breed [ electrons electron ] breed [ anodes anode ] breed [ nuclei nucleus ] breed [ cathodes cathode ] globals [charge-flow ] ;;;;;;;;;;;;;;;;;;;;;;;; ;;; Setup Procedures ;;; ;;;;;;;;;;;;;;;;;;;;;;;; to setup clear-all set-default-shape electrons "circle 2" ;; create wire ask patches [ set pcolor gray] ;; create electrons crt number-of-electrons [ set breed electrons setxy random-xcor random-ycor set heading random 360 set color orange - 2 set size 1 ] ;; now set up the Battery-negative ask patches with [pxcor >= max-pxcor - 3] [ set pcolor red ] ;; now set up the Battery-negative ask patches with [pxcor <= min-pxcor + 3] [ set pcolor black ] ;; create labels for the battery terminals ask patches with [pxcor = min-pxcor + 1 and pycor = 0] [ sprout 1 [ set breed cathodes set shape "plus" set size 1.5 ] ] ask patches with [pxcor = max-pxcor - 1 and pycor = 0] [ sprout 1 [ set breed anodes set shape "minus" set size 1.5 ] ] ;; create atoms ask n-of ( resistance ^ 2 ) patches with [pxcor < max-pxcor - 4.5 and pxcor > min-pxcor + 4.5 and not any? nuclei-here and not any? nuclei-on neighbors ] [ sprout 1 [ set breed nuclei set size 2 set shape "circle 2" set color blue ] ] set charge-flow 0 reset-ticks end ;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Runtime Procedures ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;; to go ;; update the size of battery-terminals with values of Voltage update-battery-size ;; Rules for electrons ask electrons [ ;; electrons-rules for performing simple point collisions ;; with nuclei in the wire and in between two collisions, ;; drifting steadily drifting forward due to the electric field move ] tick ;; Keep plotting do-plot end ;;;;;;;;;;;;;;;;;;;;;;;;; ;; rules for electrons ;; ;;;;;;;;;;;;;;;;;;;;;;;;; to move ifelse not any? nuclei-on neighbors [ set heading 270 fd voltage ] [ ;; this is a much simplified representation indicating scattering due to point collision set heading random 180 fd voltage ] ;; calculate current if pcolor = black [ pen-up set charge-flow charge-flow + 1 hatch 1 [ set breed electrons set color orange - 2 setxy max-pxcor - 4 random-ycor pen-up ] die ] end ;;;;;;;;;;;;;;;;;;;;;;;;; ;; Plotting procedures ;; ;;;;;;;;;;;;;;;;;;;;;;;;; to do-plot ;; plot current vs. time set-current-plot "Current vs Time" plotxy ticks (charge-flow) / ticks end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Procedures for Counting Current ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to update-battery-size ;; now update the size of Battery-negative ask cathodes [ set size 1.5 + 0.5 * Voltage ] ask anodes [ set size 1.5 + 0.5 * Voltage ] end ; Copyright 2008 Pratim Sengupta and Uri Wilensky. ; See Info tab for full copyright and license. @#$#@#$#@ GRAPHICS-WINDOW 185 14 879 177 85 16 4.0 1 30 1 1 1 0 0 1 1 -85 85 -16 16 1 1 1 ticks 30.0 BUTTON 7 14 91 54 NIL setup NIL 1 T OBSERVER NIL NIL NIL NIL 1 BUTTON 92 14 177 54 NIL go T 1 T OBSERVER NIL NIL NIL NIL 1 TEXTBOX 186 186 298 204 Battery-positive (B+) 11 0.0 0 TEXTBOX 767 184 889 212 Battery-negative (B-)\n 11 0.0 0 BUTTON 22 206 156 239 Watch An Electron ask electrons [ set color orange - 2 pu ]\nclear-drawing \nask one-of electrons with [xcor > max-pxcor - 6]\n[if pcolor != black [ set color yellow pd \n watch-me\n]] NIL 1 T OBSERVER NIL NIL NIL NIL 1 BUTTON 27 239 152 272 Stop Watching ask electrons [ pu set color orange - 2]\nreset-perspective\n NIL 1 T OBSERVER NIL NIL NIL NIL 1 MONITOR 302 185 451 230 Electrons Arrived At B+ charge-flow 17 1 11 PLOT 453 185 755 353 Current vs Time Time (Seconds) Current 0.0 10.0 0.0 1.0 true false "" "" PENS "default" 1.0 0 -16777216 true "" "" MONITOR 302 279 403 324 Current charge-flow / ticks 2 1 11 SLIDER 6 138 178 171 resistance resistance 10 20 10 2.5 1 NIL HORIZONTAL SLIDER 7 63 178 96 number-of-electrons number-of-electrons 400 800 800 200 1 NIL HORIZONTAL SLIDER 7 101 178 134 voltage voltage 2 6 6 1 1 NIL HORIZONTAL MONITOR 302 232 403 277 Timer ticks 17 1 11 @#$#@#$#@ ## WHAT IS IT? This model shows a simplified microscopic picture of electrical conduction inside a wire connected across two battery terminals. It is based on Drude's free electron theory, and shows how electric current emerges from the collective movement of many electrons inside a wire. It also shows how electric current depends on the number of free electrons and how fast these electrons are travelling towards the battery-positive. This speed, in turn, depends on a) the applied voltage, and b) the obstacles that the electrons encounter in their way, which are represented in this model by atoms. ## HOW IT WORKS The wire in this model (represented by gray patches) is composed of atoms, which in turn are made of negatively charged electrons and positively charged nuclei. According to the Bohr model of the atom, these electrons revolve in concentric shells around the nucleus. However, in each atom, the electrons that are farthest away from the nucleus (i.e., the electrons that are in the outermost shell of each atom) behave as if they are free from the nuclear attraction. These outermost electrons from each atom are called "free electrons". These free electrons obey a specific set of rules that can be found in the "Procedures" tab. These rules are as follows: The applied electric voltage due to the battery imparts a steady velocity to the electrons in the direction of the positive terminal. In addition to this drift, the electrons also collide with the atomic nuclei (represented by the blue atoms) in the wire giving rise to electrical resistance in the wire. During these collisions, electrons bounce back, scatter slightly, and then start drifting again in the direction of the battery-positive. The positive battery terminal (represented by black patches), which is actually an enormous collection of positive charges, acts as a sink for the negatively charged free-electrons. The negative battery terminal (represented by red patches) is a large source of negative charges or electrons. Note that electrons reappear on the other side at the negative terminal after entering the positive terminal of the battery. This simplified representation of the continuous process of charge generation in the battery helps to maintain a constant voltage (or potential difference) between the two terminals. ## HOW TO USE IT The NUMBER-OF-ELECTRONS slider allows the user to select the total number of free electrons in the wire. This number is kept constant throughout a single run of the model. The VOLTAGE slider indicates the magnitude of voltage between the battery terminals. This voltage imparts a steady velocity to the electrons. The RESISTANCE slider indicates how many atoms are in the wire. The number of atoms created is equal to the square of the value of this slider. Increasing this value will also increase the number of collisions that electrons will suffer inside the wire. The button WATCH AN ELECTRON highlights a single electron (chosen randomly) in the model so that you can observe and trace its movement. If you want to go back to the default settings (with all electrons red and no traces), you need to press SETUP. If you simply want to stop watching, press STOP WATCHING. ## THINGS TO NOTICE This model uses several approximations. First, the atoms are placed randomly inside the wire. That is, for the same value of RESISTANCE, every time you press setup, a new spatial distribution of atoms will result. This may result in slightly different values of electric current for the same model parameters. [The representation of RESISTANCE in the form of number of atoms is also an approximate representation. In this context, the advanced user may find the discussion in the section titled "NOTES FOR ADVANCED USERS" to be of interest.] Second, the rule for collisions between electrons and atoms is a much simplified, approximate representation. It is based on point collisions that neglect the size of electrons and atoms; in addition, these rules do not use exact mathematical formulae for calculating exact velocities before and after collisions. As a result of these approximations, values may not strictly adhere to Ohm's Law. For example, when you double the value of RESISTANCE, electric current may not be exactly half, as you would expect from Ohm's Law, even though it will be lower. ## THINGS TO TRY 1. Run the model for different values of NUMBER-OF-ELECTRONS, while keeping all the other sliders constant. (Remember to press SETUP every time you change the value). How does the value of current in the wire change? 2. Run the model for different values of VOLTAGE, while keeping all the other sliders constant. (Remember to press SETUP every time you change the value). How does the value of current in the wire change? How do you think VOLTAGE affects the motion of the electrons? 3. Run the model for different values of RESISTANCE, while keeping all the other sliders constant. (Remember to press SETUP every time you change the value). How does the value of current in the wire change? How do you think RESISTANCE affects the motion of the electrons? 4. Press WATCH AN ELECTRON. Using the TIMER monitor, or a stopwatch, note how much time the electron takes to travel through the wire. Repeat this observation several times for the same model parameters. How do you think the average of these values is related to electric current? ## EXTENDING THE MODEL Can you create a series circuit (with two wires in series) by extending this model? ## NOTE TO ADVANCED USERS 1. Resistance is represented in NIELS models in two forms. In the first form of representation, which is used in this model, the resistance of a material is represented by the number of atoms per unit square area. This representation foregrounds the rate of collisions suffered by free electrons making this the central mechanism that generates resistance. In the second form of representation, which is used in both the Series Circuit and Parallel Circuit models, resistance determines not only the number of atoms inside the wire, but also the number of free electrons. This is a simplified representation of the fact that some materials with higher resistances may have a fewer number of free electrons available per atom. 2. Both these forms of representations operate under what is known in physics as the "independent electron approximation". That is, both these forms of representations assume that the free-electrons inside the wire do not interact with each other or influence each other's behaviors. 3. It is important to note that both these representations of resistance are, at best, approximate representations of electrical resistance. For example, note that resistance of a conducting material also depends on its geometry and its temperature. This model does not address these issues, but can be modified and/or extended to do so. If you are interested in further reading about the issues highlighted in this section, here are some references that you may find useful: Ashcroft, J. N. & Mermin, D. (1976). Solid State Physics. Holt, Rinegart and Winston. Chabay, R.W., & Sherwood, B. A. (2000). Matter & Interactions II: Electric & Magnetic Interactions. New York: John Wiley & Sons. ## NETLOGO FEATURES Electrons wrap around the world vertically. ## RELATED MODELS Electrostatics, Electron Sink, Parallel Circuit, Series Circuit. ## CREDITS AND REFERENCES This model is a part of the NIELS curriculum. The NIELS curriculum has been and is currently under development at Northwestern's Center for Connected Learning and Computer-Based Modeling and the Mind, Matter and Media Lab at Vanderbilt University. For more information about the NIELS curriculum please refer to http://ccl.northwestern.edu/NIELS. ## HOW TO CITE If you mention this model in a publication, we ask that you include these citations for the model itself and for the NetLogo software: * Sengupta, P. and Wilensky, U. (2008). NetLogo Current in a Wire model. http://ccl.northwestern.edu/netlogo/models/CurrentinaWire. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. * Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. To cite the NIELS curriculum as a whole, please use: Sengupta, P. and Wilensky, U. (2008). NetLogo NIELS curriculum. http://ccl.northwestern.edu/NIELS. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. ## COPYRIGHT AND LICENSE Copyright 2008 Pratim Sengupta and Uri Wilensky. ![CC BY-NC-SA 3.0](http://i.creativecommons.org/l/by-nc-sa/3.0/88x31.png) This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. Commercial licenses are also available. To inquire about commercial licenses, please contact Uri Wilensky at uri@northwestern.edu. To use this model for academic or commercial research, please contact Pratim Sengupta at or Uri Wilensky at for a mutual agreement prior to usage. @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 anode false 14 Rectangle -7500403 true false 0 0 255 300 Rectangle -7500403 false false 30 0 285 300 Rectangle -2674135 true false 0 0 285 300 Rectangle -1184463 false false 0 0 300 300 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 cathode false 0 Rectangle -13345367 true false 0 0 285 300 Rectangle -1184463 false false 0 0 285 300 circle false 0 Circle -7500403 true true 0 0 300 Circle -7500403 false true -45 -45 180 Circle -16777216 false false -2 -2 304 circle 2 false 2 Circle -16777216 true false 0 0 300 Circle -955883 true true 30 30 240 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 line half true 0 Line -7500403 true 150 0 150 150 link true 0 Line -7500403 true 150 0 150 300 link direction true 0 Line -7500403 true 150 150 30 225 Line -7500403 true 150 150 270 225 minus false 14 Rectangle -1 true false 0 90 300 210 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 plus false 0 Rectangle -1 true false 105 0 195 300 Rectangle -1 true false 0 105 300 195 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 5.1.0 @#$#@#$#@ need-to-manually-make-preview-for-this-model @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ default 0.0 -0.2 0 0.0 1.0 0.0 1 1.0 0.0 0.2 0 0.0 1.0 link direction true 0 Line -7500403 true 150 150 90 180 Line -7500403 true 150 150 210 180 @#$#@#$#@ 0 @#$#@#$#@