicate that they are experimental and are
especially likely to change or be removed in future NetLogo releases.

ldentifiers beginning with a question mark are reserved.
Scope
NetLogo is lexically scoped. Local variables (including inputs to procedures) are accessible within

the block of commands in which they are declared, but not accessible by procedures called by
those commands.

Comments

The semicolon character introduces a comment, which lasts until the end of the line. There is no
multi-line comment syntax.

Structure

A program consists of optional declarations (globals, breed, turtles—own, patches—own,
<BREED>-own) in any order, followed by zero or more procedure definitions. Multiple breeds may
be declared with separate breed declarations; the other declarations may appear once only.

Every procedure definition begins with to or to-report, the procedure name, and an optional
bracketed list of input names. Every procedure definition ends with end. In between are zero or
more commands.

Commands and reporters

Commands take zero or more inputs; the inputs are reporters, which may also take zero or more
inputs. No punctuation separates or terminates commands; no punctuation separates inputs.
Identifiers must be separated by whitespace or by parentheses or square brackets. (So for example,
a+b is a single identifier, but a (b [c]d) e contains five identifiers.)

All commands are prefix. All user-defined reporters are prefix. Most primitive reporters are prefix,
but some (arithmetic operators, boolean operators, and some agentset operators like with and
in-points) are infix.

All commands and reporters, both primitive and user-defined, take a fixed number of inputs by
default. (That's why the language can be parsed though there is no punctuation to separate or
terminate commands and/or inputs.) Some primitives are variadic, that is, may optionally take a
different number of inputs than the default; parentheses are used to indicate this, e.g. (1ist 1 2
3) (since the List primitive only takes two inputs by default). Parentheses are also used to
override the default operator precedence, e.g. (1 + 2) * 3, asin other programming languages.

Sometimes an input to a primitive is a command block (zero or more commands inside square
brackets) or a reporter block (a single reporter expression inside square brackets). User-defined
procedures may not take a command or reporter block as input.

Operator precedences are as follows, high to low:

136 Programming Guide

NetLogo 4.1 User Manual

ewith, at—-points,in-radius, in-cone
e (all other primitives and user-defined procedures)

Compared to other Logos

There is no agreed-upon standard definition of Logo; it is a loose family of languages. We believe
that NetLogo has enough in common with other Logos to earn the Logo name. Still, NetLogo differs
in some respects from most other Logos. The most important differences are as follows.

Surface differences

e The precedence of mathematical operators is different. Infix math operators (like +, *, etc.)
have lower precedence than reporters with names. For example, in many Logos, if you write
sin x + 1,itwillbeinterpretedas sin (x + 1).NetLogo, on the other hand, interprets
it the way most other programming languages would, and the way the same expression
would be interpreted in standard mathematical notation, namely as (sin x) + 1.

* The and and ox reporters are special forms, not ordinary functions, and they "short circuit",
that is, they only evaluate their second input if necessary.

¢ Procedures can only be defined in the Procedures tab, not interactively in the Command
Center.

¢ Reporter procedures, that is, procedures that "report" (return) a value, must be defined with
to-report instead of to. The command to report a value from a reporter procedure is
report, Not output.

e When defining a procedure, the inputs to the procedure must be enclosed in square
brackets, e.g. to square [x].

e Variable names are always used without any punctuation: always foo, never : foo or "foo.
(To make this work, instead of a make command taking a quoted argument we supply a set
special form which does not evaluate its first input.) As a result, procedures and variables
occupy a single shared namespace.

The last three differences are illustrated in the following procedure definitions:

most Logos NetLogo

to square :x to-report square [x]
output :x * :x report x * x
end end

Deeper differences

e NetLogo's local variables and inputs to procedures are lexically scoped, not dynamically
scoped.

e NetLogo has no "word" data type (what Lisp calls "symbols"). Eventually, we may add one,
but since it is seldom requested, it may be that the need doesn't arise much in agent-based
modeling. We do have strings. In most situations where traditional Logo would use words,
we simply use strings instead. For example in Logo you could write [see spot run] (alist
of words), but in NetLogo you must write "see spot run" (a string) or ["see” "spot"

Programming Guide 137

NetLogo 4.1 User Manual

"run"] (a list of strings) instead.

e NetLogo's run command works on strings, not lists (since we have no "word" data type),
and does not permit the definition or redefinition of procedures.

e Control structures such as i f and while are special forms, not ordinary functions. You
can't define your own special forms, so you can't define your own control structures.
(NetLogo's run command is no help here.)

¢ As in most Logos, functions as values are not supported. Most Logos provide similar if less
general functionality, though, by allowing passing and manipulation of fragments of source
code in list form. NetLogo's capabilities in this area are presently limited. A few of our built-in
special forms use UCBLogo-style “"templates" to accomplish a similar purpose, for example,
sort-by [length 2?1 < length 22] string-1list.In some circumstances, using
run and runresult instead is workable, but unlike most Logos they operate on strings, not
lists.

Of course, the NetLogo language also contains many additional features not found in most other
Logos, most importantly agents and agentsets.

138

Programming Guide

Transition Guide

Many models created in earlier versions of NetLogo also work in NetLogo 4.1. However, some
models will need changes. If your old model isn't working, this section of the User Manual may be
able to help you.

What issues you need to be aware of depends on how old your model is. The older the NetLogo
version it was made with, the more issues you may need to be aware of.

This section does not list every change that was made in the NetLogo versions discussed. It covers
only the changes that are most likely to be issues for users. For a complete list of changes, see the
What's New? section.

Since NetLogo 4.0

Combining set and of

The following syntax is no longer supported:
set [<variable>] of <agent> <value>
Commands of this form must be rewritten using ask:

ask <agent> [set <variable> <value>]

Or, if the new value must be computed by the asking agent and not by the agent whose variable is
being set:

;; OPTION #1 (using let):
let new-value <value>
ask <agent> [set <variable> new-value]

;; OPTION #2 (using myself):
ask <agent> [set <variable> [value] of myself]

So for example, this:

set [color] of turtle 0 red

Can be rewritten as:

ask turtle 0 [set color red]
It is not necessary to use 1et or myself since red is red from the point of view of both agents.

However, this:

Transition Guide 139

NetLogo 4.1 User Manual

set [color] of turtle 0 color

Must be rewritten as:

let new-color color

ask turtle 0 [set color new-color]
or
ask turtle 0 [set color [color] of myself]

in order not to change the meaning, since the two agents may have different starting values for
color. The form using myself is briefer, but the former using 1et may be considered clearer,
depending on context and individual preference.

Applets
Applets created using previous versions of NetLogo will not work unaltered with the 4.1

NetLogolite.jar. Resave the applet in 4.1 to make it work. Alternately, you may edit the HTML, find
the part that reads:

code="org.nlogo.window.Applet"

and change it to:

code="org.nlogo.lite.Applet"”

Since NetLogo 3.1

Who numbering

Prior to NetLogo 4.0, a dead turtle's who number (stored in the who turtle variable) could be
reassigned to a later newborn turtle. In NetLogo 4.0, who numbers are never reused until who
numbering is reset to 0 by the clear—all or clear—turtles command. This change in behavior
may break a few old models.

Turtle creation: randomized vs. "ordered"

NetLogo 4.0 provides two different observer commands for creating turtles, create-turtles
(crt) and create—ordered-—turtles (cro).

crt gives the new turtles random colors and random integer headings. cro assigns colors
sequentially and gives the turtles sequential equally spaced headings, with the first turtle facing
north (heading of 0).

Prior to NetLogo 4.0, the crt command behaved the way cro does now. If your old model depends
on the "ordered" behavior, you will need to change your code to use cro instead of crt.

It is common for old models that used crt to contain extra commands to randomize the new turtles'
headings, for example rt random 360 Or set heading random 360. These commands are no

140 Transition Guide

NetLogo 4.1 User Manual

longer necessary when used inside crt.

Adding strings and lists

Prior to NetLogo 4.0, the + (addition) operator could be used to concatenate strings and join lists. In
current NetLogo, + only works on numbers. To concatenate strings, use the word primitive; to join
lists together, use the sentence primitive. This language change was made to increase the speed
of code that uses +.

Old code:

print "There are " + count turtles + " turtles."
New code:

print (word "There are " count turtles " turtles.")

Likewise, if you need to concatenate lists, use SENTENCE.

This change is not handled automatically when converting old models; users will need to change
their code by hand.

We know this change will be awkward for users who are used to the old syntax. We have made this
change for efficiency and consistency. We can implement an addition operator that only adds
numbers much more efficiently than one that handles several different data types. Because addition
is such a common operation, NetLogo's overall speed is affected.

The -at primitives
The observer may no longer use patch—at, turtles—at, and BREEDS—at. Use patch,

turtles—on patch, and BREEDS—on patch instead. Note that patch now rounds its inputs
(before it only accepted integer inputs).

Links

NetLogo 3.1 had supports for using links to connect turtles to make networks, graphs, and
geometric figures. The links were themselves turtles.

In NetLogo 4.0, instead of links being turtles, links are now an independent fourth agent type, right
alongside observer, turtles, patches. The primitives involving links are no longer considered
experimental; they are now fully part of the language.

Models that use the old, experimental turtle-based link primitives will need to be updated to use link
agents. The differences are not huge, but hand updating is required.

Links are documented in the Links section of the Programming Guide, and in the NetLogo

Dictionary entries for the link primitives. See the Networks section of the Models Library for example
models that use links. There are also some link-based Code Examples.

Transition Guide 141

NetLogo 4.1 User Manual

First you will need to remove any breeds called "links" if you are only using one type of links then
you will not have to use breeds at all. If you are using multiple types of links see
undirected-link-breedand directed-link-breed. Commands and reporters that contain
the word "links" (like __create-1inks-with, etc.) will automatically be converted to the new form
without underscores (create—1inks—with). However, primitives that use a different breed name
(such as "edges") will not be converted. You will need to remove the underscores by hand and
unless you are declaring a link breed with that name you will need to change the breed designation
to "links".

The commands remove-1ink (s) -with/from/to no longer exist. Instead you should ask the
links in question to die.

For example:

ask turtle 0 [__remove-links-with link-neighbors]
becomes

ask turtle 0 [ask my-links [die]]

Several of the layout commands have slightly different inputs, the first two inputs are generally a
turtle agentset and a link agentset to perform the layout on. See the dictionary entries for details.
lavout—-spring, lavout-magspring layvout—-radial lavout—tutte

You may also need to rearrange the declaration of turtles-own variables, since links were once
actually turtles. Any variables that apply to links should be moved into a 1inks—own block.

Since links are no longer turtles they no longer have the built-in turtle variables (though some of the
link variables are the same such as color and label. If you formerly used the location of link
turtles you will now need to calculate the midpoint of the link. This is fairly simple in a non-wrapping
world.

to-report link-xcor
report mean [xcor] of both-ends
end

to-report link-ycor
report mean [ycor] of both-ends
end

it is a little bit trickier in a wrapping world but still fairly straightforward.

to-report link-xcor
let other-guy end2
let x O
ask endl
[
hatch 1
[
face other-guy
fd [distance other—guy] of myself / 2
set x xcor
die

142 Transition Guide

NetLogo 4.1 User Manual

report x
end

and similarly for ycor.

If you used either the size or heading of the link turtles you can use the reporters 1ink—length
and link-heading instead.

New "of'"" syntax

We have replaced three different language constructs, -of (with hyphen), value-from, and
values—from with a single o £ construct (no hyphen).

old new
color-of turtle O [color] of turtle O

[size * size] of

lue-f 1 ize * si
value-from turtle 0 [size size] turtle 0

mean values—-from turtles [size] mean [size] of turtles
When of is used with a single agent, it reports a single value. When used with an agentset, it
reports a list of values (in random order, since agentsets are always in random order).

Note that when opening old models in the new version, -of, value-from, and values-from will
automatically be converted to use "of" instead, but some nested uses of these constructs are too
complex for the converter and must be converted by hand.

Serial ask

The ask command is now serial rather than concurrent. In other words, the asked agents will run
one at a time. Not until one agent completely finishes the entire body of the ask does the next agent
start.

Note that even the old ask was never truly concurrent; we simulated concurrent execution by
interleaving execution among the agents using a turn-taking mechanism described in the NetLogo
FAQ.

We have made this change because in our experience, users often wrote models that behaved in
unexpected ways due to the simulated concurrency, but rarely wrote models that benefited from the
simulated concurrency. Models exhibiting unexpected behavior could usually be fixed by adding the
without—interruption command in the right places, but it was difficult for users to know
whether that command was needed and if so, where.

In NetLogo 4.0, without—interruption is no longer necessary unless your model uses
ask—concurrent (or a turtle or patch forever button containing code that depends on simulated
concurrency). In most models, all uses of without—-interruption can be removed.
The simulated concurrency formerly employed by "ask" is still accessible in three ways:

e You may use the ask—-concurrent primitive instead of ask to get the old simulated

concurrency

Transition Guide 143

NetLogo 4.1 User Manual

e Commands issued in the Command Center directly to turtles, patches, or links have an
implied ask-concurrent.
e Turtle, patch, and link forever buttons have an implied ask-concurrent as well.
Note that ask itself is always serial regardless of the context in which it is used, however.

In our own Models Library, models that make use of this concurrency are rare. A prominent
example, though, is Termites, which uses a concurrent turtle forever button.

Tick counter
NetLogo now has a built-in tick counter for representing the passage of simulated time.

You advance the counter by one using the £ick command. If you need to read its value, there's a
reporter called ticks. The clear—all command resets the tick counter; so does reset—ticks.

In most models the tick counter will be integer-valued, but if you want to use smaller increments of
time, you can use the tick-advance command to advance the tick counter by any positive
amount, including fractional amounts. Some Models Library models that use tick-advance are
Vector Fields and the GasLab models.

The value of the tick counter is displayed in the toolbar at the top of the Interface tab. (You can use
the Settings... button in the toolbar to hide the tick counter, or change the word "ticks" to something
else.)

View update modes

In the past, NetLogo always tried to update the view about 20 times a second. We're now calling
that "continuous" view updates. The biggest problem with it was that you usually want updates to
happen between model ticks, not in the middle of a tick, so we had a checkbox on buttons that (by
default) forced a display update after every button iteration. That made sure updates happened
between ticks, but it didn't get rid of the intermediate updates. You had to use no-display and
display to lock them out.

We still support continuous updates. They are the default when you start up NetLogo. But most
Models Library models now use tick-based updates. With tick-based updates, updates happen only
when the tick counter advances. (The display command can be used to force additional updates;
see below.)

The advantages of tick-based updates as we see them are as follows:

1. Consistent, predictable view update behavior which does not vary from computer to
computer or from run to run.

2. Intermediate updates can confuse the user of your model by letting them see things they
aren't supposed to see, which may be misleading.

3. Increased speed. Updating the view takes time, so if one update per tick is enough, then
enforcing than there is only one update per tick will make your model faster.

4. Instead of having a "force view update" checkbox in every button like in NetLogo 3.1, we
only need one choice which applies to the entire model.

144 Transition Guide

NetLogo 4.1 User Manual

5. Using the speed slider to slow down a model now just inserts pauses between ticks. So with
tick-based updates, setup buttons are no longer affected by the speed slider. This was a
real annoyance with the old speed slider. (The annoyance persists for models that use
continuous updates, though.)

As mentioned above, most models in our Models Library now uses tick-based updates.
Even for models that would normally be set to tick-based updates, it may be useful to switch to

continuous updates temporarily for debugging purposes. Seeing what's going on within a tick,
instead of only seeing the end result of a tick, could help with troubleshooting.

If you switch your model to use tick-based updates, you'll also need to add the £ ick command to
your code, otherwise the view won't update. (Note that the view still always updates when a button
pops up or a command entered in the command center finishes, though. So it's not like the view will
just stay frozen indefinitely.)

How to make a model use ticks and tick-based updates

Here are the steps to follow to convert your model to use ticks and tick-based updates in NetLogo
4.0:

1. In the Interface tab toolbar, on the right hand side where it says "update view:", change the
setting from "continuously" to "on ticks".

2. Add the £ick command to your go procedure, at or near the end. In Models Library models
we always put t ick after the agents move but before any plotting commands. That's
because the plotting commands might contain something like plotxy ticks ... and we
want the new value of the tick counter used, not the old one. Most models don't refer to the
tick counter in their plotting commands, but nonetheless, for consistency and to avoid
mistakes we suggest always putting t i ck before the plotting commands.

Some models will require some additional changes:

1. If your model already has a global "ticks" or "clock" or "time" variable, get rid of it. Use the
tick command and ticks reporter instead. (If your model uses fractional increments of
time, use tick—-advance instead of tick.) If you had a monitor for that variable, you can
get rid of it; there's now a tick counter in the toolbar.

2. clear—all resets the tick counter to zero. If you don't use clear—-all in your setup
procedure, then you may need to add reset—ticks to reset the counter to zero.

3. If you used no—displayv and display to prevent view updates from happening in the
middle of go, you can get rid of them.

4. If your model needs to update the view without advancing the tick counter (examples: Party,
Dice Stalagmite, network models with animated layout, models with mouse interaction
buttons), use the display command to force additional view updates so the user can see
what is going on.

Speed slider

Previous versions of NetLogo had a speed slider that could be used to make models run slower, so
you can see what's going on.

Transition Guide 145

NetLogo 4.1 User Manual

In NetLogo 4.0, the slider can be used to speed up models as well. It does this by updating the view
less frequently. Updating the view takes time, so the fewer updates, the faster the model runs.

The default position of the slider is in the center. When you're at the center, the slider says "normal
speed".

As you move the slider away from the center position, the model will gradually run faster or slower.

At very high speeds, view updates become very infrequent and may be separated by several
seconds. It may feel like the model is actually running slower, since the updates are so infrequent.
But watch the tick counter, or other indicators such as plots, and you'll see that yes, the model really
is running faster. If the infrequent updates are disconcerting, don't push the slider so far over.

When using tick-based updates, slowing the model down does not cause additional view updates.
Rather, NetLogo simply pauses after each tick.

When using continuous updates, slowing the model down means view updates become more
closely spaced. If you push the speed slider more than halfway to the left, the model will be running
so slowly that you can watch turtles moving one at a time! This is new in NetLogo 4.0; in previous
NetLogo versions, no matter how slowly you ran a model, you would never see the agents in an
ask moving one at a time; all the agents in an ask always appeared to move together.

Numbers

NetLogo no longer maintains an internal distinction between integers and floating point numbers. So
for example:

Old:

observer> print 3

3

observer> print 3.0

3.0

observer> print 1 + 2

3

observer> print 1.5 + 1.5
3.0

observer> print 3 = 3.0
true

(The last line shows that although the distinction between integer 3 and floating point 3.0 was
maintained, the two numbers were still considered equal.)

New:

observer> print 3

3

observer> print 3.0

3

observer> print 1 + 2

3

observer> print 1.5 + 1.5
3

observer> print 3 = 3.0

146 Transition Guide

NetLogo 4.1 User Manual

true
We expect that only rare models will be negatively impacted by this change.

A benefit of this change is that NetLogo now supports a much larger range of integers. The old
range was -2,147,483,648 to 2,147,483,647 (around +/- 2 billion); the new range is
+/-9,007,199,254,740,992 (around +/- 9 quadrillion).

Agentset building

NetLogo 3.1 (and some earlier versions) included primitives called turtles—-from and
patches—-from that were occasionally useful for building agentsets. In NetLogo 4.0, these
primitives have been replaced with new primitives called turtle—set and patch—set that are
much more flexible and powerful. (Link—set exists as well.) See the entries for these primitives in
the NetLogo Dictionary. Models that use the old turtles—from and patches-from will need to
be altered by hand to use the new primitives.

RGB Colors

In NetLogo 3.1 RGB and HSB colors could be approximated as NetLogo colors using the rgb and
hsb primitives. These have been renamed to approximate—rgb and approximate—hsb and
now expect inputs in the range 0-255, not 0-1.

The full RGB spectrum is now available in NetLogo so it may no longer be necessary to use these

primitives at all. You can set any color variable to a three-item RGB list, with values in the 0-255
range, and get that exact color. See the Color section of the Programming Guide for details.

Tie
In previous versions __tie was provided as an experimental feature. As of NetLogo 4.0 links have
a tie—mode variable which can be setto "none", "free",or "fixed".In 4.0 tie isnow a

link-only primitive. This means that to tie turtle 1 to turtle 0 you write:

ask turtle 0 [create-link-to turtle 1 [tie]]

See the Tie section of the programming guide for details.

HubNet Clients

A HubNet activity's client interface is no longer stored in a separate model file. To import a client
from an old model select File -> Import -> Import HubNet Client. Then when asked, import from the
Interface Tab. You will no longer need the external client model and you will no longer need to point
to it when setting the client interface so this:

hubnet-set-client-interface "COMPUTER" ["my-client.nlogo"]

becomes:

hubnet-set-client-interface "COMPUTER" []

Transition Guide 147

NetLogo 4.1 User Manual

Performance of Lists

The internal implementation of lists has changed which changes some of the performance
properties of lists, see the Programming guide for details on the current implementation. Note that
fput is much faster than 1put thus, you may improve performance simply by switching to fput. If
performance is still a problem you may want to consider using the Array & Table extensions

Since NetLogo 3.0

Agentsets

If your model is behaving strangely or incorrectly, perhaps it's because since NetLogo 3.1,
agentsets are now always in random order. In prior versions of NetLogo, agentsets were always in a
fixed order. If your code depended on that fixed order, then it won't work anymore. How to fix your
model to work with randomized agentsets depends on the details of what your code is doing. In
some situations, it is helpful to use the sort or sort-by primitives to convert an agentset (random
order) into a list of agents (fixed order). See "Lists of agents" in the Lists section of the
Programming Guide.

Wrapping

If you are seeing pieces of turtle shapes wrapping around the view edges, it's because NetLogo 3.0
allowed you to turn off such wrapping in the view without affecting the behavior of the model. Since
NetLogo 3.1, if you don't want the view to wrap you must make it so the world doesn't wrap, using
the new topology feature. Making this change may require other changes to your model, though.
See the Topology section of the Programming Guide for a thorough discussion of how to convert
your model to take advantage of this new feature.

Random turtle coordinates

Many models made in NetLogo 3.0 or earlier use setxy random world-width random
world-height to scatter turtles randomly, using either random or random-float. It only works if
world wrapping is on.

(Why? Because when wrapping is on, you can set coordinates of turtles to numbers beyond the
edge of the world and NetLogo will wrap the turtle to the other side. But in worlds that don't wrap
setting the x or y coordinates of a turtle to a point outside the bounds of the world causes a runtime
error. The world wrap settings were added in NetLogo 3.1. See the Topology section of the
Programming Guide for more information.)

To fix your model so that it works regardless of the wrapping settings, use one of these two
commands instead:

setxy random-xcor random-ycor
setxy random-pxcor random-pycor

The two commands are a bit different. The first command puts the turtle on a random point in the
world. The second command puts the turtle on the center of a random patch. An even more concise
way to put a turtle on the center of a random patch is:

148 Transition Guide

NetLogo 4.1 User Manual

move-to one-of patches

Transition Guide 149

NetLogo 4.1 User Manual

150 Transition Guide

Applets

NetLogo models can be run as Java applets inside a web browser.

Making an applet

You can make a model into an applet by choosing Save As Applet on NetLogo's File menu. If your
model has unsaved changes you will first be prompted to save it. Then you will also be prompted to
save an HTML file containing the applet.

For applets to work, the HTML file, your model file (ending in .nlogo), and the file NetLogoLite.jar
must all be in the same folder. (You can copy NetLogoLite.jar from the folder where you installed
NetLogo.)

On some systems, you can test the applet locally on your computer before uploading it to a web
server. It doesn't work on all systems, though, so if it doesn't work from your hard drive, please try
uploading it to a web server.

You don't need to include everything in the html file in your page. If you want, you can just take the
HTML code beginning with <applet> and ending with </applet>, and paste it into any HTML file you
want. It's even OK to put multiple <applet> tags on a single page.

Additional files

Applets can read files on the web server. If your applet requires additional files, such as text files it
reads, images it imports, and so on, you will also need to put those files in the same folder. These
files should appear in the same location relative to the model file as they appear on your computer.
Applets cannot read or write files on the user's computer, only the web server. Applets cannot
browse web server or the user's computer, meaning, that user—file and user—new—file do
nothing in an applet. All files required to run your model including the model file itself and
NetLogolLite.jar must be readable by the web server user.

Extensions

Many extensions can be used in applets. Simply place the folder containing the extension jar in the
same folder as the model.

Extensions that require native libraries don't work from applets. This includes the QTJ and GoGo
extensions.

Using an alternate jar location

If NetLogoLite.jar and your model are in different directories, you must modify the archive= and
value= lines in the HTML code to point to their actual locations. (For example, if you have multiple
applets in different directories on the same web server, you may want to put a single copy of
NetLogolite.jar in one central place and change the archive= lines of all the HTML files to point to
that one central copy. This will save disk space for you and download time for your users.)

Applets 151

NetLogo 4.1 User Manual

Java requirements

Getting the right version

Current versions of NetLogo require that your web browser support Java 5 or higher. Here's how to
get the right Java:

e If you're on Windows (Vista, XP, or 2000), you need to download the Java browser plugin
from http://www.java.com/en/download/windows_manual.jsp.

e If you're on Mac OS X, you need Mac OS X 10.4 or higher. (NetLogo 4.0 was the last
version to support Mac OS X 10.2 and 10.3.)

e |f you're on Linux or another Unix, you will need version 5 (or higher) of the Sun Java
Runtime Environment. It is available for download at http://www.java.com/. Check your
browser's home page for information about installing the Java plugin.

If you think you have the right browser and plugin, but it still doesn't work, check your browser's
preferences to make sure that Java is enabled.

The following web site may be helpful for figuring out what Java you have and getting the right

version running: hitp://www.javatester.org/.
Increasing the available memory

Some NetLogo applets may require more memory than the browser normally makes available. This
may happen if you have large numbers of agents. On Windows, you can increase the available
memory ("heap") space in the Java Control Panel's applet runtime settings.

Mac OS X 10.4 users, note that Mac OS X 10.4 initially had a rather low memory limit for Java
applets, namely 64 megabytes. Eventually a Java update from Apple raised it to 96 megabytes. You
can get the update through Software Update.

If your browser is using the browser plug-in that comes with the Sun JDK or JRE then instructions
for starting the Java Plug-In Control Panel are available _here. In the Advanced tab of the Control
Panel add the following to the Java Runtime Parameters field: "-Xmx1024M".

Features not supported in applets

e Extensions that require native libraries won't work.

e The 3D view is not supported.

e The bytecode generator is not used in applets (which means that some models run
somewhat slower as applets).

e Web servers that return custom error messages may cause Java exceptions. See the EAQ
for the workaround.

152 Applets

http://www.java.com/en/download/windows_manual.jsp
http://www.java.com/
http://www.javatester.org/
http://java.sun.com/j2se/1.5.0/docs/guide/plugin/developer_guide/control_panel.html#starting

Shapes Editor Guide

The Turtle and Link Shape Editors allows you to create and save turtle and link designs. NetLogo
uses fully scalable and rotatable vector shapes, which means you can create designs by combining
basic geometric elements, which can appear on-screen in any size or orientation.

Getting started
To begin making shapes, choose Turtle Shapes Editor or Link Shapes Editor in the Tools menu.
A new window will open listing all the shapes currently in the model, beginning with default, the

default shape. The Shapes Editor allows you to edit shapes, create new shapes, and borrow from
another model. You can also import turtle shapes from a library of pre-existing shapes.

Importing shapes

Every new model in NetLogo starts off containing a small core set of frequently used shapes. Many
more turtle shapes are available by using the Import from library... button. This brings up a dialog
where you can select one or more shapes and bring them into your model. Select the shapes, then
press the Import button.

Similarly, you can use the Import from model... button to borrow shapes from another model.

Default shapes

Here are the turtle shapes that are included by default in every new NetLogo model:

First row: default, airplane, arrow, box, bug, butterfly, car
Second row: circle, circle 2, cow, cylinder, dot, face happy, face neutral
Third row: face sad, fish, flag, flower, house, leaf, line

Shapes Editor Guide 153

NetLogo 4.1 User Manual

Fourth row: line half, pentagon, person, plant, sheep, square, square 2
Fifth row: star, target, tree, triangle, triangle 2, truck, turtle

Sixth row: wheel, x

Shapes library

And here are the shapes in the shapes library (including all of the default shapes, too):

=
"

Q& & |

p B § um

F—

OX 2 X -ANE-4 °

-

X

=
S o

@

2 S@ e EQO

| —)
| . |

@
&=
DL

4
C

¢ € 3

i \ A

-l 0
b
L]
-

& = >

{ &

¢ I A «
)
Dy

ot
Yoat

154 Shapes Editor Guide

NetLogo 4.1 User Manual

By default there is only one Link shape in a model, that is "default". This shape is simply a single
straight line with a simple arrowhead (if the link happens to be directed).

Creating and editing turtle shapes

Pressing the New button will make a new shape. Or, you may select an existing shape and press
Edit.

Tools

In the upper left corner of the editing window is a group of drawing tools. The arrow is the selection
tool, which selects an already drawn element.

To draw a new element, use one of the other seven tools:

¢ The line tool draws line segments.
¢ The circle, square, and polygon tools come in two versions, solid and outline.

When using the polygon tool, click the mouse to add a new segment to the polygon. When you're
done adding segments, double click.

After you draw a new element, it is selected, so you can move, delete, or reshape it if you want:
e To move it, drag it with the mouse
e To delete it, press the Delete button.

e To reshape it, drag the small "handles" that appear on the element only when it is selected.
e To change its color, click on the new color.

Shapes Editor Guide 155

NetLogo 4.1 User Manual

Previews

As you draw your shape, you will also see it in five smaller sizes in the five preview areas found
near the bottom of the editing window. The previews show your shape as it might appear in your
model, including how it looks as it rotates. The number below each preview is the size of the
preview in pixels. When you edit the view, patch size is also measured in pixels. So for example, the
preview with "20" below it shows you how your shape would look on a turtle (of size 1) on patches
of size 20 pixels.

The rotatable feature can be turned off if you want a shape that always faces the same way,
regardless of the turtle's heading.

Overlapping shapes

New elements go on top of previous elements. You can change the layering order by selecting an
element and then using the Bring to front and Send to back buttons.

Undo

At any point you can use the Undo button to undo the edit you just performed.

Colors

Elements whose color matches the Color that changes (selected from a drop-down menu -- the
default is gray) will change color according to the value of each turtle's color variable in your model.
Elements of other colors don't change. For example, you could create cars that always have yellow
headlights and black wheels, but different body colors.

Other buttons

The "Rotate Left" and "Rotate Right" buttons rotate elements by 90 degrees. The "Flip Horizontal"
and "Flip Vertical" buttons reflect elements across the axes.

These four buttons will rotate or flip the entire shape, unless an element is selected, in which case
only that element is affected.

These buttons are especially handy in conjunction with the "Duplicate" button if you want to make
shapes that are symmetrical. For example, if you were making a butterfly, you could draw the
butterfly's left wing with the polygon tool, then duplicate the wing with the "Duplicate" button, then
turn the copy into a right wing with the "Flip Horizontal" button.

Shape design
It's tempting to draw complicated, interesting shapes, but remember that in most models, the patch

size is so small that you won't be able to see very much detail. Simple, bold, iconic shapes are
usually best.

156 Shapes Editor Guide

NetLogo 4.1 User Manual
Keeping a shape

When the shape is done, give it a name and press the Done button at the bottom of the editing
window. The shape and its name will now be included in the list of shapes along with the "default
shape.

Creating and editing link shapes

Managing link shapes is very similar to managing turtle shapes. So, you can create a new shape
but pressing the New button or you can edit existing shapes, when you are done editing a shape
press Done if you want to keep it.

Changing link shape properties
There are several different properties for each link shape that you are allowed to change:

e Name - link shapes can have the same name as turtle shapes but must be unique among
link shapes.

e Direction Indicator - the direction indicator (the little arrow on directed links) is just like the
turtle vector shapes, you can edit it using the same editor by pressing the Edit button.

e Curviness - this is the amount of bend in a link expressed in patches (this is particularly
useful if you have directed links going in both directions so you can discern both links)

e Number of lines: You can have 1, 2, or 3 lines in each link shape, you control this by
selecting line patterns in the "left line", "middle line", and "right line" selection boxes.

e Dash pattern of lines: There are several dashed line patterns available in the selection boxes
so not all lines need be solid.

Here are a few link shapes with various properties:

Shapes Editor Guide 157

NetLogo 4.1 User Manual
Using shapes in a model

In the model's code or in the command center, you can use any of the shapes that are in the model
(though only turtles can have turtle shapes and only links can have link shapes) For example,
suppose you want to create 50 turtles with the shape "rabbit". Provided there is some turtle shape
called rabbit in this model, give this command to the observer in the command center:

observer> crt 50
And then give these commands to the turtles to spread them out, then change their shape:

turtles> fd random 15
turtles> set shape "rabbit"

Voila! Rabbits! Note the use of double quotes around the shape name. Shape names are strings.

Similarly, you can set the shape variable of links. Assuming there is a link shape called "road" in this
model:

observer> crt 5 [create-links-with other turtles]
turtles> fd 5
links> set shape "road"

The set-default-shape command is also useful for assigning shapes to turtles and links.

158 Shapes Editor Guide

BehaviorSpace Guide
This guide has three parts:

e What is BehaviorSpace?: A general description of the tool, including the ideas and
principles behind it.

e How It Works: Walks you through how to use the tool and highlights its most commonly
used features.

e Advanced Usage: How to use BehaviorSpace from the command line, or from your own
Java code.

* Source Code: Where to get the source code for BehaviorSpace.

What is BehaviorSpace?

BehaviorSpace is a software tool integrated with NetLogo that allows you to perform experiments
with models.

BehaviorSpace runs a model many times, systematically varying the model's settings and recording
the results of each model run. This process is sometimes called "parameter sweeping". It lets you
explore the model's "space" of possible behaviors and determine which combinations of settings
cause the behaviors of interest.

If your computer has multiple processor cores, then by default, model runs will happen in parallel,
one per core.

BehaviorSpace is free and open source software.

Why BehaviorSpace?

The need for this type of experiment is revealed by the following observations. Models often have
many settings, each of which can take a range of values. Together they form what in mathematics is
called a parameter space for the model, whose dimensions are the number of settings, and in which
every point is a particular combination of values. Running a model with different settings (and
sometimes even the same ones) can lead to drastically different behavior in the system being
modeled. So, how are you to know which particular configuration of values, or types of
configurations, will yield the kind of behavior you are interested in? This amounts to the question of
where in its huge, multi-dimension parameter space does your model perform best?

For example, suppose you want speedy synchronization from the agents in the Fireflies model. The
model has four sliders -- number, cycle-length, flash-length and number-flashes -- that have
approximately 2000, 100, 10 and 3 possible values, respectively. That means there are 2000 * 100 *
10 * 3 = 600,000 possible combinations of slider values! Trying combinations one at a time is hardly
an efficient way to learn which one will evoke the speediest synchronization.

BehaviorSpace offers you a much better way to solve this problem. If you specify a subset of values
from the ranges of each slider, it will run the model with each possible combination of those values
and, during each model run, record the results. In doing so, it samples the model's parameter space
-- not exhaustively, but enough so that you will be able to see relationships form between different
sliders and the behavior of the system. After all the runs are over, a dataset is generated which you

BehaviorSpace Guide 159

NetLogo 4.1 User Manual

can open in a different tool, such as a spreadsheet, database, or scientific visualization application,
and explore.

By enabling you to explore the entire "space" of behaviors a model can exhibit, BehaviorSpace can
be a powerful assistant to the modeler.

How It Works

To begin using BehaviorSpace, open your model, then choose the BehaviorSpace item on
NetLogo's Tools menu.

Managing experiment setups

The dialog that opens lets you create, edit, duplicate, delete, and run experiment setups.
Experiments are listed by name and how by model runs the experiment will consist of.

Experiment setups are considered part of a NetLogo model and are saved as part of the model.

To create a new experiment setup, press the "New" button.

Creating an experiment setup

In the new dialog that appears, you can specify the following information. Note that you don't always
need to specify everything; some parts can be left blank, or left with their default values, depending
on your needs.

Experiment name: If you have multiple experiments, giving them different names will help you
keep them straight.

Vary variables as follows: This is where you specify which settings you want varied, and what
values you want them to take. Variables can include sliders, switches, choosers, and any global
variables in your model.

Variables can also include max-pxcor, min-pxcor, max-pycor and min-pycor, world-width,
world-height and random-seed. These are not, strictly speaking, variables, but BehaviorSpace
lets you vary them as if they were. Varying the world dimensions lets you explore the effect of world
size upon your model. Since setting world-width and world-height does not necessarily
define the bounds of the world how they are varied depends on the location of the origin. If the
origin is centered, BehaviorSpace will keep it centered so the values world-width or
world-height must be odd. If one of the bounds is at zero that bound will be kept at zero and the
other bound will move, for example if you start with a world with min-pxcor = 0 max-pxcor =
10 and you vary world-width like this:

["world-width" [11 1 14]]

min-pxcor Will stay at zero and max—pxcor will setto 11, 12, and 13 for each of the runs. If
neither of these conditions are true, the origin is not centered, nor at the edge of the world you
cannot vary world-height or world-width directly but you should vary max—pxcor,

max-pycor, min—pxcor and min-pycor instead.

160 BehaviorSpace Guide

NetLogo 4.1 User Manual

Varying random-seed lets you repeat runs by using a known seed for the NetLogo random
number generator. Note that you're also free to use the random-seed command in your
experiment's setup commands. For more information on random seeds, see the Random Numbers
section of the Programmer's Guide.

You may specify values either by listing the values you want used, or by specifying that you want to
try every value within a given range. For example, to give a slider named number every value from
100 to 1000 in increments of 50, you would enter:

["number" [100 50 1000]]

Or, to give it only the values of 100, 200, 400, and 800, you would enter:

["number”™ 100 200 400 800]

Be careful with the brackets here. Note that there are fewer square brackets in the second example.
Including or not including this extra set of brackets is how you tell BehaviorSpace whether you are
listing individual values, or specifying a range.

Also note that the double quotes around the variable names are required.

You can vary as many settings as you want, including just one, or none at all. Any settings that you
do not vary will retain their current values. Not varying any settings is useful if you just want to do
many runs with the current settings.

What order you list the variables in determines what order the runs will be done in. All values for a
later variable will be tried before moving to the next value for an earlier variable. So for example if
you vary both x and y from 1 to 3, and x is listed first, then the order of model runs will be: x=1 y=1,
x=1y=2, x=1y=8, x=2 y=1, and so on.

Repetitions: Sometimes the behavior of a model can vary a lot from run to run even if the settings
don't change, if the model uses random numbers. If you want to run the model more than once at
each combination of settings, enter a higher number.

Measure runs using these reporters: This is where you specify what data you want to collect from
each run. For example, if you wanted to record how the population of turtles rose and fell during
each run, you would enter:

count turtles

You can enter one reporter, or several, or none at all. If you enter several, each reporter must be on
a line by itself, for example:

count frogs
count mice
count birds

BehaviorSpace Guide 161

NetLogo 4.1 User Manual

If you don't enter any reporters, the runs will still take place. This is useful if you want to record the
results yourself your own way, such as with the export-world command.

Measure runs at every step: Normally NetLogo will measure model runs at every step, using the
reporters you entered in the previous box. If you're doing very long model runs, you might not want
all that data. Uncheck this box if you only want to measure each run after it ends.

Setup commands: These commands will be used to begin each model run. Typically, you will enter
the name of a procedure that sets up the model, typically setup. But it is also possible to include
other commands as well.

Go commands: These commands will be run over and over again to advance to the model to the
next "step". Typically, this will be the name of a procedure, such as go, but you may include any
commands you like.

Stop condition: This lets you do model runs of varying length, ending each run when a certain
condition becomes true. For example, suppose you wanted each run to last until there were no
more turtles. Then you would enter:

not any? turtles

If you want the length of runs to all be of a fixed length, just leave this blank.

The run may also stop because the go commands use the stop command, in the same way that
stop can be used to stop a forever button. The st op command may be used directly in the go
commands, or in a procedure called directly by the go commands. (The intent is that the same go
procedure should work both in a button and in a BehaviorSpace experiment.) Note that the step in
which stop is used is considered to have been aborted, so no results will be recorded for that step.
Therefore, the stopping test should be at the beginning of the go commands or procedure, not at the
end.

Final commands: These are any extra commands that you want run once, when the run ends.
Usually this is left blank, but you might use it to call the export-wor1d command or record the
results of the run in some other way.

Time limit: This lets you set a fixed maximum length for each run. If you don't want to set any
maximum, but want the length of the runs to be controlled by the stop condition instead, enter 0.

Running an experiment

When you're done setting up your experiment, press the "OK" button, followed by the "Run" button.
A dialog titled "Run options" will appear.

Run options: formats
The run options dialog lets you select the formats you would like the data from your experiment
saved in. Data is collected for each run or step, according to the setting of Measure runs at every

step option. In either case, the initial state of the system is recorded, after the setup commands run
but before the go commands run for the first time.

162 BehaviorSpace Guide

NetLogo 4.1 User Manual

Table format lists each interval in a row, with each metric in a separate column. Table data is written
to the output file as each run completes. Table format is suitable for automated processing of the
data, such as importing into a database or a statistics package.

Spreadsheet format calculates the min, mean, max, and final values for each metric, and then lists
each interval in a row, with each metric in a separate column. Spreadsheet data is more
human-readable than Table data, especially if imported into a spreadsheet application.

(Note however that spreadsheet data is not written to the results file until the experiment finishes.
Since spreadsheet data is stored in memory until the experiment is done, very large experiments
could run out of memory. And if anything interrupts the experiment, such as a runtime error, running
out of memory, or a crash or power outage, no spreadsheet results will be written. For long
experiments, you may want to enable table format as a precaution so that if something happens and
you get no spreadsheet output you'll at least get partial table output.)

After selecting your output formats, BehaviorSpace will prompt you for the name of a file to save the
results to. The default name ends in ".csv". You can change it to any name you want, but don't
leave off the ".csv" part; that indicates the file is a Comma Separated Values (CSV) file. This is a
plain-text data format that is readable by any text editor as well as by most popular spreadsheet and
database programs.

Run options: parallel runs

The run options dialog also lets you select whether you want multiple model runs to happen in
parallel, and if so, how many are allowed to be simultaneously active. This number will default to the
number of processor cores in your computer.

There are a few cautions associated with parallel runs.

First, if multiple runs are active, only one of them will be in the "foreground" and cause the view and
plots to update. The other runs will happen invisibly in the background.

Second, since parallel runs progress independently of each other, table format output may contain
interleaved, out-of-order results. When you analyze your table data, you may wish to sort it by run
number first. (Spreadsheet format output is not affected by this issue, since it is not written until the
experiment completes or is aborted.)

Third, using all available processor cores may make your computer slow to use for other tasks while
the experiment is running.

Fourth, doing runs in parallel will multiply the experiment's memory requirements accordingly. You
may need to increase NetLogo's memory ceiling (see this FA

Observing runs

his dial Il roqr [rt of how many runs hav n compl far and how
much time h f nter ny r rters for m ring the run nd if left th

"M re run ver " box check hen il | f how they vary over th r f
each run.

BehaviorSpace Guide 163

NetLogo 4.1 User Manual

You can also watch the runs in the main NetLogo window. (If the "Running Experiment" dialog is in
the way, just move it to a different place on the screen.) The view and plots will update as the model
runs. If you don't need to see them update, then use the checkboxes in the "Running Experiment"
dialog to turn the updating off. This will make the experiment go faster.

If you want to stop your experiment before it's finished, press the "Abort" button. Any results
generated so far will still be saved.

When all the runs have finished, the experiment is complete.

Advanced usage

Running from the command line

It is possible to run BehaviorSpace experiments "headless", that is, from the command line, without
any graphical user interface (GUI). This is useful for automating runs on a single machine or a
cluster of machines.

No Java programming is required. Experiment setups can be created in the GUI and then run later
from the command line, or, if you prefer, you can create or edit experiment setups directly using
XML.

How to use it

Run Java with the org.nlogo.headless.Main class. The Main.main() method supports these
arguments:

e ——model <path>:pathname of model to open (required)

e —setup-file <path>:read experiment setups from this file instead of the model file

e ——experiment <name>:name of experiment to run

e ——table <path>:pathname to send table output to (or — for standard output)

e ——spreadsheet <path>: pathname to send table output to (or - for standard output)

e —threads <number>:use this many threads to do model runs in parallel, or 1 to disable
parallel runs. defaults to one thread per processor.

e ——min-pxcor <number>:override world size setting in model file

* ——max-pxcor <number>:override world size setting in model file

e ——min-pycor <number>:override world size setting in model file

e ——max-pycor <number>:override world size setting in model file

--model is required. If you don't specify ——experiment, you must specify ——setup-file. By
default no results are generated, so you'll usually want to specify either ——table or
--spreadsheet, or both. If you specify any of the world dimensions, you must specify all four.

Examples

It is easiest if you create your experiment setup ahead of time in the GUI, so it is saved as part of
the model. To run an experiment setup saved in a model, here is an example command line:

java -server -Xmx1024M -cp NetLogo.Jjar \
org.nlogo.headless.Main \
--model Fire.nlogo \

164 BehaviorSpace Guide

NetLogo 4.1 User Manual

——experiment experimentl \
—-—table -

(For this to work, Net Logo . jar must be present along with the 1ib subdirectory containing
necessary libraries. Both NetLogo. jar and 1ib are included with NetLogo.)

After the named experiment has run, the results are sent to standard output in table format, as CSV.
("-" is how you specify standard output instead of output to a file.)

When running the headless.Main class as an application, it forces the system property
java.awt.headless to be true. This tells Java to run in headless mode, allowing NetLogo to run
on machines when a graphical display is not available.

Note the user of the —server flag to tell Java to optimize performance for "server" type
applications; we recommend this flag for best performance in most situations.

Note the use of —xmx to specify a maximum heap size of one gigabyte. If you don't specify a
maximum heap size, you will get your VM's default size, which may be unusably small. (One
gigabyte is an arbitrary size which should be more than large enough for most models; you can
specify a different limit if you want.)

The required ——model argument is used to specify the model file you want to open.

The ——experiment argument is used to specify the name of the experiment you want to run. (At
the time you create an experiment setup in the GUI, you assign it a name.)

Here's another example that shows some additional, optional arguments:

java -server -Xmx1024M -cp NetLogo.Jjar \
org.nlogo.headless.Main \
--model Fire.nlogo \
—-—experiment experiment2 \
——max-pxcor 100 \
——-min-pxcor —100 \
——max-pycor 100 \
—-min-pycor -100

Note the use of the optional —-—max-pxcor, -—max-pycor, etc. arguments to specify a different
world size than that saved in the model. (It's also possible for the experiment setup to specify values
for the world dimensions; if they are specified by the experiment setup, then there is no need to
specify them on the command line.)

Since neither --table nor --spreadsheet is specified, no results will be generated. This is useful if the
experiment setup generates all the output you need by some other means, such as exporting world
files or writing to a text file.

Yet another example:

java -server -Xmx1024M -cp NetLogo.Jjar \
org.nlogo.headless.Main \
--model Fire.nlogo \
—-—experiment experiment2 \
-—table table-output.csv \
—-—-spreadsheet spreadsheet-output.csv

BehaviorSpace Guide 165

NetLogo 4.1 User Manual

The optional —-table <filename> argument specifies that output should be generated in a table
format and written to the given file as CSV data. If - is specified as the filename, than the output is
sent to the standard system output stream. Table data is written as it is generated, with each
complete run.

The optional —-spreadsheet <filename> argument specified that spreadsheet output should
be generated and written to the given file as CSV data. If - is specified as the filename, than the
output is sent to the standard system output stream. Spreadsheet data is not written out until all
runs in the experiment are finished.

Note that it is legal to specify both ——table and --spreadsheet, and if you do, both kinds of
output file will be generated.

Here is one final example that shows how to run an experiment setup which is stored in a separate
XML file, instead of in the model file:

java -server -Xmx1024M -cp NetLogo.Jjar \
org.nlogo.headless.Main \
--model Fire.nlogo \
——setup-file fire-setups.xml \
——experiment experiment3

If the XML file contains more than one experiment setup, it is necessary to use the ——experiment
argument to specify the name of the setup to use.

In order to run any of these experiments in 3D add -Dorg.nlogo.is3d=true to any of these
startup commands, for example:

java -server -Dorg.nlogo.is3d=true -Xmx1024M -cp NetLogo.Jjar \
org.nlogo.headless.Main \
—--model Fire3D.nlogo \
—-—experiment experimentl \
-—table -

Note that you should supply a 3D model and there are also 3D arguments ——max-pzcor
<number> and ——min-pzcor <number>.

The next section has information on how to create standalone experiment setup files using XML.

Setting up experiments in XML

We don't yet have detailed documentation on authoring experiment setups in XML, but if you
already have some familiarity with XML, then the following pointers may be enough to get you
started.

The structure of BehaviorSpace experiment setups in XML is determined by a Document Type
Definition (DTD) file. The DTD is stored in NetLogo.jar, as system/behaviorspace.dtd. (JAR
files are also zip files, so you can extract the DTD from the JAR using Java's "jar" utility or with any
program that understands zip format.)

The easiest way to learn what setups look like in XML, though, is to author a few of them in
BehaviorSpace's GUI, save the model, and then examine the resulting .nlogo file in a text editor.

166 BehaviorSpace Guide

NetLogo 4.1 User Manual

The experiment setups are stored towards the end of the .nlogo file, in a section that begins and
ends with a experiments tag. Example:

<experiments>
<experiment name="experiment" repetitions="10" runMetricsEveryStep="true">
<setup>setup</setup>
<go>go</go>
<exitCondition>not any? fires</exitCondition>
<metric>burned-trees</metric>
<enumeratedValueSet variable="density">
<value value="40"/>
<value value="0.1"/>
<value value="70"/>
</enumeratedvalueSet>
</experiment>
</experiments>

In this example, only one experiment setup is given, but you can put as many as you want between
the beginning and ending experiments tags.

Between looking at the DTD, and looking at examples you create in the GUI, it will hopefully be
apparent how to use the tags to specify different kind of experiments. The DTD specifies which tags
are required and which are optional, which may be repeated and which may not, and so forth.

When XML for experiment setups is included in a model file, it does not begin with any XML
headers, because not the whole file is XML, only part of it. If you keep experiment setups in their
own file, separate from the model file, then the extension on the file should be .xml not .nlogo, and
you'll need to begin the file with proper XML headers, as follows:

<?xml version="1.0" encoding="us-ascii"?>
<!DOCTYPE experiments SYSTEM "behaviorspace.dtd">

The second line must be included exactly as shown. In the first line, you may specify a different
encoding than us-ascii, such as UTF-8, but NetLogo doesn't support non-ASCII characters in
most situations, so specifying a different encoding may be pointless.

Controlling API

If BehaviorSpace is not sufficient for your needs, a possible alternative is to use our Controlling API,
which lets you write Java code that controls NetLogo. The API lets you run BehaviorSpace
experiments from Java code, or, you can write custom code that controls NetLogo more directly to
do BehaviorSpace-like things. See the Controlling section of the User Manual for further details on
both possibilities.

Source code

BehaviorSpace is free and open source software. It is made available under the GNU Lesser
General Public License (LGPL), version 3 or later. The source code is included in the NetLogo
distribution, in 1ib/BehaviorSpace-src.zip.

BehaviorSpace is written in the Scala programming language. Scala code compiles to Java byte
code and is fully interoperable with Java and other JVM languages.

BehaviorSpace Guide 167

NetLogo 4.1 User Manual

The sources jar includes instructions on how to recompile it.

168 BehaviorSpace Guide

System Dynamics Guide
This guide has three parts:

e What is the System Dynamics Modeler?: A general description of the tool, including the

ideas and principles behind it.
e How It Works: Describes the interface and how you use it.
rial: Wolf-Sh Pr ion I : Walks you through creating a model with the
System Dynamics Modeler.

What is the NetLogo System Dynamics Modeler?

System Dynamics is a type of modeling where you try to understand how things relate to one
another. It is a little different from the agent-based approach we normally use in NetLogo models.

With the agent-based approach we usually use in NetLogo, you program the behavior of individual
agents and watch what emerges from their interaction. In a model of Wolf-Sheep Predation, for
example, you provide rules for how wolves, sheep and grass interact with each other. When you run
the simulation, you watch the emergent aggregate-level behavior: for example, how the populations
of wolves and sheep change over time.

With the System Dynamics Modeler, you don't program the behavior of individual agents. Instead,
you program how populations of agents behave as a whole. For example, using System Dynamics
to model Wolf-Sheep Predation, you specify how the total number of sheep would change as the
total number of wolves goes up or down, and vice versa. You then run the simulation to see how
both populations change over time.

The System Dynamics Modeler allows you to draw a diagram that defines these populations, or
"stocks", and how they affect each other. The Modeler reads your diagram and generates the

appropriate NetLogo code -- global variables, procedures and reporters -- to run your System
Dynamics model inside of NetLogo.

Basic Concepts
A System Dynamics diagram is made of four kinds of elements: Stocks, Variables, Flows and Links.

A Stock is a collection of stuff, an aggregate. For example, a Stock can represent a population of
sheep, the water in a lake, or the number of widgets in a factory.

A Flow brings things into, or out of a Stock. Flows look like pipes with a faucet because the faucet
controls how much stuff passes through the pipe.

A Variable is a value used in the diagram. It can be an equation that depends on other Variables, or
it can be a constant.

A Link makes a value from one part of the diagram available to another. A link transmits a number
from a Variable or a Stock into a Stock or a Flow.

System Dynamics Guide 169

NetLogo 4.1 User Manual

The System Dynamics Modeler figures out how the value of your Stocks change over time by
estimating them over and over. The estimation isn't always perfect, but you can affect its accuracy
by changing the value of dt. As dt decreases, you estimate the model more frequently, so it gets
more accurate. However, decreasing dt also makes but the model run more slowly.

Sample Models

There are four models in the Sample Models section of the NetLogo Models Library that use the
System Dynamics Modeler. All four models explore population growth (and, in models with
predation, population decline).

Exponential Growth and Logistic Growth are simple examples of growth in one stock.

Wolf Sheep Predation (aggregate) is an example of a system with multiple stocks influencing one
another. It models a predator-prey ecosystem using the System Dynamics Modeler.

Wolf Sheep Predation (docked) is an example of a model that runs both the a System Dynamics
model and an agent-based model side-by-side. It runs the System Dynamics implementation of

Wolf-Sheep Predation next to the agent-based Wolf Sheep Predation model from the Biology
section of Sample Models.

How it Works

To open the System Dynamics Modeler, choose the System Dynamics Modeler item in the Tools
menu. The System Dynamics Modeler window will appear.

806 System Dynamics Modeler

{ Diagram | Procedures

edit| | @ Delete I ‘(Check‘ I ||:|5m-:k||<> VariahleH:t Flow||—> Link| I dt = 1.0

T
|
growth-rate {
}
}
}
}
"

Diagram Tab

The Diagram tab is where you draw your System Dynamics diagram.

170 System Dynamics Guide

NetLogo 4.1 User Manual

The toolbar contains buttons to edit, delete and create items in your diagram.

Creating Diagram Elements

{El Stock] k} Variable] ‘:.: Flow] ’—» Link]

A System Dynamics diagram is made up of four kinds of components: Stocks, Variables, Flows and
Links.

Stock
To create a Stock, press the Stock button in the toolbar and click in the diagram area below.
A new Stock appears. Each Stock requires a unique name, which becomes a global
variable. Stocks also require an Initial value. It can be a number, a variable, a complex
NetLogo expression, or a call to a NetLogo reporter.

Variable
To create a Variable, press the Variable button and click on the diagram. Each Variable in
the System Dynamics Model requires a unique name, which becomes the name of a
procedure, or a global variable. Variables also require an Expression. This expression can
be a number, a variable, a complex NetLogo expression, or a call to a NetLogo reporter.

Flow
To create a Flow, press the Flow button. Click and hold where you want the Flow to begin --
either on a Stock or in an empty area -- and drag the mouse to where you want the Flow to
end -- on a Stock or in an empty area. Each Flow requires a unique name, which becomes a
NetLogo reporter. Flows require an Expression, which is the rate of flow from the input to
the output. This expression can be a number, a variable, a complex NetLogo expression, or
a call to a NetLogo reporter. If the value is negative, the flow is in the opposite direction.

When more than one Flow is connected to a Stock, it is important to consider how they
should interact with one another. NetLogo will not enforce that the Flows out of a stock occur
in any particular order. Also, NetLogo will not ensure that the sum of Flows out of a Stock
are less than or equal to the value of the Stock. These behaviors can be implemented
explicitly when creating the Expression for a Flow.

For example, if the Flow is defined as a constant value, 10, you can ensure it never draws
more than the value of the Stock by using the min primitive: min (1ist stock 10).Ifl
want Flow A to deplete a Stock before Flow B is calculated, | can link Flow A to Flow B and
modify Flow B to subtract Flow A's value from the stock: min (list (max (list O
(stock - flow—-a))) 10).

Link
To create a Link, click and hold on the starting point for the link -- a Variable, Stock or Flow
-- and drag the mouse to the destination Variable or Flow.

Working with Diagram Elements
When you create a Stock, Variable, or Flow, you see a red question-mark on the element. The
question-mark indicates that the element doesn't have a name yet. The red color indicates that the

Stock is incomplete: it's missing one or more values required to generate a System Dynamics
model. When a diagram element is complete, the name turns black.

System Dynamics Guide 171

NetLogo 4.1 User Manual

Selecting: To select a diagram element, click on it. To select multiple elements, hold the shift key.
You can also select one or more elements by dragging a selection box.

Editing: To edit a diagram element, select the element and press the "Edit" button on the toolbar.
Or just double-click the element. (You can edit Stocks, Flows and Variables, but you can't edit
Links).

Moving: To move a diagram element, select it and drag the mouse to a new location.

Editing dt

dt = 1.0 |Edit

On the right side of the toolbar is the default dt, the interval used to approximate the results of your
System Dynamics model. To change the value of the default dt for your aggregate model, press the
Edit button next to the dt display and enter a new value.

Errors

When you click the "check" button or when you edit a stock, flow, or variable the modeler will
automatically generate the NetLogo code the corresponds to your diagram and try to compile that
code. If there is an error the Procedures tab will turn red and a message will appear, and the portion
of the the generated code that is causing the trouble will be highlighted.

™ Nothing named SHEP has been defined

: Diagram © Procedures }

i3 use temporary variables so order of computation doesn't affect result.
let new-sheep max{ list @ (sheep + local-sheep-births) J
set sheep new-sheep

tick-advance dt
end

;3 Report value of flow
to-report sheep-births

report sheep-birth-rate * shep * dt
end

;3 Plot the current state of the system dynamics model's stocks
3 Call this procedure in your model's GO procedure.
to system-dynamics-do-plot
if plot-pen-exists? "sheep” [
set-current-plot-pen "sheep”
plotxy ticks sheep
1

end

This should give you a better idea which element in the diagram is causing problem.

172 System Dynamics Guide

NetLogo 4.1 User Manual
8enea Flow

Mame | sheep-births

Expression
sheep-birth-rate * shep

I;' Cancel :,I {GK) 7

Procedures Tab

The System Dynamics Modeler generates NetLogo variables and procedures based on the
contents of your diagram. These procedures are what make the diagram actually perform
calculations. The Procedures tab in the System Dynamics Modeler window displays the NetLogo
procedures generated from your diagram.

You can't edit the contents of the Procedures tab. To modify your System Dynamics mode, edit the
diagram.

Let's take a closer look at how the generated code relates to the diagram.:

¢ Stocks correspond to a global variable that is initialized to the value or expression you
provided in the Initial value field. Each Stock will be updated every step based on the Flows
in and out.

¢ Flows correspond to a procedure that contains the expression you provided in the
Expression field.

e Variables can either be global variables or procedures. If the Expression you provided is a
constant it will be a global variable and initialized to that value. If you used a more
complicated Expression to define the Variable it will create a procedure like a Flow.

The variables and procedures defined in this tab are accessible in the main NetLogo window, just
like the variables and procedures you define yourself in the main NetLogo Procedures tab. You can
call the procedures from the main Procedures tab, from the Command Center, or from buttons in
the Interface tab. You can refer to the global variables anywhere, including in the main Procedures
tab and in monitors.

There are three important procedures to notice: system-dynamics—-setup,
system—-dynamics—go, and system—dynamics—-do-plot.

system—dynamics-setup initializes the aggregate model. It sets the value of dt, calls
reset—-ticks, and initializes your stocks and your converters. Converters with a constant value
are initialized first, followed by the stocks with constant values. The remaining stocks are initialized
in alphabetical order.

system—dynamics—go runs the aggregate model for dt time units. It computes the values of
Flows and Variables and updates the value of Stocks. It also calls t i ck—advance with the value of
dt. Converters and Flows with non-constant Expressions will be calculated only once when this
procedure is called, however, their order of evaluation is undefined

System Dynamics Guide 173

NetLogo 4.1 User Manual

system—-dynamics-do-plot plots the values of Stocks in the aggregate model. To use this, first
create a plot in the main NetLogo window. You then need to define a plot pen for each Stock you
want to be plotted. This procedure will use the current plot, which you can change using the

set—-current-plot command.

The System Dynamics Modeler and NetLogo

The diagram you create with the System Dynamics Modeler, and the procedures generated from
your diagram, are part of your NetLogo model. When you a save the NetLogo model, your diagram

is saved with it, in the same file.

Tutorial: Wolf-Sheep Predation

Let's create a model of Wolf-Sheep Predation with the System Dynamics Modeler.

Step 1: Sheep Reproduction

¢ Open a new model in NetLogo.
¢ Launch the System Dynamics Modeler in the Tools menu.

m_z-:_mm Tabs Help

Halt = Untitled

Globals Monitor gtion | P

Turtle Monitor @ IE

Patch Monitor
Hide Command Center 3£/

3D View

Shapes Editor
BehaviorSpace

HubMet Control Center

Our model will have a population of wolves and a population of sheep. Let's start with the sheep.

First, create a Stock that holds a population of Sheep.

¢ Press the Stock button in the toolbar.

’ _ | variable | |<@= Flow| |— Link|

174

System Dynamics Guide

NetLogo 4.1 User Manual

e Click in the diagram area.

You see a Stock with a red question-mark in the middle.

¢ Double-click the Stock to edit.

¢ Name the stock sheep

¢ Set the initial value to 100.

¢ Deselect the Allow Negative Values checkbox. It doesn't make sense to have
negative sheep!

808 Stock

Name sheep

Initial value
100

| Allow negative values

I\: Cancel ;. { Ok } r

Our sheep population can increase if new sheep are born. To add this to our diagram, we create a

Flow into the stock of sheep.

¢ Click on the Flow button in the toolbar and press the mouse button in an
empty area to the left of the sheep Stock. Drag the Flow to the right until it
connects to the sheep Stock and let go.

¢ Edit the Flow and name it sheep-births.

¢ For now, enter a constant, such as 1, into the Expression field.

The number of sheep born during a period of time depends on the number of sheep that are alive:

more sheep means more reproduction.

¢ Draw a Link from the sheep Stock to the sheep-births Flow.

The rate of sheep births also depends on some constant factors that are beyond the scope of this

model: the rate of reproduction, etc.

System Dynamics Guide

175

NetLogo 4.1 User Manual

e Create a Variable and name it sheep-birth-rate. Setits valueto 0.04
¢ Draw a Link from the sheep-birth-rate Variable to the sheep-births.

Your diagram should look something like this:

AN
Qh/egp—binh—rate

sheep-births

The sheep-births Flow has a red label because we haven't given it an expression. Red indicates
that there's something missing from that part of the diagram.

The amount of sheep flowing into our stock will depend positively with the number of sheep and the
sheep birth rate.

¢ Edit the sheep-births Flow and set the expression to
sheep-birth-rate * sheep.

We now have a complete diagram. To see the NetLogo code generated by our diagram, you can
click on the Procedures tab of the System Dynamics Modeler window. It looks like this:

176 System Dynamics Guide

NetLogo 4.1 User Manual

Diagram

Procedures }

0 System dynamics model globals
globals [
.3 constants
sheep-birth-rate
3 stock values
sheep
vy size of each step, see SYSTEM-DYNAMICS-GO
dt
]

v3 Initializes the system dynamics model.
.2 Call this in your model's SETUF procedure.
to system-dynamics-setup
reset-ticks
set dt @.1
3 1lnitialize constant wvalues
set sheep-birth-rate .04
i3 1nitialize stock wvalues
set sheep 100
end

3 5tep through the system dynamics model by performing next iteration of Euler's method.

v» Call this in your model's GO procedure.
to system-dynamics-go

3 compute variable and flow values once per step
let local-sheep-births sheep-births

Step 2: NetLogo Integration

Once you create an aggregate model with the System Dynamics Modeler, you can interact with the
model through the main NetLogo interface window. Let's build our NetLogo model to run the code

generated by our diagram. We'll need a setup and go buttons which call the
system—dynamics—setup and system-dynamics—go procedures created by the System

Dynamics Modeler. And we'll want a monitor and a plot to watch the changes in sheep population.

e Select the main NetLogo window
¢ |n the Procedures tab, write:

to setup
ca
system-dynamics—-setup
end

to go
system-dynamics—-go
system-dynamics—-do-plot
end
¢ Move to the Interface tab
¢ Create a setup button

e Create a go button (don't forget to make it forever)

System Dynamics Guide

177

NetLogo 4.1 User Manual

e Create a sheep monitor.
¢ Create a plot called "populations” with a pen named "sheep".

Now we're ready to run our model.

¢ Press the setup button.
¢ Don't press the "go" button yet. Instead, type go four or five times into the
Command Center

Notice what happens. The sheep population increases exponentially. After four or five iterations, we
have an enormous number of sheep. That's because we have sheep reproduction, but our sheep
never die.

To fix that, let's finish our diagram by introducing a population of wolves which eat sheep.

Step 3: Wolf Predation

¢ Move back to the System Dynamics window
e Add a stock of wolves
e Add Flows, Variables and Links to make your diagram look like this:

AN
Qh/egp—binh—rate|

sheep-births

¢ Add one more Flow from the wolves Stock to the Flow that goes out of the
Sheep stock.
e Fill in the names of the diagram elements so it looks like this:

178 System Dynamics Guide

NetLogo 4.1 User Manual

Cy-deats

eep—births

A
@ep—binh—rate|

AN

¢ |predation-rate

wolves

e births| gl deaths|

AN A\
@damr—efﬁciencﬂ Qv;lf—death—ratﬂ
where

initial-value of wolves is 30,

wolf-deaths is wolves * wolf-death-rate,
wolf-death-rateis 0.15,

predator-efficiency is .8,

wolf-birthsiswolves * predator—-efficiency *
predation-rate * sheep,

predation-rateis 3.0E-4,

and sheep—deaths is sheep * predation-rate * wolves.

Now we're really done.

¢ Go back to the main NetLogo window

¢ Add a plot pen named "wolves" to the population plot

® Press setup and go to see your System Dynamics Modeler diagram in
action.

You see a plot of the populations that looks like this:

System Dynamics Guide

179

NetLogo 4.1 User Manual

%S WMo |

setup sheep
7379.098
wolves
467.279
populations Pens
8070 B wolves
I.' M sheep
|
|
|
)
)
)
il /
/| /
!
/;:
_/// |
582

180

System Dynamics Guide

HubNet Guide

This section of the User Manual introduces the HubNet system and includes instructions to set up
and run a HubNet activity.

HubNet is a technology that lets you use NetLogo to run participatory simulations in the classroom.
In a participatory simulation, a whole class takes part in enacting the behavior of a system as each
student controls a part of the system by using an individual device, such as a networked computer
or Texas Instruments graphing calculator.

For example, in the Gridlock simulation, each student controls a traffic light in a simulated city. The
class as a whole tries to make traffic flow efficiently through the city. As the simulation runs, data is
collected which can afterwards be analyzed on a computer or calculator.

For more information on participatory simulations and their learning potential, please visit the
Partici ry Simulations Project w i

Understanding HubNet
NetLogo

NetLogo is a programmable modeling environment. It comes with a large library of existing
simulations, both participatory and traditional, that you can use and modify. Content areas include
social science and economics, biology and medicine, physics and chemistry, and mathematics and
computer science. You and your students can also use it to build your own simulations.

In traditional NetLogo simulations, the simulation runs according to rules that the simulation author
specifies. HubNet adds a new dimension to NetLogo by letting simulations run not just according to
rules, but by direct human participation.

Since HubNet builds upon NetLogo, we recommend that before trying HubNet for the first time, you
become familiar with the basics of NetLogo. To get started using NetLogo models, see Tutorial #1:

Running Models in the NetLogo Users Manual.
HubNet Architecture

HubNet simulations are based on a client-server architecture. The activity leader uses the NetLogo
application to run a HubNet activity. When NetLogo is running a HubNet activity, we refer to it as a
HubNet server. Participants use a client application to log in and interact with the HubNet server.

There are two types of HubNet available. With Computer HubNet, participants run the HubNet
Client application on computers connected by a regular computer network or they use a java applet
accessed through the Internet. In Calculator HubNet, created in conjunction with Texas Instruments,
participants use Texas Instruments graphing calculators as clients which communicate via the
TI-Navigator system.

We hope to add support for other types of clients such as cell phones and PDA's (Personal Digital
Assistants).

HubNet Guide 181

http://ccl.northwestern.edu/partsims.html

NetLogo 4.1 User Manual

Computer HubNet
Activities

The following activities are available in the Models Library, in the Computer HubNet Activities folder.
Information on how to run the models and activities can be found in the Information Tab of each
model. Additional discussion of educational goals and ways to incorporate many of the activities into
your classroom in the Participatory Simulations Guide on the Partici ry Simulations Proj

site.

¢ Bug Hunters Camouflage - students hunt bugs and camouflaging emerges.

e Dice Stalagmite HubNet - students roll dice and explore the space of dependent and
independent events.

¢ Disease - A disease spreads through the simulated population of students.

e Disease Doctors - A slight modification to the Disease activity where some students can
recover from the disease.

e Gridlock - Students use traffic lights to control the flow of traffic through a city.

e Polling - Ask students questions and plot their answers.

¢ Root Beer Game - An adaptation of a popular game created at MIT in the early 1960s that
shows how small delays in a distribution system can create big problems.

e Sampler - Students engage in statistical analysis as individuals and as a classroom.
Through these activities, students discover the meaning and use of basic concepts in
statistics.

¢ Tragedy of the Commons - Students work as farmers sharing a common resource.

Clients

There are two ways to use the client with computer HubNet, through the client application and as a
java applet. To use the client application you simply need to launch the HubNet client application
that is bundled with NetLogo. To use the applet you will need to save the client as an applet and put
it on a web server, more detailed instructions can be found in the applets section.

Requirements

To use Computer HubNet, you need a networked computer with NetLogo installed for the server.
When using the client application you will also need a networked computer with NetLogo installed
for each participant. When using in classroom settings we also suggest an attached projector for the
leader to project the entire simulation to the participants. When using client applets you will need to
be running a web server on the same machine that you are running the HubNet server in NetLogo.

Starting an activity

You'll find the HubNet activities in NetLogo's Models Library, in the HubNet Computer Activities
folder. We suggest doing a few practice runs of an activity before trying it in front of a class.

182 HubNet Guide

http://ccl.northwestern.edu/partsims.html
http://ccl.northwestern.edu/partsims.html

NetLogo 4.1 User Manual

8D Start HubMet Activity

Session name: | BI101]

E Broadcast server location

(star)

Open a Computer HubNet model. NetLogo will prompt you to enter the name of your new HubNet
session. This is the name that participants will use to identify this activity. Enter a name and press
Start.

NetLogo will open the HubNet Control Center, which lets you interact with the HubNet server.

You, as the leader, should then notify everyone that they may join. To join the activity, participants
launch the HubNet Client application and enter their name. They should see your activity listed and
can join your activity by selecting it and pressing Enter. If the activity you started is not listed the
student can enter the server address manually which can be found in the HubNet Control Center.

HubNet Control Center

P .

HubNet Control Center

Name: everreau Clients:

Activity: Disease

Server address: 129.105.244.165
Port number: 9173

Settings:

[Mirror 2D view on clients) X

[Mirror plots on clients (experimental) Kick [Local)
C ATEEEEET—
| Reset]

0

Broadcast Message

The HubNet Control Center lets you interact with the HubNet server. It displays the name, activity,
address and port number of your server. The "Mirror 2D View on clients" checkbox controls whether
the HubNet participants can see the view on their clients, assuming there is a view in the client
setup. The "Mirror plots on clients" checkbox controls whether participants will receive plot
information.

HubNet Guide 183

NetLogo 4.1 User Manual

The client list on the right displays the names of clients that are currently connected to you activity.
To remove a participant from the activity, select their name in the list and press the Kick button. To
launch your own HubNet client press the Local button, this is particularly useful when you are
debugging an activity. The "Reset" button kicks out all currently logged in clients and reloads the
client interface.

The lower part of the Control Center displays messages when a participant joins or leaves the
activity. To broadcast a message to all the participants, click on the field at the bottom, type your
message and press Broadcast Message.

Client Applets

Client applets use the same client interface as the clients run in the HubNet application. Client
applets and clients run through the HubNet application can be used at the same time in the same
activity. In order to use a client applet you first have to save the client interface as an applet. You
can do so by pressing the "Save Client As Applet..." button in the HubNet Client Editor toolbar.

‘? 8 + "abe Button w| Save Client As Applet...
Edit Add

Delete

To access the client over the Internet you need to put the generated html file and HubNet.jar (you
do not need the model file) somewhere that is web accessible on the machine that you intend to run
the server on. You must run the server on the same computer as you host the client applet or the
client applet will not be able to connect to the server due to security restrictions.

Troubleshooting

| started a HubNet activity, but when participants open a HubNet Client, my activity isn't
listed.

On some networks, the HubNet Client cannot automatically detect a HubNet server. Tell your
participants to manually enter the server address and port of your HubNet server, which appear in
the HubNet Control Center.

Note: The technical details on this are as follows. In order for the client to detect the server,
multicast routing must be available between them. Not all networks support multicast routing. In
particular, networks that use the IPsec protocol typically do not support multicast. The IPsec
protocol is used on many virtual private networks (VPNSs).

When a participant tries to connect to an activity, nothing happens (the client appears to
hang or gives an error saying that no server was found).

If your computer or network has a firewall, it may be impeding the HubNet server from
communicating. Make sure that your computer and network are not blocking ports used by the
HubNet server (ports 9173-9180).

The view on the HubNet client is grey.

e Verify that the "Mirror 2D view on clients" checkbox in the HubNet Control Center is
selected.

184 HubNet Guide

NetLogo 4.1 User Manual

e Make sure that the display switch in the model is on.
e If you have made changes to the size of the view on the server you may need to press the
"Reset" button in the Control Center to ensure the clients get the new size.

There is no view on the HubNet client.

Some activities don't have a view on the client. If you want to add a view simply select "HubNet
Client Editor" from the Tools Menu and add a view like any other widget. Make sure to press the
"Reset" button before having clients log in.

| can't quit a HubNet client.

You will have to force the client to quit. On OS X, force quit the application by selecting Force Quit...
in the Apple menu. On Windows, press Ctrl-Alt-Delete to open the Task Manager, select HubNet
Client and press End Task.

My computer went to sleep while running a HubNet activity. When | woke the computer up, |
got an error and HubNet wouldn't work anymore.

The HubNet server may stop working if the computer goes to sleep. If this happens, quit the
NetLogo application and start over. Change the settings on your computer so it won't sleep again.

My problem is not addressed on this page.
Please send us an email at feedback@ccl.northwestern.edu.

Known Limitations

If HubNet malfunctions, please send us an email at bugs@ccl.northwestern.edu.

Please note that:

e HubNet has not yet been extensively tested with large numbers of clients (i.e. more than
about 25). Unexpected results may occur with more clients.

¢ Out-of-memory conditions are not handled gracefully

e Sending large amounts of plotting messages to the clients can take a long time.

¢ NetLogo does not handle malicious clients in a robust manner (in other words, it is likely
vulnerable to denial-of-service type attacks).

¢ Performance does not degrade gracefully over slow or unreliable network connections.

e If you are on a wireless network or sub-LAN, the IP address in the HubNet Control Center is
not always the entire IP address of the server.

e Computer HubNet has only been tested on LANs, and not on dial-up connections or WANSs.

Calculator HubNet

Calculator HubNet for TI-Navigator

The TI-Navigator Classroom Learning System is a wireless classroom network for Tl graphing
calculators. TI-Navigator users can install a free NetLogo extension, which integrates with
TI-Navigator and allows the calculators to act as clients for participatory simulations like the ones

HubNet Guide 185

mailto:feedback@ccl.northwestern.edu
mailto:bugs@ccl.northwestern.edu

NetLogo 4.1 User Manual

that are available for Computer HubNet. The Calculator HubNet extension is available from Inquire
Learning, LLC, in collaboration with Texas Instruments. Inquire Learning also offers support,
curricular materials, and professional development for the Calculator HubNet system. For more
information on the TI-Navigator system itself, please visit the Texas Instruments web site, at

http://education.ti.com/navigator. For more information on the Calculator HubNet extension for
TI-Navigator, please contact Inquire Learning, at calc-hubn inquirelearning.com, or visit

http://www.inquirelearning.com/calc-hubnet.html.

Teacher workshops

For information on upcoming workshops and NetLogo and HubNet use in the classroom, please
contact us at feedback@ccl.northwestern.edu.

HubNet Authoring Guide

To learn about authoring or modifying HubNet activities, see the HubNet Authoring Guide.

Getting help

If you have any questions about Computer HubNet or Calculator HubNet, or need help getting
started, please email us at feedback@ccl.northwestern.edu.

186 HubNet Guide

http://education.ti.com/navigator
mailto:calc-hubnet@inquirelearning.com
http://www.inquirelearning.com/calc-hubnet.html
mailto:feedback@ccl.northwestern.edu
mailto:feedback@ccl.northwestern.edu

HubNet Authoring Guide

This guide presents information you will need to understand and modify the code of existing HubNet
Activities as well as write your own HubNet activities. This guide assumes you are familiar with
running HubNet activities, basic NetLogo code and NetLogo interface elements, for more general
information about HubNet see the HubNet Guide.

¢ General HubNet Information
e Coding HubNet Activities

¢ Setup
¢ Receiving information from clients
nding informati i
e Calculator HubNet Information

e Com r HubNet Information

¢ How To Make a Client Interface

lien
¢ Clicking in the View on Clien
¢ Pl n the Clien

General HubNet Information

The information presented in this section is specifically targeted at those using computer clients,
however, much of the code presented can be reused with small modifications to use calculator
clients.

Coding HubNet Activities

Many HubNet Activities will share bits of the same code. That is the code that it used to setup the
network and the code that is used to receive information from and send information to the clients. If
you understand this code you should be able to easily make modifications to existing activities and
you should have a good start on writing your own activities. To get you started we have provided a
Template model (in HubNet Computer Activities -> Code Examples) that contains the most basic
components that will be in the majority of HubNet Activities. You should be able to use this activity
as a starting point for most projects.

Setup

To make a NetLogo model into a HubNet activity you must first initialize the network. In most
HubNet activities you will use the startup procedure to initialize the network startup is a special
procedure, NetLogo will try to run the startup procedure when you open any model. That makes it
a good place to put code that you want to run once and only once (no matter how many times the
user runs the model). For HubNet we put the commands that initialize the network in startup
because once the network is setup we don't need to do so again. First specify the type of clients
using hubnet—-set—-client—interface, in this case we will be using computer clients:

hubnet-set-client-interface "COMPUTER" []

Then initialize the system using hubnet —reset, which will ask the user for a session name and
open up the HubNet Control Center. NetLogo is now ready to start listening for client messages.

HubNet Authoring Guide 187

NetLogo 4.1 User Manual

Now that the network is all setup you don't need to worry about calling
hubnet—-set—-client—interface Or hubnet-reset again. Take a look at the setup procedure
in the template model:

to setup
cp
cd
clear-output
ask turtles
[
set step-size 1
hubnet-send user-id "step-size" step-size

]

end

For the most part it looks like most other setup procedures, however, you should notice that it does
not call clear—all. In this model, and in the great majority of HubNet activities in the Models
Library, we have a breed of turtles that represent the currently logged in clients. In this case we've
called this breed students. Whenever a client logs in we create a student and record any
information we might need later about that client in a turtle variable. Since we don't want to require
users to log out and log back in every time we setup the activity we don't want to kill all the turtles,
instead, we want to set all the variables back to initial values and notify the clients of any changes
we make (more on that later).

Receiving messages from clients

During the activity you will be transferring data between the HubNet clients and the server. Most
HubNet activities will call a procedure in the go loop that checks for new messages from clients in
this case it's called listen clients:

to listen-clients
while [hubnet-message-waiting?]
[
hubnet-fetch-message
ifelse hubnet-enter-message?
[create-new-student]
[
ifelse hubnet-exit-message?
[remove-student]
[execute-command hubnet-message-tag]
]
]

end

As long as there are messages in the queue this loop fetches each message one at a time.
hubnet—fetch-message makes the next message in the queue the current message and sets
the reporters hubnet —message—source, hubnet-message—tag, and hubnet—message to the
appropriate values. The clients send messages when the users login and logout any time the user
manipulates one of the interface elements, that is, pushes a button, moves a slider, clicks in the
view, etc. We step through each message and decide what action to take depending on the type of
message (enter, exit, or other), the hubnet —message-tag (the name of the interface element),
and the hubnet -message-source of the message (the name of the client the message came
from).

188 HubNet Authoring Guide

NetLogo 4.1 User Manual

On an enter message we create a turtle with a user-id that matches the
hubnet-message—source Which is the name that each user enters upon entering the activity, it is
guaranteed to be unique.

to create-new-student
create-students 1
[
set user-id hubnet-message-source
set label user-id
set step-size 1
send-info-to-clients

]

end

At this point we set any other client variables to default values and send them to the clients if
appropriate. We declared a students—own variable for every interface element on the client that
holds state, that is, anything that would be a global variable on the server, sliders, choosers,
switches and input boxes. It is important to make sure that these variables stay synchronized with
the values visible on the client.

When the clients logout they send an exit message to the server which gives you a chance to clean
up any information you have been storing about the client, in this case we merely have to ask the
appropriate turtle to die.

to remove-student
ask students with [user-id = hubnet-message-source]
[die]

end

All other messages are interface elements identified by the hubnet —message—tag which is the
name that appears in the client interface. Every time an interface element changes a message is
sent to the server. Unless you store the state of the values currently displayed in the client interface
will not be accessible in other parts of the model. That's why we've declared a students—own
variable for every interface element that has a state (sliders, switches, etc). When we receive the
message from the client we set the turtle variable to the content of the message:

if hubnet-message-tag = "step-size"
[
ask students with [user-id = hubnet-message-source]
[set step-size hubnet-message]

]

Since buttons don't have any associated data there is generally no associated turtle variable,
instead they indicate an action taken by the client, just as with a regular button there is often
procedure associated with each button that you call whenever you receive a message indicating the
button has been pressed. Though it is certainly not required, the procedure is often a turtle
procedure, that is, something that the student turtle associated with the message source can
execute:

if command = "move left"
[set heading 270
fd 1]

HubNet Authoring Guide 189

NetLogo 4.1 User Manual

Sending messages to clients

As mentioned earlier you can also send values to any interface elements that display information:
monitors, sliders, switches, choosers, and input boxes (note that plots and the view are special
cases that have their own sections).

There are two primitives that allow you to send information hubnet-send and
hubnet-broadcast. Broadcast sends the information to all the clients; send sends to one client,
or a selected group.

As suggested earlier, nothing on the client updates automatically. If a value changes on the server,
it is your responsibility as the activity author to update monitors on the client.

For example, say you have a slider on the client called step-size and a monitor called Step Size
(note that the names must be different) you might write updating code like this:

if hubnet-message-tag = "step-size"
[

ask student with [user-id = hubnet-message-source]
[
set step-size hubnet-message
hubnet-send user-id "Step Size" step-size
1
1

You can send any type of data you want, numbers, strings, lists, lists of lists, lists of strings,
however, if the data is not appropriate for the receiving interface element (say, if you were to send a
string to a slider) the message will be ignored. Here are a few code examples for different types of
data:

data type hubnet-broadcast example hubnet-send example
number hubnet-broadcast "A" 3.14 |hubnet-send "jimmy" "A" 3.14
string ?ubnet—broadcast "STR1" hubnet-send ["12" "15"] "STR1"
HI THERE" "HI THERE"

hubnet-
hubnet-broadcast "L2" [1 2 | o0¢ send

list of numbers 3] hubnet-message-source "L2" [1 2
3]

matrix of hubnet-broadcast "[A]" [[1l |hubnet-send "susie"™ "[A]" [[1 2]

numbers 21 [3 4]] [3 4]]

list of strings

(onI for 9 hubnet-broadcast hubnet-send "teacher"

Corr): uter "user—-names" [["Jjimmy" "user—-names" [["Jimmy" "susie"]

HUbhplet) "SUSie"] ["bob" "george"]] ["bob" "george"]]

Examples

Study the models in the "HubNet Computer Activities" and the "HubNet Calculator Activities"
sections of the Models Library to see how these primitives are used in practice in the Procedures
window. Disease is a good one to start with.

190 HubNet Authoring Guide

NetLogo 4.1 User Manual
Calculator HubNet Information

For information on writing HubNet activities using calculator clients, please contact us.

Computer HubNet Information

The following information is specific to Computer HubNet.

How To Make a Client Interface

Open the HubNet Client Editor, found in the Tools Menu. Add any buttons, sliders, switches,
monitors, plots, choosers, or notes that you want just as you would in the interface tab. You'll notice
that the information you enter for each of the widgets is slightly different than in the Interface panel.
Widgets on the client don't interact with the model in the same way. Instead of a direct link to
commands and reporters the widgets send messages back to the server and the model then
determines how those messages affect the model. All widgets on the client have a tag which is a
name that uniquely identifies the widget. When the server receives a message from that widget the

tag is found in hubnet—message-tag

For example, if you have a button called "move left", a slider called "step-size", a switch called
"all-in-one-step?", and a monitor called "Location:", the tags for these interface elements will be as
follows:

interface element tag
move left move left
step-size step-size
all-in-one-step? all-in-one-step?
Location: Location:

Note that you can only have one interface element with a specific name. Having more than one
interface element with the same tag in the client interface will result in unpredictable behavior since
it is not clear which element you intended to send the information to.

View Updates on the Clients

View mirroring lets views of the world be displayed in clients as well on the server. View mirroring is
enabled using a checkbox in the HubNet Control Center.

When mirroring is enabled, client views update whenever the view on the server does. To avoid
excessive network traffic, the view should not update more often than necessary. Therefore we
strongly recommend using tick-based updates, rather than continuous updates. See the View
Updates section of the Programming Guide for an explanation of the two types of updates.

With tick-based updates, updates happen when a tick or display command runs. We
recommend using these commands only inside an every block, to limit the frequency of view
updates and thus also limit network traffic. For example:

every 0.1

[
display

HubNet Authoring Guide 191

NetLogo 4.1 User Manual

]

If there is no View in the clients or if the Mirror 2D View on Clients checkbox in the HubNet Control
Center is not checked, then no view updates are sent to the clients.

Clicking in the View on Clients

If the View is included in the client, two messages are sent to the server every time the user clicks in
the view. The first message, when the user presses the mouse button, has the tag "View". The
second message, sent when the user releases the mouse button, has the tag "Mouse Up". Both
messages consist of a two item list of the x and y coordinates. For example, to turn any patch that
was clicked on by the client red, you would use the following NetLogo code:

if hubnet-message-tag = "View"
[
ask patches with [pxcor

pycor
[set pcolor red]

(round item 0 hubnet-message) and
(round item 1 hubnet-message)]

]
Plot Updates on the Clients

If plot mirroring is enabled (in the HubNet Control Center) and a plot in the NetLogo model changes
and a plot with the exact same name exists on the clients, a message with that change is sent to the
clients causing the client's plot to make the same change. For example, let's pretend there is a
HubNet model that has a plot called Milk Supply in NetLogo and the clients. Milk Supply is the
current plot in NetLogo and in the Command Center you type:

plot 5
This will cause a message to be sent to all the clients telling them that they need to plot a point with

a y value of 5 in the next position of the plot. Notice, if you are doing a lot of plotting all at once, this
can generate a lot of plotting messages to be sent to the clients.

192 HubNet Authoring Guide

Logging
NetLogo's logging facility allows researchers to record students' actions for later analysis.

Logging in NetLogo, once initiated, is invisible to the user. The researcher can choose the type of
events logged through a configuration file.

NetLogo uses the Log4j package for logging. If you have previous experience with this package
you'll find logging in NetLogo familiar.

Starting logging
This depends on what operating system you are using.

Mac OS X or Windows

There is a special logging launcher in the NetLogo directory called NetLogo Logging. Double click
on the icon.

On Windows, the NetLogo directory can be found at C: \Program Files, unless you chose a
different location when you installed NetLogo.

Linux and others

To enable logging, invoke the net1ogo. sh script as follows:

netlogo.sh —--logging netlogo_logging.xml

You could also modify the script to include these flags, or copy the script and modify the copy.

You can replace netlogo_logging.xml with any valid log4j xml configuration file, which will be
discussed in more detail later.

Using logging

When NetLogo starts up it will ask for a user name. This name will appear in all the logs generated
during this session.

Where logs are stored

Logs are stored in the OS-specific temp directory. On most Unix-like systems that is /tmp. On
Windows XP, logs can be found in c: \Documents and Settings\<user>\Local
Settings\Temp, Where <user> is the logged in user and on Windows Vista the logs can be found
in c:\Users\<user>\AppData\Local\Temp. On Mac OS 10.5 the temp directory varies for
each user, you can determine your temp directory by opening the Terminal application and typing
echo $TMPDIR at the prompt. On Mac OS prior to 10.5 the temp directory is the same as on other
Linux-like systems /tmp.

Logging 193

NetLogo 4.1 User Manual

There are two convenience commands that will help you manage the logs. __zip-log-files
filename Will gather all the logs in the temp directory and put them in one zip file, at the location
specified. After doing __zip-log-files the existing logs are not deleted, you can do so explicitly

by using __delete-log-files.

The following is a chart describing the name of the loggers available, the type of events each logs,
at what level, and provides a sample output using the XMLLayout. All the loggers are found in
org.nlogo.log.Logger. When referring to the loggers in the configuration file you should use
the fully qualified name. So, for example, the logger GLOBALS would actually be

org.nlogo.log.Logger.GLOBALS

Logger Events Level Example
<event logger="org.nlogo.log.Logger.GLOBALS"
timestamp="1177341065988"
: i level="INFO"
a global variable | info,
GLOBALS f? deb type="globals">
changes ebug <name>F00</name>
<value>51.0</value>
</event>
<event logger="org.nlogo.log.Logger.GREENS"
timestamp="1177341065988"
level="INFO"
. . type="slider">
shders,sthches, <action>changed</action>
choosers, input <name>foo</name>
GREENS boxes are info <value>51.0</value>
changed through <parameters>
. <min>0.0</min>
the interface min>0.0</min
<max>100.0</max>
<inc>1.0</inc>
</parameters>
</event>
<event logger="org.nlogo.log.Logger.CODE"
code is compiled, timestamp="1177341072208"
including: level="INFO"
command center, |. type="command center®>
CODE info <action>compiled</action>
pﬁocedurestab, <code>crt 1</code>
slider bounds, <agentType>0</agentType>
and buttons <errorMessage>success</errorMessage>
</event>
<event logger="org.nlogo.log.Logger.WIDGETS"
. . timestamp="1177341058351"
a widget is added level="INFO"
WIDGETS or removed from | info type="slider">
the interface <name></name>
<action>added</action>
</event>
BUTTONS a button is info <event logger="org.nlogo.log.Logger.BUTTONS"
pressed or timestamp="1177341053679
| d level="INFO"
release type="button">
<name>show 1</name>
<action>released</action>
<releaseType>once</releaseType>
194 Logging

NetLogo 4.1 User Manual

</event>

SPEED_SLIDER

the speed slider info

</event>

<event logger="org.nlogo.log.Logger.SPEED"
timestamp="1177341042202"
level="INFO"

changes type="speed">

<value>0.0</value>

</event>

<event logger="org.nlogo.log.Logger.TURTLES"
timestamp="1177341094342"

. level="INFO"

TURTLES turtles die or are info type="turtle">

born <name>turtle 1</name>

<action>born</action>

<breed>TURTLES</breed>

LINKS

info

</event>

<event logger="org.nlogo.log.Logger.LINKS"
timestamp="1177341094347"
level="INFO"

links die or are type="1link">

born <name>link 0 1</name>

<action>born</action>

<breed>LINKS</breed>

How to configure the logging output

The default logging configuration (netlogo_logging.xml) looks something like this:

NetLogo defines 8 loggers, all descend directly from the root logger, which means unless you

explicitly set the properties (appender, layout, and output level) in the configuration they will inherit

them from the root. In the default configuration the root is set to level INFO, the appender is

org.nlogo.log.XMLFileAppender and layout is org.nlogo.log.XMLLayout. Together these generate a

nicely formatted XML file as defined in the netlogo_logging.dtd which is based on the log4j dtd. If

the appender is a FileAppender (including the XMLFileAppender) a new file is start each time the
user opens a model.

<?xml version="1.0" encoding="UTF-8" 2>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="false" xmlns:log4j='http://jakarta.apache.org/log4dj/"'>

Logging

<appender name="Al" class="org.nlogo.log.XMLFileAppender">

<layout class="org.nlogo.log.XMLLayout"/>
</appender>

<category name="org.nlogo.log.Logger .WIDGETS">
<priority wvalue="off" />
</category>

<category name="org.nlogo.log.Logger.TURTLES">
<priority wvalue="off" />
</category>

<category name="org.nlogo.log.Logger.LINKS">
<priority wvalue="off" />
</category>

195

NetLogo 4.1 User Manual

<root>
<priority value ="info" />
<appender-ref ref="Al1" />
</root>

</log4j:configuration>

This configuration, first defines an appender named "A1" of type XMLFileAppender with an
XMLLayout. The appender defines where the logging data goes, in this case the data goes into a
file. In fact, if NetLogo is given a FileAppender it will automatically start a new file every time the
user opens a new model. The XMLFileAppender also does some formatting and writes the
appropriate headers to the file. The layout defines how to write each individual message. Unless
you are an advanced user there is no need change (or worry about) the appender or the layout.

At the end of the configuration notice the definition of the root logger. All of the other loggers
descend from the root logger and, thus, inherit the properties of the root unless explicitly set. This
case is fairly simple, having set up the appender A1 we make that the default appender for the root
(and all other loggers) and make the default priority "INFO". Messages that are logged at the INFO
level or higher will be written, messages logged at lower levels will not. Note that with only one
exception NetLogo always logs at level INFO. Sets to globals that don't change the value of the
global are logged at level DEBUG. Which means that these messages are disabled by default,
since debug is lower level than info. The rest of the body of the configuration file overrides
properties of the root logger in a few specific loggers (or categories as they are known in the
configuration file, the terms can be assumed to be synonymous for the proposes of this document).
That is it turns off the WIDGET, TURTLES, and LINKS loggers, by default. To re-enable them you
can changes the priority from off to info, like this:

<category name="org.nlogo.log.Logger.TURTLES">
<priority value="info" />
</category>

or you can simply remove the entire reference to the category from the configuration file, as it is not
serving any other purpose.

Advanced Configuration

This is only a basic introduction to configuration files for logging in NetLogo. There are many more
configuration options available through the log4j framework. See the log4j documentation.

196 Logging

http://logging.apache.org/log4j/docs/

Controlling Guide

NetLogo can be invoked and controlled by another program running on the Java Virtual Machine.
For example, you might want to call NetLogo from a small program that does something simple like
automate a series of model runs. Or, you might want to embed NetLogo models in a larger
application.

This section of the User Manual introduces this facility for Java programmers. We'll assume that you
know the Java language and related tools and practices. But note that our API's are also usable
from other languages for the Java Virtual Machine, such as Scala, Clojure, Groovy, JRuby, Jython,
etc.

Note: The controlling facility is considered "experimental”. It is likely to continue to change and
grow. Code you write now that uses it may need changes in order to continue to work in future
NetLogo versions.

e Starting a Java VM for Netl ogo
e Example (with GUI)

e Example (headless)

e Example (embedding)

» Other Options

e Gonclusion

The NetLogo APl Specification contains further details.
Starting a Java VM for NetLogo

NetLogo makes several assumptions about the Java VM that it is running in, and therefore there are
arguments which should be given to the VM at startup.

Recommended options for both GUI and headless

—sServer
Use server VM for highest performance.

-Xmx1024m
Use up to 1 gigabyte of memory for Java VM heap. You may need to grow this number in
order to run some models.

Additional recommended options for GUI only

—-XX:MaxPermSize=128m
Prevent the VM from running out of memory when repeatedly compiling a model with very
long code.

-Djava.ext.dir=
Ignore any existing native libraries on the system. This avoids conflicts with other versions of
JOGL. You may need to leave this option out, or modify it to point to your native libraries if
you are using Java VM extensions.

-Djava.library.path=./1lib

Controlling Guide 197

NetLogo 4.1 User Manual

Not needed on Mac or Windows; may be needed on other OS's such as Linux. Ensures
NetLogo can find native libraries for JOGL and other extensions. If you are not starting the
VM in the top-level NetLogo directory, then . /1ib should be changed to point to the 1ib
subdirectory of the NetLogo installation.

Current working directory

The NetLogo application assumes that the current working directory at startup time is the top level
of the NetLogo installation.

Example (with GUI)

Here is a small but complete program that starts the full NetLogo application, opens a model, moves
a slider, sets the random seed, runs the model for 50 ticks, and then prints a result:

import org.nlogo.app.App;
public class Examplel {
public static void main(String[] argv) {
App.main(argv);
try {
java.awt .EventQueue.invokeAndWait
(new Runnable ()
{ public void run() {
try {
App.app.open
("models/Sample Models/Earth Science/"
+ "Fire.nlogo");
}
catch(java.io.IOException ex) {
ex.printStackTrace();
}
oy o)
App.app.command ("set density 62");
App.app.command ("random-seed 0");
App.app.command ("setup") ;
App.app.command ("repeat 50 [go 1");
System.out.println
(App.app.report ("burned-trees"));
}
catch (Exception ex) {
ex.printStackTrace();

}

The equivalent code in Scala:

import java.awt.EventQueue

import org.nlogo.app.App

object Examplel {

def main(args:Array[String]) {
App.main(args)
wait |
App.app.open ("models/Sample Models/Earth Science/Fire.nlogo")

}
App.app.command ("set density 62")
App.app.command ("random-seed 0")

198 Controlling Guide

NetLogo 4.1 User Manual

App.app.command ("setup")
App.app.command ("repeat 50 [go 1")
println (App.app.report ("burned-trees"))
}
def wait (block: =>Unit) {
EventQueue.invokeAndWait (
new Runnable() { def run() { block } }) }

In order to compile and run this, NetLogo. jar (from the NetLogo distribution) must be in the
classpath. In addition, the 1ib directory (also from the NetLogo distribution) must be in same
location; it contains additional libraries used by NetlLogo. jar.

Note the use of EventQueue. invokeAndWait to ensure that a method is called from the right
thread. This is because most of the methods on the App class may only be called some certain

threads. Most of the methods may only be called from the AWT event queue thread; but a few

methods, such as main () and commmand (), may only be called from threads other than the AWT

event queue thread (such as, in this example, the main thread).

Rather than continuing to discuss this example in full detail, we refer you to the NetLogo API

Specification, which documents all of the ins and outs of the classes and methods used above.

Additional methods are available as well.

Example (headless)

The example code in this case is very similar to the previous example, but with methods on an
instance of the HeadlessWorkspace class substituted for static methods on 2pp.

import org.nlogo.headless.HeadlessWorkspace;
public class Example2 {
public static void main(String[] argv) {
HeadlessWorkspace workspace =
HeadlessWorkspace.newInstance () ;
try {
workspace.open
("models/Sample Models/Earth Science/"
+ "Fire.nlogo");
workspace.command ("set density 62");
workspace.command ("random-seed 0");
workspace.command ("setup") ;

workspace.command ("repeat 50 [go 1") ;
System.out.println
(workspace.report ("burned-trees"));

workspace.dispose();
}
catch (Exception ex) {
ex.printStackTrace();

}

The equivalent code in Scala:

import org.nlogo.headless.HeadlessWorkspace
object Example2 {
def main(args:Array[String]) {

Controlling Guide

199

NetLogo 4.1 User Manual

val workspace = HeadlessWorkspace.newInstance
workspace.open (

"models/Sample Models/Earth Science/Fire.nlogo")
workspace.command ("set density 62")
workspace.command ("random-seed 0")
workspace.command ("setup")
workspace.command ("repeat 50 [go 1")
println (workspace.report ("burned-trees"))
workspace.dispose ()

In order to compile and run this, Net Logo. jar must be in your classpath. The 1ib directory,
containing additional required libraries, must also be present. When running in a context that does
not support a graphical display, the system property java.awt .headless must be true, to force
the VM to run in headless mode; HeadlessWorkspace automatically sets this property for you.

Since there is no GUI, NetLogo primitives which send output to the command center or output area
now go to standard output instead. export-world can still be used to save the model's state.
export—view works for writing an image file with a snapshot of the (otherwise invisible) 2D view.
The report () method is useful for getting results out of the model and into your extension code.

The files generated by export-wor1d include the contents of all plots. You can also export the
contents of plots individually using export-plot.

You can make multiple instances of HeadlessWorkspace and they will operate independently on
separate threads without interfering with each other.

When running headless, there are some restrictions:

e The movie—* primitives are not available; trying to use them will cause an exception.
e user—* primitives which query the user for input, such as user-yes-or-no will cause an
exception.

The NetLogo API Specification contains further details.

In order to run 3D headless you must make sure that the org.nlogo.1is3D property is set, you
can either do this by starting Java with the -Dorg.nlogo.is3d=true option, or you can set it
from within Java by using System.setProperty as follows:

public static void main(String [] args)
{
org.nlogo.awt.Utils.invokeLater
(new Runnable () {
public void run() {
System.setProperty("org.nlogo.is3d" , "true") ;
HeadlessWorkspace workspace =
HeadlessWorkspace.newInstance () ;
try {
workspace.open

("models/3D/Sample Models/"

+ "DLA 3D.nlogo");
workspace.command ("set wiggle-angle 70");
workspace.command ("random-seed 0");
workspace.command ("setup") ;
workspace.command ("repeat 50 [go 1") ;

200 Controlling Guide

NetLogo 4.1 User Manual

System.out.println (workspace.report ("count patches with [pcolor = green]"));
workspace.dispose();

}

catch (Exception ex) {
ex.printStackTrace();

Note that org.nlogo. is3D must be set before creating the workspace.

Example (embedding)

When your program controls NetLogo using the 2pp class, the entire NetLogo application is
present, including tabs, menubar, and so forth. This arrangement is suitable for controlling or
"scripting" NetLogo, but not ideal for embedding a NetLogo model in a larger application.

We also have a distinct but similar APl which allows embedding only the interface tab, not the whole
window, in another application. To access this functionality use the
org.nlogo.lite.InterfaceComponent class, which extends javax.swing.JPanel. You
can use the embedded component much the same way that you use App's static methods. Here is
the App example converted to use InterfaceComponent:

import org.nlogo.lite.InterfaceComponent;
public class Example3 {
public static void main(String[] argv) {
try
{
final javax.swing.JFrame frame = new javax.swing.JFrame ();
final InterfaceComponent comp = new InterfaceComponent (frame);
java.awt .EventQueue.invokeAndWait
(new Runnable ()
{ public void run() {
frame.setSize (1000, 700);
frame.add (comp) ;
frame.setVisible (true);
try {
comp .open
("models/Sample Models/Earth Science/"
+ "Fire.nlogo");
}
catch (Exception ex) {
ex.printStackTrace();
}
Py o) o
comp.command ("set density 62");
comp.command ("random-seed 0");
comp.command ("setup") ;
comp.command ("repeat 50 [go 1");
System.out.println (comp.report ("burned-trees"));
}
catch (Exception ex) {
ex.printStackTrace();

}

The equivalent code in Scala:

Controlling Guide 201

NetLogo 4.1 User Manual

import org.nlogo.lite.InterfaceComponent
object Example3 {

def main(args:Array[String]) {
val frame = new javax.swing.JFrame
val comp = new InterfaceComponent (frame)
wait |

frame.setSize (1000, 700)
frame.add (comp)
frame.setVisible (true)
comp.open (
"models/Sample Models/Earth Science/Fire.nlogo")
}
comp.command ("set density 62")
comp.command ("random-seed 0")
comp.command ("setup")
comp.command ("repeat 50 [go 1")
println (comp.report ("burned-trees"))
}
def wait (block: =>Unit) {
java.awt .EventQueue.invokeAndWait (
new Runnable() { def run() { block } }) }

The embedding API gives you a variety of model control features in addition to those provided in the
App class, you can simulate button presses, enable logging, create and hide widgets, among
others. See the NetlLogo AP| Specification for details. To use the embedded component you must
have NetLogo.jar in your classpath. If you want to use logging you must also have the log4j jar from
the lib directory in your classpath.

Conclusion
Don't forget to consult the NetlL AP| ification for full details on these classes and methods.
Some API facilities exist, but are not yet documented. So if you don't see the capability you want,

contact us; we may be able to help you do you what you want. Please do not hesitate to contact us

atf k L.northw rn. with questions, as we may be able to find a workaround or
provide additional guidance where our documentation is thin.

202 Controlling Guide

mailto:feedback@ccl.northwestern.edu

Mathematica Link
What is it?

The NetLogo-Mathematica link provides modelers with an easy to use, real-time link between
NetLogo and Mathematica. Together, these tools can provide users with a highly interactive,
self-documenting work flow that neither can provide alone.

Mathematica includes many of the tools that agent-based modelers rely on throughout the research
process: advanced import capabilities, statistical functions, data visualization, and document
creation. With the NetLogo-Mathematica link, you can run all of these tools side-by-side with
NetLogo.

Because all Mathematica documents, or notebooks, contain comments, code, images, annotations,
and interactive objects, the integration of NetLogo and Mathematica provides a more complete
solution for complex model exploration for students and researchers alike.

The basic functionality of the link is much like the NetLogo Controlling API: you can load models,
execute commands, and report back data from NetLogo. Unlike the Controlling API, which is based
on Java, all interactions with the link are interpreted, making it ideal not only for rapidly designing
custom BehaviorSpace-like experiments, but also as a companion to NetLogo in debugging your
model.

For more information about Mathematica, please visit the Wolfram Research web site.

What can | do with it?

Here are a few examples of what you can do with the Mathematica-NetLogo link.

¢ Analyze your model in real-time with seamless two-way data conversion

¢ Develop high quality, custom visualizations of model data

e Collect detailed simulation data across large multi-dimensional parameter spaces
¢ Rapidly develop interactive interfaces for exploring model behavior

¢ Have direct access to patches and network data with built-in functions

Installation

The NetLogo-Mathematica link requires Mathematica 6 or greater. (Mathematica 7 works.) To install
the NetLogo-Mathematica link:

¢ Go to the menu bar in Mathematica

e Click on File and select Install...

¢ In the Install Mathematica ltem dialog

e Select Package for Type of item to install

e Click Source, and select From file...

¢ In the file browser, go to the location of your NetLogo installation,
e click on the Mathematica Link subfolder, and select NetLogo.m.
e For Install Name, enter NetLogo.

Mathematica Link 203

http://www.wolfram.com/

NetLogo 4.1 User Manual

You can either install the NetLogo link in your user base directory or in the system-wide directory. If
the NetLogo link is installed in the user base directory, other users on the system must also go
through the NetLogo-Mathematica link installation process to use it. This option might be preferable
if you do not have permission to modify files outside of your home directory. Otherwise, you can
install NetLogo-Mathematica link in the system-wide Mathematica base directory.

Usage

This section will very briefly introduce how to use the NetLogo-Mathematica Link. It will show you
how to load the NetLogo-Mathematica link package, start NetLogo, execute commands, and
retrieve data from NetLogo.

Loading the package: Once the NetLogo-Mathematica link is installed, you can load the package
by entering the following into your Mathematica notebook:

<<NetLogo"

Launching NetLogo from Mathematica: To begin your NetLogo session in Mathematica, type the
following into your notebook:

NLStart ["your netlogo path"];

where "your netlogo path”is the directory that netlogo is located in. Typically on a Macintosh
computer this will be "/Applications/NetLogo 4.1/"

Loading a model: To load a model, you must specify the full path of the model. In this example we
will load the Forest Fire model, and the path will be given using the typical Macintosh install
location.

NLLoadModel ["/Applications/NetLogo 4.1/models/Sample
Models/Earth Science/Fire.nlogo"];

Executing a NetLogo command: Commands can be executed by passing a string of commands
to NLCommand[]. The NLCommand [] function automatically splices common Mathematica data
types into strings suitable for NetLogo. The following commands set the density using a single
string, or set the density using a Mathematica defined variable, myDensity.

NLCommand["set density 50"];
myDensity = 60;
NLCommand["set density", myDensity];

Reporting information from NetLogo: NetLogo data can be reported back to Mathematica using
NLReport []. This includes numbers, strings, boolean values, and lists.

NLReport ["count turtles"];

204 Mathematica Link

NetLogo 4.1 User Manual

NLReport ["[(list pxcor pycor)] of n-of 10 patches"]

For more information, see the NetLogo-Mathematica Tutorial notebook included with NetLogo. The
notebook walks you through the process of using the link, with many examples along the way. If you
do not have Mathematica, but are considering using the link, you can download a PDF of the
evaluated tutorial.

Known Issues

¢ A NetLogo session cannot be quit without exiting J/Link (the Java-Mathematica link) entirely.
This may disrupt other packages that make use of J/Link. This problem will be resolved in a
future version.

e If a model loaded with the NetLogo-Mathematica link uses a NetLogo extension, the
extension must be located in the same directory as the extension itself. If the extension is
located in NetLogo's application-wide extensions directory, it will not be found. This problem
will be resolved in a future version.

e Calls to NetLogo, such as NL.Command [] and NLReport [], cannot be aborted.

Credits

The primary developer of the NetLogo-Mathematica link was Eytan Bakshy.
To refer to this package in academic publications, please use: Bakshy, E., Wilensky, U. (2007).

NetLogo-Mathematica Link. http://ccl.northwestern.edu/netlogo/mathematica.html. Center for
Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Mathematica Link 205

http://ccl.northwestern.edu/netlogo/4.1/docs/NetLogo-Mathematica%20Tutorial.pdf

NetLogo 4.1 User Manual

206 Mathematica Link

Introducing NetLogo 3D

NetLogo includes the NetLogo 3D application, a preview release that allows you to create 3D
worlds.

Caution! NetLogo's support for 3D is experimental. Models created with this release may not be
compatible with future versions. While we've made efforts to ensure a quality product, the preview
application has not been subject to the same rigorous quality-control processes as 2D NetLogo.

e Introduction
e Tutorial

* FAQ

e Dictionary

Introduction

To get started using NetLogo 3D, launch the NetLogo 3D application and check out the Sample
Models in the 3D section of the Models Library.

When you're ready to write your own 3D model, look at the Code Examples in the 3D section of the
Models Library. "Turtle Perspective Example 3D" helps you learn about the different perspectives.
"Turtle and Observer Motion Example 3D" helps you understand how turtles and the Observer
move in 3D. You can also step through this model with the tutorial below.

3D Worlds

An unspeakable horror seized me. There was a darkness; then a dizzy, sickening sensation of sight
that was not like seeing; | saw a Line that was no Line; Space that was not Space: | was myself,
and not myself. When | could find voice, | shrieked loud in agony, "Either this is madness or it is
Hell."

"It is neither," calmly replied the voice of the Sphere, "it is Knowledge; it is Three Dimensions: open
your eye once again and try to look steadily.”
-- Edwin A. Abbott from Flatland: A romance in many dimensions

In 3D the NetLogo world has width, height and depth. In addition to pxcor and pycor, patches
have pzcor.

Turtles have three Cartesian coordinates, instead of two, to describe position. In addition to xcor
and ycor, turtles have zcor.

A turtle's orientation is defined by three turtle variables, heading, pitch and roll. You can
imagine the turtle as having two vectors to define its orientation in 3D space. One vector comes
straight out of the nose of the turtle, this is the direction the turtle will travel when it moves forward.
The second vector is perpendicular to the forward vector and comes out of the right side of the turtle
(as if the turtle were to stick its right arm straight out from its body). Heading is the angle between
the forward vector of the turtle projected onto the xy-plane and the vector [0 1 0]. Pitch is the angle
between the forward vector of the turtle and the xy-plane and finally roll is the angle between the
right vector of the turtle and the xy-plane. When turtle turns right or left in 3D space it rotates around

Introducing NetLogo 3D 207

NetLogo 4.1 User Manual

the down vector, that is the vector that is perpendicular to both the forward and right vectors.
Depending on the orientation of the turtle more than one of the internal turtle variables may change
as the result of a turn.

The Observer and the 3D view

The point of view that you see the world from is considered the location and orientation of the
observer. This is similar to the 3D view in NetLogo 2D. However, there are a few more ways to
control the observer. You can set the point that the observer is facing by using face and facexyz
which work the same way as the turtle commands, the Observer turns so the center of the view is
on the given point or the location of the given agent at the time it is called. You can change the
location of the Observer using setxyz. The Observer will move to view the world as if standing on
the given location, the point the observer faces will stay the same. For example create a new model
and Observer will be located at (0, 0, 49.5), that is, on the z-axis 49.5 patch units away from the
origin and the Observer is facing the origin, (0, 0, 0). If you setxyz 0 49.5 0 the Observer will
move so it is on the positive y-axis but it will keep the origin at the center of the view. You can also
move the observer using the rotation primitives that will allow you to move the observer around the
world as if on the surface of a sphere where the center is the location the Observer is facing. You
may notice from the above examples that the Observer is not constrained to be within the bounds of
the world.

Custom Shapes

You can load your own shapes using the 1oad-shapes—3d primitive, which takes a text file as an
input. Once you have loaded the shapes into the model you can use them just like the built-in
shapes. The input file may contain any number of shapes with any number of rectangular or
triangular surfaces. The format of the input file should be as follows:

number of shapes in file

name of first shape

type of surface (quads or tris)
surfacel

surface?

stop
type of surface
surfaceA

stop
end-shape

Each surface is defined by a unit normal vector and the vertices listed in clockwise order, tris should
have three vertices and quads should have four.

normal: xn yn zn
x1 yl z1
X2 y2 z2
x3 y3 z3
x4 y4 z4

208 Introducing NetLogo 3D

NetLogo 4.1 User Manual

A file declaring just a two dimensional, patch-sized, square in the xy-plane centered at the origin
would look like this:

1

square
quads

normal: 0 0 1
0.15 0.15 0
-0.15 0.15 0

-0.15 -0.15 0
0.15 -0.15 0
normal: 0 0 -1
0.15 0.15 0
0.15 -0.15 0
-0.15 -0.15 0
-0.15 0.15 0
stop

end-shape

Tutorial

Step 1: Depth

One of the first things you will notice when you open NetLogo 3D is that the world is a cube instead
of a square.

You can open up the Model Settings, by clicking on the "Settings..." button at the top of the 3D
View. You'll notice in addition t0 max-pxcor, min-pxcor, max—-pycor, and min-pycor, there is

also max-pzcor and min-pzcor.

Introducing NetLogo 3D 209

NetLogo 4.1 User Manual

enn Model Settings
World

Location of origin: "Center |4 !

minimum x coordinate for patches
max-pxcor 16
maximum x coordinate for patches

minimum y coordinate for patches

max-pycor 16

maximum y coordinate for patches

minimum z coordinate for patches

max-pzcor 16

maximum z coordinate for patches

Wiew
Patch size 13 Font size 10
measured in pixels of labels on agents

ETUHIE shapes

ifunchecked, turtles appear as squares

™ Smooth edges (slower)

only affects 30 view

™ Show wire frame
only affects 3D view

Tick counter

E Show tick counter

Tick counter label ticks

._.; Cancel ';_. .__; Apply ;__. { GK)

The z-axis is perpendicular to both the x-axis and the y-axis, when you reset-perspectiveiitis
the axis that comes straight out of the screen. In the default position max-pzcor is the face of the
cube nearest to you and min-pzcor is the face farthest from you. As always min-pxcor is on the
left, max—-pxcor on the right, min-pycor on the bottom and max-pycor on the top. You'll also
notice on the left side of the Model Settings that there are options for wrapping in all three
directions, however, they are all checked and grayed out. Topologies are not yet functional in
NetLogo 3D so all worlds wrap in all three directions.

¢ Move to the Command Center and type print count patches.

Is the number smaller or larger than you expected?

In a 3D World the number of patches grows very quickly since count patches = world-width

210 Introducing NetLogo 3D

NetLogo 4.1 User Manual

* world-height * world-depth. It's important to keep this in mind when you are building your
model. Lots of patches can slow your model down or even cause NetLogo to run out of memory.

e Type ask patch 1 2 3 [set pcolor red] intothe Command
Center.
e Use the mouse in the 3D view to rotate the world.

Notice the shape of the patch and its position in relation to the edges of the world. You'll also notice
that you now need three coordinates to address patches in a 3D world.

Step 2: Turtle Movement

¢ Open the Models Library in the File Menu, (if you are on a Mac and you don't
have a File Menu click on the NetLogo window and it should reappear)
¢ Open Turtle and Observer Motion Example 3D in 3D/Code Examples

Take a moment to look for the controls and monitors. In the bottom left you'll notice a group of
monitors that describe the location and orientation of the turtle, though until you press the SETUP
button they'll all say "N/A".

¢ Press the "setup" button

Heading, pitch, and roll are turtle variables that describe the orientation of the turtle. Heading is
absolute in relation to the xy-plane, it is the rotation of the turtle around the z-axis.

Pitch is the angle between the nose of the turtle and the xy-plane, it is relative to heading.

Introducing NetLogo 3D 211

NetLogo 4.1 User Manual

xy-plane

Roll is the rotation around the turtle's forward vector, it is relative to heading and pitch.

When a group of turtles are created (using crt 10 for example) the heading will be evenly spaced
around the 360 degrees as in 2D NetLogo, however, pitch and roll will always be zero.

Take a look at the "Turtle Movement" buttons.

o Press the "left 1" button.

How does the turtle move? Is is the same or different from 2D NetLogo? Which of the
turtle variables change?

¢ Press the "pitch-down 1" button.
How does the turtle move? Which of the turtle variables change?
¢ Press the "left 1" button again.

How does the turtle move? Is it different than the last time you pressed the "left 1"
button?

212 Introducing NetLogo 3D

NetLogo 4.1 User Manual

¢ Take a little time to play with the Turtle Movement buttons, watching both how
the turtle moves and which of the turtle variables change.

You probably noticed that often more than one of the turtle variables change for a single turn; for
this reason we suggest that you use the turtle commands rather than setting the orientation
variables directly.

Step 3: Observer Movement

At the bottom of the interface you will see a group of buttons labeled "Observer (point of view)". If
you have ever used the 3D view in NetLogo 2D or if you have been using the mouse controls in the
3D view through this tutorial you have been moving the Observer. Changing the point of view in the
3D is actually moving and changing the orientation of the Observer. The Observer has x, y and z
coordinates, just like a turtle or patch, while turtles and patches are constrained to be inside the
world the Observer can be anywhere. Like a turtle the Observer has a heading, pitch and roll, these
variables control where the Observer is looking, that is, what you see in the View.

¢ Move to the 3D View, and make sure "Orbit" is selected in the bottom left
corner of the view.

¢ Click and hold the mouse button in the middle of the view, move the mouse
left, right, up, and down.

How does the position and orientation of the Observer change?

¢ Press the reset-perspective button in the lower right corner of the view and
select "Zoom" in the lower left corner.

¢ Click and hold the mouse button in the middle of the view and move the
mouse up and down.

Which of the Observer variables change? Which stay the same?
¢ Try rotating the world a bit and then zoom again.
¢ Press the "Move" button in the lower left corner of the view.
¢ Click and hold the mouse button in the middle of the view and move the
mouse up, down, left and right.

How does the view change? How do the Observer variables change?

After you are done exploring the world using the mouse controls you can take a look at the
Observer control buttons in the lower left portion of the interface.

If you are familiar the latest versions of NetLogo you should be familiar with the first three buttons in
the Observer group. Watch, follow, and ride, are special modes that automatically update the
position and orientation of the Observer. When in follow or ride mode, the observer position and
orientation are the same as the turtle's. Note that follow and ride are functionally exactly the same,
the difference is only visual in the 3D view. When in watch mode the Observer does not move but
updates to face the target agent.

Introducing NetLogo 3D 213

NetLogo 4.1 User Manual

¢ Press the "setup” button again so you are back to the default orientation.
¢ Press the "orbit-right" button.

How did the view change? Was it what you expected? How is it similar or different
from using the mouse controls?

¢ Take a little time to experiment with orbit, roll and zoom buttons; notice
similarities and differences to the mouse controls.

The direction of the the orbit commands refer to the direction that the Observer moves. That is,
imagine that the Observer is on the surface of a sphere, the center of the sphere is the point that the
Observer is facing represented by the blue cross, by default (0,0,0). The Observer will always face
the center of the sphere and the radius of the sphere will remain const