globals [ fast average slow ;; current counts avg-speed avg-energy ;; current averages vsplit vclock ;; clock variables raw-width raw-height ;; box size variables piston-position ;; position of the piston at any given time volume area ;; because this is 2D, area is the perimeter and volume is the area total-pressure ;; pressure per unit area pressure-history ;; list of 'scale' previous total-pressures avg-pressure ;; mean of the pressure-history initspeed initmass ;; initial speed and initial mass of the all the particles-particle mass always stays the same, but the speed changes. going-down? ;; flag for whether or not the piston is moving up or down ] turtles-own [ speed mass energy new-speed ;; Turtle Info v1t v1l tmp-turtle ;; Turtle 1 -- Collide heading2 mass2 speed2 v2t v2l turtle2 ;; Turtle 2 -- Collide theta ;; Turtles 1 + 2 -- Collide pressure ;; pressure variable ] ;; procedure that setup up initial variables to setup clear-all set going-down? true set pressure-history [] set initspeed 10.0 set initmass 1.0 set raw-width round (0.01 * box-width * max-pxcor) set raw-height round (0.01 * box-height * max-pycor) set piston-position 0.75 * raw-height set area ((4 * raw-width) + (2 * (piston-position + raw-height))) set volume ((2 * raw-width) * (piston-position + raw-height)) make-box draw-piston ;;set vclock 0 ;; create the gas molecules crt number [ set new-speed initspeed set mass initmass random-position set shape "circle" recolor set pressure 0 ] update-variables reset-ticks setup-histograms end ;; updates variables after every time tick to update-variables ;; Gas Variables ask turtles [ set speed new-speed set energy (0.5 * mass * speed * speed) ] set average count turtles with [ color = green ] set slow count turtles with [ color = blue ] set fast count turtles with [ color = red ] set avg-speed mean [ speed ] of turtles set avg-energy mean [ energy ] of turtles ;; System Variables calculate-pressure set vsplit (round (max [speed] of turtles * 1.2)) end ;; procedure that runs the model to go ask turtles [bounce] ask turtles [move] ask turtles [check-for-collision] ;; control the piston's motion if piston-position < (-0.75 * raw-height) [ set going-down? false ] if piston-position > (0.75 * raw-height) [ set going-down? true ] ifelse going-down? [ piston-down piston-speed / vsplit ] [ piston-up piston-speed / vsplit ] set vclock vclock + 1 ifelse (vclock = vsplit) [ tick set vclock 0 update-variables do-plotting do-histograms ] [ display ] end ;; turtle procedure for bouncing off of the walls to bounce ; if we're not about to hit a wall (yellow patch) ; or the piston (gray+2 patch), ; we don't need to do any further checks if ([pcolor] of patch-ahead 1 != yellow) and ([pcolor] of patch-ahead 1 != gray + 2) [ stop ] ; get the coordinates of the patch we'll be on if we go forward 1 let new-px [pxcor] of patch-ahead 1 let new-py [pycor] of patch-ahead 1 ; check: hitting left or right wall? if (abs new-px = raw-width) ; if so, reflect heading around x axis [ set heading (- heading) set pressure pressure + abs (dx * mass * speed) ] ; check: hitting piston or bottom wall? if (abs new-py = raw-height) or (new-py = round piston-position) ; if so, reflect heading around y axis [ set heading (180 - heading) set pressure pressure + abs (dy * mass * speed) ] end ;; turtle procedure that moves all the particles to move jump (speed / vsplit) end ;; turtle procedure to check to see if two particles collide to check-for-collision if count other turtles-here = 1 [ set tmp-turtle one-of other turtles-here if ((who > [who] of tmp-turtle) and (turtle2 != tmp-turtle)) [ collide ] ] end ;; turtle procedure for when two particles collide to collide get-turtle2-info calculate-velocity-components set-new-speed-and-headings end ;; turtle gets mass and speed info from turtle it is colliding with to get-turtle2-info set turtle2 tmp-turtle set mass2 [mass] of turtle2 set speed2 [new-speed] of turtle2 set heading2 [heading] of turtle2 end ;; calculates new turtle velocity after the collision to calculate-velocity-components set theta (random-float 360) set v1l (new-speed * sin (theta - heading)) set v1t (new-speed * cos (theta - heading)) set v2l (speed2 * sin (theta - heading2)) set v2t (speed2 * cos (theta - heading2)) let vcm (((mass * v1t) + (mass2 * v2t)) / (mass + mass2)) set v1t (vcm + vcm - v1t) set v2t (vcm + vcm - v2t) end ;; set new speed and headings of each turtles that has had a collision to set-new-speed-and-headings set new-speed sqrt ((v1t * v1t) + (v1l * v1l)) set heading (theta - (atan v1l v1t)) let new-speed2 sqrt ((v2t * v2t) + (v2l * v2l)) let new-heading (theta - (atan v2l v2t)) ask turtle2 [ set new-speed new-speed2 set heading new-heading ] recolor ask turtle2 [ recolor ] end to recolor ;; turtle procedure ifelse new-speed < (0.5 * initspeed) [ set color blue ] [ ifelse new-speed > (1.5 * initspeed) [ set color red ] [ set color green ] ] end ;; patch procedure to make a box to make-box ask patches with [ ((abs pxcor = raw-width) and (abs pycor <= raw-height)) or ((abs pycor = raw-height) and (abs pxcor <= raw-width)) ] [ set pcolor yellow ] end ;; turtle procedure to give turtles a random position within the confined area to random-position setxy ((1 - raw-width) + random-float (2 * raw-width - 2)) ((1 - raw-height) + random-float (raw-height + piston-position - 2)) end ;; ------ Piston ---------- to piston-up [dist] if (dist > 0) [ ifelse ((piston-position + dist) < raw-height - 1) [ undraw-piston set piston-position (piston-position + dist) draw-piston ] [ undraw-piston set piston-position (raw-height - 1) draw-piston ] set volume ((2 * raw-width) * (piston-position + raw-height)) set area ((4 * raw-width) + (2 * (piston-position + raw-height))) ] end to piston-down [dist] if (dist > 0) [ ifelse (piston-position - dist) > (2 - raw-height) [ undraw-piston set piston-position (piston-position - dist) ask turtles [ if (ycor >= (piston-position - 1)) [ bounce-off-piston ] ] draw-piston ] [ undraw-piston set piston-position (3 - raw-height) ask turtles [ if (pycor >= 3 - raw-height) [ bounce-off-piston ] ] draw-piston ] set area ((4 * raw-width) + (2 * (piston-position + raw-height))) set volume ((2 * raw-width) * (piston-position + raw-height)) ] end to draw-piston ask patches with [ ((pycor = (round piston-position)) and ((abs pxcor) < raw-width)) ] [ set pcolor gray + 2 ] end to undraw-piston ask patches with [ (pycor = round piston-position) and ((abs pxcor) < raw-width) ] [ set pcolor black ] end to bounce-off-piston ;; Turtles procedure particle bounces off piston ifelse ((((2 * piston-position) - (ycor + 2)) < (1 - raw-height)) or (((2 * piston-position) - (ycor + 2)) > (piston-position - 2))) [ set ycor ((random (raw-height + piston-position - 2)) - (raw-height - 1)) ] [ set ycor ((2 * piston-position) - (ycor + 2)) ] end to calculate-pressure ;; Observer procedure set total-pressure 100 * (sum [pressure] of turtles) / area ifelse (length pressure-history < scale) [ set pressure-history fput total-pressure pressure-history ] [ set pressure-history fput total-pressure but-last pressure-history ] set avg-pressure mean pressure-history ;; rezero pressures in preparation for the next cycle ask turtles [ set pressure 0 ] end ;;; plotting procedures to setup-histograms ;; Speed Histogram set-current-plot "Speed histogram" set-plot-x-range 0 (initspeed * 2) set-plot-y-range 0 ceiling (number / 6) set-current-plot-pen "average" set-histogram-num-bars 45 set-current-plot-pen "fast" set-histogram-num-bars 45 set-current-plot-pen "slow" set-histogram-num-bars 45 ;; Energy histogram set-current-plot "Energy histogram" set-plot-x-range 0 (0.5 * (initspeed * 2) * (initspeed * 2) * initmass) set-plot-y-range 0 ceiling (number / 6) set-current-plot-pen "average" set-histogram-num-bars 45 set-current-plot-pen "fast" set-histogram-num-bars 45 set-current-plot-pen "slow" set-histogram-num-bars 45 end ;; does actual plotting (called in Go) to do-plotting set-current-plot "Volume" plot volume set-current-plot "Pressure" plot avg-pressure set-current-plot "Temperature" plot avg-energy set-current-plot "Pressure vs. Volume" plotxy volume avg-pressure set-current-plot "Pressure * Volume" plot avg-pressure * volume / 1000 end ;; does actual histograms plotting (called in Go) to do-histograms if (histogram?) [ histo-energy histo-speed ] end ;; draw energy histogram to histo-energy set-current-plot "Energy histogram" set-current-plot-pen "average" histogram [ energy ] of turtles with [ color = green ] set-current-plot-pen "slow" histogram [ energy ] of turtles with [ color = blue ] set-current-plot-pen "fast" histogram [ energy ] of turtles with [ color = red ] set-current-plot-pen "avg-energy" plot-pen-reset draw-vert-line avg-energy end ;; draw speed histogram to histo-speed set-current-plot "Speed histogram" set-current-plot-pen "average" histogram [ speed ] of turtles with [ color = green ] set-current-plot-pen "slow" histogram [ speed ] of turtles with [ color = blue ] set-current-plot-pen "fast" histogram [ speed ] of turtles with [ color = red ] set-current-plot-pen "avg-speed" plot-pen-reset draw-vert-line avg-speed end ; draws a vertical line at xval on the current-plot with the current plot-pen to draw-vert-line [xval] plotxy xval plot-y-min plot-pen-down plotxy xval plot-y-max plot-pen-up end ; Copyright 2002 Uri Wilensky. ; See Info tab for full copyright and license. @#$#@#$#@ GRAPHICS-WINDOW 433 10 767 365 40 40 4.0 1 10 1 1 1 0 0 0 1 -40 40 -40 40 1 1 1 ticks 30.0 BUTTON 100 10 187 43 go go T 1 T OBSERVER NIL NIL NIL NIL 1 BUTTON 9 10 91 43 setup setup NIL 1 T OBSERVER NIL NIL NIL NIL 1 SWITCH 771 326 893 359 histogram? histogram? 1 1 -1000 MONITOR 366 93 427 138 height piston-position + raw-height 3 1 11 MONITOR 8 288 111 333 Pressure avg-pressure 3 1 11 SLIDER 196 10 311 43 box-height box-height 30 100 95 1 1 NIL HORIZONTAL SLIDER 311 10 427 43 box-width box-width 20 80 75 1 1 NIL HORIZONTAL SLIDER 9 53 357 86 number number 1 4000 500 1 1 particles HORIZONTAL PLOT 8 143 217 287 Volume Time Volume 0.0 20.0 0.0 4000.0 true false "" "" PENS "volume" 1.0 0 -6459832 true "" "" PLOT 8 338 217 482 Pressure Time Pressure 0.0 20.0 0.0 3500.0 true false "" "" PENS "pressure" 1.0 0 -2674135 true "" "" PLOT 771 10 1029 167 Speed histogram Speed Number 0.0 10.0 0.0 67.0 false true "" "" PENS "fast" 1.0 1 -2674135 true "" "" "average" 1.0 1 -10899396 true "" "" "slow" 1.0 1 -13345367 true "" "" "avg-speed" 1.0 0 -7500403 true "" "" PLOT 771 168 1029 325 Energy histogram Energy Number 0.0 200.0 0.0 67.0 false true "" "" PENS "fast" 1.0 1 -2674135 true "" "" "average" 1.0 1 -10899396 true "" "" "slow" 1.0 1 -13345367 true "" "" "avg-energy" 1.0 0 -7500403 true "" "" SLIDER 9 96 357 129 piston-speed piston-speed 0 10 1 0.05 1 NIL HORIZONTAL PLOT 431 375 640 537 Temperature Time Temp 0.0 20.0 0.0 50.0 true false "" "" PENS "temperature" 1.0 0 -13345367 true "" "" PLOT 218 303 427 482 Pressure * Volume Time PressureVolume 0.0 20.0 0.0 2000.0 true false "" "" PENS "default" 1.0 0 -16777216 true "" "" PLOT 218 143 427 299 Pressure vs. Volume Volume Pressure 0.0 4000.0 0.0 3500.0 true false "" "" PENS "default" 1.0 0 -16777216 true "" "" MONITOR 112 288 217 333 NIL Volume 3 1 11 MONITOR 641 375 726 420 temperature avg-energy 3 1 11 SLIDER 142 483 288 516 scale scale 1 10 1 1 1 NIL HORIZONTAL @#$#@#$#@ ## WHAT IS IT? This model simulates the behavior of gas particles as the volume changes. In this model, the volume is slowly changing over time by a piston that is rising and falling. As the piston lowers, the volume of the box decreases and as the piston rises, the volume of the box increases. This systematic motion of the piston does no work on the particles inside the box. The piston only serves a mechanism to change the volume of the box. The particles start with the same mass and speed upon the start of the simulation. The mass of the particles stays constant throughout the simulation, whereas, the speeds will change once particles start to collide. Particles are in constant motion colliding with other particles and the walls. All collisions are modeled as elastic collisions, in that the total kinetic energy before and after the collision is conserved. For example, when a fast moving particle collides with a slow moving particle, the fast moving particle will give some of its speed to the slow moving particle. Therefore, the fast moving particle will leave the collision moving slower then when it entered the collision. And the slow moving particle will speed up a bit. The speed in a particle to particle collision is still conserved. The collisions between a particle and a wall is modeled the same way. When the particles hit the wall they transfer momentum to the wall. After this transfer occurs, the particles then bounce off the wall with a different direction and speed. The system's pressure is calculated by averaging the number of collisions the particles have with the walls at each time step. The Moving Piston model is one of a collection of GasLab models that use the same basic rules for expressing what happens when gas particles collide. Each model in this collection has different features to show the different aspects of the Gas Laws. Multiple adaptations of this model can be found in the Chemistry folder of the Curricular Models section under the names Chem Volume 1 and 2. It is part of a suite of models used to teach students about the chemistry of the Gas Laws. ## HOW IT WORKS The particles are modeled as single particles, all with the same mass and initial velocity. Molecules are modeled as perfectly elastic particles with no internal energy except that which is due to their motion. Collisions with the box and between molecules are elastic. Particles are colored according to speed -- blue for slow, green for medium, and red for high speeds. The exact way two particles collide is as follows: 1. Two turtles "collide" if they find themselves on the same patch. 2. A random axis is chosen, as if they were two billiard balls that hit and this axis was the line connecting their centers. 3. They exchange momentum and energy along that axis, according to the conservation of momentum and energy. This calculation is done in the center mass system. 4. Each turtle is assigned its new speed, energy and heading. 5. If a turtle finds itself on or very close to a wall of the container, it "bounces" -- that is, reflects its direction and keeps its same speed. ## HOW TO USE IT ### Buttons SETUP - puts in the initial conditions you have set with the sliders. Be sure to wait till the SETUP button stops before pushing GO. GO - runs the code again and again. This is a "forever" button. ### Sliders BOX-HEIGHT - height of the container BOX-WIDTH - width of the container NUMBER - number of particles PISTON-SPEED - rate of the piston SCALE - number of clock cycles over which to average the pressure ### Switch HISTOGRAM? - turns histograms on or off ### Plots VOLUME - plots the volume over time PRESSURE - plots the pressure over time PRESSURE VS. VOLUME - plots pressure over volume PRESSURE * VOLUME - plots the value of pressure * volume over time TEMPERATURE - plots the average temperature SPEED HISTOGRAM - illustrates the number of particles at their various speeds ENERGY HISTOGRAM - illustrates the number of particles at their various energy levels ### How to use it Adjust the BOX-HEIGHT, BOX-WIDTH, NUMBER, and PISTON-SPEED variable before pressing SETUP. The SETUP button will set the initial conditions. The GO button will run the simulation. In this model, though, the collisions of the piston with the particles are ignored. Note that there's a physical impossibility in the model here: in real life if you moved the piston down you would do work on the gas by compressing it, and its temperature would increase. In this model, the energy and temperature are constant no matter how you manipulate the piston. Nonetheless, the basic relationship between volume and pressure is correctly demonstrated here. ## THINGS TO NOTICE How does the pressure change as the volume of the box changes? Compare the two plots of volume and pressure. How does the pressure change as the shape of the box changes? Measure changes in pressure and volume. Is there a clear quantitative relationship? How can the relationship between pressure and volume be explained in terms of the collisions of molecules? How does more particles change the relationship between pressure and volume? What shapes do the energy and speed histograms reach after a while? Why aren't they the same? Do the pressure and volume affect these shapes? ## THINGS TO TRY How would you calculate pressure? How does this code do it? Change the number, mass, and initial velocity of the particles. Does this affect the pressure? Why? Do the results make intuitive sense? Look at the extremes: very few or very many molecules, high or low volumes. Figure out how many molecules there *really* are in a box this size --- say a 10-cm cube. Look up or calculate the *real* mass and speed of a typical molecule. When you compare those numbers to the ones in the model, are you surprised this model works as well as it does? ## EXTENDING THE MODEL Are there other ways one might calculate pressure? Create an isothermal piston example where the user can manually move the piston to any level in the box. Add in a temperature variable that allows for the particles to move the piston to the appropriate volume. ## NETLOGO FEATURES Notice how collisions are detected by the turtles and how the code guarantees that the same two particles do not collide twice. What happens if we let the patches detect them? ## CREDITS AND REFERENCES This model was developed as part of the GasLab curriculum (http://ccl.northwestern.edu/curriculum/gaslab/) and has also been incorporated into the Connected Chemistry curriculum (http://ccl.northwestern.edu/curriculum/ConnectedChemistry/) ## HOW TO CITE If you mention this model in a publication, we ask that you include these citations for the model itself and for the NetLogo software: * Wilensky, U. (2002). NetLogo GasLab Moving Piston model. http://ccl.northwestern.edu/netlogo/models/GasLabMovingPiston. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. * Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. ## COPYRIGHT AND LICENSE Copyright 2002 Uri Wilensky. ![CC BY-NC-SA 3.0](http://i.creativecommons.org/l/by-nc-sa/3.0/88x31.png) This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. Commercial licenses are also available. To inquire about commercial licenses, please contact Uri Wilensky at uri@northwestern.edu. This model and associated activities and materials were created as part of the project: MODELING ACROSS THE CURRICULUM. The project gratefully acknowledges the support of the National Science Foundation, the National Institute of Health, and the Department of Education (IERI program) -- grant number REC #0115699. Additional support was provided through the projects: PARTICIPATORY SIMULATIONS: NETWORK-BASED DESIGN FOR SYSTEMS LEARNING IN CLASSROOMS and/or INTEGRATED SIMULATION AND MODELING ENVIRONMENT -- NSF (REPP & ROLE programs) grant numbers REC #9814682 and REC-0126227. @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circle false 0 Circle -7500403 true true 0 0 300 circle 2 false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 clock true 0 Circle -7500403 true true 30 30 240 Polygon -16777216 true false 150 31 128 75 143 75 143 150 158 150 158 75 173 75 Circle -16777216 true false 135 135 30 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 line half true 0 Line -7500403 true 150 0 150 150 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 square false 0 Rectangle -7500403 true true 30 30 270 270 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 5.1.0 @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ default 0.0 -0.2 0 0.0 1.0 0.0 1 1.0 0.0 0.2 0 0.0 1.0 link direction true 0 Line -7500403 true 150 150 90 180 Line -7500403 true 150 150 210 180 @#$#@#$#@ 0 @#$#@#$#@