turtles-own [ fx ;; x-component of force vector fy ;; y-component of force vector vx ;; x-component of velocity vector vy ;; y-component of velocity vector xc ;; real x-coordinate (in case particle leaves world) yc ;; real y-coordinate (in case particle leaves world) mass ;; the particle's mass ] globals [ center-of-mass-yc ;; y-coordinate of the center of mass center-of-mass-xc ;; x-coordinate of the center of mass g ;; Gravitational Constant ] ;;;;;;;;;;;;;;;;;;;;;;;; ;;; Setup Procedures ;;; ;;;;;;;;;;;;;;;;;;;;;;;; to setup clear-all set g 20 set-default-shape turtles "circle" crt number ifelse symmetrical-setup? [ zero-sum-initial-setup ] [ random-initial-setup ] if keep-centered? [ recenter ] reset-ticks end to random-initial-setup ask turtles [ set vx ((random-float ((2 * max-initial-speed) - 1)) - max-initial-speed) set vy ((random-float ((2 * max-initial-speed) - 1)) - max-initial-speed) set mass (random-float max-initial-mass) + 1 set size sqrt mass set heading (random-float 360) jump (random-float (max-pxcor - 10)) set xc xcor set yc ycor ] end to zero-sum-initial-setup ;; First we set up the initial velocities of the first half of the particles. ask turtles with [who < (number / 2)] [ set vx (random-float (((2 * max-initial-speed) - 1)) - max-initial-speed) set vy (random-float (((2 * max-initial-speed) - 1)) - max-initial-speed) setxy random-xcor random-ycor set xc xcor set yc ycor set mass (random-float max-initial-mass) + 1 set size sqrt mass ] ;; Now, as we're zero-summing, we set the velocities of the second half of the ;; particles to be the opposites of their counterparts in the first half. ask turtles with [who >= (number / 2)] [ set vx (- ([vx] of turtle (who - (number / 2)))) set vy (- ([vy] of turtle (who - (number / 2)))) set xc (- ([xc] of turtle (who - (number / 2)))) set yc (- ([yc] of turtle (who - (number / 2)))) setxy xc yc set mass [mass] of turtle (who - (number / 2)) set size sqrt mass ] set center-of-mass-xc 0 set center-of-mass-yc 0 end to create-particle if mouse-down? [ let mx mouse-xcor let my mouse-ycor if (not any? turtles-on patch mx my) [ crt 1 [ set xc mx ;initial-position-x set yc my ;initial-position-y setxy xc yc set vx initial-velocity-x set vy initial-velocity-y set mass initial-mass set size sqrt mass set color particle-color ] display ] ] while [mouse-down?] [] if keep-centered? [ recenter display ] end to setup-two-planet set number 0 setup crt 1 [ set color yellow set mass 200 set size sqrt mass ] crt 1 [ set color blue set mass 5 set size sqrt mass set xc 50 set yc 0 setxy xc yc set vx 0 set vy 9 ] crt 1 [ set color red set mass 5 set size sqrt mass set xc 90 set yc 0 setxy xc yc set vx 0 set vy 7 ] end ;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Runtime Procedures ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;; to go ask turtles [ set fx 0 set fy 0 ] ;; must do all of these steps separately to get correct results ;; since all turtles interact with one another ask turtles [ check-for-collisions ] ask turtles [ update-force ] ask turtles [ update-velocity ] ask turtles [ update-position ] if keep-centered? [ recenter ] fade-patches tick end to check-for-collisions if any? other turtles-here [ ask other turtles-here [ set vx vx + [vx] of myself set vy vy + [vy] of myself set mass mass + [mass] of myself set size sqrt mass ] die ] end to update-force ;; Turtle Procedure ;; This is recursive over all the turtles, each turtle asks this of all other turtles ask other turtles [ sum-its-force-on-me myself ] end to sum-its-force-on-me [it] ;; Turtle Procedure let xd xc - [xc] of it let yd yc - [yc] of it let d sqrt ((xd * xd) + (yd * yd)) set fx fx + (cos (atan (- yd) (- xd))) * ([mass] of it * mass) / (d * d) set fy fy + (sin (atan (- yd) (- xd))) * ([mass] of it * mass) / (d * d) end to update-velocity ;; Turtle Procedure ;; Now we update each particle's velocity, by taking last time-step's velocity ;; and adding the effect of the force to it. set vx (vx + (fx * g / mass)) set vy (vy + (fy * g / mass)) end to update-position ;; Turtle Procedure ;; As our system is closed, we can safely recenter the center of mass to the origin. set xc (xc + vx) set yc (yc + vy) adjust-position end to adjust-position ;; Turtle Procedure ;; If we're in the visible world (the world inside the view) ;; update our x and y coordinates. ;; if there is no patch at xc yc that means it is outside the world ;; and the turtle should just be hidden until it returns to the ;; viewable world. ifelse patch-at (xc - xcor) (yc - ycor) != nobody [ setxy xc yc show-turtle if (fade-rate != 100) [ set pcolor color + 3 ] ] [ hide-turtle ] end ;; Center of Mass to recenter find-center-of-mass ask turtles [ set xc (xc - center-of-mass-xc) set yc (yc - center-of-mass-yc) adjust-position ] end to find-center-of-mass if any? turtles [ set center-of-mass-xc sum [mass * xc] of turtles / sum [mass] of turtles set center-of-mass-yc sum [mass * yc] of turtles / sum [mass] of turtles ] end to fade-patches ask patches with [pcolor != black] [ ifelse (fade-rate = 100) [ set pcolor black ] [ if (fade-rate != 0) [ fade ] ] ] end to fade ;; Patch Procedure let new-color pcolor - 8 * fade-rate / 100 ;; if the new-color is no longer the same shade then it's faded to black. ifelse (shade-of? pcolor new-color) [ set pcolor new-color ] [ set pcolor black ] end ; Copyright 1998 Uri Wilensky. ; See Info tab for full copyright and license. @#$#@#$#@ GRAPHICS-WINDOW 194 10 606 443 100 100 2.0 1 10 1 1 1 0 0 0 1 -100 100 -100 100 1 1 1 ticks 30.0 BUTTON 11 432 97 465 Go go T 1 T OBSERVER NIL NIL NIL NIL 1 SLIDER 11 135 183 168 number number 0 50 0 2 1 particles HORIZONTAL SWITCH 11 168 183 201 symmetrical-setup? symmetrical-setup? 0 1 -1000 SLIDER 11 69 183 102 max-initial-speed max-initial-speed 0 10 10 0.1 1 NIL HORIZONTAL SLIDER 11 102 183 135 max-initial-mass max-initial-mass 0.1 50 50 0.1 1 NIL HORIZONTAL BUTTON 11 36 183 69 Setup setup NIL 1 T OBSERVER NIL NIL NIL NIL 1 BUTTON 11 223 183 256 Create Particle create-particle T 1 T OBSERVER NIL NIL NIL NIL 1 SLIDER 11 256 183 289 initial-velocity-x initial-velocity-x -10 10 0 0.1 1 NIL HORIZONTAL SLIDER 11 289 183 322 initial-velocity-y initial-velocity-y -10 10 0 0.1 1 NIL HORIZONTAL SLIDER 11 322 183 355 initial-mass initial-mass 0.1 50 10 0.1 1 NIL HORIZONTAL SLIDER 11 355 183 388 particle-color particle-color 5 135 45 10 1 NIL HORIZONTAL BUTTON 11 398 183 431 Setup Two-Planet setup-two-planet NIL 1 T OBSERVER NIL NIL NIL NIL 1 SWITCH 11 507 183 540 keep-centered? keep-centered? 0 1 -1000 SLIDER 11 473 183 506 fade-rate fade-rate 0 100 0.3 0.1 1 % HORIZONTAL TEXTBOX 11 205 176 223 Custom Particle Setup 11 0.0 0 BUTTON 98 432 184 465 Go Once go NIL 1 T OBSERVER NIL NIL NIL NIL 1 @#$#@#$#@ ## WHAT IS IT? This project displays the common natural phenomenon expressed by the inverse-square law. Essentially this displays what happens when the strength of the force between two objects varies inversely with the square of the distance between these two objects. In this case, the formula used is the standard formula for the Law of Gravitational Attraction: > (m1 * m2 * G) / r2 This particular model demonstrates the effect of gravity upon a system of interdependent particles. You will see each particle in the collection of small masses (each of the n bodies, n being the total number of particles present in the system) exert gravitational pull upon all others, resulting in unpredictable, chaotic behavior. ## HOW TO USE IT First select the number of particles with the NUMBER slider. The SYMMETRICAL-SETUP? switch determines whether or not the particles' initial velocities will sum to zero. If On, they will. Their initial positions will also be randomly, but symmetrically, distributed across the world. If SYMMETRICAL-SETUP? is Off, each particle will have a randomly determined mass, initial velocity, and initial position. MAX-INITIAL-MASS and MAX-INITIAL-SPEED determine the maximum initial values of each particle's mass and velocity. The actual initial values will be randomly distributed in the range from zero to the values specified. The FADE-RATE slider controls the percent of color that the paths marked by the particles fade after each cycle. Thus at 100% there won't be any paths as they fade immediately, and at 0% the paths won't fade at all. With this you can see the ellipses and parabolas formed by different particles' travels. The KEEP-CENTERED? switch controls whether the simulation will re-center itself after each cycle. When On, the system will shift the positions of the particles so that the center of mass is at the origin (0, 0). If you want to design your own custom system, press SETUP to initialize the model, and then use the CREATE-PARTICLE button to create a particle with the settings set with the INITIAL-VELOCITY-X, INITIAL-VELOCITY-Y, INITIAL-MASS, and PARTICLE-COLOR sliders. Particles are created by clicking in the View where you want to place the particle while the CREATE-PARTICLE button is running. (Note, if KEEP-CENTERED? is On the particles will always move so that the center of mass is at the origin.) ## THINGS TO TRY After you have set the sliders to the desired levels, press SETUP to initialize all particles, or SETUP TWO-PLANET to setup a predesigned stable two-planet system. Next, press GO to begin running the simulation. You have two choices: you can either let it run without stopping (the GO forever button), or you can just advance the simulation by one time-step (the GO ONCE button). It may be useful to step through the simulation moment by moment, so that you can carefully watch the interaction of the particles. ## THINGS TO NOTICE The most important thing to observe is the behavior of the particles. Notice how (and to what degree) the initial conditions influence the model. Compare the two different modes of the model, with SYMMETRICAL-SETUP? On and Off. Observe the initial symmetry of the zero-summed system, and what happens to it. Why do you think this is? As each particle acts on all the others, the number of particles present directly affects the run of the model. Every additional body changes the center of mass of the system. Watch what happens with 2 bodies, 4 bodies, etc... How is the behavior different? It may seem strange to think of n discrete particles exerting small forces on one other particle, determining its behavior. However, you can think of it as just one large force emanating from the center of mass of the system. Watch as the center of mass changes over time. In the main procedure, `go`, look at the two lines of code where each body's position (xc, yc) is established- we shift each particle back towards the center of mass. As no other forces are present in the model (the n-bodies represent a closed system), our real positions are relative, defined only in relation to the center of mass itself. Recall Newton's third law, which states that for each internal force acting on a particle, it exerts an equal but opposite force on another particle. Hence the internal forces cancel out, and we have no net force acting on the center of mass. (If particle 1 exerts a force on particle 2, then particle 2 exerts the same force on particle 1. Run the model with just two particles to watch this in action.) ## THINGS TO TRY Compare this model to the other inverse square model, 'Gravitation'. Look at the paths made by the two different groups of particles. What do you notice about each group? How would you explain the types of paths made by each model? The force acting upon each turtle is multiplied by a constant, 'g' (a global variable). In classical Newtonian Mechanics, 'g' is the universal gravitational constant, used in the equation for determining the force of gravitational attraction between any two bodies: > f = (g * (mass1 * mass2)) / distance2 In real life, g is difficult to calculate, but is approximately 6.67e-11 (or 0.0000000000667). However, in our model, the use of g keeps the forces from growing too high, so that you might better view the simulation. Feel free to play with the value of g to see how changes to the gravitational constant affect the behavior of the system as a whole. g is defined in the 'setup' procedure. ## EXTENDING THE MODEL Each time-step, every turtle sums over all other turtles to determine the net acting force upon it. Thus, if we have n turtles, each one doing n operations each step, we're approximately taking what is called 'n-squared time'. By this, we mean that the time it takes to run the model is proportional to how many particles we're using. 'n-time', also called linear time, means that the speed of the model is directly proportional to how many turtles are present for each turtle added, there is a corresponding slow-down. But 'n-squared time' (also quadratic time or polynomial time) is worse --- each turtle slows the model down much more. The speed of the model, compared to linear time, is as the total number of turtles, squared. (So a linear time model with 100 turtles would theoretically be as fast as a quadratic time model with just 10 turtles!) For small values of n (very few turtles), speed isn't a problem. However, we can see that the speed of the model decreases quadratically (as n-squared) as the number of turtles (n itself) increases. How could you speed this up? (It may help you that the center of mass of the system is already being computed each new time-step.) As the particles all can have different initial positions, masses, and velocities, it makes sense to think of the model as representational of a planetary system, with suns, moons, planets, and other astronomical bodies. Establish different breeds for these different classes- you could give each kind a separate shape and range of masses. See if you could create a model of a solar system similar to ours, or try to create a binary system (a system that orbits about two close stars instead of one). ## NETLOGO FEATURES This model creates the illusion of a plane of infinite size, to better model the behavior of the particles. Notice that with path marking you can see most of the ellipse a particle draws, even though the particle periodically shoots out of bounds. This is done through a combination of the basic turtle primitives `hide-turtle` and `show-turtle`, keeping every turtle's true coordinates as special turtle variables `xc` and `yc`, and calculations similar to the `distance` primitive but using `xc` and `yc` instead of `xcor` and `ycor`. When you examine the procedure window, take note that standard turtle commands like `set heading` and `fd 1` aren't used here. Everything is done directly to the x-coordinates and y-coordinates of the turtles. ## HOW TO CITE If you mention this model in a publication, we ask that you include these citations for the model itself and for the NetLogo software: * Wilensky, U. (1998). NetLogo N-Bodies model. http://ccl.northwestern.edu/netlogo/models/N-Bodies. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. * Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. ## COPYRIGHT AND LICENSE Copyright 1998 Uri Wilensky. ![CC BY-NC-SA 3.0](http://i.creativecommons.org/l/by-nc-sa/3.0/88x31.png) This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. Commercial licenses are also available. To inquire about commercial licenses, please contact Uri Wilensky at uri@northwestern.edu. This model was created as part of the project: CONNECTED MATHEMATICS: MAKING SENSE OF COMPLEX PHENOMENA THROUGH BUILDING OBJECT-BASED PARALLEL MODELS (OBPML). The project gratefully acknowledges the support of the National Science Foundation (Applications of Advanced Technologies Program) -- grant numbers RED #9552950 and REC #9632612. This model was converted to NetLogo as part of the projects: PARTICIPATORY SIMULATIONS: NETWORK-BASED DESIGN FOR SYSTEMS LEARNING IN CLASSROOMS and/or INTEGRATED SIMULATION AND MODELING ENVIRONMENT. The project gratefully acknowledges the support of the National Science Foundation (REPP & ROLE programs) -- grant numbers REC #9814682 and REC-0126227. Converted from StarLogoT to NetLogo, 2002. @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circle false 0 Circle -7500403 true true 0 0 300 circle 2 false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 line half true 0 Line -7500403 true 150 0 150 150 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 square false 0 Rectangle -7500403 true true 30 30 270 270 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 5.1.0 @#$#@#$#@ setup-two-planet repeat 125 [ go ] @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ default 0.0 -0.2 0 0.0 1.0 0.0 1 1.0 0.0 0.2 0 0.0 1.0 link direction true 0 Line -7500403 true 150 150 90 180 Line -7500403 true 150 150 210 180 @#$#@#$#@ 0 @#$#@#$#@