;; two different materials or phases breed [ element1s element1 ] ;; element1 is the main material breed [ element2s element2 ] ;; element2 is the materials which is ;; dispersed inside element1 (second-phase particles) element1s-own [ neighbors-6 ;; agentset of 6 neighboring cells ] turtles-own [ neighboring-turtles ;; agentset of surrounding atoms sides-exposed ;; number of sides exposed to walls (between 0 and 4) ] globals [ logtime ;; log of time colors ;; used both to color turtles, and for histogram xmax ;; max x size ymax ;; max y size average-grain-size ;; average grain size logaverage-grain-size ;; log of average grain size (for plotting) initial-loggrain-size ;; For grain growth exponent calculation and graphing initial-logtime ;; For grain growth exponent calculation and graphing grain-growth-exponent ;; Grain growth exponent update-plots? ;; boolean for updating plots immediately ] ;; setup checks whether user has chosen "import image" or random in the chooser-widget to setup if starting-point = "Random Arrangement" [ makes-initial-box-random ] if starting-point = "Import Image" [ import-image ] reset-ticks end to setup-hex-grid ;; setup the hexagonal grid in which atoms will be placed ;; and creates turtles set-default-shape element2s "square 2" ask patches [ sprout 1 [ ;; if there is a second element, create the corresponding atoms ifelse (percent-element2 > random 100) [ ;; element2 is the fixed second-phase particle set breed element2s set color white set heading 360 ] [ ;; element1 is the main material which grows grains set breed element1s set shape atom-shape set color random 139 ;; to ensure that the colors are distinct, we only let ;; colors deviate from base color by plus or minus 3 set color one-of base-colors - 3 + random 6 set heading color ] ;; shift even columns down if pxcor mod 2 = 0 [ set ycor ycor - 0.5 ] ] ] ; the two lines below are for NetLogo 3D. Uncomment them, if you are using NetLogo 3D. ; ask element1s [ set shape3d "sphere" ] ; ask element2s [ set shape3d "cube" ] ;; now set up the neighbors6 agentsets ask element1s [ ;; define neighborhood of atoms ifelse pxcor mod 2 = 0 [ set neighbors-6 element1s-on patches at-points [[0 1] [1 0] [1 -1] [0 -1] [-1 -1] [-1 0]] ] [ set neighbors-6 element1s-on patches at-points [[0 1] [1 1] [1 0] [0 -1] [-1 0] [-1 1]] ] ] end ;; makes initial box for image import to makes-initial-box setup-hex-grid end ;; makes initial box for random arrangement to makes-initial-box-random clear-all setup-hex-grid end ;; import image into turtles to import-image clear-all let file user-file if file = false [ stop ] ;; imports image into patches import-pcolors file ;; converts the square grid to an hex grid makes-initial-box ;; transfers the image to the turtles. Rounds the color values to be integers. ask turtles [ set color round pcolor set heading color ] ;; erases the patches (sets their color back to black), ask patches [ set pcolor black ] reset-ticks end to define-neighboring-turtles ;; defines neighboring turtles. Some are "off" because atoms are in hexagons ask turtles [ set neighboring-turtles (turtles at-points [ [-1 1] [ 0 1] [1 1] [-1 0] [ 0 0] [1 0] [-1 -1] [ 0 -1] [1 -1] ]) ] end to go ;;initiates grain growth let total-atoms count turtles ;; stops when there is just one grain if average-grain-size >= total-atoms [ stop ] ;;limits grain growth to element1, element2 represent the stationary second-phase particles ask element1s [grain-growth] ; ;; calculates grain variables at a given frequency to save CPU processing ; ;; we + 1 to ticks to put it in sync with plots (that are updated in 'tick') ; if remainder (ticks + 1) ticks-per-measurement = 0 [ ; count-grains-and-measure-grain-size ; ] ;; advance Monte Carlo Steps (simulation time) ;; one Monte Carlo Step represents 'n' reorientation attemps, ;; where 'n' is the total number of atoms tick end to count-grains-and-measure-grain-size ;; we only do this for ticks > 0 since we can't take log of 0 if ticks > 0 [ set logtime log ticks 10 ] grain-count if average-grain-size != 0 [ set logaverage-grain-size (log (average-grain-size) 10) ] ;; we set the initial log time and grain size at 20 (we don't start ;; calculating grain size until then to give the system a bit of time to stabilize if ticks = 20 [ set initial-logtime logtime set initial-loggrain-size logaverage-grain-size ] ;; only initiates grain size calculation after 20 ticks if ticks > 20 [ ;; calculate the angular coefficient of the grain growth curve ;; since it is a log-log plot, it's the grain growth exponent set grain-growth-exponent (-1 * ((logaverage-grain-size - initial-loggrain-size) / (initial-logtime - logtime))) ] end to grain-count ;; count number of grains based on the number of linear intercepts let orientation-for-intercept-count 90 ;; direction of intercepts count let intercepts 0 let total-atoms count turtles ;; asking only elements1 with xcor less than 24 ;; those at 24 are on the 'edge of the world' which means ;; that they will never have neighbors to their right. ;; we therefore simply ignore them for this purpose. ask element1s with [ xcor < 24 ] [ ;; checks if there is a turtle to the right for the intercept calculation let target-patch patch-at-heading-and-distance orientation-for-intercept-count 1 ifelse target-patch != nobody and any? turtles-on target-patch [ ;; If there is a turtle, checks if the heading is different. let right-neighbor one-of turtles-on target-patch if heading != [ heading ] of right-neighbor [ ;; If heading is different, add 1 to 'intercepts'. set intercepts (intercepts + 1) ] ] [ ;; if there is no turtle, simply add 1 to 'intercepts'. ;; A turtle/nothing interface is considered as grain boundary. set intercepts (intercepts + 1) ] ] ;; we add one to intercepts so that zero intercepts = one grain, one intercept = 2 grains, etc. set average-grain-size total-atoms / (intercepts + 1) end ;; Grain growth procedure - free energy minimization ;; if another random crystallographic heading minimizes energy, switches headings, otherwise keeps the same. to grain-growth ;; if atom has no neighbors, it is surrounded by element2s, and will not change its orientation if not any? neighbors-6 [ stop ] ;; calculates the PRESENT free energy let present-heading (heading) let present-free-energy count neighbors-6 with [ heading != present-heading ] ;; chooses a random orientation let future-heading ([heading] of (one-of neighbors-6)) ;; calculates the FUTURE free energy, with the random orientation just chosen let future-free-energy count neighbors-6 with [ heading != future-heading ] ;; compares PRESENT and FUTURE free-energies; the lower value "wins" ifelse future-free-energy <= present-free-energy [ set heading future-heading ] [ if (annealing-temperature > random-float 100) [ set heading (future-heading) ] ] ;; this last line simulates thermal agitation (adds more randomness to the simulation) ;;update the color of the atoms set color heading end ;; drawing procedure to turtle-draw if mouse-down? [ ;; reports true or false to indicate whether mouse button is down ask patch mouse-xcor mouse-ycor [ ask element1s in-radius brush-size [ set color read-from-string draw-color set heading color ] ] display ] end ;; in the drawing mode, erases the whole "canvas" with red to erase-all ask element1s [ set color red set heading color ] end ; Copyright 2005 Uri Wilensky. ; See Info tab for full copyright and license. @#$#@#$#@ GRAPHICS-WINDOW 735 30 1137 453 24 24 8.0 1 10 1 1 1 0 0 0 1 -24 24 -24 24 1 1 1 ticks 60.0 TEXTBOX 35 10 315 80 Model starting point (you can start from a random arrangement or a picture from a microscope. You can also determine if you want a certain percentage of a second element, sometimes called grain refiner) 11 0.0 0 SLIDER 340 440 602 473 annealing-temperature annealing-temperature 0.0 100.0 0 1.0 1 % HORIZONTAL BUTTON 550 325 705 359 measure grains now count-grains-and-measure-grain-size\nset update-plots? true NIL 1 T OBSERVER NIL NIL NIL NIL 1 MONITOR 605 50 705 95 Grain Size average-grain-size 3 1 11 BUTTON 30 510 152 550 go go T 1 T OBSERVER NIL NIL NIL NIL 1 SLIDER 30 135 215 168 percent-element2 percent-element2 0 99 0 1 1 % HORIZONTAL MONITOR 605 145 705 190 Log Grain Size logaverage-grain-size 2 1 11 MONITOR 605 98 705 143 Log time logtime 2 1 11 MONITOR 605 250 723 295 Growth exponent grain-growth-exponent 2 1 11 TEXTBOX 30 491 169 509 Run model 11 0.0 0 TEXTBOX 340 410 640 435 Annealing Temperature 18 14.0 1 CHOOSER 30 245 155 290 atom-shape atom-shape "hex" "hexline" "thin-line" "line" "spikes90" "default" 0 BUTTON 160 245 299 290 apply shape ask element1s [set shape atom-shape] NIL 1 T OBSERVER NIL NIL NIL NIL 1 BUTTON 30 370 152 403 draw turtle-draw T 1 T OBSERVER NIL NIL NIL NIL 1 BUTTON 30 409 153 454 erase all erase-all NIL 1 T OBSERVER NIL NIL NIL NIL 1 SLIDER 156 370 295 403 brush-size brush-size 1.0 6.0 3 1.0 1 NIL HORIZONTAL TEXTBOX 30 320 295 365 Draw/edit grains (this is optional, you can use this to \"draw\" new grain structures, or edit the grains at any point during the simulation) 11 0.0 0 CHOOSER 156 409 295 454 draw-color draw-color "yellow" "green" "cyan" "blue" "red" 0 TEXTBOX 346 307 478 325 Grain measurement 11 0.0 0 TEXTBOX 345 10 700 35 Grain size plot and calculations 18 14.0 0 TEXTBOX 34 200 304 245 Change the shape of atoms (different shapes might help visualize the atomic planes, or the proportion of different types of grains) 11 0.0 0 BUTTON 157 510 292 550 go once go\n NIL 1 T OBSERVER NIL NIL NIL NIL 1 CHOOSER 30 85 215 130 starting-point starting-point "Random Arrangement" "Import Image" 0 BUTTON 218 85 298 168 NIL setup NIL 1 T OBSERVER NIL NIL NIL NIL 1 TEXTBOX 345 365 540 406 This slider determines how often the grain size is measured 11 0.0 1 TEXTBOX 344 478 724 553 A high annealing temperature makes some atoms randomly jump to the next grain. When it is zero, only the energetically favorable jumps will happen. Temperature here is represented as a relative value -- a percentage of random jumps out of the possible jumps. 100% means that all the jumps are random. 11 0.0 1 TEXTBOX 30 175 305 193 _____________________________________________ 11 0.0 1 TEXTBOX 30 295 315 321 _____________________________________________ 11 0.0 1 TEXTBOX 30 465 325 483 _____________________________________________ 11 0.0 1 TEXTBOX 5 75 30 111 1 30 14.0 1 TEXTBOX 3 225 23 261 2 30 14.0 1 TEXTBOX 3 375 28 411 3 30 14.0 1 TEXTBOX 3 500 28 536 4 30 14.0 1 SLIDER 345 325 542 358 ticks-per-measurement ticks-per-measurement 1 200 50 1 1 NIL HORIZONTAL PLOT 345 50 595 295 Grain Size (log-log) Log time Log grain size 0.0 1.0 0.0 1.0 true false "" ";; only update this as often as we have specified below\n;; we have to subtract one because the tick command is always\n;; \"one step ahead\" of the rest of the go-procedure\nif remainder ticks ticks-per-measurement != 0 and not update-plots? [ stop ]\ncount-grains-and-measure-grain-size\nset update-plots? false" PENS "default" 1.0 0 -16777216 true "" "plotxy logtime logaverage-grain-size" @#$#@#$#@ ## WHAT IS IT? Most materials are not continuous arrangements of atoms. Rather, they are composed of thousands or millions of microscopic crystals, known as grains. This model shows how the configuration and sizes of these grains change over time. Grain size is a very important characteristic for evaluating the mechanical properties of materials; it is exhaustively studied in metallurgy and materials science. Usually this kind of study is made by careful analysis and comparison of pictures taken in microscopes, sometimes with the help of image analysis software. Recently, as the processing power of computers has increased, a new and promising approach has been made possible: computer simulation of grain growth. Anderson, Srolovitz et al. proposed the most widely known and employed theory for computer modeling and simulation of grain growth, using the Monte Carlo method. Instead of considering the grains as spheres, and being obliged to make numerous geometrical approximations, Anderson proposed that the computer would simulate the behavior of each individual atom in the system. Each atom would follow a very simple rule: it will always try to have, in its immediate neighborhood, as many atoms as possible with the same orientation as it. It will do so by randomly (hence Monte Carlo) re-orienting itself and seeing if it is more stable than it was before. If it is, it will stay in its new orientation, and if not, it will revert back to its previous orientation. This model is part of the MaterialSim (Blikstein & Wilensky, 2004) curricular package. To learn more about MaterialSim, see http://ccl.northwestern.edu/materialsim/. ## HOW IT WORKS The basic algorithm of the simulation is simple: each atom continuously tries to be as stable as possible. Its stability is based on the number of neighbors with similar orientations: the more similar neighbors, the more stable it is. If it has only few similar neighbors, it will try to relocate to a more stable position. The steps for each tick in the model are: 1. Choose a random atom. 2. Ask that atom to calculate its present energy (based on its stability). The atom does this by counting how many similar neighbors it has. 3. The atom then chooses at random one of its neighbors, and orients itself in the same direction as that neighbor. 4. The same atom then calculates its energy, based on this new, tentative orientation. 5. Finally the atom compares the energy levels in each of the two states: the lowest value "wins", i.e., the more similar neighbors, the more stable the atom is. 6. Repeat steps 1-6. The **annealing-temperature** slider controls the probability of maintaining a reorientation that yields less stability. The **percent-element2** slider defines the percentage of second-phase particles to be created when the user setups the simulation. Those particles are not movable and are not subject to grain growth. Atoms with element2-particles as neighbors will see them as dissimilar. Note that the actual number of atoms is small compared to a real metal sample. Also, real materials are three-dimensional, while this model is 2D. ## HOW TO USE IT ### (1) Simulation starting point. **starting-point**: You can start from a random arrangement or a picture from a microscope. File formats accepted are: `.jpg`, `.png`, `.bmp`, and `.gif`. The image will be automatically resized to fit into the world, but maintaining its original aspect ratio. Note that the image MUST HAVE THE SAME ASPECT RATIO AS THE WORLD. In other words, if the world is square, the image should be square as well. Prior to importing the image, it is recommended to clean it up using an image editing software (increase contrast, remove noise). Try to experiment various combinations of values for the view's size and the patch size to get the best results **percent-element2**: You can also determine if you want a certain percentage of a second element, sometimes called grain refiner. **setup**: Sets up the model as indicated. ### (2) Change the shape of atoms. Different shapes might help visualize the atomic planes, or the proportion of different types of grains. **atom-shape**: Choose which shape you want. **apply-shape**: Re-draws all the atoms with the shape you chose. ### (3) Draw/edit grains (optional) You can use this to "draw" new grain structures, or edit the grains at any point during the simulation. **draw**: When this button is pressed down, you can change the color (orientation) of atoms in the model. **brush-size**: This determines how many atoms’ orientation you change at a time. **erase-all**: This changes the orientation of all atoms. **draw-color**: Here you can change the color (and orientation) that that you change atoms to, when you draw on them. ### (4) Run Model. You can choose to have the model keep repeating the steps (as described above) or to run just one tick. Running just one tick will allow you to see more clearly what happens over time. **annealing-temperature**: changes the probability of non-favorable orientation flips to happen. A 10% value, for instance, means that 10% of non-favorable flips will be maintained. This mimics the effect of higher temperatures. ### Grain size plot and calculations **ticks-per-measurement **: to increase the model's speed, the user can choose not to calculate grain size at every time step. If grain size is calculated at every ten time units (20, 30, 40 etc.), the performance is slightly increased. This only affects the plot and the monitors, but not the actual simulation. **measure grains now**: if the user feels there is too much time between each grain measurement, and wants to calculate it immediately, this button can be used. ### Plots and monitors **Grain Size (log-log)**: Grain size vs. time, in a log-log scale. Under normal conditions (**annealing-temperature** = 0 and **percent-element2** = 0), this plot should be a straight line with an angular coefficient of approximately 0.5. **Grain Size**: grain size **Log Time**: log of ticks in the simulation so far **Log Grain Size**: Log of the grain size **growth-exponent**: the angular coefficient of the **Grain Size (log-log)** plot. This number should approach 0.5 with **annealing-temperature** = 0 and **percent-element2** = 0. ## THINGS TO NOTICE When you setup with a random orientation and run the simulation, notice that the speed of growth decreases with time. Toward the end of the simulation, you might see just two or three grains that fight with each other for along time. One will eventually prevail, but this logarithmic decrease of speed is an important characteristic of grain growth. That is why the **Grain Size (log-log) plot is a straight line in a "log-log" scale. Notice also that if you draw two grains, one concave and one convex, their boundary will tend to be a straight line, if you let the simulation run long enough. Every curved boundary is unstable because many atoms at its interface will have more different than equal neighbors. ## THINGS TO TRY Increase the value of the **annealing-temperature** slider. What happens to the **Grain Size (log-log)** plot, and to the boundaries' shapes? Try to increase the **percent-element2** slider to 5%. Then choose “random arrangement” and click **setup**, and **go**. What happens to grain growth? Now try several values (1, 3, 5, 7, 9%), for instance. What happens with the final grain size? What about the **Grain Size (log-log) plot and the **Growth Exponent**? One advanced use of this model would be to get a digital picture of a real metallic sample, reduce noise and increase contrast with image editing programs, and load into this model using the **Import Image** feature in the starting-point chooser. Don't forget to update the width and height of the view's size to accommodate the picture, and also to change the patch size in order to be able to see the whole sample. ## EXTENDING THE MODEL This model assumes that the misorientation between two grains has no effect on their growth rates. Two grains with a very similar crystallographic orientation have the same growth rate as grains whose orientations differ by a lot. Try to take the angular misorientation into consideration. When we insert second-phase particles, all of them have the same size. Try to create a slider that changes the size of these particles. ## NETLOGO FEATURES Rather than containing all of the code that updates variables used for plotting, the **Grain Size (log-log)** plot calls a procedure that does this. The reason is that there is quite a lot of code, and it would be difficult to work with inside the plot. Notice also that this code updates the global variables shown in the monitors to the right of the plot. The model uses a hexagonal grid as opposed to the usual, square one. It also uses different shapes for different visualization purposes. Finally, it uses the `import-pcolors` primitive for image import. ## RELATED MODELS Crystallization Basic Crystallization Directed Crystallization Moving ## CREDITS AND REFERENCES This model is part of the MaterialSim (Blikstein & Wilensky, 2004) curricular package. To learn more about MaterialSim, see http://ccl.northwestern.edu/materialsim/. Two papers describing the use of this model in education are: Blikstein, P. & Wilensky, U. (2005) Less is More: Agent-Based Simulation as a Powerful Learning Tool in Materials Science. The IV International Conference on Autonomous Agents and Multiagent Systems. Utrecht, Netherlands. Blikstein, P. & Wilensky, U. (2004) MaterialSim: An agent-based simulation toolkit for Materials Science learning. (PDF, 1.5 MB) Proceedings of the International Conference on Engineering Education. Gainesville, Florida. The core algorithm of the model was developed at the University of Sao Paulo and published in: Blikstein, P. and Tschiptschin, A. P. Monte Carlo simulation of grain growth (II). Materials Research, Sao Carlos, 2 (3), p. 133-138, jul. 1999. Available for download at: http://www.blikstein.com/paulo/documents/papers/BliksteinTschiptschin-MonteCarlo-MaterialsResearch1999.pdf. See also http://www.pmt.usp.br/paulob/montecarlo for more information (in Portuguese). ## HOW TO CITE If you mention this model in a publication, we ask that you include these citations for the model itself and for the NetLogo software: * Blikstein, P. and Wilensky, U. (2005). NetLogo MaterialSim Grain Growth model. http://ccl.northwestern.edu/netlogo/models/MaterialSimGrainGrowth. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. * Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. ## COPYRIGHT AND LICENSE Copyright 2005 Uri Wilensky. ![CC BY-NC-SA 3.0](http://i.creativecommons.org/l/by-nc-sa/3.0/88x31.png) This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. Commercial licenses are also available. To inquire about commercial licenses, please contact Uri Wilensky at uri@northwestern.edu. @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circ true 0 Circle -7500403 true true 10 11 278 circle false 0 Circle -7500403 true true 0 0 300 circle 2 false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 hex false 0 Polygon -7500403 true true 0 150 75 30 225 30 300 150 225 270 75 270 hexline true 0 Polygon -7500403 true true 0 150 75 30 225 30 300 150 225 270 75 270 Rectangle -1 true false 121 47 182 252 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Rectangle -7500403 true true 135 0 165 315 line half true 0 Line -7500403 true 150 0 150 150 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 rectangle true 0 Polygon -7500403 true true 67 36 67 262 235 262 235 35 spikes90 true 0 Circle -7500403 true true 61 62 177 Line -7500403 true 135 66 131 154 Rectangle -7500403 true true 135 -4 166 68 Rectangle -7500403 true true 142 132 219 134 Rectangle -7500403 true true 196 136 304 165 Rectangle -7500403 true true -9 135 68 166 Rectangle -7500403 true true 131 176 132 226 Rectangle -7500403 true true 135 225 165 313 square false 0 Rectangle -7500403 true true 15 15 286 285 Line -1 false 6 6 293 6 Line -1 false 293 6 293 293 Line -1 false 293 292 8 292 Line -1 false 8 292 8 6 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 t true 0 Rectangle -7500403 true true 46 47 256 75 Rectangle -7500403 true true 135 76 167 297 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 thin-line true 0 Line -7500403 true 150 0 150 300 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 5.1.0 @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ default 0.0 -0.2 0 0.0 1.0 0.0 1 1.0 0.0 0.2 0 0.0 1.0 link direction true 0 Line -7500403 true 150 150 90 180 Line -7500403 true 150 150 210 180 @#$#@#$#@ 1 @#$#@#$#@