globals [ tick-delta ;; how much we advance the tick counter this time through min-tick-delta ;; the smallest tick-delta is allowed to be init-avg-speed init-avg-energy ;; initial averages collision-times ;; a list that of times of pending collisions ;; averages from the end of the last tick avg-speed avg-energy avg-speed-magenta avg-speed-cyan avg-energy-magenta avg-energy-cyan open? ;; is there an opening in the divider? ] breed [ dividers divider ] breed [ walls wall ] breed [ particles particle ] particles-own [ vx vy vz ;; velocities rel axes speed mass energy ;; particle info collision-time ;; to determine when collision is collision-with ;; to determine who the collision is with last-collision ;; so they don't collide with one another many times ] to setup clear-all ;; the wall shape is a custom 3D shape contained in "wall.txt" load-shapes-3d "wall.txt" set-default-shape particles "circle" set-default-shape walls "wall" set tick-delta .01 set min-tick-delta .0000001 make-box make-particles update-variables set init-avg-speed avg-speed set init-avg-energy avg-energy set open? false set avg-speed-cyan mean [speed] of turtles with [color = cyan] set avg-speed-magenta mean [speed] of turtles with [color = magenta] set avg-energy-cyan mean [energy] of turtles with [color = cyan] set avg-energy-magenta mean [ energy ] of turtles with [color = magenta] reset-ticks end to go set collision-times [] ;; empty this out for new input ask particles [ set collision-time tick-delta set collision-with nobody if collide? [ detect-collisions detect-wall-collisions ] ] set collision-times sort collision-times ifelse first collision-times < tick-delta ;; if something will collide before the tick [ ask particles [ jump speed * first collision-times ] ; most particles to first collision tick-advance first collision-times ;; now, collide all the particles that are ready ask particles with [ collision-time = first collision-times ] [ ifelse is-particle? collision-with [ if collision-with > self [ ;; so that we don't collide the same particles twice collide collision-with set last-collision collision-with ask collision-with [ set last-collision myself ] ] ] [ wall-collide collision-with ] ] ] [ ask particles [ jump speed * tick-delta ] tick-advance tick-delta ] ask particles [ if last-collision != nobody and is-particle? last-collision [ if distance last-collision > ( ( ( [size] of last-collision ) / 2 ) + ( size / 2 ) ) * 1.1 [ set last-collision nobody ] ] ] if floor ticks > floor (ticks - tick-delta) [ update-variables ] set avg-speed-cyan mean [speed] of turtles with [color = cyan] set avg-speed-magenta mean [speed] of turtles with [color = magenta] set avg-energy-cyan mean [energy] of turtles with [color = cyan] set avg-energy-magenta mean [energy] of turtles with [color = magenta] update-plots display end to update-variables set avg-speed mean [speed] of particles set avg-energy mean [energy] of particles end ;;; ;;; distance and collision procedures ;;; to detect-collisions ;; particle procedure ;; detect-collisions is a particle procedure that determines the time it takes to the collision between ;; two particles (if one exists). It solves for the time by representing the equations of motion for ;; distance, velocity, and time in a quadratic equation of the vector components of the relative velocities ;; and changes in position between the two particles and solves for the time until the next collision let my-x-speed x-velocity heading pitch speed let my-y-speed y-velocity heading pitch speed let my-z-speed z-velocity pitch speed ask other particles with [self != [last-collision] of myself] [ let dpx 0 let dpy 0 let dpz 0 ;; since our world is wrapped, we can't just use calcs like xcor - my-x. Instead, we take the smallest ;; of either the wrapped or unwrapped distance for each dimension set dpx xcor - [xcor] of myself set dpy ycor - [ycor] of myself set dpz zcor - [zcor] of myself let x-speed x-velocity heading pitch speed ;; speed of other particle in the x direction let y-speed y-velocity heading pitch speed ;; speed of other particle in the y direction let z-speed z-velocity pitch speed ;; speed of other particle in the z direction let dvx x-speed - my-x-speed ;; relative speed difference between particles in the x direction let dvy y-speed - my-y-speed ;; relative speed difference between particles in the y direction let dvz z-speed - my-z-speed ;; relative speed difference between particles in the z direction let sum-r ([size] of myself / 2) + (size / 2) ;; sum of both particle radii let p-squared ((dpx * dpx) + (dpy * dpy) + (dpz * dpz)) - (sum-r ^ 2) ;; p-squared represents difference of the ;; square of the radii and the square ;; of the initial positions let pv 2 * ((dpx * dvx) + (dpy * dvy) + (dpz * dvz)) ;;the vector product of the position times the velocity let v-squared (dvx * dvx) + (dvy * dvy) + (dvz * dvz) ;; the square of the difference in speeds ;; represented as the sum of the squares of the x-component ;; and y-component of relative speeds between the two particles ;; p-squared, pv, and v-squared are coefficients in the quadratic equation shown above that ;; represents how distance between the particles and relative velocity are related to the time, ;; t, at which they will next collide (or when their edges will just be touching) let D1 pv ^ 2 - (4 * v-squared * p-squared) let time-to-collision -1 if D1 >= 0 [ set time-to-collision (- pv - sqrt D1) / (2 * v-squared) ] if time-to-collision < tick-delta and time-to-collision > min-tick-delta [ set collision-with myself set collision-time time-to-collision set collision-times lput time-to-collision collision-times ] if time-to-collision < min-tick-delta and time-to-collision > 0 [ set collision-with myself set collision-time min-tick-delta set collision-times lput min-tick-delta collision-times ] ] end to detect-wall-collisions ;; particle procedure update-component-vectors let my-vx vx * tick-delta let my-vy vy * tick-delta let my-vz vz * tick-delta detect-wall-collision "xy" ( wall-max-pzcor - ( size / 2 ) ) ( wall-min-pzcor + ( size / 2 ) ) zcor my-vz detect-wall-collision "yz" ( wall-max-pxcor - ( size / 2 ) ) ( wall-min-pxcor + ( size / 2 ) ) xcor my-vx detect-wall-collision "xz" ( wall-max-pycor - ( size / 2 ) ) ( wall-min-pycor + ( size / 2 ) ) ycor my-vy detect-divider-collision if collision-time < min-tick-delta [ set collision-time min-tick-delta ] set collision-times lput collision-time collision-times end ;; detect-wall-collision plane of wall, wall cor, wall cor, cor of particle, speed of particle to detect-wall-collision [ plane max-wall min-wall cor cor-speed ] ;; particle procedure if ( cor + cor-speed ) > max-wall or ( cor + cor-speed ) < min-wall [ let distance-to-wall abs( max-wall - cor ) let time-fraction ( distance-to-wall / cor-speed ) if ( time-fraction * tick-delta ) < collision-time and last-collision != plane [ set collision-time time-fraction * tick-delta set collision-with plane ] ] end to detect-divider-collision ;; particle procedure let my-vx vx * tick-delta if xcor > 0 and my-vx < 0 and ( xcor + my-vx ) < (size / 2) [ let distance-to-wall xcor - (size / 2) let time-fraction distance-to-wall / my-vx if ( time-fraction * tick-delta ) < collision-time and last-collision != "divider" [ ;; where particle will be once it hits divider let future-ycor ycor + ( vy * time-fraction * tick-delta ) let future-zcor zcor + ( vz * time-fraction * tick-delta ) if not ( ( abs( future-ycor ) <= ( wall-max-pycor * opening-size / 100 ) and abs( future-zcor ) <= ( wall-max-pzcor * opening-size / 100 ) ) and open? ) [ set collision-time time-fraction * tick-delta set collision-with "divider" ] ] ] if xcor < 0 and my-vx > 0 and ( xcor + my-vx ) > (- size / 2) [ let distance-to-wall abs( xcor + (size / 2) ) let time-fraction distance-to-wall / my-vx if ( time-fraction * tick-delta ) < collision-time and last-collision != "divider" [ let future-ycor ycor + ( vy * time-fraction * tick-delta ) ;; where particle will be once it hits divider let future-zcor zcor + ( vz * time-fraction * tick-delta ) if not ( ( abs( future-ycor ) <= ( wall-max-pycor * opening-size / 100 ) and abs( future-zcor ) <= ( wall-max-pzcor * opening-size / 100 ) ) and open? ) [ set collision-time time-fraction * tick-delta set collision-with "divider" ] ] ] end to collide [ particle2 ] ;; particle procedure update-component-vectors ask particle2 [ update-component-vectors ] ;; find heading and pitch from the center of particle1 to the center of particle2 let theading towards particle2 let tpitch towards-pitch particle2 ;; use these to determine the x, y, z components of theta let tx x-velocity theading tpitch 1 let ty y-velocity theading tpitch 1 let tz z-velocity tpitch 1 ;; find the speed of particle1 in the direction of n let particle1-to-theta orth-projection vx vy vz tx ty tz ;; express particle1's movement along theta in terms of xyz let x1-to-theta particle1-to-theta * tx let y1-to-theta particle1-to-theta * ty let z1-to-theta particle1-to-theta * tz ;; now we can find the x, y and z components of the particle's velocity that ;; aren't in the direction of theta by subtracting the x, y, and z ;; components of the velocity in the direction of theta from the components ;; of the overall velocity of the particle let x1-opp-theta vx - x1-to-theta let y1-opp-theta vy - y1-to-theta let z1-opp-theta vz - z1-to-theta ;; do the same for particle2 let particle2-to-theta orth-projection [vx] of particle2 [vy] of particle2 [vz] of particle2 tx ty tz let x2-to-theta particle2-to-theta * tx let y2-to-theta particle2-to-theta * ty let z2-to-theta particle2-to-theta * tz let x2-opp-theta [vx] of particle2 - x2-to-theta let y2-opp-theta [vy] of particle2 - y2-to-theta let z2-opp-theta [vz] of particle2 - z2-to-theta ;; calculate the velocity of the center of mass along theta let vcm ( ( mass * particle1-to-theta ) + ( [mass] of particle2 * particle2-to-theta ) ) / ( mass + [mass] of particle2 ) ;; switch momentums along theta set particle1-to-theta 2 * vcm - particle1-to-theta set particle2-to-theta 2 * vcm - particle2-to-theta ;; determine the x, y, z components of each particle's new velocities ;; in the direction of theta set x1-to-theta particle1-to-theta * tx set y1-to-theta particle1-to-theta * ty set z1-to-theta particle1-to-theta * tz set x2-to-theta particle2-to-theta * tx set y2-to-theta particle2-to-theta * ty set z2-to-theta particle2-to-theta * tz ;; now, we add the new velocities along theta to the unchanged velocities ;; opposite theta to determine the new heading, pitch, and speed of each particle set vx x1-to-theta + x1-opp-theta set vy y1-to-theta + y1-opp-theta set vz z1-to-theta + z1-opp-theta set heading vheading vx vy vz set pitch vpitch vx vy vz set speed vspeed vx vy vz set energy 0.5 * mass * speed ^ 2 ask particle2 [ set vx x2-to-theta + x2-opp-theta set vy y2-to-theta + y2-opp-theta set vz z2-to-theta + z2-opp-theta set heading vheading vx vy vz set pitch vpitch vx vy vz set speed vspeed vx vy vz set energy 0.5 * mass * speed ^ 2 ] end to open-middle if opening-size = 20 [ ask dividers [ set shape "opening20" ] ] if opening-size = 40 [ ask dividers [ set shape "opening40" ] ] if opening-size = 60 [ ask dividers [ set shape "opening60" ] ] if opening-size = 80 [ ask dividers [ set shape "opening80" ] ] if opening-size = 100 [ ask dividers [ die ] ] set open? true end to close-middle ask dividers [ set shape "flash" ] set open? false end to wall-collide [ collision-wall ] ;; particle procedure update-component-vectors ifelse collision-wall = "yz" [ set heading vheading (- vx ) vy vz ][ ifelse collision-wall = "xz" [ set heading vheading vx (- vy ) vz ][ ifelse collision-wall = "xy" [ set pitch vpitch vx vy ( - vz ) ] [ set heading vheading (- vx ) vy vz ] ] ] end ;;; ;;; drawing procedures ;;; ;; creates box to make-box create-walls 1 [ ;; bottom wall set heading 0 set zcor wall-min-pzcor ] create-walls 1 [ ;; top wall set heading 0 set pitch 180 set zcor wall-max-pzcor ] create-walls 1 [ ;; upper wall set heading 0 set pitch 90 set ycor wall-max-pycor ] create-walls 1 [ ;; lower wall set heading 0 set pitch -90 set ycor wall-min-pycor ] create-walls 1 [ ;; right wall set heading 0 set roll -90 set xcor wall-max-pxcor ] create-walls 1 [ ;; left wall set heading 0 set roll 90 set xcor wall-min-pxcor ] create-dividers 1 [ ;; center wall set heading 0 set color grey set roll 90 set xcor 0 set shape "flash" set size box-width ] ask walls [ set heading 0 set color grey + random-float 3 set size box-width set shape "wall" ] end ;; creates initial particles to make-particles create-particles num-magentas [ setup-particle magenta-init-speed magenta-mass magenta random-position "left-half" ] create-particles num-cyans [ setup-particle cyan-init-speed cyan-mass cyan random-position "right-half" ] check-initial-positions 0 check-center-divider end to setup-particle [ my-speed my-mass my-color ] ;; particle procedure set speed my-speed set mass my-mass set energy 0.5 * mass * (speed ^ 2) set color my-color set size mass ^ 0.33 end ;; makes sure particles aren't overlapped at setup to check-initial-positions [iterations] let check-again? false ask particles [ if particle-overlap? [ ifelse color = cyan [ random-position "right-half" ] [ random-position "left-half" ] set check-again? true ] ] ifelse iterations < 50 [ if check-again? [ check-initial-positions iterations + 1 ] ] [ beep user-message "Not enough room for all these particles!" ] end ;; makes sure particles don't go through center wall at setup to check-center-divider let check-again? false ask particles [ if abs( xcor ) < ( size / 2 ) [ ifelse color = cyan [ random-position "right-half" ] [ random-position "left-half" ] set check-again? true ] ] if check-again? [ check-initial-positions 0 check-center-divider ] end to-report particle-overlap? ;; particle procedure report any? other particles with [ distance myself <= ((size + [size] of myself) / 2 ) ] end ;; place particle at random location inside the box. to random-position [ side ] ;; particle procedure ifelse side = "left-half" [ setxyz ( random-float ( ( box-width / 2 ) - 2 ) + ( wall-min-pxcor + 1 ) ) ( random-float ( box-height - 2 ) + ( wall-min-pycor + 1 ) ) ( random-float ( box-depth - 2 ) + ( wall-min-pzcor + 1 ) ) ] [ setxyz ( random-float ( ( box-width / 2 ) - 2 ) + ( 1 ) ) ( random-float ( box-height - 2 ) + ( wall-min-pycor + 1 ) ) ( random-float ( box-depth - 2 ) + ( wall-min-pzcor + 1 ) ) ] tilt-up asin (1.0 - random-float 2.0) roll-right random-float 360 update-component-vectors set heading vheading vx vy vz set pitch vpitch vx vy vz end ;;; ;;; math procedures ;;; ;; consider the desired box-size to-report box-width report ( world-width - 1 ) * ( box-size / 100 ) end to-report box-height report ( world-height - 1 ) * ( box-size / 100 ) end to-report box-depth report ( world-depth - 1 ) * ( box-size / 100 ) end to-report wall-max-pxcor report max-pxcor * ( box-size / 100 ) end to-report wall-max-pycor report max-pycor * ( box-size / 100 ) end to-report wall-max-pzcor report max-pzcor * ( box-size / 100 ) end to-report wall-min-pxcor report min-pxcor * ( box-size / 100 ) end to-report wall-min-pycor report min-pycor * ( box-size / 100 ) end to-report wall-min-pzcor report min-pzcor * ( box-size / 100 ) end ;; makes sure that the values stored in vx, vy, vz actually reflect ;; the appropriate heading, pitch, speed to update-component-vectors ;; particle procedure set vx x-velocity heading pitch speed set vy y-velocity heading pitch speed set vz z-velocity pitch speed end ;; reports velocity of a vector at a given angle and pitch ;; in the direction of x. to-report x-velocity [ vector-angle vector-pitch vector-speed ] report sin( vector-angle ) * abs( cos( vector-pitch ) ) * vector-speed end ;; reports velocity of a vector at a given angle and pitch ;; in the direction of y. to-report y-velocity [ vector-angle vector-pitch vector-speed ] report cos( vector-angle ) * abs( cos( vector-pitch ) ) * vector-speed end ;; reports velocity of a vector at a given angle and pitch ;; in the direction of z. to-report z-velocity [ vector-pitch vector-speed ] report sin( vector-pitch ) * vector-speed end ;; reports speed of a vector given xyz coords to-report vspeed [ x y z ] report sqrt( x ^ 2 + y ^ 2 + z ^ 2 ) end ;; reports xt heading of a vector given xyz coords to-report vheading [ x y z ] report atan x y end ;; reports pitch of a vector given xyz coords to-report vpitch [ x y z ] report asin ( z / ( vspeed x y z ) ) end ;; called by orthprojection to-report dot-product [ x1 y1 z1 x2 y2 z2 ] report ( x1 * x2 ) + ( y1 * y2 ) + ( z1 * z2 ) end ;; component of 1 in the direction of 2 (Note order) to-report orth-projection [ x1 y1 z1 x2 y2 z2 ] let dproduct dot-product x1 y1 z1 x2 y2 z2 let speed-of-2 vspeed x2 y2 z2 ;; if speed is 0 then there's no projection anyway ifelse speed-of-2 > 0 [ report dproduct / speed-of-2 ] [ report 0 ] end ; Copyright 2007 Uri Wilensky. ; See Info tab for full copyright and license. @#$#@#$#@ GRAPHICS-WINDOW 0 0 245 221 5 5 5.0 1 10 1 1 1 0 1 1 1 -5 5 -5 5 -5 5 1 1 1 ticks 30.0 BUTTON 40 222 133 255 NIL go T 1 T OBSERVER NIL NIL NIL NIL 1 BUTTON 40 189 133 222 NIL setup NIL 1 T OBSERVER NIL NIL NIL NIL 1 SLIDER 20 74 192 107 num-magentas num-magentas 1 50 10 1 1 NIL HORIZONTAL PLOT 388 217 649 413 Average Energies NIL NIL 0.0 1.0 0.0 500.0 true true "" "" PENS "cyan" 10.0 0 -11221820 true "" "plotxy ticks avg-energy-cyan" "magenta" 10.0 0 -5825686 true "" "plotxy ticks avg-energy-magenta" PLOT 389 18 649 215 Average Speeds NIL NIL 0.0 1.0 0.0 55.0 false true "" "" PENS "cyan" 5.0 0 -11221820 true "" "plotxy ticks avg-speed-cyan" "magenta" 5.0 0 -5825686 true "" "plotxy ticks avg-speed-magenta" SLIDER 20 108 192 141 magenta-init-speed magenta-init-speed 1 50 10 1 1 NIL HORIZONTAL SLIDER 20 142 192 175 magenta-mass magenta-mass 1 10 1 1 1 NIL HORIZONTAL SLIDER 193 74 365 107 num-cyans num-cyans 1 50 10 1 1 NIL HORIZONTAL SLIDER 193 108 365 141 cyan-init-speed cyan-init-speed 0 50 46 1 1 NIL HORIZONTAL BUTTON 244 189 339 222 open open-middle NIL 1 T OBSERVER NIL NIL NIL NIL 1 BUTTON 244 222 339 255 close close-middle NIL 1 T OBSERVER NIL NIL NIL NIL 1 SWITCH 137 222 240 255 collide? collide? 0 1 -1000 SLIDER 20 40 192 73 box-size box-size 0 100 85 1 1 % HORIZONTAL SLIDER 193 40 365 73 opening-size opening-size 0 100 80 20 1 % HORIZONTAL SLIDER 193 142 366 175 cyan-mass cyan-mass 0 10 4 1 1 NIL HORIZONTAL MONITOR 12 259 181 304 magentas in left chamber count particles with [ color = magenta and xcor < 0 ] 3 1 11 MONITOR 187 259 366 304 cyans in right chamber count particles with [ color = cyan and xcor > 0 ] 3 1 11 MONITOR 187 312 366 357 average speed cyan avg-speed-cyan 3 1 11 MONITOR 12 312 181 357 average speed magenta avg-speed-magenta 3 1 11 MONITOR 187 365 366 410 average energy cyan avg-energy-cyan 3 1 11 MONITOR 12 365 181 410 average energy magenta avg-energy-magenta 3 1 11 @#$#@#$#@ ## WHAT IS IT? This model is a 2D version of the 3D model GasLab Two Gas; it is one in a series of GasLab models. They use the same basic rules for simulating the behavior of gases. Each model integrates different features in order to highlight different aspects of gas behavior. The basic principle of the models is that gas particles are assumed to have two elementary actions: they move and they collide - either with other particles or with any other objects such as walls. This model is the simplest gas model in the suite of GasLab models. The particles are moving and colliding with each other with no external constraints, such as gravity or containers. In this model, particles are modeled as perfectly elastic ones with no energy except their kinetic energy -- which is due to their motion. Collisions between particles are elastic. Particles are colored according to their speed -- blue for slow, green for medium, and red for high. ## HOW IT WORKS The basic principle of all GasLab models is the following algorithm (for more details, see the model "GasLab Gas in a Box"): 1) A particle moves in a straight line without changing its speed, unless it collides with another particle or bounces off the wall. 2) Two particles "collide" if their surfaces touch. In this model, the time at which any collision is about to occur is measured, and particles move forward until the first pair to collide touch one another. They are collided, and the cycle repeats. 3) The vector of collision for the particles describes the direction of the line connecting their centers. 4) The particles exchange momentum and energy only along this line, conforming to the conservation of momentum and energy for elastic collisions. 5) Each particle is assigned its new speed, direction and energy. ## HOW TO USE IT - OPEN: opens the door between the two chambers and allows particles to pas through - CLOSE: closes the door separating the two chambers - NUM-MAGENTAS and NUM-CYANS: the number of gas particles of each type. - COLLIDE?: Turns collisions between particles on and off. - MAGENTA-INIT-SPEED and CYAN-INIT-SPEED: the initial speed of each type of particle -- particles of the same type start with the same speed. - MAGENTA-MASS and CYAN-MASS: the mass of each type particle -- particles of the same type have the same mass. - BOX-SIZE: defines the size of the bounding box - OPENING-SIZE: define the size of the "door" between the two chambers As in most NetLogo models, the first step is to press SETUP. It puts in the initial conditions you have set with the sliders. Be sure to wait till the SETUP button stops before pushing GO. The GO button runs the models again and again. This is a "forever" button. Monitors: MAGENTAS IN LEFT CHAMBER, CYANS IN RIGHT CHAMBER, AVERAGE SPEED MAGENTA and CYAN, and AVERAGE ENERGY MAGENTA and CYAN help you track the changes after the "door" has been opened. Plots: - Average Speeds: Shows the change in average speed for each type of particle. - Average Energy: Shows the change in average energy for each type of particle. Initially, all the particles have the same speed but random directions. Therefore the first histogram plots of speed and energy should show only one column each. As the particles repeatedly collide, they exchange energy and head off in new directions, and the speeds are dispersed -- some particles get faster, some get slower, and the plot will show that change. ## THINGS TO NOTICE What variables affect how quickly the model reaches a new equilibrium when the wall is removed? Why does the average speed for each color decrease as the model runs with the wall in place, even though the average energy remains constant? What happens to the relative energies and speeds of each kind of particle as they intermingle? What effect do the initial speeds and masses have on this relationship? Does the system reach an equilibrium state? Do heavier particles tend to have higher or lower speeds when the distribution of energy has reached equilibrium? Is it reasonable to consider this box "insulated"? ## THINGS TO TRY Calculate how long the model takes to reach equilibrium with different sizes of windows (holding other parameters constant). Calculate how long the model takes to reach equilibrium with different particle speeds. Set the number of cyan particles to zero. This is a model of a gas expanding into a vacuum. This experiment was first done by Joule, using two insulated chambers separated by a valve. He found that the temperature of the gas remained the same when the valve was opened. Why would this be true? Is this model consistent with that observation? Try some extreme situations, to test your intuitive understanding: -- masses the same, speeds of the two particles very different. -- speeds the same, masses very different. -- a very small number of one kind of particle -- almost, but not quite a vacuum. What happens to those few particles, and how do they affect the other kind? Try relating quantitatively the ratio of the equilibrium speeds of both gases after the wall is opened to the ratio of the masses of both gases. How are they related? ## EXTENDING THE MODEL Monitor pressure in the right and left chambers. Monitor temperature in the right and left chambers. Replace the partition wall with a moveable piston, so that the two kinds of particles can push against each other without intermingling. Do they arrive at a different equilibrium then? Replace the partition wall with a surface that can transmit energy. Add the histograms of energy and speed distribution (such as found in the "Free Gas" model). ## NETLOGO FEATURES Notice the use of the `histogram` primitive. When making 3D shapes, both sides of a shape must be defined or else one side becomes transparent. We use this feature to create a box with opaque inside walls and fencelike outside walls. For more information about 3D shapes, see the NetLogo User Manual. ## CREDITS AND REFERENCES This was one of the original Connection Machine StarLogo applications (under the name GPCEE) and is now ported to NetLogo as part of the Participatory Simulations project. ## HOW TO CITE If you mention this model in a publication, we ask that you include these citations for the model itself and for the NetLogo software: * Wilensky, U. (2007). NetLogo GasLab Two Gas 3D model. http://ccl.northwestern.edu/netlogo/models/GasLabTwoGas3D. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. * Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. ## COPYRIGHT AND LICENSE Copyright 2007 Uri Wilensky. ![CC BY-NC-SA 3.0](http://i.creativecommons.org/l/by-nc-sa/3.0/88x31.png) This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. Commercial licenses are also available. To inquire about commercial licenses, please contact Uri Wilensky at uri@northwestern.edu. This is a 3D version of the 2D model GasLab Two Gas. @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circle false 0 Circle -7500403 true true 30 30 240 circle 2 false 0 Circle -7500403 true true 16 16 270 Circle -16777216 true false 46 46 210 clock true 0 Circle -7500403 true true 30 30 240 Polygon -16777216 true false 150 31 128 75 143 75 143 150 158 150 158 75 173 75 Circle -16777216 true false 135 135 30 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 divider false 0 Rectangle -7500403 true true 30 30 270 270 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flash false 0 Rectangle -7500403 true true 30 30 270 270 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 link true 0 Line -7500403 true 150 0 150 300 link direction true 0 Line -7500403 true 150 150 30 225 Line -7500403 true 150 150 270 225 opening20 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 120 120 180 180 opening40 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 105 105 195 195 opening60 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 90 90 210 210 opening80 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 75 75 225 225 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 square false 0 Rectangle -7500403 true true 30 30 270 270 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 60 270 150 0 240 270 15 105 285 105 Polygon -7500403 true true 75 120 105 210 195 210 225 120 150 75 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wall false 0 Rectangle -7500403 true true 30 30 270 270 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 3D 5.1.0 @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ default 0.0 -0.2 0 0.0 1.0 0.0 1 1.0 0.0 0.2 0 0.0 1.0 link direction true 0 Line -7500403 true 150 150 90 180 Line -7500403 true 150 150 210 180 @#$#@#$#@ 0 @#$#@#$#@