patches-own [ cooperate? ;; patch will cooperate old-cooperate? ;; patch has cooperated before score ;; score resulting from interaction of neighboring patches color-class ;; numeric value from 1= blue, 2= red, 3= green, 4= yellow. ] to setup clear-all ask patches [ ifelse random-float 1.0 < (initial-cooperation / 100) [setup-cooperation true] [setup-cooperation false] establish-color ] reset-ticks update-plot end to setup-cooperation [value] set cooperate? value set old-cooperate? value end to go ask patches [interact] ;; to play with a neighboring patch ask patches [select-strategy] ;; adopt the strategy of the neighbor (who had the highest score) tick update-plot end to update-plot set-current-plot "Cooperation/Defection Frequency" plot-histogram-helper "cc" blue plot-histogram-helper "dd" red plot-histogram-helper "cd" green plot-histogram-helper "dc" yellow end to plot-histogram-helper [pen-name color-name] set-current-plot-pen pen-name histogram [color-class] of patches with [pcolor = color-name] end to interact ;; patch procedure let total-cooperaters count neighbors with [cooperate?] ;; total number neighbors who cooperated ifelse cooperate? [set score total-cooperaters] ;; cooperator gets score of # of neighbors who cooperated [set score Defection-Award * total-cooperaters] ;; non-cooperator get score of a multiple of the ;; neighbors who cooperated end to select-strategy ;; patch procedure set old-cooperate? cooperate? set cooperate? [cooperate?] of max-one-of neighbors [score] ;;choose strategy (cooperate, not cooperate) ;; of neighbor who performed the best establish-color end to establish-color ;; patch procedure ifelse old-cooperate? [ifelse cooperate? [set pcolor blue set color-class 1] [set pcolor green set color-class 3] ] [ifelse cooperate? [set pcolor yellow set color-class 4] [set pcolor red set color-class 2] ] end ; Copyright 2002 Uri Wilensky. ; See Info tab for full copyright and license. @#$#@#$#@ GRAPHICS-WINDOW 426 10 840 445 50 50 4.0 1 10 1 1 1 0 1 1 1 -50 50 -50 50 1 1 1 ticks 8.0 BUTTON 20 42 101 75 NIL setup NIL 1 T OBSERVER NIL NIL NIL NIL 1 BUTTON 115 42 192 75 NIL go T 1 T OBSERVER NIL NIL NIL NIL 1 SLIDER 2 80 210 113 initial-cooperation initial-cooperation 0 100 66.6 0.1 1 % HORIZONTAL TEXTBOX 235 49 426 198 Color Coordination to Strategy\n Round \n Previous Current\nBlue C C\nRed D D\nGreen C D\nYellow D C\n C = Cooperate \n D = Defect 11 0.0 0 SLIDER 1 117 210 150 Defection-Award Defection-Award 0 3 1.59 0.01 1 x HORIZONTAL PLOT 10 218 395 431 Cooperation/Defection Frequency Class Frequency (%) 1.0 5.0 0.0 1.0 true false "" "" PENS "cc" 1.0 1 -13345367 true "" "" "dd" 1.0 1 -2674135 true "" "" "cd" 1.0 1 -10899396 true "" "" "dc" 1.0 1 -1184463 true "" "" @#$#@#$#@ ## WHAT IS IT? One of the most prominently studied phenomena in Game Theory is the "Prisoner's Dilemma." The Prisoner's Dilemma, which was formulated by Melvin Drescher and Merrill Flood and named by Albert W. Tucker, is an example of a class of games called non-zero-sum games. In zero-sum games, total benefit to all players add up to zero, or in other words, each player can only benefit at the expense of other players (e.g. chess, football, poker --- one person can only win when the opponent loses). On the other hand, in non-zero-games, each person's benefit does not necessarily come at the expense of someone else. In many non-zero-sum situations, a person can benefit only when others benefit as well. Non-zero-sum situations exist where the supply of a resource is not fixed or limited in any way (e.g. knowledge, artwork, and trade). Prisoner's Dilemma, as a non-zero-sum game, demonstrates a conflict between rational individual behavior and the benefits of cooperation in certain situations. The classical prisoner's dilemma is as follows: Two suspects are apprehended by the police. The police do have enough evidence to convict these two suspects. As a result, they separate the two, visit each of them, and offer both the same deal: "If you confess, and your accomplice remains silent, he goes to jail for 10 years and you can go free. If you both remain silent, only minor charges can be brought upon both of you and you guys get 6 months each. If you both confess, then each of you two gets 5 years." Each suspect may reason as follows: "Either my partner confesses or not. If he does confess and I remain silent, I get 10 years while if I confess, I get 5 years. So, if my partner confesses, it is best that I confess and get only 5 years than 10 years in prison. If he didn't, then by confessing, I go free, whereby remaining silent, I get 6 months. Thus, if he didn't confess, it is best to confess, so that I can go free. Whether or not my partner confesses or not, it is best that I confess." In a non-iterated prisoner's dilemma, the two partners will never have to work together again. Both partners are thinking in the above manner and decide to confess. Consequently, they both receive 5 years in prison. If neither would have confessed, they would have only gotten 6 months each. The rational behavior paradoxically leads to a socially unbeneficial outcome. Payoff Matrix ------------- YOUR PARTNER Cooperate Defect ----------------------------- Cooperate | (0.5, 0.5) (0, 10) YOU | Defect |(10, 0) (5, 5) (x, y) = x: your score, y: your partner's score Note: lower the score (number of years in prison), the better. In an Iterated Prisoner's Dilemma where you have more than two players and multiple rounds, such as this one, the scoring is different. In this model, it is assumed that an increase in the number of people who cooperate will increase proportionately the benefit for each cooperating player (which would be a fine assumption, for example, in the sharing of knowledge). For those who do not cooperate, assume that their benefit is some factor (alpha) multiplied by the number of people who cooperate (that is, to continue the previous example, the non-cooperating players take knowledge from others but do not share any knowledge themselves). How much cooperation is incited is dependent on the factor multiple for not cooperating. Consequently, in an iterated prisoner's dilemma with multiple players, the dynamics of the evolution in cooperation may be observed. Payoff Matrix ------------- OPPONENT Cooperate Defect ----------------------------- Cooperate |(1, 1) (0, alpha) YOU | Defect |(alpha, 0) (0, 0) (x, y) = x: your score, y: your partner's score Note: higher the score (amount of the benefit), the better. ## HOW TO USE IT Decide what percentage of patches should cooperate at the initial stage of the simulation and change the INITIAL-COOPERATION slider to match what you would like. Next, determine the DEFECTION-AWARD multiple (mentioned as alpha in the payoff matrix above) for defecting or not cooperating. The Defection-Award multiple varies from range of 0 to 3. Press SETUP and note that red patches (that will defect) and blue patches (cooperate) are scattered across the . Press GO to make the patches interact with their eight neighboring patches. First, they count the number of neighboring patches that are cooperating. If a patch is cooperating, then its score is number of neighboring patches that also cooperated. If a patch is defecting, then its score is the product of the number of neighboring patches who are cooperating and the Defection-Award multiple. ## HOW IT WORKS Each patch will either cooperate (blue) or defect (red) in the initial start of the model. At each cycle, each patch will interact with all of its 8 neighbors to determine the score for the interaction. Should a patch have cooperated, its score will be the number of neighbors that also cooperated. Should a patch defect, then the score for this patch will be the product of the Defection-Award multiple and the number of neighbors that cooperated (i.e. the patch has taken advantage of the patches that cooperated). In the subsequent round, the patch will set its old-cooperate? to be the strategy it used in the previous round. For the upcoming round, the patch will adopt the strategy of one of its neighbors that scored the highest in the previous round. If a patch is blue, then the patch cooperated in the previous and current round. If a patch is red, then the patch defected in the previous iteration as well as the current round. If a patch is green, then the patch cooperated in the previous round but defected in the current round. If a patch is yellow, then the patch defected in the previous round but cooperated in the current round. ## THINGS TO NOTICE Notice the effect the Defection-Award multiple plays in determining the number of patches that will completely cooperate (red) or completely defect (blue). At what Defection-Award multiple value will a patch be indifferent to defecting or cooperating? At what Defection-Award multiple value will there be a dynamic change between red, blue, green, and yellow - where in the end of the model no particular color dominates all of the patches (i.e. view is not all red or all blue)? Note the Initial-Cooperation percentage. Given that Defection-Award multiple is low (below 1), if the initial percentage of cooperating patches is high, will there be more defecting or cooperating patches eventually? How about when the Defection-Award multiple is high? Does the initial percentage of cooperation effect the outcome of the model, and, if so, how? ## THINGS TO TRY Increase the Defection-Award multiple by moving the "Defection-Award" slider (just increase the "Defection-Award" slider while model is running), and observe how the histogram for each color of patch changes. In particular, pay attention to the red and blue bars. Does the number of pure cooperation or defection decrease or increase with the increase of the Defection-Award multiple? How about with a decrease of the Defection-Award multiple? (Just increase the "Defection-Award" slider while model is running.) At each start of the model, either set the initial-cooperation percentage to be very high or very low (move the slider for "initial-cooperation"), and proportionally value the Defection-Award multiple (move the slider for "Defection-Award" in the same direction) with regards to the initial-cooperation percentage. Which color dominates the world, when the initial-cooperation is high and the Defection-Award is high? Which color dominates the world when initial-cooperation is low and the Defection-Award multiple is also low? ## EXTENDING THE MODEL Alter the code so that the patches have a strategy to implement. For example, instead of adopting to cooperated or defect based on the neighboring patch with the maximum score. Instead, let each patch consider the history of cooperation or defection of it neighboring patches, and allow it to decide whether to cooperate or defect as a result. Implement these four strategies: 1. Cooperate-all-the-time: regardless of neighboring patches' history, cooperate. 2. Tit-for-Tat: only cooperate with neighboring patches, if they have never defected. Otherwise, defect. 3. Tit-for-Tat-with-forgiveness: cooperate if on the previous round, the patch cooperated. Otherwise, defect. 4. Defect-all-the-time: regardless of neighboring patches' history, defect. How are the cooperating and defecting patches distributed? Which strategy results with the highest score on average? On what conditions will this strategy be a poor strategy to use? ## HOW TO CITE If you mention this model in a publication, we ask that you include these citations for the model itself and for the NetLogo software: * Wilensky, U. (2002). NetLogo PD Basic Evolutionary model. http://ccl.northwestern.edu/netlogo/models/PDBasicEvolutionary. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. * Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. ## COPYRIGHT AND LICENSE Copyright 2002 Uri Wilensky. ![CC BY-NC-SA 3.0](http://i.creativecommons.org/l/by-nc-sa/3.0/88x31.png) This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. Commercial licenses are also available. To inquire about commercial licenses, please contact Uri Wilensky at uri@northwestern.edu. This model was created as part of the projects: PARTICIPATORY SIMULATIONS: NETWORK-BASED DESIGN FOR SYSTEMS LEARNING IN CLASSROOMS and/or INTEGRATED SIMULATION AND MODELING ENVIRONMENT. The project gratefully acknowledges the support of the National Science Foundation (REPP & ROLE programs) -- grant numbers REC #9814682 and REC-0126227. @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circle false 0 Circle -7500403 true true 0 0 300 circle 2 false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 line half true 0 Line -7500403 true 150 0 150 150 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 square false 0 Rectangle -7500403 true true 30 30 270 270 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 5.1.0 @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ default 0.0 -0.2 0 0.0 1.0 0.0 1 1.0 0.0 0.2 0 0.0 1.0 link direction true 0 Line -7500403 true 150 150 90 180 Line -7500403 true 150 150 210 180 @#$#@#$#@ 0 @#$#@#$#@