
The	NetLogo	6.4.0	User	Manual

2
23
23
25
25
25
25
25
25
25
25
25
26
26
26
26
27
27
27
27
28
28
29
29
29
29
29
30
30
30
30

31
31
31
31
31
32
32
32
32
32
33
33
33
34
34
34
34
34
34
35
35
35
35
36
36
36
36
36
37
38
38
38
38
38
38
39
39
39
39
40
40
41
41

Table	of	Contents

Table	of	Contents
What	is	NetLogo?

Features
Copyright	and	License	Information

How	to	reference
Acknowledgments
NetLogo	license
Commercial	licenses
NetLogo	User	Manual	license
Open	source
Third	party	licenses

Scala
MersenneTwisterFast
Colt
Config
Apache	Commons	Codec	(TM)
Flexmark
JHotDraw
JOGL
Matrix3D
ASM
PicoContainer
Parboiled
RSyntaxTextArea
JCodec
Java-Objective-C	Bridge
Webcam-capture
Guava
Gephi
R	Extension
JNA

What's	new?
Version	6.4.0	(November	2023)

BehaviorSpace	New	Features
Language	Changes
Bug	Fixes	and	Changes
Extension	Updates
Documentation	Updates
Models	Library	Changes

Version	6.3.0	(September	2022)
Bug	Fixes	and	Changes
Extension	Updates
Documentation	Updates
Models	Library	Changes

Version	6.2.2	(December	2021)
Fixes	and	Changes

Version	6.2.1	(October	2021)
Features	and	Changes
Documentation	Updates
Bugfixes
Models	Library	Changes

Version	6.2.0	(December	2020)
Features
Bugfixes
Logging	Improvements
NetLogo	3D	Bugfixes
Extension	Changes
Documentation	Changes
Model	Changes
Alternative	Visualization	Updates:

Version	6.1.1	(September	2019)
Bugfixes
Features
Extension	Changes
Documentation	Changes
Model	Changes

Version	6.1.0	(May	2019)
Feature	Changes
Bugfixes
Extension	Changes
Documentation	Changes
Model	Changes

Version	6.0.4	(June	2018)
Feature	Changes

41
42
42
42
42
42
42
43
43
43
45
45
45
45
45
45
46
46
46
46
46
47
47
47
47
48
48
48
48
49
49
50
50
50
50
50
50
50
51
51
51
51
51
51
51
52
52
52
52
52
52
53
53
53
53
53
54
54
54
54
54
54
54
55
55
55
55
55
55
55
56
56
56
56
56

Bugfixes
Documentation	Changes
Model	Changes

Version	6.0.3	(March	2018)
Feature	Changes
Documentation	Changes
Bugfixes
Extension	Changes
Documentation	Changes
Model	Changes

Version	6.0.2	(August	2017)
Feature	Changes
Bugfixes
Extension	Changes
Documentation	Changes
Model	Changes

Version	6.0.1	(March	2017)
Feature	Changes
Bugfixes
Extension	Changes
Documentation	Changes
Models

Version	6.0	(December	2016)
Feature	Changes
Bugfixes
Language	Changes
Extension	Changes
Operating	System	Support
Documentation	Changes
Internationalization	Changes
Models

Version	5.3.1	(February	2016)
Feature	Changes
Extension	Changes
Bugfixes

Version	5.3	(December	2015)
Feature	Changes
Extension	Changes

Version	5.2.1	(September	2015)
Extensions
New	features
Bug	fixes
Model	changes

Version	5.2.0	(April	2015)
Extensions
New	features
Bug	fixes
Model	changes

Version	5.1.0	(July	2014)
Version	5.0.4	(March	2013)
Version	5.0	(February	2012)
Version	4.1.3	(April	2011)
Version	4.1	(December	2009)
Version	4.0	(September	2007)
Version	3.1	(April	2006)
Version	3.0	(September	2005)
Version	2.1	(December	2004)
Version	2.0.2	(August	2004)
Version	2.0	(December	2003)
Version	1.3	(June	2003)
Version	1.2	(March	2003)
Version	1.1	(July	2002)
Version	1.0	(April	2002)

System	Requirements
Application	Requirements

Windows
Mac	OS	X
Linux

3D	Requirements
32-bit	or	64-bit?

Contacting	Us
Web	site
Feedback,	questions,	etc.
Reporting	bugs
Open	source

57
57
58
59
59
60
60
60
61
61
63
63
63
63
66
66
66
66
66
66
67
67
67
69
70
73
74
74
74
76
76
77
77
78
79
80
81
82
83
84
84
85
87
87
87
90
90
90
91
91

92
92
92
93
95
96
96
97
97
97
97
97
98
98

100
100
101
101
101

Sample	Model:	Party
At	a	Party
Challenge
Thinking	with	models
What’s	next?

Tutorial	#1:	Models
Sample	Model:	Wolf	Sheep	Predation
Controlling	the	Model:	Buttons
Controlling	speed:	Speed	Slider
Adjusting	Settings:	Choosers,	Sliders,	and	Switches
Gathering	Information:	Plots	and	Monitors

Plots
Monitors

Controlling	the	View
Models	Library

Sample	Models
Curricular	Models
Code	Examples
HubNet	Activities

What’s	Next?
Tutorial	#2:	Commands

Sample	Model:	Traffic	Basic
Command	Center
Working	with	colors
Agent	Monitors	and	Agent	Commanders
What’s	Next?

Tutorial	#3:	Procedures
Agents	and	procedures
Making	the	setup	button
Switching	to	tick-based	view	updates
Making	the	go	button
Experimenting	with	commands
Patches	and	variables
Turtle	variables
Monitors
Switches	and	labels
More	procedures
Plotting
Tick	counter
Some	more	details
What’s	next?
Appendix:	Complete	code

Interface	Guide
Menus

Chart:	NetLogo	menus
Tabs
International	Usage

Character	sets
Languages
Support	for	translators

Interface	Tab	Guide
Working	with	interface	elements
Chart:	Interface	Toolbar
The	2D	and	3D	views

Manipulating	the	3D	View
Command	Center

Reporters
Accessing	previous	commands
Clearing
Arranging

Plots
Plot	Pens

Sliders
Agent	Monitors

Info	Tab
Editing
Headings

Input
Paragraphs

101
101
101
101
101
102
102
102
102
102
102
102
102
102
103
103
103
104
104
104
104
105
105
105
105
105
105
105
106
106
106
106
106
107
107
107
107
108
108
108
110
110
110
111
112
112
113
113
115
116
117
118
118
119
119
120
124
125
126
126
126
126
127
127
127
127
128
128
128
128
129
129
129
130

Example
Formatted

Italicized	and	bold	text
Example
Formatted

Ordered	lists
Example
Formatted

Unordered	lists
Example
Formatted

Links
Automatic	links
Links	with	text
Local	links

Images
Example
Formatted
Local	images

Block	quotations
Example
Formatted

Code
Example
Formatted

Code	blocks
Example
Formatted

Superscripts	and	subscripts
Example
Formatted

Notes	on	usage
Other	features

Code	Tab	Guide
Checking	for	Errors
Separate	Code	tab
Find	&	Replace
Automatic	Indentation
More	Editing	Options
Included	Files	Menu

Programming	Guide
Agents
Procedures
Variables
Tick	counter

When	to	tick
Fractional	ticks

Colors
Ask
Agentsets

Special	agentsets
Agentsets	and	lists

Breeds
Link	breeds

Buttons
Lists
Math
Random	numbers

Auxiliary	generator
Local	randomness
Saving	a	Random	Seed	for	a	Run

Turtle	shapes
Link	shapes
View	updates

Continuous	updates
Tick-based	updates
Choosing	a	mode
Frame	rate

Plotting
Plotting	points
Plot	commands
Other	kinds	of	plots
Histograms
Clearing	and	resetting

130
130
130
130
131
131
132
132
132
133
134
134
135
137
139
139
139
139
140
140
140
140
140
140
141
141
142
142
142
143
143
143
143
143
143
143
144
144
144
144

146
146
146
146
146
146
146
146
146
147
148
148
148
149
149
149
149
149
150
150
150
150
150
150
151
151
152
152
152
152
153
153
154
154
154
154
154

Ranges	and	auto	scaling
Using	a	Legend
Temporary	plot	pens
set-current-plot	and	set-current-plot-pen
Conclusion

Strings
Output

How	Output	Primitives	Differ
File	I/O
Movies
Perspective
Drawing
Topology
Links
Anonymous	procedures

Anonymous	procedure	primitives
Anonymous	procedure	inputs
Anonymous	procedures	and	strings
Concise	syntax
Anonymous	procedures	as	closures
Nonlocal	exits
Anonymous	procedures	and	extensions
Limitations
What	is	Optional?
Code	example

Ask-Concurrent
User	Interaction	Primitives

What	does	“Halt”	mean?
Tie
Multiple	source	files
Syntax

Colors
Notice
Keywords
Identifiers
Scope
Comments
Structure
Commands	and	reporters
Compared	to	other	Logos

Transition	Guide
Changes	for	NetLogo	6.1.0

CF	Extension	Removal
ifelse-value	Precedence	Change	with	Infix	Operators

Changes	for	NetLogo	6.0.3
Arduino	Extension	Changes
CF	Extension	Changes

Changes	for	NetLogo	6.0
Tasks	replaced	by	Anonymous	Procedures
Link	reporters	overhauled	to	be	more	consistent	and	flexible
Removal	of	Applets
Changes	to	the	NetLogo	User	Interface
Nobody	Not	Permitted	as	a	Chooser	Value
Breeds	must	have	singular	and	plural	names
Removal	of	“Movie”	Prims
Improved	Name	Collision	Detection
Removal	of	hubnet-set-client-interface
Improved	&	Updated	Extensions	API
Add	range	primitive

Changes	for	NetLogo	5.2
hsb	primitives
GoGo	extension

Changes	for	NetLogo	5.0
Plotting
Tick	counter
Unicode	characters
Info	tabs
Model	speed
List	performance
Extensions	API

Changes	for	NetLogo	4.1
Combining	set	and	of

Changes	for	NetLogo	4.0
Who	numbering
Turtle	creation:	randomized	vs.	“ordered”
Adding	strings	and	lists
The	-at	primitives

154
155
156
156
156
157
158
158
158
158
159
159
159
159

160
160
160
162
162
162
163
163
164
164
164
164
164
164
164
165
165
165
166
166
166
166
166
166
170
170
170
173
173
175
175
175

176
176
176
176
176
177
178
179
179
179
182
183

185
185
185
185
185
185
185
186
186
186
187
187
188
188
188
188
189

Links
New	“of”	syntax
Serial	ask
Tick	counter
View	update	modes
Speed	slider
Numbers
Agentset	building
RGB	Colors
Tie

Changes	for	NetLogo	3.1
Agentsets
Wrapping
Random	turtle	coordinates

Extension	Manager	Guide
Authoring	and	Sharing
Interface

Shapes	Editor	Guide
Getting	started

Importing	shapes
Creating	and	editing	turtle	shapes

Tools
Previews
Overlapping	shapes
Undo
Colors
Other	buttons
Shape	design
Keeping	a	shape

Creating	and	editing	link	shapes
Changing	link	shape	properties

Using	shapes	in	a	model
BehaviorSpace	Guide

What	is	BehaviorSpace?
Why	BehaviorSpace?

How	It	Works
Managing	experiment	setups
Creating	an	experiment	setup
Importing	and	exporting
Special	primitives	for	BehaviorSpace	experiments
Running	an	experiment

Advanced	Usage
Running	from	the	command	line
Setting	up	experiments	in	XML
Adjusting	JVM	Parameters
Controlling	API

System	Dynamics	Guide
What	is	the	NetLogo	System	Dynamics	Modeler?

Basic	Concepts
Sample	Models

How	it	Works
Diagram	Tab
Code	Tab
The	System	Dynamics	Modeler	and	NetLogo

Tutorial:	Wolf-Sheep	Predation
Step	1:	Sheep	Reproduction
Step	2:	NetLogo	Integration
Step	3:	Wolf	Predation

HubNet	Guide
Understanding	HubNet

NetLogo
HubNet	Architecture

Computer	HubNet
Activities
Clients
Requirements
Starting	an	activity
HubNet	Control	Center
Troubleshooting
Known	Limitations

Teacher	workshops
HubNet	Authoring	Guide
Running	HubNet	in	headless	mode
Getting	help

HubNet	Authoring	Guide

189
189
189
190
191
191
191
192
192
192
193
193
193
193
193
194
195
196
196
196
196
196
196
197
197

198
199
199
199
199
200
200
200
201
201
201
201
201
202
202
203
205
205
205
206
206
206
206
207
207
207
207
207
208
208
208
208
209
209
209
209
210
210
210
210
211
211
211
211
211
211
212
212
212
212

Coding	HubNet	activities
Setup
Receiving	messages	from	clients
Sending	messages	to	clients
Examples

How	to	make	a	client	interface
View	updates	on	the	clients
Clicking	in	the	view	on	clients
Customizing	the	client’s	view
Plot	updates	on	the	clients

Modeling	Commons	Guide
Introduction
Modeling	Commons	Accounts
Uploading	Models

Upload	A	New	Model
Upload	A	Child	Of	An	Existing	Model	(“forking”)

Updating	An	Existing	Model
Logging

Starting	Logging
Command	Line	Switches

Using	Logging
Events
JSON	Output
Where	Logs	are	Stored
Managing	Log	Files

Controlling	Guide
Mathematica	Link

What	can	I	do	with	it?
Installation
Usage
Known	Issues
Source	code
Credits

NetLogo	3D
Introduction

3D	Worlds
The	observer	and	the	3D	view
Custom	Shapes

Tutorial
Step	1:	Depth
Step	2:	Turtle	Movement
Step	3:	Observer	Movement

Dictionary
Commands	and	Reporters
Built-In	Variables
Primitives
at-points4.1
distancexyz4.1	distancexyz-nowrap4.1
dz4.1
face	facexyz4.1
left4.1
link-pitch4.1.2
load-shapes-3d4.1
max-pzcor4.1	min-pzcor4.1
neighbors4.1	neighbors64.1
orbit-down4.1	orbit-left4.1	orbit-right4.1	orbit-up4.1
__oxcor	__oycor	__ozcor
patch4.1
patch-at4.1
patch-at-heading-pitch-and-distance4.1
pitch
pzcor
random-pzcor4.1
random-zcor4.1
right4.1
roll
roll-left4.1
roll-right4.1
setxyz4.1
tilt-down4.1	tilt-up4.1
towards-pitch4.1	towards-pitch-nowrap4.1
towards-pitch-xyz4.1	towards-pitch-xyz-nowrap4.1
turtles-at4.1	<breeds>-at
world-depth4.1
zcor

213

214
214
214
214

215
215
215
216
216
216
216
216
216
217
217
217
217
217
217
217
217
217
217
218

219
219
219
219
219
219
219
219
220
220

221
221
221
221
221
221
221
221
221
221
222
222
222
222
222
222
222
222
222

223
223
223
223
223
223
223
223
223
223
224
224
225
225
225

227
227
227
227
227
228

zoom4.1

Extensions	Guide
Authoring	and	Sharing
Using	Extensions

Where	extensions	are	located

Extension	Authoring	Introduction
Technical	Details
Sharing	Extensions	with	the	Extension	Manager

NetLogo	Arduino	Extension
Using

Notes
Compatibility
Questions

Primitives
arduino:primitives
arduino:ports
arduino:open
arduino:close
arduino:get
arduino:write-string
arduino:write-int
arduino:write-byte
arduino:is-open?
arduino:debug-to-arduino
arduino:debug-from-arduino

NetLogo	Array	Extension
Using

When	to	Use
Example	use	of	Array	Extension

Primitives
array:from-list
array:item
array:set
array:length
array:to-list

NetLogo	Bitmap	Extension
Using

What	does	the	Bitmap	Extension	do?
Getting	started

Primitives
bitmap:average-color
bitmap:channel
bitmap:copy-to-drawing
bitmap:copy-to-pcolors
bitmap:difference-rgb
bitmap:export
bitmap:from-base64
bitmap:to-base64
bitmap:from-view
bitmap:to-grayscale
bitmap:height
bitmap:import
bitmap:scaled
bitmap:width

NetLogo	Csv	Extension
Common	use	cases	and	examples

Read	a	file	all	at	once
Read	a	file	one	line	at	a	time
Read	a	file	one	line	per	tick
Write	a	file

Primitives
Formatting	NetLogo	data	as	CSV
Parsing	CSV	input	to	NetLogo	data
csv:from-row
csv:from-string
csv:from-file
csv:to-row
csv:to-string
csv:to-file

NetLogo	Gis	Extension
Using

How	to	use
Known	Issues
Credits

Primitives

228
228
228
228
228
228
228
229
229
229
229
229
230
230
230
231
231
231
232
232
232
232
232
232
232
232
232
233
233
233
233
233
233
234
234
234
234
234
234
234
235
235
236
236
236
236
236
236
237
237
237
238
239
239
239
239
239
239
240
240
240
240
240
241
241
241
241
241
242
242
242
242
242

243
243
243
243
243
243
243

RasterDataset	Primitives
Dataset	Primitives
VectorDataset	Primitives
Coordinate	System	Primitives
Drawing	Primitives
gis:set-transformation
gis:set-transformation-ds
gis:set-world-envelope
gis:set-world-envelope-ds
gis:world-envelope
gis:envelope-of
gis:envelope-union-of
gis:load-coordinate-system
gis:set-coordinate-system
gis:project-lat-lon
gis:project-lat-lon-from-ellipsoid
gis:load-dataset
gis:store-dataset
gis:type-of
gis:patch-dataset
gis:turtle-dataset
gis:link-dataset
gis:shape-type-of
gis:property-names
gis:feature-list-of
gis:vertex-lists-of
gis:centroid-of
gis:random-point-inside
gis:location-of
gis:set-property-value
gis:property-value
gis:find-features
gis:find-one-feature
gis:find-less-than
gis:find-greater-than
gis:find-range
gis:property-minimum
gis:property-maximum
gis:apply-coverage
gis:create-turtles-from-points
gis:create-turtles-from-points-manual
gis:create-turtles-inside-polygon
gis:create-turtles-inside-polygon-manual
gis:coverage-minimum-threshold
gis:set-coverage-minimum-threshold
gis:coverage-maximum-threshold
gis:set-coverage-maximum-threshold
gis:intersects?
gis:contains?
gis:contained-by?
gis:have-relationship?
gis:relationship-of
gis:intersecting
gis:width-of
gis:height-of
gis:raster-value
gis:set-raster-value
gis:minimum-of
gis:maximum-of
gis:sampling-method-of
gis:set-sampling-method
gis:raster-sample
gis:raster-world-envelope
gis:create-raster
gis:resample
gis:convolve
gis:apply-raster
gis:drawing-color
gis:set-drawing-color
gis:draw
gis:fill
gis:paint
gis:import-wms-drawing

NetLogo	Gogo	Extension
NetLogoLab	and	the	GoGo	Board	Extension	for	sensors	and	robotics

NetLogoLab	and	the	GoGo	Board	Extension
What	is	NetLogoLab?

The	GoGo	Board	NetLogo	extension
GoGo	Board:	a	low-cost	robotics	and	data-logging	board
Sensor	and	actuator	toolkits

244
244
244
244
244
244
244
244
245
245
245
245
245
245
245
245
245
245
245
246
246
246
246
246
246
246
246
246
247
247
247
247

249
249
249
249
249
249
250
250
250
250
250
250
250
251
251
251
251
251
252
252
252
253
253
253
253
253
253
254
254
254
254

255
255
255
255
255
255
255
255
256
256
256
256
256
256
256

NetLogo	models
How	to	get	a	GoGo	Board?
Installing	and	testing	the	GoGo	Extension

Windows
Mac	OS	X
Linux

Usage
Changes
Primitives

Other	Outputs
Utilities
General
Sensors
Outputs	and	Servos
gogo:primitives
gogo:howmany-gogos
gogo:talk-to-output-ports
gogo:set-output-port-power
gogo:output-port-on
gogo:output-port-off
gogo:output-port-clockwise
gogo:output-port-counterclockwise
gogo:set-servo
gogo:led
gogo:beep
gogo:read-sensors
gogo:read-sensor
gogo:read-all
gogo:send-bytes

Examples	of	NetLogoLab	models
Controlling	a	car
A	simple	sensing	project

NetLogo	Ls	Extension
LevelSpace	fundamentals

Headless	and	Interactive	Models
Keeping	Track	of	Models
A	general	use	case:	Asking	and	Reporting
A	general	use	case:	Inter-Model	Interactions
A	general	Usecase:	Tidying	up	“Dead”	Child	Models

Citing	LevelSpace	in	Research
Primitives

Commanding	and	Reporting
Logic	and	Control
Opening	and	Closing	Models
ls:create-models
ls:create-interactive-models
ls:close
ls:reset
ls:ask
ls:of
ls:report
ls:with
ls:let
ls:assign
ls:models
ls:show
ls:show-all
ls:hide
ls:hide-all
ls:path-of
ls:name-of
ls:model-exists?
ls:random-seed

NetLogo	Matrix	Extension
Using

When	to	Use
How	to	Use
Example

Primitives
Matrix	creation	and	conversion	to/from	lists
Advanced	features
Matrix	data	retrieval	and	manipulation
Math	operations
matrix:make-constant
matrix:make-identity
matrix:from-row-list
matrix:from-column-list
matrix:to-row-list

256
256
257
257
257
257
257
257
257
257
258
258
258
258
258
258
259
259
259
259
259
259
259
259
260
260
260
260
260
260
260
260
260
261
261
261
262

264
264
264
266
266
266
266
266
266
266
266
266
267
267
267
268
268
269
269
269
269
270
270
271
271
271
272
272
272
272
272
273
273
273
273
274
274
274
274
275
275
275
275

matrix:to-column-list
matrix:copy
matrix:pretty-print-text
matrix:get
matrix:get-row
matrix:get-column
matrix:set
matrix:set-row
matrix:set-column
matrix:swap-rows
matrix:swap-columns
matrix:set-and-report
matrix:dimensions
matrix:submatrix
matrix:map
matrix:times-scalar
matrix:times
matrix:*
matrix:times-element-wise
matrix:plus-scalar
matrix:plus
matrix:+
matrix:minus
matrix:-
matrix:inverse
matrix:transpose
matrix:real-eigenvalues
matrix:imaginary-eigenvalues
matrix:eigenvectors
matrix:det
matrix:rank
matrix:trace
matrix:solve
matrix:forecast-linear-growth
matrix:forecast-compound-growth
matrix:forecast-continuous-growth
matrix:regress

NetLogo	Nw	Extension
Usage

Special	agentsets	vs	normal	agentsets
A	note	regarding	floating	point	calculations
Performance
Primitives

Generators
Path	and	Distance
Clusterer/Community	Detection
Context	Management
Import	and	Export
Centrality	Measures
Clustering	Measures
nw:set-context
nw:get-context
nw:with-context
nw:turtles-in-radius
nw:turtles-in-reverse-radius
nw:distance-to
nw:weighted-distance-to
nw:path-to
nw:turtles-on-path-to
nw:weighted-path-to
nw:turtles-on-weighted-path-to
nw:mean-path-length
nw:mean-weighted-path-length
nw:betweenness-centrality
nw:eigenvector-centrality
nw:page-rank
nw:closeness-centrality
nw:weighted-closeness-centrality
nw:clustering-coefficient
nw:modularity
nw:bicomponent-clusters
nw:weak-component-clusters
nw:louvain-communities
nw:maximal-cliques
nw:biggest-maximal-cliques
nw:generate-preferential-attachment
nw:generate-random
nw:generate-watts-strogatz
nw:generate-small-world
nw:generate-lattice-2d

276
276
276
276
277
277
279
280
280

281
281
281
281
281
281
281
281
282
282
282
282
282
282
282
283
283
283
283
283
283
283
284
284
284
284
284
284
284
285
285
285
285
285
285
285
285
286
286
286
286
286
286
286
287
287
287
287
288
288
289
289
289
289
289
289
290
290
290
290
290
290
291

292
292
292
292
292
292

nw:generate-ring
nw:generate-star
nw:generate-wheel
nw:save-matrix
nw:load-matrix
nw:save-graphml
nw:load-graphml
nw:load
nw:save

NetLogo	Palette	Extension
Using	the	Palette	Extension
Getting	Started
Background

Review	of	color	representation	in	NetLogo
More	control	over	the	color
Varying	an	Agent’s	Transparency	or	Color
How	do	I	choose	a	color	scheme?
Should	I	use	a	continuous	color	gradient	or	just	a	discrete	color	set?
Example	Models
Further	Reading

Primitives
palette:alpha-of
palette:with-alpha
palette:alpha
palette:set-alpha
palette:transparency-of
palette:with-transparency
palette:transparency
palette:set-transparency
palette:hue-of
palette:with-hue
palette:hue
palette:set-hue
palette:saturation-of
palette:with-saturation
palette:saturation
palette:set-saturation
palette:brightness-of
palette:with-brightness
palette:brightness
palette:set-brightness
palette:R-of
palette:with-R
palette:R
palette:set-R
palette:G-of
palette:with-G
palette:G
palette:set-G
palette:B-of
palette:with-B
palette:B
palette:set-B
palette:scale-gradient
palette:scale-gradient-hsb
palette:scheme-colors
palette:scale-scheme
palette:scheme-dialog

References
NetLogo	Profiler	Extension

Using	the	Profiler	Extension
How	to	use
Example

Primitives
profiler:calls
profiler:exclusive-time
profiler:inclusive-time
profiler:start
profiler:stop
profiler:reset
profiler:report
profiler:data

NetLogo	Py	Extension
Using

Error	handling
Configuring
Primitives

py:setup

292
293
293
293
293
293

294
294
294
296
296
296
297
297
297
298
298
298
298
298
298
299
299
299
300
300
300
300
300
301
301
301
301
301
301
302
303
303
303
303
303
303
304
304
304
304
305
305

307
307
307
307
307
307
307
307
308
308
308
308
310
310
310
310
310
311
311
311
311
311
311
311
311
311
312
312
312

py:python
py:python2
py:python3
py:run
py:runresult
py:set

NetLogo	R	Extension
Using

Some	Tips
Installing

Installing	R
Configuring	the	R	extension
Determining	r.home	and	jri.home.paths
Windows-Specific	Installation	Steps

Primitives
r:clear
r:clearLocal
r:eval
r:__evaldirect
r:gc
r:get
r:interactiveShell
r:put
r:putagent
r:putagentdf
r:putdataframe
r:putlist
r:putnamedlist
r:setPlotDevice
r:stop

Troubleshooting
Loading	R	packages	fails
After	changing	the	working	directory	in	R	(e.g.	with	setwd())	NetLogo	doesn’t	find	the	extension
Specific	error	code	list

Citation
Copyright	and	License

NetLogo	Rnd	Extension
Usage
A	note	about	performance
Primitives

AgentSet	Primitives
List	Primitives
rnd:weighted-one-of
rnd:weighted-n-of
rnd:weighted-n-of-with-repeats
rnd:weighted-one-of-list
rnd:weighted-n-of-list
rnd:weighted-n-of-list-with-repeats

NetLogo	Sound	Extension
Using

How	to	Use
MIDI	support

Primitives
sound:drums
sound:instruments
sound:play-drum
sound:play-note
sound:play-note-later

Drum	Names
Instrument	Names

NetLogo	Table	Extension
Using

When	to	Use
Example
Manipulating	Tables
Key	Restrictions

Primitives
table:clear
table:counts
table:group-agents
table:group-items
table:from-list
table:from-json
table:from-json-file
table:get
table:get-or-default
table:has-key?

312
312
312
312
312
312
312
312

313
313
314
315
315
315
315
317
317
318
318
318
318
318
323
325
325
327
327
327
328
328
328
329
329
329
329
329
329
329
329
329
330
330
330
330
331
331
331
331
331
332
332
333
333
333
333
333
334
334
334

335
335
335
335
335
335
335
336
336
336
336
336
336
337
337
337
337

table:keys
table:length
table:make
table:put
table:remove
table:to-list
table:to-json
table:values

NetLogo	Time	Extension
Quickstart
What	is	it?
Installation
Examples
Data	Types
Behavior
Format

Date	Format
Supported	Format	Characters
Date-time	Bounds
User	Defined	Formatting

Primitives
Date/Time	Utilities
Time	Series	Tool

back	to	top
Discrete	Event	Scheduler

Building	with	SBT
Authors
Feedback?	Bugs?	Feature	Requests?
Credits
Terms	of	Use
Primitives

NetLogo	Vid	Extension
Concepts

Video	Source
Source	Lifecycle
Video	Recorder
Known	Issues

Primitives
vid:camera-names
vid:camera-open
vid:camera-select
vid:movie-select
vid:movie-open
vid:movie-open-remote
vid:close
vid:start
vid:stop
vid:status
vid:capture-image
vid:set-time
vid:show-player
vid:hide-player
vid:record-view
vid:record-interface
vid:record-source
vid:recorder-status
vid:reset-recorder
vid:start-recorder
vid:save-recording

NetLogo	View2.5d	Extension
How	to	Use

Incorporating	Into	Models
Feedback

Primitives
view2.5d:patch-view
view2.5d:decorate-patch-view
view2.5d:undecorate-patch-view
view2.5d:turtle-view
view2.5d:update-all-patch-views
view2.5d:update-patch-view
view2.5d:update-turtle-view
view2.5d:get-z-scale
view2.5d:set-z-scale
view2.5d:set-turtle-stem-thickness
view2.5d:set-turtle-stem-color
view2.5d:show-links-xy-plane

337
337
337
338
338
338
338
338
338
338
338
338

340
340
340
340
340
340
340
340
340
341
341
341
341
341
341
341
342
342
342
342
342
342
342
342
343
343
343
343
343
344
344
344
344
344
344
345
345
345
345
346
346
346
346
346
346
346
346
346
347
347
347
347
347
348
348
348
348
348
348
349
349
349
349
349
349
349
349
350

view2.5d:show-links-xyz
view2.5d:get-observer-angles
view2.5d:set-observer-angles
view2.5d:get-observer-xy-focus
view2.5d:set-observer-xy-focus
view2.5d:get-observer-distance
view2.5d:set-observer-distance
view2.5d:remove-patch-view
view2.5d:remove-turtle-view
view2.5d:remove-all-patch-views
view2.5d:remove-all-turtle-views
view2.5d:count-windows

FAQ	(Frequently	Asked	Questions)
General

Why	is	it	called	NetLogo?
How	do	I	cite	NetLogo	or	HubNet	in	a	publication?
How	do	I	cite	a	model	from	the	Models	Library	in	a	publication?
Where	and	when	was	NetLogo	created?
What	programming	language	was	NetLogo	written	in?
What’s	the	relationship	between	StarLogo	and	NetLogo?
Under	what	license	is	NetLogo	released?	Is	the	source	code	available?
Do	you	offer	any	workshops	or	other	training	opportunities	for	NetLogo?
Are	there	any	NetLogo	textbooks?
Is	NetLogo	available	in	other	languages	besides	English?
Is	NetLogo	compiled	or	interpreted?
Has	anyone	built	a	model	of	<x>?
Are	NetLogo	models	runs	scientifically	reproducible?
Will	NetLogo	and	NetLogo	3D	remain	separate?
Can	I	run	NetLogo	on	my	phone	or	tablet?

Downloading
Can	I	have	multiple	versions	of	NetLogo	installed	at	the	same	time?
I’m	on	a	UNIX	system	and	I	can’t	untar	the	download.	Why?
How	do	I	install	NetLogo	unattended?

Running
Can	I	run	NetLogo	from	a	CD,	a	network	drive,	or	a	USB	drive?
Why	is	NetLogo	so	much	slower	when	I	unplug	my	Windows	laptop?
Why	does	NetLogo	bundle	Java?
How	come	NetLogo	won’t	start	up	on	my	Linux	machine?
When	I	try	to	install	NetLogo	on	Windows,	I	see	“Windows	protected	your	PC”
When	I	try	to	start	NetLogo	on	Windows	I	get	an	error	“The	JVM	could	not	be	started”.	Help!
NetLogo	won’t	start	on	Mac	OS	Sierra	(or	later)
NetLogo	won’t	start	on	Windows	or	crashes	suddenly	on	Mac	OS	Sierra
Can	I	run	NetLogo	from	the	command	line,	without	the	GUI?
Does	NetLogo	take	advantage	of	multiple	processors?
Can	I	distribute	NetLogo	model	runs	across	a	cluster	or	grid	of	computers?
Is	there	any	way	to	recover	lost	work	if	NetLogo	crashes	or	freezes?
Why	is	HubNet	Discovery	Not	Working?

Usage
When	I	move	the	speed	slider	all	the	way	to	the	right,	why	does	my	model	seem	to	stop?
Can	I	use	the	mouse	to	“paint”	in	the	view?
How	big	can	my	model	be?	How	many	turtles,	patches,	procedures,	buttons,	and	so	on	can	my	model	contain?
Can	I	use	GIS	data	in	NetLogo?
My	model	runs	slowly.	How	can	I	speed	it	up?
Can	I	have	more	than	one	model	open	at	a	time?
Can	I	change	the	choices	in	a	chooser	on	the	fly?
Can	I	divide	the	code	for	my	model	up	into	several	files?

Programming
How	does	the	NetLogo	language	differ	from	other	Logos?
How	come	my	model	from	an	earlier	NetLogo	doesn’t	work	right?
How	do	I	take	the	negative	of	a	number?
My	turtle	moved	forward	1,	but	it’s	still	on	the	same	patch.	Why?
How	do	I	keep	my	turtles	on	patch	centers?
patch-ahead	1	is	reporting	the	same	patch	my	turtle	is	already	standing	on.	Why?
How	do	I	give	my	turtles	“vision”?
Can	agents	sense	what’s	in	the	drawing	layer?
I’m	getting	numbers	like	0.10000000004	and	0.799999999999	instead	of	0.1	and	0.8.	Why?
The	documentation	says	that	random-float	1	might	return	0	but	will	never	return	1.	What	if	I	want	1	to	be	included?
Why	is	the	number	value	in	my	monitor	widget	changing	even	though	nothing	is	happening	in	my	model?
How	can	I	keep	two	turtles	from	occupying	the	same	patch?
How	can	I	find	out	if	a	turtle	is	dead?
Does	NetLogo	have	arrays?
Does	NetLogo	have	hash	tables	or	associative	arrays?
How	can	I	use	different	patch	“neighborhoods”	(circular,	Von	Neumann,	Moore,	etc.)?
How	can	I	convert	an	agentset	to	a	list	of	agents,	or	vice	versa?
How	do	I	stop	foreach?
I’m	trying	to	make	a	list.	Why	do	I	keep	getting	the	error	“Expected	a	literal	value”?

BehaviorSpace
Why	are	the	rows	in	my	BehaviorSpace	table	results	out	of	order?
How	do	I	measure	runs	every	n	ticks?
I’m	varying	a	global	variable	I	declared	in	the	Code	tab,	but	it	doesn’t	work.	Why?

350
350
350
350

351
351
351
351
351
351
351
351
351
351
351
351
351
352
352
352
352
352
352
352
352
352
352
352
352
352
352
352
352
353
353
353
353
353
353
354
354
354
354
355
355
355
355
356
356
356
356
356
356
356
356
357
357
357
358
358
358
358
358
358
358
359
359
359
359
359
359
359
359
360
360
360
360

360

NetLogo	3D
Does	NetLogo	work	with	my	stereoscopic	device?

Extensions
I’m	writing	an	extension.	Why	does	the	compiler	say	it	can’t	find	org.nlogo.api?

NetLogo	Dictionary
Categories

Turtle-related
Patch-related
Link-related
Agentset
Color
Control	flow	and	logic
Anonymous	Procedures
World
Perspective
HubNet
Input/output
File
List
String
Mathematical
Plotting
BehaviorSpace
System

Built-In	Variables
Turtles
Patches
Links

Keywords
Constants

Mathematical	Constants
Boolean	Constants
Color	Constants

A
abs1.0
acos1.3
all?4.0
and1.0
any?2.0
approximate-hsb4.0
approximate-rgb4.0
Arithmetic	Operators	+1.0	*1.0	-1.0	/1.0	^1.0	<1.0	>1.0	=1.0	!=1.0	<=1.0	>=1.0
asin1.3
ask1.0
ask-concurrent4.0
at-points1.0
atan1.0
autoplot?1.0
auto-plot-off1.0	auto-plot-on1.0

B
back1.0	bk1.0
base-colors4.0
beep2.1
behaviorspace-experiment-name5.2
behaviorspace-run-number4.1.1
both-ends4.0
breed
breed
but-first1.0	butfirst1.0	bf1.0	but-last1.0	butlast1.0	bl1.0

C
can-move?3.1
carefully2.1
ceiling1.0
clear-all1.0	ca1.0
clear-all-plots1.0
clear-drawing3.0	cd3.0
clear-globals5.2
clear-links4.0
clear-output1.0
clear-patches1.0	cp1.0
clear-plot
clear-ticks5.0
clear-turtles1.0	ct1.0
color
cos1.0
count1.0
create-ordered-turtles4.0	cro4.0
create-<breed>-to	create-<breeds>-to	create-<breed>-from	create-<breeds>-from	create-<breed>-with	create-<breeds>-with	create-link-to4.0
create-links-to4.0	create-link-from4.0	create-links-from4.0	create-link-with4.0	create-links-with4.0

361
362
362
362
362
362
363
363
363
363
364
364
364
364
364
365
365
365
365
365
365
365
366
366
366
367
367
367
367
367
367
367
368
368
368
368
368
368
369
369
369
369
369
370
370
370
370
370
370
371
371
371
371
371
371
372
372
372
372
372
373
373
373
373
373
373
373
373
374
374
374
374
374
374
374
374
374
375
375
375

create-turtles1.0	crt1.0
create-temporary-plot-pen1.1

D
date-and-time3.0
die1.0
diffuse1.0
diffuse41.0
directed-link-breed
display1.0
distance1.0
distancexy1.0
downhill1.0	downhill41.0
dx1.0	dy1.0

E
empty?1.0
end
end14.0
end24.0
error5.0
error-message2.1
every1.0
exp1.0
export-view3.0	export-interface2.0	export-output1.0	export-plot1.0	export-all-plots1.2.1	export-world1.0
extensions
extract-hsb1.0
extract-rgb1.0

F
face3.0
facexy3.0
file-at-end?2.0
file-close2.0
file-close-all2.0
file-delete2.0
file-exists?2.0
file-flush4.0
file-open2.0
file-print2.0
file-read2.0
file-read-characters2.0
file-read-line2.0
file-show2.0
file-type2.0
file-write2.0
filter1.3
first1.0
floor1.0
follow3.0
follow-me3.0
foreach1.3
forward1.0	fd1.0
fput1.0

G
globals

H
hatch1.0
heading
hidden?
hide-link4.0
hide-turtle1.0	ht1.0
histogram1.0
home1.0
hsb1.0
hubnet-broadcast1.1
hubnet-broadcast-clear-output4.1
hubnet-broadcast-message4.1
hubnet-clear-override4.1	hubnet-clear-overrides4.1
hubnet-clients-list5.0
hubnet-enter-message?1.2.1
hubnet-exit-message?1.2.1
hubnet-fetch-message1.1
hubnet-kick-client5.0
hubnet-kick-all-clients5.0
hubnet-message1.1
hubnet-message-source1.1
hubnet-message-tag1.1
hubnet-message-waiting?1.1
hubnet-reset1.1
hubnet-reset-perspective4.1
hubnet-send1.1
hubnet-send-clear-output4.1

375
375
375
375
375
376
376
376
377
377
377
377
378
378
378
378
379
379
379
379
379

380
380
380
380
380
380
381
381
381
381
382
382
382
382
383
383
383
383
383
384
384
384
384
384
384
384
385
385
385
385
385
386
386
386
386
386
387
387
387
387
387
388
388
388
388
388
388
389
389
389
390
390
390
390
390
391
391
391

hubnet-send-follow4.1
hubnet-send-message4.1
hubnet-send-override4.1
hubnet-send-watch4.1

I
if1.0
ifelse1.0
ifelse-value2.0
import-drawing3.0
import-pcolors3.0
import-pcolors-rgb4.0
import-world1.0
in-cone3.0
in-<breed>-neighbor?	in-link-neighbor?4.0
in-<breed>-neighbors	in-link-neighbors4.0
in-<breed>-from	in-link-from4.0
__includes4.0
in-radius1.0
insert-item6.0.2
inspect1.1
int1.0
is-agent?1.2.1	is-agentset?1.2.1	is-anonymous-command?6.0	is-anonymous-reporter?6.0	is-boolean?1.2.1	is-directed-link?4.0	is-link?4.0	is-link-
set?4.0	is-list?1.0	is-number?1.2.1	is-patch?1.2.1	is-patch-set?4.0	is-string?1.0	is-turtle?1.2.1	is-turtle-set?4.0	is-undirected-link?4.0
item1.0

J
jump1.0

L
label
label-color
last1.0
layout-circle4.0
layout-radial4.0
layout-spring4.0
layout-tutte4.0
left1.0	lt1.0
length1.0
let2.1
link4.0
link-heading4.0
link-length4.0
link-set4.0
link-shapes4.0
links4.0
links-own
list1.0
ln1.0
log1.0
loop1.0
lput1.0

M
map1.3
max1.0
max-n-of4.0
max-one-of1.0
max-pxcor3.1	max-pycor3.1
mean1.0
median1.0
member?1.0
min1.0
min-n-of4.0
min-one-of1.0
min-pxcor3.1	min-pycor3.1
mod1.0
modes2.0
mouse-down?1.0
mouse-inside?3.0
mouse-xcor1.0	mouse-ycor1.0
move-to4.0
my-<breeds>	my-links4.0
my-in-<breeds>	my-in-links4.0
my-out-<breeds>	my-out-links4.0
myself1.0

N
n-of3.1
n-values2.0
neighbors1.1	neighbors41.1
<breed>-neighbors	link-neighbors4.0
<breed>-neighbor?	link-neighbor?4.0
netlogo-version3.0
netlogo-web?5.2

391
391
391
391
392
392
392
392
392
392
392
393
393
393
393
394
394
394
394
394
394
395
395
395
395
395
396
396
396
396
396
396
396
397
397
397
397
397
397
397
397
398
398
398
398
398
398
399
399
399
399
400
400
400
400
401
401
401
402
402
402
402
402
402
402
403
403
403
403
403
403
403
404
404
404
404
405
405
405
405
406

new-seed3.0
no-display1.0
nobody
no-links4.0
no-patches4.0
not1.0
no-turtles4.0

O
of4.0
one-of1.0
or1.0
other4.0
other-end4.0
out-<breed>-neighbor?	out-link-neighbor?4.0
out-<breed>-neighbors	out-link-neighbors4.0
out-<breed>-to	out-link-to4.0
output-print2.1	output-show2.1	output-type2.1	output-write2.1

P
patch1.0
patch-ahead2.0
patch-at1.0
patch-at-heading-and-distance2.0
patch-here1.0
patch-left-and-ahead2.0	patch-right-and-ahead2.0
patch-set4.0
patch-size4.1
patches1.0
patches-own
pcolor
pen-down1.0	pd1.0	pen-erase3.0	pe3.0	pen-up1.0	pu1.0
pen-mode
pen-size
plabel
plabel-color
plot1.0
plot-name1.0
plot-pen-exists?4.0
plot-pen-down1.0	plot-pen-up1.0
plot-pen-reset1.0
plotxy1.0
plot-x-min1.0	plot-x-max1.0	plot-y-min1.0	plot-y-max1.0
position1.0
precision1.0
print1.0
pxcor	pycor

R
random1.0
random-float2.0
random-exponential1.2.1	random-gamma2.0	random-normal1.2.1	random-poisson1.2.1
random-pxcor3.1	random-pycor3.1
random-seed1.0
random-xcor3.1	random-ycor3.1
range6.0
read-from-string1.1
reduce1.3
remainder1.2.1
remove1.0
remove-duplicates1.0
remove-item2.0
repeat1.0
replace-item1.0
report1.0
reset-perspective3.0	rp3.0
reset-ticks4.0
reset-timer1.0
resize-world4.1
reverse1.0
rgb1.0
ride3.0
ride-me3.0
right1.0	rt1.0
round1.0
run1.3	runresult1.3

S
scale-color1.0
self1.3
;	(semicolon)
sentence1.0	se1.0
set1.0
set-current-directory2.0
set-current-plot1.0

406
406
406
406
407
407
407
407
407
407
407
408
408
408
408
408
408
409
409
409
409
409
410
410
410
410
410
411
411
411
411
411
411
412
412
412
412
412
412
412
413
413
413
413
413
413
414
414
414
414
414
415
415
415
415
415
416
416
416
416
416
417
417
417
417
417
418
418
418
418
418
419
419
419
419
419
419
419
420
420
420

set-current-plot-pen1.0
set-default-shape1.0
set-histogram-num-bars1.0
__set-line-thickness
set-patch-size4.1
set-plot-background-color6.0.2
set-plot-pen-color1.0
set-plot-pen-interval1.0
set-plot-pen-mode1.0
setup-plots5.0
set-plot-x-range1.0	set-plot-y-range1.0
setxy1.0
shade-of?1.0
shape
shapes2.1
show1.0
show-turtle1.0	st1.0
show-link4.0
shuffle2.0
sin1.0
size
sort1.0
sort-by1.3
sort-on5.0
sprout1.0
sqrt1.0
stamp1.0
stamp-erase3.1
standard-deviation1.0
startup
stop1.0
stop-inspecting5.2
stop-inspecting-dead-agents5.2
subject3.0
sublist2.1	substring1.0
subtract-headings2.1
sum1.0

T
tan1.0
thickness
tick4.0
tick-advance4.0
ticks4.0
tie4.0
tie-mode
timer1.0
to
to-report
towards1.0
towardsxy1.0
turtle1.0
turtle-set4.0
turtles1.0
turtles-at1.0
turtles-here1.0
turtles-on2.0
turtles-own
type1.0

U
undirected-link-breed
untie4.0
up-to-n-of6.1
update-plots5.0
uphill1.0	uphill41.0
user-directory3.1
user-file3.1
user-new-file3.1
user-input1.1
user-message1.1
user-one-of3.1
user-yes-or-no?2.0

V
variance1.0

W
wait1.0
watch3.0
watch-me3.0
while1.0
who
who-are-not6.3.1
with1.0

420
421
421
421
421
422
422
422
422
422
422
422
423
423
423
423

<breed>-with	link-with4.0
with-max2.1
with-min2.1
with-local-randomness4.0
without-interruption1.1
word1.0
world-width3.1	world-height3.1
wrap-color1.0
write2.0

X
xcor
xor1.0

Y
ycor

->
->6.0

What	is	NetLogo?

NetLogo	is	a	programmable	modeling	environment	for	simulating	natural	and	social	phenomena.	It	was	authored	by	Uri
Wilensky	in	1999	and	has	been	in	continuous	development	ever	since	at	the	Center	for	Connected	Learning	and
Computer-Based	Modeling.

NetLogo	is	particularly	well	suited	for	modeling	complex	systems	developing	over	time.	Modelers	can	give	instructions
to	hundreds	or	thousands	of	“agents”	all	operating	independently.	This	makes	it	possible	to	explore	the	connection
between	the	micro-level	behavior	of	individuals	and	the	macro-level	patterns	that	emerge	from	their	interaction.

NetLogo	lets	students	open	simulations	and	“play”	with	them,	exploring	their	behavior	under	various	conditions.	It	is	also
an	authoring	environment	which	enables	students,	teachers	and	curriculum	developers	to	create	their	own	models.
NetLogo	is	simple	enough	for	students	and	teachers,	yet	advanced	enough	to	serve	as	a	powerful	tool	for	researchers	in
many	fields.

NetLogo	has	extensive	documentation	and	tutorials.	It	also	comes	with	the	Models	Library,	a	large	collection	of	pre-
written	simulations	that	can	be	used	and	modified.	These	simulations	address	content	areas	in	the	natural	and	social
sciences	including	biology	and	medicine,	physics	and	chemistry,	mathematics	and	computer	science,	and	economics
and	social	psychology.	Several	model-based	inquiry	curricula	using	NetLogo	are	available	and	more	are	under
development.

NetLogo	is	the	next	generation	of	the	series	of	multi-agent	modeling	languages	including	StarLogo	and	StarLogoT.
NetLogo	runs	on	the	Java	Virtual	Machine,	so	it	works	on	all	major	platforms	(Mac,	Windows,	Linux,	et	al).	It	is	run	as	a
desktop	application.	Command	line	operation	is	also	supported.

Features

System:
Free,	open	source
Cross-platform:	runs	on	Mac,	Windows,	Linux,	et	al
International	character	set	support

Programming:
Fully	programmable
Approachable	syntax
Language	is	Logo	dialect	extended	to	support	agents
Mobile	agents	(turtles)	move	over	a	grid	of	stationary	agents	(patches)
Link	agents	connect	turtles	to	make	networks,	graphs,	and	aggregates
Large	vocabulary	of	built-in	language	primitives
Double	precision	floating	point	math
First-class	function	values	(aka	anonymous	procedures,	closures,	lambda)
Runs	are	reproducible	cross-platform

Environment:
Command	center	for	on-the-fly	interaction
Interface	builder	w/	buttons,	sliders,	switches,	choosers,	monitors,	text	boxes,	notes,	output	area
Info	tab	for	annotating	your	model	with	formatted	text	and	images
HubNet:	participatory	simulations	using	networked	devices
Agent	monitors	for	inspecting	and	controlling	agents
Export	and	import	functions	(export	data,	save	and	restore	state	of	model,	make	a	movie)
BehaviorSpace,	an	open	source	tool	used	to	collect	data	from	multiple	parallel	runs	of	a	model
System	Dynamics	Modeler
NetLogo	3D	for	modeling	3D	worlds
Headless	mode	allows	doing	batch	runs	from	the	command	line

Display	and	visualization:

https://github.com/NetLogo/NetLogo

Line,	bar,	and	scatter	plots
Speed	slider	lets	you	fast	forward	your	model	or	see	it	in	slow	motion
View	your	model	in	either	2D	or	3D
Scalable	and	rotatable	vector	shapes
Turtle	and	patch	labels

APIs:
controlling	API	allows	embedding	NetLogo	in	a	script	or	application
extensions	API	allows	adding	new	commands	and	reporters	to	the	NetLogo	language;	open	source	example
extensions	are	included

Copyright	and	License	Information
NetLogo	6.4.0	User	Manual

How	to	reference

If	you	use	or	refer	to	NetLogo	in	a	publication,	we	ask	that	you	cite	it.	The	correct	citation	is:	Wilensky,	U.	(1999).
NetLogo.	http://ccl.northwestern.edu/netlogo/.	Center	for	Connected	Learning	and	Computer-Based	Modeling,
Northwestern	University,	Evanston,	IL.

For	HubNet,	cite:	Wilensky,	U.	&	Stroup,	W.,	1999.	HubNet.	http://ccl.northwestern.edu/netlogo/hubnet.html.	Center	for
Connected	Learning	and	Computer-Based	Modeling,	Northwestern	University.	Evanston,	IL.

For	models	in	the	Models	Library,	the	correct	citation	is	included	in	the	"Credits	and	References"	section	of	each	model's
Info	tab.

Acknowledgments

The	CCL	gratefully	acknowledges	two	decades	of	support	for	our	NetLogo	work.	The	original	support	came	from	the
National	Science	Foundation	--	grant	numbers	REC-9814682	and	REC-0126227.	Further	support	has	come	from	REC-
0003285,	REC-0115699,	DRL-0196044,	CCF-ITR-0326542,	DRL-REC/ROLE-0440113,	SBE-0624318,	EEC-0648316,
IIS-0713619,	DRL-RED-9552950,	DRL-REC-9632612,	and	DRL-DRK12-1020101,	IIS-1441552,	CNS-1441016,	CNS-
1441041,	CNS-1138461,	IIS-1438813,	IIS-1147621,	DRL-REC-1343873,	IIS-1438813,	IIS-1441552,	CNS-1441041,	IIS-
1546120,	DRL-1546122,	DRL-1614745	and	DRL-1640201.	Additional	support	came	from	the	Spencer	Foundation,
Texas	Instruments,	the	Brady	Fund,	the	Murphy	fund,	and	the	Northwestern	Institute	on	Complex	Systems.

For	development	of	the	View	2.5D	NetLogo	Extension,	we	acknowledge	financial	support	from	Joshua	M.	Epstein's	NIH
Director's	Pioneer	Award	(DP1).

NetLogo	license

Copyright	1999-2023	by	Uri	Wilensky.

This	program	is	free	software;	you	can	redistribute	it	and/or	modify	it	under	the	terms	of	the	GNU	General	Public	License
as	published	by	the	Free	Software	Foundation;	either	version	2	of	the	License,	or	(at	your	option)	any	later	version.

This	program	is	distributed	in	the	hope	that	it	will	be	useful,	but	WITHOUT	ANY	WARRANTY;	without	even	the	implied
warranty	of	MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	See	the	GNU	General	Public	License
for	more	details.

You	should	have	received	a	copy	of	the	GNU	General	Public	License	along	with	this	program;	if	not,	write	to	the	Free
Software	Foundation,	Inc.,	51	Franklin	Street,	Fifth	Floor,	Boston,	MA	02110-1301,	USA.

Commercial	licenses

Commercial	licenses	are	also	available.	To	inquire	about	commercial	licenses,	please	contact	Uri	Wilensky	at	netlogo-
commercial-admin@ccl.northwestern.edu.

NetLogo	User	Manual	license

Copyright	1999-2023	by	Uri	Wilensky.

	
The	NetLogo	User	Manual	by	Uri	Wilensky	is	licensed	under	a	Creative	Commons	Attribution-ShareAlike	3.0	Unported
License.

Open	source

The	NetLogo	source	code	is	hosted	at	https://github.com/NetLogo/NetLogo.	Contributions	from	interested	users	are
welcome.

Third	party	licenses

Scala

Much	of	NetLogo	is	written	in	the	Scala	language	and	uses	the	Scala	standard	library.	The	license	for	Scala	is	as

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/hubnet.html
mailto:netlogo-commercial-admin@ccl.northwestern.edu
https://creativecommons.org/licenses/by-sa/3.0/
http://ccl.northwestern.edu/netlogo/
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/NetLogo/NetLogo

follows:

Copyright	(c)	2002-2020	EPFL

Copyright	(c)	2011-2020	Lightbend,	Inc.

Scala	includes	software	developed	at	LAMP/EPFL	(https://lamp.epfl.ch/)	and	Lightbend,	Inc.
(https://www.lightbend.com/).

Licensed	under	the	Apache	License,	Version	2.0	(the	"License").	Unless	required	by	applicable	law	or
agreed	to	in	writing,	software	distributed	under	the	License	is	distributed	on	an	"AS	IS"	BASIS,
WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or	implied.	See	the	License	for	the
specific	language	governing	permissions	and	limitations	under	the	License.

MersenneTwisterFast

For	random	number	generation,	NetLogo	uses	the	MersenneTwisterFast	class	by	Sean	Luke.	The	copyright	for	that
code	is	as	follows:

Copyright	(c)	2003	by	Sean	Luke.	
Portions	copyright	(c)	1993	by	Michael	Lecuyer.	
All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,	are	permitted
provided	that	the	following	conditions	are	met:

Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list	of	conditions
and	the	following	disclaimer.
Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this	list	of	conditions
and	the	following	disclaimer	in	the	documentation	and/or	other	materials	provided	with	the
distribution.
Neither	the	name	of	the	copyright	owners,	their	employers,	nor	the	names	of	its	contributors	may
be	used	to	endorse	or	promote	products	derived	from	this	software	without	specific	prior	written
permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNERS	OR	CONTRIBUTORS	BE	LIABLE
FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT
LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS
INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR
TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF
ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Colt

Parts	of	NetLogo	(specifically,	the	random-gamma	primitive)	are	based	on	code	from	the	Colt	library
(http://acs.lbl.gov/~hoschek/colt/).	The	copyright	for	that	code	is	as	follows:

Copyright	1999	CERN	-	European	Organization	for	Nuclear	Research.	Permission	to	use,	copy,	modify,
distribute	and	sell	this	software	and	its	documentation	for	any	purpose	is	hereby	granted	without	fee,
provided	that	the	above	copyright	notice	appear	in	all	copies	and	that	both	that	copyright	notice	and
this	permission	notice	appear	in	supporting	documentation.	CERN	makes	no	representations	about	the
suitability	of	this	software	for	any	purpose.	It	is	provided	"as	is"	without	expressed	or	implied
warranty.

Config

NetLogo	uses	the	Typesafe	"Config"	library.	Copyright	(C)	2011-2012	Typesafe	Inc.	http://typesafe.com	The	Config
library	is	licensed	under	the	Apache	2.0	License.	You	may	obtain	a	copy	of	the	license	at
http://www.apache.org/licenses/LICENSE-2.0.

Apache	Commons	Codec	(TM)

http://acs.lbl.gov/~hoschek/colt/
http://typesafe.com
http://www.apache.org/licenses/LICENSE-2.0

The	NetLogo	compiler	uses	a	digest	method	from	the	Apache	Commons	Codec	(TM)	library.	Apache	Commons	Codec
(TM)	is	copyright	and	trademark	2002-2014	the	Apache	Software	Foundation.	It	is	licensed	under	the	Apache	2.0
License.	You	may	obtain	a	copy	of	the	license	at	http://www.apache.org/licenses/LICENSE-2.0.

Flexmark

NetLogo	uses	the	Flexmark	library	(and	extensions)	for	the	info	tab.	The	copyright	and	license	are	as	follows:

Copyright	(c)	2015-2016,	Atlassian	Pty	Ltd	All	rights	reserved.	Copyright	(c)	2016,	Vladimir
Schneider,	All	rights	reserved.	Redistribution	and	use	in	source	and	binary	forms,	with	or	without
modification,	are	permitted	provided	that	the	following	conditions	are	met:	*	Redistributions	of
source	code	must	retain	the	above	copyright	notice,	this	list	of	conditions	and	the	following
disclaimer.	*	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this	list	of
conditions	and	the	following	disclaimer	in	the	documentation	and/or	other	materials	provided	with	the
distribution.	THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS	"AS	IS"	AND	ANY
EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE	COPYRIGHT
HOLDER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;
LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,
WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY
OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

JHotDraw

For	the	system	dynamics	modeler,	NetLogo	uses	the	JHotDraw	library,	which	is	Copyright	(c)	1996,	1997	by	IFA
Informatik	and	Erich	Gamma.	The	library	is	covered	by	the	GNU	LGPL	(Lesser	General	Public	License).	The	text	of	that
license	is	included	in	the	"docs"	folder	which	accompanies	the	NetLogo	download,	and	is	also	available	from
http://www.gnu.org/copyleft/lesser.html	.

JOGL

For	3D	graphics	rendering,	NetLogo	uses	JOGL,	a	Java	API	for	OpenGL,	and	Gluegen,	an	automatic	code	generation
tool.	For	more	information	about	JOGL	and	Gluegen,	see	jogamp.org/.	Both	libraries	are	distributed	under	the	BSD
license:

Copyright	2010	JogAmp	Community.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,	are	permitted
provided	that	the	following	conditions	are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list	of	conditions	and
the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this	list	of	conditions
and	the	following	disclaimer	in	the	documentation	and/or	other	materials	provided	with	the
distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	JogAmp	Community	``AS	IS''	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,
INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR
PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	JogAmp	Community	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,
INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)
HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT
(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

The	views	and	conclusions	contained	in	the	software	and	documentation	are	those	of	the	authors	and
should	not	be	interpreted	as	representing	official	policies,	either	expressed	or	implied,	of	JogAmp
Community.

You	can	address	the	JogAmp	Community	via:	Web	http://jogamp.org/	Forum/Mailinglist
http://forum.jogamp.org	Chatrooms	IRC	irc.freenode.net	#jogamp	Jabber	conference.jabber.org	room:
jogamp	(deprecated!)	Repository	http://jogamp.org/git/	Email	mediastream	_at_	jogamp	_dot_	org

Matrix3D

For	3D	matrix	operations,	NetLogo	uses	the	Matrix3D	class.	It	is	distributed	under	the	following	license:

http://www.apache.org/licenses/LICENSE-2.0
http://www.gnu.org/copyleft/lesser.html
http://jogamp.org/

Copyright	(c)	1994-1996	Sun	Microsystems,	Inc.	All	Rights	Reserved.

Sun	grants	you	("Licensee")	a	non-exclusive,	royalty	free,	license	to	use,	modify	and	redistribute
this	software	in	source	and	binary	code	form,	provided	that	i)	this	copyright	notice	and	license
appear	on	all	copies	of	the	software;	and	ii)	Licensee	does	not	utilize	the	software	in	a	manner	which
is	disparaging	to	Sun.

This	software	is	provided	"AS	IS,"	without	a	warranty	of	any	kind.	ALL	EXPRESS	OR	IMPLIED	CONDITIONS,
REPRESENTATIONS	AND	WARRANTIES,	INCLUDING	ANY	IMPLIED	WARRANTY	OF	MERCHANTABILITY,	FITNESS	FOR	A
PARTICULAR	PURPOSE	OR	NON-INFRINGEMENT,	ARE	HEREBY	EXCLUDED.	SUN	AND	ITS	LICENSORS	SHALL	NOT	BE	LIABLE
FOR	ANY	DAMAGES	SUFFERED	BY	LICENSEE	AS	A	RESULT	OF	USING,	MODIFYING	OR	DISTRIBUTING	THE	SOFTWARE	OR
ITS	DERIVATIVES.	IN	NO	EVENT	WILL	SUN	OR	ITS	LICENSORS	BE	LIABLE	FOR	ANY	LOST	REVENUE,	PROFIT	OR	DATA,
OR	FOR	DIRECT,	INDIRECT,	SPECIAL,	CONSEQUENTIAL,	INCIDENTAL	OR	PUNITIVE	DAMAGES,	HOWEVER	CAUSED	AND
REGARDLESS	OF	THE	THEORY	OF	LIABILITY,	ARISING	OUT	OF	THE	USE	OF	OR	INABILITY	TO	USE	SOFTWARE,	EVEN	IF
SUN	HAS	BEEN	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGES.

This	software	is	not	designed	or	intended	for	use	in	on-line	control	of	aircraft,	air	traffic,	aircraft
navigation	or	aircraft	communications;	or	in	the	design,	construction,	operation	or	maintenance	of	any
nuclear	facility.	Licensee	represents	and	warrants	that	it	will	not	use	or	redistribute	the	Software
for	such	purposes.

ASM

For	Java	bytecode	generation,	NetLogo	uses	the	ASM	library.	It	is	distributed	under	the	following	license:

Copyright	(c)	2000-2011	INRIA,	France	Telecom.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,	are	permitted
provided	that	the	following	conditions	are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list	of	conditions	and
the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this	list	of	conditions
and	the	following	disclaimer	in	the	documentation	and/or	other	materials	provided	with	the
distribution.

3.	Neither	the	name	of	the	copyright	holders	nor	the	names	of	its	contributors	may	be	used	to	endorse
or	promote	products	derived	from	this	software	without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNER	OR	CONTRIBUTORS	BE	LIABLE	FOR
ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT
LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS
INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR
TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF
ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

PicoContainer

For	dependency	injection,	NetLogo	uses	the	PicoContainer	library.	The	copyright	and	license	for	the	library	are	as
follows:

Copyright	(c)	2004-2011,	PicoContainer	Organization	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,	are	permitted
provided	that	the	following	conditions	are	met:

Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list	of	conditions
and	the	following	disclaimer.
Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this	list	of	conditions
and	the	following	disclaimer	in	the	documentation	and/or	other	materials	provided	with	the
distribution.
Neither	the	name	of	the	PicoContainer	Organization	nor	the	names	of	its	contributors	may	be	used
to	endorse	or	promote	products	derived	from	this	software	without	specific	prior	written
permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNER	OR	CONTRIBUTORS	BE	LIABLE	FOR
ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT
LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS

INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR
TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF
ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Parboiled

For	reading	models,	NetLogo	uses	the	Parboiled	library.	The	copyright	and	license	for	Parboiled	are	as	follows:

This	software	is	licensed	under	the	Apache	2	license,	quoted	below.	Copyright	©	2009-2013	Mathias
Doenitz	http://parboiled2.org	Copyright	©	2013	Alexander	Myltsev	Licensed	under	the	Apache	License,
Version	2.0	(the	"License");	you	may	not	use	this	file	except	in	compliance	with	the	License.	You	may
obtain	a	copy	of	the	License	at	[http://www.apache.org/licenses/LICENSE-2.0]	Unless	required	by
applicable	law	or	agreed	to	in	writing,	software	distributed	under	the	License	is	distributed	on	an	"AS
IS"	BASIS,	WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or	implied.	See	the	License
for	the	specific	language	governing	permissions	and	limitations	under	the	License.

RSyntaxTextArea

The	NetLogo	editor	uses	the	RSyntaxTextArea	library.	The	copyright	and	license	are	as	follows:

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,	are	permitted
provided	that	the	following	conditions	are	met:	*	Redistributions	of	source	code	must	retain	the	above
copyright	notice,	this	list	of	conditions	and	the	following	disclaimer.	*	Redistributions	in	binary
form	must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following	disclaimer
in	the	documentation	and/or	other	materials	provided	with	the	distribution.	*	Neither	the	name	of	the
author	nor	the	names	of	its	contributors	may	be	used	to	endorse	or	promote	products	derived	from	this
software	without	specific	prior	written	permission.	THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS
AND	CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE
IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT
SHALL	©RIGHT	HOLDER&	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;
LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF
LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING
IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

JCodec

The	NetLogo	vid	extension	makes	use	of	the	JCodec	library.	The	copyright	and	license	for	JCodec	are	as	follows:

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,	are	permitted
provided	that	the	following	conditions	are	met:	Redistributions	of	source	code	must	retain	the	above
copyright	notice,	this	list	of	conditions	and	the	following	disclaimer.	Redistributions	in	binary	form
must	reproduce	the	above	copyright	notice,	this	list	of	conditions	and	the	following	disclaimer	in	the
documentation	and/or	other	materials	provided	with	the	distribution.	THIS	SOFTWARE	IS	PROVIDED	BY	THE
COPYRIGHT	HOLDERS	AND	CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT
LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE
DISCLAIMED.	IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,
INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT
OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING
NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	OF	SUCH	DAMAGE.

Java-Objective-C	Bridge

NetLogo	on	Mac	OS	X	makes	use	of	the	Java-Objective-C	Bridge	library.	This	library	was	created	by	Steve	Hannah	and
is	distributed	under	the	Apache	2.0	license,	available	at	https://www.apache.org/licenses/LICENSE-2.0.

Webcam-capture

The	NetLogo	vid	extension	makes	use	of	the	Webcam-capture	library.	The	copyright	and	license	for	Webcam-capture
are	as	follows:

http://parboiled2.org
https://www.apache.org/licenses/LICENSE-2.0

The	MIT	License	(MIT)	Copyright	(c)	2012	-	2015	Bartosz	Firyn	and	Contributors	Permission	is	hereby
granted,	free	of	charge,	to	any	person	obtaining	a	copy	of	this	software	and	associated	documentation
files	(the	"Software"),	to	deal	in	the	Software	without	restriction,	including	without	limitation	the
rights	to	use,	copy,	modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the
Software,	and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to	the	following
conditions:	The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all	copies	or
substantial	portions	of	the	Software.	THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,
EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A
PARTICULAR	PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE
FOR	ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,	ARISING
FROM,	OUT	OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE	SOFTWARE.

Guava

The	NetLogo	ls	extension	makes	use	of	the	Guava	library.	Guava	is	released	under	the	Apache	License	2.0
(http://www.apache.org/licenses/LICENSE-2.0)

Gephi

The	nw	extension	makes	use	of	the	Gephi	library.	Gephi	is	licensed	under	the	following	terms:

Gephi	Dual	License	Header	and	License	Notice

The	Gephi	Consortium	elects	to	use	only	the	GNU	General	Public	License	version	3	(GPL)	for	any
software	where	a	choice	of	GPL	license	versions	are	made	available	with	the	language	indicating	that
GPLv3	or	any	later	version	may	be	used,	or	where	a	choice	of	which	version	of	the	GPL	is	applied	is
unspecified.

For	more	information	on	the	license	please	see:	the	Gephi	License	FAQs.

License	headers	are	available	on	http://www.opensource.org/licenses/CDDL-1.0	and
http://www.gnu.org/licenses/gpl.html.

R	Extension

The	NetLogo	R	Extension	is	licensed	under	the	following	terms:

The	R	extension	is	Copyright	(C)	2009-2016	Jan	C.	Thiele	and	Copyright	(C)	2016	Uri	Wilensky	/	The
Center	for	Connected	Learning.	NetLogo-R-Extension	is	free	software;	you	can	redistribute	it	and/or
modify	it	under	the	terms	of	the	GNU	General	Public	License	as	published	by	the	Free	Software
Foundation;	either	version	2	of	the	License,	or	(at	your	option)	any	later	version.	This	program	is
distributed	in	the	hope	that	it	will	be	useful,	but	WITHOUT	ANY	WARRANTY;	without	even	the	implied
warranty	of	MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	See	the	GNU	General	Public	License	for
more	details.	You	should	have	received	a	copy	of	the	GNU	General	Public	License	along	with	NetLogo-R-
Extension	(located	in	GPL.txt).	If	not,	see	http://www.gnu.org/licenses.

JNA

The	NetLogo	R	Extension	makes	use	of	the	JNA	library.	The	JNA	library	is	licensed	under	the	following	terms:

This	copy	of	JNA	is	licensed	under	the	Apache	(Software)	License,	version	2.0	("the	License").	See	the
License	for	details	about	distribution	rights,	and	the	specific	rights	regarding	derivate	works.	You
may	obtain	a	copy	of	the	License	at:	http://www.apache.org/licenses/

http://www.apache.org/licenses/LICENSE-2.0
http://www.gnu.org/licenses/

What's	new?
NetLogo	6.4.0	User	Manual

For	help	running	models	made	in	old	versions,	see	the	Transition	Guide.

Version	6.4.0	(November	2023)

A	major	change	in	this	release	the	introduction	of	new	features	in	BehaviorSpace

BehaviorSpace	New	Features

A	new	syntax	that	allows	parameter	combinations	to	be	run	separately,	rather	than	being	expanded
combinatorically.
Measurements	can	be	conditionally	recorded	when	a	boolean	reporter	is	true.
Commands	can	be	run	before	the	experiment	begins.
Commands	can	be	run	after	the	experiment	ends.
The	mean	and	standard	deviation	of	data	from	repetitions	can	be	output	to	a	file.
List	data	can	be	output	to	a	file	with	one	list	element	per	cell.
Experiments	can	now	be	paused	and	resumed.
Experiments	can	now	be	exported	to	an	XML	file	that	can	be	used	when	running	headlessly.
Experiments	in	an	XML	file	can	now	be	imported	into	a	model.
There	is	a	reduction	in	memory	usage	for	experiments	containing	plots	when	Update	plots	and	monitors	is
unchecked	in	the	Run	options	dialog.

Language	Changes

The	let	and	set	primitives	now	support	taking	a	list	of	variable	names	as	the	first	argument	and	will	assign	values	to
those	variables	from	a	list	of	values	given	as	the	second	argument.	This	is	useful	in	many	situations,	but	especially	when
you	want	to	have	a	reporter	procedure	calculate	and	report	multiple	values	to	be	used	elsewhere.

A	new	reporter	primitive	has	been	added,	who-are-not.	It	takes	an	agentset	as	a	lefthand	side	argument	and	an	agent	or
another	agentset	as	a	righthand	side	argument	and	reports	all	agents	in	the	former	who	are	not	in	the	latter.	For
example:	let	strangers	turtles	who-are-not	link-neighbors.

Bug	Fixes	and	Changes

The	save	dialog	will	no	longer	appear	when	clicking	the	close	button	on	an	already-saved	includes	file	code	tab.
When	an	includes	code	file	is	edited,	compiled,	and	closed	without	saving,	the	model	will	correctly	re-compile
without	the	unsaved	change.
When	extensions	are	updated	through	the	extensions	manager,	existing	files	and	libraries	for	them	will	be
removed	so	conflicts	between	versions	cannot	occur.
An	error	will	no	longer	occur	when	opening	a	NetLogo	model	stored	in	the	user’s	home	directory	due	to	the
extension	locating	code	trying	to	search	restricted	folders.
Plotting	now	uses	its	own	RNG	that	is	cloned	from	the	main	RNG	and	updated	when	the	main	RNG	changes.	This
means	if	plotting	is	enabled,	it	will	be	reproducible	from	the	main	RNG,	but	if	plotting	is	disabled	the	behavior	of	the
model	will	not	change	when	using	the	same	main	RNG	seed.
A	failed	compile	of	a	string	as	a	command	with	run	could	cause	the	same	string	to	fail	to	run	as	a	reporter	using
runresult	later.
Patch	colors	can	now	be	set	to	RGBA	values	with	an	alpha	channel,	the	alpha	channel	is	just	ignored	as	there	is
nothing	“behind”	patches.	Previously	this	would	cause	an	error	to	occur.
Users	can	add	symbolic	links	to	their	models	library	folders	to	point	to	other	directories	to	have	those	models
available	for	loading	in	the	app.	This	had	worked	in	a	prior	version	of	NetLogo,	but	was	accidentally	disabled	with
other	bugfixes.
The	link-neighbor?	boolean	reporter	has	had	some	small	optimizations	done	to	improve	performance.
Agent	labels	now	support	linebreaks.
Errors	that	happen	when	NetLogo	is	starting	but	before	the	full	interface	appears	should	now	be	caught	and
displayed	in	a	simple	dialog.	Previously	to	see	such	errors	NetLogo	would	have	to	be	started	from	a	command	line
console.
The	default	maximum	memory	usage	for	NetLogo	is	now	set	to	50%	of	system	memory	instead	of	a	static	limit	of	1
gigabyte.	For	systems	with	greater	than	2	gigabytes	of	memory	this	should	give	improved	performance	and	reduce
the	chance	of	getting	out	of	memory	errors	during	model	runs.
When	the	extension	manager	is	disabled	via	the	Java	environment	property,	no	data	will	be	fetched	over	the
network.	Previously	the	current	extension	listing	would	be	fetched	even	though	using	the	list	in	the	manager	was
disabled.
The	<breed>-at	primitive	now	works	properly	in	3D.	Previously	it	would	function	as	the	2D	version,	only	getting
agents	with	z-coordinate	of	0.

BehaviorSpace	Bug	fixes	and	changes

3D	BehaviorSpace	runs	are	now	allowed.
BehaviorSpace	no	longer	exits	when	there	is	a	plot	compilation	error.
Error	messages	for	BehaviorSpace	variable	errors	have	been	improved.
BehaviorSpace	output	files	no	longer	contain	trailing	spaces.
Headless	console	mode	now	has	a	--help	flag.
The	Experiment	dialog	makes	use	of	tooltips	and	has	a	cleaner	look.
Changes	will	not	be	saved	if	the	close/X	button	of	the	Experiment	dialog	is	hit.
The	number	of	threads	in	the	Run	options	dialog	is	now	saved.
Experiments	will	not	run	if	the	close/X	button	of	the	Run	options	dialog	is	hit.

Extension	Updates

The	Bitmap	extension	now	supports	reading	images	from	base64-encoded	strings	and	writing	images	out	to
base64-encoded	strings.
The	GIS	extension	has	a	couple	of	bug	fixes:	1)	its	string-based	search	of	features	could	include	too	many	items,
and	2)	the	code	for	creating	turtles	inside	a	polygon	was	executed	for	existing	turtles	outside	that	polygon.

Documentation	Updates

The	logical	operator	precedence	for	and	and	or	is	clarified	in	the	docs	as	not	exactly	matching	how	other
programming	languages	function.
Clarify	that	mouse-inside?	only	works	when	the	mouse	is	in	the	world,	not	only	in	the	view,	which	can	happen	with
unwrapped	worlds	and	use	of	the	follow	primitive.
Removed	the	->	variable,	a	leftover	from	the	switch	from	the	old	anonymous	task	syntax.
Clarify	that	an	extension	must	be	installed	for	the	extensions	keyword	to	take	effect.

Models	Library	Changes

New	Sample	Models:

Food	Reward	Learning
Current	in	a	Semiconductor
Radical	Polymerization	with	Chains
Food	Reward	Learning
Baldwin	Effect

Sample	Model	Changes

Fixed	a	minor	issue	in	the	Monte	Carlo	Lennard-Jones	model.
Renamed	Prisoner’s	Dilemma	models	from	“PD”	to	“Prisoner’s	Dilemma”	and	clarified	that	“confess”	means
“defect”	in	the	info	tab.
Polymer	dynamics	model	info	tab	was	edited	to	indicate	that	this	is	not	strictly	speaking	a	cellular	automata.
Wolf	Sheep	Predation	was	updated	to	include	BehaviorSpace	experiments	that	use	the	new	BehaviorSpace
features.
Anisogomy	model	was	updated	and	improved.

Version	6.3.0	(September	2022)

Bug	Fixes	and	Changes

The	major	change	in	this	release	is	the	upgrade	of	the	bundled	Java	from	version	8	to	17.	Java	17	is	the	current
long-term-support	release	of	the	Java	runtime.
The	models	library	will	correctly	display	when	NetLogo	is	set	to	a	language	other	than	English.
The	log4j	library	has	been	removed	from	NetLogo.	Logging	is	now	configured	from	the	NetLogo	preferences
dialog.	The	output	is	in	JSON	text	file	format.	See	the	Logging	docs	for	more	information.
BehaviorSpace	experiments	can	now	also	be	run	from	a	terminal	or	command	console	using	the	NetLogo_Console
app	with	NetLogo’s	bundled	Java	by	using	the	--headless	flag.	See	the	BehaviorSpace	documentation	for	more
information	and	examples.	This	avoids	the	need	to	install	and	configure	a	separate	Java	runtime	to	use	the
netlogo-headless.sh	script,	which	remains	bundled	for	those	who	require	it.
BehaviorSpace	output	files	are	now	chosen	directly	during	run	setup	instead	of	separate	prompts	at	the	run	start.
This	simplifies	the	setup	process	and	resolves	a	bug	where	the	runs	would	not	occur	on	macOS.
The	System	Dynamics	Modeler	UI	has	some	small	improvements.
Fixed	a	bug	where	slider	widgets	would	allow	initial	values	outside	of	their	range	when	changing	the	limits.

Better	handle	asymptotic	values	for	tan	with	a	proper	error	message.
NetLogo	will	now	correctly	handle	running	map	or	foreach	when	no	lists	are	given.
When	an	anonymous	task	that	uses	let	variables	is	displayed	as	a	string	it	will	now	include	those	variable	names.
Reporters	used	in	concise	task	syntax	no	longer	give	the	wrong	result	when	used	with	fewer	arguments	than	their
default.
The	models	library	location	will	be	correctly	set	when	using	GUI	scripts.
Behaviorsearch	now	sets	a	flag	to	alert	extensions	that	they	are	being	run	without	a	UI	so	that	extension	code	can
adjust	appropriately.

Extension	Updates

GoGo:	Improve	newer	GoGo	board	compatibility	and	improve	the	stability	of	the	extension.
LevelSpace:	Eliminate	crashes	when	the	controlling	API	is	used	to	run	NetLogo	without	a	UI.
Profiler:	The	profiler:data	results	are	now	given	in	milliseconds	instead	of	nanoseconds,	matching	the	other
primitives	in	the	extension.
Python:	Improvements	in	how	the	extension	searches	for	the	Python	binaries	when	they	aren’t	specified	via	the
configuration	menu.
Vid:	Update	backing	libraries	to	try	to	improve	stability	and	usability	on	macOS	and	Windows.

Documentation	Updates

Update	the	system	requirements	to	include	Windows	11.
Fixed	a	bad	link	to	the	extension	API	version	5	to	6	transition	guide.
Added	a	FAQ	entry	on	how	to	save	random	seeds	from	runs.

Models	Library	Changes

New	Sample	Models:

Slime	Mold	Network
Virus	Using	Discrete	Event	Simulator	(cross-listed	in	code	examples	for	time	extension)
Distribution	Center	Discrete	Event	Simulator	(cross-listed	in	code	examples	for	time	extension)
CA	1D-Squaring
Hydrogen	Gas	Production
Molecular	Dynamics	Lennard-Jones

New	Curricular	Models:

CT-STEM:
Habitat	Preference

New	Code	Examples:

time:	Logotimes	Example
time:	Discrete	Event	Whack-a-Mole

Sample	Model	Changes

Taxi	Cabs:	Fixed	Dongping	Zhang’s	name	in	the	credits.
Turbulence:	Cross-listed	under	CS/CA.
Tree	Simple:	Changed	init-x	slider	min/max	to	-100/100.	Before	the	range	was	-125/125,	which	caused	an
error.
Traffic	Basic:	Changed	speed-limit	and	speed-min	from	agent	variables	to	be	globals.
Urban	Suite	-	Cells:	Renamed	the	go	*	80 	button	to	go	*	40 ,	reflecting	its	actual	effect.
CA	1D	Rule	30	-	Improved	the	info	tab	to	explain	how	Rule	30	has	been	used	as	random	number	generator.

Curricular	Models	Changes:

PNoM	4	Virtual	Syringe	Force	Graph:	fixed	a	bug	that	produced	an	error	message.
Kidney	Reabsorption:	Some	improvements	to	the	info	tab.

Newly	Verified	Models

The	suite	of	prisoner’s	dilemma	models	have	been	in	the	models	library	for	a	long	time	but	were	previously

“unverified.”	They	have	been	reviewed/verified	and	moved	into	the	main	Social	Science	folder.

Version	6.2.2	(December	2021)

Fixes	and	Changes

When	Agent	Inspector	window	opens	put	focus	in	Command	Line.
When	enter	macOS	full	screen	mode	move	inspector	windows	to	foreground.
Properly	export	models	to	HTML	with	the	Save	As	NetLogo	Web…	option.
Fixed	a	bug	where	preview	images	would	not	generate	correctly	for	models	that	imported	background	images	on
setup.	This	affected	a	couple	of	library	models:	Robotic	Factory	and	Bug	Hunt	Camouflage.
Added	an	explanation	about	Extension	Sample	Models	to	the	models	library	info	screen,	and	now	those	models
will	be	listed	as	unverified.
Fixed	a	small	typo	in	the	FAQ	for	the	path	to	the	NetLogo.cfg	file	on	macOS	systems.
Add	a	profiler:data	primitive	to	the	Profiler	extension	that	returns	all	the	profiler	data	as	a	list	of	lists	suitable	for
passing	to	the	CSV	extension	for	output	to	a	file.
Fixed	bug	preventing	typing	into	Command	Line	of	first	Agent	Inspector	window	opened.
Fixed	bug	causing	Agent	Inspector	windows	to	appear	behind	NetLogo	window	when	there	is	an	overlap.
Improved	documentation	of	Fullscreen	mode	for	the	3D	view.
Restored	hotkeys	for	Comment	/	Uncomment,	Shift	Left,	Shift	Right,	Jump	To	Declaration,	and	Show	Usage	for
separate	code	tab.
Added	documentation	for	Jump	To	Declaration	and	Show	Usage.
Clarified	what	the	BehaviorSpace	Table	and	Spreadsheet	output	format	options	do.

Version	6.2.1	(October	2021)

Features	and	Changes

Agent	monitor	inspection	windows	can	now	move	across	monitors
Improved	error	message	on	BehaviorSpace	file	access	failures
Use	a	common	error	message	for	turtle-set,	patch-set,	and	link-set
Use	same	font	for	input	widgets	as	choosers/sliders/buttons
Select	the	search	text	on	models	library	dialog	open	for	easy	replacement	on	a	new	search
Automatically	add	the	png	extension	when	exporting	the	world	view
Added	a	preference	to	have	NetLogo	automatically	load	the	last	used	model	on	startup
The	“mammoth”	shape	is	available	in	the	shapes	library	for	easy	import	into	models
Substantial	GIS	extension	improvements	and	new	primitives,	see	the	GIS	extension	changelog	for	more
information
Substantial	Palette	extension	improvements	and	new	primitives,	see	the	Palette	extension	docs	for	more
information

Documentation	Updates

Add	a	note	about	transparent	colors	to	the	color	dictionary	entry
Documentation	for	inspect	and	stop-inspecting	now	includes	links
Make	sure	https	links	in	standalone	dictionary	entries	work	correctly
Make	the	BehaviorSpace	command-line	examples	use	real	models	from	the	library	with	experiments	that	can	be
run	without	modification
Link	to	the	new	Beginner’s	Interactive	NetLogo	Dictionary	site	from	the	help	menu	(BIND)

Bugfixes

Shape	changes	in	3D	mode	will	take	effect	without	a	restart
Runtime	exceptions	with	wrong	argument	types	properly	generate	stack	traces
When	sort-on	receives	input	values	that	are	not	all	numbers,	all	strings,	or	all	agents	of	the	same	type,	a	user-
friendly	error	message	is	generated
Breeded	links	are	properly	checked	for	equality
exp	now	errors	when	it	generates	an	invalid,	out-of-range	number	result
A	proper	“file	not	found”	error	will	be	given	when	a	model	in	the	recent	files	list	was	deleted	or	moved	and	cannot
be	located
Bundled	extensions	updated	through	the	extensions	manager	can	have	those	updates	uninstalled	through	it,	too,
just	like	unbundled	extensions
Properly	add	the	nlogo	file	extension	when	saving	a	model	with	a	filename	that	contains	dots
When	a	runtime	error	occurs,	NetLogo	will	show	the	location	in	the	code	tab,	as	it	did	in	prior	versions
Detached	code	tab	stays	in	front	when	model	is	saved
Mathematica-Link:	Clear	up	some	issues	with	the	tutorial	being	out-of-date
Extension:	View2.5d	shape	change	bugfixes

https://github.com/NetLogo/GIS-Extension/blob/hexy/CHANGELOG.md#130
https://github.com/NetLogo/Palette-Extension/blob/hexy/README.md

Extension:	LevelSpace	bugfixes	for	running	GUI-mode	models	headlessly

Models	Library	Changes

All	external	URLs	in	models’	INFO	tabs	were	validated	resulting	in	URL	updates	to	15	models.

New	Sample	Models:

Limited	Order	Book
River	Meanders
Robotic	Factory
Taxi	Cab

New	Curricula	Models:

CT-STEM:
Calorimetry

New	Code	Examples:

palette:	Color	Bubbles
palette:	Color	Painting
palette:	Color	Reveal

Sample	Models

Brian’s	Brain:	Rewritten	erasing	function	for	NLW	compatibility.
Crystallization	Basic:	Fixed	issue	where	world	size	depended	on	height	rather	than	width.
Geometron	Top-Down:	Promoted	from	unverified.	Updated	INTERFACE,	INFO,	and	CODE	tabs.
Kaleidoscope:	Promoted	from	unverified.	Updated	INTERFACE,	INFO,	and	CODE	tabs.
Lattice	Gas	Automaton:	Mouse	movement	moved	to	a	forever	button	for	NLW	compatibility.
Life:	Rewritten	erasing	function	for	NLW	compatibility.
Life	Turtle-Based:	Rewritten	erasing	function	for	NLW	compatibility
N-Bodies:	Rewritten	mouse	handling	routine	for	NLW	compatibility.
Planarity:	Updated	for	NLW	full	compatibility
Small	Worlds:	Fixed	bug	with	clustering	coefficient	being	undefined	for	single-link.
Sunflower	Biomorphs:	Rewritten	mouse	handling	routine	for	NLW	compatibility
Surface	Walking	2D:	Mouse	movement	moved	to	forever	button	for	NLW	compatibility.
PANDA	BEAR	Solo:	Mouse	movement	rewritten	for	NLW	compatibility.

Code	Examples

gis	–	GIS	General	Examples:	Rewritten	to	take	advantage	of	new	primitives	released	in	gis	v1.3.0.
palette	–	Palette	Example:	Rewritten	to	take	advantage	of	new	primitives	release	in	palette	v2.0.0.

Version	6.2.0	(December	2020)

Features

A	premier	feature	for	this	release	is	a	pop-out	code	tab,	that	allows	you	to	detach	the	code	tab	from	the	main	application
and	into	a	separate	window	in	order	to	view	the	interface	and	the	model	code	side-by-side.

The	models	library	now	shows	code	examples	that	come	with	extensions	installed	through	the	extensions
manager.
We	now	bundle	the	Liberica	OpenJDK	Java	runtime	instead	of	the	Oracle	Java	runtime,	which	has	a	less
restrictive	license.
The	mean	primitive	will	now	work	on	lists	that	contain	non-numbers	as	other	number	processing	primitives	do.
The	extensions	manager	can	be	disabled	with	a	command-line	switch	to	avoid	network	traffic	or	to	lock	down
installed	extensions.

Bugfixes

We’ve	made	changes	to	how	we	bundle	NetLogo	on	macOS	in	order	to	satisfy	Apple’s	package	notarization
process	for	detecting	malware.	NetLogo	now	runs	without	any	special	workarounds,	as	long	as	your	macOS

settings	allow	running	software	from	identified	developers.
When	first	opening	a	model	and	installing	a	new	extension	for	it	through	the	extensions	manager	prompt,	the
model	widgets	would	not	be	usable	until	the	model’s	code	was	recompiled.	Now	the	model	will	be	ready	to	use
right	after	the	extension	is	installed.
When	using	in-cone	on	wrapped	worlds,	occasionally	turtles	at	the	very	edge	of	the	wrapped	cone	would	be
missing	from	the	results.
When	using	in-radius	on	a	patch	to	get	nearby	turtles,	sometimes	turtles	at	the	edge	of	the	radius	would	be
missing	from	the	results.
The	performance	of	a	turtle	lookup	by	breed	and	who-number,	like	sheep	10,	could	take	an	unreasonable	amount
of	time.
Models	with	a	large	amount	of	code	(5000+	lines)	would	take	a	very	long	time	to	check	and	compile.

Logging	Improvements

Logging	can	now	be	enabled	and	a	configuration	file	chosen	through	the	NetLogo	preferences	menu.	The	logging
standalone	application	is	no	longer	necessary,	so	it	has	been	removed.
The	command	line	switch	to	set	the	logging	directory	would	previously	be	ignored.
Users	now	get	a	chance	to	add	a	comment	to	the	log	when	they	get	a	compiler	error.

NetLogo	3D	Bugfixes

The	in-radius	and	in-cone	primitives	could	give	incorrect	results,	omitting	some	agents	in	rare	cases.
When	hatching	turtles	the	z-coordinates	would	sometimes	not	be	copied	from	the	parent	turtle.
The	font	size	value	for	the	world	view	would	be	ignored.
When	using	with	with	patches,	the	results	could	include	only	patches	with	a	zero	z-coordinate.
NetLogo	3D	should	run	more	reliably	on	Linux	systems.

Extension	Changes

The	Time	extension	is	now	bundled	with	NetLogo.	This	extension	lets	you	work	with	real-world	dates	and	times	in
your	model,	and	includes	an	event	scheduler	for	triggering	events	at	points	in	time.	It	also	includes	an	NLS	library
file	you	can	add	to	your	model	to	handle	time	series	reading	from	CSV	files.	See	the	Time	extension	docs	for	more
information.
The	View2.5D	extension	has	been	significantly	upgraded.	Turtle	stem	color	can	be	set	by	a	reporter.	Links	are	now
visible	in	the	2.5D	window.	They	can	be	visualized	either	going	from	turtle	to	turtle	(the	default)	or	in	the	xy-plane.
The	choice	can	be	made	using	radio	buttons	or	through	new	commands
LevelSpace	now	always	runs	hidden	models	at	full	speed	and	should	give	better	error	messages	when	errors
occur	when	loading	a	model.
The	Network	(NW)	extension	will	not	add	extra	whitespace	when	using	nw:save-matrix.
The	Python	extension	gives	better	error	messages	when	the	paths	to	the	Python	executables	are	incorrect.

Documentation	Changes

Tutorial	#1	referenced	an	older	version	of	the	Wolf	Sheep	Predation	model.
Added	a	couple	more	common	problems	to	look	out	for	in	the	BehaviorSpace	guide.
Clarify	the	version	of	NetLogo	Web	used	to	export	models	as	HTML	files.
Clarify	that	the	auto	scale	feature	for	plots	does	not	scale	the	X	axis	when	used	with	histogram.
Clarify	the	location	of	the	NetLogo.cfg	files	on	each	operating	system.
Update	steps	to	take	for	common	issues	opening	on	macOS,	added	an	alert	about	known	issues	to	the	download
page.
The	docs	for	ifelse	had	some	incorrect	argument	names.
Add	info	about	the	Pioneer	Award	for	the	View	2.5D	extension.

Model	Changes

New	Sample	Models:

Dislocation	Motion	and	Deformation
Repressilator	1D
Sex	Ratio	Equilibrium

New	Curricular	Models:

CT-STEM	(for	more	information,	visit	ct-stem.northwestern.edu):
Free	Fall
Habitat	Preference	Behavior

https://github.com/NetLogo/Time-Extension
http://ct-stem.northwestern.edu

Hardy	Weinberg	Equilibrium
Kidney	Absorption
Mendelian	Inheritance
Natural	Selection	-	Camouflage
Pendulum
1D	Motion	Maps

New	Code	Examples:

Extension	Examples
time	Extension	-	Discrete	Event	Mousetrap
view2.5d	Extension	-	2.5d	Turtle	View	Example

Sample	Model	Updates:

Anisogamy:	INTERFACE	re-design,	expanded	INFO	tab,	and	refactored	CODE.	Now	includes	additional
BehaviorSpace	experiments.
Autumn:	Minor	updates	to	INFO	tab.
Bug	Hunt	Speeds:	Minor	updates	to	INFO	tab.
Fire:	Minor	updates	to	INFO	tab.
Fur:	Minor	updates	to	INFO	tab.
Grand	Canyon:	Minor	updates	to	INFO	tab.
Lightning:	Minor	updates	to	INFO	tab.
Moths:	Minor	updates	to	INFO	tab.
Particle	System	Basic:	Minor	updates	to	INFO	tab.
Paths:	Minor	updates	to	INFO	tab.
Shuffle	Board:	Minor	updates	to	INFO	tab.
Small	Worlds:	The	INTERFACE	tab	has	been	overhauled	to	make	the	model	easier	to	use.	The	INFO	tab	has
been	rewritten	to	be	more	clear	and	concise.	The	CODE	tab	has	been	restyled	and	now	uses	curved	link	shapes
for	neighbors’	neighbor	links.
Team	Assembly:	Minor	updates	to	INFO	tab.
Tumor:	Additional	credits	and	references	added.
Wealth	Distribution:	Got	rid	of	one	line	of	CODE	that	didn’t	do	anything.

Our	Chemistry	&	Physics	folder	now	contains	enough	examples	that	can	be	classified	as	“Materials	Science”	that	they
deserve	their	own	folder.	This	means	a	number	of	models	have	been	physically	moved	into	this	new	sub-folder	of
Chemistry	and	Physics:	-	Solid	Diffusion	-	Polymer	Dynamics	-	Lennard-Jones	-	Dislocation	Motion	and	Deformation	-
Crystallization	Models

Also	in	this	folder	are	the	MaterialSim	models.	They	have	been	physically	moved	to	the	Curricular	Models	folder,	but	will
be	cross-referenced	in	Chemistry	&	Physics/Materials	Science .

Alternative	Visualization	Updates:

Heat	Diffusion	-	Alternative	Visualization:	Minor	INFO	tab	updates.

Curricular	Model	Updates:

BEAGLE	Evolution
Altruism:	Minor	INFO	tab	updates.
Cooperation:	Minor	INFO	tab	updates.
Divide	the	Cake:	Promoted	from	Unverified	after	updates	to	CODE	and	INFO.
Guppy	Spots	HubNet:	Promoted	from	Unverified	after	updates	to	CODE	and	INFO.
Chemical	Equilibrium:	Fix	plot	and	monitor	bug	that	incorrectly	counted	pink	molecules.
EACH	(now	appears	as	a	sub-directory	of	the	BEAGLE	Evolution	directory)

Note,	the	above	BEAGLE	models	have	now	been	physically	moved	into	the	Curricular	Models/BEAGLE	Evolution/
folder.	In	the	Models	Library	browser,	they	will	appear	cross-referenced	in	the	usual	places.

Code	Examples	Updates:

view2.5d	Extension	-	2.5d	Patch	View	Example:	Fixed	issue	with	perspective	not	being	updated	on	setup.
gogo	Extension	-	GoGoMonitor:	Minor	INFO	tab	updates.

HubNet	Activities	Updates:

All	HubNet	models	now	include	a	citation	for	the	HubNet	software	and	their	web	links	have	been	updated.	This	resulted

in	a	change	to	37	models	in	total.

IABM	Model	Updates:

Arduino	Example:	Minor	INFO	tab	updates.
Heroes	and	Cowards:	Minor	INFO	tab	updates.
Simple	Economy:	Updated	INFO	tab	and	now	listed	as	a	Sample	Model	under	the	Economics	folder.

Fixed	inconsistent	bracket	styling	across	IABM	Textbook	models.	This	resulted	in	changes	to	12	models.

Turtles	Circling	Simple
Life	Simple
Wolf	Sheep	Simple	1
Wolf	Sheep	Simple	2
Wolf	Sheep	Simple	3
Wolf	Sheep	Simple	4
Wolf	Sheep	Simple	5
Agentset	Efficiency
Voting	Analysis
Simple	Machine	Learning
Simple	Viral	Marketing

Version	6.1.1	(September	2019)

Bugfixes

The	remove-duplicates	primitive	will	now	operate	properly	on	lists	of	agentsets,	considering	agentsets	duplicates	if
they	contain	exactly	the	same	agents.
Many	fixes	to	the	in-radius	primitive,	which	could	report	incorrect	values	when	used	with	a	radius	that’s	a	large
percentage	of	an	unwrapped	world	width	or	cause	runtime	errors	when	world	sizes	changed	or	when	the	radius
wrapped	around	the	world	back	to	itself.
Corrected	issues	with	code	tab	compile	errors	causing	unexpected	behavior	or	runtime	errors	in	the	interface	tab,
especially	when	a	model	had	breeded	links.
You	can	now	use	the	same	let	variable	name	in	different	command	blocks	inside	a	procedure.
The	netlogo-headless.sh	scripts	for	macOS	and	Linux	had	issues	with	running	the	3D	command	switch	and
properly	wrapping	the	Java	executable	in	quotes	in	case	it	contains	spaces.

Features

Runtime	speed	optimizations	when	using	the	count	primitive	on	turtle	or	link	agentsets	with	a	comparison	operator
like	>	or	=.

Extension	Changes

The	Python	extension	on	Windows	will	no	longer	give	permissions	errors	when	trying	to	create	it’s	config	file,
moved	the	file	to	a	per-user	directory.
The	Python	extension	will	no	longer	produce	a	confusing	deprecation	warning	when	used	with	Python	3.7.
Moved	the	storage	location	for	the	R	extension	config	files	to	a	per-user	directory	and	updated	documentation
around	getting	it	working.	This	issue	mostly	affected	Windows	users.
The	Mathematica-Link	add-on	now	works	correctly	with	NetLogo	6.1.0	and	6.1.1.

Documentation	Changes

Clarified	the	file	location	search	order	for	extensions	with	the	new	extension	manager.
Standardized	the	language	used	in	the	conditional	primitives	(if,	ifelse,	ifelse-value)	and	the	boolean	operators
(and,	not,	or,	xor).
Use	correct	arrow	syntax	in	the	ifelse-value	code	example.
Added	notes	to	ifelse	and	ifelse-value	that	the	multi-conditional	behavior	was	newly	added	in	version	6.1.

Model	Changes

New	Sample	Models:

CRISPR	Models

1.	 CRISPR	Bacterium

2.	 CRISPR	Bacterium	LevelSpace
3.	 CRISPR	Ecosystem
4.	 CRISPR	Ecosystem	LevelSpace

Fruit	Wars	Model

Sample	Model	Updates:

Ant	Adaptation:	Minor	Info	tab	updates.

Curricular	Model	Updates:

PNoM	Models:	Minor	Info	tab	updates.

Version	6.1.0	(May	2019)

Feature	Changes

The	premier	feature	for	this	release	is	an	Extension	Manager	for	installing	and	updating	extensions,	which	is	available
under	the	Tools	menu.	Using	extensions	with	NetLogo	could	be	a	painful	process:	manually	finding	them,	downloading
them,	and	getting	them	correctly	installed	in	the	NetLogo	application.	The	extensions	manager	addresses	these	issues
by	automating	the	installation	of	many	3rd-party	extensions,	and	the	updating	of	the	bundled	extensions	between
NetLogo	releases.	All	done	easily	from	within	the	application.	In	fact,	if	you	open	a	model	that	requires	an	extension	you
don’t	have	installed	that	it	knows	about,	the	Extension	Manager	will	ask	if	you’d	like	to	download	and	install	it	right	on	the
spot,	without	any	extra	effort

We	welcome	external	contributions	to	the	extensions	library!	If	you	have	developed	a	NetLogo	extension	and	want	to
make	it	available	to	NetLogo	users	in	the	Extension	Manager,	see	these	instructions:
https://github.com/NetLogo/NetLogo-Libraries#submitting-pull-requests

Other	new	features	include:

The	primitives	ifelse	and	ifelse-value	now	take	a	varying	number	of	clauses,	making	selecting	a	single	case
from	a	variety	of	options	much	simpler.
Added	a	new	primitive,	up-to-n-of,	which	gives	as	many	items	from	a	list	as	possible	up	to	some	limit,	without
causing	an	error	if	it	cannot	get	all	of	them.	Previously,	to	safely	use	n-of	when	you	were	unsure	of	the	number	of
agents	in	an	agentset	would	require	some	verbose	code	like	ask	n-of	(ifelse-value	(count	turtles-here	<	10)
[count	turtles-here]	[10])	turtles-here	[fd	10],	but	now	you	can	simple	write	ask	up-to-n-of	turtles-here
[fd	10]	to	get	the	same	effect.
Added	new	hotkeys:	Command-U	for	“Show	Usage”	of	a	term,	Command-E	for	“Jump	to	Declaration”	of	a
procedure,	and	Command-Option-S	for	“Save	All”	when	using	included	NetLogo	code	files.	Or	Ctrl-U,	Ctrl-E,	Ctrl-
Alt-S	for	Windows	and	Linux	users.
Multiline	input	widgets	are	now	directly	editable	on	the	interface	tab.
Runtime	optimizations	for	the	in-radius	and	in-cone	primitives.

Bugfixes

When	a	model	that	has	a	compile-time	error	is	saved,	its	sliders	will	not	reset	their	values	to	0	when	it	is	reloaded.
The	procedures	search	dropdown	on	the	Code	tab	gives	better	results	with	inexact	search	terms.
Plot	pen	names	with	quotes	in	them	are	properly	stored	and	loaded.
Plot	pen	names	are	now	case-insensitive,	just	like	other	items	in	NetLogo.
When	a	plot	is	deleted	and	the	action	is	undone,	the	plot	continues	to	work	afterward.
2D	NetLogo	models	saved	in	NetLogo	3D	can	be	opened	back	into	3D,	or	de-converted	by	re-opening	in	NetLogo
2D.
Widgets	can	no	longer	be	re-sized	to	be	completely	outside	the	interface	tab.
Code	comments	can	be	used	as	normal	within	an	__includes	keyword	file	list.
The	error	message	for	getting	the	mean	of	an	empty	list	should	now	make	more	sense.
Double-clicking	an	empty	experiment	list	in	BehaviorSpace	will	not	cause	an	error.
BehaviorSpace	experiments	are	better	about	warning	when	there	are	astronomical	numbers	of	run	combinations.
Anonymous	procedures	can	be	given	in	the	conditional	reporter	blocks	of	ifelse-value.
Slight	changes	to	how	color	values	are	calculated,	for	smoother	interoperability	with	NetLogo	Web.

Extension	Changes

The	Python	extension,	py,	is	now	bundled	with	NetLogo.	If	you	have	Python	installed	on	your	computer,	you	can
use	it	from	inside	a	NetLogo	model.
The	Control	Flow	extension,	cf,	has	been	removed	from	NetLogo	in	favor	of	the	new	variadic	ifelse	and	ifelse-
value	behavior.	The	cf	extension	is	still	available	from	the	extensions	library	if	needed	for	any	existing	models.
The	CSV	extension,	csv,	had	some	minor	documentation	updates.

https://github.com/NetLogo/NetLogo-Libraries#submitting-pull-requests

The	GoGo	board	extension,	gogo,	should	work	more	reliably	on	Windows	10.
The	Network	extension,	nw,	now	loads	data	in	a	predictable	order	when	imported,	and	it	correctly	handles
preferential	attachment.
The	Table	extension,	table,	had	some	minor	documentation	updates.
The	View	2.5D	extension,	view2.5d,	now	does	not	throw	an	error	when	trying	to	use	a	turtle-based	view.

Documentation	Changes

Added	documentation	around	using	primitives	like	mean	and	variance	along	with	agentsets	producing	slightly
different	results	due	to	floating	point	arithmetic.
Add	an	extension	authoring	introduction	page	with	links	to	the	technical	documentation.
Clarify	what	clear-ticks	is	meant	to	do.
Clarify	that	clear-globals	doesn’t	affect	interface	globals.
Fixed	various	formatting	errors	and	typos.

Model	Changes

New	Sample	Models:

Ant	Adaptation
Braess’	Paradox

New	Code	Examples:

py	Extension
Python	Basic	Example
Python	Flocking	Clusters

New	Curricular	models:

PNoM	Curriculum
PNoM	1	Diffusion	Sandbox
PNoM	2	Diffusion	Sensor	Sandbox
PNoM	3	Virtual	Syringe
PNoM	4	Virtual	Syringe	Force	Graph
PNoM	5	Virtual	Syringe	Temperature	Graph
PNoM	6	Particle	Sandbox	Gravity
PNoM	7	Particle	Sandbox	Intermolecular

Sample	Model	Updates:

Acids	&	Bases	Models:	Dissociations	now	result	in	random	headings	for	resulting	particles.
Mandelbrot:	Exposed	max-iterations	parameter	and	updated	Info	Tab.
Peppered	Moths:	Increase	size	of	moth	agents.
Perceptron:	Fix	weight	visualization	bug.
Raindrops3D:	Remove	unused	procedure.
Reactor	X-Section:	Fix	typo	and	extend	manual	rod	depth.
Rock	Paper	Scissors:	Minor	Info	tab	updates.
Sandpile:	Minor	Info	tab	updates.
Simple	Kinetics	1,2:	Dissociations	now	result	in	random	headings	for	resulting	particles.
SmoothLife:	Allows	NLW	compatibility	by	skipping	some	plot	drawing.
Tumor:	Prevent	ask	nobody	bug	when	using
Wolf	Sheep	Predation:	Fix	typos	in	Code	tab.

IABM	Model	Updates:

Segregation	Simple	Models	(Simple	&	Extensions	1	-	3):	Reworded	comment	in	Code	tab.

Code	Example	Updates:

LS	Parent	Example:	Change	button	display	name	to	avoid	confusion	with	setup	button.
Mouse	Drag	Multiple	Example:	The	model	has	been	rewritten	to	be	NLW	compatible.
Mouse	Drag	One	Example:	The	model	has	been	updated	to	be	NLW	compatible

We’ve	introduced	a	new	subfolder	in	the	Sample	Models/Social	Science	folder:	Economics.	With	this	new	folder,	several
models	have	been	moved.	The	following	models	are	now	in	the	Social	Science/Economics	folder:

Bidding	Market
Hotelling’s	Law
Oil	Cartel	HubNet
Sugarscape
Bank	Reserves

Cash	Flow
Wealth	Distribution

With	the	introduction	of	the	new	variadic	ifelse	and	ifelse-value	primitives,	the	Models	Library	has	been	updated	to
reflect	this	new	functionality.	These	updates	are	divided	into	three	major	sections:

Add	parens	to	ifelse-value	expressions	that	are	arguments	of	infix	operator.
Remove	unnecessary	parentheses	from	ifelse-value	invocations	for	models	that	use	ifelse-value	with	a	simple
infix	conditional:	>,	<,	<=,	>=,	and	=.	This	results	in	changes	to	the	following	models.
Remove	now	unnecessary	parens	from	calls	to	ifelse-value	with	more	complex	conditionals.

And	here	are	the	models	affected	by	these	changes:

Code	Examples:

Beatbox
HSB	and	RGB	Example
NW	General	Examples

Curricular	Models:

BEAGLE:	DNA	Protein	Synthesis,	DNA	Replication	Fork
GenEvo	1	Genetic	Switch
Lattice	Land	-	Explore
ModelSim:	Bacteria	Food	Hunt
NIELS:	Current	in	a	Wire	HubNet
ProbLab:	4	Blocks,	4	Block	Stalagmites,	4	Block	Two	Stalagmites,	Histo	Blocks

HubNet	Activities:

Minority	Game	HubNet
Predator	Prey	Game	HubNet
Prisoners	Dilemma	HubNet
Root	Beer	Game	HubNet

IABM	Textbook:

Traffic	Basic	Adaptive	Individuals

Sample	Models:

Artificial	Neural	Net	-	Multilayer
Artificial	Neural	Net	-	Perceptron
Bidding	Market
Blood	Sugar	Regulation
DLA	Alternate	Linear
DLA	Alternate
Echo
Hotelling’s	Law
Language	Change
Minority	Game
Robby	the	Robot
Signaling	Game
Simple	Genetic	Algorithm
Tabonuco	Yagrumo
Tabonuco	Yagrumo	Hybrid
Traffic	2	Lanes
Vision	Evolution

Version	6.0.4	(June	2018)

Feature	Changes

NetLogo	now	supports	the	Portuguese	language.
BehaviorSpace	allows	optionally	disabling	plots	and	the	view	when	running	experiments.

Bugfixes

Updated	the	bundled	Java	8,	which	should	resolve	an	issue	with	NetLogo	failing	to	start	on	Windows	computers.
Fixed	a	bug	with	the	nw	extension	preferential	attachment	generation	and	initialization.
Fixed	a	numerical	error	with	the	range	primitive.

Fixed	a	bug	with	link	lookup	when	using	more	than	two	link	breeds.
Comment	and	uncomment	code	hotkeys	should	work	with	NetLogo	include	source	files.
Added	a	better	error	message	when	a	web	browser	couldn’t	be	launched	for	any	reason.

Documentation	Changes

Document	that	resize-world	only	kills	all	turtles	when	coordinates	really	change.

Model	Changes

New	Curricular	Models

Mind	the	Gap	Curriculum
MTG	1	Equal	Opportunities	HubNet
MTG	2	Random	Assignment	HubNet
MTG	3	Feedback	Loop	HubNet

Revised	Sample	Models

Blood	Sugar	Regulation:	Updated	statistical	sampling	procedures
Flocking:	Changed	default	vision	to	5.0	patches
Rumor	Mill:	Fixed	a	minor	bug	with	the	spread	statistics	in	early	ticks

Revised	Code	Examples

Flocking	(Perspective	Demo):	Changed	default	vision	to	5.0	patches

Revised	Curricular	Models

GenEvo	-	GenEvo	1:	Fixed	save	screenshot	bug	on	Windows	machines
GenEvo	-	GenEvo	2:	Fixed	save	screenshot	bug	on	Windows	machines
GenEvo	-	GenEvo	3:	Fixed	save	screenshot	bug	on	Windows	machines

Revised	Alternative	Visualizations

Flocking	(Alternative	Visualizations):	Changed	default	vision	to	5.0	patches

Version	6.0.3	(March	2018)

Feature	Changes

Improve	the	look	&	feel	of	Agent	Monitor	windows.
The	procedures	menu	in	the	code	tab	now	has	a	search	field	and	actively	filters	procedure	names	as	the	user
types.	This	should	improve	navigation	speed	for	large	models	with	lots	of	procedures.	There	is	also	now	a	hotkey
to	access	this	menu:	Ctrl-G	on	Windows	and	Linux,	and	Cmd-G	on	MacOS.
Increase	the	speed	of	the	diffusion	primitive	and	make	the	diffusion	operation	symmetric.
NetLogo	enforces	that	plot	names	are	unique	and	that	pen	names	are	per-plot	unique	without	taking	capitalization
into	account.	This	avoids	certain	cases	where	set-current-plot	and	set-current-plot-pen	primitives	would	set	the
plot	or	pen	to	something	different	than	the	user	intended	because	names	differed	in	capitalization	only.
Models	with	existing	plots	and	pens	which	have	the	same	name	without	taking	capitalization	into	account	will	be
automatically	converted	on	first	open	in	6.0.3.
We	are	planning	on	adding	the	ability	to	have	multiple	conditional	branches	to	ifelse	and	ifelse-value.	However,
as	this	is	a	fairly	substantial	change	to	the	core	language,	we	have	implemented	it	in	the	cf	extension	for	testing.
See	the	cf	documentation	for	information	about	the	new	syntax.

Documentation	Changes

Add	a	table	to	the	Output	section	of	the	Programming	Guide	specifying	how	the	various	output	primitives	differ	in
whether	they	print	the	calling	agent,	whether	they	print	a	newline,	and	whether	they	can	be	read	back	into
NetLogo.

Bugfixes

file:///var/folders/zt/6c8vmb4j16717kzllw2gjr7sz8sj3f/T/sbt_ff6864f9/cf.html

Anonymous	procedures	appearing	inside	ask	blocks	inside	repeat	blocks	now	close	over	unique	copies	of	let-
variables	introduced	in	the	repeat	block.
Fix	a	longstanding	HubNet	bug	in	which	HubNet	would	sometimes	crash	as	a	large	number	of	users	joined.
Fix	HubNet	discovery	when	the	HubNet	server	is	run	on	a	Mac.
When	switching	from	the	code	tab	to	the	interface	tab,	the	cursor	switches	to	the	command	center.	This	prevents
typed	commands	or	copy/paste	keyboard	shortcuts	from	affecting	the	code	tab.
Turtles	draw	trails	when	moving	backwards	(regression	in	NetLogo	6.0.1).
Smooth	Code	Tab	scrolling.
BehaviorSpace	now	only	applies	standard	CSV	string	escaping	(doubling	of	double	quotes)	to	string	outputs	in
result	files.	It	used	to	apply	NetLogo	style	string	escaping	(backslashes	in	front	of	special	characters)	and	then
apply	CSV	escaping	on	top	of	that.	The	new	behavior	is	consistent	with	the	RFC	4180	specification	and	the	current
behavior	of	the	csv	extension.
The	Behaviorspace	dialog	appears	centered	in	the	NetLogo	window.
Due	to	changes	introduced	in	Java,	certain	dialogs	in	NetLogo	6.0.1	would	appear	under	the	dialog	that	created
them	instead	of	on	top.	These	dialogs	now	appear	on	top	of	the	dialog	that	created	them.
Non-code	changes	to	the	System	Dynamics	modeler	are	pulled	in	on	every	recompile	(prior	to	this,	changes	like
newly-disconnected	flows	were	sometimes	not	taken	into	account	on	recompiles).
The	system	dynamics	code	tab	adjusts	itself	to	match	the	size	of	the	system	dynamics	window.
NetLogo	3D	loads	and	saves	system	dynamics.
Fixes	an	error	raised	in	3D	when	the	world	was	cleared	following	setting	a	patch-color	to	an	RGB	list.
Miscellaneous	small	changes	to	the	format	of	exported	worlds.	NetLogo	6.0.3	should	be	able	to	import	worlds
exported	by	older	versions	of	NetLogo	and	older	versions	of	NetLogo	should	be	able	to	import	worlds	exported	by
NetLogo	6.0.3.
The	“others”	execute	bit	is	set	for	the	netlogo-headless.sh	script	in	the	Linux	installer	package.

Extension	Changes

nw:generate-preferential-attachment	accepts	a	min-degree	parameter,	specifying	the	number	of	links	each	new
turtle	preferentially	creates	to	existing	turtles.
The	arduino	extension	(and	the	related	sketch	and	model	in	the	library)	have	been	updated	to	allow	the	arduino	to
send	strings	back	to	NetLogo.	Two	new	debug	primitives	have	also	been	added	to	help	troubleshoot	interaction
between	NetLogo	and	the	arduino.
The	verbose	cf	extension	conditional	syntax	as	been	replaced	with	straight-forward	generalizations	of	the	ifelse
and	ifelse-value	primitives.	The	syntax	is	much	simpler	and	these	primitives	run	much	faster	than	the	old
constructs.
The	ls	extension	has	much	less	overhead	for	calling	out	to	single	models,	making	constructs	like	ask	turtles	[
ls:ask	my-model	[run-something]]	much	faster.
The	ls	extension	now	seeds	the	child	model	RNG	based	on	the	parent	model	RNG	at	model	creation.
Furthermore,	and	ls:random-seed	primitive	has	been	introduced,	so	an	entire	model	system	can	be	seeded
simultaneously.	This	makes	it	possible	to	have	reproducible	runs	when	using	LevelSpace.
The	ls:let	primitive	now	handles	scoping	properly.
ls:assign	has	been	added	to	LevelSpace	to	make	assigning	globals	of	child	models	easier.

Documentation	Changes

Clarify	documentation	around	__includes	by	providing	examples.
Fix	a	broken	link	in	the	dictionary.
Update	the	Windows	unattended	installation	directions	in	the	FAQ.

Model	Changes

New	Sample	Models:

Bidding	Market
Blood	Sugar	Regulation
Rock	Paper	Scissors
Vision	Evolution

New	Curricular	Models

NIELS	-	Current	in	a	Wire	HubNet

New	HubNet	Activities:

Current	in	a	Wire	HubNet	(same	as	above)

Revised	Code	Examples:

arduino	Extension:	The	example	model	and	sketch	have	been	updated	to	reflect	new	features	in	the	extension
sound	Extension	–	Sound	Workbench:	Minor	GUI	updates
sound	Extension	–	Percussion	Workbench:	Minor	GUI	updates
File	Input	Example:	Fixed	a	bug	in	the	save-patch-data	template	procedure
Lottery	Example:	Corrected	Related	Models	from	Preferential	Attachment	to	the	Rnd	Example	Model	in	the	Info	Tab
Info	Tab	Example:	Corrected	reference	from	pegdown	to	flexmark	in	the	Info	Tab

Revised	Curricular	Models:

BEAGLE	Evolution	-	Fish	Tank	Genetic	Drift:	Update	duplicate	plot-pen	names	and	resize	plots
GenEvo	-	GenEvo	4:	Replaced	usage	of	cf:when	with	nested	ifelses
Lattice	Land	-	Lattice	Land	Explore:	Fixed	bug	when	deleting	a	segment	that	didn’t	exist.
Lattice	Land	-	Lattice	Land	Triangles	Dissection:	Fixed	bug	when	deleting	a	segment	that	didn’t	exist.
NIELS	-	Electrostatics:	All	turtles	are	now	particles	and	each	particle	has	a	charge;	Changed	particle	coloring;
Updated	Info	Tab	and	some	variable	names	to	reflect	later	NIELS	models
Urban	Suite	-	Tijuana	Bordertowns:	Minor	Info	Tab	updates.

Revised	Sample	Models:

Artificial	Anasazi:	Update	broken	URLs	in	Info	Tab
Autumn:	Update	broken	URLs	in	Info	Tab
HIV:	The	AIDS	model	has	been	renamed	to	HIV†
Color	Fractions:	Removed	direct	reference	to	dead	web	page	in	Info	Tab
Fairy	Circles:	Update	URLs	in	Info	Tab
Fur:	Update	broken	URLs	in	Info	Tab
Hex	Cell	Aggregation:	Update	broken	URLs	in	Info	Tab
Ising:	Update	broken	URLs	in	Info	Tab
Kicked	Rotators:	Update	broken	URLs	in	Info	Tab
Language	Change:	Update	URLs	in	Info	Tab
Lennard-Jones:	Added	citation	in	the	Info	tab
Lightning:	Update	URLs	in	Info	Tab.
L-System	Fractals:	Update	broken	URLs	in	Info	Tab
Membrane	Formation:	Update	broken	URLs	in	Info	Tab
Moth:	Update	URLs	in	Info	Tab
Party:	Fix	incorrect	comment	on	turtle	headings.
PD	Basic:	Minor	GUI	updates
Segregation:	Update	broken	URLs	in	Info	Tab.	Update	color	scheme	for	color	blindness.	Minor	GUI	updates.	Minor
Info	Tab	updates.
Sugarscape	1	Immediate	Growback:	Fixed	“Wealth	distribution”	histogram	bug	(turtle	with	max	sugar	was	not
displayed)
Sugarscape	2	Constant	Growback:	Fixed	“Wealth	distribution”	histogram	bug	(turtle	with	max	sugar	was	not
displayed)
Sugarscape	3	Wealth	Distribution:	Fixed	“Wealth	distribution”	histogram	bug	(turtle	with	max	sugar	was	not
displayed)

Revised	IABM	Models:

Arduino	Example:	The	example	model	and	sketch	have	been	updated	to	reflect	new	features	in	the	extension
(same	as	above)
Segregation	Simple	Extension	1:	Update	broken	URLs	in	Info	Tab
Segregation	Simple	Extension	2:	Update	broken	URLs	in	Info	Tab
Segregation	Simple	Extension	3:	Update	broken	URLs	in	Info	Tab
Segregation	Simple:	Update	broken	URLs	in	Info	Tab

†	-	Models	Updated	to	Correctly	Reference	the	HIV	Model

Alternative	Visualizations
Virus	-	Alternative	Visualization
Virus	-	Circle	Visualization
Curricular	Models
epiDEM	Basic
epiDEM	Travel	and	Control
IABM	Models
Spread	of	Disease
Sample	Models:
Disease	Solo

Virus
Rumor	Mill

Version	6.0.2	(August	2017)

Feature	Changes

The	autosuggest	functionality	introduced	in	NetLogo	6	will	now	display	extension	primitive	names.
A	new	insert-item	primitive	was	added	to	the	language.	It	works	similarly	to	replace-item,	but	without	removing
the	item	at	the	specified	index.
A	new	set-plot-background-color	primitive	was	added	to	the	language.	It	can	be	used	in	plotting	code	to	set	the
background	color	of	the	plot.
Behaviorsearch’s	user	interface	has	been	updated.	It	now	uses	the	JavaFX	UI	toolkit	for	a	more	modern	look	and
feel.

Bugfixes

The	6.0.1	autoconverter	would	error	when	converting	tasks	with	exactly	one	argument	(from	5.3.1	and	earlier
models	only).	The	conversion	would	be	correct,	but	it	was	confusing.	This	has	now	been	remedied	and	the
autoconverter	will	correctly	convert	models	from	5.3.1	and	earlier	without	erroring	on	single-argument	tasks.
Fix	a	bug	where	extensions	weren’t	located	properly	when	in	a	path	relative	to	the	model.
Help	browser	now	opens	in	64-bit	Windows.
Fix	a	speed	regression	for	the	import-world	primitive	introduced	in	6.0.
If	an	unexpected	reporter	block	is	passed	to	with	when	used	with	other,	the	error	will	now	reflect	that	the	block	is
unsuitable	for	with	instead	of	other.
When	sort-by	receives	an	unsuitable	reporter	block	from	the	user	it	now	shows	a	useful	error	instead	of	a	cryptic
stack	trace.
String	representations	of	anonymous	procedures	now	show	the	arguments	of	those	anonymous	procedures
When	working	in	an	nls	file,	switching	to	a	different	tab	will	compile	the	nls	file.
Display	error	label	on	nls	file	when	the	code	it	contains	causes	an	error.
Some	users	were	unable	to	open	NetLogo	6	and	6.0.1	in	Mac	OS	Sierra.	We’ve	changed	our	signing	process	in
6.0.2	to	attempt	to	fix	this	problem.	We	are	continuing	to	track	this	issue	to	determine	whether	our	fix	was	effective.
More	information	(including	a	partial	workaround	for	the	problem)	is	available	here.

Extension	Changes

Fixed	a	bug	in	gis:patch-dataset	introduced	in	NetLogo	6.
The	table	extension	has	new	table:group-agents	and	table:group-items	primitives	which	can	be	used	to	build	a
table	of	grouped	agents	and	items	by	supplying	an	anonymous	reporter.

Documentation	Changes

Clarify	when	various	parts	of	the	anonymous	procedure	syntax	are	optional.
Fix	a	few	small	documentation	bugs	around	foreach.
Clarify	relationship	between	speed	and	update	modality	in	the	“View	Updates”	section	of	the	programming	guide.

Model	Changes

New	Sample	Models:

Chaos	in	a	Box
Fairy	Circles
SmoothLife

New	Curricular	Models:

Lattice	Land	Curriculum
Lattice	Land	-	Triangles	Explore
Lattice	Land	-	Triangles	Dissection

Revised	Sample	Models:

Anisogamy:	New	color	scheme.	Adds	BehaviorSpace	experiments.
Ethnocentrism:	Now	cross-listed	as	an	Evolutionary	model.

https://github.com/NetLogo/NetLogo/wiki/Known-Issues#netlogo-wont-start-on-mac-os-sierra

Fireworks:	Rename	fireworks	to	max-fireworks	and	enforce	a	minimum	of	1.
GenJam	-	Duple:	Minor	info	tab	updates.
Wolf	Sheep	Predation:	Revised	to	better	clarify	the	grass?	construct	and	code.

Revised	Curricular	Models:

Connected	Chemistry:
Connected	Chemistry	1:	Fix	NetLogo	Web	incompatibility.
Connected	Chemistry	3:	Update	minimum	number	of	particles	to	2.
Connected	Chemistry	8:	Minor	code	updates.	Small	change	to	default	values.

Revised	HubNet	Activities:

Gridlock	HubNet:	Minor	code	updates.

Revised	Code	Examples:

Info	Tab	Example:	Corrected	formatting	of	un/ordered	lists	example.
LS	Extension	–	Model	Visualizer	and	Plotter	Example:	Updated	code	dependencies	for	WSP.
LS	Extension	–	Model	Interactions	Example:	Updated	code	dependencies	for	WSP.

Version	6.0.1	(March	2017)

Feature	Changes

Brackets	are	required	around	anonymous	procedure	reporters	only	when	there	are	two	or	more	arguments.	For
instance	[[x]	->	x] 	can	now	be	written	[x	->	x] .	Note	this	change	makes	it	possible	to	create	models	in
NetLogo	6.0.1	that	will	not	run	in	NetLogo	6.0.	If	you	plan	to	use	your	model	in	NetLogo	6.0,	be	sure	to	include
brackets	around	anonymous	procedure	arguments.	For	a	short	period	after	the	release,	models	which	use
unbracketed	lambda	arguments	may	not	work	on	netlogoweb.org.

Bugfixes

The	NetLogo	code	editor	navigates	and	indents	models	much	more	quickly	and	efficiently	than	in	NetLogo	6.0.
The	NetLogo	5-to-6	autoconverter	now	ignores	commented-out	code.
The	behavior	of	layout-radial	in	NetLogo	6	did	not	match	the	5.3.1	behavior.	This	has	been	corrected	and	layout-
radial	should	be	identical	between	NetLogo	6.0.1	and	NetLogo	5.3.1
NetLogo	6	raised	a	NullPointerException	when	numbers	became	too	large	for	NetLogo	to	handle.	This	is	now
properly	displayed	to	the	user	as	a	number	out	of	bounds	error.
Improved	performance	of	models	which	use	let	and	anonymous	procedures	together.
Reloading	a	model	now	clears	global	variables.
Clearer	warning	dialogs	when	opening	an	older	version	of	a	NetLogo	2D	file	in	NetLogo	3D.
Using	foreach	improperly	in	the	Command	Center	will	display	the	same	error	as	it	would	if	used	improperly	in	the
code	tab.
Extremely	long	anonymous	procedures	no	longer	cause	an	exception	when	compiled.
in-radius	is	no	longer	pathologically	slow	on	agentsets	created	using	with.

Extension	Changes

A	new	primitive,	table:values	has	been	added	to	the	table	extension.
The	R	extension	has	been	updated	to	take	full	advantage	of	the	JavaGD	R	library	using	r:setPlotDevice.
Users	can	now	supply	a	path	to	the	R	extension	by	configuring	the	value	of	r.lib.paths	in	the	user.properties	file.
Fixed	a	LevelSpace	bug	preventing	interactive	models	from	using	nls	files.
Fixed	a	LevelSpace	bug	causing	NetLogo	to	lock	up	when	trying	to	load	a	nonexistent	file	as	an	interactive	model.

Documentation	Changes

The	system	dynamics	tutorial	now	instructs	the	user	to	set	the	dt	to	a	value	which	gives	stable	behavior
The	documentation	for	follow,	ride,	and	watch	has	been	clarified	to	indicate	that	calling	one	undoes	highlights	and
perspective	changes	caused	by	the	other
The	documentation	for	=	and	!=	indicates	that	they	work	with	extension	objects.
Several	examples	have	been	added	to	sort	clarifying	the	behavior	of	sort	on	lists	featuring	different	types	of
objects.
A	new	section	on	User	Interface	primitives	has	been	added	to	the	programming	guide	which	discusses	the
behavior	of	the	“Halt”	button	in	the	various	user	interaction	dialogs.

Incorrect	example	code	for	foreach	and	reduce	has	been	corrected.

Models

All	models	have	been	updated	to	reflect	the	new	optional	nature	of	brackets	for	zero/one	argument	anonymous
procedures.	This	resulted	in	changes	to	108	models.

All	models	have	been	updated	to	reflect	the	availability	of	the	new	range	primitive.	This	resulted	in	changes	to	12
models.

New	Sample	Model

GenJam	-	Duple

New	Curricular	Model

Lattice	Land	curriculum:
Lattice	Land	Explore

Revised	Sample	Models

PD	2	Person	Iterated:	info	tab	updates	and	extensive	fixes	for	the	code.
Party:	fixed	bug	where	a	monitor	covered	a	plot.
Signaling	Game:	info	tab	updates.

Revised	Curricular	Models

GenEvo	curriculum:
GenEvo	1	Genetic	Switch:	info	tab	updates	and	new	graduated	method	of	displaying	lacZ	concentration.
GenEvo	2	Genetic	Drift:	info	tab	updates	and	interface	tweaks.	New	model	preview.
GenEvo	3	Genetic	Drift	and	Natural	Selection:	info	tab	updates	and	interface	tweaks.
GenEvo	4	Competition:	info	tab	updates.
Genetic	Switch	-	Synthetic	Biology	has	been	renamed	and	is	now	Synthetic	Biology	-	Genetic	Switch.	It	also
received	info	tab	updates	and	a	few	interface	changes.

Version	6.0	(December	2016)

Feature	Changes

The	NetLogo	code	editor	now	offers	autocompletion	support.	Simply	press	the	Control	key	and	the	spacebar	at	the
same	time	while	typing	a	word	and	you	will	see	a	list	of	similar	NetLogo	primitives	as	suggestions.
The	NetLogo	code	editor	offers	the	option	to	“fold”	procedures	to	make	navigating	large	models	simpler.
NetLogo	supports	multi-level	agent-based	modeling	with	the	LevelSpace	extension
Line	numbering	can	be	enabled	in	the	NetLogo	code	editor	by	choosing	“Show	Line	Numbers”	from	the
“Preferences”	dialog.	This	dialog	can	be	opened	by	selecting	“NetLogo”	>	“Preferences”	in	Mac,	or	“Tools”	>
“Preferences”	on	Linux	or	Windows.
The	view	resizing	arrows	have	been	removed	and	the	tick	counter	has	been	relocated	under	the	speed	slider.
When	editing	NetLogo	code,	users	can	right-click	a	variable	name	or	primitive	and	choose	“Show	Usage”	to	see	all
usages	of	that	name	in	the	file.
When	editing	NetLogo	code,	users	can	right-click	a	variable	name	and	choose	“Jump	to	Declaration”	to	see	where
in	the	file	that	variable	is	declared.
The	NetLogo	interface	editor	now	supports	“Undo”	for	widget	addition,	deletion,	and	movement.
NetLogo	can	export	code	to	HTML	with	code-colorization	by	choosing	“Export	Code”	in	the	“Export”	section	of	the
“File”	menu.
The	look	and	feel	of	NetLogo	on	Mac	OS	X	has	changed	significantly.	NetLogo	is	now	using	the	Oracle-supplied
Java	look	and	feel	as	opposed	to	a	third-party	look	and	feel	used	in	prior	versions.
Plots	use	a	random	number	generator	independent	of	the	main-model	random	number	generator.
Model	Preview	Commands	can	be	edited	through	the	GUI	by	choosing	“Preview	Commands	Editor”	in	the	“Tools”
menu.	Those	commands	generate	the	preview	image	that	appears	when	you	upload	your	model	to	the	Modeling
Commons.
NetLogo	displays	a	more	helpful	error	message	when	a	program	fails	due	to	an	“out	of	memory”	error.
NetLogo	and	its	bundled	extensions	are	now	compiled	against	Java	8	and	Scala	2.12.
NetLogo	has	upgraded	the	ASM	bytecode	library	to	enable	generation	of	Java	8	bytecode.

Bugfixes

*-link-neighbor?	primitives	now	work	the	same	way	for	breeded	and	unbreeded	links.
Resizing	the	world	in	NetLogo	3D	no	longer	causes	a	black	view.
Fixed	error	caused	by	right-clicking	a	widget	while	dragging.
Improved	error	message	when	a	user-defined	procedure	shadows	a	breed	procedure.
neighbors4	and	neighbors	no	longer	report	agentsets	containing	the	same	patch	more	than	once.

Language	Changes

Support	for	plural-only	breed	names	(e.g.,	breed	[mice])	has	been	removed.	Write	breed	[mice	mouse]	instead.
Tasks	have	been	replaced	by	anonymous	procedures.	Tasks	made	use	of	?	variables	which	were	confusing	for
novices	and	difficult	to	read	for	experts.	Additionally,	tasks	could	not	refer	to	the	task	variables	of	a	containing	task.
Anonymous	procedures	may	have	named	arguments	which	can	be	accessed	by	inner	anonymous	tasks.	Upon	first
opening	a	NetLogo	5	model	in	NetLogo	6,	tasks	like	task	[?1	+	?2] 	will	be	automatically	converted	to	[[?1	?2]
->	?1	+	?2].	See	the	the	transition	guide	for	more	information.
Link	reporters	have	been	overhauled	to	be	more	consistent	and	flexible
The	task	primitive	is	no	longer	supported.
Breed	names	that	conflict	with	language	primitives	are	now	disallowed.	For	instance,	breed	[strings	string]	is
now	disallowed	since	it	makes	is-string?	ambiguous.
The	compiler	errors	on	duplicated	breed	singular	names.
The	compiler	detects	a	greater	number	of	type	errors,	for	instance	not	pxcor	now	raises	a	compiler	error	instead	of
erroring	at	runtime.
set-plot-pen-color	now	accepts	RGB	lists	as	arguments.
The	hubnet-set-client-interface	primitive	has	been	removed.
The	various	primitives	starting	with	movie-	have	been	removed,	as	has	the	movie	encoder.	They	have	been
replaced	with	the	new	vid	extension.	The	transition	guide	provides	more	details	and	information.
The	__change-language	primitive	has	been	removed.	You	can	now	change	the	User	Interface	Language	through
the	preferences	dialog,	which	can	be	found	by	choosing	“Preferences…”	in	the	“NetLogo”	menu	(Mac	OS	X)	or	in
the	“Tools”	menu	(all	other	platforms).
The	string	representation	of	anonymous	procedures	displays	the	body	of	the	anonymous	procedure.

Extension	Changes

NetLogo	6.0	comes	with	three	new,	bundled	extensions:	LevelSpace	ls,	the	vid	extension	for	video	manipulation,
and	the	enhanced	visualization	extension	view2.5d.
ls	enables	multi-level	agent-based	modeling	in	NetLogo.
The	Extensions	API	has	been	updated	from	5.0	to	6.0.	This	means	that	all	non-bundled	extensions	will	need	to	be
updated	to	use	the	new	API.	Extensions	written	for	NetLogo	5	will	not	work	in	NetLogo	6.	If	you’re	an	extension
author,	see	the	extension	author	transition	guide	for	6.0	for	more	information.	If	you	regularly	use	extensions	you
may	want	to	contact	their	authors	to	inform	them	a	new	version	of	NetLogo	is	on	the	way	and	they	may	want	to
update	their	extensions.
arduino:get	(in	the	arduino	extension)	correctly	reports	values	from	Windows	64-bit	machines.	In	prior	versions	it
would	only	report	some	values	correctly.
Several	new	features	have	been	added	to	the	nw	extension:

Added	community	detection	using	the	Louvain	method
Added	modularity	measurement
Added	Watts-Strogatz	small-world	network	generation
Made	other	network	generation	algorithms	easier	to	layout
Weighted	primitives	now	take	symbolic	variable	names	instead	of	strings.	See	the	transition	guide	for	more
information.

The	qtj	extension	is	no	longer	bundled	with	NetLogo.	Users	are	encouraged	to	make	use	of	the	new	vid
extension.
The	new	vid	extension	is	now	bundled	with	NetLogo,	combining	features	of	the	late	qtj	extension	and	the	movie
primitives.
The	network	extension	is	no	longer	bundled	with	NetLogo.	Users	are	encouraged	to	use	the	nw	extension
(https://ccl.northwestern.edu/netlogo/docs/nw.html),	which	has	been	bundled	with	NetLogo	for	some	time.
The	gogo-serial	extension	is	no	longer	bundled	with	NetLogo.	Users	are	encouraged	to	transition	to	the	newer
gogo	extension,	which	uses	HID	to	communicate	with	the	GoGo	board.

Operating	System	Support

NetLogo	will	now	be	used	to	open	.nlogo	links	in	PowerPoint	and	other	programs	on	Microsoft	Windows.
The	NetLogo	binaries	on	Mac	OS	X	are	installed	as	runnable	by	any	user.
NetLogo	in	Mac	OS	X	will	not	use	“App	Nap”	while	running.	This	keeps	simulations	running	at	full	speed	when
NetLogo	is	in	the	background.
The	NetLogo	controlling	API	has	changed	since	NetLogo	5.	Programs	that	rely	on	the	controlling	API	(such	as
BehaviorSearch)	will	not	work	until	they	have	been	changed	to	match	the	new	API.

Documentation	Changes

https://github.com/NetLogo/NetLogo/wiki/6.0-Extension-and-Controlling-API-Transition-Guide

New	documentation	for	anonymous	procedures
The	NetLogo	tutorial	screenshots	have	been	updated	to	correspond	to	the	new	Mac	OS	X	Look	and	Feel.
The	NetLogo	dictionary	displays	the	version	in	which	each	primitive	was	introduced	next	to	that	primitive.
A	Spanish	translation	of	the	NetLogo	dictionary	is	available	here

Internationalization	Changes

A	new	Spanish	translation	of	the	NetLogo	dictionary	is	available	as	part	of	the	NetLogo	manual.
Language	preferences	can	be	changed	by	using	the	new	“Preferences”	menu	instead	of	the	__change-language
primitive.
A	Japanese	localization	for	NetLogo	is	now	available	and	included	with	the	standard	download.
The	Chinese	translation	for	NetLogo	has	been	updated.

Models

New	Sample	Models:

Kicked	Rotator
Kicked	Rotators
Mammoths,	a	legacy	StarLogoT	model,	has	been	converted	to	NetLogo.

New	Curricular	Models:

GenEvo	1	Genetic	Switch
GenEvo	2	Genetic	Drift
GenEvo	3	Genetic	Drift	and	Natural	Selection
GenEvo	4	Competition

New	Code	Examples:

Movie	Playing	Example	(vid	extension)
Movie	Recording	Example	(vid	extension)
Video	Camera	Example	(vid	extension)
Network	Extension	General	Demo	(nw	extension)
Model	Interactions	Example	(ls	extension)
Model	Loader	Example	(ls	extension)
Model	Visualizer	and	Plotter	Example	(ls	extension)

Promoted	Models	(improved	and	no	longer	“unverified”):

ProbLab	Genetics
Traffic	2	Lanes

Revised	Sample	Models:

Giant	Component:	added	text	in	the	info	tab.
Team	Assembly:	removed	unused	switch	widget.
Traffic	Basic,	Traffic	Grid,	Traffic	Intersection:	revised	info	tab.
Voting:	stopped	the	model	when	voting	stabilizes.
Wealth	Distribution:	fixed	typos	in	info	tab,	improved	code	formatting.

Revised	HubNet	Activities:

Bug	Hunters	Competition	HubNet,	Critter	Designers	HubNet,	Fish	Spotters	HubNet:	removed	unnecessary	call	to
hubnet-set-client-interface.
Gridlock	HubNet,	Gridlock	Alternate	HubNet:	revised	info	tab.

Revised	Curricular	Models:

DNA	Replication	Fork:	fixed	a	a	monitor	and	runtime	error	when	using	a	time	limit.

Revised	IABM	models:

file:///var/folders/zt/6c8vmb4j16717kzllw2gjr7sz8sj3f/T/sbt_ff6864f9/diccionario.pdf
file:///var/folders/zt/6c8vmb4j16717kzllw2gjr7sz8sj3f/T/sbt_ff6864f9/diccionario.pdf

Agentset	Efficiency:	clarified	description	of	go-2	in	info	tab.
Agentset	Ordering:	fixed	typos	in	into	tab.
Arduino	Example:	improved	model	to	demonstrate	both	directions	of	communication	with	the	Arduino.
Heroes	and	Cowards:	removed	extra	text	in	info	tab.
Preferential	Attachment	Simple:	removed	extra	pen	in	plot	and	extra	“layout”	button.
Random	Network:	made	sure	that	the	number	of	links	is	never	too	big	for	the	number	of	nodes.
Segregation	Simple	Extension	1,	2	and	3:	fixed	number-of-ethnicities	slider	to	avoid	runtime	errors.
Traffic	Basic	Adaptive	Individuals,	Traffic	Basic	Utility,	Traffic	Grid	Goal:	revised	info	tab.
Traffic	Basic	Adaptive:	revised	info	tab,	clarified	comment	in	adaptive-go	procedure.
Voting	Component	Verification:	stopped	the	model	when	voting	stabilizes.
Voting	Sensitivity	Analysis:	improved	code	for	stopping	the	model	when	voting	stabilizes.

Revised	Code	Examples:

GoGoMonitorSerial,	GoGoMonitorSimpleSerial:	removed	the	models,	as	the	gogo-serial	and	qtj	extensions	are
no	longer	bundled.
Random	Network	Example:	made	sure	that	the	number	of	links	is	never	too	big	for	the	number	of	nodes.
Since	the	QuickTime	extension	(qtj)	has	been	replaced	by	the	vid	extension,	the	following	models	have	been
converted	to	use	the	vid	extension:

Movie	Example,	replaced	by	Movie	Recording	Example
QuickTime	Movie	Example,	replaced	by	Movie	Playing	Example
QuickTime	Camera	Example,	replaced	by	Video	Camera	Example

Demoted	model:

El	Farol	Network	Congestion,	a	previously	“unverified”	model,	has	been	moved	to	the	NetLogo	User	Community
Models

Version	5.3.1	(February	2016)

Feature	Changes

Mathematica	Link	is	now	included	and	has	been	tested	to	work	with	Mathematica	10.
A	link	to	Introduction	to	Agent-Based	Modelling	has	been	added	to	the	“Help”	menu.

Extension	Changes

The	gogo	extension	now	prompts	the	user	for	the	location	of	Java	upon	opening.	This	version	of	Java	is	used	to
launch	the	gogo	hid	daemon.
The	correct	version	of	the	network	extension	is	now	bundled,	which	will	open	properly
Bundles	the	cf	extension,	which	adds	match,	case,	and	select	primitives.

Bugfixes

Corrects	a	bug	where	turtles	wrapping	around	a	torus-shaped	world	with	pen	down	would	sometimes	cause
NetLogo	to	loop	infinitely.
Fixes	a	bug	where	buttons	would	appear	to	remain	pressed	after	a	right	click	on	Mac.
Fixes	a	bug	where	pressing	the	right	mouse	button	while	dragging	would	confuse	the	mouse-down?	primitive.
Fixes	agent	type-checking	of	tasks	(bug	appeared	in	5.2.1).
link-neighbor?	now	returns	true	if	and	only	if	the	neighbor	is	connected	through	an	undirected	link.
Documentation	fixes	for	my-links	and	mean	primitives.

Version	5.3	(December	2015)

Feature	Changes

Java	8	is	now	bundled	with	all	versions	of	NetLogo,	this	removes	the	need	for	a	separate	Java	6	installation	on
Mac	OS	X
Separate	32-bit	and	64-bit	versions	are	available	for	both	Windows	and	Linux
The	Windows	installer	is	now	an	msi	instead	of	an	exe
javax.media.opengl	is	no	longer	supported	in	Java	8,	it	has	been	replaced	by	com.jogamp.opengl
Mathematica	Link	is	not	distributed	due	to	Java	version	changes

Extension	Changes

A	minor	update	to	the	nw	extension	makes	nw:weighted-path-to	behave	as	documented.
Most	extensions	should	continue	to	work	without	change	unless	they	rely	on	javax.media.opengl,	which	was
renamed	in	the	updated	version	of	JOGL.

Version	5.2.1	(September	2015)

Extensions

An	included	Arduino	extension	for	use	with	Arduino	boards

New	features

New	file	menu	item	to	export	models	to	NetLogo	Web

Bug	fixes

BehaviorSpace	output	type	preference	is	now	remembered
Output	widget	font	is	now	saved	at	the	proper	size	when	zoomed
Reporter	tasks	are	now	evaluated	in	variable	context
runresult	arguments	now	only	get	evaluated	once
The	last	used	directory	is	now	remembered	on	Linux
Whitespace	is	now	stripped	from	models	when	saving

New	Sample	Models:	Artificial	Anasazi,	Bacteria	Food	Hunt,	Bacteria	Hunt	Speeds,	BeeSmart	-	Hive	Finding,	Bug
Hunt	Disruptions,	Bug	Hunt	Environmental	Changes,	Bug	Hunt	Predators	and	Invasive	Species	-	Two	Regions,
Hydrogen	Diffusion	3D,	Lennard-Jones,	Paths

There	are	46	new	models	in	the	new	IABM	Textbook	folder:	Turtles	Circling	Simple,	Ants	Simple,	Heroes	and
Cowards,	Life	Simple,	Simple	Economy,	4	DLA	extensions,	4	El	Farol	Extensions,	4	Fire	Extensions,	4
Segregation	Extensions,	5	Wolf	Sheep	Extensions,	Agentset	Efficiency,	Agentset	Ordering,	Communication-T-T
Network	Example,	Preferential	Attachment	Simple,	Random	Network,	Traffic	Basic	Adaptive,	Traffic	Basic	Utility,
Traffic	Grid	Goal,	Spread	of	Disease,	Voting	Component	Verification,	Voting	Sensitivity	Analysis,	Arduino	Example,
Disease	With	Android	Avoidance	HubNet,	Example	HubNet,	Run	Example,	Run	Result	Example,	Simple	Machine
Learning,	Simple	Viral	Marketing,	Ticket	Sales,	Sandpile	Simple
New	models	in	the	new	Alternate	Visualizations	folder:	Ethnocentrism	-	Alternative	Visualization,	Flocking	-
Alternative	Visualizations,	Heat	Diffusion	-	Alternative	visualization,	Virus	-	Alternative	Visualization,	Virus	-	Circle
Visualization
Promoted	models:	Honeycomb,	Minority	Game
Many	other	bugfixes	and	upgrades

Model	changes

Improved	Sample	Models:	Altruism,	Ant	Lines,	Artificial	Anasazi,	Cooperation,	Daisyworld,	Divide	the	Cake,	Heat
Diffusion,	Hydrogen	Diffusion	3D,	Lennard-Jones,	N-Bodies,	PD	Basic	Evolutionary,	Sandpile,	Robby	the	Robot,
Segregation,	Simple	Kinetics	2	and	3,	Traffic	Grid,	GridLock	HubNet,	GridLock	HubNet	Alternate
Revised	Curricular	Models:	4	Block	Stalagmites,	4	Block	Two	Stalagmites,	Bug	Hunter	Competition	HubNet,	Fish
Spotters	HubNet,	Ising,	Tijuana	Bordertowns,	Urban	Suite	-	Tijuana	Bordertowns,
Revised	Code	Examples:	Lottery	Example,	self	Example,	Network	Import	Example
Revised	IABM	Textbook	models:	Simple	Economy,	Fire	Simple	Extension	2	and	3,	Segregation	Simple,	1,	2	and	3,
Agentset	Efficiency,	Preferential	Attachment	Simple,	Random	Network,	Traffic	Basic	Adaptive,	Run	Example,
Traffic	Grid	Goal,
New	IABM	Textbook	model:	Traffic	Basic	Adaptive	Individuals

Version	5.2.0	(April	2015)

Extensions

An	included	CSV	extension	to	read	and	write	CSV	files
An	included	Palette	extension	to	map	different	values	to	colors
The	previous	gogo	extension	has	been	removed.	It	has	been	replaced	with	two	different	gogo	extensions,	gogo
and	gogo-serial.	The	extensions	work	with	different	hardware.	The	gogo	extension	works	with	the	new	style	HID-
interface	gogo	boards	and	the	gogo-serial	extension	works	with	the	old-style	serial-interface	gogo	boards
Upgrade	to	the	network	extension	including	the	following	changes:

Support	for	many	more	file	types,	including	GEXF,	GDF,	GML,	Pajek	NET,	UCINET	DL,	and	Netdraw	VNA
Fixed	bugs	with	GraphML	support
Improved	documentation

New	features

New	primitive	netlogo-web?	added	to	test	whether	you	are	currently	running	in	NetLogo	Web
New	primitive	behaviorspace-experiment-name	added	allowing	you	to	get	the	name	of	the	currently	running
experiment
New	primitive	stop-inspecting	to	stop	inspecting	agents
New	primitive	stop-inspecting-dead-agents	and	menu	item	to	stop	inspecting	dead	agents
__includes	keyword	now	enables	the	Includes	button	when	given	an	empty
hooks	added	for	extensions	to	write	custom	log	messages

Bug	fixes

user-one-of	will	now	signal	an	error	earlier	when	provided	an	empty	list	of	choices
hsb,	extract-hsb,	and	approximate-hsb	have	been	updated	to	represent	true	hsb	conventions
new	deprecated	primitives	__hsb-old,	__extract-hsb-old,	and	__approximate-hsb-old	work	as	the	old	hsb
primitives	did	when	older	models	using	the	hsb	primitives	are	opened	in	NetLogo	5.2,	they	will	be	auto-converted
to	use	the	deprecated	primitives
extract-hsb	–	fixed	bug	where	it	didn’t	work	correctly	on	rgb	lists

Model	changes

New	Sample	Models:	Artificial	Anasazi,	Bacteria	Food	Hunt,	Bacteria	Hunt	Speeds,	BeeSmart	-	Hive	Finding,	Bug
Hunt	Disruptions,	Bug	Hunt	Environmental	Changes,	Bug	Hunt	Predators	and	Invasive	Species	-	Two	Regions,
Hydrogen	Diffusion	3D,	Lennard-Jones,	Paths
There	are	46	new	models	in	the	new	IABM	Textbook	folder:	Turtles	Circling	Simple,	Ants	Simple,	Heroes	and
Cowards,	Life	Simple,	Simple	Economy,	4	DLA	extensions,	4	El	Farol	Extensions,	4	Fire	Extensions,	4
Segregation	Extensions,	5	Wolf	Sheep	Extensions,	Agentset	Efficiency,	Agentset	Ordering,	Communication-T-T
Network	Example,	Preferential	Attachment	Simple,	Random	Network,	Traffic	Basic	Adaptive,	Traffic	Basic	Utility,
Traffic	Grid	Goal,	Spread	of	Disease,	Voting	Component	Verification,	Voting	Sensitivity	Analysis,	Arduino	Example,
Disease	With	Android	Avoidance	HubNet,	Example	HubNet,	Run	Example,	Run	Result	Example,	Simple	Machine
Learning,	Simple	Viral	Marketing,	Ticket	Sales,	Sandpile	Simple
New	models	in	the	new	Alternate	Visualizations	folder:	Ethnocentrism	-	Alternative	Visualization,	Flocking	-
Alternative	Visualizations,	Heat	Diffusion	-	Alternative	visualization,	Virus	-	Alternative	Visualization,	Virus	-	Circle
Visualization
Promoted	models:	Honeycomb,	Minority	Game
Many	other	bugfixes	and	upgrades

Version	5.1.0	(July	2014)

bundle	new	network	extension
File	menu	includes	recently	opened	files
deprecate	applets
support	retina	display	on	new	MacBooks

Version	5.0.4	(March	2013)

upload	models	to	the	Modeling	Commons

Version	5.0	(February	2012)

features:
open	source	(GPL	license;	source	code	online	at	https://github.com/NetLogo/NetLogo)
new	license	for	Sample	Models	and	Curricular	Models	is	Creative	Commons	Attribution-NonCommercial-
ShareAlike
international	characters	(Unicode)	supported	throughout	application
GUI	is	localized	in	Spanish,	Russian,	and	Chinese	(volunteer	translators	wanted)
rich	formatting	and	images	in	Info	tabs	using	Markdown
plotting	code	goes	inside	plots	instead	of	in	code	tab
authorable	model	speed	(target	frame	rate	setting)
buttons	optionally	disable	until	ticks	start
translucent	colors	in	3D	view	and	NetLogo	3D	(for	RGB	colors	only)

language	changes:
“tasks”	store	code	to	be	run	later

aka	first-class	functions,	closures,	lambda
new	primitives:	task,	is-command-task?,	is-reporter-task?
these	primitives	accept	tasks:	run,	runresult,	foreach,	map,	reduce,	filter,	n-values,	sort-by

improved	overall	list	performance	(many	operations	take	near-constant	time	instead	of	linear	time)

https://github.com/NetLogo/NetLogo

you	must	use	reset-ticks	to	start	the	tick	counter	before	using	tick	or	tick-advance
new	primitives	setup-plots	and	update-plots
new	primitive	sort-on	lets	you	say	e.g.,	sort-on	[size]	turtles
new	primitive	error	causes	a	runtime	error
random-normal	rejects	negative	standard	deviations

HubNet:
activities	can	run	headless
new	primitives	hubnet-clients-list,	hubnet-kick-client,	hubnet-kick-all-clients
hubnet-set-client-interface	no	longer	required

other	fixes	and	changes:
tabs	renamed	to	Interface/Info/Code
Command	Center	allows	reporters,	adds	show	command	automatically
NetLogo	3D	uses	.nlogo3d	suffix,	not	.nlogo
import-world	is	much	faster
startup	no	longer	runs	headless	or	in	background	BehaviorSpace	runs
fixed	3D	rendering	bug	where	small	turtles	were	too	bright
Mac	app	runs	in	64	bit	mode	by	default
upgraded	Windows	installer
GoGo	extension	getting-started	experience	now	smoother	on	all	platforms

models:
new	Sample	Models:	Sandpile,	Lightning,	Osmotic	Pressure,	Robby	the	Robot,	Preferential	Attachment	3D
new	Curricular	Models:	Bug	Hunt	Consumers,	Bug	Hunt	Predators	and	Invasive	Species,	Plant	Speciation,
epiDEM	Basic,	epiDEM	Travel	and	Control,	Connected	Chemistry	Atmosphere
new	Code	Examples:	Info	Tab	Example,	GoGoMonitorSimple

Version	4.1.3	(April	2011)

matrix	extension
behaviorspace-run-number

Version	4.1	(December	2009)

parallel	BehaviorSpace
controlling	API	allows	embedding
automatic	code	indenter
searchable	Models	Library
translucent	colors
mini-views	in	agent	monitors
resize-world,	set-patch-size
bitmap,	QuickTime	extensions
individualized	HubNet	client	views
browser-based	HubNet	client

Version	4.0	(September	2007)

link	agents
tick	counter
view	update	modes	(tick-based,	continuous)
speed	slider	fast	forwards
input	boxes	in	interface	tab
include	multiple	source	files
RGB	colors
slider	bounds	may	be	reporters
HubNet	client	editor
Mathematica-NetLogo	link
array,	table,	profiler,	GIS	extensions
models	run	faster	(partial	compilation	to	JVM	byte	code)
logging

Version	3.1	(April	2006)

topologies	(optional	wrapping	at	world	edges)
randomized	agentset	ordering

Version	3.0	(September	2005)

3D	view	(for	2D	models)
formatted	Info	tabs
System	Dynamics	Modeler

follow,	ride,	watch
drawing	layer
GoGo	extension

Version	2.1	(December	2004)

“headless”	mode	for	command	line	operation
“action	keys”	to	trigger	buttons	by	keypresses
makes	QuickTime	movies	of	models
let,	carefully

Version	2.0.2	(August	2004)

extensions	and	controlling	APIs
sound	extension

Version	2.0	(December	2003)

fast,	flicker-free,	non-grid-based	graphics

Version	1.3	(June	2003)

run,	runresult,	map,	foreach,	filter,	reduce

Version	1.2	(March	2003)

computers	as	HubNet	clients

Version	1.1	(July	2002)

Applets

Version	1.0	(April	2002)

first	full	release	(after	a	series	of	betas)

System	Requirements
NetLogo	6.4.0	User	Manual

NetLogo	runs	on	almost	any	current	computer.

If	you	have	any	trouble	with	NetLogo	not	working,	see	Contacting	Us.

Application	Requirements

Windows

NetLogo	runs	on	Windows	11,	10,	8,	7,	and	Vista.	NetLogo	5.2.1	was	the	last	version	to	support	Windows	XP	and
Windows	2000.

The	NetLogo	installer	for	Windows	includes	Java	17	for	NetLogo’s	private	use	only.	Other	programs	on	your	computer
are	not	affected.	NetLogo	can	run	using	a	different	Java	installed	on	your	system	of	version	11	or	higher.

Mac	OS	X

Mac	OS	X	10.8.3	or	newer	is	required.	(NetLogo	5.1	was	the	last	version	to	support	10.5	and	10.4;	NetLogo	5.2.1	was
the	last	version	to	support	10.6	and	10.7)

The	NetLogo	application	contains	a	distribution	of	the	Java	17	runtime	for	NetLogo’s	private	use	only.	Other	programs	on
your	computer	will	not	be	affected.	NetLogo	can	run	using	a	different	Java	installed	on	your	system	of	version	11	or
higher.

Linux

NetLogo	should	work	on	standard	Debian-based	and	Red	Hat-based	Linux	distributions.	The	NetLogo	tarball	includes	a
copy	of	the	Java	17	runtime.	NetLogo	can	run	using	a	different	Java	installed	on	your	system	of	version	11	or	higher.

Start	NetLogo	by	running	the	provided	NetLogo	executable.

3D	Requirements

Occasionally	an	older,	less	powerful	system	is	not	able	to	use	the	3D	view	or	NetLogo	3D.	Try	it	and	see.

Some	systems	can	use	3D	but	can’t	switch	to	full-screen	mode.	It	depends	on	the	graphics	card	or	controller.	(For
example,	the	ATI	Radeon	IGP	345	and	Intel	82845	probably	will	not	work.)

32-bit	or	64-bit?

For	most	users	on	Linux	or	Windows,	the	64-bit	version	of	NetLogo	is	the	simplest	way	to	a	working	NetLogo
installation.	Most	desktop	and	laptop	computers	made	since	2005	are	64-bit.

If	you	have	a	computer	that	was	made	before	2006	you	may	need	to	use	the	32-bit	version	of	NetLogo	instead.	To
determine	whether	your	version	of	Windows	is	64-bit,	see	Is	my	PC	running	the	32-bit	or	64-bit	version	of	Windows	if
you’re	using	Windows	Vista,	or	Windows	7,	or	Which	Windows	operating	system	am	I	running?	if	you	are	running	any
other	version	of	Windows.

For	Linux	users,	the	easiest	way	to	determine	whether	your	operating	system	is	64-bit	is	checking	the	output	of

uname	-m

If	the	output	shows	“x86_64”	or	“amd64”,	you	should	be	able	to	run	the	64-bit	version.

https://support.microsoft.com/en-us/help/15056/windows-7-32-64-bit-faq
https://support.microsoft.com/en-us/help/13443/windows-which-operating-system

Contacting	Us
NetLogo	6.4.0	User	Manual

Feedback	from	users	is	essential	to	us	in	designing	and	improving	NetLogo.	We’d	like	to	hear	from	you.

Web	site

Our	web	site	at	http://ccl.northwestern.edu/	includes	our	mailing	address	and	phone	number.	It	also	has	information
about	our	staff	and	our	various	research	activities.

Feedback,	questions,	etc.

For	help	using	NetLogo,	try	this	group:	http://groups.google.com/d/forum/netlogo-users.

If	you	have	feedback,	suggestions,	or	questions,	you	may	write	us	at	feedback@ccl.northwestern.edu.

Reporting	bugs

Our	public	bug	tracker	is	on	GitHub	at	https://github.com/NetLogo/NetLogo/issues.	You	can	look	here	to	report	a	new
bug,	check	if	a	bug	has	already	been	reported,	and	so	on.

When	submitting	a	bug	report,	please	try	to	include	as	much	of	the	following	information	as	possible:

A	complete	description	of	the	problem	and	how	it	occurred.
The	NetLogo	model	or	code	you	are	having	trouble	with.	If	possible,	attach	a	complete	model.	(It’s	best	if	you	can
reduce	the	amount	of	code	in	the	model	to	the	minimum	necessary	to	demonstrate	the	bug.)
Your	system	information:	NetLogo	version,	OS	version,	Java	version,	and	so	on.	This	information	is	available	from
NetLogo’s	“About	NetLogo”	menu	item,	then	clicking	the	System	tab.
Any	error	messages	that	were	displayed.	Please	copy	and	paste	the	entire	error	message	into	your	email,	or	make
a	screen	capture	if	you	are	unable	to	copy	and	paste.

We	also	accept	bug	reports	by	email	at	bugs@ccl.northwestern.edu.

Open	source

NetLogo	is	free,	open	source	software.	The	source	code	is	hosted	at	https://github.com/NetLogo/NetLogo.	Contributions
from	interested	users	are	welcome.

For	discussion	of	NetLogo	API’s	and	the	development	of	NetLogo	itself,	try	https://groups.google.com/group/netlogo-
devel.

http://ccl.northwestern.edu/
http://groups.google.com/d/forum/netlogo-users
mailto:feedback@ccl.northwestern.edu
https://github.com/NetLogo/NetLogo/issues
mailto:bugs@ccl.northwestern.edu
https://github.com/NetLogo/NetLogo
https://groups.google.com/group/netlogo-devel

Sample	Model:	Party
NetLogo	6.4.0	User	Manual

This	activity	gets	you	thinking	about	computer	modeling	and	how	you	can	use	it.	It	also	gives	you	insight	into	NetLogo
itself.	We	encourage	beginning	users	to	start	here.

At	a	Party

Have	you	ever	been	at	a	party	and	noticed	how	people	cluster	in	groups?	You	may	have	also	noticed	that	people	don’t
just	stay	in	a	group.	As	they	circulate,	the	groups	change.	If	you	watched	these	changes	over	time,	you	might	notice
patterns.

For	example,	in	social	settings,	people	may	exhibit	different	behavior	than	at	work	or	home.	Individuals	who	are
confident	within	their	work	environment	may	become	shy	and	timid	at	a	social	gathering.	And	others	who	are	reserved	at
work	may	be	the	“party	starter”	with	friends.

These	patterns	can	depend	on	the	type	of	gathering.	In	some	settings,	people	are	trained	to	organize	themselves	into
mixed	groups;	for	example,	party	games	or	school-like	activities.	But	in	a	non-structured	atmosphere,	people	tend	to
group	in	a	more	random	manner.

Is	there	any	type	of	pattern	to	this	kind	of	grouping?

Let’s	take	a	closer	look	at	this	question	by	using	the	computer	to	model	human	behavior	at	a	party.	NetLogo’s	“Party”
model	looks	specifically	at	the	question	of	grouping	by	gender	at	parties:	why	do	groups	tend	to	form	that	are	mostly
men,	or	mostly	women?

Let’s	use	NetLogo	to	explore	this	question.

What	to	do:

1.	 Start	NetLogo.
2.	 Choose	“Models	Library”	from	the	File	menu.

3.	 Open	the	“Social	Science”	folder.
4.	 Click	on	the	model	called	“Party”.
5.	 Press	the	“open”	button.
6.	 Press	the	“setup”	button.

In	the	view	of	the	model,	you	will	see	pink	and	blue	groups	with	numbers:

These	lines	represent	mingling	groups	at	a	party.	Men	are	shown	as	blue,	women	pink.	The	numbers	are	the	sizes	of
the	groups.

Do	all	the	groups	have	about	the	same	number	of	people?

Do	all	the	groups	have	about	the	same	number	of	each	sex?

Let’s	say	you	are	having	a	party	and	invited	150	people.	You	are	wondering	how	people	will	gather	together.	Suppose
10	groups	form	at	the	party.

How	do	you	think	they	will	group?

Instead	of	asking	150	of	your	closest	friends	to	gather	and	randomly	group,	let’s	have	the	computer	simulate	this
situation	for	us.

What	to	do:

1.	 Press	the	“go”	button.	(Pressing	“go”	again	will	stop	the	model	manually.)
2.	 Observe	the	movement	of	people	until	the	model	stops.
3.	 Watch	the	plots	to	see	what’s	happening	in	another	way.
4.	 Use	the	speed	slider	if	you	need	to	slow	the	model	down.

Now	how	many	people	are	in	each	group?

Originally,	you	may	have	thought	150	people	splitting	into	10	groups,	would	result	in	about	15	people	in	each	group.
From	the	model,	we	see	that	people	did	not	divide	up	evenly	into	the	10	groups.	Instead,	some	groups	became	very
small,	whereas	other	groups	became	very	large.	Also,	the	party	changed	over	time	from	all	mixed	groups	of	men	and
women	to	all	single-sex	groups.

What	could	explain	this?

There	are	lots	of	possible	answers	to	this	question	about	what	happens	at	real	parties.	The	designer	of	this	simulation
thought	that	groups	at	parties	don’t	just	form	randomly.	The	groups	are	determined	by	how	the	individuals	at	the	party
behave.	The	designer	chose	to	focus	on	a	particular	variable,	called	“tolerance”:

Tolerance	is	defined	here	as	the	percentage	of	people	of	the	opposite	sex	an	individual	is	“comfortable”	with.	If	the
individual	is	in	a	group	that	has	a	higher	percentage	of	people	of	the	opposite	sex	than	their	tolerance	allows,	then	they
become	“uncomfortable”	and	leave	the	group	to	find	another	group.

For	example,	if	the	tolerance	level	is	set	at	25%,	then	males	are	only	“comfortable”	in	groups	that	are	less	than	25%
female,	and	females	are	only	“comfortable”	in	groups	that	are	less	than	25%	male.

As	individuals	become	“uncomfortable”	and	leave	groups,	they	move	into	new	groups,	which	may	cause	some	people	in
that	group	to	become	“uncomfortable”	in	turn.	This	chain	reaction	continues	until	everyone	at	the	party	is	“comfortable”	in
their	group.

Note	that	in	the	model,	“tolerance”	is	not	fixed.	You,	the	user,	can	use	the	tolerance	“slider”	to	try	different	tolerance
percentages	and	see	what	the	outcome	is	when	you	start	the	model	over	again.

How	to	start	over:

1.	 If	the	“go”	button	is	pressed	(black),	then	the	model	is	still	running.	Press	the	button	again	to	stop	it.
2.	 Adjust	the	“tolerance”	slider	to	a	new	value	by	dragging	its	red	handle.
3.	 Press	the	“setup”	button	to	reset	the	model.
4.	 Press	the	“go”	button	to	start	the	model	running	again.

Challenge

As	the	host	of	the	party,	you	would	like	to	see	both	men	and	women	mingling	within	the	groups.	Adjust	the	tolerance
slider	on	the	side	of	the	view	to	get	all	groups	to	be	mixed	as	an	end	result.

To	make	sure	all	groups	of	10	have	both	sexes,	at	what	level	should	we	set	the	tolerance?

Test	your	predictions	on	the	model.

Can	you	see	any	other	factors	or	variables	that	might	affect	the	male	to	female	ratio	within	each	group?

Make	predictions	and	test	your	ideas	within	this	model.

As	you	are	testing	your	hypotheses,	you	will	notice	that	patterns	are	emerging	from	the	data.	For	example,	if	you	keep
the	number	of	people	at	the	party	constant	but	gradually	increase	the	tolerance	level,	more	mixed	groups	appear.

How	high	does	the	tolerance	value	have	to	be	before	you	get	mixed	groups?

What	percent	tolerance	tends	to	produce	what	percentage	of	mixing?

Thinking	with	models

Using	NetLogo	to	model	a	situation	like	a	party	allows	you	to	experiment	with	a	system	in	a	rapid	and	flexible	way	that
would	be	difficult	to	do	in	the	real	world.	Modeling	also	gives	you	the	opportunity	to	observe	a	situation	or	circumstance
with	less	prejudice,	as	you	can	examine	the	underlying	dynamics	of	a	situation.	You	may	find	that	as	you	model	more
and	more,	many	of	your	preconceived	ideas	about	various	phenomena	will	be	challenged.	For	example,	a	surprising
result	of	the	Party	model	is	that	even	if	tolerance	is	relatively	high,	a	great	deal	of	separation	between	the	sexes	occurs.

This	is	a	classic	example	of	an	“emergent”	phenomenon,	where	a	group	pattern	results	from	the	interaction	of	many
individuals.	This	idea	of	“emergent”	phenomena	can	be	applied	to	almost	any	subject.

What	other	emergent	phenomena	can	you	think	of?

To	see	more	examples	and	gain	a	deeper	understanding	of	this	concept	and	how	NetLogo	helps	learners	explore	it,	you
may	wish	to	explore	NetLogo’s	Models	Library.	It	contains	models	that	demonstrate	these	ideas	in	systems	of	all	kinds.

For	a	longer	discussion	of	emergence	and	how	NetLogo	helps	learners	explore	it,	see	“Modeling	Nature’s	Emergent
Patterns	with	Multi-agent	Languages”	(Wilensky,	2001).

What’s	next?

The	section	of	the	User	Manual	called	Tutorial	#1:	Running	Models	goes	into	more	detail	about	how	to	use	the	other
models	in	the	Models	Library.

If	you	want	to	learn	how	to	explore	the	models	at	a	deeper	level,	Tutorial	#2:	Commands	will	introduce	you	to	the
NetLogo	modeling	language.

Eventually,	you’ll	be	ready	for	Tutorial	#3:	Procedures.	There	you	can	learn	how	to	alter	and	extend	existing	models	to
give	them	new	behaviors,	and	you	can	start	to	build	your	own	models.

http://ccl.northwestern.edu/papers/MEE/

Tutorial	#1:	Models
NetLogo	6.4.0	User	Manual

If	you	read	the	Sample	Model:	Party	section,	you	got	a	brief	introduction	to	what	it’s	like	to	explore	a	NetLogo	model.
This	section	will	go	into	more	depth	about	the	features	that	are	available	while	you’re	exploring	the	models	in	the	Models
Library.

Throughout	all	of	the	tutorials,	we’ll	be	asking	you	to	make	predictions	about	what	the	effects	of	making	changes	to	the
models	will	be.	Keep	in	mind	that	the	effects	are	often	surprising.	We	think	these	surprises	are	exciting	and	provide
excellent	opportunities	for	learning.

You	may	want	to	print	out	the	tutorials	to	make	them	easier	to	refer	to	while	you’re	using	NetLogo.

Sample	Model:	Wolf	Sheep	Predation

We’ll	open	one	of	the	Sample	Models	and	explore	it	in	detail.	Let’s	try	a	biology	model:	Wolf	Sheep	Predation,	a
predator-prey	population	model.

Open	the	Models	Library	from	the	File	menu.

Choose	“Wolf	Sheep	Predation”	from	the	Biology	section	and	press	“Open”.

The	Interface	tab	will	fill	up	with	lots	of	buttons,	switches,	sliders	and	monitors.	These	interface	elements	allow	you	to
interact	with	the	model.	Buttons	are	blue;	they	set	up,	start,	and	stop	the	model.	Sliders	and	switches	are	green;	they
alter	model	settings.	Monitors	and	plots	are	beige;	they	display	data.

If	you’d	like	to	make	the	window	larger	so	that	everything	is	easier	to	see,	you	can	use	the	Zoom	menu.

When	you	first	open	the	model,	you	will	notice	that	the	“view”	(the	graphical	display	of	the	agents	in	the	model)	is	empty
(all	black).	To	begin	the	model,	you	will	first	need	to	set	it	up.

Press	the	“setup”	button.

What	do	you	see	appear	in	the	view?

Press	the	“go”	button	to	start	the	simulation.

As	the	model	is	running,	what	is	happening	to	the	wolf	and	sheep	populations?

Press	the	“go”	button	to	stop	the	model.

Controlling	the	Model:	Buttons

When	a	button	is	pressed,	the	model	responds	with	an	action.	A	button	can	be	a	“once”	button,	or	a	“forever”	button.	You
can	tell	the	difference	between	these	two	types	of	buttons	by	a	symbol	on	the	face	of	the	button.	Forever	buttons	have
two	arrows	in	the	bottom	right	corners,	like	this:

Once	buttons	don’t	have	the	arrows,	like	this:

Once	buttons	do	one	action	and	then	stop.	When	the	action	is	finished,	the	button	pops	back	up.

Forever	buttons	do	an	action	over	and	over	again.	When	you	want	the	action	to	stop,	press	the	button	again.	It	will	finish
the	current	action,	then	pop	back	up.

Most	models,	including	Wolf	Sheep	Predation,	have	a	once	button	called	“setup”	and	a	forever	button	called	“go”.	Many
models	also	have	a	once	button	called	“go	once”	or	“step	once”	which	is	like	“go”	except	that	it	advances	the	model	by
one	tick	(time	step)	instead	of	over	and	over.	Using	a	once	button	like	this	lets	you	watch	the	progress	of	the	model	more
closely.

Stopping	a	forever	button	is	the	normal	way	to	pause	or	stop	a	model.	After	pausing	you	can	make	it	resume	by	pressing
the	button	again.	(You	can	also	stop	a	model	with	the	“Halt”	item	on	the	Tools	menu,	but	you	should	only	do	this	if	the
model	is	stuck	for	some	reason.	Using	“Halt”	may	interrupt	the	model	in	the	middle	of	an	action,	and	as	the	result	the
model	could	get	confused.)

If	you	like,	experiment	with	the	“setup”	and	“go”	buttons	in	the	Wolf	Sheep	Predation	model.

Do	you	ever	get	different	results	if	you	run	the	model	several	times	with	the	same	settings?

Controlling	speed:	Speed	Slider

The	speed	slider	allows	you	to	control	the	speed	of	a	model,	that	is,	the	speed	at	which	turtles	move,	patches	change
color,	and	so	on.

When	you	move	the	slider	to	the	left	the	model	slows	down	so	there	are	longer	pauses	between	each	tick	(time	step).
That	makes	it	easier	to	see	what	is	happening.	You	might	even	slow	the	model	down	so	far	as	to	see	exactly	what	a
single	turtle	is	doing.

When	you	move	the	speed	slider	to	the	right	the	model	speeds	up.	NetLogo	will	start	skipping	frames,	that	is,	it	won’t
update	the	view	at	the	end	of	every	tick,	only	some	ticks.	Updating	takes	time,	so	fewer	view	updates	means	the	model
progresses	faster.

Note	that	if	you	push	the	speed	slider	well	to	the	right,	the	view	may	update	so	infrequently	that	the	model	appears	to
have	slowed	down.	It	hasn’t,	as	you	can	see	by	watching	the	tick	counter	race	ahead.	Only	the	frequency	of	view
updates	has	lessened.

Adjusting	Settings:	Choosers,	Sliders,	and	Switches

A	model’s	settings	let	you	explore	different	scenarios	or	hypotheses.	Altering	the	settings	and	then	running	the	model	to
see	how	it	reacts	can	give	you	a	deeper	understanding	of	the	phenomena	being	modeled.

Choosers,	switches,	and	sliders	give	you	access	to	a	model’s	settings.	Here	are	the	choosers,	switches,	and	sliders	in
Wolf	Sheep	Predation:

Let’s	experiment	with	their	effect	on	the	behavior	of	the	model.

Open	Wolf	Sheep	Predation	if	it’s	not	open	already.
Press	“setup”	and	“go”	and	let	the	model	run	for	about	100	ticks.	(The	tick	count	is	shown	above	the
view.)
Stop	the	model	by	pressing	the	“go”	button.

What	happened	to	the	sheep	over	time?

Let’s	take	a	look	and	see	what	would	happen	to	the	sheep	if	we	change	a	setting.

Change	the	“model-version”	chooser	from	“sheep-wolves”	to	“sheep-wolves-grass”.
Press	“setup”	and	“go”	and	let	the	model	run	for	a	similar	amount	of	time	as	before.

What	did	the	chooser	do?	Was	the	outcome	the	same	as	your	previous	run?

Changing	the	“model-version”	dropdown	to	“sheep-wolves-grass”	affected	the	outcome	of	the	model.	With	the	chooser
set	to	“sheep-wolves”,	the	amount	of	grass	available	always	stayed	the	same.	This	is	not	a	realistic	look	at	the	predator-
prey	relationship;	so	by	setting	and	turning	on	a	grass	regrowth	rate,	we	were	able	to	model	all	three	factors:	sheep,
wolf,	and	grass	populations.

Another	type	of	setting	is	called	a	slider.

Besides	choosers,	a	model	may	also	have	sliders.	While	choosers	have	a	short	list	of	preset	options,	a	slider	has	a
whole	range	of	numeric	values.	For	example,	the	“initial-number-sheep”	slider	has	a	minimum	value	of	0	and	a	maximum
value	of	250.	The	model	could	run	with	0	sheep	or	it	could	run	with	250	sheep,	or	anywhere	in	between.	Try	this	out	and
see	what	happens.	As	you	move	the	marker	from	the	minimum	to	the	maximum	value,	the	number	on	the	right	side	of
the	slider	changes;	this	is	the	number	the	slider	is	currently	set	to.

Let’s	investigate	Wolf	Sheep	Predation’s	sliders.

Change	from	the	Interface	to	the	Info	tab	to	learn	what	each	of	this	models’	sliders	represents.

The	Info	tab	offers	guidance	and	insight	into	the	model.	Within	this	tab	you	will	find	an	explanation	of	the	model,
suggestions	on	things	to	try,	and	other	information.	You	may	want	to	read	the	Info	tab	before	running	a	model,	or	you
might	want	to	just	start	experimenting,	then	look	at	the	Info	tab	later.

What	would	happen	to	the	sheep	population	if	there	were	more	sheep	and	less	wolves	initially?

Change	the	“model-version”	chooser	from	“sheep-wolves-grass”	to	“sheep-wolves”.
Set	the	“initial-number-sheep”	slider	to	100.
Set	the	“initial-number-wolves”	slider	to	20.
Press	“setup”	and	then	“go”.
Let	the	model	run	for	about	100	ticks.

Try	running	the	model	several	times	with	these	settings.

What	happened	to	the	sheep	population?

Did	this	outcome	surprise	you?	What	other	sliders	can	be	adjusted	to	help	out	the	sheep
population?

Set	“initial-number-sheep”	to	80	and	“initial-number-wolves”	to	50.	(This	is	close	to	how	they	were
when	you	first	opened	the	model.)
Set	“sheep-reproduce”	to	10.0%.
Press	“setup”	and	then	“go”.
Let	the	model	run	for	about	100	time	ticks.

What	happened	to	the	wolves	in	this	run?

One	more	type	of	widget	is	called	a	switch.	A	switch	has	only	two	values,	on	and	off.

There	is	a	switch	in	this	model	called	“show-energy?”

Click	“show-energy?”	to	check	the	box	next	to	it	and	then	click	“setup”	and	“go”.

How	did	the	appearance	of	the	wolves	in	the	world	view	change?

Uncheck	the	“show-energy?”	switch	while	the	model	is	still	running.

What	happened	to	the	energy	labels	you	saw	before?

When	you	open	a	model,	all	the	choosers,	sliders,	and	switches	are	on	a	default	setting.	If	you	open	a	new	model	or	exit
the	program,	your	changed	settings	will	not	be	saved,	unless	you	choose	to	save	them.

(Note:	in	addition	to	choosers,	sliders,	and	switches,	some	models	have	input	boxes.	The	Wolf	Sheep	Predation	doesn’t
have	any	of	those,	though.)

Gathering	Information:	Plots	and	Monitors

The	view	lets	you	see	what’s	going	on	in	a	model.	NetLogo	also	provides	has	other	ways	of	giving	you	information	about
model	run,	such	as	plots	and	monitors.

Plots

The	plot	in	Wolf	Sheep	Predation	contains	three	lines:	sheep,	wolves,	and	grass	/	4.	(The	grass	count	is	divided	by	four
so	it	doesn’t	make	the	plot	too	tall.)	The	lines	show	what’s	happening	in	the	model	over	time.	The	plot	legend	shows
what	each	line	indicates.	In	this	case,	it’s	the	population	counts.

When	a	plot	gets	close	to	becoming	filled	up,	the	horizontal	axis	is	compressed	and	all	of	the	data	from	before	gets
squeezed	into	a	smaller	space.	In	this	way,	more	room	is	made	for	the	plot	to	grow.

If	you	want	to	save	the	data	from	a	plot	to	view	or	analyze	it	in	another	application,	use	the	“Export	Plot”	item	on	the	File
menu.	It	saves	the	plot	data	in	a	format	that	can	by	read	back	by	spreadsheet	and	database	programs	such	as	Excel.
You	can	also	export	a	plot	by	right-clicking	it	and	choosing	“Export…”	from	the	popup	menu.

Monitors

Monitors	are	another	means	of	displaying	information	from	a	model.	Here	are	the	monitors	in	Wolf	Sheep	Predation:

The	monitors	show	us	the	population	of	sheep	and	wolves,	and	the	amount	of	grass.	(Remember,	the	amount	of	grass
is	divided	by	four	to	keep	the	plot	from	getting	too	tall.)

The	numbers	displayed	in	the	monitors	change	as	the	model	runs,	whereas	the	plots	show	you	data	from	the	whole
course	of	the	model	run.

Controlling	the	View

In	the	Interface	tab,	you’ll	see	a	toolbar	of	controls.	Some	of	these	control	aspects	of	the	view.

Let’s	experiment	with	the	effect	of	these	controls.

Press	“setup”	and	then	“go”	to	start	the	model	running.
As	the	model	runs,	move	the	speed	slider	to	the	left.

What	happens?

This	slider	is	helpful	if	a	model	is	running	too	fast	for	you	to	see	what’s	going	on	in	detail.

Move	the	speed	slider	to	the	middle.
Try	moving	the	speed	slider	to	the	right.
Now	try	checking	and	unchecking	the	“view	updates”	checkbox.

What	happens?

Fast	forwarding	the	model	and	turning	off	view	updates	are	useful	if	you’re	impatient	and	want	a	model	to	run	faster.	Fast
forwarding	(moving	the	speed	slider	to	the	right)	drops	view	updates	so	the	model	can	run	fast,	since	updating	the	view

takes	time	that	could	be	used	for	running	the	model	itself.

When	view	updates	are	off	completely,	the	model	continues	to	run	in	the	background,	and	plots	and	monitors	still
update.	But	if	you	want	to	see	what’s	happening,	you	need	to	turn	view	updates	back	on	by	rechecking	the	box.	Many
models	run	much	faster	when	view	updates	are	off.	For	others,	it	makes	little	difference.

The	size	of	the	view	is	determined	by	five	separate	settings:	min-pxcor,	max-pxcor,	min-pycor,	max-pycor,	and	patch
size.	Let’s	take	a	look	at	what	happens	when	we	change	the	size	of	the	view	in	the	“Wolf	Sheep	Predation”	model.

There	are	more	model	settings	than	there’s	room	for	in	the	toolbar.	The	“Settings…”	button	lets	you	get	to	the	rest	of	the
settings.

Press	the	“Settings…”	button	in	the	toolbar.

A	dialog	will	open	containing	all	the	settings	for	the	view:

What	are	the	current	settings	for	min-pxcor,	max-pxcor,	min-pycor,	max-pycor,	and	patch	size?

Press	“cancel”	to	make	this	window	go	away	without	changing	the	settings.
Place	your	mouse	pointer	next	to,	but	still	outside	of,	the	view.

You	will	notice	that	the	pointer	turns	into	a	crosshair.

Hold	down	the	mouse	button	and	drag	the	crosshair	over	the	view.

The	view	is	now	selected,	which	you	know	because	it	is	now	surrounded	by	a	gray	border.

Drag	one	of	the	square	black	“handles”.	The	handles	are	found	on	the	edges	and	at	the	corners	of	the
view.
Unselect	the	view	by	clicking	anywhere	in	the	white	background	of	the	Interface	tab.
Press	the	“Settings…”	button	again	and	look	at	the	settings.

What	numbers	changed?

What	numbers	didn’t	change?

The	NetLogo	world	is	a	two	dimensional	grid	of	“patches”.	Patches	are	the	individual	squares	in	the	grid.	In	Wolf	Sheep
Predation,	when	the	“model-version”	is	set	to	“sheep-wolves-grass”	the	individual	patches	are	easily	seen,	because

some	are	green,	others	brown.

Think	of	the	patches	as	being	like	square	tiles	in	a	room	with	a	tile	floor.	By	default,	exactly	in	the	middle	of	the	room	is	a
tile	labeled	(0,0);	meaning	that	if	the	room	was	divided	in	half	one	way	and	then	the	other	way,	these	two	dividing	lines
would	intersect	on	this	tile.	We	now	have	a	coordinate	system	that	will	help	us	locate	objects	within	the	room:

How	many	tiles	away	is	the	(0,0)	tile	from	the	right	side	of	the	room?

How	many	tiles	away	is	the	(0,0)	tile	from	the	left	side	of	the	room?

In	NetLogo,	the	number	of	tiles	from	right	to	left	is	called	world-width.	And	the	number	of	tiles	from	top	to	bottom	is
world-height.	These	numbers	are	defined	by	top,	bottom,	left	and	right	boundaries.

In	these	diagrams,	max-pxcor	is	3	,	min-pxcor	is	-3,	max-pycor	is	2	and	min-pycor	is	-2.

When	you	change	the	patch	size,	the	number	of	patches	(tiles)	doesn’t	change,	the	patches	only	get	larger	or	smaller	in
the	view.

Let’s	look	at	the	effect	of	changing	the	minimum	and	maximum	coordinates	in	the	world.

Using	the	Settings	dialog	that	is	still	open,	change	max-pxcor	to	30	and	max-pycor	value	to	10.	Notice
that	min-pxcor	and	min-pycor	change	too.	That’s	because	by	default	the	origin	(0,0)	is	in	the	center	of
the	world.

What	happened	to	the	shape	of	the	view?

Press	the	“setup”	button.

Now	you	can	see	the	new	patches	you	have	created.

Edit	the	view	by	pressing	the	“Settings…”	button	again.
Change	the	patch	size	to	20	and	press	“OK”.

What	happened	to	the	size	of	the	view?	Did	its	shape	change?

Editing	the	view	also	lets	you	change	other	settings.	Feel	free	to	experiment	with	these.

Once	you	are	done	exploring	the	Wolf	Sheep	Predation	model,	you	may	want	to	take	some	time	just	to	explore	some	of
the	other	models	available	in	the	Models	Library.

Models	Library

The	library	contains	four	sections:	Sample	Models,	Curricular	Models,	Code	Examples,	and	HubNet	Activities.

Sample	Models

The	Sample	Models	section	is	organized	by	subject	area	and	currently	contains	more	than	200	models.	We	are
continuously	working	on	adding	new	models	to	it,	so	come	visit	this	section	at	a	later	date	to	view	the	new	additions	to
the	library.

Some	of	the	folders	in	Sample	Models	have	folders	inside	them	labeled	“(unverified)”.	These	models	are	complete	and
functional,	but	are	still	in	the	process	of	being	reviewed	for	content,	accuracy,	and	quality	of	code.

Curricular	Models

These	are	models	designed	to	be	used	in	schools	in	the	context	of	curricula	developed	by	the	CCL	at	Northwestern
University.	Some	of	these	are	models	are	also	listed	under	Sample	Models;	others	are	unique	to	this	section.	See	the
Info	tabs	of	the	models	for	more	information	on	the	curricula	they	go	with.

Code	Examples

These	are	simple	demonstrations	of	particular	features	of	NetLogo.	They’ll	be	useful	to	you	later	when	you’re	extending
existing	models	or	building	new	ones.	For	example,	if	you	wanted	to	add	a	histogram	to	your	model,	you’d	look	at
“Histogram	Example”	to	find	out	how.

HubNet	Activities

This	section	contains	participatory	simulations	for	use	with	groups.	For	more	information	about	HubNet,	see	the	HubNet
Guide.

What’s	Next?

If	you	want	to	learn	how	to	explore	models	at	a	deeper	level,	Tutorial	#2:	Commands	will	introduce	you	to	the	NetLogo
modeling	language.

In	Tutorial	#3:	Procedures	you	can	learn	how	to	alter	and	extend	existing	models	and	build	new	ones.

Tutorial	#2:	Commands
NetLogo	6.4.0	User	Manual

So	far	you’ve	successfully	navigated	your	way	through	opening	and	running	models,	pressing	buttons,	changing	sliders
and	switches,	and	gathering	information	from	a	model	using	plots	and	monitors.

In	this	section,	the	focus	will	start	to	shift	from	observing	models	to	manipulating	models.	You	will	start	to	see	the	inner
workings	of	the	models	and	be	able	to	change	how	they	look.

Sample	Model:	Traffic	Basic

Open	the	Models	Library	(from	the	File	menu).
Open	Traffic	Basic,	found	in	the	“Social	Science”	section.
Run	the	model	for	a	while	to	get	a	feel	for	it.
Consult	the	Info	tab	for	any	questions	you	may	have.

In	this	model,	you	will	notice	one	red	car	in	a	stream	of	blue	cars.	The	stream	of	cars	are	all	moving	in	the	same
direction.	Every	so	often	they	“pile	up”	and	stop	moving.	This	is	modeling	how	traffic	jams	can	form	without	a	specific
cause	like	an	accident.

You	may	alter	the	settings	and	observe	a	few	runs	to	get	a	fuller	understanding	of	the	model.

As	you	are	using	the	Traffic	Basic	model,	have	you	noticed	any	additions	you	would	like	to	make
to	the	model?

Looking	at	the	Traffic	Basic	model,	you	may	notice	the	environment	is	fairly	simple;	a	black	background	with	a	white
street	and	number	of	blue	cars	and	one	red	car.	Changes	that	could	be	made	to	the	model	include:	changing	the	color
and	shape	of	the	cars,	adding	a	house	or	street	light,	creating	a	stop	light,	or	even	creating	another	lane	of	traffic.	Some
of	these	suggested	changes	are	visual,	to	enhance	the	look	of	the	model,	while	others	are	more	behavioral.	We	will	be
focusing	more	on	the	simpler	or	cosmetic	changes	throughout	most	of	this	tutorial.	(Tutorial	#3	will	go	into	greater	detail
about	behavioral	changes,	which	require	changing	the	Code	tab.)

To	make	these	simple	changes	we	will	be	using	the	Command	Center.

Command	Center

The	Command	Center	is	found	in	the	Interface	tab.	It	allows	you	to	enter	commands	or	directions	to	a	model.
Commands	are	instructions	you	can	give	to	NetLogo’s	agents:	turtles,	patches,	links,	and	the	observer.

In	Traffic	Basic:

Press	the	“setup”	button.
Locate	the	Command	Center.
Click	the	mouse	in	the	white	box	at	the	bottom	of	the	Command	Center.
Type	the	text	shown	here:

Press	the	return	key.

What	happened	to	the	View?

You	may	have	noticed	the	background	of	the	View	has	turned	all	yellow	and	the	street	has	disappeared.

Why	didn’t	the	cars	turn	yellow	too?

Looking	back	at	the	command	that	was	written,	we	asked	only	the	patches	to	change	their	color.	In	this

model,	the	cars	are	represented	by	a	different	kind	of	agent,	called	“turtles”.	Therefore,	the	cars	did	not
receive	these	instructions	and	thus	did	not	change.

What	happened	in	the	Command	Center?

You	may	have	noticed	that	the	command	you	just	typed	is	now	displayed	in	the	Command	Center	as	shown
below:

Type	in	the	bottom	of	the	Command	Center	the	text	shown	below:

Was	the	result	what	you	expected?

The	view	should	have	a	yellow	background	with	a	line	of	brown	cars	in	the	middle:

The	NetLogo	world	is	a	two	dimensional	world	that	is	made	up	of	turtles,	patches,	links,	and	an	observer.	The	patches
are	the	ground	over	which	the	turtles	move.	Links	are	connections	between	turtles.	And	the	observer	is	a	being	that
oversees	everything	that	is	going	on.	(For	more	specifics,	refer	to	the	NetLogo	Programming	Guide.)

In	the	Command	Center	you	can	give	commands	to	any	of	these	types	of	agents.	You	choose	which	type	to	talk	to	by
using	the	popup	menu	located	in	the	bottom	left	corner.	You	can	also	use	the	tab	key	on	your	keyboard	to	cycle	through
the	different	types.

In	the	Command	Center,	click	on	the	“observer>”	in	the	bottom	left	corner:

Choose	“turtles”	from	the	popup	menu.
Type	set	color	pink	and	press	return.
Press	the	tab	key	until	you	see	“patches>”	in	the	bottom	left	corner.
Type	set	pcolor	white	and	press	return.

What	does	the	View	look	like	now?

Do	you	notice	any	differences	between	these	two	commands	and	the	observer	commands	from
earlier?

The	observer	oversees	the	world	and	therefore	can	give	a	command	to	the	patches	or	turtles	using	ask.	Like	in	the	first
example	(observer>	ask	patches	[set	pcolor	yellow]),	the	observer	has	to	ask	the	patches	to	set	their	pcolor	to	yellow.
But	when	a	command	is	directly	given	to	a	group	of	agents	like	in	the	second	example	(patches>	set	pcolor	white),	you
only	have	to	give	the	command	itself.

Press	“setup”.

What	happened?

Why	did	the	View	revert	back	to	the	old	version,	with	the	black	background	and	white	road?	Upon	pressing	the	“setup”
button,	the	model	will	reconfigure	itself	back	to	the	settings	outlined	in	the	Code	tab.	The	Command	Center	doesn’t
permanently	change	the	model.	It	allows	you	to	manipulate	the	NetLogo	world	directly	to	further	answer	those	“What	if”
questions	that	pop	up	as	you	are	investigating	the	models.	(The	Code	tab	is	explained	in	the	next	tutorial,	and	in	the
Programming	Guide.)

Now	that	we	have	familiarized	ourselves	with	the	Command	Center,	let’s	look	at	some	more	details	about	how	colors
work	in	NetLogo.

Working	with	colors

You	may	have	noticed	in	the	previous	section	that	we	used	two	different	words	for	changing	color:	color	and	pcolor.

What	is	the	difference	between	color	and	pcolor?

Choose	“turtles”	from	the	popup	menu	in	the	Command	Center	(or	use	the	tab	key).
Type	set	color	blue	and	press	return.

What	happened	to	the	cars?

Think	about	what	you	did	to	make	the	cars	turn	blue,	and	try	to	make	the	patches	turn	red.

If	you	try	to	ask	the	patches	to	set	color	red,	an	error	message	occurs:

Type	set	pcolor	red	instead	and	press	return.

We	call	color	and	pcolor	“variables”.	Some	commands	and	variables	are	specific	to	turtles	and	some	are	specific	to
patches.	For	example,	the	color	variable	is	a	turtle	variable,	while	the	pcolor	variable	is	a	patch	variable.

Go	ahead	and	practice	altering	the	colors	of	the	turtles	and	patches	using	the	set	command	and	these	two	variables.

To	be	able	to	make	more	changes	to	the	colors	of	turtles	and	patches,	or	shall	we	say	cars	and	backgrounds,	we	need
to	gain	a	little	insight	into	how	NetLogo	deals	with	colors.

In	NetLogo,	colors	have	a	numeric	value.	In	all	of	the	exercises	we	have	been	using	the	name	of	the	color.	This	is
because	NetLogo	recognizes	16	different	color	names.	This	does	not	mean	that	NetLogo	only	recognizes	16	colors.
There	are	many	shades	in	between	these	colors	that	can	be	used	too.	Here’s	a	chart	that	shows	the	whole	NetLogo
color	space:

To	get	an	intermediate	shade,	you	refer	to	it	by	a	number	instead,	or	by	adding	or	subtracting	a	number	from	a	name.
For	example,	when	you	type	set	color	red,	this	does	the	same	thing	as	if	you	had	typed	set	color	15.	And	you	can	get
a	lighter	or	darker	version	of	the	same	color	by	using	a	number	that	is	a	little	larger	or	a	little	smaller,	as	follows.

Choose	“patches”	from	the	popup	menu	in	the	Command	Center	(or	use	the	tab	key).
Type	set	pcolor	red	-	2	(The	spacing	around	the	“-”	is	important.)

By	subtracting	from	red,	you	make	it	darker.

Type	set	pcolor	red	+	2

By	adding	to	red,	you	make	it	lighter.

You	can	use	this	technique	on	any	of	the	colors	listed	in	the	chart.

Agent	Monitors	and	Agent	Commanders

In	the	previous	activity,	we	used	the	set	command	to	change	the	colors	of	all	the	cars.	But	if	you	recall,	the	original
model	contained	one	red	car	amongst	a	group	of	blue	cars.	Let’s	look	at	how	to	change	only	one	car’s	color.

Press	“setup”	to	get	the	red	car	to	reappear.
Right-click	on	the	red	car.
If	there	is	another	turtle	close	to	the	red	turtle	you’ll	see	more	than	one	turtle	listed	at	the	bottom	of	the
menu.	Move	your	mouse	over	the	turtle	selections,	notice	when	your	mouse	highlights	a	turtle	menu
item	that	turtle	is	highlighted	in	the	view.	Select	“inspect	turtle”	from	the	sub-menu	for	the	red	turtle.

A	turtle	monitor	for	that	car	will	appear:

The	mini-view	at	the	top	of	the	agent	monitor	will	always	stay	centered	on	this	agent.	You	can	zoom	the	view	in	and	out
using	the	slider	below	the	view	and	you	can	watch	this	turtle	in	the	main	view	by	pressing	the	“watch-me”	button.

Taking	a	closer	look	at	this	turtle	monitor,	we	can	see	all	of	the	variables	that	belong	to	the	red	car.	A	variable	is	a
location	that	holds	a	value.

Let’s	take	a	closer	look	at	the	turtle	monitor:

What	is	this	turtle’s	who	number?

What	color	is	this	turtle?

What	shape	is	this	turtle?

This	turtle	monitor	is	showing	a	turtle	who	that	has	a	who	number	of	0,	a	color	of	15	(red	–	see	chart	above),	and	the
shape	of	a	car.

There	are	two	other	ways	to	open	a	turtle	monitor	besides	right-clicking.	One	way	is	to	choose	“Turtle	Monitor”	from	the
Tools	menu,	then	type	the	who	number	of	the	turtle	you	want	to	inspect	into	the	“who”	field	and	press	return.	The	other
way	is	to	type	inspect	turtle	0	(or	other	who	number)	into	the	Command	Center.

You	close	a	turtle	monitor	by	clicking	the	close	box	in	the	upper	left	hand	corner	(Mac)	or	upper	right	hand	corner	(other
operating	systems).

Now	that	we	know	more	about	Agent	Monitors,	we	have	three	ways	to	change	an	individual	turtle’s	color.

One	way	is	to	use	the	box	called	an	Agent	Commander	found	at	the	bottom	of	an	Agent	Monitor.	You	type	commands

here,	just	like	in	the	Command	Center,	but	the	commands	you	type	here	are	only	done	by	this	particular	turtle.

In	the	Agent	Commander	of	the	Turtle	Monitor	for	turtle	0,	type	set	color	pink.

What	happens	in	the	View?

Did	anything	change	in	the	Turtle	Monitor?

A	second	way	to	change	one	turtle’s	color	is	to	go	directly	to	the	color	variable	in	the	Turtle	Monitor	and	change	the
value.

Select	the	text	to	the	right	of	“color”	in	the	Turtle	Monitor.
Type	in	a	new	color	such	as	green	+	2.

What	happened?

The	third	way	to	change	an	individual	turtle’s	or	patch’s	color	is	to	use	the	observer.	Since,	the	observer	oversees	the
NetLogo	world,	it	can	give	commands	that	affect	individual	turtles,	as	well	as	groups	of	turtles.

In	the	Command	Center,	select	“observer”	from	the	popup	menu	(or	use	the	tab	key).
Type	ask	turtle	0	[set	color	blue]	and	press	return.

What	happens?

Just	as	there	are	Turtle	Monitors,	there	are	also	Patch	Monitors,	which	work	very	similarly.

Can	you	make	a	patch	monitor	and	use	it	to	change	the	color	of	a	single	patch?

If	you	try	to	have	the	observer	ask	patch	0	[set	pcolor	blue],	you’ll	get	an	error	message:

To	ask	an	individual	turtle	to	do	something,	we	use	its	who	number.	But	patches	don’t	have	who	numbers,	therefore	we
need	to	refer	to	them	some	other	way.

Remember,	patches	are	arranged	on	a	coordinate	system.	Two	numbers	are	needed	to	plot	a	point	on	a	graph:	an	x-
axis	value	and	a	y-axis	value.	Patch	locations	are	designated	in	the	same	way	as	plotting	a	point.

Open	a	patch	monitor	for	any	patch.

The	monitor	shows	that	for	the	patch	in	the	picture,	its	pxcor	variable	is	-19	and	its	pycor	variable	is	0.	If	we
go	back	to	the	analogy	of	the	coordinate	plane	and	wanted	to	plot	this	point,	the	point	would	be	found	on	the
x	axis	left	of	the	origin,	where	x=-19	and	y=0.

To	tell	this	particular	patch	to	change	color:

In	the	bottom	of	the	patch	monitor,	enter	set	pcolor	blue	and	press	return.

Typing	a	command	in	a	turtle	or	patch	monitor	addresses	only	that	turtle	or	patch.

You	can	also	talk	to	a	single	patch	from	the	Command	Center:

In	the	Command	Center,	enter	ask	patch	-19	0	[set	pcolor	green] 	and	press	return.

What’s	Next?

At	this	point,	you	may	want	to	take	some	time	to	try	out	the	techniques	you’ve	learned	on	some	of	the	other	models	in
the	Models	Library.

In	Tutorial	#3:	Procedures	you	can	learn	how	to	alter	and	extend	existing	models	and	build	your	own	models.

Tutorial	#3:	Procedures
NetLogo	6.4.0	User	Manual

This	tutorial	leads	you	through	the	process	of	building	a	complete	model,	built	up	in	stages,	with	every	step	explained	along	the	way.

Agents	and	procedures

In	Tutorial	#2,	you	learned	how	to	use	the	command	center	and	agent	monitors	to	inspect	and	modify	agents	and	make	them	do	things.
Now	you’re	ready	to	learn	about	the	real	heart	of	a	NetLogo	model:	the	Code	tab.

You’ve	seen	that	agents	in	NetLogo	are	divided	into	patches,	turtles,	links,	and	the	observer.	Patches	are	stationary	and	arranged	in	a
grid.	Turtles	move	over	that	grid.	Links	connect	two	turtles.	The	observer	oversees	everything	that’s	going	on	and	does	whatever	the
turtles,	patches	and	links	can’t	do	for	themselves.

All	four	types	of	agents	can	run	NetLogo	commands.	All	four	can	also	run	“procedures”.	A	procedure	combines	a	series	of	NetLogo
commands	into	a	single	new	command	that	you	define.

You	will	now	learn	to	write	procedures	that	make	turtles	move,	eat,	reproduce,	and	die.	You	will	also	learn	how	to	make	monitors,	sliders,
and	plots.	The	model	we’ll	build	is	a	simple	ecosystem	model	not	unlike	Wolf	Sheep	Predation	from	Tutorial	#1.

Making	the	setup	button

To	start	a	new	model,	select	“New”	from	the	File	menu.	Then	begin	by	creating	a	setup	button:

Click	the	“Add”	icon	in	the	toolbar	at	the	top	of	the	Interface	tab.
On	the	menu	next	to	Add,	select	Button	(if	it	isn’t	already	selected).
Click	wherever	you	want	the	button	to	appear	in	the	empty	white	area	of	the	Interface	tab.
A	dialog	box	for	editing	the	button	opens.	Type	setup	in	the	box	labeled	“Commands”.
Press	the	OK	button	when	you’re	done;	the	dialog	box	closes.

Now	you	have	a	setup	button.	Pressing	the	button	runs	a	procedure	called	“setup”.	A	procedure	is	a	sequence	of	NetLogo	commands
that	we	assign	a	new	name.	We’ll	define	that	procedure	soon,	but	we	haven’t	yet.	The	button	refers	to	a	procedure	that	doesn’t	exist,	so
the	button	turns	red:

If	you	want	to	see	the	actual	error	message,	click	the	button.

Now	we’ll	create	the	“setup”	procedure,	so	the	error	message	will	go	away:

Switch	to	the	Code	tab.
Type	the	following:

to	setup
		clear-all
		create-turtles	100	[setxy	random-xcor	random-ycor]
		reset-ticks
end

When	you’re	done,	the	Code	tab	looks	like	this:

Note	that	some	lines	are	indented.	Most	people	find	it	helpful	to	indent	their	code.	It	isn’t	mandatory,	but	it	makes	the	code	easier	to	read
and	change.

Your	procedure	begins	with	to	and	ends	with	end.	Every	procedure	begins	and	ends	with	these	words.

Let’s	look	at	what	you	typed	in	and	see	what	each	line	of	your	procedure	does:

to	setup	begins	defining	a	procedure	named	“setup”.
clear-all	resets	the	world	to	an	initial,	empty	state.	All	the	patches	turn	black	and	any	turtles	you	might	have	created	disappear.
Basically,	it	wipes	the	slate	clean	for	a	new	model	run.
create-turtles	100	creates	100	turtles.	They	start	out	standing	at	the	origin,	that	is,	the	center	of	patch	0,0.
After	create-turtles	we	can	put	commands	for	the	new	turtles	to	run,	enclosed	by	square	brackets.
setxy	random-xcor	random-ycor	is	a	command	using	“reporters”.	A	reporter,	as	opposed	to	a	command,	reports	a	result.	First	each
turtle	runs	the	reporter	random-xcor	which	will	report	a	random	number	from	the	allowable	range	of	turtle	coordinates	along	the	X
axis.	Then	each	turtle	runs	the	reporter	random-ycor,	same	for	the	Y	axis.	Finally	each	turtle	runs	the	setxy	command	with	those
two	numbers	as	inputs.	That	makes	the	turtle	move	to	the	point	with	those	coordinates.
reset-ticks	starts	the	tick	counter,	now	that	setup	is	otherwise	complete.
end	completes	the	definition	of	the	“setup”	procedure.

When	you’re	done	typing,	switch	to	the	Interface	tab	and	press	the	setup	button	you	made	before.	You	will	see	the	turtles	scattered
around	the	world:

Press	setup	a	couple	more	times,	and	see	how	the	arrangement	of	turtles	is	different	each	time.	Note	that	some	turtles	may	be	right	on
top	of	each	other.

Think	a	bit	about	what	you	needed	to	do	to	make	this	happen.	You	needed	to	make	a	button	in	the	interface	and	make	a	procedure	that
the	button	uses.	The	button	only	worked	once	you	completed	both	of	these	separate	steps.	In	the	remainder	of	this	tutorial,	you	will	often
have	to	complete	two	or	more	similar	steps	to	add	another	feature	to	the	model.	If	something	doesn’t	appear	to	work	after	you	completed
what	you	thought	is	the	final	step	for	that	new	feature,	continue	to	read	ahead	to	see	if	there	is	still	more	to	do.	After	reading	ahead	for	a
couple	of	paragraphs,	you	should	then	go	back	over	the	directions	to	see	if	there	is	any	step	you	might	have	missed.

Switching	to	tick-based	view	updates

Now	that	we’re	using	the	tick	counter	(with	reset-ticks),	we	should	tell	NetLogo	that	it	only	needs	to	update	the	view	once	per	tick,
instead	of	continuously	updating	it.

Find	the	view	updates	menu.	It’s	above	the	view	and	by	default	says	“continuous”.
Choose	“on	ticks”	instead.

This	makes	your	model	run	faster	and	ensures	a	consistent	appearance	(since	the	updates	will	happen	at	consistent	times).	See	the
Programming	Guide	for	a	fuller	discussion	of	view	updates.

Making	the	go	button

Now	make	a	button	called	“go”.	Follow	the	same	steps	you	used	to	make	the	setup	button,	except:

For	Commands	enter	go	instead	of	setup.
Check	the	“Forever”	checkbox	in	the	edit	dialog.
Check	the	“Disable	until	ticks	start”	checkbox	too.

The	“Forever”	checkbox	makes	the	button	stay	down	once	pressed,	so	its	commands	run	over	and	over	again,	not	just	once.

The	“Disable	until	ticks	start”	prevents	you	from	pressing	go	before	setup.

Then	add	a	go	procedure	to	the	Code	tab:

to	go
		move-turtles
		tick
end

tick	is	a	primitive	that	advances	the	tick	counter	by	one	tick.

But	what	is	move-turtles?	Is	it	a	primitive	(in	other	words,	built-in	to	NetLogo)?	No,	it’s	another	procedure	that	you’re	about	to	add.	So	far,
you	have	introduced	two	procedures	that	you	added	yourself:	setup	and	go.

Add	the	move-turtles	procedure	after	the	goprocedure:

to	go

		move-turtles
		tick
end

to	move-turtles
		ask	turtles	[
				right	random	360
				forward	1
]
end

Note	there	are	no	spaces	around	the	hyphen	in	move-turtles.	In	Tutorial	#2	we	used	red	-	2,	with	spaces,	in	order	to	subtract	two
numbers,	but	here	we	want	move-turtles,	without	spaces.	The	“-”	combines	“move”	and	“turtles”	into	a	single	name.

Here	is	what	each	command	in	the	move-turtles	procedure	does:

ask	turtles	[...]	says	that	each	turtle	should	run	the	commands	in	the	brackets.
right	random	360	is	another	command	that	uses	a	reporter.	First,	each	turtle	picks	a	random	whole	number	between	0	and	359.
(random	doesn’t	include	the	number	you	give	it	as	a	possible	result.)	Then	the	turtle	turns	right	this	number	of	degrees.
forward	1	makes	the	turtle	move	forward	one	step.

Why	couldn’t	we	have	just	written	all	of	these	commands	in	go	instead	of	in	a	separate	procedure?	We	could	have,	but	during	the	course
of	building	your	project,	it’s	likely	that	you’ll	add	many	other	parts.	We’d	like	to	keep	go	as	simple	as	possible,	so	that	it	is	easy	to
understand.	Eventually,	it	will	include	many	other	things	you	want	to	have	happen	as	the	model	runs,	such	as	calculating	something	or
plotting	the	results.	Each	of	these	things	to	do	will	have	its	own	procedure	and	each	procedure	will	have	its	own	unique	name.

The	‘go’	button	you	made	in	the	Interface	tab	is	a	forever	button,	meaning	that	it	will	continually	run	its	commands	until	you	shut	it	off	(by
clicking	on	it	again).	After	you	have	pressed	‘setup’	once,	to	create	the	turtles,	press	the	‘go’	button.	Watch	what	happens.	Turn	it	off,	and
you’ll	see	that	all	the	turtles	stop	in	their	tracks.

Note	that	if	a	turtle	moves	off	the	edge	of	the	world,	it	“wraps”,	that	is,	it	appears	on	the	other	side.	(This	is	the	default	behavior.	It	can	be
changed;	see	the	Topology	section	of	the	Programming	Guide	for	more	information.)

Experimenting	with	commands

We	suggest	you	start	experimenting	with	other	turtle	commands.

Type	commands	into	the	Command	Center	(like	turtles>	set	color	red),	or	add	commands	to	setup,	go,	or	move-turtles.

Note	that	when	you	enter	commands	in	the	Command	Center,	you	must	choose	turtles>,	patches>,	links>,	or	observer>	in	the	popup
menu	on	the	left,	depending	on	which	agents	are	going	to	run	the	commands.	It’s	just	like	using	ask	turtles	or	ask	patches,	but	saves
typing.	You	can	also	use	the	tab	key	to	switch	agent	types,	which	you	might	find	more	convenient	than	using	the	menu.

You	might	try	typing	turtles>	pen-down	into	the	Command	Center	and	then	pressing	the	go	button.

Also,	inside	the	move-turtles	procedure	you	can	try	changing	right	random	360	to	right	random	45.

Play	around.	It’s	easy	and	the	results	are	immediate	and	visible	–	one	of	NetLogo’s	many	strengths.

When	you	feel	you’ve	done	enough	experimenting	for	now,	you’re	ready	to	continue	improving	the	model	you	are	building.

Patches	and	variables

Now	we’ve	got	100	turtles	aimlessly	moving	around,	completely	unaware	of	anything	else	around	them.	Let’s	make	things	a	little	more
interesting	by	giving	these	turtles	a	nice	background	against	which	to	move.

Go	back	to	the	setup	procedure.	We	can	rewrite	it	as	follows:

to	setup
		clear-all
		setup-patches
		setup-turtles
		reset-ticks
end

The	new	definition	of	setup	refers	to	two	new	procedures.	To	define	setup-patches,	add	this:

to	setup-patches
		ask	patches	[set	pcolor	green]
end

The	setup-patches	procedure	sets	the	color	of	every	patch	to	green	to	start	with.	(A	turtle’s	color	variable	is	color;	a	patch’s
is	pcolor.)

The	only	part	remaining	in	our	new	‘setup’	that	is	still	undefined	is	setup-turtles.

Add	this	procedure	too:

to	setup-turtles
		create-turtles	100
		ask	turtles	[setxy	random-xcor	random-ycor]
end

Did	you	notice	that	the	new	setup-turtles	procedure	has	most	of	the	same	commands	as	the	old	setup	procedure?

Switch	back	to	the	Interface	tab.
Press	the	setup	button.

Voila!	A	lush	NetLogo	landscape	complete	with	turtles	and	green	patches	appears:

After	seeing	the	new	setup	procedure	work	a	few	times,	you	may	find	it	helpful	to	read	through	the	procedure	definitions	again.

Turtle	variables

So	we	have	some	turtles	running	around	on	a	landscape,	but	they	aren’t	doing	anything	with	it.	Let’s	add	some	interaction	between	the
turtles	and	the	patches.

We’ll	make	the	turtles	eat	“grass”	(the	green	patches),	reproduce,	and	die.	The	grass	will	gradually	grow	back	after	it	is	eaten.

We’ll	need	a	way	of	controlling	when	a	turtle	reproduces	and	dies.	We’ll	determine	that	by	keeping	track	of	how	much	“energy”	each	turtle
has.	To	do	that	we	need	to	add	a	new	turtle	variable.

You’ve	already	seen	built-in	turtle	variables	like	color.	To	make	a	new	turtle	variable,	we	add	a	turtles-own	declaration	at	the	top	of	the
Code	tab,	before	all	the	procedures.	Call	it	energy:

turtles-own	[energy]

to	go
		move-turtles
		eat-grass
		tick
end

Let’s	use	this	newly	defined	variable	(energy)	to	allow	the	turtles	to	eat.

Switch	to	the	Code	tab.
Rewrite	the	go	procedure	as	follows:

to	go
		move-turtles
		eat-grass
		tick
end

Add	a	new	eat-grass	procedure:

to	eat-grass
		ask	turtles	[
				if	pcolor	=	green	[
						set	pcolor	black
						set	energy	energy	+	10
]

]
end

We	are	using	the	if	command	for	the	first	time.	Look	at	the	code	carefully.	Each	turtle,	when	it	runs	these	commands,	compares	the
value	of	the	patch	color	it	is	on	(pcolor)	to	the	value	for	green.	(A	turtle	has	direct	access	to	the	variables	of	the	patch	it	is	standing	on.)	If
the	patch	color	is	green,	the	comparison	reports	true,	and	only	then	will	the	turtle	run	the	commands	inside	the	brackets	(otherwise	it
skips	them).	The	commands	make	the	turtle	change	the	patch	color	to	black	and	increase	its	own	energy	by	10.	The	patch	turns	black	to
signify	that	the	grass	at	that	spot	has	been	eaten.	And	the	turtle	is	given	more	energy,	from	having	just	eaten.

Next,	let’s	make	the	movement	of	turtles	use	up	some	of	the	turtle’s	energy.

Rewrite	move-turtles	as	follows:

to	move-turtles
		ask	turtles	[
				right	random	360
				forward	1
				set	energy	energy	-	1
]
end

As	each	turtle	wanders,	it	will	lose	one	unit	of	energy	at	each	step.

Switch	to	the	Interface	tab	now	and	press	the	setup	button	and	the	go	button.

You’ll	see	the	patches	turn	black	as	turtles	travel	over	them.

Monitors

Next	you	will	create	two	monitors	in	the	Interface	tab	with	the	toolbar.	(You	make	them	just	like	buttons	and	sliders,	using	the	Add	icon	on
the	toolbar.)	Let’s	make	the	first	monitor	now.

Create	a	monitor	by	clicking	the	Add	icon	on	the	toolbar,	selecting	Monitor	next	to	it,	and	clicking	on	an	open	spot	in
the	Interface.

A	dialog	box	will	appear.

In	the	dialog	type:	count	turtles	(see	image	below).
Press	the	OK	button	to	close	the	dialog.

turtles	is	an	“agentset”,	the	set	of	all	turtles.	count	tells	us	how	many	agents	are	in	that	set.

Let’s	make	the	second	monitor	now:

Create	a	monitor	by	clicking	the	Add	icon	on	the	toolbar,	selecting	Monitor	next	to	it,	and	clicking	on	an	open	spot	in
the	Interface.

A	dialog	box	will	appear.

In	the	Reporter	section	of	the	dialog	box	type:	count	patches	with	[pcolor	=	green] 	(see	image	below).
In	the	Display	name	section	of	the	dialog	box	type:	green	patches
Press	the	OK	button	to	close	the	dialog	box.

Here	we’re	using	count	again	to	see	how	many	agents	are	in	an	agentset.	patches	is	the	set	of	all	the	patches,	but	we	don’t	just	want	to
know	how	many	patches	there	are	total,	we	want	to	know	how	many	of	them	are	green.	That’s	what	with	does;	it	makes	a	smaller
agentset	of	just	those	agents	for	whom	the	condition	in	the	brackets	is	true.	The	condition	is	pcolor	=	green,	so	that	gives	us	just	the
green	patches.

Now	we	have	two	monitors	that	will	report	how	many	turtles	and	green	patches	we	have,	to	help	us	track	what’s	going	on	in	our	model.
As	the	model	runs,	the	numbers	in	the	monitors	will	automatically	change.

Use	the	setup	and	go	buttons	and	watch	the	numbers	in	the	monitors	change.

Switches	and	labels

The	turtles	aren’t	just	turning	the	patches	black.	They’re	also	gaining	and	losing	energy.	As	the	model	runs,	try	using	a	turtle	monitor	to
watch	one	turtle’s	energy	go	up	and	down.

It	would	be	nicer	if	we	could	see	every	turtle’s	energy	all	the	time.	We	will	now	do	exactly	that,	and	add	a	switch	so	we	can	turn	the	extra
visual	information	on	and	off.

Click	on	the	Add	icon	on	the	toolbar	(in	the	Interface	tab).
Select	Switch	from	the	menu	next	to	Add.
Click	on	an	open	spot	in	the	interface.

A	dialog	will	appear.

Into	the	Global	variable	field,	type	show-energy?	Don’t	forget	to	include	the	question	mark	in	the	name.	(See	image
below.)

Now	go	back	to	the	‘go’	procedure	using	the	Code	tab	with	the	Toolbar.
Rewrite	the	eat-grass	procedure	as	follows:

to	eat-grass
		ask	turtles	[
				if	pcolor	=	green	[
						set	pcolor	black
						set	energy	energy	+	10
]
				ifelse	show-energy?
						[set	label	energy]
						[set	label	""]
]
end

The	eat-grass	procedure	introduces	the	ifelse	command.	Look	at	the	code	carefully.	Each	turtle,	when	it	runs	these	new	commands,
checks	the	value	of	show-energy?	(determined	by	the	switch).	If	the	switch	is	on,	comparison	is	true	and	the	turtle	will	run	the	commands
inside	the	first	set	of	brackets.	In	this	case,	it	assigns	the	value	for	the	energy	to	the	label	of	the	turtle.	If	the	comparison	is	false	(the
switch	is	off)	then	the	turtle	runs	the	commands	inside	the	second	set	of	brackets.	In	this	case,	it	removes	the	text	labels	(by	setting	the
label	of	the	turtle	to	be	nothing).

(In	NetLogo,	a	piece	of	text	is	called	a	“string”,	short	for	string	of	characters.	A	string	is	a	sequence	of	letters	or	other	characters,	written
between	double	quotes.	Here	we	have	two	double	quotes	right	next	to	each	other,	with	nothing	in	between	them.	That’s	an	empty	string.
If	a	turtle’s	label	is	an	empty	string,	no	text	is	attached	to	the	turtle.)

Test	this	in	the	Interface	tab,	by	running	the	model	(using	the	setup	and	go	buttons)	switching	the	show-energy?
switch	back	and	forth.

When	the	switch	is	on,	you’ll	see	the	energy	of	each	turtle	go	up	each	time	it	eats	grass.	You’ll	also	see	its	energy	going	down	whenever
it	moves.

More	procedures

Now	our	turtles	are	eating.	Let’s	make	them	reproduce	and	die,	too.	And	let’s	make	the	grass	grow	back.	We’ll	add	all	three	of	these	of
these	behaviors	now,	by	making	three	separate	procedures,	one	for	each	behavior.

Go	to	the	Code	tab.
Rewrite	the	go	procedure	as	follows:

to	go
		move-turtles
		eat-grass
		reproduce
		check-death
		regrow-grass
		tick
end

Add	the	procedures	for	reproduce,	check-death,	and	regrow-grass	as	shown	below:

to	reproduce
		ask	turtles	[
				if	energy	>	50	[
						set	energy	energy	-	50
						hatch	1	[set	energy	50]
]
]
end

to	check-death
		ask	turtles	[
				if	energy	<=	0	[die]
]
end

to	regrow-grass
		ask	patches	[
				if	random	100	<	3	[set	pcolor	green]
]
end

Each	of	these	procedures	uses	the	if	command.	Each	turtle,	when	it	runs	check-death	it	will	check	to	see	if	its	energy	is	less	or	equal	to
0.	If	this	is	true,	then	the	turtle	is	told	to	die	(die	is	a	NetLogo	primitive).

When	each	turtle	runs	reproduce,	it	checks	the	value	of	the	turtle’s	energy	variable.	If	it	is	greater	than	50,	then	the	turtle	runs	the
commands	inside	the	first	set	of	brackets.	In	this	case,	it	decreases	the	turtle’s	energy	by	50,	then	‘hatches’	a	new	turtle	with	an	energy	of
50.	The	hatch	command	is	a	NetLogo	primitive	which	looks	like	this:	hatch	number	[commands].	This	turtle	creates	number	new	turtles,
each	identical	to	its	parent,	and	asks	the	new	turtle(s)	that	have	been	hatched	to	run	commands.	You	can	use	the	commands	to	give	the
new	turtles	different	colors,	headings,	or	whatever.	In	our	case	we	run	one	command.	We	set	the	energy	for	the	newly	hatched	turtle	to
be	50.

When	each	patch	runs	regrow-grass	it	will	check	to	see	if	a	random	integer	from	0	to	99	is	less	than	3.	If	so,	the	patch	color	is	set	to
green.	This	will	happen	3%	of	the	time	(on	average)	for	each	patch,	since	there	are	three	numbers	(0,	1,	and	2)	out	of	100	possible	that
are	less	than	3.

Switch	to	the	Interface	tab	now	and	press	the	setup	and	go	buttons.

You	should	see	some	interesting	behavior	in	your	model	now.	Some	turtles	die	off,	some	new	turtles	are	created	(hatched),	and	some
grass	grows	back.	This	is	exactly	what	we	set	out	to	do.

If	you	continue	to	watch	your	monitors	in	your	model,	you	will	see	that	the	count	turtles	and	green	patches	monitors	both	fluctuate.	Is
this	pattern	of	fluctuation	predictable?	Is	there	a	relationship	between	the	variables?

It’d	be	nice	if	we	had	a	easier	way	to	track	the	changes	in	the	model	behavior	over	time.	NetLogo	allows	us	to	plot	data	as	we	go	along.
That	will	be	our	next	step.

Plotting

To	make	plotting	work,	we’ll	need	to	create	a	plot	in	the	Interface	tab	and	put	some	commands	inside	it.

The	commands	we	put	in	the	plots	will	run	automatically	when	our	setup	procedure	calls	reset-ticks	and	when	our	go	procedure	calls
tick.

Create	a	plot	by	clicking	the	Add	icon	on	the	toolbar,	selecting	Plot	next	to	it,	and	clicking	on	an	open	spot	in	the
Interface.
Set	its	Name	to	“Totals”	(see	image	below)
Set	the	X	axis	label	to	“time”
Set	the	Y	axis	label	to	“totals”
Change	the	name	of	the	“default”	pen	to	“turtles”.
Enter	plot	count	turtles	under	Pen	Update	Commands.
Press	the	“Add	Pen”	button.
Change	the	name	of	the	new	pen	to	“grass”.

Enter	plot	count	patches	with	[pcolor	=	green] 	under	Pen	Update	Commands.

When	you’re	done,	the	dialog	should	look	like	this:

Press	OK	in	the	Plot	dialog	to	finish	editing.

Note	that	when	you	create	the	plot	you	can	also	set	the	minimum	and	maximum	values	on	the	X	and	Y	axes.	You’ll	want	to	leave	the
“Auto	Scale”	checkbox	checked,	so	that	if	anything	you	plot	exceeds	the	minimum	and	maximum	values	for	the	axes,	the	axes	will
automatically	grow	so	you	can	see	all	the	data.

Note	that	we	used	the	plot	command	to	add	the	next	point	to	a	plot.	This	command	moves	the	current	plot	pen	to	the	point	that	has	an	X
coordinate	equal	to	1	greater	than	the	previously	plotted	X	coordinate	and	a	Y	coordinate	equal	to	the	value	given	in	the	plot	command
(in	the	first	case,	the	number	of	turtles,	and	in	the	second	case,	the	number	of	green	patches).	As	the	pens	move	they	each	draw	a	line.

Setup	and	run	the	model	again.

You	can	now	watch	the	plot	being	drawn	as	the	model	is	running.	Your	plot	should	have	the	general	shape	of	the	one	below,	though	your
plot	might	not	look	exactly	the	same.

Remember	that	we	left	“Auto	Scale?”	on.	This	allows	the	plot	to	readjust	itself	when	it	runs	out	of	room.

If	you	forget	which	pen	is	which,	you	can	edit	the	plot	and	check	the	“Show	legend?”	checkbox.

You	might	try	running	the	model	several	times	to	see	what	aspects	of	the	plot	are	the	same	and	which	are	different	from	run	to	run.

Tick	counter

To	make	comparisons	between	plots	from	one	model	run	and	another,	it	is	often	useful	to	do	the	comparison	for	the	same	length	of
model	run.	Learning	how	to	stop	or	start	an	action	at	a	specific	time	can	help	make	this	happen	by	stopping	the	model	at	the	same	point
each	model	run.	Keeping	track	of	how	many	times	the	go	procedure	is	run	is	a	useful	way	to	cue	these	actions.	That’s	what	the	tick
counter	does.

You’re	already	using	the	tick	counter	in	your	model,	with	the	reset-ticks	and	tick	commands,	which	also	trigger	plotting.

You	can	also	use	the	tick	counter	for	other	things,	such	as	to	set	a	limit	on	the	total	length	of	a	run.

Change	the	go	procedure:

to	go
		if	ticks	>=	500	[stop]
		move-turtles
		eat-grass
		check-death
		reproduce
		regrow-grass
		tick
end

Now	setup	and	run	the	model.

The	graph	and	model	won’t	keep	running	forever.	They	should	stop	automatically	when	the	tick	counter	in	the	Interface	tab’s	toolbar
reaches	500.

The	tick	command	advances	the	tick	counter	by	1.	ticks	is	a	reporter	which	reports	the	current	value	of	the	tick	counter.	reset-ticks,	in
your	setup	procedure,	takes	care	of	restarting	the	tick	counter	at	0	when	a	new	run	is	set	up	and	ready	to	begin.

Some	more	details

First,	instead	of	always	using	100	turtles,	you	can	have	a	varying	number	of	turtles.

Create	a	slider	named	“number”:	click	the	Add	icon	on	the	toolbar,	select	Slider	next	to	it,	and	click	on	an	open	spot	in
the	interface.
Try	changing	the	minimum	and	maximum	values	in	the	slider.
Then	inside	of	setup-turtles,	instead	of	create-turtles	100	you	can	type:

to	setup-turtles
		create-turtles	number	[setxy	random-xcor	random-ycor]
end

Test	this	change	and	compare	how	having	more	or	fewer	turtles	initially	affect	the	plots	over	time.

Second,	wouldn’t	it	be	nice	to	adjust	the	energy	the	turtles	gain	and	lose	as	they	eat	grass	and	reproduce?

Make	a	slider	called	energy-from-grass.
Make	another	slider	called	birth-energy.
Then,	inside	of	eat-grass,	make	this	change:

to	eat-grass
		ask	turtles	[
				if	pcolor	=	green	[
						set	pcolor	black
						set	energy	(energy	+	energy-from-grass)
]
				ifelse	show-energy?
						[set	label	energy]
						[set	label	""]
]
end

And,	inside	of	reproduce,	make	this	change:

to	reproduce
		ask	turtles	[
				if	energy	>	birth-energy	[
						set	energy	energy	-	birth-energy
						hatch	1	[set	energy	birth-energy]
]
]
end

Finally,	what	other	slider	could	you	add	to	vary	how	often	grass	grows	back?	Are	there	rules	you	can	add	to	the	movement	of	the	turtles
or	to	the	newly	hatched	turtles	that	happen	only	at	certain	times?	Try	writing	them.

What’s	next?

So	now	you	have	a	simple	model	of	an	ecosystem.	Patches	grow	grass.	Turtles	wander,	eat	the	grass,	reproduce,	and	die.

You	have	created	an	interface	containing	buttons,	sliders,	switches,	monitors,	and	a	plot.	You’ve	even	written	a	series	of	procedures	to
give	the	turtles	something	to	do.

That’s	where	this	tutorial	leaves	off.

If	you’d	like	to	look	at	some	more	documentation	about	NetLogo,	the	Interface	Guide	section	of	the	manual	walks	you	through	every
element	of	the	NetLogo	interface	in	order	and	explains	its	function.	For	a	detailed	description	and	specifics	about	writing	procedures,
refer	to	the	Programming	Guide.	All	of	the	primitives	are	listed	and	described	in	the	NetLogo	Dictionary.

Also,	you	can	continue	experimenting	with	and	expanding	this	model	if	you’d	like,	experimenting	with	different	variables	and	behaviors	for
the	agents.

Alternatively,	you	may	want	to	revisit	the	first	model	in	the	tutorial,	Wolf	Sheep	Predation.	This	is	the	model	you	used	in	Tutorial	#1.	In
the	Wolf	Sheep	Predation	model,	you	saw	sheep	move	around,	consume	resources	that	are	replenished	occasionally	(grass),	reproduce
under	certain	conditions,	and	die	if	they	ran	out	of	resources.	But	that	model	had	another	type	of	creature	moving	around	–	wolves.	The
addition	of	wolves	requires	some	additional	procedures	and	some	new	primitives.	Wolves	and	sheep	are	two	different	“breeds”	of	turtle.
To	see	how	to	use	breeds,	study	Wolf	Sheep	Predation.

Alternatively,	you	can	look	at	other	models	(including	the	many	models	in	the	Code	Examples	section	of	the	Models	Library)	or	even	go
ahead	and	build	your	own	model.	You	don’t	even	have	to	model	anything.	It	can	be	interesting	just	to	watch	patches	and	turtles	forming
patterns,	to	try	to	create	a	game	to	play,	or	whatever.

Hopefully	you	have	learned	some	things,	both	in	terms	of	the	NetLogo	language	and	about	how	to	go	about	building	a	model.	The	entire
set	of	procedures	that	was	created	above	is	shown	below.

Appendix:	Complete	code

The	complete	model	is	also	available	in	NetLogo’s	Models	Library,	in	the	Code	Examples	section.	It’s	called	“Tutorial	3”.

Notice	that	this	listing	is	full	of	“comments”,	which	begin	with	semicolons.	Comments	let	you	mix	an	explanation	the	code	right	in	with	the
code	itself.	You	might	use	comments	to	help	others	understand	your	model,	or	you	might	use	them	as	notes	to	yourself.

In	the	Code	tab,	comments	are	gray,	so	your	eyes	can	pick	them	out	easily.

turtles-own	[energy]	;;	for	keeping	track	of	when	the	turtle	is	ready
																					;;	to	reproduce	and	when	it	will	die

to	setup
		clear-all
		setup-patches
		setup-turtles
		reset-ticks
end

to	setup-patches
		ask	patches	[set	pcolor	green]
end

to	setup-turtles
		create-turtles	number				;;	uses	the	value	of	the	number	slider	to	create	turtles
		ask	turtles	[setxy	random-xcor	random-ycor]
end

to	go
		if	ticks	>=	500	[stop]		;;	stop	after	500	ticks
		move-turtles
		eat-grass
		check-death
		reproduce
		regrow-grass
		tick																				;;	increase	the	tick	counter	by	1	each	time	through
end

to	move-turtles
		ask	turtles	[
				right	random	360
				forward	1
				set	energy	energy	-	1		;;	when	the	turtle	moves	it	looses	one	unit	of	energy
]
end

to	eat-grass
		ask	turtles	[
				if	pcolor	=	green	[
						set	pcolor	black
											;;	the	value	of	energy-from-grass	slider	is	added	to	energy
						set	energy	energy	+	energy-from-grass
]
		ifelse	show-energy?
				[set	label	energy]	;;	the	label	is	set	to	be	the	value	of	the	energy
				[set	label	""]					;;	the	label	is	set	to	an	empty	text	value
]
end

to	reproduce
		ask	turtles	[
				if	energy	>	birth-energy	[
						set	energy	energy	-	birth-energy		;;	take	away	birth-energy	to	give	birth
						hatch	1	[set	energy	birth-energy]	;;	give	this	birth-energy	to	the	offspring
]
]
end

to	check-death
		ask	turtles	[

				if	energy	<=	0	[die]	;;	removes	the	turtle	if	it	has	no	energy	left
]
end

to	regrow-grass
		ask	patches	[;;	3	out	of	100	times,	the	patch	color	is	set	to	green
				if	random	100	<	3	[set	pcolor	green]
]
end

Interface	Guide
NetLogo	6.4.0	User	Manual

This	section	of	the	manual	explains	the	function	of	each	element	in	NetLogo’s	user	interface.

In	NetLogo,	you	have	the	choice	of	viewing	models	found	in	the	Models	Library,	adding	to	existing	models,	or	creating
your	own	models.	The	NetLogo	interface	was	designed	to	meet	all	these	needs.

The	interface	can	be	divided	into	two	main	parts:	NetLogo	menus,	and	the	main	NetLogo	window.	The	main	window	is
divided	into	tabs.

Menus

On	a	Mac,	if	you	are	running	the	NetLogo	application,	the	menu	bar	is	located	at	the	top	of	the	screen.	On	other
platforms,	the	menu	bar	is	found	at	the	top	of	the	NetLogo	window.

The	functions	available	from	the	menus	in	the	menubar	are	listed	in	the	following	chart.

Chart:	NetLogo	menus

File

New Starts	a	new	model.

Open… Opens	any	NetLogo	model	on	your	computer.

Models	Library A	collection	of	demonstration	models.

Recent	Files Re-opens	any	previously	model	opened	with	"File	->	Open"

Save Save	the	current	model,	or	the	currently	selected	source	file.

Save	As… Save	the	current	model,	or	the	currently	selected	source	file,	using	a	different	name.

Save	All Save	the	current	model	and	all	open	source	files.	This	option	is	only	available	when	one	or
more	source	files	are	open.

Upload	to
Modeling
Commons

Uploads	the	model	to	Modeling	Commons.	See	Modeling	Commons

Save	As
NetLogo
Web…

Saves	your	model	as	an	HTML	web	page	that	runs	using	NetLogo	Web.	Note	the	version	of
NetLogo	Web	used	is	bundled	with	NetLogo,	so	it	may	not	be	up	to	date	with	the	latest
changes	and	features.	You	can	also	upload	your	model	to	NetLogo	Web	and	export	it	to
HTML	from	there	to	get	the	most	recent	updates	included.

Export	World… Saves	all	variables,	the	current	state	of	all	turtles	and	patches,	the	drawing	,	the	plots,	the
output	area	and	the	random	state	information	to	a	file.

Export	Plot… Saves	the	data	in	a	plot	to	a	file.

Export	All
Plots… Saves	the	data	in	all	the	plots	to	a	file.

Export	View… Save	a	picture	of	the	current	view	(2D	or	3D)	to	a	file	(in	PNG	format).

Export
Interface… Save	a	picture	of	the	current	Interface	tab.	(in	PNG	format)

https://netlogoweb.org
https://netlogoweb.org/whats-new
https://netlogoweb.org/docs/faq#loading
https://netlogoweb.org/docs/faq#saving

Export
Output… Save	the	contents	of	the	output	area	or	the	output	section	of	the	command	center	to	a	file.

Export	Code… Save	the	model's	code	to	an	HTML	file,	preserving	colors.

Import	World… Load	a	file	that	was	saved	by	Export	World.

Import	Patch
Colors… Load	an	image	into	the	patches;	see	the	import-pcolors	command.

Import	Patch
Colors	RGB… Load	an	image	into	the	patches	using	RGB	colors;	see	the	import-pcolors-rgb	command.

Import
Drawing… Load	an	image	into	the	drawing,	see	the	import-drawing	command.

Import	HubNet
Client
Interface…

Load	the	interface	from	another	model	into	the	HubNet	Client	Editor.

Print… Sends	the	contents	of	the	currently	showing	tab	to	your	printer.

Quit Exits	NetLogo.	On	a	Mac,	this	item	is	on	the	NetLogo	menu	instead.

Edit

Undo Undo	last	text	editing	action	you	performed.

Redo Redo	last	undo	action	you	performed.

Cut Cuts	out	or	removes	the	selected	text	and	temporarily	saves	it	to	the	clipboard.

Copy Copies	the	selected	text.

Paste Places	the	clipboard	text	where	cursor	is	currently	located.

Delete Deletes	selected	text.

Select	All Select	all	the	text	in	the	active	window.

Find… Finds	a	word	or	sequence	of	characters	within	the	Info	or	Code	tabs.

Find	Next Find	the	next	occurrence	of	the	word	or	sequence	you	last	used	Find	with.

Comment	/	
Uncomment

Used	in	the	Code	tab	to	add	or	remove	semicolons	from	code	(semicolons	are	used	in
NetLogo	code	to	indicate	comments).

Shift	Left	/	Shift
Right Used	in	the	Code	tab	to	change	the	indentation	level	of	code.

Show	Usage Used	in	the	Code	tab	to	show	all	usages	of	variable	name	or	primitive	that	has	been	right-
clicked.

Jump	to
Declaration

Used	in	the	Code	tab	to	show	where	in	the	file	a	variable	name	that	has	been	right-clicked	is
declared.

Format Used	in	the	Code	tab	to	correct	the	indentation	of	the	currently	selected	code.

Snap	to	Grid Available	only	in	the	Interface	Tab.	When	enabled	new	widgets	stay	on	a	5	pixel	grid	so	it	is
easier	to	line	them	up.	(Note:	this	feature	is	disabled	when	zoomed	in	or	out.)

Convert	from
5.3.1	to	6.0

Available	only	in	an	".nls"	code	tab.	Treats	the	code	in	this	tab	as	though	it	were	written	in
5.3.1	and	converts	it	to	run	in	NetLogo	6.	Note	that	this	will	not	take	into	account	code
defined	in	the	main	code	tab.	"Undo"	doesn't	take	this	operation	into	account,	so	you	won't
want	to	save	unless	you're	satisfied	with	the	changes.

Tools

Preferences… Opens	the	preferences	dialog,	where	you	can	customize	various	NetLogo	settings.	On	a
Mac,	this	item	is	on	the	NetLogo	menu	instead.

Extensions… Opens	the	Extension	Manager,	where	you	can	discover	and	manage	Extensions.	See	the
Extension	Manager	Guide	for	more	information.

Halt
Stops	all	running	code,	including	buttons	and	the	command	center.	(Warning:	since	the	code
is	interrupted	in	the	middle	of	whatever	it	was	doing,	you	may	get	unexpected	results	if	you
try	to	continue	running	the	model	without	first	pressing	"setup"	to	start	the	model	run	over.)

Globals
Monitor Displays	the	values	of	all	global	variables.

Turtle	Monitor
Displays	the	values	of	all	of	the	variables	in	a	particular	turtle.	You	can	can	also	edit	the
values	of	the	turtle's	variables	and	issue	commands	to	the	turtle.	(You	can	also	open	a	turtle
monitor	via	the	View;	see	the	View	section	below.)

Patch	Monitor
Displays	the	values	of	all	of	the	variables	in	a	particular	patch.	You	can	can	also	edit	the
values	of	the	patch's	variables	and	issue	commands	to	the	patch.	(You	can	also	open	a
patch	monitor	via	the	View;	see	the	View	section	below.)

Link	Monitor
Displays	the	values	of	all	of	the	variables	in	a	particular	link.	You	can	can	also	edit	the	values
of	the	link's	variables	and	issue	commands	to	the	link.	(You	can	also	open	a	link	monitor	via
the	View;	see	the	View	section	below.)

Close	All
Agent	Monitors Closes	all	open	agent	monitor	windows.

Close	Monitors
for	Dead
Agents

Closes	all	open	agent	monitor	windows	targeting	dead	agents.

Hide/Show
Command
Center

Makes	the	command	center	visible	or	invisible.	(Note	that	the	command	center	can	also	be
shown	or	hidden,	or	resized,	with	the	mouse.)	This	option	is	only	available	when	the
Interface	Tab	is	active

3D	View Opens	the	3D	view.	See	the	Views	section	of	the	Interface	Tab	Guide	for	more	information.

Color
Swatches Opens	the	Color	Swatches.	See	the	Color	Section	of	the	Programming	Guide	for	details.

Turtle	Shapes
Editor Draw	turtle	shapes.	See	the	Shapes	Editor	Guide	for	more	information.

Link	Shapes
Editor

Draw	link	shapes.	See	the	Shapes	Editor	Guide	for	more	information.

BehaviorSpace Runs	the	model	over	and	over	with	different	settings.	See	the	BehaviorSpace	Guide	for	more
information.

System
Dynamics
Modeler

Opens	the	System	Dynamics	Modeler.	See	the	System	Dynamics	Modeler	Guide	for	more
details.

Preview
Commands
Editor

Allows	for	easy	editing	of	the	commands	sequence	used	to	create	preview	images	for
models.	Gives	a	way	to	specify	what	code	will	be	used	(or	specify	that	the	image	is	manually
made)	and	preview	the	resulting	image.

HubNet	Client
Editor Opens	the	HubNet	Client	Editor.	See	the	HubNet	Authoring	Guide	for	more	details.

HubNet
Control	Center Disabled	if	no	HubNet	activity	is	open.	See	the	HubNet	Guide	for	more	information.

Zoom

Larger
Increase	the	overall	screen	size	of	the	model.	Useful	on	large	monitors	or	when	using	a
projector	in	front	of	a	group.	Keyboard	shortcut:	Mac	Command	=,	On	Windows	or	Linux,
Control	=.

Normal	Size Reset	the	screen	size	of	the	model	to	the	normal	size.	Keyboard	shortcut:	Mac	Command	0,
On	Windows	or	Linux,	Control	0.

Smaller Decrease	the	overall	screen	size	of	the	model.	Keyboard	shortcut:	Mac	Command	-,	On
Windows	or	Linux,	Control	-.

Tabs
This	menu	offers	keyboard	shortcuts	for	each	of	the	tabs.	On	a	Mac,	it's	Command	1	through
Command	3.	On	Windows	or	Linux,	it's	Control	1	through	Control	3.	Additional	numbers	are
used	for	tabs	containing	".nls"	files.

Help

Look	Up	In
Dictionary

Opens	a	browser	with	the	dictionary	entry	for	the	selected	command	or	reporter.	(You	may
also	use	the	F1	key	for	this.)

NetLogo	User
Manual Opens	this	manual	in	a	web	browser.

NetLogo
Dictionary Opens	the	NetLogo	Dictionary	in	a	web	browser.

NetLogo	Users
Group Opens	the	NetLogo	Users	Group	site	in	a	web	browser.

Introduction	to
Agent-Based
Modeling

Opens	the	MIT	Press	page	for	"Introduction	to	Agent-Based	Modeling"	(by	Uri	Wilensky	and
William	Rand)	in	a	web	browser.

Donate Opens	the	NetLogo	donation	page	in	a	web	browser.

About	NetLogo
6.4.0…

Information	on	the	current	NetLogo	version	you	are	running.	On	a	Mac,	this	menu	item	is	on
the	NetLogo	menu	instead.

Tabs

At	the	top	of	NetLogo’s	main	window	are	three	tabs	labeled	“Interface”,	“Info”	and	“Code”.	Only	one	tab	at	a	time	can	be
visible,	but	you	can	switch	between	them	by	clicking	on	the	tabs	at	the	top	of	the	window.

Right	below	the	row	of	tabs	is	a	toolbar	containing	a	row	of	controls.	The	controls	available	vary	from	tab	to	tab.

International	Usage

Character	sets

NetLogo	always	saves	and	loads	models	in	the	UTF-8	character	encoding,	which	includes	a	wide	range	of	international
characters.

If	you	are	in	a	locale	other	than	U.S.	English,	let	us	know	if	you	have	any	trouble	using	your	local	character	set.

The	Transition	Guide	has	advice	on	converting	models	containing	international	characters	from	earlier	NetLogo	versions.

Languages

Most	of	NetLogo’s	GUI,	and	some	of	its	error	messages,	are	now	“internationalized”.	This	means	that	it	is	now	possible
to	display	NetLogo	in	different	languages.

We	say	“possible”	here	because	the	current	release	of	NetLogo	only	supports	English,	Spanish,	Chinese,	Russian,	and
Japanese.

The	work	on	internationalization	is	not	complete.	We	are	asking	for	help	from	the	user	community	in	helping	us	localize
items	such	as	the	menus	and	error	messages.

Default	language

By	default,	NetLogo	uses	the	same	language	your	operating	system	is	set	to,	if	available.	(If	unavailable,	you	get
English.)

You	can	record	a	preference	for	a	different	language	by	changing	the	“User	Interface	Language”	option	in	the
preferences	dialog.	Once	a	new	language	is	chosen	you	will	have	to	restart	NetLogo.

Support	for	translators

We	hope	NetLogo	will	become	available	in	many	different	languages.	If	you	would	like	to	translate	NetLogo	to	your
language,	see	this	wiki	page	for	instructions.

https://github.com/NetLogo/NetLogo/wiki/Localization

Interface	Tab	Guide
NetLogo	6.4.0	User	Manual

The	Interface	tab	is	where	you	watch	your	model	run.	It	also	has	tools	you	can	use	to	inspect	and	alter	what’s	going	on
inside	the	model.

When	you	first	open	NetLogo,	the	Interface	tab	is	empty	except	for	the	view,	where	the	turtles	and	patches	appear,	and
the	Command	Center,	which	allows	you	to	issue	NetLogo	commands.

Working	with	interface	elements

The	toolbar	on	the	Interface	tab	contains	buttons	that	let	you	edit,	delete,	and	create	items	in	the	Interface	tab	and	a
menu	that	lets	you	select	different	interface	items	(such	as	buttons	and	sliders).

The	buttons	in	the	toolbar	are	described	below.

Adding:	To	add	an	interface	element,	select	the	element	from	the	drop	down	menu.	Note	that	the	Add	button	stays
down.	Then	click	on	the	white	area	below	the	toolbar.	(If	the	menu	is	already	showing	the	right	type,	you	can	just	press
the	Add	button	instead	of	using	the	menu	again.)

Selecting:	To	select	an	interface	element,	drag	a	rectangle	around	it	with	your	mouse.	A	gray	border	with	black	handles
will	appear	around	the	element	to	show	it	is	selected.

Selecting	multiple	items:	You	can	select	multiple	interface	elements	at	the	same	time	by	including	them	in	the
rectangle	you	drag.	If	multiple	elements	are	selected,	one	of	them	is	the	“key”	item,	which	means	that	if	you	use	the
“Edit”	or	“Delete”	buttons	on	the	Interface	Toolbar,	only	the	key	item	is	affected.	The	key	item’s	border	is	darker	gray.

Unselecting:	To	unselect	all	interface	elements,	click	the	mouse	on	the	white	background	of	the	Interface	tab.	To
unselect	an	individual	element,	right-click	the	element	and	choose	“Unselect”	from	the	popup	menu.

Editing:	To	change	the	characteristics	of	an	interface	element,	select	the	element,	then	press	the	“Edit”	button	on	the
Interface	toolbar.	You	may	also	double	click	the	element	once	it	is	selected.	A	third	way	to	edit	an	element	is	to	right-
click	it	and	choose	“Edit”	from	the	popup	menu.	If	you	use	this	last	method,	it	is	not	necessary	to	select	the	element	first.

Moving:	Select	the	interface	element,	then	drag	it	with	your	mouse	to	its	new	location.	If	you	hold	down	the	shift	key
while	dragging,	the	element	will	move	only	straight	up	and	down	or	straight	left	and	right.

Resizing:	Select	the	interface	element,	then	drag	the	black	“handles”	in	the	selection	border.

Deleting:	Select	the	element	or	elements	you	want	to	delete,	then	press	the	“Delete”	button	on	the	Interface	toolbar.
You	may	also	delete	an	element	by	right-clicking	it	and	choosing	“Delete”	from	the	popup	menu.	If	you	use	this	latter
method,	it	is	not	necessary	to	select	the	element	first.

To	learn	more	about	the	different	kinds	of	interface	elements,	refer	to	the	chart	below.

Chart:	Interface	Toolbar

Icon	&	Name Description

A	button	is	either	once	or	forever.	When	you	click	on	a	once	button,	it	executes	its	instructions
once.	The	forever	button	executes	the	instructions	over	and	over,	until	you	click	on	the	button
again	to	stop	the	action.	If	you	have	assigned	an	action	key	to	the	button,	pressing	the
corresponding	keyboard	key	will	act	just	like	a	button	press	when	the	button	is	in	focus.	Buttons
with	action	keys	have	a	letter	in	the	upper	right	corner	of	the	button	to	show	what	the	action	key	is.
If	the	keyboard	focus	is	in	another	interface	element	such	as	the	Command	Center,	pressing	the
action	key	won't	trigger	the	button.	The	letter	in	the	upper	right	hand	corner	of	the	button	will	be
dimmed	in	this	situation.	To	enable	action	keys,	click	in	the	white	background	of	the	Interface	tab.

Sliders	are	global	variables,	which	are	accessible	by	all	agents.	They	are	used	in	models	as	a
quick	way	to	change	a	variable	without	having	to	recode	the	procedure	every	time.	Instead,	the
user	moves	the	slider	to	a	value	and	observes	what	happens	in	the	model.

Switches	are	a	visual	representation	for	a	true/false	global	variable.	You	may	set	the	variable	to
either	on	(true)	or	off	(false)	by	flipping	the	switch.

Choosers	let	you	choose	a	value	for	a	global	variable	from	a	list	of	choices,	presented	in	a	drop
down	menu.	The	choices	may	be	strings,	numbers,	booleans,	or	lists.

Input	Boxes	are	global	variables	that	contain	strings	or	numbers.	The	model	author	chooses	what
types	of	values	you	can	enter.	Input	boxes	can	be	set	to	check	the	syntax	of	a	string	for	commands
or	reporters.	Number	input	boxes	read	any	type	of	constant	number	reporter	which	allows	a	more
open	way	to	express	numbers	than	a	slider.	Color	input	boxes	offer	a	NetLogo	color	chooser.

Monitors	display	the	value	of	any	reporter.	The	reporter	could	be	a	variable,	a	complex	reporter,	or
a	call	to	a	reporter	procedure.	Monitors	automatically	update	several	times	per	second.

Plots	show	data	the	model	is	generating.

The	output	area	is	a	scrolling	area	of	text	which	can	be	used	to	create	a	log	of	activity	in	the	model.
A	model	may	only	have	one	output	area.

Notes	lets	you	add	informative	text	labels	to	the	Interface	tab.	The	contents	of	notes	do	not	change
as	the	model	runs.

The	other	controls	in	the	Interface	toolbar	allow	you	to	control	the	view	updates	and	various	other	model	properties.

The	slider	lets	you	control	how	fast	the	model	runs.	Slower	can	be	valuable	since	some	models	run	so	fast	they’re
hard	to	follow.	You	can	also	fast-forward	the	model	by	moving	the	slider	to	the	right,	reducing	the	frequency	of
view	updates.
The	view	updates	checkbox	controls	whether	view	updates	happen	at	all.
The	update	mode	menu	allows	you	to	switch	between	continuous	and	tick-based	updates.
The	“Settings…”	button	allows	you	to	change	model	settings.

“Continuous”	updates	means	that	NetLogo	updates	(that	is,	redraws)	the	view	many	times	a	second,	regardless	of	what
is	going	on	in	the	model.	“Tick-based”	updates	means	that	the	view	only	updates	when	the	tick	counter	advances.	(For	a
fuller	discussion	of	view	updates,	see	the	Programming	Guide.)

The	2D	and	3D	views

The	large	black	square	in	the	Interface	tab	is	the	2D	view.	It’s	a	visual	representation	of	the	NetLogo	world	of	turtles	and
patches.	Initially	it’s	all	black	because	the	patches	are	black	and	there	are	no	turtles	yet.	You	can	open	the	3D	View,	an
alternate	visual	representation	of	the	world,	by	right	clicking	(ctrl-clicking	on	Mac)	on	the	View	and	choosing	“Switch	to
3D	View”	(this	option	is	also	available	in	the	“Tools”	menu).

There	are	a	number	of	settings	for	the	View	(accessible	by	editing	the	View,	or	by	pressing	the	“Settings…”	button	in	the
Interface	Toolbar):

Notice	that	the	settings	are	broken	up	into	three	groups.	There	are	world,	view,	and	ticks	counter	settings.	World	settings
affect	the	properties	of	the	world	that	the	turtles	live	in	(changing	them	may	require	resetting	the	world).	View	and	tick
counter	settings	only	affect	the	appearance,	changing	them	will	not	affect	the	outcome	of	the	model.

The	world	settings	allow	you	to	define	the	boundaries	and	topology	of	the	world.	At	the	top	of	the	left	side	of	the	world
panel	you	can	choose	a	location	for	the	origin	of	the	world	either	“Center”,	“Corner”,	“Edge”,	or	“Custom”.	By	default	the
world	has	a	center	configuration	where	(0,0)	is	at	the	center	of	the	world	and	you	define	the	number	of	patches	from	the
center	to	the	right	and	left	boundaries	and	the	number	of	patches	from	the	center	to	the	top	and	bottom	boundaries.	For
example:	if	you	set	Max-Pxcor	=	10,	then	Min-Pxcor	will	automatically	be	set	to	-10,	thus	there	are	10	patches	to	the	left
of	the	origin	and	10	patches	to	the	right	of	patch	0	0,	for	a	total	of	21	patches	in	each	row.

A	Corner	configuration	allows	you	to	define	the	location	of	the	origin	as	one	of	the	corners	of	the	world,	upper	left,	upper
right,	lower	left,	or	lower	right.	Then	you	define	the	far	boundary	in	the	x	and	y	directions.	For	example	if	you	choose	to
put	the	origin	in	the	lower	left	corner	of	the	world	you	define	the	right	and	top	(positive)	boundaries.

Edge	mode	allows	you	to	place	the	origin	along	one	of	the	edges	(x	or	y)	then	define	the	far	boundary	in	that	direction
and	both	boundaries	in	the	other.	For	example	if	you	select	edge	mode	along	the	bottom	of	the	world,	you	must	also
define	the	top	boundary,	as	well	as	the	left	and	the	right.

Finally,	Custom	mode	allows	you	to	place	the	origin	at	any	location	in	the	world,	though	patch	0	0	must	still	exist	in	the
world.

As	you	change	the	settings	you	will	notice	that	the	changes	you	make	are	reflected	in	the	preview	on	the	right	side	of
the	panel	which	shows	the	origin	and	the	boundaries.	The	width	and	height	of	the	world	are	displayed	below	the
preview.

Also	below	the	preview	there	are	two	checkboxes,	the	world	wrap	settings.	These	allow	you	to	control	the	topology	of
the	world.	Notice	when	you	click	the	check	boxes	the	preview	indicates	which	directions	allow	wrapping,	and	the	name
of	the	topology	is	displayed	next	to	the	world	dimensions.	See	the	Topology	section	of	the	Programming	Guide	for	more
information.

The	view	settings	allow	you	to	customize	the	look	of	the	view	without	changing	the	world.	Changing	view	settings	will
never	force	a	world	reset.	To	change	the	size	of	the	2D	View	adjust	the	“Patch	Size”	setting,	measured	in	pixels.	This
does	not	change	the	number	of	patches,	only	how	large	the	patches	appear	in	the	2D	View.	(Note	that	the	patch	size
does	not	affect	the	3D	View,	as	you	can	simply	make	the	3D	View	larger	by	making	the	window	larger.)

The	font	size	setting	lets	you	control	the	size	of	turtle,	patch,	and	link	labels.

The	frame	rate	controls	how	often	the	view	gets	updated.	This	can	have	a	dramatic	effect	on	the	default	speed	at	which
a	model	runs.	For	more	details,	see	the	view	updates	section	of	the	Programming	Guide.

The	“Smooth	edges”	checkbox	controls	the	use	of	anti-aliasing	in	the	3D	view	only	and	only	appears	when	editing	from

the	3D	view.	Unchecking	it	makes	lines	appear	more	jagged	but	may	speed	up	rendering.

Tick	counter	settings	control	the	appearance	of	the	tick	counter	which	is	visible	(or	not)	in	the	view	control	strip.

Turtle,	patch	and	link	monitors	are	easily	available	through	the	View,	just	right-click	on	the	turtle	or	patch	you	want	to
inspect,	and	choose	“inspect	turtle	…”	or	“inspect	patch	…”	from	the	popup	menu.	You	can	also	watch,	follow	or	ride	a
turtle	by	selecting	the	appropriate	item	in	the	turtle	sub-menu.	(Turtle,	patch	and	link	monitors	can	also	be	opened	from
the	Tools	menu	or	by	using	the	inspect	command.)

Some	NetLogo	models	let	you	interact	with	the	turtles	and	patches	with	your	mouse	by	clicking	and	dragging	in	the
View.

Manipulating	the	3D	View

At	the	bottom	of	the	window	there	are	buttons	to	move	the	observer,	or	change	the	perspective	from	which	you	are
looking	at	the	world.

A	blue	cross	appears	at	the	current	focus	point	as	you	adjust	these	settings.	The	little	blue	triangle	will	always	point
along	the	y-axis	in	the	positive	direction,	so	you	can	orient	yourself	in	case	you	get	lost.

To	look	at	the	world	from	a	different	angle,	press	the	“rotate”	button,	then	click	and	drag	the	mouse.	The	observer	will
continue	to	face	the	same	point	as	before	(where	the	blue	cross	is)	but	its	position	in	the	relation	to	the	xy-plane	will
change.

To	move	closer	or	farther	away	from	the	world	or	the	agent	you	are	watching,	following	or	riding,	press	the	“zoom”
button	and	drag	up	and	down.	Note	when	you	are	in	follow	or	ride	mode	zooming	will	switch	you	between	ride	and
follow,	since	ride	is	just	a	special	case	of	follow	where	the	distance	at	which	you	are	following	is	0.

To	change	the	position	of	the	observer	without	changing	the	direction	it	is	facing	select	the	“move”	button	and	drag	the
mouse	inside	the	3D	View	while	holding	down	the	mouse	button.

To	allow	the	mouse	position	and	state	to	be	passed	to	the	model	select	the	“interact”	button	and	it	will	function	just	as
the	mouse	does	in	the	2D	view.

To	return	the	observer	and	focus	point	to	their	default	positions	press	the	“Reset	Perspective”	button	(or	use	the	reset-
perspective	command).

Fullscreen	Mode

Fullscreen	mode	makes	the	3D	view	of	NetLogo	Desktop	fit	on	the	entire	screen.	It	is	often	useful	for	exhibits	in
museums	and	other	locations.

To	enter	fullscreen	mode,	press	the	“Full	Screen”	button,	to	exit	fullscreen	mode,	press	the	Esc	key.

Note:	Fullscreen	mode	doesn’t	work	on	every	computer.	It	depends	on	your	graphics	card.	See	the	System
Requirements	for	details.

3D	Shapes

Some	shapes	are	automatically	mapped	to	true	3D	counterparts	in	the	3D	view.	For	example,	the	2D	circle	shape
becomes	a	sphere	in	the	3D	view.

Shape	name 3D	shape

default 3D	turtle	shape

circle sphere

dot small	sphere

square cube

triangle cone

line 3D	line

cylinder 3D	cylinder

line-half 3D	line-half

car 3D	car

All	other	shapes	are	based	on	their	2D	forms.	If	a	shape	is	a	rotatable	shape,	it	is	assumed	to	be	a	top	view	and	it	is
extruded	as	if	through	a	cookie	cutter	and	oriented	parallel	to	the	xy-plane,	as	in	Ants.

Or,	if	a	shape	is	non-rotatable,	it	is	assumed	to	be	a	side	view,	and	it	is	drawn	always	facing	the	observer,	as	in	Wolf
Sheep	Predation.

Command	Center

The	Command	Center	allows	you	to	issue	commands	directly,	without	adding	them	to	the	model’s	procedures.	This	is
useful	for	inspecting	and	manipulating	agents	on	the	fly.

(Tutorial	#2:	Commands	is	an	introduction	to	using	commands	in	the	Command	Center.)

Let’s	take	a	look	at	the	design	of	the	Command	Center.

The	smaller	box,	below	the	large	box,	is	where	you	type	a	command.	After	typing	it	press	the	Return	or	Enter	key	to	run
it.

To	the	left	of	where	you	type	is	a	popup	menu	that	initially	says	“observer>”.	You	can	choose	either	observer,	turtles,	or
patches,	to	specify	which	agents	run	the	command	you	type.

Tip:	a	quicker	way	to	change	agent	types	is	to	use	the	Tab	key.

Reporters

If	you	enter	a	reporter	into	the	Command	Center,	the	show	command	will	be	inserted	before	it	automatically.

Accessing	previous	commands

After	you	type	a	command,	it	appears	in	the	large	scrolling	box	above	the	command	line.	You	can	use	Copy	on	the	Edit
menu	in	this	area	to	copy	commands	and	then	paste	them	elsewhere,	such	as	the	Code	tab.

You	can	also	access	previous	commands	using	the	history	popup,	which	is	the	small	downward	pointing	triangle	to	the
right	of	where	you	type	commands.	Click	on	the	triangle	and	a	menu	of	previously	typed	commands	appears,	so	you	can
pick	one	to	use	again.

Tip:	a	quicker	way	to	access	previous	commands	is	with	the	up	and	down	arrow	keys	on	your	keyboard.

Clearing

To	clear	the	large	scrolling	area	containing	previous	commands	and	output,	click	“clear”	in	the	top	right	corner.

To	clear	the	history	popup	menu,	choose	“Clear	History”	on	that	menu.

Arranging

You	can	hide	and	show	the	command	center	using	the	Hide	Command	Center	and	Show	Command	Center	items	on	the
Tools	menu.

To	resize	the	command	center,	drag	the	bar	that	separates	it	from	the	model	interface.	Or,	click	one	of	the	little	arrows
on	the	right	end	of	the	bar	to	make	the	command	center	either	very	big	or	hidden	altogether.

To	switch	between	a	vertical	command	center	and	a	horizontal	one,	click	the	button	with	the	double-headed	arrow,	just
to	the	left	of	“Clear”.

Plots

When	the	mouse	pointer	is	over	the	white	area	of	a	plot,	the	x	and	y	coordinates	of	the	mouse	location	appear.	(Note
that	the	mouse	location	might	not	correspond	exactly	to	any	actual	data	points	in	the	plot.	If	you	need	to	know	the	exact
coordinates	of	plotted	points,	use	the	Export	Plot	menu	item	and	inspect	the	resulting	file	in	another	program.)

When	you	create	a	plot,	as	with	all	widgets,	the	edit	dialog	automatically	appears.

Many	of	the	fields	are	fairly	self-explanatory,	such	as	the	name	of	the	plot,	labels	for	the	x	and	y	axes,	ranges	for	the
axes,	and	the	“Show	legend?”	checkbox.

If	Auto	Scale?	is	checked	the	x	and	y	axes	will	automatically	readjust	as	points	are	added	to	the	plot	using	plot	or	plotxy
if	the	points	are	outside	the	current	range.	If	Auto	Scale?	is	on	and	you	use	histogram,	the	y	axis	will	automatically
readjust	for	points	outside	the	current	range,	but	the	x	axis	will	be	left	unchanged.

Under	“Plot	setup	commands”	and	“Plot	update	commands”	you	can	enter	commands	that	will	automatically	be	run	at
appropriate	times.	Click	the	little	triangle	to	open	the	text	box	for	the	commands.	Plot	commands	are	explained	in	more
detail	in	the	Plotting	section	of	the	Programming	Guide.

Plot	Pens

In	the	plot	pens	section	of	the	dialog,	you	can	create	and	customize	your	plot’s	pens.	Each	table	row	represents	a	pen.
By	default	there	is	one	pen	named	“default”.	(You	may	wish	to	change	it	to	a	name	that	has	meaning	in	your	model.)

To	edit	the	color	of	a	pen	click	the	colored	rectangle	to	the	left	of	the	pen’s	name.	This	will	bring	up	a	dialog	that	allows
you	to	set	the	color	to	one	of	the	NetLogo	base	hues	or	a	custom	color	using	the	color	swatches.

To	edit	the	pen’s	name,	double	click	the	name.

In	the	“Pen	Update	Commands”	column	you	can	enter	commands	that	will	be	run	when	reset-ticks,	tick,	or	update-
plots	commands	are	run.	This	is	explained	in	more	detail	in	the	Plotting	section	of	the	Programming	Guide.

The	last	column	has	two	buttons.	Clicking	the	pencil	icon	will	bring	up	an	edit	dialog	with	additional	pen	settings.	The
trash	can	button	deletes	the	pen.

Plot	Pen	Advanced	Settings

Clicking	a	pen’s	edit	button	will	open	this	dialog:

Mode	allows	you	to	change	the	appearance	of	the	plot	pen:	line,	bar	(for	a	bar	chart),	or	point	(a	scatter	plot	of
individual	points).
Interval	is	the	amount	by	which	x	advances	every	time	you	use	the	plot	command.
If	the	“Show	in	legend”	checkbox	is	checked	the	selected	pen	will	be	a	part	of	the	legend	in	the	upper	right	hand
corner	of	the	plot.
In	the	“Setup	commands”	field	you	can	enter	commands	that	will	be	run	when	reset-ticks	or	setup-plots	runs.
In	the	“Update	commands”	field	you	can	enter	commands	that	will	be	run	when	tick	or	update-plots	runs.	This
field	reappears	in	the	advanced	dialog	to	provide	space	for	editing	lengthier	sets	of	commands.

For	more	detailed	information	on	how	each	of	these	features	works	you	can	see	the	Plotting	Section	of	the	Programming
Guide.

Sliders

A	slider	has	an	associated	global	variable.	Moving	the	slider	changes	the	variable’s	value.

When	you	place	a	slider	in	the	Interface	tab	the	edit	dialog	automatically	opens,	as	with	all	widgets.	Most	of	the	fields	will
be	familiar.	However,	it	is	important	to	notice	the	minimum,	maximum	and	increment	fields	will	take	any	reporter,	not	just
constants.	So,	for	example,	you	could	make	the	minimum	min-pxcor	and	the	maximum	max-pxcor	and	the	slider	bounds
will	automatically	adjust	when	you	change	the	size	of	the	world.

Agent	Monitors

Agent	monitors	display	both	the	values	of	all	the	variables	for	a	particular	agent	and	a	mini-view	that	shows	the	agent
and	a	small	area	around	it.

You	can	open	agent	monitors	through	the	Tools	menu	or	the	inspect	command.

You	can	zoom	in	or	out	using	the	slider	beneath	the	view	and	you	can	watch	the	agent	in	the	main	view	using	the	watch-
me	button.

Below	the	slider	the	current	value	of	each	agent	variable	is	displayed.	You	can	enter	a	new	value.	It	will	be	as	if,	for
example,	the	code	set	pcolor	...	had	run.

Below	the	agent	variable	area	there	is	a	mini-command	center.	Rather	than	running	code	as	the	observer,	or	talking	to
all	of	the	turtles,	patches,	or	links,	the	code	entered	in	this	command	center	is	run	only	by	this	agent.

You	can	close	an	agent	monitor	by	clicking	the	window’s	close	button,	or	by	pressing	the	Esc	key.	You	can	close	all	the
agent	monitors	by	using	the	“Close	All	Monitors”	option	in	the	Tools	Menu	or	close	just	those	for	dead	agents	by
choosing	“Close	Monitors	for	Dead	Agents.”

Info	Tab
NetLogo	6.4.0	User	Manual

The	Info	tab	provides	an	introduction	to	a	model.	It	explains	what	system	is	being	modeled,	how	the	model	was	created,
and	and	how	to	use	it.	It	may	also	suggest	things	to	explore	and	ways	to	extend	the	model,	or	call	your	attention	to
particular	NetLogo	features	the	model	uses.

You	may	wish	to	read	the	Info	tab	before	starting	a	model.

Editing

The	normal,	formatted	view	of	the	Info	tab	is	not	editable.	To	make	edits,	click	the	"Edit"	button.	When	done	editing,	click
the	"Edit"	button	again.

You	edit	the	Info	tab	as	unformatted	plain	text.	When	you're	done	editing,	the	plain	text	you	entered	is	displayed	in	a
more	attractive	format.

To	control	how	the	formatted	display	looks,	you	use	a	"markup	language"	called	Markdown.	You	may	have	encountered
Markdown	elsewhere;	it	is	used	on	a	number	of	web	sites.	(There	are	other	markup	languages	in	use	on	the	web;	for
example,	Wikipedia	used	a	markup	language	called	MediaWiki.	Markup	languages	differ	in	details.)

The	remainder	of	this	guide	is	a	tour	of	Markdown.

Headings
Paragraphs

Italicized	and	bold	text
Ordered	lists
Unordered	lists
Links
Images
Block	quotations
Code
Code	blocks
Superscripts	and	subscripts
Notes	on	usage
Other	features

Headings

A	heading	begins	with	one	or	more	hash	marks	(#).	First	level	headings	get	one	hash,	second	level	headings	get	two,
and	so	on	up	to	four	levels.

Input

#	First-level	heading

##	Second-level	heading

###	Third-level	heading

####	Fourth-level	heading

Paragraphs

Example

This	is	a	paragraph.	There	are	no	spaces	before	the	word	'This'.

This	is	another	paragraph.	The	first	line	has	two	sentences.
The	entire	paragraph	has	two	lines	and	three	sentences.

Line	breaks	in	the	input,
Make	line	breaks	in	the	output,
Like	this.

Formatted

This	is	a	paragraph.	There	are	no	spaces	before	the	word	‘This’.

This	is	another	paragraph.	The	first	line	has	two	sentences.	The	entire	paragraph	has	two	lines	and	three	sentences.

Line	breaks	in	the	input,	Make	line	breaks	in	the	output,	Like	this.

Italicized	and	bold	text

Example

For	italics,	surround	text	with	underscores:
hello,	world.

For	bold,	surround	text	with	two	asterisks:
hello,	world.

You	can	also	combine	them:
**hello**	and	**_goodbye_**

Formatted

For	italics,	surround	text	with	underscores:	hello,	world.

For	bold,	surround	text	with	two	asterisks:	hello,	world.

You	can	also	combine	them:	hello	and	goodbye

Ordered	lists

Example

We	are	about	to	start	an	ordered	list.

		1.	Ordered	lists	are	indented	2	spaces.
				1.	Subitems	are	indented	2	more	spaces	(4	in	all).
		2.	The	next	item	in	the	list	starts	with	the	next	number.
		3.	And	so	on...

Formatted

We	are	about	to	start	an	ordered	list.

1.	 Ordered	lists	are	indented	2	spaces.
1.	 Subitems	are	indented	2	more	spaces	(4	in	all	for	a	second	level	item).

2.	 The	next	item	in	the	list	starts	with	the	next	number.
3.	 And	so	on…

Unordered	lists

Example

We	are	about	to	start	an	unordered	list.

		*	Like	ordered	lists,	unordered	lists	are	also	indented	2	spaces.
		*	Unlike	ordered	lists,	unordered	lists	use	stars	instead	of	numbers.
				*	Sub	items	are	indented	2	more	spaces.
				*	Here's	another	sub	item.

Formatted

We	are	about	to	start	an	unordered	list.

Like	ordered	lists,	unordered	lists	are	also	indented	2	spaces.
Unlike	ordered	lists,	unordered	lists	use	stars	instead	of	numbers.

Sub	items	are	indented	2	more	spaces.
Here’s	another	sub	item.

Links

Automatic	links

The	simplest	way	to	create	a	link	is	to	just	type	it	in:

Example

http://ccl.northwestern.edu/netlogo/

Formatted

http://ccl.northwestern.edu/netlogo/

Links	with	text

http://ccl.northwestern.edu/netlogo/

If	you	want	to	use	your	own	text	for	the	link,	here’s	how:

[link	text	here](link.address.here)

Example

[NetLogo](http://ccl.northwestern.edu/netlogo/)

Formatted

NetLogo

Local	links

It	is	also	possible	to	link	to	a	page	on	your	computer,	instead	of	a	page	somewhere	on	the	Internet.

Local	links	have	this	form:

[alt	text](file:path)

Any	spaces	in	the	path	must	be	converted	to	%20.	For	example,	this:

file:my	page.html

must	be	written	as:

file:my%20page.html

The	path	is	relative	to	the	directory	that	the	model	file	is	in.

Example

The	easiest	way	to	link	to	files	on	your	computer	is	to	put	them	into	the	same	directory	as	your	model.	Assuming	you
have	a	file	named	index.html	in	the	same	directory	as	your	model,	the	link	would	look	like	this:

[Home](file:index.html)

Example

Here	is	another	example	where	the	file	lives	in	a	directory	called	docs,	and	docs	is	in	the	same	directory	as	your	model:

[Home](file:docs/index.html)

Images

Images	are	very	similar	to	links,	but	have	an	exclamation	point	in	front:

![alt	text](http://location/of/image)

(The	alternate	text	is	the	text	that	gets	displayed	if	the	image	is	not	found.)

Example

![NetLogo](http://ccl.northwestern.edu/netlogo/images/netlogo-title-new.jpg)

http://ccl.northwestern.edu/netlogo/

Formatted

Local	images

Also	very	similar	to	links,	it	is	possible	to	display	an	image	on	your	computer	instead	of	an	image	somewhere	on	the
Internet.	Assuming	you	have	an	image	named	image.jpg,	local	images	look	like	this:

![alt	text](file:path)

The	path	is	relative	to	the	directory	that	the	model	file	is	in.

As	with	local	links,	any	spaces	in	the	name	of	the	file	or	the	path	must	be	converted	to	%20.

Example

Like	local	links,	the	easiest	way	to	display	images	on	your	computer	is	to	put	them	into	the	same	directory	as	your
model.	This	example	displays	the	image	“Perspective	Example.png”,	which	resides	in	the	same	directory	as	this	model
(Info	Tab	Example).

![Example](file:Perspective%20Example.png)

Formatted

Block	quotations

Consecutive	lines	starting	with	>	will	become	block	quotations.	You	can	put	whatever	text	you	like	inside	of	it	and	you
can	also	style	it.

Example

>	Let	me	see:	four	times	five	is	twelve,	and	four	times	six	is	thirteen,

>	and	four	times	seven	is	---	_oh	dear!_
>	I	shall	never	get	to	twenty	at	that	rate!

Formatted

Let	me	see:	four	times	five	is	twelve,	and	four	times	six	is	thirteen,	and	four	times	seven	is	—	oh	dear!	I	shall
never	get	to	twenty	at	that	rate!

Code

To	include	a	short	piece	of	code	in	a	sentence,	surround	it	with	backticks	(`).

Example

You	can	create	a	single	turtle	with	the	`crt	1`	command.

Formatted

You	can	create	a	single	turtle	with	the	crt	1	command.

Code	blocks

It	is	also	possible	to	have	blocks	of	code.	To	create	a	code	block,	indent	every	line	of	the	block	by	4	spaces.	Another
way	is	to	surround	it	with	a	three	backticks	line	before	and	after	the	block.	(If	you	don’t	want	your	code	to	be	colored	as
NetLogo	code,	add	text	after	the	first	three	backticks.)

Example

About	to	start	the	code	block.
Leave	a	blank	line	after	this	one,	and	then	put	the	code	block:

				;	a	typical	go	procedure
				to	go
						ask	turtles
								[fd	1]
						tick
				end

or:

About	to	start	the	code	block.
Leave	a	blank	line	after	this	one,	and	then	put	the	code	block:

```
;	a	typical	go	procedure
to	go
		ask	turtles
				[	fd	1	]
		tick
end
```

Formatted

About	to	start	the	code	block.	Leave	a	blank	line	after	this	one,	and	then	put	the	code	block:

;	a	typical	go	procedure
to	go
		ask	turtles
				[fd	1]
		tick
end

Superscripts	and	subscripts

Superscripts	and	subscripts	are	useful	for	writing	formulas,	equations,	footnotes	and	more.	Subscripts	appear	half	a
character	below	the	baseline,	and	are	written	using	the	HTML	tag	<sub>.	Superscripts	appear	half	a	character	above	the
baseline,	and	are	written	using	the	HTML	tag	<sup>.

Example

H₂O

2x⁴	+	x²

WWW^[1]

Formatted

H2O

2x4	+	x2	+	42

WWW[1]

Notes	on	usage

Paragraphs,	lists,	code	blocks	and	other	features	should	be	separated	from	each	other	with	a	blank	line.	If	you	find
that	something	isn’t	formatted	the	way	you	expected,	it	might	be	because	you	need	to	add	a	blank	line	before	it.

To	prevent	a	special	character	from	being	treated	as	markup,	put	a	backslash	(\)	before	it.

We	use	GitHub	flavored	newlines	(https://github.github.com/github-flavored-markdown/)	instead	of	traditional
Markdown	handling	of	newlines.	This	means	that	newlines	are	treated	as	real	line	breaks,	instead	of	being
combined	with	the	previous	line	into	a	single	paragraph.

Other	features

Markdown	has	additional	features	that	we	have	not	shown	here.

We	have	tested	the	features	shown	above	on	a	variety	of	systems.	If	you	use	other	Markdown	features,	you	may	find
that	they	work	on	your	computer,	or	not.	Even	a	feature	that	works	on	your	computer	might	work	differently,	or	not	work
at	all,	for	someone	with	a	different	operating	system	or	Java	virtual	machine.

If	you	want	all	NetLogo	users	to	be	able	to	read	your	Info	tab,	use	only	the	features	shown	above.

More	information	about	Markdown	is	at	https://daringfireball.net/projects/markdown/.	For	rendering	Markdown,	NetLogo
uses	the	Flexmark-java	library.

https://github.github.com/github-flavored-markdown/
https://daringfireball.net/projects/markdown/
https://github.com/vsch/flexmark-java

Code	Tab	Guide
NetLogo	6.4.0	User	Manual

The	Code	tab	is	where	the	code	for	the	model	is	stored.	Commands	you	only	want	to	use	immediately	go	in	the
Command	Center;	commands	you	want	to	save	and	use	later,	over	and	over	again,	are	found	in	the	Code	tab.

Checking	for	Errors

To	determine	if	the	code	has	any	errors,	you	may	press	the	“Check”	button.	If	there	are	any	syntax	errors,	the	Code	tab
will	turn	red,	the	code	that	contains	the	error	will	be	highlighted,	and	an	error	message	will	appear.

Switching	tabs	also	causes	the	code	to	be	checked,	so	if	you	just	switch	tabs,	pressing	the	Check	button	first	isn’t
necessary.

Separate	Code	tab

The	Code	tab	can	be	opened	in	a	separate	window	from	the	main	NetLogo	window.	It	can	then	be	moved	and	resized.

The	“Code	Tab	in	separate	window”	checkbox	can	be	used	to	switch	the	Code	tab	location	between	the	main
NetLogo	window	and	a	separate	window.
A	Control-click	with	the	mouse	on	the	tab	bar	of	the	Code	tab	will	also	switch	its	location.
To	separate	a	Code	tab	from	the	main	NetLogo	window	you	can	use	Command	+	Shift	+	W	on	Mac,	Control	+	Shift
+	W	on	other	operating	systems.
To	return	a	separated	Code	tab	to	the	main	NetLogo	window	you	can	use	Command	+	W	on	Mac,	Control	+	W	on
other	operating	systems	or	click	the	window’s	close	button.

Find	&	Replace

To	find	a	fragment	of	code	in	the	procedures,	click	on	the	“Find”	button	in	the	Code	toolbar	and	the	Find	dialog	will
appear.

You	may	enter	a	word	or	phrase	to	find,	and	optionally	also	a	new	word	or	phrase	to	replace	it	with.	The	“Ignore	case”
checkbox	controls	whether	the	capitalization	must	be	the	same	to	indicate	a	match.

If	the	“Wrap	around”	checkbox	is	checked,	the	entire	Code	tab	will	be	checked	for	the	phrase,	starting	at	the	cursor
position.	When	it	reaches	the	end	it	will	return	to	the	top,	otherwise	only	the	area	from	the	cursor	position	to	the	end	of
the	Code	tab	will	be	searched.	The	“Next”	and	“Previous”	buttons	will	move	down	and	up	to	find	another	occurrence	of
the	search	phrase.

“Replace”	changes	the	currently	selected	phrase	with	the	replace	phrase	and	“Replace	&	Find”	changes	the	selected
phrase	and	moves	to	the	next	occurrence.	“Replace	All”	will	change	all	instances	of	the	find	phrase	in	the	search	area
with	the	replace	phrase.

Automatic	Indentation

When	the	Indent	Automatically	checkbox	is	selected,	NetLogo	will	automatically	attempt	to	align	your	code	in	a	logically
structured	format.	For	example,	when	you	open	a	set	of	square	brackets	“[”	(perhaps	after	an	if	statement),	NetLogo	will
automatically	add	spaces	so	that	the	following	lines	of	code	are	two	spaces	further	indented	than	the	bracket.	When	you
close	the	square	brackets	the	closing	bracket	will	be	lined	up	with	the	matching	open	bracket.

NetLogo	will	try	to	indent	the	code	as	you	type,	but	you	can	also	press	the	tab	key	anywhere	on	any	line	to	ask	NetLogo
to	indent	the	line	immediately.	Or,	you	can	select	a	whole	region	of	code	and	press	the	tab	key	to	re-indent	all	of	it.

More	Editing	Options

To	find	a	particular	procedure	definition	in	your	code,	use	the	“Procedures”	popup	menu	in	the	Code	tab.	The	menu	lists
all	procedures	in	the	order	they	appear	in	the	file.	To	search	for	a	particular	procedure,	use	the	search	field	at	the	top	of
the	popup.	It	will	filter	the	list	of	procedures	using	fuzzy	matching	as	you	type.	Fuzzy	match	will	include	procedures
whose	names	contain	the	characters	that	you	type	in	the	order	that	they	appear	in	the	search	field,	but	the	characters	do
not	have	to	be	right	next	to	each	other.	For	instance,	“fnn”	will	match"find-nearest-neighbors"	and	“wolf-down-neighbor”
but	not	“nearest-wolf-neighbor”.	You	may	use	the	arrow	keys	or	mouse	to	select	a	particular	procedure	and	enter	or	click
to	jump	to	it.	This	can	be	a	very	convenient	way	to	navigate	your	file.	To	facilitate	this,	you	can	use	the	shortcut	ctrl-g
(cmd+g	on	Mac	OS)	to	access	the	procedures	menu.

The	“Shift	Left”,	“Shift	Right”,	“Comment”,	and	“Uncomment”	items	on	the	Edit	menu	are	used	in	the	Code	tab	to	change
the	indentation	level	of	your	code	or	add	and	remove	semicolons,	which	mark	comments,	from	sections	of	code.

For	more	information	about	writing	procedures,	read	Tutorial	#3:	Procedures	and	the	Programming	Guide.

Included	Files	Menu

Caution:	The	includes	facility	is	new	and	experimental.

When	you	add	the	__includes	keyword	to	a	model	a	menu	to	the	right	of	the	procedures	menu	appears.	This	is	the
“Included	Files”	menu	which	lists	all	the	NetLogo	source	files	(.nls)	included	in	this	file.	You	can	make	this	menu	always
visible	using	the	Preferences	dialog.

You	can	choose	a	file	name	from	the	menu	to	open	a	tab	for	that	file,	or	you	can	open	a	new	or	existing	file	using	New
Source	File	and	Open	Source	File,	respectively.

If	the	main	Code	tab	is	in	a	separate	window,	the	tabs	for	included	files	will	appear	there	too.

Once	you’ve	opened	new	tabs	they	become	accessible	from	the	Tabs	menu,	and	you	can	use	the	keyboard	to	move
from	tab	to	tab	(Command	+	number	on	Mac,	Control	+	number	on	other	operating	systems).

Programming	Guide
NetLogo	6.4.0	User	Manual

This	section	describes	the	NetLogo	programming	language	in	detail.

The	Code	Example	models	mentioned	throughout	can	be	found	in	the	Code	Examples	section	of	the	Models	Library.

Agents

The	NetLogo	world	is	made	up	of	agents.	Agents	are	beings	that	can	follow	instructions.

In	NetLogo,	there	are	four	types	of	agents:	turtles,	patches,	links,	and	the	observer.

Turtles	are	agents	that	move	around	in	the	world.	The	world	is	two	dimensional	and	is	divided	up	into	a	grid	of	patches.
Each	patch	is	a	square	piece	of	“ground”	over	which	turtles	can	move.	Links	are	agents	that	connect	two	turtles.	The
observer	doesn’t	have	a	location	–	you	can	imagine	it	as	looking	out	over	the	world	of	turtles	and	patches.

The	observer	doesn’t	observe	passively	–	it	gives	instructions	to	the	other	agents.

When	NetLogo	starts	up,	there	are	no	turtles.	The	observer	can	make	new	turtles.	Patches	can	make	new	turtles	too.
(Patches	can’t	move,	but	otherwise	they’re	just	as	“alive”	as	turtles.)

Patches	have	coordinates.	The	patch	at	coordinates	(0,	0)	is	called	the	origin	and	the	coordinates	of	the	other	patches	are
the	horizontal	and	vertical	distances	from	this	one.	We	call	the	patch’s	coordinates	pxcor	and	pycor.	Just	like	in	the
standard	mathematical	coordinate	plane,	pxcor	increases	as	you	move	to	the	right	and	pycor	increases	as	you	move	up.

The	total	number	of	patches	is	determined	by	the	settings	min-pxcor,	max-pxcor,	min-pycor	and	max-pycor.	When	NetLogo
starts	up,	min-pxcor,	max-pxcor,	min-pycor	and	max-pycor	are	-16,	16,	-16,	and	16	respectively.	This	means	that	pxcor	and
pycor	both	range	from	-16	to	16,	so	there	are	33	times	33,	or	1089	patches	total.	(You	can	change	the	number	of	patches
with	the	Settings	button.)

Turtles	have	coordinates	too:	xcor	and	ycor.	A	patch’s	coordinates	are	always	integers,	but	a	turtle’s	coordinates	can	have
decimals.	This	means	that	a	turtle	can	be	positioned	at	any	point	within	its	patch;	it	doesn’t	have	to	be	in	the	center	of	the
patch.

Links	do	not	have	coordinates.	Every	link	has	two	ends,	and	each	end	is	a	turtle.	If	either	turtle	dies,	the	link	dies	too.	A	link
is	represented	visually	as	a	line	connecting	the	two	turtles.

Procedures

In	NetLogo,	commands	and	reporters	tell	agents	what	to	do.	A	command	is	an	action	for	an	agent	to	carry	out,	resulting	in
some	effect.	A	reporter	is	instructions	for	computing	a	value,	which	the	agent	then	“reports”	to	whoever	asked	it.

Typically,	a	command	name	begins	with	a	verb,	such	as	“create”,	“die”,	“jump”,	“inspect”,	or	“clear”.	Most	reporter	names
are	nouns	or	noun	phrases.

Commands	and	reporters	built	into	NetLogo	are	called	primitives.	The	NetLogo	Dictionary	has	a	complete	list	of	built-in
commands	and	reporters.

Commands	and	reporters	you	define	yourself	are	called	procedures.	Each	procedure	has	a	name,	preceded	by	the
keyword	to	or	to-report,	depending	on	whether	it	is	a	command	procedure	or	a	reporter	procedure.	The	keyword	end
marks	the	end	of	the	commands	in	the	procedure.	Once	you	define	a	procedure,	you	can	use	it	elsewhere	in	your	program.

Many	commands	and	reporters	take	inputs	–	values	that	the	command	or	reporter	uses	in	carrying	out	its	actions	or
computing	its	result.

Here	are	two	command	procedures:

to	setup
		clear-all
		create-turtles	10
		reset-ticks
end

to	go
		ask	turtles	[
				fd	1												;;	forward	1	step
				rt	random	10				;;	turn	right
				lt	random	10				;;	turn	left
]
		tick
end

Note	the	use	of	semicolons	to	add	“comments”	to	the	program.	Comments	can	make	your	code	easier	to	read	and

understand,	but	they	don’t	affect	its	behavior.

In	this	program,

setup	and	go	are	user-defined	commands.
clear-all,	create-turtles,	reset-ticks,	ask,	lt	(“left	turn”),	rt	(“right	turn”)	and	tick,	are	all	primitive	commands.
random	and	turtles	are	primitive	reporters.	random	takes	a	single	number	as	an	input	and	reports	a	random	integer
that	is	less	than	the	input	(in	this	case,	between	0	and	9).	turtles	reports	the	agentset	consisting	of	all	the	turtles.
(We’ll	explain	about	agentsets	later.)

setup	and	go	can	be	called	by	other	procedures,	or	by	buttons,	or	from	the	Command	Center.

Many	NetLogo	models	have	a	once	button	that	calls	a	procedure	called	setup	and	a	forever	button	that	calls	a	procedure
called	go.

In	NetLogo,	you	may	specify	which	agents	–	turtles,	patches,	or	links	–	are	to	run	each	command.	If	you	don’t	specify,	the
code	is	run	by	the	observer.	In	the	code	above,	the	observer	uses	ask	to	make	the	set	of	all	turtles	run	the	commands
between	the	square	brackets.

clear-all	and	create-turtles	can	only	be	run	by	the	observer.	fd,	on	the	other	hand,	can	only	be	run	by	turtles.	Some
other	commands	and	reporters,	such	as	set	and	ticks,	can	be	run	by	different	agent	types.

Here	are	some	more	advanced	features	you	can	take	advantage	of	when	defining	your	own	procedures.

Procedures	with	inputs

Procedures	can	take	inputs,	just	like	many	primitives	do.	To	create	a	procedure	that	accepts	inputs,	put	their	names	in
square	brackets	after	the	procedure	name.	For	example:

to	draw-polygon	[num-sides	len]		;;	turtle	procedure
		pen-down
		repeat	num-sides	[
				fd	len
				rt	360	/	num-sides
]
end

Elsewhere	in	the	program,	you	might	use	the	procedure	by	asking	the	turtles	to	each	draw	an	octagon	with	a	side	length
equal	to	its	who	number:

ask	turtles	[draw-polygon	8	who]

Reporter	procedures

Just	like	you	can	define	your	own	commands,	you	can	define	your	own	reporters.	You	must	do	two	special	things.	First,	use
to-report	instead	of	to	to	begin	your	procedure.	Then,	in	the	body	of	the	procedure,	use	report	to	report	the	value	you
want	to	report.

to-report	absolute-value	[number]
		ifelse	number	>=	0
				[report	number]
				[report	(-	number)]
end

Variables

Agent	variables

Agent	variables	are	places	to	store	values	(such	as	numbers)	in	an	agent.	An	agent	variable	can	be	a	global	variable,	a
turtle	variable,	a	patch	variable,	or	a	link	variable.

If	a	variable	is	a	global	variable,	there	is	only	one	value	for	the	variable,	and	every	agent	can	access	it.	You	can	think	of
global	variables	as	belonging	to	the	observer.

Turtle,	patch,	and	link	variables	are	different.	Each	turtle	has	its	own	value	for	every	turtle	variable.	The	same	goes	for
patches	and	links.

Some	variables	are	built	into	NetLogo.	For	example,	all	turtles	and	links	have	a	color	variable,	and	all	patches	have	a
pcolor	variable.	(The	patch	variable	begins	with	“p”	so	it	doesn’t	get	confused	with	the	turtle	variable,	since	turtles	have
direct	access	to	patch	variables.)	If	you	set	the	variable,	the	turtle	or	patch	changes	color.	(See	next	section	for	details.)

Other	built-in	turtle	variables	including	xcor,	ycor,	and	heading.	Other	built-in	patch	variables	include	pxcor	and	pycor.
(There	is	a	complete	list	here.)

You	can	also	define	your	own	variables.	You	can	make	a	global	variable	by	adding	a	switch,	slider,	chooser,	or	input	box	to
your	model,	or	by	using	the	globals	keyword	at	the	beginning	of	your	code,	like	this:

globals	[score]

You	can	also	define	new	turtle,	patch	and	link	variables	using	the	turtles-own,	patches-own	and	links-own	keywords,	like
this:

turtles-own	[energy	speed]
patches-own	[friction]
links-own	[strength]

These	variables	can	then	be	used	freely	in	your	model.	Use	the	set	command	to	set	them.	(Any	variable	you	don’t	set	has
a	starting	value	of	zero.)

Global	variables	can	be	read	and	set	at	any	time	by	any	agent.	As	well,	a	turtle	can	read	and	set	patch	variables	of	the
patch	it	is	standing	on.	For	example,	this	code:

ask	turtles	[set	pcolor	red]

causes	every	turtle	to	make	the	patch	it	is	standing	on	red.	(Because	patch	variables	are	shared	by	turtles	in	this	way,	you
can’t	have	a	turtle	variable	and	a	patch	variable	with	the	same	name.)

In	other	situations	where	you	want	an	agent	to	read	a	different	agent’s	variable,	you	can	use	of.	Example:

show	[color]	of	turtle	5
;;	prints	current	color	of	turtle	with	who	number	5

You	can	also	use	of	with	a	more	complicated	expression	than	just	a	variable	name,	for	example:

show	[xcor	+	ycor]	of	turtle	5
;;	prints	the	sum	of	the	x	and	y	coordinates	of
;;	turtle	with	who	number	5

Local	variables

A	local	variable	is	defined	and	used	only	in	the	context	of	a	particular	procedure	or	part	of	a	procedure.	To	create	a	local
variable,	use	the	let	command.	If	you	use	let	at	the	top	of	a	procedure,	the	variable	will	exist	throughout	the	procedure.	If
you	use	it	inside	a	set	of	square	brackets,	for	example	inside	an	“ask”,	then	it	will	exist	only	inside	those	brackets.

to	swap-colors	[turtle1	turtle2]
		let	temp	[color]	of	turtle1
		ask	turtle1	[set	color	[color]	of	turtle2]
		ask	turtle2	[set	color	temp]
end

Tick	counter

In	many	NetLogo	models,	time	passes	in	discrete	steps,	called	“ticks”.	NetLogo	includes	a	built-in	tick	counter	so	you	can
keep	track	of	how	many	ticks	have	passed.

The	current	value	of	the	tick	counter	is	shown	above	the	view.	(You	can	use	the	Settings	button	to	hide	the	tick	counter,	or
change	the	word	“ticks”	to	something	else.)

In	code,	to	retrieve	the	current	value	of	the	tick	counter,	use	the	ticks	reporter.	The	tick	command	advances	the	tick
counter	by	1.	The	clear-all	command	clears	the	tick	counter	along	with	everything	else.

When	the	tick	counter	is	clear,	it’s	an	error	to	try	to	read	or	modify	it.	Use	the	reset-ticks	command	when	your	model	is
done	setting	up,	to	start	the	tick	counter.

If	your	model	is	set	to	use	tick-based	updates,	then	the	tick	command	will	usually	also	update	the	view.	See	the	later
section,	View	Updates.

When	to	tick

Use	reset-ticks	at	the	end	of	your	setup	procedure.

Use	tick	at	the	end	of	your	go	procedure.

to	setup
		clear-all
		create-turtles	10
		reset-ticks
end

to	go
		ask	turtles	[fd	1]
		tick
end

Fractional	ticks

In	most	models,	the	tick	counter	starts	at	0	and	goes	up	1	at	a	time,	from	integer	to	integer.	But	it’s	also	possible	for	the	tick
counter	to	take	on	in-between	floating	point	values.

To	advance	the	tick	counter	by	a	fractional	amount,	use	the	tick-advance	command.	This	command	takes	a	numeric	input
specifying	how	far	to	advance	the	tick	counter.

A	typical	use	of	fractional	ticks	is	to	approximate	continuous	or	curved	motion.	See,	for	example,	the	GasLab	models	in	the
Models	Library	(under	Chemistry	&	Physics).	These	models	calculate	the	exact	time	at	which	a	future	event	is	to	occur,
then	advance	the	tick	counter	to	exactly	that	time.

Colors

NetLogo	represents	colors	in	different	ways.	A	color	can	be	number	in	the	range	0	to	140,	with	the	exception	of	140	itself.
Below	is	a	chart	showing	the	range	of	such	NetLogo	colors.

The	chart	shows	that:

Some	of	the	colors	have	names.	(You	can	use	these	names	in	your	code.)
Every	named	color	except	black	and	white	has	a	number	ending	in	5.
On	either	side	of	each	named	color	are	darker	and	lighter	shades	of	the	color.
0	is	pure	black.	9.9	is	pure	white.
10,	20,	and	so	on	are	all	so	dark	they	are	very	nearly	black.
19.9,	29.9	and	so	on	are	all	so	light	they	are	very	nearly	white.

Code	Example:	The	color	chart	was	made	in	NetLogo	with	the	Color	Chart	Example	model.

If	you	use	a	number	outside	the	0	to	140	range,	NetLogo	will	repeatedly	add	or	subtract	140	from	the	number	until	it	is	in
the	0	to	140	range.	For	example,	25	is	orange,	so	165,	305,	445,	and	so	on	are	orange	too,	and	so	are	-115,	-255,	-395,
etc.	This	calculation	is	done	automatically	whenever	you	set	the	turtle	variable	color	or	the	patch	variable	pcolor.	Should
you	need	to	perform	this	calculation	in	some	other	context,	use	the	wrap-color	primitive.

If	you	want	a	color	that’s	not	on	the	chart,	more	exist	between	the	integers.	For	example,	26.5	is	a	shade	of	orange	halfway

between	26	and	27.	This	doesn’t	mean	you	can	make	any	color	in	NetLogo;	the	NetLogo	color	space	is	only	a	subset	of	all
possible	colors.	It	contains	only	a	fixed	set	of	discrete	hues	(one	hue	per	row	of	the	chart).	Starting	from	one	of	those	hues,
you	can	either	decrease	its	brightness	(darken	it)	or	decrease	its	saturation	(lighten	it),	but	you	cannot	decrease	both
brightness	and	saturation.	Also,	only	the	first	digit	after	the	decimal	point	is	significant.	Thus,	color	values	are	rounded
down	to	the	next	0.1,	so	for	example,	there’s	no	visible	difference	between	26.5	and	26.52	or	26.58.

Color	primitives

There	are	a	few	primitives	that	are	helpful	for	working	with	colors.

We	have	already	mentioned	the	wrap-color	primitive.

The	scale-color	primitive	is	useful	for	converting	numeric	data	into	colors.

shade-of?	will	tell	you	if	two	colors	are	both	“shades”	of	the	same	basic	hue.	For	example,	shade-of?	orange	27	is	true,
because	27	is	a	lighter	shade	of	orange.

Code	Example:	Scale-color	Example	demonstrates	the	scale-color	reporter.

RGB	and	RGBA	Colors

NetLogo	also	represents	colors	as	RGB	(red/green/blue)	lists	and	RGBA	(red/green/blue/alpha)	lists.	When	using	RGB
colors	the	full	range	of	colors	is	available	to	you.	RGBA	colors	allow	all	the	colors	that	RGB	allows	and	you	can	also	vary
the	transparency	of	a	color.	RGB	and	RGBA	lists	are	made	up	of	three	or	four	integers,	respectively,	between	0	and	255.
You	can	set	any	color	variables	in	NetLogo	(color	for	turtles	and	links	and	pcolor	for	patches)	to	an	RGB	list	and	that	agent
will	be	rendered	appropriately.	So	you	can	set	the	color	of	patch	0	0	to	pure	red	using	the	following	code:

set	pcolor	[255	0	0]

Turtles,	links,	and	labels	can	all	contain	RGBA	lists	as	their	color	variables.	Patches	only	use	the	alpha	value	of	an	RGBA
pcolors	in	NetLogo	3D,	it’s	ignored	in	2D	NetLogo.	You	can	set	the	color	of	a	turtle	to	be	approximately	half	transparent
pure	red	with	the	following	code:

set	color	[255	0	0	125]

You	can	convert	from	a	NetLogo	color	to	RGB	or	HSB	(hue/saturation/brightness)	using	extract-hsb	and	extract-rgb.	You
can	use	rgb	to	generate	rgb	lists	and	hsb	to	convert	from	an	HSB	color	to	RGB.

Since	many	colors	are	missing	from	the	NetLogo	color	space,	approximate-hsb	and	approximate-rgb	often	can’t	give	you
the	exact	color	you	ask	for,	but	they	try	to	come	as	close	as	possible.

Example:

let	my-color	approximate-rgb	0	0	255	;;	my-color	is	now	104.7
show	extract-rgb	my-color	;;	shows	[48	88	161]	which	is	pretty	far	from	[0	0	255],	the	color	we	started	with

This	is	an	approximation,	but	it	is	still	near	NetLogo	blue	which	is	105.

Using	RGBA	colors,	the	user	has	more	options	when	it	comes	to	an	agent’s	color.

Example:	you	can	change	any	turtle	from	its	existing	NetLogo	color	to	a	sixty	percent	transparent	version	of	that	color
using:

ask	one-of	turtles	[set	color	lput	102	extract-rgb	color]

Note:	because	255	is	fully	opaque	and	sixty	percent	transparent	is	equal	to	forty	percent	opaque,	the	correct	alpha	value	is
255	*	.4	=	102.	See	the	palette	extension	section	below	for	an	alternate	implementation.

Code	Examples:	HSB	and	RGB	Example	(lets	you	experiment	with	the	HSB	and	RGB	color	systems),
Transparency	Example

Palette	Extension

The	palette	extension	offers	primitives	that	give	the	user	more	control	over	colors.	It	allows	for	direct	manipulation	of	RGBA
and	HSB	components	without	the	requiring	list	manipulations.

Example:	changing	the	transparency	of	any	turtle	to	sixty	percent	transparent	with	the	palette	extension:

extensions	[palette]
ask	one-of	turtles	[palette:set-transparency	60]

The	extension	offers	similar	commands	for	Red,	Green,	Blue,	Alpha,	Hue,	Saturation,	and	Brightness.

See	the	documentation	of	the	palette	extension	for	more	information.

Code	Examples:	Palette	Example,	Color	Bubbles,	Color	Painting,	Color	Reveal

Color	Swatches	dialog

The	Color	Swatches	dialog	helps	you	experiment	with	and	choose	colors.	Open	it	by	choosing	Color	Swatches	on	the
Tools	Menu.

When	you	click	on	a	color	swatch	(or	a	color	button),	that	color	will	be	shown	against	other	colors.	In	the	bottom	left,	the
code	for	the	currently	selected	color	is	displayed	(for	example,	red	+	2)	so	you	can	copy	and	paste	it	into	your	code.	On	the
bottom	right	there	are	three	increment	options,	1,	0.5,	and	0.1.	These	numbers	indicate	the	difference	between	two
adjacent	swatches.	When	the	increment	is	1	there	are	10	different	shades	in	each	row;	when	the	increment	is	0.1	there	are
100	different	shades	in	each	row.	0.5	is	an	intermediate	setting.

Ask

NetLogo	uses	the	ask	command	to	give	commands	to	turtles,	patches,	and	links.	All	code	to	be	run	by	turtles	must	be
located	in	a	turtle	“context”.	You	can	establish	a	turtle	context	in	any	of	three	ways:

In	a	button,	by	choosing	“Turtles”	from	the	popup	menu.	Any	code	you	put	in	the	button	will	be	run	by	all	turtles.
In	the	Command	Center,	by	choosing	“Turtles”	from	the	popup	menu.	Any	commands	you	enter	will	be	run	by	all	the
turtles.
By	using	ask	turtles,	hatch,	or	other	commands	which	establish	a	turtle	context.

The	same	goes	for	patches,	links,	and	the	observer,	except	that	you	cannot	ask	the	observer.	Any	code	that	is	not	inside
any	ask	is	by	default	observer	code.

Because	agentset	members	are	always	read	in	a	random	order,	when	ask	is	used	with	an	agentset	each	agent	will	take	its
turn	in	a	random	order.	See	Agentsets	for	more	information.

Here’s	an	example	of	the	use	of	ask	in	a	NetLogo	procedure:

to	setup
		clear-all
		create-turtles	100			;;	create	100	turtles	with	random	headings
		ask	turtles
				[set	color	red				;;	turn	them	red
						fd	50]										;;	spread	them	around
		ask	patches
				[if	pxcor	>	0									;;	patches	on	the	right	side
								[set	pcolor	green]]		;;	of	the	view	turn	green
		reset-ticks
end

The	models	in	the	Models	Library	are	full	of	other	examples.	A	good	place	to	start	looking	is	in	the	Code	Examples	section.

Usually,	the	observer	uses	ask	to	ask	all	turtles,	all	patches	or	all	links	to	run	commands.	You	can	also	use	ask	to	have	an
individual	turtle,	patch	or	link	run	commands.	The	reporters	turtle,	patch,	link	and	patch-at	are	useful	for	this	technique.
For	example:

to	setup
		clear-all
		crt	3																											;;	make	3	turtles
		ask	turtle	0																				;;	tell	the	first	one...
				[fd	1]																						;;	...to	go	forward
		ask	turtle	1																				;;	tell	the	second	one...
				[set	color	green]											;;	...to	become	green
		ask	turtle	2																				;;	tell	the	third	one...
				[rt	90]																					;;	...to	turn	right
		ask	patch	2	-2																		;;	ask	the	patch	at	(2,-2)
				[set	pcolor	blue]											;;	...to	become	blue
		ask	turtle	0																				;;	ask	the	first	turtle
				[ask	patch-at	1	0												;;	...to	ask	patch	to	the	east
						[set	pcolor	red]]								;;	...to	become	red
		ask	turtle	0																				;;	tell	the	first	turtle...
				[create-link-with	turtle	1]	;;	...make	a	link	with	the	second
		ask	link	0	1																				;;	tell	the	link	between	turtle	0	and	1
				[set	color	blue]												;;	...to	become	blue
		reset-ticks
end

Every	turtle	created	has	a	who	number.	The	first	turtle	created	is	number	0,	the	second	turtle	number	1,	and	so	forth.

The	turtle	primitive	reporter	takes	a	who	number	as	an	input,	and	reports	the	turtle	with	that	who	number.	The	patch
primitive	reporter	takes	values	for	pxcor	and	pycor	and	reports	the	patch	with	those	coordinates.	The	link	primitive	takes
two	inputs,	the	who	numbers	of	the	two	turtles	it	connects.	And	the	patch-at	primitive	reporter	takes	offsets:	distances,	in
the	x	and	y	directions,	from	the	first	agent.	In	the	example	setup	procedure	above,	the	turtle	with	who	number	0	is	asked	to
get	the	patch	east	(and	no	patches	north)	of	itself	like	this:	ask	turtle	0	[ask	patch-at	1	0	[set	pcolor	red]] .

You	can	also	select	a	subset	of	turtles,	or	a	subset	of	patches,	or	a	subset	of	links	and	ask	them	to	do	something.	This
involves	using	agentsets.	The	next	section	explains	them	in	detail.

When	you	ask	a	set	of	agents	to	run	more	than	one	command,	each	agent	must	finish	before	the	next	agent	starts.	One
agent	runs	all	of	the	commands,	then	the	next	agent	runs	all	of	them,	and	so	on.	For	example,	if	you	write:

ask	turtles
		[fd	1
				set	color	red]

first	one	turtle	moves	and	turns	red,	then	another	turtle	moves	and	turns	red,	and	so	on.

But	if	you	write	it	this	way:

ask	turtles	[fd	1]
ask	turtles	[set	color	red]

first	all	the	turtles	move,	then	they	all	turn	red.

Agentsets

An	agentset	is	exactly	what	its	name	implies,	a	set	of	agents.	An	agentset	can	contain	either	turtles,	patches	or	links,	but
not	more	than	one	type	at	once.

An	agentset	is	not	in	any	particular	order.	In	fact,	it’s	always	in	a	random	order.	And	every	time	you	use	it,	the	agentset	is	in
a	different	random	order.	This	helps	you	keep	your	model	from	treating	any	particular	turtles,	patches	or	links	differently
from	any	others	(unless	you	want	them	to	be).	Since	the	order	is	random	every	time,	no	one	agent	always	gets	to	go	first.

You’ve	seen	the	turtles	primitive,	which	reports	the	agentset	of	all	turtles,	the	patches	primitive,	which	reports	the	agentset
of	all	patches	and	the	links	primitive	which	reports	the	agentset	of	all	links.

But	what’s	powerful	about	the	agentset	concept	is	that	you	can	construct	agentsets	that	contain	only	some	turtles,	some
patches	or	some	links.	For	example,	all	the	red	turtles,	or	the	patches	with	pxcor	evenly	divisible	by	five,	or	the	turtles	in	the
first	quadrant	that	are	on	a	green	patch	or	the	links	connected	to	turtle	0.	These	agentsets	can	then	be	used	by	ask	or	by
various	reporters	that	take	agentsets	as	inputs.

One	way	is	to	use	turtles-here	or	turtles-at,	to	make	an	agentset	containing	only	the	turtles	on	my	patch,	or	only	the
turtles	on	some	other	patch	at	some	x	and	y	offsets.	There’s	also	turtles-on	so	you	can	get	the	set	of	turtles	standing	on	a
given	patch	or	set	of	patches,	or	the	set	of	turtles	standing	on	the	same	patch	as	a	given	turtle	or	set	of	turtles.

Here	are	some	more	examples	of	how	to	make	agentsets:

;;	all	other	turtles:
other	turtles
;;	all	other	turtles	on	this	patch:
other	turtles-here
;;	all	red	turtles:
turtles	with	[color	=	red]
;;	all	red	turtles	on	my	patch
turtles-here	with	[color	=	red]
;;	patches	on	right	side	of	view
patches	with	[pxcor	>	0]
;;	all	turtles	less	than	3	patches	away
turtles	in-radius	3
;;	the	four	patches	to	the	east,	north,	west,	and	south
patches	at-points	[[1	0]	[0	1]	[-1	0]	[0	-1]]
;;	shorthand	for	those	four	patches
neighbors4
;;	turtles	in	the	first	quadrant	that	are	on	a	green	patch
turtles	with	[(xcor	>	0)	and	(ycor	>	0)
														and	(pcolor	=	green)]
;;	turtles	standing	on	my	neighboring	four	patches
turtles-on	neighbors4
;;	all	the	links	connected	to	turtle	0
[my-links]	of	turtle	0

Note	the	use	of	other	to	exclude	this	agent.	This	is	common.

Once	you	have	created	an	agentset,	here	are	some	simple	things	you	can	do:

Use	ask	to	make	the	agents	in	the	agentset	do	something
Use	any?	to	see	if	the	agentset	is	empty
Use	all?	to	see	if	every	agent	in	an	agentset	satisfies	a	condition.
Use	count	to	find	out	exactly	how	many	agents	are	in	the	set

And	here	are	some	more	complex	things	you	can	do:

Pick	a	random	agent	from	the	set	using	one-of.	For	example,	we	can	make	a	randomly	chosen	turtle	turn	green:

ask	one-of	turtles	[set	color	green]

Or	tell	a	randomly	chosen	patch	to	sprout	a	new	turtle:

ask	one-of	patches	[sprout	1]

Use	the	max-one-of	or	min-one-of	reporters	to	find	out	which	agent	is	the	most	or	least	along	some	scale.	For
example,	to	remove	the	richest	turtle,	you	could	say

ask	max-one-of	turtles	[sum	assets]	[die]

Make	a	histogram	of	the	agentset	using	the	histogram	command	(in	combination	with	of).

Use	of	to	make	a	list	of	values,	one	for	each	agent	in	the	agentset.	Then	use	one	of	NetLogo’s	list	primitives	to	do
something	with	the	list.	(See	the	“Lists”	section	below.)	For	example,	to	find	out	how	rich	turtles	are	on	the	average,
you	could	say

show	mean	[sum	assets]	of	turtles

Use	turtle-set,	patch-set	and	link-set	reporters	to	make	new	agentsets	by	gathering	together	agents	from	a	variety
of	possible	sources.

Use	no-turtles,	no-patches	and	no-links	reporters	to	make	empty	agentsets.
Check	whether	two	agentsets	are	equal	using	=	or	!=.
Use	member?	to	see	whether	a	particular	agent	is	a	member	of	an	agentset.

This	only	scratches	the	surface.	See	the	Models	Library	for	many	more	examples,	and	consult	the	NetLogo	Dictionary	for
more	information	about	all	of	the	agentset	primitives.

More	examples	of	using	agentsets	are	provided	in	the	individual	entries	for	these	primitives	in	the	NetLogo	Dictionary.

Special	agentsets

The	agentsets	turtles	and	links	have	special	behavior	because	they	always	hold	the	sets	of	all	turtles	and	all	links.
Therefore,	these	agentsets	can	grow.

The	following	interaction	shows	the	special	behavior.	Assume	the	Code	tab	has	globals	[g].	Then:

observer>	clear-all
observer>	create-turtles	5
observer>	set	g	turtles
observer>	print	count	g
5
observer>	create-turtles	5
observer>	print	count	g
10
observer>	set	g	turtle-set	turtles
observer>	print	count	g
10
observer>	create-turtles	5
observer>	print	count	g
10
observer>	print	count	turtles
15

The	turtles	agentset	grows	when	new	turtles	are	born,	but	other	agentsets	don’t	grow.	If	I	write	turtle-set	turtles,	I	get
a	new,	normal	agentset	containing	just	the	turtles	that	currently	exist.	New	turtles	don’t	join	when	they’re	born.

Breed	agentsets	are	special	in	the	same	way	as	turtles	and	links.	Breeds	are	introduced	and	explained	below.

Agentsets	and	lists

Earlier,	we	said	that	agentsets	are	always	in	random	order,	a	different	random	order	every	time.	If	you	need	your	agents	to
do	something	in	a	fixed	order,	you	need	to	make	a	list	of	the	agents	instead.	See	the	Lists	section	below.

Code	Example:	Ask	Ordering	Example

Breeds

NetLogo	allows	you	to	define	different	“breeds”	of	turtles	and	breeds	of	links.	Once	you	have	defined	breeds,	you	can	go	on
and	make	the	different	breeds	behave	differently.	For	example,	you	could	have	breeds	called	sheep	and	wolves,	and	have
the	wolves	try	to	eat	the	sheep	or	you	could	have	link	breeds	called	streets	and	sidewalks	where	foot	traffic	is	routed	on
sidewalks	and	car	traffic	is	routed	on	streets.

You	define	turtle	breeds	using	the	breed	keyword,	at	the	top	of	the	Code	tab,	before	any	procedures:

breed	[wolves	wolf]
breed	[sheep	a-sheep]

You	can	refer	to	a	member	of	the	breed	using	the	singular	form,	just	like	the	turtle	reporter.	When	printed,	members	of	the
breed	will	be	labeled	with	the	singular	name.

Some	commands	and	reporters	have	the	plural	name	of	the	breed	in	them,	such	as	create-<breeds>.	Others	have	the
singular	name	of	the	breed	in	them,	such	as	<breed>.

The	order	in	which	breeds	are	declared	is	also	the	order	in	which	they	are	layered	in	the	view.	So	breeds	defined	later	will
appear	on	top	of	breeds	defined	earlier;	in	this	example,	sheep	will	be	drawn	over	wolves.

When	you	define	a	breed	such	as	sheep,	an	agentset	for	that	breed	is	automatically	created,	so	that	all	of	the	agentset
capabilities	described	above	are	immediately	available	with	the	sheep	agentset.

The	following	new	primitives	are	also	automatically	available	once	you	define	a	breed:	create-sheep,	hatch-sheep,	sprout-
sheep,	sheep-here,	sheep-at,	sheep-on,	and	is-a-sheep?.

Also,	you	can	use	sheep-own	to	define	new	turtle	variables	that	only	turtles	of	the	given	breed	have.	(It’s	allowed	for	more
than	one	breed	to	own	the	same	variable.)

A	turtle’s	breed	agentset	is	stored	in	the	breed	turtle	variable.	So	you	can	test	a	turtle’s	breed,	like	this:

if	breed	=	wolves	[...]

Note	also	that	turtles	can	change	breeds.	A	wolf	doesn’t	have	to	remain	a	wolf	its	whole	life.	Let’s	change	a	random	wolf
into	a	sheep:

ask	one-of	wolves	[set	breed	sheep]

The	set-default-shape	primitive	is	useful	for	associating	certain	turtle	shapes	with	certain	breeds.	See	the	section	on
shapes	below.

Who	numbers	are	assigned	irrespective	of	breeds.	If	you	already	have	a	frog	0,	then	the	first	mouse	will	be	mouse	1,	not
mouse	0,	since	the	who	number	0	is	already	taken.

Here	is	a	quick	example	of	using	breeds:

breed	[mice	mouse]
breed	[frogs	frog]
mice-own	[cheese]
to	setup
		clear-all
		create-mice	50
				[set	color	white
						set	cheese	random	10]
		create-frogs	50
				[set	color	green]
		reset-ticks
end

Code	Example:	Breeds	and	Shapes	Example

Link	breeds

Link	breeds	are	very	similar	to	turtle	breeds,	however,	there	are	a	few	differences.

When	you	declare	a	link	breed	you	must	declare	whether	it	is	a	breed	of	directed	or	undirected	links	by	using	the	directed-
link-breed	and	undirected-link-breed	keywords.

directed-link-breed	[streets	street]
undirected-link-breed	[friendships	friendship]

Once	you	have	created	a	breeded	link	you	cannot	create	unbreeded	links	and	vice	versa.	(You	can,	however,	have	directed
and	undirected	links	in	the	same	world,	just	not	in	the	same	breed)

Unlike	with	turtle	breeds	the	singular	breed	name	is	required	for	link	breeds,	as	many	of	the	link	commands	and	reports	use
the	singular	name,	such	as	<link-breed>-neighbor?.

The	following	primitives	are	also	automatically	available	once	you	define	a	directed	link	breed:	create-street-from	create-
streets-from	create-street-to	create-streets-to	in-street-neighbor?	in-street-neighbors	in-street-from	my-in-
streets	my-out-streets	out-street-neighbor?	out-street-neighbors	out-street-to

And	the	following	are	automatically	available	when	you	define	an	undirected	link	breed:	create-friendship-with	create-
friendships-with	friendship-neighbor?	friendship-neighbors	friendship-with	my-friendships

Multiple	link	breeds	may	declare	the	same	-own	variable,	but	a	variable	may	not	be	shared	between	a	turtle	breed	and	a	link
breed.

Just	as	with	turtle	breeds	the	order	in	which	link	breeds	are	declared	defines	the	order	in	which	the	links	are	drawn,	so	the
friendships	will	always	be	on	top	of	streets	(if	for	some	reason	these	breeds	were	in	the	same	model).	You	can	also	use
<link-breeds>-own	to	declare	variables	of	each	link	breed	separately.

You	can	change	the	breed	of	a	link	with	set	breed.	(However,	you	cannot	change	a	breeded	link	to	an	unbreeded	one,	to
prevent	having	breeded	and	unbreeded	links	in	the	same	world.)

ask	one-of	friendships	[set	breed	streets]
ask	one-of	friendships	[set	breed	links]	;;	produces	a	runtime	error

set-default-shape	may	also	be	used	with	link	breeds	to	associate	it	with	a	particular	link	shape.

Code	Example:	Link	Breeds	Example

Buttons

Buttons	in	the	interface	tab	provide	an	easy	way	to	control	the	model.	Typically	a	model	will	have	at	least	a	“setup”	button,

to	set	up	the	initial	state	of	the	world,	and	a	“go”	button	to	make	the	model	run	continuously.	Some	models	will	have
additional	buttons	that	perform	other	actions.

A	button	contains	some	NetLogo	code.	That	code	is	run	when	you	press	the	button.

A	button	may	be	either	a	“once	button”,	or	a	“forever	button”.	You	can	control	this	by	editing	the	button	and	checking	or
unchecking	the	“Forever”	checkbox.	Once	buttons	run	their	code	once,	then	stop	and	pop	back	up.	Forever	buttons	keep
running	their	code	over	and	over	again.

A	forever	button	stops	if	the	user	presses	the	button	again	to	stop	it.	The	button	waits	until	the	current	iteration	has
finished,	then	pops	up.

A	forever	button	can	also	be	stopped	from	code.	If	the	forever	button	directly	calls	a	procedure,	then	when	that	procedure
stops,	the	button	stops.	(In	a	turtle	or	patch	forever	button,	the	button	won’t	stop	until	every	turtle	or	patch	stops	–	a	single
turtle	or	patch	doesn’t	have	the	power	to	stop	the	whole	button.)

Normally,	a	button	is	labeled	with	the	code	that	it	runs.	For	example,	a	button	that	says	“go”	on	it	usually	contains	the	code
“go”,	which	means	“run	the	go	procedure”.	(Procedures	are	defined	in	the	Code	tab;	see	below.)	But	you	can	also	edit	a
button	and	enter	a	“display	name”	for	the	button,	which	is	a	text	that	appears	on	the	button	instead	of	the	code.	You	might
use	this	feature	if	you	think	the	actual	code	would	be	confusing	to	your	users.

When	you	put	code	in	a	button,	you	must	also	specify	which	agents	you	want	to	run	that	code.	You	can	choose	to	have	the
observer	run	the	code,	or	all	turtles,	or	all	patches,	or	all	links.	(If	you	want	the	code	to	be	run	by	only	some	turtles	or	some
patches,	you	could	make	an	observer	button,	and	then	have	the	observer	use	the	ask	command	to	ask	only	some	of	the
turtles	or	patches	to	do	something.)

When	you	edit	a	button,	you	have	the	option	to	assign	an	“action	key”.	This	makes	that	key	on	the	keyboard	behave	just
like	a	button	press.	If	the	button	is	a	forever	button,	it	will	stay	down	until	the	key	is	pressed	again	(or	the	button	is	clicked).
Action	keys	are	particularly	useful	for	games	or	any	model	where	rapid	triggering	of	buttons	is	needed.

Buttons	take	turns

More	than	one	button	can	be	pressed	at	a	time.	If	this	happens,	the	buttons	“take	turns”,	which	means	that	only	one	button
runs	at	a	time.	Each	button	runs	its	code	all	the	way	through	once	while	the	other	buttons	wait,	then	the	next	button	gets	its
turn.

In	the	following	examples,	“setup”	is	a	once	button	and	“go”	is	a	forever	button.

Example	#1:	The	user	presses	“setup”,	then	presses	“go”	immediately,	before	the	“setup”	has	popped	back	up.	Result:
“setup”	finishes	before	“go”	starts.

Example	#2:	While	the	“go”	button	is	down,	the	user	presses	“setup”.	Result:	the	“go”	button	finishes	its	current	iteration.
Then	the	“setup”	button	runs.	Then	“go”	starts	running	again.

Example	#3:	The	user	has	two	forever	buttons	down	at	the	same	time.	Result:	first	one	button	runs	its	code	all	the	way
through,	then	the	other	runs	its	code	all	the	way	through,	and	so	on,	alternating.

Note	that	if	one	button	gets	stuck	in	an	infinite	loop,	then	no	other	buttons	will	run.

Turtle,	patch,	and	link	forever	buttons

There	is	a	subtle	difference	between	putting	commands	in	a	turtle,	patch	or	link	forever	button,	and	putting	the	same
commands	in	an	observer	button	that	does	ask	turtles,	ask	patches	or	ask	links.	An	“ask”	doesn’t	complete	until	all	of	the
agents	have	finished	running	all	of	the	commands	in	the	“ask”.	So	the	agents,	as	they	all	run	the	commands	concurrently,
can	be	out	of	sync	with	each	other,	but	they	all	sync	up	again	at	the	end	of	the	ask.	The	same	isn’t	true	of	turtle,	patch	and
link	forever	buttons.	Since	ask	was	not	used,	each	turtle	or	patch	runs	the	given	code	over	and	over	again,	so	they	can
become	(and	remain)	out	of	sync	with	each	other.

At	present,	this	capability	is	very	rarely	used	in	the	models	in	our	Models	Library.	A	model	that	does	use	the	capability	is
the	Termites	model,	in	the	Biology	section	of	Sample	Models.	The	“go”	button	is	a	turtle	forever	button,	so	each	termite
proceeds	independently	of	every	other	termite,	and	the	observer	is	not	involved	at	all.	This	means	that	if,	for	example,	you
wanted	to	add	ticks	and/or	a	plot	to	the	model,	you	would	need	to	add	a	second	forever	button	(an	observer	forever	button),
and	run	both	forever	buttons	at	the	same	time.	Note	also	that	a	model	like	this	cannot	be	used	with	BehaviorSpace.

Code	Example:	State	Machine	Example	shows	how	Termites	can	be	recoded	in	a	tick-based	way,	without
using	a	turtle	forever	button.

At	present,	NetLogo	has	no	way	for	one	forever	button	to	start	another.	Buttons	are	only	started	when	you	press	them.

Lists

In	the	simplest	models,	each	variable	holds	only	one	piece	of	information,	usually	a	number	or	a	string.	Lists	let	you	store
multiple	pieces	of	information	in	a	single	value	by	collecting	that	information	in	a	list.	Each	value	in	the	list	can	be	any	type

of	value:	a	number,	or	a	string,	an	agent	or	agentset,	or	even	another	list.

Lists	allow	for	the	convenient	packaging	of	information	in	NetLogo.	If	your	agents	carry	out	a	repetitive	calculation	on
multiple	variables,	it	might	be	easier	to	have	a	list	variable,	instead	of	multiple	number	variables.	Several	primitives	simplify
the	process	of	performing	the	same	computation	on	each	value	in	a	list.

The	NetLogo	Dictionary	has	a	section	that	lists	all	of	the	list-related	primitives.

Constant	lists

You	can	make	a	list	by	simply	putting	the	values	you	want	in	the	list	between	brackets,	like	this:	set	mylist	[2	4	6	8] .
Note	that	the	individual	values	are	separated	by	spaces.	You	can	make	lists	that	contain	numbers	and	strings	this	way,	as
well	as	lists	within	lists,	for	example	[[2	4]	[3	5]].

The	empty	list	is	written	by	putting	nothing	between	the	brackets,	like	this:	[].

Building	lists	on	the	fly

If	you	want	to	make	a	list	in	which	the	values	are	determined	by	reporters,	as	opposed	to	being	a	series	of	constants,	use
the	list	reporter.	The	list	reporter	accepts	two	other	reporters,	runs	them,	and	reports	the	results	as	a	list.

If	I	wanted	a	list	to	contain	two	random	values,	I	might	use	the	following	code:

set	random-list	list	(random	10)	(random	20)

This	will	set	random-list	to	a	new	list	of	two	random	integers	each	time	it	runs.

To	make	longer	or	shorter	lists,	you	can	use	the	list	reporter	with	fewer	or	more	than	two	inputs,	but	in	order	to	do	so,	you
must	enclose	the	entire	call	in	parentheses,	e.g.:

(list	random	10)
(list	random	10	random	20	random	30)

For	more	information,	see	Varying	number	of	inputs.

Some	kinds	of	lists	are	most	easily	built	using	the	n-values	reporter,	which	allows	you	to	construct	a	list	of	a	specific	length
by	repeatedly	running	a	given	reporter.	You	can	make	a	list	of	the	same	value	repeated,	or	all	the	numbers	in	a	range,	or	a
lot	of	random	numbers,	or	many	other	possibilities.	See	dictionary	entry	for	details	and	examples.

The	of	primitive	lets	you	construct	a	list	from	an	agentset.	It	reports	a	list	containing	each	agent’s	value	for	the	given
reporter.	(The	reporter	could	be	a	simple	variable	name,	or	a	more	complex	expression	–	even	a	call	to	a	procedure	defined
using	to-report.)	A	common	idiom	is

max	[...]	of	turtles
sum	[...]	of	turtles

and	so	on.

You	can	combine	two	or	more	lists	using	the	sentence	reporter,	which	concatenates	lists	by	combining	their	contents	into	a
single,	larger	list.	Like	list,	sentence	normally	takes	two	inputs,	but	can	accept	any	number	of	inputs	if	the	call	is
surrounded	by	parentheses.

Changing	list	items

Technically,	lists	can’t	be	modified,	but	you	can	construct	new	lists	based	on	old	lists.	If	you	want	the	new	list	to	replace	the
old	list,	use	set.	For	example:

set	mylist	[2	7	5	Bob	[3	0	-2]]
;	mylist	is	now	[2	7	5	Bob	[3	0	-2]]
set	mylist	replace-item	2	mylist	10
;	mylist	is	now	[2	7	10	Bob	[3	0	-2]]

The	replace-item	reporter	takes	three	inputs.	The	first	input	specifies	which	item	in	the	list	is	to	be	changed.	0	means	the
first	item,	1	means	the	second	item,	and	so	forth.

To	add	an	item,	say	42,	to	the	end	of	a	list,	use	the	lput	reporter.	(fput	adds	an	item	to	the	beginning	of	a	list.)

set	mylist	lput	42	mylist
;	mylist	is	now	[2	7	10	Bob	[3	0	-2]	42]

But	what	if	you	changed	your	mind?	The	but-last	(bl	for	short)	reporter	reports	all	the	list	items	but	the	last.

set	mylist	but-last	mylist
;	mylist	is	now	[2	7	10	Bob	[3	0	-2]]

Suppose	you	want	to	get	rid	of	item	0,	the	2	at	the	beginning	of	the	list.

set	mylist	but-first	mylist
;	mylist	is	now	[7	10	Bob	[3	0	-2]]

Suppose	you	wanted	to	change	the	third	item	that’s	nested	inside	item	3	from	-2	to	9?	The	key	is	to	realize	that	the	name
that	can	be	used	to	call	the	nested	list	[3	0	-2]	is	item	3	mylist.	Then	the	replace-item	reporter	can	be	nested	to	change
the	list-within-a-list.	The	parentheses	are	added	for	clarity.

set	mylist	(replace-item	3	mylist
																		(replace-item	2	(item	3	mylist)	9))
;	mylist	is	now	[7	10	Bob	[3	0	9]]

Iterating	over	lists

If	you	want	to	do	some	operation	on	each	item	in	a	list	in	turn,	the	foreach	command	and	the	map	reporter	may	be	helpful.

foreach	is	used	to	run	a	command	or	commands	on	each	item	in	a	list.	It	takes	an	input	list	and	a	command	name	or	block
of	commands,	like	this:

foreach	[1	2	3]	show
=>	1
=>	2
=>	3
foreach	[2	4	6]
		[n	->	crt	n
				show	(word	"created	"	n	"	turtles")]
=>	created	2	turtles
=>	created	4	turtles
=>	created	6	turtles

In	the	block,	the	variable	n	holds	the	current	value	from	the	input	list.

Here	are	some	more	examples	of	foreach:

foreach	[1	2	3]	[steps	->	ask	turtles	[fd	steps]]
;;	turtles	move	forward	6	patches
foreach	[true	false	true	true]	[should-move?	->	ask	turtles	[if	should-move?	[fd	1]]]
;;	turtles	move	forward	3	patches

map	is	similar	to	foreach,	but	it	is	a	reporter.	It	takes	an	input	list	and	a	reporter	name	or	reporter	block.	Note	that	unlike
foreach,	the	reporter	comes	first,	like	this:

show	map	round	[1.2	2.2	2.7]
;;	prints	[1	2	3]

map	reports	a	list	containing	the	results	of	applying	the	reporter	to	each	item	in	the	input	list.	Again,	use	the	variable	named
in	the	anonymous	procedure	(x	in	the	examples	below)	to	refer	to	the	current	item	in	the	list.

Here	are	a	couple	more	examples	of	map:

show	map	[x	->	x	<	0]	[1	-1	3	4	-2	-10]
;;	prints	[false	true	false	false	true	true]
show	map	[x	->	x	*	x]	[1	2	3]
;;	prints	[1	4	9]

Besides	map	and	foreach,	other	primitives	for	processing	whole	lists	in	a	configurable	way	include	filter,	reduce,	and	sort-
by.

These	primitives	aren’t	always	the	solution	for	every	situation	in	which	you	want	to	operate	on	an	entire	list.	In	some
situations,	you	may	need	to	use	some	other	technique	such	as	a	loop	using	repeat	or	while,	or	a	recursive	procedure.

The	blocks	of	code	we’re	giving	to	map	and	foreach	in	these	examples	are	actually	anonymous	procedures.	Anonymous
procedures	are	explained	in	more	detail	in	Anonymous	procedures,	below.

Varying	number	of	inputs

Some	commands	and	reporters	involving	lists	and	strings	may	take	a	varying	number	of	inputs.	In	these	cases,	in	order	to

pass	them	a	number	of	inputs	other	than	their	default,	the	primitive	and	its	inputs	must	be	surrounded	by	parentheses.
Here	are	some	examples:

show	list	1	2
=>	[1	2]
show	(list	1	2	3	4)
=>	[1	2	3	4]
show	(list)
=>	[]

Note	that	each	of	these	special	primitives	has	a	default	number	of	inputs	for	which	no	parentheses	are	required.	The
primitives	which	have	this	capability	are	list,	word,	sentence,	map,	foreach,	run,	and	runresult.

Lists	of	agents

Earlier,	we	said	that	agentsets	are	always	in	random	order,	a	different	random	order	every	time.	If	you	need	your	agents	to
do	something	in	a	fixed	order,	you	need	to	make	a	list	of	the	agents	instead.

There	are	two	primitives	that	help	you	do	this,	sort	and	sort-by.

Both	sort	and	sort-by	can	take	an	agentset	as	input.	The	result	is	always	a	new	list,	containing	the	same	agents	as	the
agentset	did,	but	in	a	particular	order.

If	you	use	sort	on	an	agentset	of	turtles,	the	result	is	a	list	of	turtles	sorted	in	ascending	order	by	who	number.

If	you	use	sort	on	an	agentset	of	patches,	the	result	is	a	list	of	patches	sorted	left-to-right,	top-to-bottom.

If	you	use	sort	on	an	agentset	of	links,	the	result	is	a	list	of	links,	sorted	in	ascending	order	first	by	end1	then	by	end2	any
remaining	ties	are	resolved	by	breed	in	the	order	they	are	declared	in	the	Code	tab.

If	you	need	descending	order	instead,	you	can	combine	reverse	with	sort,	for	example	reverse	sort	turtles.

If	you	want	your	agents	to	be	ordered	by	some	other	criterion	than	the	standard	ones	sort	uses,	you’ll	need	to	use	sort-by
instead.

Here’s	an	example:

sort-by	[[a	b]	->	[size]	of	a	<	[size]	of	b]	turtles

This	returns	a	list	of	turtles	sorted	in	ascending	order	by	their	turtle	variable	size.

There’s	a	common	pattern	to	get	a	list	of	agents	in	a	random	order,	using	a	combination	of	of	and	self,	in	the	rare	case
that	you	cannot	just	use	ask:

[self]	of	my-agentset

Asking	a	list	of	agents

Once	you	have	a	list	of	agents,	you	might	want	to	ask	them	each	to	do	something.	To	do	this,	use	the	foreach	and	ask
commands	in	combination,	like	this:

foreach	sort	turtles	[the-turtle	->
		ask	the-turtle	[
				...
]
]

This	will	ask	each	turtle	in	ascending	order	by	who	number.	Substitute	“patches”	for	“turtles”	to	ask	patches	in	left-to-right,
top-to-bottom	order.

Note	that	you	can’t	use	ask	directly	on	a	list	of	turtles.	ask	only	works	with	agentsets	and	single	agents.

Performance	of	lists

The	data	structure	underlying	NetLogo’s	lists	is	a	sophisticated	tree-based	data	structure	on	which	most	operations	run	in
near-constant	time.	That	includes	fput,	lput,	butfirst,	butlast,	length,	item,	and	replace-item.

One	exception	to	the	fast-performance	rule	is	that	concatenating	two	lists	with	sentence	requires	traversing	and	copying	the
whole	second	list.	(This	may	be	fixed	in	a	future	version.)

Technically,	“near-constant	time”	is	actually	logarithmic	time,	proportional	to	the	depth	of	the	underlying	tree,	but	these
trees	have	large	nodes	and	a	high	branching	factor,	so	they	are	never	more	than	a	few	levels	deep.	This	means	that
changes	can	be	made	in	at	most	a	few	steps.	The	trees	are	immutable,	but	they	share	structure	with	each	other,	so	the

whole	tree	doesn’t	need	to	be	copied	to	make	a	changed	version.

The	actual	data	structure	used	is	the	immutable	Vector	class	from	the	Scala	collections	library.	These	are	32-wide	hash
array	mapped	tries,	as	implemented	by	Tiark	Rompf,	based	in	part	on	work	by	Phil	Bagwell	and	Rich	Hickey.

Math

All	numbers	in	NetLogo	are	stored	internally	as	double	precision	floating	point	numbers,	as	defined	in	the	IEEE	754
standard.	They	are	64	bit	numbers	consisting	of	one	sign	bit,	an	11-bit	exponent,	and	a	52-bit	mantissa.	See	the	IEEE	754
standard	for	details.

An	“integer”	in	NetLogo	is	simply	a	number	that	happens	to	have	no	fractional	part.	No	distinction	is	made	between	3	and
3.0;	they	are	the	same	number.	(This	is	the	same	as	how	most	people	use	numbers	in	everyday	contexts,	but	different
from	some	programming	languages.	Some	languages	treat	integers	and	floating	point	numbers	as	distinct	types.)

Integers	are	always	printed	by	NetLogo	without	the	trailing	“.0”:

show	1.5	+	1.5
observer:	3

If	a	number	with	a	fractional	part	is	supplied	in	a	context	where	an	integer	is	expected,	the	fractional	part	is	simply
discarded.	So	for	example,	crt	3.5	creates	three	turtles;	the	extra	0.5	is	ignored.

The	range	of	integers	is	+/-9007199254740992	(2^53,	about	9	quadrillion).	Calculations	that	exceed	this	range	will	not
cause	runtime	errors,	but	precision	will	be	lost	when	the	least	significant	(binary)	digits	are	rounded	off	in	order	fit	the
number	into	64	bits.	With	very	large	numbers,	this	rounding	can	result	in	imprecise	answers	which	may	be	surprising:

show	2	^	60	+	1	=	2	^	60
=>	true

Calculations	with	smaller	numbers	can	also	produce	surprising	results	if	they	involve	fractional	quantities,	since	not	all
fractions	can	be	precisely	represented	and	roundoff	may	occur.	For	example:

show	1	/	6	+	1	/	6	+	1	/	6	+	1	/	6	+	1	/	6	+	1	/	6
=>	0.9999999999999999
show	1	/	9	+	1	/	9	+	1	/	9	+	1	/	9	+	1	/	9	+	1	/	9	+	1	/	9	+	1	/	9	+	1	/	9
=>	1.0000000000000002

Any	operation	which	produces	the	special	quantities	“infinity”	or	“not	a	number”	will	cause	a	runtime	error.

Scientific	notation

Very	large	or	very	small	floating	point	numbers	are	displayed	by	NetLogo	using	“scientific	notation”.	Examples:

show	0.000000000001
=>	1.0E-12
show	50000000000000000000
=>	5.0E19

Numbers	in	scientific	notation	are	distinguished	by	the	presence	of	the	letter	E	(for	“exponent”).	It	means	“times	ten	to	the
power	of”,	so	for	example,	1.0E-12	means	1.0	times	10	to	the	-12	power:

show	1.0	*	10	^	-12
=>	1.0E-12

You	can	also	use	scientific	notation	yourself	in	NetLogo	code:

show	3.0E6
=>	3000000
show	8.123456789E6
=>	8123456.789
show	8.123456789E7
=>	8.123456789E7
show	3.0E16
=>	3.0E16
show	8.0E-3
=>	0.0080
show	8.0E-4
=>	8.0E-4

These	examples	show	that	numbers	with	fractional	parts	are	displayed	using	scientific	notation	if	the	exponent	is	less	than

https://en.wikipedia.org/wiki/Hash_array_mapped_trie

-3	or	greater	than	6.	Numbers	outside	of	NetLogo’s	integer	range	of	-9007199254740992	to	9007199254740992	(+/-2^53)
are	also	always	shown	in	scientific	notation:

show	2	^	60
=>	1.15292150460684698E18

When	entering	a	number,	the	letter	E	may	be	either	upper	or	lowercase.	When	printing	a	number,	NetLogo	always	uses	an
uppercase	E:

show	4.5e20
=>	4.5E20

Floating	point	accuracy

Because	numbers	in	NetLogo	are	subject	to	the	limitations	of	how	floating	point	numbers	are	represented	in	binary,	you
may	get	answers	that	are	slightly	inaccurate.	For	example:

show	0.1	+	0.1	+	0.1
=>	0.30000000000000004
show	cos	90
=>	6.123233995736766E-17

This	is	an	inherent	issue	with	floating	point	arithmetic;	it	occurs	in	all	programming	languages	that	use	floating	point
numbers.

If	you	are	dealing	with	fixed	precision	quantities,	for	example	dollars	and	cents,	a	common	technique	is	to	use	only	integers
(cents)	internally,	then	divide	by	100	to	get	a	result	in	dollars	for	display.

If	you	must	use	floating	point	numbers,	then	in	some	situations	you	may	need	to	replace	a	straightforward	equality	test
such	as	if	x	=	1	[...] 	with	a	test	that	tolerates	slight	imprecision,	for	example	if	abs	(x	-	1)	<	0.0001	[...] .

Also,	the	precision	primitive	is	handy	for	rounding	off	numbers	for	display	purposes.	NetLogo	monitors	round	the	numbers
they	display	to	a	configurable	number	of	decimal	places,	too.

Random	numbers

The	random	numbers	used	by	NetLogo	are	what	is	called	“pseudo-random”.	(This	is	typical	in	computer	programming.)
That	means	they	appear	random,	but	are	in	fact	generated	by	a	deterministic	process.	“Deterministic”	means	that	you	get
the	same	results	every	time,	if	you	start	with	the	same	random	“seed”.	We’ll	explain	in	a	minute	what	we	mean	by	“seed”.

In	the	context	of	scientific	modeling,	pseudo-random	numbers	are	actually	desirable.	That’s	because	it’s	important	that	a
scientific	experiment	be	reproducible	–	so	anyone	can	try	it	themselves	and	get	the	same	result	that	you	got.	Since
NetLogo	uses	pseudo-random	numbers,	the	“experiments”	that	you	do	with	it	can	be	reproduced	by	others.

Here’s	how	it	works.	NetLogo’s	random	number	generator	can	be	started	with	a	certain	seed	value,	which	must	be	an
integer	in	the	range	-2147483648	to	2147483647.	Once	the	generator	has	been	“seeded”	with	the	random-seed	command,
it	always	generates	the	same	sequence	of	random	numbers	from	then	on.	For	example,	if	you	run	these	commands:

random-seed	137
show	random	100
show	random	100
show	random	100

You	will	always	get	the	numbers	79,	89,	and	61	in	that	order.

Note,	however,	that	you’re	only	guaranteed	to	get	those	same	numbers	if	you’re	using	the	same	version	of	NetLogo.
Sometimes	when	we	make	a	new	version	of	NetLogo	the	random	number	generator	changes.	(Presently,	we	use	a
generator	known	as	the	Mersenne	Twister.)

To	create	a	number	suitable	for	seeding	the	random	number	generator,	use	the	new-seed	reporter.	new-seed	creates	a
seed,	evenly	distributed	over	the	space	of	possible	seeds,	based	on	the	current	date	and	time.	It	never	reports	the	same
seed	twice	in	a	row.

Code	Example:	Random	Seed	Example

If	you	don’t	set	the	random	seed	yourself,	NetLogo	sets	it	to	a	value	based	on	the	current	date	and	time.	There	is	no	way	to
find	out	what	random	seed	it	chose,	so	if	you	want	your	model	run	to	be	reproducible,	you	must	set	the	random	seed
yourself	ahead	of	time.

The	NetLogo	primitives	with	“random”	in	their	names	(random,	random-float,	and	so	on)	aren’t	the	only	ones	that	use

pseudo-random	numbers.	Many	other	operations	also	make	random	choices.	For	example,	agentsets	are	always	in
random	order,	one-of	and	n-of	choose	agents	randomly,	the	sprout	command	creates	turtles	with	random	colors	and
headings,	and	the	downhill	reporter	chooses	a	random	patch	when	there’s	a	tie.	All	of	these	random	choices	are	governed
by	the	random	seed	as	well,	so	model	runs	can	be	reproducible.

In	addition	to	the	uniformly	distributed	random	integers	and	floating	point	numbers	generated	by	random	and	random-float,
NetLogo	also	offers	several	other	random	distributions.	See	the	dictionary	entries	for	random-normal,	random-poisson,
random-exponential,	and	random-gamma.

Auxiliary	generator

Code	run	by	buttons	or	from	the	command	center	uses	the	main	random	number	generator.

Code	in	monitors	uses	an	auxiliary	random	generator,	so	even	if	a	monitor	does	a	calculation	that	uses	random	numbers,
the	outcome	of	the	model	is	not	affected.	The	same	is	true	of	code	in	sliders.

Local	randomness

You	may	want	to	explicitly	specify	that	a	section	of	code	does	not	affect	the	state	of	the	main	random	generator,	so	the
outcome	of	the	model	is	not	affected.	The	with-local-randomness	command	is	provided	for	this	purpose.	See	its	entry	in
the	NetLogo	Dictionary	for	more	information.

Saving	a	Random	Seed	for	a	Run

If	you	want	to	know	what	the	random	seed	used	by	a	“run”	of	a	model	was,	you	can	add	some	simple	code	to	track	it.	Then
if	an	interesting	behavior	emerges	or	an	intermittent	error	condition	occurs,	you	have	a	way	to	reproduce	the	run	by
grabbing	the	seed	and	re-using	it.

Add	a	starting-seed	global	variable,	then	use	new-seed	to	give	it	a	value	after	you	use	clear-all	in	your	setup	procedure.
Then	give	that	value	to	the	random-seed	command	so	it	will	be	used	for	the	rest	of	the	run.

globals	[starting-seed]

to	setup
		clear-all
		set	starting-seed	new-seed
		random-seed	starting-seed
		;	...	rest	of	normal	setup	code
end

to	go
		;	...	the	rest	of	normal	model	code	will	use	the	random	seed	set	in	`setup`
end

You	can	then	add	a	monitor	for	the	starting-seed	global	or	simply	output	it	to	the	command	center	whenever	you	want	to
know	its	value.	If	you	are	using	BehaviorSpace	to	run	experiments,	you	can	also	include	it	in	the	output	to	be	able	to	later
reproduce	runs	that	it	generates.

Turtle	shapes

In	NetLogo,	turtle	shapes	are	vector	shapes.	They	are	built	up	from	basic	geometric	shapes;	squares,	circles,	and	lines,
rather	than	a	grid	of	pixels.	Vector	shapes	are	fully	scalable	and	rotatable.	NetLogo	caches	bitmap	images	of	vector
shapes	size	1,	1.5,	and	2	in	order	to	speed	up	execution.

A	turtle’s	shape	is	stored	in	its	shape	variable	and	can	be	set	using	the	set	command.

New	turtles	have	a	shape	of	“default”.	The	set-default-shape	primitive	is	useful	for	changing	the	default	turtle	shape	to	a
different	shape,	or	having	a	different	default	turtle	shape	for	each	breed	of	turtle.

The	shapes	primitive	reports	a	list	of	currently	available	turtle	shapes	in	the	model.	This	is	useful	if,	for	example,	you	want	to
assign	a	random	shape	to	a	turtle:

ask	turtles	[set	shape	one-of	shapes]

Use	the	Turtle	Shapes	Editor	to	create	your	own	turtle	shapes,	or	to	add	shapes	to	your	model	from	our	shapes	library,	or
to	transfer	shapes	between	models.	For	more	information,	see	the	Shapes	Editor	section	of	this	manual.

The	thickness	of	the	lines	used	to	draw	the	vector	shapes	can	be	controlled	by	the	__set-line-thickness	primitive.

Code	Examples:	Breeds	and	Shapes	Example,	Shape	Animation	Example

Link	shapes

Link	Shapes	are	similar	to	turtle	shapes,	only	you	use	the	Link	Shape	Editor	to	create	and	edit	them.	Link	shapes	consist	of
between	0	and	3	lines	which	can	have	different	patterns	and	a	direction	indicator	that	is	composed	of	the	same	elements	as
turtle	shapes.	Links	also	have	a	shape	variable	that	can	be	set	to	any	link	shape	that	is	in	the	model.	By	default	links	have
the	“default”	shape,	though	you	can	change	that	using	set-default-shape.	The	link-shapes	reporter	reports	all	the	link
shapes	included	in	the	current	model.

The	thickness	of	the	lines	in	the	link	shape	is	controlled	by	the	thickness	link	variable.

View	updates

The	“view”	in	NetLogo	lets	you	see	the	agents	in	your	model	on	your	computer’s	screen.	As	your	agents	move	and	change,
you	see	them	moving	and	changing	in	the	view.

Of	course,	you	can’t	really	see	your	agents	directly.	The	view	is	a	picture	that	NetLogo	paints,	showing	you	how	your
agents	look	at	a	particular	instant.	Once	that	instant	passes	and	your	agents	move	and	change	some	more,	that	picture
needs	to	be	repainted	to	reflect	the	new	state	of	the	world.	Repainting	the	picture	is	called	“updating”	the	view.

When	does	the	view	get	updated?	This	section	discusses	how	NetLogo	decides	when	to	update	the	view,	and	how	you
can	influence	when	it	gets	updated.

NetLogo	offers	two	updates	modes,	“continuous”	updates	and	“tick-based”	updates.	You	can	switch	between	NetLogo’s	two
view	update	modes	using	a	popup	menu	at	the	top	of	the	Interface	tab.

Continuous	updates	are	the	default	when	you	start	up	NetLogo	or	start	a	new	model.	Nearly	every	model	in	our	Models
Library,	however,	uses	tick-based	updates.

Continuous	updates	are	simplest,	but	tick-based	updates	give	you	more	control	over	when	and	how	often	updates	happen.

It’s	important	exactly	when	an	update	happens,	because	when	updates	happen	determines	what	you	see	on	the	screen.	If
an	update	comes	at	an	unexpected	time,	you	may	see	something	unexpected	–	perhaps	something	confusing	or
misleading.

It’s	also	important	how	often	updates	happen,	because	updates	take	time.	The	more	time	NetLogo	spends	updating	the
view,	the	slower	your	model	will	run.	With	fewer	updates,	your	model	runs	faster.

Continuous	updates

Continuous	updates	are	very	simple.	With	continuous	updates,	NetLogo	updates	the	view	a	certain	number	of	times	per
second	–	by	default,	30	times	a	second	when	the	speed	slider	is	in	the	default,	middle	setting.

If	you	move	the	speed	slider	to	a	slower	setting,	NetLogo	will	update	more	than	30	times	a	second,	effectively	slowing
down	the	model.	On	a	faster	setting,	NetLogo	will	update	less	than	30	times	a	second.	On	the	fastest	setting,	updates	will
be	separated	by	several	seconds.

At	extremely	slow	settings,	NetLogo	will	be	updating	so	often	that	you	will	see	your	agents	moving	(or	changing	color,	etc.)
one	at	a	time.

If	you	need	to	temporarily	shut	off	continuous	updates,	use	the	no-display	command.	The	display	command	turns	updates
back	on,	and	also	forces	an	immediate	update	(unless	the	user	is	fast-forwarding	the	model	using	the	speed	slider).

Tick-based	updates

As	discussed	above	in	the	Tick	Counter	section,	in	many	NetLogo	models,	time	passes	in	discrete	steps,	called	“ticks”.
Typically,	you	want	the	view	to	update	once	per	tick,	between	ticks.	That’s	the	default	behavior	with	tick-based	updates.

If	you	want	additional	view	updates,	you	can	force	an	update	using	the	display	command.	(The	update	may	be	skipped	if
the	user	is	fast-forwarding	the	model	using	the	speed	slider.)

You	don’t	have	to	use	the	tick	counter	to	use	tick-based	updates.	If	the	tick	counter	never	advances,	the	view	will	update
only	when	you	use	the	display	command.

If	you	move	the	speed	slider	to	a	fast	enough	setting,	eventually	NetLogo	will	skip	some	of	the	updates	that	would
ordinarily	have	happened.	Moving	the	speed	slider	to	a	slower	setting	doesn’t	cause	additional	updates;	rather,	it	makes
NetLogo	pause	after	each	update.	The	slower	the	setting,	the	longer	the	pause.

Even	under	tick-based	updates,	the	view	also	updates	whenever	a	button	in	the	interface	pops	up	(both	once	and	forever
buttons)	and	when	a	command	entered	in	the	Command	Center	finishes.	So	it’s	not	necessary	to	add	the	display
command	to	once	buttons	that	don’t	advance	the	tick	counter.	Many	forever	buttons	that	don’t	advance	the	tick	counter	do
need	to	use	the	display	command.	An	example	in	the	Models	Library	is	the	Life	model	(under	Computer	Science	->

Cellular	Automata).	The	forever	buttons	that	let	the	user	draw	in	the	view	use	the	display	command	so	the	user	can	see
what	they	are	drawing,	even	though	the	tick	counter	is	not	advancing.

Choosing	a	mode

Advantages	of	tick-based	updates	over	continuous	updates	include:

1.	 Consistent,	predictable	view	update	behavior	which	does	not	vary	from	computer	to	computer	or	from	run	to	run.
2.	 Continuous	updates	can	confuse	the	user	of	your	model	by	letting	them	see	model	states	they	aren’t	supposed	to

see,	which	may	be	misleading.
3.	 Since	setup	buttons	don’t	advance	the	tick	counter,	they	are	unaffected	by	the	speed	slider;	this	is	normally	the

desired	behavior.

Nearly	every	model	in	our	Models	Library	uses	tick-based	updates.

Continuous	updates	are	occasionally	useful	for	those	rare	models	in	which	execution	is	not	divided	into	short,	discrete
phases.	An	example	in	the	Models	Library	is	Termites.	(See	also,	however,	the	State	Machine	Example	model,	which
shows	how	to	re-code	Termites	using	ticks.)

Even	for	models	that	would	normally	be	set	to	tick-based	updates,	it	may	be	useful	to	switch	to	continuous	updates
temporarily	for	debugging	purposes.	Seeing	what’s	going	on	within	a	tick,	instead	of	only	seeing	the	end	result	of	a	tick,
could	help	with	troubleshooting.	After	switching	to	continuous	updates,	you	may	want	to	use	the	speed	slider	to	slow	the
model	down	until	you	see	your	agents	moving	one	at	a	time.	Don’t	forget	to	change	back	to	tick-based	updates	when	you
are	done,	as	the	choice	of	update	mode	is	saved	with	the	model.

Changing	the	update	mode	also	affects	model	speed.	Updating	the	view	takes	time;	often	enforcing	a	single	update	per	tick
(by	using	tick-based	updates)	will	make	your	model	faster.	On	the	other	hand,	continuous	updates	will	be	faster	when
running	a	single	tick	is	faster	than	drawing	a	frame	of	the	model.	Most	models	run	faster	under	tick-based	updates,	but	for
an	example	of	a	model	which	is	faster	with	continuous	updates	see	the	“Heroes	and	Cowards”	library	model.

Frame	rate

One	of	the	model	settings	in	NetLogo’s	“Settings…”	dialog	is	“Frame	rate”	which	defaults	to	30	frames	per	second.

The	frame	rate	setting	affects	both	continuous	updates	and	tick-based	updates.

With	continuous	updates,	the	setting	directly	determines	the	frequency	of	updates.

With	tick-based	updates,	the	setting	is	a	ceiling	on	how	many	updates	per	second	you	get.	If	the	frame	rate	is	30,	then
NetLogo	will	ensure	that	the	model	never	runs	faster	than	that	when	the	speed	slider	is	in	the	default	position.	If	any	frame
takes	less	than	1/30	of	a	second	to	compute	and	display,	NetLogo	will	pause	and	wait	until	the	full	1/30	of	a	second	has
passed	before	continuing.

The	frame	rate	settings	lets	you	set	what	you	consider	to	be	a	normal	speed	for	your	model.	Then	you,	or	the	user	of	your
model,	can	use	the	speed	slider	to	temporarily	get	a	faster	or	slower	speed.

Plotting

NetLogo’s	plotting	features	let	you	create	plots	to	help	you	understand	what’s	going	on	in	your	model.

Before	you	can	plot,	you	need	to	create	one	or	more	plots	in	the	Interface	tab.	For	more	information	on	using	and	editing
plots	in	the	Interface	tab,	see	the	Interface	Guide.

Plotting	points

The	two	basic	commands	for	actually	plotting	things	are	plot	and	plotxy.

With	plot	you	need	only	specify	the	y	value	you	want	plotted.	The	x	value	will	automatically	be	0	for	the	first	point	you	plot,
1	for	the	second,	and	so	on.	(That’s	if	the	plot	pen’s	“interval”	is	the	default	value	of	1;	you	can	change	the	interval.)

The	plot	command	is	especially	handy	when	you	want	your	model	to	plot	a	new	point	at	every	time	step.	Example:

plot	count	turtles

If	you	need	to	specify	both	the	x	and	y	values	of	the	point	you	want	plotted,	then	use	plotxy	instead.	This	example
assumes	that	a	global	variable	called	time	exists:

plotxy	time	count-turtles

Plot	commands

Each	plot	and	its	pens	have	setup	and	update	code	fields	that	may	contain	commands	(usually	containing	plot	or	plotxy).
These	commands	are	run	automatically	triggered	by	other	commands	in	NetLogo.

Plot	setup	commands	and	pen	setup	commands	are	run	when	the	either	reset-ticks	or	setup-plots	commands	are	run.	If
the	stop	command	is	run	in	the	body	of	the	plot	setup	commands	then	the	pen	setup	commands	will	not	run.

Plot	update	commands	and	pen	update	commands	are	run	when	the	either	reset-ticks,	tick	or	update-plots	commands
are	run.	If	the	stop	command	is	run	in	the	body	of	the	plot	update	commands	then	the	pen	update	commands	will	not	run.

Here	are	the	four	commands	that	trigger	plotting	explained	in	more	detail.

setup-plots	executes	commands	for	one	plot	at	a	time.	For	each	plot,	the	plot’s	setup	commands	are	executed.	If	the
stop	command	is	not	encountered	while	running	those	commands,	then	each	of	the	plot’s	pens	will	have	their	setup
code	executed.
update-plots	is	very	similar	to	setup-plots.	For	each	plot,	the	plot’s	update	commands	are	executed.	If	the	stop
command	is	not	encountered	while	running	those	commands,	then	each	of	the	plot’s	pens	will	have	their	update	code
executed.
tick	is	exactly	the	same	as	update-plots	except	that	the	tick	counter	is	incremented	before	the	plot	commands	are
executed.
reset-ticks	first	resets	the	tick	counter	to	0,	and	then	does	the	equivalent	of	setup-plots	followed	by	update-plots.

A	typical	model	will	use	reset-ticks	and	tick	like	so:

to	setup
		clear-all
		...
		reset-ticks
end

to	go
		...
		tick
end

Note	that	in	this	example	we	plot	from	both	the	setup	and	go	procedures	(because	reset-ticks	runs	plot	setup	and	plot
update	commands).	We	do	this	because	we	want	our	plot	to	include	the	initial	state	of	the	system	at	the	end	of	setup.	We
plot	at	the	end	of	the	go	procedure,	not	the	beginning,	because	we	want	the	plot	always	to	be	up	to	date	after	the	go	button
stops.

Models	that	don’t	use	ticks	but	still	want	to	do	plotting	will	instead	use	setup-plots	and	update-plots.	In	the	previous	code,
replace	reset-ticks	with	setup-plots	update-plots	and	replace	tick	with	update-plots.

Code	Example:	Plotting	Example

Other	kinds	of	plots

By	default,	NetLogo	plot	pens	plot	in	line	mode,	so	that	the	points	you	plot	are	connected	by	a	line.

If	you	want	to	move	the	pen	without	plotting,	you	can	use	the	plot-pen-up	command.	After	this	command	is	issued,	the
plot	and	plotxy	commands	move	the	pen	but	do	not	actually	draw	anything.	Once	the	pen	is	where	you	want	it,	use	plot-
pen-down	to	put	the	pen	back	down.

If	you	want	to	plot	individual	points	instead	of	lines,	or	you	want	to	draw	bars	instead	of	lines	or	points,	you	need	to	change
the	plot	pen’s	“mode”.	Three	modes	are	available:	line,	bar,	and	point.	Line	is	the	default	mode.

Normally,	you	change	a	pen’s	mode	by	editing	the	plot.	This	changes	the	pen’s	default	mode.	It’s	also	possible	to	change
the	pen’s	mode	temporarily	using	the	set-plot-pen-mode	command.	That	command	takes	a	number	as	input:	0	for	line,	1
for	bar,	2	for	point.

Histograms

A	histogram	is	a	special	kind	of	plot	that	measures	how	frequently	certain	values,	or	values	in	certain	ranges,	occur	in	a
collection	of	numbers	that	arise	in	your	model.

For	example,	suppose	the	turtles	in	your	model	have	an	age	variable.	You	could	create	a	histogram	of	the	distribution	of
ages	among	your	turtles	with	the	histogram	command,	like	this:

histogram	[age]	of	turtles

The	numbers	you	want	to	histogram	don’t	have	to	come	from	an	agentset;	they	could	be	any	list	of	numbers.

Note	that	using	the	histogram	command	doesn’t	automatically	switch	the	current	plot	pen	to	bar	mode.	If	you	want	bars,
you	have	to	set	the	plot	pen	to	bar	mode	yourself.	(As	we	said	before,	you	can	change	a	pen’s	default	mode	by	editing	the
plot	in	the	Interface	tab.)

Like	other	types	of	plots,	histograms	can	be	set	to	auto	scale.	However,	auto	scaled	histograms	do	not	automatically	resize
themselves	horizontally	like	other	plot	types	do.	To	set	the	range	programmatically,	you	can	use	the	set-plot-x-range
primitive.

The	width	of	the	bars	in	a	histogram	is	controlled	by	the	plot	pen’s	interval.	You	can	set	a	plot	pen’s	default	interval	by
editing	the	plot	in	the	Interface	tab.	You	can	also	change	the	interval	temporarily	with	the	set-plot-pen-interval	command
or	the	set-histogram-num-bars.	If	you	use	the	latter	command,	NetLogo	will	set	the	interval	appropriately	so	as	to	fit	the
specified	number	of	bars	within	the	plot’s	current	x	range.

Code	Example:	Histogram	Example

Clearing	and	resetting

You	can	clear	the	current	plot	with	the	clear-plot	command,	or	clear	every	plot	in	your	model	with	clear-all-plots.	The
clear-all	command	also	clears	all	plots,	in	addition	to	clearing	everything	else	in	your	model.

If	you	want	to	remove	only	the	points	that	a	particular	pen	has	drawn,	use	plot-pen-reset.

When	a	whole	plot	is	cleared,	or	when	a	pen	is	reset,	that	doesn’t	just	remove	the	data	that	has	been	plotted.	It	also
restores	the	plot	or	pen	to	its	default	settings,	as	they	were	specified	in	the	Interface	tab	when	the	plot	was	created	or	last
edited.	Therefore,	the	effects	of	such	commands	as	set-plot-background-color,	set-plot-x-range	and	set-plot-pen-color
are	only	temporary.

Ranges	and	auto	scaling

The	default	x	and	y	ranges	for	a	plot	are	fixed	numbers,	but	they	can	be	changed	at	setup	time	or	as	the	model	runs.

To	change	the	ranges	at	any	time,	use	set-plot-x-range	and	set-plot-y-range.	Or,	you	can	let	the	ranges	grow
automatically.	Either	way,	when	the	plot	is	cleared	the	ranges	will	return	to	their	default	values.

By	default,	all	NetLogo	plots	have	the	auto	scaling	feature	enabled.	This	means	that	if	the	model	tries	to	plot	a	point	which
is	outside	the	current	displayed	range,	the	range	of	the	plot	will	grow	along	one	or	both	axes	so	that	the	new	point	is
visible.	Histogram	plots,	however,	do	not	auto	scale	horizontally.

In	the	hope	that	the	ranges	won’t	have	to	change	every	time	a	new	point	is	added,	when	the	ranges	grow	they	leave	some
extra	room:	25%	if	growing	horizontally,	10%	if	growing	vertically.

If	you	want	to	turn	off	this	feature,	edit	the	plot	and	uncheck	the	“Auto	Scale?”	checkbox.	At	present,	it	is	not	possible	to
enable	or	disable	this	feature	only	on	one	axis;	it	always	applies	to	both	axes.

Using	a	Legend

You	can	show	the	legend	of	a	plot	by	checking	the	“Show	legend”	checkbox	in	the	edit	dialog.	If	you	don’t	want	a	particular
pen	to	show	up	in	the	legend	you	can	uncheck	the	“Show	in	Legend”	checkbox	for	that	pen	also	in	the	advanced	plot	pen
settings	(the	advanced	plot	pen	settings	can	be	opened	by	clicking	the	pencil	button	for	that	pen	in	the	plot	pens	table	in
the	plot	edit	dialog).

Temporary	plot	pens

Most	plots	can	get	along	with	a	fixed	number	of	pens.	But	some	plots	have	more	complex	needs;	they	may	need	to	have
the	number	of	pens	vary	depending	on	conditions.	In	such	cases,	you	can	make	“temporary”	plot	pens	from	code	and	then
plot	with	them.	These	pens	are	called	“temporary”	because	they	vanish	when	the	plot	is	cleared	(by	the	clear-plot,	clear-
all-plots,	or	clear-all	commands).

To	create	a	temporary	plot	pen,	use	the	create-temporary-plot-pen	command.	Typically,	this	would	be	done	in	the	Code
tab,	but	it	is	also	possible	to	use	this	command	from	plot	setup	or	plot	update	code	(in	the	edit	dialog).	By	default,	the	new
pen	is	down,	is	black	in	color,	has	an	interval	of	1,	and	plots	in	line	mode.	Commands	are	available	to	change	all	of	these
settings;	see	the	Plotting	section	of	the	NetLogo	Dictionary.

Before	you	can	use	the	pen,	you’ll	have	to	use	the	use	the	set-current-plot	and	set-current-plot-pen	commands.	These
are	explained	in	the	next	section.

set-current-plot	and	set-current-plot-pen

Before	NetLogo	5,	it	was	not	possible	to	put	plot	commands	in	the	plot	itself.	All	of	the	plot	code	was	written	in	the	Code
tab	with	the	rest	of	the	code.	For	backwards	compatibility,	and	for	temporary	plot	pens,	this	is	still	supported.	Models	in
previous	versions	of	NetLogo	(and	those	using	temporary	plot	pens)	have	to	explicitly	state	which	plot	is	the	current	plot
with	the	set-current-plot	command	and	which	pen	is	the	current	pen	with	the	set-current-plot-pen	command.

To	set	the	current	plot	use	the	set-current-plot	command	with	the	name	of	the	plot	enclosed	in	double	quotes,	like	this:

set-current-plot	"Distance	vs.	Time"

The	name	of	the	plot	must	be	exactly	as	you	typed	it	when	you	created	the	plot.	Note	that	later	if	you	change	the	name	of
the	plot,	you’ll	also	have	to	update	the	set-current-plot	calls	in	your	model	to	use	the	new	name.	(Copy	and	paste	can	be
helpful	here.)

For	a	plot	with	multiple	pens,	you	can	manually	specify	which	pen	you	want	to	plot	with.	If	you	don’t	specify	a	pen,	plotting
will	take	place	with	the	first	pen	in	the	plot.	To	plot	with	a	different	pen,	the	set-current-plot-pen	command	was	used	with
the	name	of	the	pen	enclosed	in	double	quotes,	like	this:

set-current-plot-pen	"distance"

Once	the	current	pen	is	set,	then	commands	like	plot	count	turtles	can	be	executed	for	that	pen.

Older	models	with	plots	usually	had	their	own	do-plotting	procedure	that	looked	something	like	this:

to	do-plotting
		set-current-plot	"populations"
		set-current-plot-pen	"sheep"
		plot	count	sheep
		set-current-plot-pen	"wolves"
		plot	count	wolves

		set-current-plot	"next	plot"
		...
end

Once	again,	this	is	no	longer	necessary	in	NetLogo	5,	unless	you	are	using	temporary	plot	pens.

Conclusion

Not	every	aspect	of	NetLogo’s	plotting	system	has	been	explained	here.	See	the	Plotting	section	of	the	NetLogo	Dictionary
for	information	on	additional	commands	and	reporters	related	to	plotting.

Many	of	the	Sample	Models	in	the	Models	Library	illustrate	various	advanced	plotting	techniques.	Also	check	out	the
following	code	examples:

Code	Examples:	Plot	Axis	Example,	Plot	Smoothing	Example,	Rolling	Plot	Example

Strings

Strings	may	contain	any	Unicode	characters.

To	input	a	constant	string	in	NetLogo,	surround	it	with	double	quotes.

The	empty	string	is	written	by	putting	nothing	between	the	quotes,	like	this:	"".

Most	of	the	list	primitives	work	on	strings	as	well:

but-first	"string"	=>	"tring"
but-last	"string"	=>	"strin"
empty?	""	=>	true
empty?	"string"	=>	false
first	"string"	=>	"s"
item	2	"string"	=>	"r"
last	"string"	=>	"g"
length	"string"	=>	6
member?	"s"	"string"	=>	true
member?	"rin"	"string"	=>	true
member?	"ron"	"string"	=>	false
position	"s"	"string"	=>	0
position	"rin"	"string"	=>	2
position	"ron"	"string"	=>	false
remove	"r"	"string"	=>	"sting"
remove	"s"	"strings"	=>	"tring"

replace-item	3	"string"	"o"	=>	"strong"
reverse	"string"	=>	"gnirts"

A	few	primitives	are	specific	to	strings,	such	as	is-string?,	substring,	and	word:

is-string?	"string"	=>	true
is-string?	37	=>	false
substring	"string"	2	5	=>	"rin"
word	"tur"	"tle"	=>	"turtle"

Strings	can	be	compared	using	the	=,	!=,	<,	>,	<=,	and	>=	operators.

If	you	need	to	embed	a	special	character	in	a	string,	use	the	following	escape	sequences:

\n	=	newline
\t	=	tab
\"	=	double	quote
\\	=	backslash

Output

This	section	is	about	output	to	the	screen.	Output	to	the	screen	can	also	be	later	saved	to	a	file	using	the	export-output
command.	If	you	need	a	more	flexible	method	of	writing	data	to	external	files,	see	the	next	section,	File	I/O.

The	basic	commands	for	generating	output	to	the	screen	in	NetLogo	are	print,	show,	type,	and	write.	These	commands
send	their	output	to	the	Command	Center.

For	full	details	on	these	four	commands,	see	their	entries	in	the	NetLogo	Dictionary.	Here	is	how	they	are	typically	used:

print	is	useful	in	most	situations.
show	lets	you	see	which	agent	is	printing	what.
type	lets	you	print	several	things	on	the	same	line.
write	lets	you	print	values	in	a	format	which	can	be	read	back	in	using	file-read.

A	NetLogo	model	may	optionally	have	an	“output	area”	in	its	Interface	tab,	separate	from	the	Command	Center.	To	send
output	there	instead	of	the	Command	Center,	use	the	output-print,	output-show,	output-type,	and	output-write
commands.

The	output	area	can	be	cleared	with	the	clear-output	command	and	saved	to	a	file	with	export-output.	The	contents	of
the	output	area	will	be	saved	by	the	export-world	command.	The	import-world	command	will	clear	the	output	area	and	set
its	contents	to	the	value	in	imported	world	file.	It	should	be	noted	that	large	amounts	of	data	being	sent	to	the	output	area
can	increase	the	size	of	your	exported	worlds.

If	you	use	output-print,	output-show,	output-type,	output-write,	clear-output,	or	export-output	in	a	model	which	does
not	have	a	separate	output	area,	then	the	commands	apply	to	the	output	portion	of	the	Command	Center.

How	Output	Primitives	Differ

This	information	is	a	quick	reference	for	more	advanced	users.

The	print,	show,	type,	and	write	primitives	differ	on	the	following	facets:

What	types	of	values	does	the	primitive	accept?
Does	the	primitive	output	a	newline	at	the	end?
Are	strings	output	with	quotes	surrounding	them?
Does	the	primitive	output	the	agent	which	printed	it?

The	following	table	summarizes	the	behavior	of	each	primitive.

Primitive Acceptable	values Adds
newline? Strings	quoted? Outputs	self?

print any	NetLogo	value yes no no

show any	NetLogo	value yes yes yes

type any	NetLogo	value no no no

write
boolean,	number,	string,	lists	containing	only	these
types no yes no

File	I/O

In	NetLogo,	there	is	a	set	of	primitives	that	give	you	the	power	to	interact	with	outside	files.	They	all	begin	with	the	prefix
file-.

There	are	two	main	modes	when	dealing	with	files:	reading	and	writing.	The	difference	is	the	direction	of	the	flow	of	data.
When	you	are	reading	in	information	from	a	file,	data	that	is	stored	in	the	file	flows	into	your	model.	On	the	other	hand,
writing	allows	data	to	flow	out	of	your	model	and	into	a	file.

When	working	with	files,	always	begin	by	using	the	primitive	file-open.	This	specifies	which	file	you	will	be	interacting	with.
None	of	the	other	primitives	work	unless	you	open	a	file	first.

The	next	file-	primitive	you	use	dictates	which	mode	the	file	will	be	in	until	the	file	is	closed,	reading	or	writing.	To	switch
modes,	close	and	then	reopen	the	file.

The	reading	primitives	include	file-read,	file-read-line,	file-read-characters,	and	file-at-end?.	Note	that	the	file	must
exist	already	before	you	can	open	it	for	reading.

Code	Examples:	File	Input	Example

The	primitives	for	writing	are	similar	to	the	primitives	that	print	things	in	the	Command	Center,	except	that	the	output	gets
saved	to	a	file.	They	include	file-print,	file-show,	file-type,	and	file-write.	Note	that	you	can	never	“overwrite”	data.	In
other	words,	if	you	attempt	to	write	to	a	file	with	existing	data,	all	new	data	will	be	appended	to	the	end	of	the	file.	(If	you
want	to	overwrite	a	file,	use	file-delete	to	delete	it,	then	open	it	for	writing.)

Code	Examples:	File	Output	Example

When	you	are	finished	using	a	file,	you	can	use	the	command	file-close	to	end	your	session	with	the	file.	If	you	wish	to
remove	the	file	afterwards,	use	the	primitive	file-delete	to	delete	it.	To	close	multiple	opened	files,	one	needs	to	first
select	the	file	by	using	file-open	before	closing	it.

;;	Open	3	files
file-open	"myfile1.txt"
file-open	"myfile2.txt"
file-open	"myfile3.txt"

;;	Now	close	the	3	files
file-close
file-open	"myfile2.txt"
file-close
file-open	"myfile1.txt"
file-close

Or,	if	you	know	you	just	want	to	close	every	file,	you	can	use	file-close-all.

Two	primitives	worth	noting	are	file-write	and	file-read	.	These	primitives	are	designed	to	easily	save	and	retrieve
NetLogo	constants	such	as	numbers,	lists,	booleans,	and	strings.	file-write	will	always	output	the	variable	in	such	a	manner
that	file-read	will	be	able	to	interpret	it	correctly.

file-open	"myfile.txt"		;;	Opening	file	for	writing
ask	turtles
		[file-write	xcor	file-write	ycor]
file-close

file-open	"myfile.txt"		;;	Opening	file	for	reading
ask	turtles
		[setxy	file-read	file-read]
file-close

Code	Examples:	File	Input	Example	and	File	Output	Example

Letting	the	user	choose

The	user-directory,	user-file,	and	user-new-file	primitives	are	useful	when	you	want	the	user	to	choose	a	file	or
directory	for	your	code	to	operate	on.

Movies

This	section	describes	how	to	capture	an	“.mp4”	movie	of	a	NetLogo	model.

First,	use	the	vid:start-recorder	command	to	start	the	video	recorder.

To	add	a	frame	to	your	movie,	use	either	vid:record-view	or	vid:record-interface,	depending	on	whether	you	want	the
movie	to	show	just	the	current	view,	or	the	entire	Interface	tab.	In	a	single	movie,	the	resolution	will	be	one	of	the	following:

The	resolution	specified	in	the	call	to	vid:start-recorder	width	height	if	you	specified	the	resolution.	These	are
optional	parameters.
The	resolution	of	the	view	if	you	did	not	specify	a	resolution	in	the	call	to	vid:start-recorder	and	call	vid:record-
view	before	calling	vid:record-interface
The	resolution	of	the	interface	if	you	did	not	specify	a	resolution	in	the	call	to	vid:start-recorder	and	call	vid:record-
interface	before	calling	vid:record-view

Note	that	if	the	resolution	of	a	recorded	image	doesn’t	match	the	resolution	of	the	recording	it	will	be	scaled	to	fit	which	can
result	in	images	which	look	blurry	or	out-of-focus.

When	you’re	done	adding	frames,	use	vid:save-recording.	The	filename	you	provide	should	end	with	.mp4,	the	extension
for	MP4-encoded	movies	(playable	in	QuickTime	and	other	programs).

;;	export	a	30	frame	movie	of	the	view
extensions	[vid]

;...

setup
vid:start-recorder
vid:record-view	;;	show	the	initial	state
repeat	30
[go
		vid:record-view]
vid:save-recording	"out.mp4"

A	movie	will	play	back	at	25	frames	per	second.	To	make	the	movie	playback	faster	or	slower,	consider	using	a	video
postprocessing	tool.

To	check	whether	or	not	you	are	recording,	call	vid:recorder-status,	which	reports	a	string	that	describes	the	state	of	the
current	recorder.

To	throw	away	the	movie	currently	being	recorded,	call	vid:reset-recorder.

Code	Example:	Movie	Example

Movies	generated	when	running	headless,	or	by	background	runs	in	a	parallel	BehaviorSpace	experiment	may	use	only
vid:record-view	primitive.	Movies	generated	in	NetLogo	GUI	may	also	use	vid:record-interface	and	vid:record-source.

NetLogo	movies	are	exported	as	H.264-encoded	MP4	files.	To	play	an	MP4	movie,	you	can	use	the	VLC	Player,	a	free
download	from	the	VideoLAN	organization.

Movies	can	take	up	a	lot	of	disk	space.	You	will	probably	want	to	compress	your	movies	with	third-party	software.	The
software	may	give	you	a	choice	of	different	kinds	of	compression.	Some	kinds	of	compression	are	lossless,	while	others
are	lossy.	“Lossy”	means	that	in	order	to	make	the	files	smaller,	some	of	the	detail	in	the	movie	is	lost.	Depending	on	the
nature	of	your	model,	you	may	want	to	avoid	using	lossy	compression,	for	example	if	the	view	contains	fine	pixel-level
detail.

Perspective

The	2D	and	the	3D	view	show	the	world	from	the	perspective	of	the	observer.	By	default	the	observer	is	looking	down	on
the	world	from	the	positive	z-axis	at	the	origin.	You	can	change	the	perspective	of	the	observer	by	using	the	follow,	ride
and	watch	observer	commands	and	follow-me,	ride-me	and	watch-me	turtle	commands.	watch-me	is	also	a	patch	or	link
command.	When	in	follow	or	ride	mode	the	observer	moves	with	the	subject	agent	around	the	world.	The	difference
between	follow	and	ride	is	only	visible	in	the	3D	view.	In	the	3D	view	the	user	can	change	the	distance	behind	the	agent
using	the	mouse.	When	the	observer	is	following	at	zero	distance	from	the	agent	it	is	actually	riding	the	agent.	When	the
observer	is	in	watch	mode	it	tracks	the	movements	of	one	turtle	(or	patch	or	link)	without	moving.	In	both	views	you	will	see
a	spotlight	appear	on	the	subject	and	in	the	3D	view	the	observer	will	turn	to	face	the	subject.	To	determine	which	agent	is
the	focus	you	can	use	the	subject	reporter.

Code	Example:	Perspective	Example

Drawing

The	drawing	is	a	layer	where	turtles	can	make	visible	marks.

In	the	view,	the	drawing	appears	on	top	of	the	patches	but	underneath	the	turtles.	Initially,	the	drawing	is	empty	and
transparent.

http://www.videolan.org/vlc/index.html

You	can	see	the	drawing,	but	the	turtles	(and	patches)	can’t.	They	can’t	sense	the	drawing	or	react	to	it.	The	drawing	is	just
for	people	to	look	at.

Turtles	can	draw	and	erase	lines	in	the	drawing	using	the	pen-down	and	pen-erase	commands.	When	a	turtle’s	pen	is	down
(or	erasing),	the	turtle	draws	(or	erases)	a	line	behind	it	whenever	it	moves.	The	lines	are	the	same	color	as	the	turtle.	To
stop	drawing	(or	erasing),	use	pen-up.

Lines	drawn	by	turtles	are	normally	one	pixel	thick.	If	you	want	a	different	thickness,	set	the	pen-size	turtle	variable	to	a
different	number	before	drawing	(or	erasing).	In	new	turtles,	the	variable	is	set	to	1.

Lines	made	when	a	turtle	moves	in	a	way	that	doesn’t	fix	a	direction,	such	as	with	setxy	or	move-to,	the	shortest	path	line
that	obeys	the	topology	will	be	drawn.

Here’s	some	turtles	which	have	made	a	drawing	over	a	grid	of	randomly	shaded	patches.	Notice	how	the	turtles	cover	the
lines	and	the	lines	cover	the	patch	colors.	The	pen-size	used	here	was	2:

The	stamp	command	lets	a	turtle	leave	an	image	of	itself	behind	in	the	drawing	and	stamp-erase	lets	it	remove	the	pixels
below	it	in	the	drawing.

To	erase	the	whole	drawing,	use	the	observer	commmand	clear-drawing.	(You	can	also	use	clear-all,	which	clears
everything	else	too.)

Importing	an	image

The	observer	command	import-drawing	command	allows	you	to	import	an	image	file	from	disk	into	the	drawing.

import-drawing	is	useful	only	for	providing	a	backdrop	for	people	to	look	at.	If	you	want	turtles	and	patches	to	react	to	the
image,	you	should	use	import-pcolors	or	import-pcolors-rgb	instead.

Comparison	to	other	Logos

Drawing	works	somewhat	differently	in	NetLogo	than	some	other	Logos.

Notable	differences	include:

New	turtles’	pens	are	up,	not	down.
Instead	of	using	a	fence	command	to	confine	the	turtle	inside	boundaries,	in	NetLogo	you	edit	the	world	and	turn
wrapping	off.
There	is	no	screen-color,	bgcolor,	or	setbg.	You	can	make	a	solid	background	by	coloring	the	patches,	e.g.	ask
patches	[set	pcolor	blue].

Drawing	features	not	supported	by	NetLogo:

There	is	no	window	command.	This	is	used	in	some	other	Logos	to	let	the	turtle	roam	over	an	infinite	plane.
There	is	no	flood	or	fill	command	to	fill	an	enclosed	area	with	color.

Topology

The	way	the	world	of	patches	is	connected	can	change.	By	default	the	world	is	a	torus	which	means	it	isn’t	bounded,	but
“wraps”	–	so	when	a	turtle	moves	past	the	edge	of	the	world,	it	disappears	and	reappears	on	the	opposite	edge	and	every
patch	has	the	same	number	of	“neighbor”	patches.	If	you’re	a	patch	on	the	edge	of	the	world,	some	of	your	“neighbors”	are
on	the	opposite	edge.

However,	you	can	change	the	wrap	settings	with	the	Settings	button.	If	wrapping	is	not	allowed	in	a	given	direction	then	in
that	direction	(x	or	y)	the	world	is	bounded.	Patches	along	that	boundary	will	have	fewer	than	8	neighbors	and	turtles	will
not	move	beyond	the	edge	of	the	world.

The	topology	of	the	NetLogo	world	has	four	potential	values,	torus,	box,	vertical	cylinder,	or	horizontal	cylinder.	The
topology	is	controlled	by	enabling	or	disabling	wrapping	in	the	x	or	y	directions.	The	default	world	is	a	torus.

A	torus	wraps	in	both	directions,	meaning	that	the	top	and	bottom	edges	of	the	world	are	connected	and	the	left	and	right
edges	are	connected.	So	if	a	turtle	moves	beyond	the	right	edge	of	the	world	it	appears	again	on	the	left	and	the	same	for
the	top	and	bottom.

A	box	does	not	wrap	in	either	direction.	The	world	is	bounded	so	turtles	that	try	to	move	off	the	edge	of	the	world	cannot.
Note	that	the	patches	around	edge	of	the	world	have	fewer	than	eight	neighbors;	the	corners	have	three	and	the	rest	have
five.

Horizontal	and	vertical	cylinders	wrap	in	one	direction	but	not	the	other.	A	horizontal	cylinder	wraps	vertically,	so	the	top	of
the	world	is	connected	to	the	bottom.	but	the	left	and	right	edges	are	bounded.	A	vertical	cylinder	is	the	opposite;	it	wraps
horizontally	so	the	left	and	right	edges	are	connected,	but	the	top	and	bottom	edges	are	bounded.

Code	Example:	Neighbors	Example

When	coordinates	wrap,	turtles	and	links	wrap	visually	in	the	view,	too.	If	a	turtle	shape	or	link	extends	past	an	edge,	part	of
it	will	appear	at	the	other	edge.	(Turtles	themselves	are	points	that	take	up	no	space,	so	they	cannot	be	on	both	sides	of
the	world	at	once,	but	in	the	view,	they	appear	to	take	up	space	because	they	have	a	shape.)

Wrapping	also	affects	how	the	view	looks	when	you	are	following	a	turtle.	On	a	torus,	wherever	the	turtle	goes,	you	will
always	see	the	whole	world	around	it:

Whereas	in	a	box	or	cylinder	the	world	has	edges,	so	the	areas	past	those	edges	show	up	in	the	view	as	gray:

Code	Example:	Termites	Perspective	Demo	(torus),	Ants	Perspective	Demo	(box)

The	topology	settings	also	control	the	behavior	of	the	distance(xy),	in-radius,	in-cone,	face(xy),	and	towards(xy)	primitives.
The	topology	controls	whether	the	primitives	wrap	or	not.	They	always	use	the	shortest	path	allowed	by	the	topology.	For
example,	the	distance	from	the	center	of	the	patches	in	the	bottom	left	corner	(min-pxcor,	min-pycor)	and	the	upper	right
corner	(max-pxcor,	max-pycor)	will	be	as	follows	for	each	topology	given	that	the	min	and	max	pxcor	and	pycor	are	+/-2:

Torus	-	sqrt(2)	~	1.414	(this	will	be	the	same	for	all	world	sizes	since	the	patches	are	directly	diagonal	to	each	other
in	a	torus.)
Box	-	sqrt(world-width^2	+	world-height^2)	~	7.07
Vertical	Cylinder	-	sqrt(world-height^2	+	1)	~	5.099
Horizontal	Cylinder	-	sqrt(world-width^2	+	1)	~	5.099

All	the	other	primitives	will	act	similarly	to	distance.	If	you	formerly	used	-nowrap	primitives	in	your	model	we	recommend
removing	them	and	changing	the	topology	of	the	world	instead.

If	your	model	has	turtles	that	move	around	you’ll	need	to	think	about	what	happens	to	them	when	they	reach	the	edge	of
the	world,	if	the	topology	you’re	using	has	some	non-wrapping	edges.	There	are	a	few	common	options:	the	turtle	is
reflected	back	into	the	world	(either	systematically	or	randomly),	the	turtle	exits	the	system	(dies),	or	the	turtle	is	hidden.	It
is	no	longer	necessary	to	check	the	bounds	using	turtle	coordinates,	instead	we	can	just	ask	NetLogo	if	a	turtle	is	at	the
edge	of	the	world.	There	are	a	couple	ways	of	doing	this,	the	simplest	is	to	use	the	can-move?	primitive.

if	not	can-move?	distance	[rt	180]

can-move?	merely	returns	true	if	the	position	distance	in	front	of	the	turtle	is	inside	the	NetLogo	world,	false	otherwise.	In
this	case,	if	the	turtle	is	at	the	edge	of	the	world	it	simple	goes	back	the	way	it	came.	You	can	also	use	patch-ahead	1	!=
nobody	in	place	of	can-move?.	If	you	need	to	do	something	smarter	that	simply	turning	around	it	may	be	useful	to	use	patch-
at	with	dx	and	dy.

if	patch-at	dx	0	=	nobody	[
		set	heading	(-	heading)
]
if	patch-at	0	dy	=	nobody	[
		set	heading	(180	-	heading)
]

This	tests	whether	the	turtle	is	hitting	a	horizontal	or	vertical	wall	and	bounces	off	that	wall.

In	some	models	if	a	turtle	can’t	move	forward	it	simply	dies	(exits	the	system,	like	in	Conductor	or	Mousetraps).

if	not	can-move?	distance[die]

If	you	are	moving	turtles	using	setxy	rather	than	forward	you	should	test	to	make	sure	the	patch	you	are	about	to	move	to
exists	since	setxy	throws	a	runtime	error	if	it	is	given	coordinates	outside	the	world.	This	is	a	common	situation	when	the
model	is	simulating	an	infinite	plane	and	turtles	outside	the	view	should	simply	be	hidden.

let	new-x	new-value-of-xcor
let	new-y	new-value-of-ycor

ifelse	patch-at	(new-x	-	xcor)	(new-y	-	ycor)	=	nobody
		[hide-turtle]
		[setxy	new-x	new-y
				show-turtle]

Several	models	in	the	Models	Library	use	this	technique,	Gravitation,	N-Bodies,	and	Electrostatics	are	good	examples.

The	diffuse	and	diffuse4	commands	behave	correctly	in	all	topologies.	Each	patch	diffuses	and	equal	amount	of	the
diffuse	variable	to	each	of	its	neighbors,	if	it	has	fewer	than	8	neighbors	(or	4	if	you	are	using	diffuse4),	the	remainder
stays	on	the	diffusing	patch.	This	means	that	the	overall	sum	of	patch-variable	across	the	world	remains	constant.
However,	if	you	want	the	diffuse	matter	to	still	fall	off	the	edges	of	the	world	as	it	would	on	an	infinite	plane	you	still	need	to
clear	the	edges	each	step	as	in	the	Diffuse	Off	Edges	Example.

Links

A	link	is	an	agent	that	connects	two	turtles.	These	turtles	are	sometimes	also	called	nodes.

The	link	is	always	drawn	as	a	line	between	the	two	turtles.	Links	do	not	have	a	location	as	turtles	do,	they	are	not
considered	to	be	on	any	patch	and	you	cannot	find	the	distance	from	a	link	to	another	point.

There	are	two	link	designations:	undirected	and	directed.	A	directed	link	is	out	of,	or	from,	one	node	and	into,	or	to,	another
node.	The	relationship	of	a	parent	to	a	child	could	be	modeled	as	a	directed	link.	An	undirected	link	appears	the	same	to
both	nodes,	each	node	has	a	link	with	another	node.	The	relationship	between	spouses,	or	siblings,	could	be	modeled	as
an	undirected	link.

There	is	a	global	agentset	of	all	links,	just	as	with	turtles	and	patches.	You	can	create	undirected	links	using	the	create-
link-with	and	create-links-with	commands;	and	directed	links	using	the	create-link-to,	create-links-to,	create-link-
from,	and	create-links-from	commands.	Once	the	first	link	has	been	created	directed	or	undirected,	all	unbreeded	links
must	match	(links	also	support	breeds,	much	like	turtles,	which	will	be	discussed	shortly);	it’s	impossible	to	have	two
unbreeded	links	where	one	is	directed	and	the	other	is	undirected.	A	runtime	error	occurs	if	you	try	to	do	it.	(If	all	unbreeded
links	die,	then	you	can	create	links	of	that	breed	that	are	different	in	designation	from	the	previous	links.)

In	general,	link	primitive	names	indicate	what	kind	of	links	they	deal	with:

Primitives	that	have	“out”	in	their	name	utilize	outgoing	and	undirected	links.	You	can	think	of	these	as	“the	links	I	can
use	to	get	from	the	current	node	to	other	nodes.”	In	general,	these	are	probably	the	primitives	you	want	to	use.

Primitives	that	have	“in”	in	their	name	utilize	incoming	and	undirected	links.	You	can	think	of	these	as	“the	links	I	can
use	to	get	to	the	current	node	from	other	nodes.”
Primtives	that	do	not	specify	“in”	or	“out”,	or	have	“with”	in	their	name	utilize	all	links,	both	undirected	and	directed,
incoming	and	outgoing.

A	link’s	end1	and	end2	variables	contain	the	two	turtles	the	link	connects.	If	the	link	is	directed,	it	goes	from	end1	to	end2.	If
the	link	is	undirected,	end1	is	always	the	older	of	the	two	turtles,	that	is,	the	turtle	with	the	smaller	who	number.

Link	breeds,	like	turtle	breeds,	allow	you	to	define	different	types	of	links	in	your	model.	Link	breeds	must	either	be	directed
or	undirected,	unlike	unbreeded	links	this	is	defined	at	compile	time	rather	than	run	time.	You	declare	link	breeds	using	the
keywords	undirected-link-breed	and	directed-link-breed.	Breeded	links	can	be	created	using	the	commands	create-
<breed>-with	and	create-<breeds>-with	for	undirected	breeds	and	the	commands	create-<breed>-to,	create-<breeds>-to,
create-<breed>-from,	and	create-<breeds>-from	for	directed	links.

There	cannot	be	more	than	one	undirected	link	of	the	same	breed	(or	more	than	one	unbreeded	undirected	link)	between	a
pair	of	agents,	nor	more	than	one	directed	link	of	the	same	breed	in	the	same	direction	between	a	pair	of	agents.	You	can
have	two	directed	links	of	the	same	breed	(or	two	unbreeded	directed	links)	between	a	pair	if	they	are	in	opposite
directions.

Layouts

As	part	of	our	network	support	we	have	also	added	several	different	primitives	that	will	help	you	to	visualize	the	networks.
The	simplest	is	layout-circle	which	evenly	spaces	the	agents	around	the	center	of	the	world	given	a	radius.

layout-radial	is	a	good	layout	if	you	have	something	like	a	tree	structure,	though	even	if	there	are	some	cycles	in	the	tree
it	will	still	work,	though	as	there	are	more	and	more	cycles	it	will	probably	not	look	as	good.	layout-radial	takes	a	root
agent	to	be	the	central	node	places	it	at	(0,0)	and	arranges	the	nodes	connected	to	it	in	a	concentric	pattern.	Nodes	one
degree	away	from	the	root	will	be	arranged	in	a	circular	pattern	around	the	central	node	and	the	next	level	around	those
nodes	and	so	on.	layout-radial	will	attempt	to	account	for	asymmetrical	graphs	and	give	more	space	to	branches	that	are
wider.	layout-radial	also	takes	a	breed	as	an	input	so	you	use	one	breed	of	links	to	layout	the	network	and	not	another.

Given	a	set	of	anchor	nodes	layout-tutte	places	all	the	other	nodes	at	the	center	of	mass	of	the	nodes	it	is	linked	to.	The
anchor	set	is	automatically	arranged	in	a	circle	layout	with	a	user	defined	radius	and	the	other	nodes	will	converge	into
place	(this	of	course	means	that	you	may	have	to	run	it	several	times	before	the	layout	is	stable.)

layout-spring	is	useful	for	many	kinds	of	networks.	The	drawback	is	that	is	relatively	slow	since	it	takes	many	iterations	to
converge.	In	this	layout	the	links	act	as	springs	that	pull	the	nodes	they	connect	toward	each	other	and	the	nodes	repel
each	other.	The	strength	of	the	forces	is	controlled	by	inputs	to	the	primitives.	These	inputs	will	always	have	a	value
between	0	and	1;	keep	in	mind	that	very	small	changes	can	still	affect	the	appearance	of	the	network.	The	springs	also
have	a	length	(in	patch	units),	however,	because	of	all	the	forces	involved	the	nodes	will	not	end	up	exactly	that	distance
from	each	other.

Code	Examples:Network	Example,	Network	Import	Example,	Giant	Component,	Small	Worlds,	Preferential
Attachment

Anonymous	procedures

Anonymous	procedures	let	you	store	code	to	be	run	later.	Just	like	regular	NetLogo	procedures,	an	anonymous	procedures
can	be	either	a	command	(anonymous	command)	or	a	reporter	(anonymous	reporter).

Anonymous	procedures	are	values,	which	means	they	may	be	passed	as	input,	reported	as	a	result,	or	stored	in	a	variable.

An	anonymous	procedure	might	be	run	once,	multiple	times,	or	not	at	all.

In	other	programming	languages	anonymous	procedures	are	known	as	first-class	functions,	closures,	or	lambda.

Anonymous	procedure	primitives

Primitives	specific	to	anonymous	procedures	are	->,	is-anonymous-command?,	and	is-anonymous-reporter?.

The	->	creates	an	anonymous	procedure.	The	anonymous	procedure	it	reports	might	be	a	command	or	a	reporter,
depending	on	what	kind	of	block	you	pass	it.	For	example	[->	fd	1] 	reports	an	anonymous	command,	because	fd	is	a
command,	while	[->	count	turtles] 	reports	an	anonymous	reporter,	because	count	is	a	reporter.

These	primitives	require	anonymous	procedures	as	input:	foreach,	map,	reduce,	filter,	n-values,	sort-by.	When	calling
these	primitives,	using	an	->	is	optional	if	your	anonymous	procedure	contains	a	single	primitive	which	has	requires	no
more	inputs	than	are	are	provided	by	the	primitive.	For	example	one	may	write	simply	foreach	mylist	print	instead	of
foreach	mylist	[[x]	->	print	x] ,	though	the	latter	is	also	accepted.	Depending	on	the	anonymous	procedure,	various
parts	of	the	anonymous	procedure	syntax	can	be	omitted.	For	a	summary	of	optional	syntax,	see	the	table	below.

The	run	command	accepts	anonymous	commands	as	well	as	strings.

The	runresult	reporter	accepts	anonymous	reporters	as	well	as	strings.

run	and	runresult	allow	passing	inputs	to	an	anonymous	procedure.	As	with	all	primitives	accepting	varying	number	of
inputs,	the	whole	call	must	be	surrounded	with	parentheses,	so	for	example	(run	my-anonymous-command	5)	or	(runresult
my-anonymous-reporter	"foo"	2).	When	not	passing	input,	no	parentheses	are	required.

Anonymous	procedure	inputs

An	anonymous	procedure	may	take	zero	or	more	inputs.	The	inputs	are	referenced	the	variables	declared	before	the
arrow.	For	instance,	in	the	anonymous	reporter	[[a	b]	->	a	+	b] ,	a	and	b	are	inputs.

Anonymous	procedures	and	strings

Creating	and	running	anonymous	procedures	is	fast.	To	use	run	or	runresult	on	a	new	string	for	the	first	time	is	about	100x
slower	than	running	an	anonymous	procedure.	Modelers	should	normally	use	anonymous	procedures	instead	of	running
strings,	except	when	running	strings	entered	by	the	user.

Concise	syntax

Simple	uses	of	foreach,	map,	reduce,	filter,	n-values,	and	sort-by	can	be	written	with	an	especially	concise	syntax.	You
can	write:

map	abs	[1	-2	3	-4]
;;	=>	[1	2	3	4]
reduce	+	[1	2	3	4]
;;	=>	10
filter	is-number?	[1	"x"	3]
;;	=>	[1	3]
foreach	[1	2	3	4]	print
;;	prints	1	through	4

In	older	NetLogo	versions	(4	and	earlier),	these	had	to	be	written:

map	[abs	?]	[1	-2	3	-4]
;;	=>	[1	2	3	4]
reduce	[?1	+	?2]	[1	2	3	4]
;;	=>	10
filter	[is-number?	?]	[1	"x"	3]
;;	=>	[1	3]
foreach	[1	2	3	4]	[print	?]
;;	prints	1	through	4

Anonymous	procedures	as	closures

Anonymous	procedures	are	“closures”;	that	means	they	capture	or	“close	over”	the	bindings	(not	just	the	current	values)	of
local	variables	and	procedure	inputs.	They	do	not	capture	agent	variables	and	do	not	capture	the	identity	(or	even	the
agent	type)	of	the	current	agent.

Nonlocal	exits

The	stop	and	report	commands	exit	from	the	dynamically	enclosing	procedure,	not	the	enclosing	anonymous	procedure.
(This	is	backward-compatible	with	older	NetLogo	versions.)

Anonymous	procedures	and	extensions

The	extensions	API	supports	writing	primitives	that	accept	anonymous	procedures	as	input.	Write	us	for	sample	code.

Limitations

We	hope	to	address	at	least	some	of	the	following	limitations	in	future	NetLogo	versions:

import-world	does	not	support	anonymous	procedures.
Anonymous	procedures	can’t	be	variadic	(accept	a	varying	number	of	inputs).
Anonymous	reporters	can’t	contain	commands,	only	a	single	reporter	expression.	So	for	example	you	must	use
ifelse-value	not	if,	and	you	don’t	use	report	at	all.	If	your	code	is	too	complex	to	be	written	as	one	reporter,	you’ll
need	to	move	the	code	to	a	separate	reporter	procedure,	and	then	call	that	procedure	from	your	anonymous	reporter,
passing	it	any	needed	inputs.
Anonymous	procedures	are	not	interchangeable	with	command	blocks	and	reporter	blocks.	Only	the	primitives	listed
above	accept	anonymous	procedures	as	input.	Control	primitives	such	as	ifelse	and	while	and	agent	primitives	such
as	of	and	with	don’t	accept	anonymous	procedures.	So	for	example	if	I	have	an	anonymous	reporter	let	r	[->	if
random	2	==	0]	and	two	anonymous	commands	let	c1	[->	tick] 	and	let	c2	[->	stop] ,	I	can’t	write	ifelse	r
c1	c2,	I	must	write	ifelse	runresult	r	[run	c1]	[run	c2] .
The	concise	syntax	where	->	may	be	omitted	is	only	available	to	primitives	and	extension	primitives,	not	ordinary
procedures.	So	for	example	if	I	have	a	procedure	p	that	accepts	an	anonymous	procedure	as	input,	it	must	be	called
as	e.g.	p	[->	...] 	not	p	[...].

What	is	Optional?

There	are	several	different	ways	of	writing	anonymous	procedures	which	allow	users	to	omit	part	or	all	of	the	anonymous
procedure	syntax.	These	are	summarized	in	the	table	below.

What	is	the	anonymous
procedure	like? What	can	be	left	out? Examples

The	anonymous	procedure	is	a
single	primitive

input	names
arrow
block	brackets

foreach	mylist	stamp	;	no	inputs
foreach	mylist	print	;	single	input
(foreach	xs	ys	setxy)	;	multiple	inputs
map	round	[1.3	2.4	3.5]	;	reporter,	single
input
(map	+	[1	2	3]	[4	5	6])	;	reporter,	multiple
inputs

The	anonymous	procedure	takes
no	inputs

input	names
arrow

foreach	mylist	[print	"abc"]
map	[4]	mylist

The	anonymous	procedure	has
zero	or	one	input(s)

brackets	around
input	names

foreach	mylist	[->	stamp]	;	no	inputs
foreach	mylist	[x	->	print	x]	;	single
input
foreach	mylist	[x	->	rt	x	fd	x]	;	multiple
primitives,	single	input
map	[->	world-width]	mylist	;	reporter,	no
inputs
map	[x	->	x	^	2]	mylist	;	reporter,	single
input

Anonymous	procedure	takes	more
than	one	input nothing (foreach	xs	ys	[[x	y]	->	setx	x	+	y])

(map	[[x	y]	->	x	mod	round	y]	xs	ys)

What	is	the	anonymous
procedure	like? What	can	be	left	out? Examples

Note:	brackets	around	input	names	were	always	required	in	NetLogo	6.0.0.	If	you	copy	and	paste	code	into	NetLogo	6.0.0
using	anonymous	procedures	with	unbracketed	input	names,	the	code	will	not	compile	until	you	add	the	brackets.

Code	example

Code	Example:	State	Machine	Example

Ask-Concurrent

NOTE:	The	following	information	is	included	only	for	backwards	compatibility.	We	don’t	recommend	using	the	ask-
concurrent	primitive	at	all	in	new	models.

In	very	old	versions	of	NetLogo,	ask	had	simulated	concurrent	behavior	by	default.	Since	NetLogo	4.0	(2007),	ask	is	serial,
that	is,	the	agents	run	the	commands	inside	the	ask	one	at	a	time.

The	following	information	describes	the	behavior	of	the	ask-concurrent	command,	which	behaves	the	way	the	old	ask
behaved.

ask-concurrent	produces	simulated	concurrency	via	a	mechanism	of	turn-taking.	The	first	agent	takes	a	turn,	then	the
second	agent	takes	a	turn,	and	so	on	until	every	agent	in	the	asked	agentset	has	had	a	turn.	Then	we	go	back	to	the	first
agent.	This	continues	until	all	of	the	agents	have	finished	running	all	of	the	commands.

An	agent’s	“turn”	ends	when	it	performs	an	action	that	affects	the	state	of	the	world,	such	as	moving,	or	creating	a	turtle,	or
changing	the	value	of	a	global,	turtle,	patch,	or	link	variable.	(Setting	a	local	variable	doesn’t	count.)

The	forward	(fd)	and	back	(bk)	commands	are	treated	specially.	When	used	inside	ask-concurrent,	these	commands	can
take	multiple	turns	to	execute.	During	its	turn,	the	turtle	can	only	move	by	one	step.	Thus,	for	example,	fd	20	is	equivalent
to	repeat	20	[fd	1] ,	where	the	turtle’s	turn	ends	after	each	run	of	fd.	If	the	distance	specified	isn’t	an	integer,	the	last
fraction	of	step	takes	a	full	turn.	So	for	example	fd	20.3	is	equivalent	to	repeat	20	[fd	1]	fd	0.3 .

The	jump	command	always	takes	exactly	one	turn,	regardless	of	distance.

To	understand	the	difference	between	ask	and	ask-concurrent,	consider	the	following	two	commands:

ask	turtles	[fd	5]
ask-concurrent	turtles	[fd	5]

With	ask,	the	first	turtle	takes	five	steps	forward,	then	the	second	turtle	takes	five	steps	forward,	and	so	on.

With	ask-concurrent,	all	of	the	turtles	take	one	step	forward.	Then	they	all	take	a	second	step,	and	so	on.	Thus,	the	latter
command	is	equivalent	to:

repeat	5	[ask	turtles	[fd	1]]

Code	Example:	Ask-Concurrent	Example	shows	the	difference	between	ask	and	ask-concurrent.

The	behavior	of	ask-concurrent	cannot	always	be	so	simply	reproduced	using	ask,	as	in	this	example.	Consider	this
command:

ask-concurrent	turtles	[fd	random	10]

In	order	to	get	the	same	behavior	using	ask,	we	would	have	to	write:

turtles-own	[steps]
ask	turtles	[set	steps	random	10]
while	[any?	turtles	with	[steps	>	0]]	[
		ask	turtles	with	[steps	>	0]	[
				fd	1
				set	steps	steps	-	1
]
]

To	prolong	an	agent’s	“turn”,	use	the	without-interruption	command.	(The	command	blocks	inside	some	commands,
such	as	create-turtles	and	hatch,	have	an	implied	without-interruption	around	them.)

Note	that	the	behavior	of	ask-concurrent	is	completely	deterministic.	Given	the	same	code	and	the	same	initial	conditions,
the	same	thing	will	always	happen	(if	you	are	using	the	same	version	of	NetLogo	and	begin	your	model	run	with	the	same
random	seed).

In	general,	we	suggest	you	not	use	ask-concurrent	at	all.	If	you	do,	we	suggest	you	write	your	model	so	that	it	does	not
depend	on	the	exact	details	of	how	ask-concurrent	works.	We	make	no	guarantees	that	its	semantics	will	remain	the	same
in	future	versions	of	NetLogo,	or	that	it	will	continue	to	be	supported	at	all.

User	Interaction	Primitives

NetLogo	features	several	primitives	which	allow	a	model	to	interact	with	the	user.	These	primitives	include	user-directory,
user-file,	user-new-file,	user-input,	user-message,	user-one-of,	and	user-yes-or-no?.

These	primitives	differ	in	precisely	what	interaction	they	take	with	the	user.	user-directory,	user-file,	and	user-new-file
are	all	reporters	which	prompt	the	user	to	select	an	item	from	the	file	system	and	report	the	path	of	the	selected	item	to
NetLogo.	user-yes-or-no?,	user-one-of,	and	user-input	all	prompt	the	user	to	provide	input	in	the	form	of	text	or	a
selection.	user-message	simply	presents	a	message	to	the	user.

Note	that	all	active	forever	buttons	will	pause	when	one	of	these	primitives	is	used	and	will	resume	only	when	the	user
completes	the	interaction	with	the	button.

What	does	“Halt”	mean?

The	primitives	which	prompt	the	user	for	input,	as	well	as	user-message	all	provide	a	“Halt”	button.	The	effect	of	this	button
is	the	same	for	all	of	these	primitives	-	it	halts	the	model.	When	the	model	is	halted	all	running	code	is	stopped,	including
buttons	and	the	command	center.	Since	halting	stops	code	in	the	middle	of	whatever	it	happened	to	be	doing	at	the	time	it
was	halted,	you	may	see	strange	results	if	you	continue	to	run	the	model	after	a	halt	without	setting	it	up	again.

Tie

Tie	connects	two	turtles	so	that	the	movement	of	one	turtles	affects	the	location	and	heading	of	another.	Tie	is	a	property	of
links	so	there	must	be	a	link	between	two	turtles	to	create	a	tie	relationship.

When	a	link’s	tie-mode	is	set	to	“fixed”	or	“free”	end1	and	end2	are	tied	together.	If	the	link	is	directed	end1	is	the	“root	agent”
and	end2	is	the	“leaf	agent”.	That	is	when	end1	moves	(using	fd,	jump,	setxy,	etc.)	end2	also	moves	the	same	distance	and
direction.	However	when	end2	moves	it	does	not	affect	end1.

If	the	link	is	undirected	it	is	a	reciprocal	tie	relationship,	meaning,	if	either	turtle	moves	the	other	turtle	will	also	move.	So
depending	on	which	turtle	is	moving	either	turtle	can	be	considered	the	root	or	the	leaf.	The	root	turtle	is	always	the	turtle
that	initiates	the	movement.

When	the	root	turtle	turns	right	or	left,	the	leaf	turtle	rotates	around	the	root	turtle	the	same	amount	as	if	a	stiff	were
attaching	the	turtles.	When	tie-mode	is	set	to	“fixed”	the	heading	of	the	leaf	turtle	changes	by	the	same	amount.	If	the	tie-
mode	is	set	to	“free”	the	heading	of	the	leaf	turtle	is	unchanged.

The	tie-mode	of	a	link	can	be	set	to	“fixed”	using	the	tie	command	and	set	to	“none”	(meaning	the	turtles	are	no	longer
tied)	using	untie	to	set	the	mode	to	“free”	you	need	to:	set	tie-mode	"free".

Code	Example:	Tie	System	Example

Multiple	source	files

The	__includes	keyword	allows	you	to	use	multiple	source	files	in	a	single	NetLogo	model.

The	keyword	begins	with	two	underscores	to	indicate	that	the	feature	is	experimental	and	may	change	in	future	NetLogo
releases.

When	you	open	a	model	that	uses	the	__includes	keyword,	or	if	you	add	it	to	the	top	of	a	model	and	hit	the	Check	button,
the	includes	menu	will	appear	in	the	toolbar.	From	the	includes	menu	you	can	select	from	the	files	included	in	this	model.

When	you	open	included	files	they	appear	in	additional	tabs.	See	the	Interface	Guide	for	more	details.

You	can	have	anything	in	external	source	files	(.nls)	that	you	would	normally	put	in	the	Code	tab:	globals,	breed,	turtles-
own,	patches-own,	breeds-own,	procedure	definitions,	etc.	Note	though	that	these	declarations	all	share	the	same
namespace.	That	is,	if	you	declare	a	global	my-global	in	the	Code	tab	you	cannot	declare	a	global	(or	anything	else)	with
the	name	my-global	in	any	file	that	is	included	in	the	model.	my-global	will	be	accessible	from	all	the	included	files.	The
same	would	be	true	if	my-global	were	declared	in	one	of	the	included	files.

Syntax

Colors

In	the	Code	tab	and	elsewhere	in	the	NetLogo	user	interface,	program	code	is	color-coded	by	the	following	scheme:

Keywords	are	green
Constants	are	orange
Comments	are	gray
Primitive	commands	are	blue
Primitive	reporters	are	purple
Everything	else	is	black

Notice

The	remainder	of	this	section	contains	technical	terminology	which	will	be	unfamiliar	to	some	readers.

Keywords

The	only	keywords	in	the	language	are	globals,	breed,	turtles-own,	patches-own,	to,	to-report,	and	end,	plus	extensions
and	the	experimental	__includes	keyword.	(Built-in	primitive	names	may	not	be	shadowed	or	redefined,	so	they	are
effectively	a	kind	of	keyword	as	well.)

Identifiers

All	primitives,	global	and	agent	variable	names,	and	procedure	names	share	a	single	global	case-insensitive	namespace;
local	names	(let	variables	and	the	names	of	procedure	inputs)	may	not	shadow	global	names	or	each	other.	Identifiers
may	contain	any	Unicode	letter	or	digit	and	the	following	ASCII	characters:

.?=*!<>:#+/%$_^'&-

Some	primitive	names	begin	with	two	underscores	to	indicate	that	they	are	experimental	and	are	especially	likely	to
change	or	be	removed	in	future	NetLogo	releases.

Scope

NetLogo	is	lexically	scoped.	Local	variables	(including	inputs	to	procedures)	are	accessible	within	the	block	of	commands
in	which	they	are	declared,	but	not	accessible	by	procedures	called	by	those	commands.

Comments

The	semicolon	character	introduces	a	comment,	which	lasts	until	the	end	of	the	line.	There	is	no	multi-line	comment	syntax.

Structure

A	program	consists	of	optional	declarations	(globals,	breed,	turtles-own,	patches-own,	<BREED>-own,	extensions)	in	any
order,	followed	by	zero	or	more	procedure	definitions.	Multiple	breeds	may	be	declared	with	separate	breed	declarations;
the	other	declarations	may	appear	once	only.

Every	procedure	definition	begins	with	to	or	to-report,	the	procedure	name,	and	an	optional	bracketed	list	of	input	names.
Every	procedure	definition	ends	with	end.	In	between	are	zero	or	more	commands.

Commands	and	reporters

Commands	take	zero	or	more	inputs;	the	inputs	are	reporters,	which	may	also	take	zero	or	more	inputs.	No	punctuation
separates	or	terminates	commands;	no	punctuation	separates	inputs.	Identifiers	must	be	separated	by	whitespace	or	by
parentheses	or	square	brackets.	(So	for	example,	a+b	is	a	single	identifier,	but	a(b[c]d)e	contains	five	identifiers.)

All	commands	are	prefix.	All	user-defined	reporters	are	prefix.	Most	primitive	reporters	are	prefix,	but	some	(arithmetic
operators,	boolean	operators,	and	some	agentset	operators	like	with	and	in-points)	are	infix.

All	commands	and	reporters,	both	primitive	and	user-defined,	take	a	fixed	number	of	inputs	by	default.	(That’s	why	the
language	can	be	parsed	though	there	is	no	punctuation	to	separate	or	terminate	commands	and/or	inputs.)	Some
primitives	are	variadic,	that	is,	may	optionally	take	a	different	number	of	inputs	than	the	default;	parentheses	are	used	to
indicate	this,	e.g.	(list	1	2	3) 	(since	the	list	primitive	only	takes	two	inputs	by	default).	Parentheses	are	also	used	to
override	the	default	operator	precedence,	e.g.	(1	+	2)	*	3 ,	as	in	other	programming	languages.

Sometimes	an	input	to	a	primitive	is	a	command	block	(zero	or	more	commands	inside	square	brackets)	or	a	reporter	block
(a	single	reporter	expression	inside	square	brackets).	User-defined	procedures	may	not	take	a	command	or	reporter	block
as	input.

Operator	precedences	are	as	follows,	high	to	low:

with,	with-min,	with-max,	at-points,	in-radius,	in-cone,	who-are-not
of
All	other	primitives	and	user-defined	procedures,	including	not
^
*,	/,	mod
+,	-
<,	>,	<=,	>=
=,	!=
and,	or,	xor
ifelse-value

When	an	expression	contains	multiple	operators	with	the	same	precedence,	they	are	read	in	code	order	left-to-right.
Example:	true	or	false	and	false	is	read	as	(true	or	false)	and	false	and	so	results	in	(true)	and	false,	which	is
false.	This	is	different	than	many	other	programming	languages	where	or	has	a	lower	precedence	than	and,	so	the	above
statement	would	be	read	as	true	or	(false	and	false),	true	or	(false),	so	true.	You	can	surround	expressions	in
parentheses	to	ensure	you	get	your	desired	order	of	operations.

Compared	to	other	Logos

There	is	no	agreed-upon	standard	definition	of	Logo;	it	is	a	loose	family	of	languages.	We	believe	that	NetLogo	has	enough
in	common	with	other	Logos	to	earn	the	Logo	name.	Still,	NetLogo	differs	in	some	respects	from	most	other	Logos.	The
most	important	differences	are	as	follows.

Surface	differences

The	precedence	of	mathematical	operators	is	different.	Infix	math	operators	(like	+,	*,	etc.)	have	lower	precedence
than	reporters	with	names.	For	example,	in	many	Logos,	if	you	write	sin	x	+	1,	it	will	be	interpreted	as	sin	(x	+	1).
NetLogo,	on	the	other	hand,	interprets	it	the	way	most	other	programming	languages	would,	and	the	way	the	same
expression	would	be	interpreted	in	standard	mathematical	notation,	namely	as	(sin	x)	+	1.
The	and	and	or	reporters	are	special	forms,	not	ordinary	functions,	and	they	“short	circuit”,	that	is,	they	only	evaluate
their	second	input	if	necessary.
Procedures	can	only	be	defined	in	the	Code	tab,	not	interactively	in	the	Command	Center.
Reporter	procedures,	that	is,	procedures	that	“report”	(return)	a	value,	must	be	defined	with	to-report	instead	of	to.
The	command	to	report	a	value	from	a	reporter	procedure	is	report,	not	output.
When	defining	a	procedure,	the	inputs	to	the	procedure	must	be	enclosed	in	square	brackets,	e.g.	to	square	[x].
Variable	names	are	always	used	without	any	punctuation:	always	foo,	never	:foo	or	"foo.	(To	make	this	work,	instead

of	a	make	command	taking	a	quoted	argument	we	supply	a	set	special	form	which	does	not	evaluate	its	first	input.)	As
a	result,	procedures	and	variables	occupy	a	single	shared	namespace.

The	last	three	differences	are	illustrated	in	the	following	procedure	definitions:

most	Logos NetLogo

to	square	:x
output	:x	*	:x
end

to-report	square	[x]
report	x	*	x
end

Deeper	differences

NetLogo’s	local	variables	and	inputs	to	procedures	are	lexically	scoped,	not	dynamically	scoped.
NetLogo	has	no	“word”	data	type	(what	Lisp	calls	“symbols”).	Eventually,	we	may	add	one,	but	since	it	is	seldom
requested,	it	may	be	that	the	need	doesn’t	arise	much	in	agent-based	modeling.	We	do	have	strings.	In	most
situations	where	traditional	Logo	would	use	words,	we	simply	use	strings	instead.	For	example	in	Logo	you	could
write	[see	spot	run]	(a	list	of	words),	but	in	NetLogo	you	must	write	"see	spot	run"	(a	string)	or	["see"	"spot"
"run"]	(a	list	of	strings)	instead.
NetLogo’s	run	command	works	on	anonymous	procedures	and	strings,	not	lists	(since	we	have	no	“word”	data	type),
and	does	not	permit	the	definition	or	redefinition	of	procedures.
Control	structures	such	as	if	and	while	are	special	forms,	not	ordinary	functions.	You	can’t	define	your	own	special
forms,	so	you	can’t	define	your	own	control	structures.	(You	can	do	something	similar	using	anonymous	procedures,
but	you	must	use	the	->,	run,	and	runresult	primitives	for	that,	you	cannot	make	them	implicit.)
Anonymous	procedures	(aka	function	values	or	lambda)	are	true	lexically-scoped	closures.	This	feature	is	available	in
NetLogo	and	in	modern	Lisps,	but	not	in	standard	Logo.

Of	course,	the	NetLogo	language	also	contains	other	features	not	found	in	most	Logos,	most	importantly	agents	and
agentsets.

Transition	Guide
NetLogo	6.4.0	User	Manual

Many	models	created	in	earlier	versions	of	NetLogo	also	work	in	NetLogo	5.0.	However,	some	models	will	need
changes.	If	an	old	model	isn’t	working,	this	section	of	the	User	Manual	may	be	able	to	help	you.

What	issues	may	arise	depends	on	what	version	of	NetLogo	the	model	was	created	with.

This	guide	only	covers	changes	most	likely	to	cause	issues	for	users.	See	the	release	notes	for	more	complete	details
on	differences	between	versions.

Changes	for	NetLogo	6.1.0

CF	Extension	Removal

The	CF	extension	is	no	longer	bundled	with	NetLogo.	The	multi-conditional	cf:ifelse	and	cf:ifelse-value	primitives
are	now	now	supported	directly	in	NetLogo	without	an	extension	by	ifelse	and	ifelse-value.	Simply	remove	the	cf:
from	the	primitives	in	your	models	and	they	should	work	as	they	did	before	with	CF.

ifelse-value	Precedence	Change	with	Infix	Operators

In	previous	versions,	ifelse-value	expressions	would	be	parsed	before	infix	expressions	they	were	a	part	of,	like	+	or	-.
Now	ifelse-value	has	a	lower	precedence	to	let	it	work	with	a	variable	number	of	clauses.

This	used	to	work,	but	will	now	complain	about	finding	a	block	or	list	where	it	wanted	a	number,	since	the	+	is	parsed
before	the	ifelse-value:

ifelse-value	(true)	[10]	[3]	+	ifelse-value	(false)	[5]	[7]

Now	you	just	need	to	wrap	your	ifelse-value	in	parenthesis	to	tell	NetLogo	that	you	want	to	add	the	separate
expressions:

(ifelse-value	(true)	[10]	[3])	+	(ifelse-value	(false)	[5]	[7])

Changes	for	NetLogo	6.0.3

Arduino	Extension	Changes

The	arduino	extension	has	substantially	changed	the	way	it	receives	values	from	Arduino	boards.	Please	consult	the
arduino	example	sketch	(included	within	the	“models”	folder	under	Chapter	8	of	the	IABM	textbook)	for	an	updated
sketch	compatible	with	the	Arduino	example	model.	If	you	have	an	existing	arduino	sketch,	you	will	need	to	adjust	the
format	used	to	send	values	to	NetLogo.	Old	sketches	will	have	code	which	sends	back	messages	like	“;A,2.5;”.	For	the
new	version	of	the	arduino	extension	to	receive	the	same	message,	sketches	should	send	“;A,D,2.5;”	instead.	The
added	‘D,’	informs	Netlogo	that	the	value	being	sent	is	a	number	and	not	a	string.

CF	Extension	Changes

All	primitives	have	been	removed	from	the	cf	extension	and	replaced	by	the	cf:ifelse	and	cf:ifelse-value	multi-
branch	primitives.	We	encourage	existing	cf	users	to	adjust	their	code	to	use	these	new	primitives.	Over	time,	we	hope
to	use	these	primitives	as	an	example	on	which	to	remodel	NetLogo’s	existing	ifelse	and	ifelse-value	primitives.
Because	this	would	be	a	relatively	large	language	change,	we	would	love	to	hear	any	feedback	address	you	may	have
from	using	these	cf	extension	primitives.

Changes	for	NetLogo	6.0

Tasks	replaced	by	Anonymous	Procedures

In	NetLogo	6.0,	tasks	have	been	replaced	by	anonymous	procedures.	This	means	that	task	is	no	longer	a	primitive,	it’s
been	replaced	by	the	new	arrow	syntax	for	creating	anonymous	procedures.	Similarly,	question	mark	variables	like	?,	?1,
and	?2	are	now	just	ordinary	names	in	NetLogo	and	can	be	used	to	name	procedure	variables,	let	variables,	or
anonymous	procedure	variables.	Finally,	is-reporter-task?	and	is-command-task?	have	been	replaced	by	is-anonymous-
reporter?	and	is-anonymous-command?.

https://github.com/NetLogo/NetLogo/wiki/Release-notes
mailto:ccl-feedback@ccl.northwestern.edu

To	make	this	transition	easier,	we’ve	added	an	automatic	conversion	step	which	should	allow	most	models	saved	in
NetLogo	5	to	be	converted	to	use	the	new	syntax	automatically.	The	autoconverter	has	been	a	substantial	piece	of	effort
and	we’ve	tested	it	on	all	the	models	in	the	models	library.	To	use	it,	ensure	the	model	compiles	and	run	properly	in
NetLogo	5	or	later,	then	save	it	from	NetLogo	5	or	later.	Then,	simply	open	the	model	in	NetLogo	6.	If	all	goes	well,	you’ll
see	the	converter	has	changed	code	like	task	[?1	+	?2] 	to	[[?1	?2]	->	?1	+	?2] .	The	question	marks	are	meant	to
serve	as	temporary	placeholders	for	conversion.	They	enable	your	model	to	run,	but	you	can	(and	should)	replace	these
variables	with	meaningful	names.	If	you	open	a	model	with	tasks	and	it	has	not	been	converted,	the	autoconverter	wasn’t
able	to	convert	your	model.	Rather	than	attempt	to	autoconvert	your	model	and	break	something,	the	model	will	open,
you	will	be	shown	the	appropriate	errors	and	given	a	chance	to	edit	your	model.

While	we	have	tested	the	autoconverter	thoroughly,	we	expect	there	to	be	some	cases	it	doesn’t	cover.

If	you	make	use	of	extensions	that	aren’t	yet	compiled	for	NetLogo	6,	the	autoconverter	will	not	work	until	those
extensions	have	been	updated.
If	your	code	uses	run	or	runresult	to	evaluate	strings	containing	tasks,	the	autoconverter	will	not	change	those
strings	to	be	anonymous	procedures.	To	make	run	and	runresult	work	as	expected,	look	at	strings	in	your	model
and	change	any	which	rely	on	task	or	?-variables	to	instead	rely	on	anonymous	procedures

If	your	model	doesn’t	fall	into	the	above	categories	and	doesn’t	convert	or	converts	incorrectly,	please	email	our
feedback	address	and	we’ll	be	happy	to	offer	whatever	assistance	we	can.

Link	reporters	overhauled	to	be	more	consistent	and	flexible

In	previous	versions	of	NetLogo,	link	reporters	have	had	a	number	of	inconsistencies	regarding	directed	and	undirected
links.	For	example,	my-links	would	report	all	links	connected	to	a	turtle,	whereas	link-neighbors	would	only	report
neighbors	connected	by	undirected	links.	Furthermore,	it	was	quite	difficult	to	work	with	models	where	the	links	could
either	be	directed	or	undirected.

To	alleviate	these	issues,	the	link	primitives	have	been	overhauled	in	6.0.	These	changes	only	affect	existing	models
that	use	both	directed	and	undirected	links	while	also	using	the	unbreeded	link	primitives.

The	changes	are	as	follows:

Link	reporters	that	contain	the	word	“out”	now	utilize	both	directed,	outgoing	links	and	undirected	links.	That	is,	they
now	specify	links	that	can	be	used	to	get	from	the	current	node	to	other	nodes.	For	example,	out-link-neighbor?
will	report	true	if	the	current	turtle	is	connected	to	the	given	turtle	by	either	an	outgoing	directed	link	or	an
undirected	link.	If	you	only	want	directed,	outgoing	links,	you	can	use	a	breed-specific	reporter	or	my-out-links
with	[is-directed?	self].	Generally,	when	working	with	models	that	have	both	directed	and	undirected	links,
you	will	probably	want	to	use	the	“out”	primitives	for	most	things	now.
Link	reporters	that	contain	the	word	“in”	now	utilize	both	directed,	incoming	links	and	undirected	links.	That	is,	they
now	specify	links	that	can	be	used	to	get	to	the	current	node	from	other	nodes.	For	example,	in-link-neighbor?
will	report	true	if	the	current	turtle	is	connected	to	the	given	turtle	by	either	an	incoming	directed	link	or	an
undirected	link.	If	you	only	want	directed,	incoming	links,	you	can	use	a	breed-specific	reporter	or	my-in-links	with
[is-directed?	self].
Link	reporters	that	do	not	specify	“out”	or	“in”	utilize	all	links.

Furthermore,	there	are	no	longer	restrictions	regarding	which	reporters	can	be	used	with	which	breeds.	For	unbreeded
links,	this	makes	it	possible	to	use	the	same	primitives	regardless	of	whether	your	network	ends	up	being	directed	or
undirected.

The	new	behavior	(including	all	changed	primitives)	is	summarized	by	the	following	table,	where	“un”	refers	to
undirected	links,	“out”	refers	to	directed,	outgoing	links,	and	“in”	refers	to	directed,	incoming	links.

New	link	reporter	behavior

mailto:ccl-feedback@ccl.northwestern.edu

Old	link	reporter	behavior

Removal	of	Applets

Oracle,	the	company	behind	Java,	has	announced	that	Java	applets	are	deprecated	(see	this	blog	post	for	more
information).	This	comes	as	the	major	browsers	have	removed	support	for	plug-ins	(like	java	applets)	or	announced	that
they	plan	to	do	so.

Instead	of	using	applets	to	distribute	your	model,	NetLogo	offers	the	option	to	export	to	NetLogo	Web.	While	NetLogo
Web	doesn’t	yet	offer	the	full	functionality	of	desktop	NetLogo	(in	particular,	extensions	aren’t	supported),	it	is	now
capable	of	running	most	of	the	models	in	the	NetLogo	models	library	and	we	hope	that	most	model	distributors	will	find
that	it	meets	their	needs.	To	export	to	NetLogo	Web,	choose	the	“Save	As	NetLogo	Web”	option	from	the	“File”	menu.

Changes	to	the	NetLogo	User	Interface

Users	will	notice	several	tweaks	to	the	NetLogo	User	interface	when	opening	NetLogo	6	for	the	first	time.	We’ve
removed	the	bar	border	above	the	view.	To	open	the	3D	View	in	6.0,	you	can	right	click	on	the	view	and	choose	“Switch
to	3D	View”,	or	choose	the	same	option	from	the	“Tools”	menu.	Ticks	are	now	displayed	in	the	interface	tab	toolbar
beneath	the	speed	slider.	To	adjust	the	label	used	for	“ticks”	and	other	view	properties,	you	can	choose	the	“Settings”
button	at	the	far	right	of	the	interface	tab	toolbar	or	right-click	on	the	view	and	choose	“Edit…”	from	the	context	menu
that	appears.

Nobody	Not	Permitted	as	a	Chooser	Value

https://blogs.oracle.com/java-platform-group/entry/moving_to_a_plugin_free

In	NetLogo	6.0,	nobody	is	no	longer	a	valid	chooser	value.	Just	as	you	can’t	put	turtle	0	or	turtles,	nobody	refers	to	a
non-literal	value	which	isn’t	supported	in	choosers.	As	part	of	this	transition,	choosers	containing	nobody	(or	nobody	within
a	nested	list)	will	have	all	uses	of	nobody	changed	to	"nobody"	when	opened	in	NetLogo	6.0.

Breeds	must	have	singular	and	plural	names

In	NetLogo	6.0,	you	must	specify	both	plural	and	singular	breed	names.	In	prior	versions,	declarations	like	breed	[mice]
were	legal,	but	this	support	has	been	removed	in	6.0.	If	you	have	models	which	use	only	plural	breed	names,	it	is
recommended	that	you	convert	them	to	specify	both	names	before	opening	in	6.0	since	doing	so	will	permit	the	NetLogo
converter	to	work	most	effectively	on	any	other	code	in	your	model	which	needs	conversion.

Removal	of	“Movie”	Prims

The	NetLogo	movie	prims	hadn’t	been	updated	in	quite	some	time	and	generated	invalid	quicktime	movie	files.	They
have	been	replaced	by	prims	in	the	new	vid	extension.	The	full	documentation	for	the	vid	extension	is	available	in	the
Vid	Extension	section	of	the	manual.	As	with	all	extensions,	users	will	need	to	include	vid	in	the	extensions	section	of
their	NetLogo	model.

Many	of	the	movie	primitives	have	direct	parallels	in	the	vid	extension	which	can	be	found	in	the	following	table:

movie	prim vid	prim

movie-cancel vid:reset-recorder

movie-close vid:save-recording	*file-name*

movie-grab-view vid:record-view

movie-grab-interface vid:record-interface

movie-start	*file-name* vid:start-recorder	*optional-width*	*optional-height*

movie-status vid:recorder-status

When	you	first	open	a	file	in	NetLogo	6.0,	your	file	will	be	automatically	converted	to	use	the	new	primitives.	This	will
include	adding	a	new	global	variable	-	_recording-save-file-name	to	track	the	name	of	the	active	recording,	as	well	as
adding	the	vid	extension	to	the	model.	You	should	verify	that	the	conversion	took	place	correctly.	There	is	no
replacement	for	movie-set-frame-rate.	The	vid	extension	records	frames	at	25	per	second,	slightly	more	than	the	default
15	frames-per-second	of	the	movie	prims.	If	your	recording	is	sensitive	to	framerate,	consider	recording	each	existing
frame	twice	(2/25	is	fairly	close	to	1/15)	or	consider	using	a	postprocessing	tool	(like	gstreamer	or	ffmpeg)	to	adjust	the
video	playback	speed.

Improved	Name	Collision	Detection

In	NetLogo	6.0,	expanded	error-checking	in	the	NetLogo	compiler	causes	models	which	define	undirected-link-breed	[
undirected-links	undirected-link]	and/or	directed-link-breed	[directed-links	directed-link]	to	error	for
redefining	a	primitive	reporter	(either	is-directed-link?	or	is-undirected-link?).	If	your	model	doesn’t	use	is-
directed-link?	or	is-undirected-link?	at	all,	simply	changing	the	breed	names	should	resolve	the	error.

If	you	used	either	of	the	is-<directedness>-link?	prim,	there	are	several	ways	you	might	modify	your	model	to	account
for	this	change.	If	your	model	has	no	other	breeded	links,	consider	removing	the	link	breed	and	using	the	built-in	link
primitives.	If	your	model	has	other	breeded	links,	but	only	of	different	directedness,	simply	changing	the	breed	name
(and	all	related	primitive	names)	should	resolve	the	problem.	Note	that	in	this	case	is-directed-link?	and/or	is-
undirected-link?	continue	to	behave	the	same	as	before.	If	your	model	has	other	breeded	links	of	the	same
directedness,	the	change	will	vary	depending	on	your	model.	The	breed	name(s)	must	be	changed,	but	you	must	decide
whether	you	used	is-directed-link?	/	is-undirected-link?	to	check	link	directedness	or	to	check	that	link	breed
membership.	If	you	used	it	to	check	link	directedness	leaving	it	as-is	should	keep	the	current	behavior	of	the	model.
Otherwise,	it	can	simply	be	replaced	by	is-<breed>?.

Removal	of	hubnet-set-client-interface

The	hubnet-set-client-interface	primitive	was	rendered	obsolete	by	the	introduction	of	the	HubNet	client	editor	and
end	of	support	for	calculator	HubNet.	We	have	found	it	used	in	very	few	models	and	have	decided	to	remove	it	from	the
language.	On	opening	an	existing	model	in	6.0,	the	autoconverter	should	remove	all	uses	of	hubnet-set-client-
interface	from	your	code.

Improved	&	Updated	Extensions	API

One	of	our	goals	in	NetLogo	6.0	has	been	to	make	it	easier	to	develop	extensions	and	easy	to	develop	more	powerful
extensions.	To	that	end,	we’ve	bumped	the	extension	API	from	5.0	to	6.0.	Existing	extensions	will	need	to	recompile
changing	the	“NetLogo-Extension-API-Version”	in	their	jar’s	MANIFEST.MF	from	5.0	to	6.0.

Some	of	the	changes	we’ve	made	to	the	extensions	API	include:

org.nlogo.api.Context	now	allows	access	to	the	current	world	and	workspace	objects	without	requiring	a	cast	to
an	org.nlogo.nvm.ExtensionContext.
org.nlogo.api.Workspace	has	been	introduced	as	a	stable	API	for	extensions	to	depend	on.
A	NetLogo	jar	is	now	available	from	BinTray.

For	a	full	list	of	changes	between	5.0	and	6.0,	please	visit	our	Extension	Transition	Guide	on	GitHub.

In	service	of	making	it	easier	to	build	extensions,	we’ve	expanded	and	improved	the	NetLogo	Extension	Plugin	for	sbt,
the	Scala	Build	Tool.	Sbt	is	a	powerful	tool	for	building	JVM	projects	and	can	be	used	in	projects	that	use	Scala,	Java,	or
a	combination	of	the	two.	We’re	now	using	the	Extension	Plugin	to	build	all	of	the	bundled	extensions	and	we	strongly
recommend	extension	authors	take	advantage	of	the	plugin	as	it	makes	configuring	a	NetLogo	extension	build	extremely
straightforward.	The	plugin	handles	fetching	the	NetLogo	jar	which	extensions	compile	against	as	well	as	generation	of	a
jar	for	the	extension	containing	the	appropriate	metadata.

Add	range	primitive

A	new	range	primitive	was	added	in	NetLogo	6.	As	“range”	may	appear	in	existing	models	as	a	procedure	or	variable
name,	we	have	added	an	autoconversion	step	which	will	ensure	that	these	models	continue	to	operate	immediately
upon	opening	in	NetLogo	6.	Existing	uses	of	range	in	models	authored	before	NetLogo	6	will	be	converted	to	_range
upon	first	opening	in	NetLogo	6.	Once	the	model	opens,	you	can	rename	_range	to	suit	your	model.

Changes	for	NetLogo	5.2

hsb	primitives

In	5.2,	the	hsb	primitives	have	been	changed	to	work	with	the	standard	scale	values	of	360	for	hue,	and	100	for
saturation	and	brightness.	This	affects	the	primitives	hsb,	extract-hsb	and	approximate-hsb.

The	old	primitives,	scaled	to	255,	are	automatically	transitioned	to	and	have	been	renamed	__hsb-old,	__extract-hsb-
old	and	__approximate-hsb-old.

GoGo	extension

The	GoGo	extension	has	been	upgraded	to	use	newer	GoGo	boards	with	the	HID	interface.	Many	of	the	older	primitives
no	longer	work,	and	will	alert	you	to	upgrading	your	GoGo	board’s	firmware.

If	you	need	to	continue	to	use	a	serial	interface,	you	can	use	the	bundled	gogo-serial	extension.	Change	your	model	to
use	gogo-serial	as	opposed	to	gogo.	More	details	here.

If	you	cannot	upgrade	to	use	the	new	HID	extension	nor	the	new	serial	extension,	the	original	extension	can	be	found	at
https://github.com/NetLogo/GoGo-RXTX-Extension

Changes	for	NetLogo	5.0

Plotting

In	5.0,	you	don’t	have	to	put	your	plotting	code	in	the	Code	tab	anymore.	Instead,	you	can	put	it	inside	the	plots
themselves,	in	the	Interface	tab.

Nonetheless,	the	old	style	and	all	of	the	existing	plotting	primitives	are	still	supported.	We	recommend	changing	your
model	to	use	the	new	style,	but	if	you	don’t,	it	should	still	work.

The	following	example	shows	how	to	change	a	model	to	use	the	new	style.	Suppose	you	have	a	typical	NetLogo	4.1
model	with	one	plot	called	“populations”	and	two	pens	called	“robots”	and	“humans”.	The	old	code	might	look	like:

to	setup
		clear-all
		...
		do-plotting
end

to	go

https://github.com/NetLogo/NetLogo/wiki/6.0-Extension-and-Controlling-API-Transition-Guide
https://github.com/NetLogo/NetLogo-Extension-Plugin
http://www.scala-sbt.org/
https://github.com/NetLogo/NetLogo/wiki/GoGo-Upgrade
https://github.com/NetLogo/GoGo-RXTX-Extension

		...
		tick
		do-plotting
end

to	do-plotting
		set-current-plot	"populations"
		set-current-plot-pen	"robots"
		plot	count	robots
		set-current-plot-pen	"humans"
		plot	count	humans
end

Here	are	the	steps	to	make	the	transition:

Copy	the	plot	count	robots	command	and	paste	it	into	the	Update	Commands	field	for	the	robots	pen	in	the	plot
edit	dialog.	Remove	it	from	the	do-plotting	procedure.
The	plot	count	humans	command	can	be	moved	in	the	same	way	for	the	humans	pen.
After	those	lines	are	removed	from	the	do-plotting	procedure,	it	doesn’t	actually	do	anything	anymore!	Remove	it.
The	final	step	is	to	replace	the	do-plotting	procedure	calls	in	setup	and	go.	In	setup,	the	do-plotting	call	should
be	changed	to	reset-ticks.	In	go,	the	do-plotting	call	should	be	changed	to	tick.	reset-ticks	and	tick	will	both
cause	plotting	to	happen	automatically.

The	resulting	(much	simpler)	code	looks	like	this:

to	setup
		clear-all
		...
		reset-ticks
end

to	go
		...
		tick
end

For	more	details	on	how	plotting	works	in	NetLogo	5.0,	see	the	Plotting	Sections	of	the	Programming	Guide	and	the
Interface	Guide.	For	details	on	how	plotting	interacts	with	the	tick	counter,	read	on.

Tick	counter

The	way	the	tick	counter	works	has	changed	in	5.0.	Instead	of	being	initially	set	to	0,	the	tick	counter	is	initially	blank.

reset-ticks

You	must	use	reset-ticks	to	start	the	tick	counter	at	0	before	using	ticks,	tick	or	tick-advance	for	the	first	time.

reset-ticks	should	go	at	the	end	of	your	setup	procedure.	Putting	it	there	will	allow	your	model	to	work	with	5.0’s	new
plotting	features.

reset-ticks	and	plotting

In	5.0,	you	don’t	have	to	put	your	plotting	code	in	the	Code	tab	anymore.	Instead,	you	can	put	it	inside	the	plots
themselves,	in	the	Interface	tab.	Code	inside	plots	is	triggered	by	reset-ticks	and	tick.	Resetting	the	tick	counter	runs
plot	setup	code,	and	then	it	also	runs	plot	update	code	to	plot	the	initial	state	of	the	model.	The	initial	state	of	the	model
won’t	be	in	place	until	the	end	of	setup,	so	that’s	why	reset-ticks	should	go	at	the	end.

__clear-all-and-reset-ticks

In	order	for	models	from	previous	NetLogo	versions	to	work	in	5.0	without	changes,	when	an	old	model	is	opened	in	5.0,
any	occurrences	of	clear-all	(or	ca)	are	automatically	changed	to	__clear-all-and-reset-ticks,	which	combines	the
effects	of	clear-all	and	reset-ticks.	The	two	underscores	on	the	name	indicate	that	this	is	not	a	normal	primitive,	but
exists	only	for	backwards	compatibility.

You	should	remove	__clear-all-and-reset-ticks	from	your	code,	replace	it	with	clear-all,	and	put	reset-ticks	at	the
end	of	your	setup	procedure.	(This	doesn’t	happen	automatically	because	the	structure	of	NetLogo	models	is	too	free-
form	for	an	automatic	converter	to	reliably	make	the	change	for	you.)

Unicode	characters

NetLogo	5.0	fully	supports	international	characters	cross-platform,	using	the	Unicode	character	set.	NetLogo	5.0	model
files	always	represent	Unicode	characters	using	the	UTF-8	encoding.

Previous	versions	of	NetLogo	allowed	Unicode	characters	to	be	used	in	some	contexts.	However,	model	files	were
saved	in	the	platform’s	default	encoding,	which	on	most	systems	was	something	other	than	UTF-8.	Characters	were
handled	correctly	on	the	same	platform	(e.g.	two	Windows	machines),	but	could	be	altered	if	the	model	was	moved
between	platforms	(e.g.	from	Windows	to	Mac	or	vice	versa).

When	opening	an	existing	model	in	NetLogo	5.0,	if	the	model	contains	international	or	other	non-ASCII	characters,	the
characters	may	be	interpreted	incorrectly,	because	they	were	originally	written	in	a	platform-specific	encoding,	but	then
read	back	in	in	UTF-8.

If	only	a	few	characters	are	affected,	you	might	find	it	easiest	just	to	fix	them	manually.

But	if	you	expect	a	large	number	of	characters	to	be	affected,	and	you	want	them	translated	automatically,	you	can	use	a
third	party	utility	to	re-encode	your	.nlogo	file	from	its	original	encoding	into	UTF-8.	After	conversion,	open	the	model	in
NetLogo	5.0	and	all	characters	should	be	correct.

Info	tabs

NetLogo	5.0	uses	the	Markdown	markup	language	to	allow	you	to	format	your	Info	tab,	including	headers,	bold	and
italics,	images,	and	so	forth.

Earlier	versions	of	NetLogo	used	a	custom	markup	language	with	much	more	limited	capabilities.

When	opening	a	model	from	an	older	version,	NetLogo	5.0	translates	your	old	markup	into	Markdown.	Most	of	the	time
this	produces	good	results,	but	you	may	want	to	check	the	results	yourself	and	make	sure	that	your	Info	tab	still	looks
good.

Model	speed

In	NetLogo	5.0	every	model	has	a	“target	frame	rate”	which	affects	the	default	speed	at	which	the	model	runs,	when	the
speed	slider	is	in	the	middle,	on	the	“normal	speed”	setting.

The	default	target	frame	rate	for	new	models,	and	for	models	that	were	created	in	earlier	versions	of	NetLogo,	is	30
frames	per	second.	If	you	are	using	tick-based	updates,	as	we	recommend	for	most	models,	then	that	translates	to	30
ticks	per	second.

If	your	model	runs	slower	in	5.0	than	it	ran	in	4.1,	it’s	probably	just	because	its	speed	is	being	limited	by	this	rate.	If	you
want,	you	can	press	the	Settings	button	in	the	Interface	tab	and	change	the	frame	rate	to	a	higher	number.

Some	old	models	used	the	every	command	to	set	a	default	speed.	In	most	case	this	can	be	now	removed	from	the	code,
and	the	target	frame	rate	setting	used	instead.

List	performance

The	underlying	data	structure	for	NetLogo	lists	has	changed.

In	NetLogo	4.1,	a	NetLogo	list	was	represented	internally	as	a	singly	linked	list.	Some	operations	on	singly	linked	lists	are
fast	(such	as	first	and	butfirst)	but	others	are	slow	because	they	could	require	traversing	the	whole	list	(such	as	item
and	last).

In	NetLogo	5.0,	lists	are	now	actually	trees	internally.	As	a	result,	some	operations	are	a	little	slower,	but	other
operations	are	drastically	faster	on	long	lists.	See	the	Lists	section	of	the	Programming	Guide	for	details.

Some	models	may	run	a	little	slower	with	the	new	data	structure,	especially	if	you	make	heavy	use	of	short	lists.	But
other	models	will	run	faster	–	perhaps	dramatically	faster.

Some	special	ways	of	writing	list-processing	code	that	were	useful	in	NetLogo	4.1	are	no	longer	needed	in	5.0.	For
example,	since	in	4.1	fput	was	fast	and	lput	was	slow,	modelers	sometimes	built	up	lists	in	reverse	order	using	fput,
perhaps	calling	reverse	later	to	restore	the	intended	order.	In	NetLogo	5.0,	you	don’t	need	to	code	that	way	anymore.
fput	and	lput	are	the	same	speed.

Extensions	API

If	you	are	the	author	of	an	extension,	you	will	need	to	recompile	it	against	the	5.0	NetLogo.jar	and	lib	directory	for	it	to
work	with	5.0.

You	may	also	need	to	be	aware	of	the	following	changes:

Syntax	constants

The	code	for	specifying	the	syntax	of	a	primitive	has	changed	slightly,	for	example	Syntax.TYPE_STRING	is	now
Syntax.StringType().	(From	Java,	the	pair	of	parentheses	at	the	end	is	required.	In	Scala,	you	can	omit	them.)

LogoList	construction

One	significant	change	is	that	org.nlogo.api.LogoList	no	longer	has	a	public	constructor.	Instead,	there	are	two	new
ways	to	construct	a	LogoList.

If	you	have	a	java.lang.Iterable,	you	can	copy	the	contents	into	a	fresh	LogoList	by	passing	it	to	the	static	method
LogoList.fromJava().	See	the	array	extension	source	code	for	a	sample	usage.

Or,	to	build	up	a	new	list	one	item	a	time,	use	org.nlogo.api.LogoListBuilder.	The	Extensions	Guide	has	sample	code
showing	the	use	of	LogoListBuilder.

Primitive	classes

In	prior	NetLogo	versions,	the	extensions	API	required	that	each	extension	primitive	have	its	own	separate	top-level
class	with	a	no-argument	constructor.	These	limitations	have	now	been	lifted.	Also,	api.Primitive	objects	are	now	made
only	once,	when	the	extension	is	loaded,	instead	of	every	time	the	Code	tab	was	recompiled.

Changes	for	NetLogo	4.1

Combining	set	and	of

The	following	syntax	is	no	longer	supported:

set	[<variable>]	of	<agent>	<value>

Commands	of	this	form	must	be	rewritten	using	ask:

ask	<agent>	[set	<variable>	<value>]

Or,	if	the	new	value	must	be	computed	by	the	asking	agent	and	not	by	the	agent	whose	variable	is	being	set:

;;	OPTION	#1	(using	let):
let	new-value	<value>
ask	<agent>	[set	<variable>	new-value]

;;	OPTION	#2	(using	myself):
ask	<agent>	[set	<variable>	[value]	of	myself]

So	for	example,	this:

set	[color]	of	turtle	0	red

Can	be	rewritten	as:

ask	turtle	0	[set	color	red]

It	is	not	necessary	to	use	let	or	myself	since	red	is	red	from	the	point	of	view	of	both	agents.

However,	this:

set	[color]	of	turtle	0	color

Must	be	rewritten	as:

let	new-color	color
ask	turtle	0	[set	color	new-color]

or

ask	turtle	0	[set	color	[color]	of	myself]

in	order	not	to	change	the	meaning,	since	the	two	agents	may	have	different	starting	values	for	color.	The	form	using
myself	is	briefer,	but	the	former	using	let	may	be	considered	clearer,	depending	on	context	and	individual	preference.

Changes	for	NetLogo	4.0

Who	numbering

Prior	to	NetLogo	4.0,	a	dead	turtle’s	who	number	(stored	in	the	who	turtle	variable)	could	be	reassigned	to	a	later
newborn	turtle.	In	NetLogo	4.0,	who	numbers	are	never	reused	until	who	numbering	is	reset	to	0	by	the	clear-all	or
clear-turtles	command.	This	change	in	behavior	may	break	a	few	old	models.

Turtle	creation:	randomized	vs.	“ordered”

NetLogo	4.0	provides	two	different	observer	commands	for	creating	turtles,	create-turtles	(crt)	and	create-ordered-
turtles	(cro).

crt	gives	the	new	turtles	random	colors	and	random	integer	headings.	cro	assigns	colors	sequentially	and	gives	the
turtles	sequential	equally	spaced	headings,	with	the	first	turtle	facing	north	(heading	of	0).

Prior	to	NetLogo	4.0,	the	crt	command	behaved	the	way	cro	does	now.	If	your	old	model	depends	on	the	“ordered”
behavior,	you	will	need	to	change	your	code	to	use	cro	instead	of	crt.

It	is	common	for	old	models	that	used	crt	to	contain	extra	commands	to	randomize	the	new	turtles’	headings,	for
example	rt	random	360	or	set	heading	random	360.	These	commands	are	no	longer	necessary	when	used	inside	crt.

Adding	strings	and	lists

Prior	to	NetLogo	4.0,	the	+	(addition)	operator	could	be	used	to	concatenate	strings	and	join	lists.	In	current	NetLogo,	+
only	works	on	numbers.	To	concatenate	strings,	use	the	word	primitive;	to	join	lists	together,	use	the	sentence	primitive.
This	language	change	was	made	to	increase	the	speed	of	code	that	uses	+.

Old	code:

print	"There	are	"	+	count	turtles	+	"	turtles."

New	code:

print	(word	"There	are	"	count	turtles	"	turtles.")

Likewise,	if	you	need	to	concatenate	lists,	use	SENTENCE.

This	change	is	not	handled	automatically	when	converting	old	models;	users	will	need	to	change	their	code	by	hand.

We	know	this	change	will	be	awkward	for	users	who	are	used	to	the	old	syntax.	We	have	made	this	change	for
efficiency	and	consistency.	We	can	implement	an	addition	operator	that	only	adds	numbers	much	more	efficiently	than
one	that	handles	several	different	data	types.	Because	addition	is	such	a	common	operation,	NetLogo’s	overall	speed	is
affected.

The	-at	primitives

The	observer	may	no	longer	use	patch-at,	turtles-at,	and	BREEDS-at.	Use	patch,	turtles-on	patch,	and	BREEDS-on
patch	instead.	Note	that	patch	now	rounds	its	inputs	(before	it	only	accepted	integer	inputs).

Links

NetLogo	3.1	had	supports	for	using	links	to	connect	turtles	to	make	networks,	graphs,	and	geometric	figures.	The	links
were	themselves	turtles.

In	NetLogo	4.0,	instead	of	links	being	turtles,	links	are	now	an	independent	fourth	agent	type,	right	alongside	observer,
turtles,	patches.	The	primitives	involving	links	are	no	longer	considered	experimental;	they	are	now	fully	part	of	the

language.

Models	that	use	the	old,	experimental	turtle-based	link	primitives	will	need	to	be	updated	to	use	link	agents.	The
differences	are	not	huge,	but	hand	updating	is	required.

Links	are	documented	in	the	Links	section	of	the	Programming	Guide,	and	in	the	NetLogo	Dictionary	entries	for	the	link
primitives.	See	the	Networks	section	of	the	Models	Library	for	example	models	that	use	links.	There	are	also	some	link-
based	Code	Examples.

First	you	will	need	to	remove	any	breeds	called	“links”	if	you	are	only	using	one	type	of	links	then	you	will	not	have	to
use	breeds	at	all.	If	you	are	using	multiple	types	of	links	see	undirected-link-breed	and	directed-link-breed.
Commands	and	reporters	that	contain	the	word	“links”	(like	__create-links-with,	etc.)	will	automatically	be	converted	to
the	new	form	without	underscores	(create-links-with).	However,	primitives	that	use	a	different	breed	name	(such	as
“edges”)	will	not	be	converted.	You	will	need	to	remove	the	underscores	by	hand	and	unless	you	are	declaring	a	link
breed	with	that	name	you	will	need	to	change	the	breed	designation	to	“links”.

The	commands	remove-link(s)-with/from/to	no	longer	exist.	Instead	you	should	ask	the	links	in	question	to	die.

For	example:

ask	turtle	0	[__remove-links-with	link-neighbors]

becomes

ask	turtle	0	[ask	my-links	[die]]

Several	of	the	layout	commands	have	slightly	different	inputs,	the	first	two	inputs	are	generally	a	turtle	agentset	and	a
link	agentset	to	perform	the	layout	on.	See	the	dictionary	entries	for	details.	layout-spring,	layout-radial	and	layout-
tutte

You	may	also	need	to	rearrange	the	declaration	of	turtles-own	variables,	since	links	were	once	actually	turtles.	Any
variables	that	apply	to	links	should	be	moved	into	a	links-own	block.

Since	links	are	no	longer	turtles	they	no	longer	have	the	built-in	turtle	variables	(though	some	of	the	link	variables	are	the
same	such	as	color	and	label.	If	you	formerly	used	the	location	of	link	turtles	you	will	now	need	to	calculate	the	midpoint
of	the	link.	This	is	fairly	simple	in	a	non-wrapping	world.

to-report	link-xcor
		report	mean	[xcor]	of	both-ends
end

to-report	link-ycor
		report	mean	[ycor]	of	both-ends
end

it	is	a	little	bit	trickier	in	a	wrapping	world	but	still	fairly	straightforward.

to-report	link-xcor
		let	other-guy	end2
		let	x	0
		ask	end1
		[
				hatch	1
				[
						face	other-guy
						fd	[distance	other-guy]	of	myself	/	2
						set	x	xcor
						die
]
]
		report	x
end

and	similarly	for	ycor.

If	you	used	either	the	size	or	heading	of	the	link	turtles	you	can	use	the	reporters	link-length	and	link-heading	instead.

New	“of”	syntax

We	have	replaced	three	different	language	constructs,	-of	(with	hyphen),	value-from,	and	values-from	with	a	single	of
construct	(no	hyphen).

old new

`color-of	turtle	0` `[color]	of	turtle	0`

`value-from	turtle	0	[size	*	size]` `[size	*	size]	of	turtle
0`

`mean	values-from	turtles	[size]` `mean	[size]	of	turtles`

When	of	is	used	with	a	single	agent,	it	reports	a	single	value.	When	used	with	an	agentset,	it	reports	a	list	of	values	(in
random	order,	since	agentsets	are	always	in	random	order).

Note	that	when	opening	old	models	in	the	new	version,	-of,	value-from,	and	values-from	will	automatically	be	converted
to	use	“of”	instead,	but	some	nested	uses	of	these	constructs	are	too	complex	for	the	converter	and	must	be	converted
by	hand.

Serial	ask

The	ask	command	is	now	serial	rather	than	concurrent.	In	other	words,	the	asked	agents	will	run	one	at	a	time.	Not	until
one	agent	completely	finishes	the	entire	body	of	the	ask	does	the	next	agent	start.

Note	that	even	the	old	ask	was	never	truly	concurrent;	we	simulated	concurrent	execution	by	interleaving	execution
among	the	agents	using	a	turn-taking	mechanism	described	in	the	NetLogo	FAQ.

We	have	made	this	change	because	in	our	experience,	users	often	wrote	models	that	behaved	in	unexpected	ways	due
to	the	simulated	concurrency,	but	rarely	wrote	models	that	benefited	from	the	simulated	concurrency.	Models	exhibiting
unexpected	behavior	could	usually	be	fixed	by	adding	the	without-interruption	command	in	the	right	places,	but	it	was
difficult	for	users	to	know	whether	that	command	was	needed	and	if	so,	where.

In	NetLogo	4.0,	without-interruption	is	no	longer	necessary	unless	your	model	uses	ask-concurrent	(or	a	turtle	or
patch	forever	button	containing	code	that	depends	on	simulated	concurrency).	In	most	models,	all	uses	of	without-
interruption	can	be	removed.

The	simulated	concurrency	formerly	employed	by	“ask”	is	still	accessible	in	three	ways:

You	may	use	the	ask-concurrent	primitive	instead	of	ask	to	get	the	old	simulated	concurrency.	(We	don’t
recommend	this,	though.)
Commands	issued	in	the	Command	Center	directly	to	turtles,	patches,	or	links	have	an	implied	ask-concurrent.
Turtle,	patch,	and	link	forever	buttons	have	an	implied	ask-concurrent	as	well.

Note	that	ask	itself	is	always	serial	regardless	of	the	context	in	which	it	is	used,	however.

In	our	own	Models	Library,	models	that	make	use	of	this	concurrency	are	rare.	A	prominent	example,	though,	is
Termites,	which	uses	a	concurrent	turtle	forever	button.

Tick	counter

NetLogo	now	has	a	built-in	tick	counter	for	representing	the	passage	of	simulated	time.

You	advance	the	counter	by	one	using	the	tick	command.	If	you	need	to	read	its	value,	there’s	a	reporter	called	ticks.
The	clear-all	command	resets	the	tick	counter;	so	does	reset-ticks.

In	most	models	the	tick	counter	will	be	integer-valued,	but	if	you	want	to	use	smaller	increments	of	time,	you	can	use	the
tick-advance	command	to	advance	the	tick	counter	by	any	positive	amount,	including	fractional	amounts.	Some	Models
Library	models	that	use	tick-advance	are	Vector	Fields	and	the	GasLab	models.

The	value	of	the	tick	counter	is	displayed	in	the	toolbar	at	the	top	of	the	Interface	tab.	(You	can	use	the	Settings…
button	in	the	toolbar	to	hide	the	tick	counter,	or	change	the	word	“ticks”	to	something	else.)

View	update	modes

In	the	past,	NetLogo	always	tried	to	update	the	view	about	20	times	a	second.	We’re	now	calling	that	“continuous”	view
updates.	The	biggest	problem	with	it	was	that	you	usually	want	updates	to	happen	between	model	ticks,	not	in	the
middle	of	a	tick,	so	we	had	a	checkbox	on	buttons	that	(by	default)	forced	a	display	update	after	every	button	iteration.
That	made	sure	updates	happened	between	ticks,	but	it	didn’t	get	rid	of	the	intermediate	updates.	You	had	to	use	no-
display	and	display	to	lock	them	out.

We	still	support	continuous	updates.	They	are	the	default	when	you	start	up	NetLogo.	But	most	Models	Library	models
now	use	tick-based	updates.	With	tick-based	updates,	updates	happen	only	when	the	tick	counter	advances.	(The
display	command	can	be	used	to	force	additional	updates;	see	below.)

The	advantages	of	tick-based	updates	as	we	see	them	are	as	follows:

1.	 Consistent,	predictable	view	update	behavior	which	does	not	vary	from	computer	to	computer	or	from	run	to	run.
2.	 Intermediate	updates	can	confuse	the	user	of	your	model	by	letting	them	see	things	they	aren’t	supposed	to	see,

which	may	be	misleading.
3.	 Increased	speed.	Updating	the	view	takes	time,	so	if	one	update	per	tick	is	enough,	then	enforcing	than	there	is

only	one	update	per	tick	will	make	your	model	faster.
4.	 Instead	of	having	a	“force	view	update”	checkbox	in	every	button	like	in	NetLogo	3.1,	we	only	need	one	choice

which	applies	to	the	entire	model.
5.	 Using	the	speed	slider	to	slow	down	a	model	now	just	inserts	pauses	between	ticks.	So	with	tick-based	updates,

setup	buttons	are	no	longer	affected	by	the	speed	slider.	This	was	a	real	annoyance	with	the	old	speed	slider.	(The
annoyance	persists	for	models	that	use	continuous	updates,	though.)

As	mentioned	above,	most	models	in	our	Models	Library	now	use	tick-based	updates.

Even	for	models	that	would	normally	be	set	to	tick-based	updates,	it	may	be	useful	to	switch	to	continuous	updates
temporarily	for	debugging	purposes.	Seeing	what’s	going	on	within	a	tick,	instead	of	only	seeing	the	end	result	of	a	tick,
could	help	with	troubleshooting.

If	you	switch	your	model	to	use	tick-based	updates,	you’ll	also	need	to	add	the	tick	command	to	your	code,	otherwise
the	view	won’t	update.	(Note	that	the	view	still	always	updates	when	a	button	pops	up	or	a	command	entered	in	the
command	center	finishes,	though.	So	it’s	not	like	the	view	will	just	stay	frozen	indefinitely.)

How	to	make	a	model	use	ticks	and	tick-based	updates

Here	are	the	steps	to	follow	to	convert	your	model	to	use	ticks	and	tick-based	updates	in	NetLogo	4.0:

1.	 In	the	Interface	tab	toolbar,	on	the	right	hand	side	where	it	says	“update	view:”,	change	the	setting	from
“continuously”	to	“on	ticks”.

2.	 Add	the	tick	command	to	your	go	procedure,	at	or	near	the	end.	In	Models	Library	models	we	always	put	tick
after	the	agents	move	but	before	any	plotting	commands.	That’s	because	the	plotting	commands	might	contain
something	like	plotxy	ticks	...	and	we	want	the	new	value	of	the	tick	counter	used,	not	the	old	one.	Most
models	don’t	refer	to	the	tick	counter	in	their	plotting	commands,	but	nonetheless,	for	consistency	and	to	avoid
mistakes	we	suggest	always	putting	tick	before	the	plotting	commands.

Some	models	will	require	some	additional	changes:

1.	 If	your	model	already	has	a	global	“ticks”	or	“clock”	or	“time”	variable,	get	rid	of	it.	Use	the	tick	command	and
ticks	reporter	instead.	(If	your	model	uses	fractional	increments	of	time,	use	tick-advance	instead	of	tick.)	If	you
had	a	monitor	for	that	variable,	you	can	get	rid	of	it;	there’s	now	a	tick	counter	in	the	toolbar.

2.	 clear-all	resets	the	tick	counter	to	zero.	If	you	don’t	use	clear-all	in	your	setup	procedure,	then	you	may	need	to
add	reset-ticks	to	reset	the	counter	to	zero.

3.	 If	you	used	no-display	and	display	to	prevent	view	updates	from	happening	in	the	middle	of	go,	you	can	get	rid	of
them.

4.	 If	your	model	needs	to	update	the	view	without	advancing	the	tick	counter	(examples:	Party,	Dice	Stalagmite,
network	models	with	animated	layout,	models	with	mouse	interaction	buttons),	use	the	display	command	to	force
additional	view	updates	so	the	user	can	see	what	is	going	on.

Speed	slider

Previous	versions	of	NetLogo	had	a	speed	slider	that	could	be	used	to	make	models	run	slower,	so	you	can	see	what’s
going	on.

In	NetLogo	4.0,	the	slider	can	be	used	to	speed	up	models	as	well.	It	does	this	by	updating	the	view	less	frequently.
Updating	the	view	takes	time,	so	the	fewer	updates,	the	faster	the	model	runs.

The	default	position	of	the	slider	is	in	the	center.	When	you’re	at	the	center,	the	slider	says	“normal	speed”.

As	you	move	the	slider	away	from	the	center	position,	the	model	will	gradually	run	faster	or	slower.

At	very	high	speeds,	view	updates	become	very	infrequent	and	may	be	separated	by	several	seconds.	It	may	feel	like
the	model	is	actually	running	slower,	since	the	updates	are	so	infrequent.	But	watch	the	tick	counter,	or	other	indicators
such	as	plots,	and	you’ll	see	that	yes,	the	model	really	is	running	faster.	If	the	infrequent	updates	are	disconcerting,	don’t
push	the	slider	so	far	over.

When	using	tick-based	updates,	slowing	the	model	down	does	not	cause	additional	view	updates.	Rather,	NetLogo
simply	pauses	after	each	tick.

When	using	continuous	updates,	slowing	the	model	down	means	view	updates	become	more	closely	spaced.	If	you
push	the	speed	slider	more	than	halfway	to	the	left,	the	model	will	be	running	so	slowly	that	you	can	watch	turtles
moving	one	at	a	time!	This	is	new	in	NetLogo	4.0;	in	previous	NetLogo	versions,	no	matter	how	slowly	you	ran	a	model,
you	would	never	see	the	agents	in	an	ask	moving	one	at	a	time;	all	the	agents	in	an	ask	always	appeared	to	move

together.

Numbers

NetLogo	no	longer	maintains	an	internal	distinction	between	integers	and	floating	point	numbers.	So	for	example:

Old:

observer>	print	3
3
observer>	print	3.0
3.0
observer>	print	1	+	2
3
observer>	print	1.5	+	1.5
3.0
observer>	print	3	=	3.0
true

(The	last	line	shows	that	although	the	distinction	between	integer	3	and	floating	point	3.0	was	maintained,	the	two
numbers	were	still	considered	equal.)

New:

observer>	print	3
3
observer>	print	3.0
3
observer>	print	1	+	2
3
observer>	print	1.5	+	1.5
3
observer>	print	3	=	3.0
true

We	expect	that	only	rare	models	will	be	negatively	impacted	by	this	change.

A	benefit	of	this	change	is	that	NetLogo	now	supports	a	much	larger	range	of	integers.	The	old	range	was	-
2,147,483,648	to	2,147,483,647	(around	+/-	2	billion);	the	new	range	is	+/-9,007,199,254,740,992	(around	+/-	9
quadrillion).

Agentset	building

NetLogo	3.1	(and	some	earlier	versions)	included	primitives	called	turtles-from	and	patches-from	that	were
occasionally	useful	for	building	agentsets.	In	NetLogo	4.0,	these	primitives	have	been	replaced	with	new	primitives
called	turtle-set	and	patch-set	that	are	much	more	flexible	and	powerful.	(link-set	exists	as	well.)	See	the	entries	for
these	primitives	in	the	NetLogo	Dictionary.	Models	that	use	the	old	turtles-from	and	patches-from	will	need	to	be
altered	by	hand	to	use	the	new	primitives.

RGB	Colors

In	NetLogo	3.1	RGB	and	HSB	colors	could	be	approximated	as	NetLogo	colors	using	the	rgb	and	hsb	primitives.	These
have	been	renamed	to	approximate-rgb	and	approximate-hsb	and	now	expect	inputs	in	the	range	0-255,	not	0-1.

The	full	RGB	spectrum	is	now	available	in	NetLogo	so	it	may	no	longer	be	necessary	to	use	these	primitives	at	all.	You
can	set	any	color	variable	to	a	three-item	RGB	list,	with	values	in	the	0-255	range,	and	get	that	exact	color.	See	the
Color	section	of	the	Programming	Guide	for	details.

Tie

In	previous	versions	__tie	was	provided	as	an	experimental	feature.	As	of	NetLogo	4.0	links	have	a	tie-mode	variable
which	can	be	set	to	"none",	"free",	or	"fixed".	In	4.0	tie	is	now	a	link-only	primitive.	This	means	that	to	tie	turtle	1	to
turtle	0	you	write:

ask	turtle	0	[create-link-to	turtle	1	[tie]]

See	the	Tie	section	of	the	programming	guide	for	details.

Changes	for	NetLogo	3.1

Agentsets

If	your	model	is	behaving	strangely	or	incorrectly,	it	may	be	because	since	NetLogo	3.1,	agentsets	are	now	always	in
random	order.	In	prior	versions	of	NetLogo,	agentsets	were	always	in	a	fixed	order.	If	your	code	depended	on	that	fixed
order,	then	it	won’t	work	anymore.	How	to	fix	your	model	to	work	with	randomized	agentsets	depends	on	the	details	of
what	your	code	is	doing.	In	some	situations,	it	is	helpful	to	use	the	sort	or	sort-by	primitives	to	convert	an	agentset
(random	order)	into	a	list	of	agents	(fixed	order).	See	“Lists	of	agents”	in	the	Lists	section	of	the	Programming	Guide.

Wrapping

If	you	are	seeing	pieces	of	turtle	shapes	wrapping	around	the	view	edges,	it’s	because	NetLogo	3.0	allowed	you	to	turn
off	such	wrapping	in	the	view	without	affecting	the	behavior	of	the	model.	Since	NetLogo	3.1,	if	you	don’t	want	the	view
to	wrap	you	must	make	it	so	the	world	doesn’t	wrap,	using	the	new	topology	feature.	Making	this	change	may	require
other	changes	to	your	model,	though.	See	the	Topology	section	of	the	Programming	Guide	for	a	thorough	discussion	of
how	to	convert	your	model	to	take	advantage	of	this	new	feature.

Random	turtle	coordinates

Many	models	made	in	NetLogo	3.0	or	earlier	use	setxy	random	world-width	random	world-height 	to	scatter	turtles
randomly,	using	either	random	or	random-float.	It	only	works	if	world	wrapping	is	on.

(Why?	Because	when	wrapping	is	on,	you	can	set	coordinates	of	turtles	to	numbers	beyond	the	edge	of	the	world	and
NetLogo	will	wrap	the	turtle	to	the	other	side.	But	in	worlds	that	don’t	wrap	setting	the	x	or	y	coordinates	of	a	turtle	to	a
point	outside	the	bounds	of	the	world	causes	a	runtime	error.	The	world	wrap	settings	were	added	in	NetLogo	3.1.	See
the	Topology	section	of	the	Programming	Guide	for	more	information.)

To	fix	your	model	so	that	it	works	regardless	of	the	wrapping	settings,	use	one	of	these	two	commands	instead:

setxy	random-xcor	random-ycor
setxy	random-pxcor	random-pycor

The	two	commands	are	a	bit	different.	The	first	command	puts	the	turtle	on	a	random	point	in	the	world.	The	second
command	puts	the	turtle	on	the	center	of	a	random	patch.	An	even	more	concise	way	to	put	a	turtle	on	the	center	of	a
random	patch	is:

move-to	one-of	patches

Extension	Manager	Guide
NetLogo	6.4.0	User	Manual

The	Extension	Manager	is	a	tool	for	discovering	and	managing	extensions.	Extensions	provide	additional	NetLogo
language	primitives	that	can	be	used	in	NetLogo	models,	for	doing	any	of	a	wide	variety	of	things,	from	programming
with	more	sophisticated	data	structures	(like	networks	and	tables)	to	capturing	video	from	a	webcam.	With	the	Extension
Manager,	you	can	easily	browse	through	dozens	of	extensions	and	install	them	instantly.	You	can	also	update
extensions	whenever	a	new	version	is	available,	to	ensure	that	you	have	the	latest	features	and	bug	fixes.

Authoring	and	Sharing

Interested	in	adding	some	new	functionality	to	NetLogo	by	creating	your	own	extension?	Have	an	extension	you	made
and	want	to	add	it	to	the	Extension	Manager?	See	the	extension	authoring	page	to	get	started.

Interface

The	Extension	Manager	can	be	shown	by	choosing	“Extensions…”	from	the	Tools	menu.

On	the	left	side	of	the	Extension	Manager	window,	you	can	see	a	list	of	all	available	extensions.	Extensions	that	are
already	installed	and	up-to-date	have	a	green	checkmark	next	to	them.	Extensions	that	are	installed	but	have	a	newer
version	available	are	marked	with	an	orange	arrow.	Extensions	that	are	not	installed	have	no	indicator.	Extensions	have
an	orange	exclamation	point	next	to	them	if	any	installation	of	that	extension	through	the	Extension	Manager	(past	or
future)	would	be	overridden	by	a	version	of	the	extension	that	is	present	in	the	NetLogo	installation’s	extensions
directory	or	in	the	current	model’s	directory.

When	an	extension	is	selected,	the	text	on	the	right	side	provides	a	detailed	description	of	the	extension.	Above	the
description	are	buttons	for	various	context-sensitive	operations,	such	as	installing,	updating,	and	uninstalling.	The	“Add
to	Code	Tab”	button	will	add	the	extension	to	the	list	of	your	model’s	extensions	(for	example,	changing	the	line	of	code
extensions	[array	table]	to	extensions	[array	table	web]	when	used	for	the	Web	extension).	The	“Homepage”
button	will	open	documentation	in	your	web	browser,	which	will	provide	you	with	information	about	the	extension,	a	list	of
its	primitives,	and	how	to	use	them.

At	the	top	of	the	window,	there	is	a	text	box	that	can	be	used	to	filter	down	the	list	of	extensions	based	on	what	you	type.
Along	the	bottom	of	the	Extension	Manager	window	is	a	button	that	will	allow	you	to	instantly	update	all	of	your
extensions	to	their	latest	versions	(if	any	updates	are	available).	If	NetLogo	detects	any	extensions	that	have	been
installed	outside	of	the	Extension	Manager,	a	“View	Conflicting	Libraries”	button	will	appear	at	the	bottom	of	the	window,
allowing	you	to	display	all	of	the	other	extensions	and	their	locations	on	your	computer.

Note	that	you	can	also	select	multiple	extensions	in	the	list	with	your	operating	system’s	standard	keys	for	performing
multi-item	selections	(e.g.	Ctrl,	Shift,	Command).	This	feature	can	be	used	to,	for	example,	install	multiple	extensions	all
at	once.

Shapes	Editor	Guide
NetLogo	6.4.0	User	Manual

The	Turtle	and	Link	Shape	Editors	allows	you	to	create	and	save	turtle	and	link	designs.

NetLogo	uses	fully	scalable	and	rotatable	vector	shapes,	which	means	you	can	create	designs	by	combining	basic
geometric	elements,	which	can	appear	on-screen	in	any	size	or	orientation.

Getting	started

To	begin	making	shapes,	choose	Turtle	Shapes	Editor	or	Link	Shapes	Editor	in	the	Tools	menu.	A	new	window	will
open	listing	all	the	shapes	currently	in	the	model,	beginning	with	default,	the	default	shape.	The	Shapes	Editor	allows
you	to	edit	shapes,	create	new	shapes,	and	borrow	from	another	model.	You	can	also	import	turtle	shapes	from	a	library
of	pre-existing	shapes.

Importing	shapes

Every	new	model	in	NetLogo	starts	off	containing	a	small	core	set	of	frequently	used	shapes.	Many	more	turtle	shapes
are	available	by	using	the	Import	from	library…	button.	This	brings	up	a	dialog	where	you	can	select	one	or	more
shapes	and	bring	them	into	your	model.	Select	the	shapes,	then	press	the	Import	button.

Similarly,	you	can	use	the	Import	from	model…	button	to	borrow	shapes	from	another	model.

Default	shapes

Here	are	the	turtle	shapes	that	are	included	by	default	in	every	new	NetLogo	model:

First	row:	default,	airplane,	arrow,	box,	bug,	butterfly,	car
Second	row:	circle,	circle	2,	cow,	cylinder,	dot,	face	happy,	face	neutral
Third	row:	face	sad,	fish,	flag,	flower,	house,	leaf,	line
Fourth	row:	line	half,	pentagon,	person,	plant,	sheep,	square,	square	2
Fifth	row:	star,	target,	tree,	triangle,	triangle	2,	truck,	turtle
Sixth	row:	wheel,	x

Shapes	library

And	here	are	the	shapes	in	the	shapes	library	(including	all	of	the	default	shapes,	too):

By	default	there	is	only	one	Link	shape	in	a	model,	that	is	“default”.	This	shape	is	simply	a	single	straight	line	with	a
simple	arrowhead	(if	the	link	happens	to	be	directed).

Creating	and	editing	turtle	shapes

Pressing	the	New	button	will	make	a	new	shape.	Or,	you	may	select	an	existing	shape	and	press	Edit.

Tools

In	the	upper	left	corner	of	the	editing	window	is	a	group	of	drawing	tools.	The	arrow	is	the	selection	tool,	which	selects
an	already	drawn	element.

To	draw	a	new	element,	use	one	of	the	other	seven	tools:

The	line	tool	draws	line	segments.
The	circle,	square,	and	polygon	tools	come	in	two	versions,	solid	and	outline.

When	using	the	polygon	tool,	click	the	mouse	to	add	a	new	segment	to	the	polygon.	When	you’re	done	adding
segments,	double	click.

After	you	draw	a	new	element,	it	is	selected,	so	you	can	move,	delete,	or	reshape	it	if	you	want:

To	move	it,	drag	it	with	the	mouse
To	delete	it,	press	the	Delete	button.
To	reshape	it,	drag	the	small	“handles”	that	appear	on	the	element	only	when	it	is	selected.
To	change	its	color,	click	on	the	new	color.

Previews

As	you	draw	your	shape,	you	will	also	see	it	in	five	smaller	sizes	in	the	five	preview	areas	found	near	the	bottom	of	the
editing	window.	The	previews	show	your	shape	as	it	might	appear	in	your	model,	including	how	it	looks	as	it	rotates.	The
number	below	each	preview	is	the	size	of	the	preview	in	pixels.	When	you	edit	the	view,	patch	size	is	also	measured	in
pixels.	So	for	example,	the	preview	with	“20”	below	it	shows	you	how	your	shape	would	look	on	a	turtle	(of	size	1)	on
patches	of	size	20	pixels.

The	rotatable	feature	can	be	turned	off	if	you	want	a	shape	that	always	faces	the	same	way,	regardless	of	the	turtle’s
heading.

Overlapping	shapes

New	elements	go	on	top	of	previous	elements.	You	can	change	the	layering	order	by	selecting	an	element	and	then
using	the	Bring	to	front	and	Send	to	back	buttons.

Undo

At	any	point	you	can	use	the	Undo	button	to	undo	the	edit	you	just	performed.

Colors

Elements	whose	color	matches	the	Color	that	changes	(selected	from	a	drop-down	menu	–	the	default	is	gray)	will
change	color	according	to	the	value	of	each	turtle’s	color	variable	in	your	model.	Elements	of	other	colors	don’t	change.
For	example,	you	could	create	cars	that	always	have	yellow	headlights	and	black	wheels,	but	different	body	colors.

Other	buttons

The	“Rotate	Left”	and	“Rotate	Right”	buttons	rotate	elements	by	90	degrees.	The	“Flip	Horizontal”	and	“Flip	Vertical”
buttons	reflect	elements	across	the	axes.

These	four	buttons	will	rotate	or	flip	the	entire	shape,	unless	an	element	is	selected,	in	which	case	only	that	element	is
affected.

These	buttons	are	especially	handy	in	conjunction	with	the	“Duplicate”	button	if	you	want	to	make	shapes	that	are
symmetrical.	For	example,	if	you	were	making	a	butterfly,	you	could	draw	the	butterfly’s	left	wing	with	the	polygon	tool,
then	duplicate	the	wing	with	the	“Duplicate”	button,	then	turn	the	copy	into	a	right	wing	with	the	“Flip	Horizontal”	button.

Shape	design

It’s	tempting	to	draw	complicated,	interesting	shapes,	but	remember	that	in	most	models,	the	patch	size	is	so	small	that
you	won’t	be	able	to	see	very	much	detail.	Simple,	bold,	iconic	shapes	are	usually	best.

Keeping	a	shape

When	the	shape	is	done,	give	it	a	name	and	press	the	Done	button	at	the	bottom	of	the	editing	window.	The	shape	and
its	name	will	now	be	included	in	the	list	of	shapes	along	with	the	“default”	shape.

Creating	and	editing	link	shapes

Managing	link	shapes	is	very	similar	to	managing	turtle	shapes.	So,	you	can	create	a	new	shape	by	pressing	the	New
button	or	you	can	edit	existing	shapes.	When	you	are	done	editing	a	shape	press	Done	if	you	want	to	keep	it.

Changing	link	shape	properties

There	are	several	different	properties	for	each	link	shape	that	you	are	allowed	to	change:

Name	-	link	shapes	can	have	the	same	name	as	turtle	shapes	but	must	be	unique	among	link	shapes.
Direction	Indicator	-	the	direction	indicator	(the	little	arrow	on	directed	links)	is	just	like	the	turtle	vector	shapes,	you
can	edit	it	using	the	same	editor	by	pressing	the	Edit	button.
Curviness	-	this	is	the	amount	of	bend	in	a	link	expressed	in	patches	(this	is	particularly	useful	if	you	have	directed
links	going	in	both	directions	so	you	can	discern	both	links)
Number	of	lines:	You	can	have	1,	2,	or	3	lines	in	each	link	shape,	you	control	this	by	selecting	line	patterns	in	the
“left	line”,	“middle	line”,	and	“right	line”	selection	boxes.
Dash	pattern	of	lines:	There	are	several	dashed	line	patterns	available	in	the	selection	boxes	so	not	all	lines	need
be	solid.

Here	are	some	link	shapes	with	various	properties:

Using	shapes	in	a	model

In	the	model’s	code	or	in	the	command	center,	you	can	use	any	of	the	shapes	that	are	in	the	model	(though	only	turtles
can	have	turtle	shapes	and	only	links	can	have	link	shapes).	For	example,	suppose	you	want	to	create	50	turtles	with	the
shape	“rabbit”.	Provided	there	is	some	turtle	shape	called	rabbit	in	this	model,	give	this	command	to	the	observer	in	the
command	center:

observer>	crt	50

And	then	give	these	commands	to	the	turtles	to	spread	them	out,	then	change	their	shape:

turtles>	fd	random	15
turtles>	set	shape	"rabbit"

Voila!	Rabbits!	Note	the	use	of	double	quotes	around	the	shape	name.	Shape	names	are	strings.

Similarly,	you	can	set	the	shape	variable	of	links.	Assuming	there	is	a	link	shape	called	“road”	in	this	model:

observer>	crt	5	[create-links-with	other	turtles]
turtles>	fd	5
links>	set	shape	"road"

The	set-default-shape	command	is	also	useful	for	assigning	shapes	to	turtles	and	links.

BehaviorSpace	Guide
NetLogo	6.4.0	User	Manual

This	guide	has	three	parts:

What	is	BehaviorSpace?:	A	general	description	of	the	tool,	including	the	ideas	and	principles	behind	it.
How	It	Works:	Walks	you	through	how	to	use	the	tool	and	highlights	its	most	commonly	used	features.
Advanced	Usage:	How	to	use	BehaviorSpace	from	the	command	line,	or	from	your	own	Java	code.

A	number	of	new	features	were	introduced	in	NetLogo	6.4:

Subexperiment	syntax:	A	syntax	for	allowing	parameter	combinations	to	be	run	separately,	rather	than	being	expanded	combinatorically.
Run	metrics	when:	A	reporter	can	be	used	to	conditionally	record	measurements.
Pre	experiment	commands:	Commands	can	be	run	before	the	experiment	begins.
Post	experiment	commands:	Commands	can	be	run	after	the	experiment	ends.
Statistics	output:	The	mean	and	standard	deviation	of	data	from	repetitions	can	be	saved	in	an	output	file.
Lists	output:	List	data	can	be	output	in	a	file	with	one	list	element	per	cell.
Importing	and	exporting:	Experiments	can	now	be	exported	to	an	XML	file	that	can	be	used	when	running	headlessly.	Experiments	can	also	be
imported	into	a	model.
Paused	experiments:	Experiments	can	now	be	paused	and	resumed.
Run	options:	update	plots	and	monitors:	Reduction	in	memory	usage	when	box	is	unchecked.

More	about	changes	to	BehaviorSpace	in	NetLogo	6.4:

Experiments	created	in	versions	prior	to	6.4	can	still	be	opened,	but	experiments	created	using	new	features	are	not	backwards	compatible.
For	information	on	format	changes	to	output	files	see	Output	File	Changes.
The	Experiment	dialog	now	uses	tooltips	rather	than	text	below	each	input	element	see	Creating	an	experiment	setup.
Experiments	using	the	new	features	can	be	found	in	the	model	Sample	Models=>Biology=>Wolf	Sheep	Predation,	with	with	additional	notes	in
the	Info	tab.
Additional	minor	changes	can	be	found	by	searching	this	page	for	(Since	6.4).

What	is	BehaviorSpace?

BehaviorSpace	is	a	software	tool	integrated	with	NetLogo	that	allows	you	to	perform	experiments	with	models.

BehaviorSpace	runs	a	model	many	times,	systematically	varying	the	model’s	settings	and	recording	the	results	of	each	model	run.	This	process	is
sometimes	called	“parameter	sweeping”.	It	lets	you	explore	the	model’s	“space”	of	possible	behaviors	and	determine	which	combinations	of	settings
cause	the	behaviors	of	interest.

If	your	computer	has	multiple	processor	cores,	you	can	specify	how	many	model	runs	will	happen	in	parallel.

Why	BehaviorSpace?

The	need	for	this	type	of	experiment	is	revealed	by	the	following	observations.	Models	often	have	many	settings,	each	of	which	can	take	a	range	of
values.	Together	they	form	what	in	mathematics	is	called	a	parameter	space	for	the	model,	whose	dimensions	are	the	number	of	settings,	and	in
which	every	point	is	a	particular	combination	of	values.	Running	a	model	with	different	settings	(and	sometimes	even	the	same	ones)	can	lead	to
drastically	different	behavior	in	the	system	being	modeled.	So,	how	are	you	to	know	which	particular	configuration	of	values,	or	types	of
configurations,	will	yield	the	kind	of	behavior	you	are	interested	in?	This	amounts	to	the	question	of	where	in	its	huge,	multi-dimension	parameter
space	does	your	model	perform	best?

For	example,	suppose	you	want	speedy	synchronization	from	the	agents	in	the	Fireflies	model.	The	model	has	four	sliders	–	number,	cycle-length,
flash-length	and	flashes-to-reset	–	that	have	approximately	2000,	100,	10	and	3	possible	values,	respectively.	That	means	there	are	2000	*	100	*	10	*
3	=	6,000,000	possible	combinations	of	slider	values!	Trying	combinations	one	at	a	time	is	hardly	an	efficient	way	to	learn	which	one	will	evoke	the
speediest	synchronization.

BehaviorSpace	offers	you	a	much	better	way	to	solve	this	problem	by	sampling	the	model’s	parameter	space	–	not	exhaustively,	but	enough	so	that
you	will	be	able	to	see	relationships	form	between	different	slider	values	and	the	behavior	of	the	system.	One	way	to	do	this	is	to	specify	a	subset	of
values	from	the	ranges	of	each	slider.	See	Combinatorial	syntaxes.	BehaviorSpace	will	run	the	model	with	each	possible	combination	of	those
values	and,	during	each	model	run,	record	the	results.	Since	NetLogo	6.4	it	has	been	possible	to	specify	non-combinatorial	sets	of	slider	values.	See
Subexperiment	syntax.	After	all	the	runs	are	over,	a	dataset	is	generated	which	you	can	open	in	a	different	tool,	such	as	a	spreadsheet,	database,	or
scientific	visualization	application,	and	explore.

By	enabling	you	to	explore	the	entire	“space”	of	behaviors	a	model	can	exhibit,	BehaviorSpace	can	be	a	powerful	assistant	to	the	modeler.

How	It	Works

To	begin	using	BehaviorSpace,	open	your	model,	then	choose	the	BehaviorSpace	item	on	NetLogo’s	Tools	menu.

Managing	experiment	setups

The	dialog	that	opens	lets	you	create,	edit,	duplicate,	delete,	import,	export,	and	run	experiment	setups.	Experiments	are	listed	by	name	and	total
number	of	model	runs.

Experiment	setups	are	considered	part	of	a	NetLogo	model	and	are	saved	as	part	of	the	model,	but	can	be	also	be	exported	as	individual	files.	See
Importing	and	exporting	(Since	6.4).

To	create	a	new	experiment	setup,	press	the	“New”	button.	To	edit	an	existing	experiment	setup,	press	the	“Edit”	button.	The	same	dialog	is	used	in
both	cases,	what	differs	is	the	information	that	is	already	filled	in.	The	dialog	is	non-blocking,	which	is	useful	if	you	want	to	copy	something	from	the
Code	Tab,	or	view	sliders	in	the	Interface	Tab	(Since	6.4).

Creating	an	experiment	setup

The	information	that	can	be	included	in	the	Experiment	dialog	is	detailed	below.	Note	that	it	is	not	necessary	to	specify	everything;	some	parts	can	be
left	blank	or	with	their	default	values.	If	a	property’s	name	is	underlined,	you	can	hover	over	it	to	read	more	info	about	the	property	and	how	it	is	used,
so	you	don’t	have	to	revisit	this	page	as	often	(Since	6.4).

Experiment	name:	Experiments	in	the	same	model	must	have	different	names.	If	you	open	a	model	that	contains	experiments	with	duplicate	names,
the	conflicting	names	will	be	altered	to	ensure	that	all	experiment	names	remain	unique	(Since	6.4).

Vary	variables	as	follows:	This	is	where	you	specify	which	settings	you	want	varied,	and	what	values	you	want	them	to	take.	Variables	can	include
sliders,	switches,	choosers,	and	any	global	variables	in	your	model.	You	may	notice	that	the	view	and	plots	do	not	correspond	to	the	values	in	the
widgets	once	the	experiment	is	completed.	This	is	because	the	globals	that	are	controlled	by	widgets	are	reset	to	their	initial	state	at	the	end	of	the
experiment.	To	synchronize	your	view	and	plots	with	the	widgets,	run	your	procedure	that	initializes	the	view.

Variables	can	also	include	max-pxcor,	min-pxcor,	max-pycor	and	min-pycor,	world-width,	world-height	and	random-seed.	These	are	not	variables,
strictly	speaking,	but	BehaviorSpace	lets	you	vary	them	as	if	they	were.	Varying	the	world	dimensions	lets	you	explore	the	effect	of	world	size	upon
your	model.	Setting	world-width	and	world-height	is	valid	under	two	circumstances.	1)	If	the	origin	is	centered	in	width	or	height	BehaviorSpace	will
keep	it	centered	in	that	dimension.	This	requires	that	the	corresponding	value(s)	world-width	and/or	world-height	must	be	odd.	2)	If	one	of	the
bounds	is	zero	it	will	remain	zero	and	the	other	bound	will	move.	For	example,	if	you	start	with	a	world	with	min-pxcor	=	0,	max-pxcor	=	10	and	you
vary	world-width	like	this:

["world-width"	[11	1	14]]

min-pxcor	will	remain	zero	and	max-pxcor	will	be	set	to	11,	12,	and	13	for	successive	runs.	If	neither	of	these	conditions	is	true	you	cannot	you	cannot
vary	world-height	or	world-width	directly	but	must	vary	max-pxcor,	max-pycor,	min-pxcor	and	min-pycor	instead.

Varying	random-seed	lets	you	repeat	runs	by	using	a	known	seed	for	the	NetLogo	random	number	generator.	Note	that	you’re	also	free	to	use	the
random-seed	command	in	your	experiment’s	setup	commands.	For	more	information	on	random	seeds,	see	the	Random	Numbers	section	of	the
Programming	Guide.

Combinatorial	syntaxes

You	may	specify	values	either	by	listing	the	values	you	want	used,	or	by	specifying	that	you	want	to	try	every	value	within	a	given	range.	For	example,
to	give	a	slider	named	number	every	value	from	100	to	1000	in	increments	of	50,	you	would	enter:

["number"	[100	50	1000]]

Or,	to	give	it	only	the	values	of	100,	200,	400,	and	800,	you	would	enter:

["number"	100	200	400	800]

Be	careful	with	the	brackets	here.	Note	that	there	are	fewer	square	brackets	in	the	second	example.	Including	or	not	including	this	extra	set	of
brackets	is	how	you	tell	BehaviorSpace	whether	you	are	listing	individual	values,	or	specifying	a	range.

Also	note	that	the	double	quotes	around	the	variable	names	are	required.

All	combinations	of	the	specified	values	will	be	run.	For	example,	if	you	have	two	values	for	a	variable	a	and	three	values	of	a	variable	b	six	runs	will
result.

[["a"	1	2]

["b"	[2	4	10]]

This	would	create	six	runs,	organized	as	follows:

a b

1 2

1 6

1 10

2 2

2 6

2 10

Run	combinations	in	sequential	order	checkbox	This	box	is	checked	by	default,	and	causes	variables	specified	later	to	vary	more	quickly	than
those	specified	earlier.	When	the	box	is	unchecked,	non-sequential	order	results,	with	variables	specified	earlier	varying	more	quickly	than	those
specified	later.	The	non-sequential	order	for	the	variable	specification	above	is:

a b

1 2

2 2

1 6

2 6

1 10

2 10

Subexperiment	syntax

(Since	6.4)

For	more	advanced	users,	there	is	a	third	available	syntax	for	varying	parameters,	the	subexperiment	syntax.	For	example,	if	you	wanted	to	try	two
values	for	a	variable	a	with	one	value	of	a	variable	b	but	a	different	two	values	of	a	for	a	second	value	of	b,	you	could	write	it	as	follows:

[["a"	1	2]["b"	1]]

[["a"	3	4]["b"	2]]

Note	the	use	of	doubly	nested	square	brackets	to	separate	each	variable	within	a	subexperiment.	This	would	create	four	runs,	organized	as	follows:

a b

1 1

2 1

3 2

4 2

The	subexperiment	syntax	also	allows	you	to	define	constants	using	the	standard	syntax,	which	will	be	applied	to	each	subexperiment	where	they	are
not	overwritten.	To	add	to	the	example	above,	if	you	wanted	to	try	those	combinations	of	a	and	b	all	with	one	specific	value	of	a	third	variable	c,	you
could	write	it	as	follows:

["c"	5]

[["a"	1	2]["b"	1]]

[["a"	3	4]["b"	2]]

This	would	set	c	to	5	for	all	4	subexperiments,	resulting	in	the	following	runs:

a b c

1 1 5

2 1 5

3 2 5

4 2 5

You	can	also	override	a	constant	in	a	subexperiment,	as	in	the	following	example:

["a"	1]

["b"	2]

[["a"	2]]

This	would	produce	one	run	with	the	following	combination:

a b

2 2

Note	that	all	constants	must	be	defined	before	any	subexperiments.

You	can	vary	as	many	settings	as	you	want,	including	just	one,	or	none	at	all.	Any	settings	that	you	do	not	vary	will	retain	their	current	values.	Not
varying	any	settings	is	useful	if	you	just	want	to	do	many	runs	with	the	current	settings.

The	order	in	which	you	list	the	variables	determines	the	run	order.	All	values	for	a	later	variable	will	be	tried	before	moving	to	the	next	value	for	an
earlier	variable.	So	for	example	if	you	vary	both	x	and	y	from	1	to	3,	and	x	is	listed	first,	then	the	order	of	model	runs	will	be:	x=1	y=1,	x=1	y=2,	x=1
y=3,	x=2	y=1,	and	so	on.

Repetitions:	Sometimes	the	behavior	of	a	model	can	vary	a	lot	from	run	to	run	even	if	the	settings	don’t	change,	if	the	model	uses	random	numbers.
If	you	want	to	run	the	model	more	than	once	at	each	combination	of	settings,	enter	a	higher	number.	With	sequential	ordering	repetitions	occur	in
sequential	runs:

a b

1 2

1 2

2 2

2 2

1 6

1 6

2 6

2 6

1 10

1 10

2 10

2 10

a b

With	non-sequential	ordering	repetitions	occur	as	a	second	group	of	runs:

a b

1 2

2 2

1 6

2 6

1 10

2 10

1 2

2 2

1 6

2 6

1 10

2 10

Measure	runs	using	these	reporters:	This	is	where	you	specify	what	data	you	want	to	collect	from	each	run.	For	example,	if	you	wanted	to	record
how	the	population	of	turtles	rose	and	fell	during	each	run,	you	would	enter:

count	turtles

You	can	enter	one	reporter,	or	several,	or	none	at	all.	If	you	enter	several,	each	reporter	must	be	on	a	line	by	itself,	for	example:

count	frogs	count	mice	count	birds

If	you	don’t	enter	any	reporters,	the	runs	will	still	take	place.	This	is	useful	if	you	want	to	record	the	results	yourself	your	own	way,	such	as	with	the
export-world	command.	You	can	use	reporters	you	have	defined	in	the	Code	tab.	Reporters	appear	as	column	headers.	If	you	prefer	compact
headers	you	could	replace	count	patches	with	[pcolor	=	red] 	with	a	reporter	red-patches	defined	in	the	Code	tab.

Run	metrics	every	step:	Normally	NetLogo	will	measure	model	runs	at	every	step,	using	the	reporters	you	entered	in	the	previous	box.	If	you’re
doing	very	long	model	runs,	you	might	not	want	all	that	data.	Uncheck	this	box	if	you	want	to	either	only	measure	model	runs	at	the	end	of	the	run	or	if
you	want	to	specify	certain	conditions	when	measurements	should	be	taken.

Run	metrics	when

(Since	6.4)

This	reporter	will	be	used	to	determine	when	measurements	should	be	recorded	if	they	are	not	being	recorded	at	every	step.	Measurements	will	be
always	be	taken	at	the	end	of	each	model	run,	even	if	this	text	box	is	empty	as	was	previously	the	case	when	the	Measure	runs	at	every	step	(now
Run	metrics	every	step)	was	unchecked.	For	example	ticks	mod	10	=	0	would	record	every	tenth	tick,	as	well	as	the	last	tick.	Multiple	reporters	can	be
combined	using	and	and	or.

Pre	experiment	commands

These	commands	will	be	run	once,	before	the	experiment	begins.

Setup	commands:	These	commands	will	be	used	to	begin	each	model	run.	Typically,	you	will	enter	the	name	of	a	procedure	that	sets	up	the	model,
typically	setup.	But	it	is	also	possible	to	include	other	commands	as	well.	If	you	want	the	same	results	each	time	you	run	an	experiment,	you	could	use
something	like	random-seed	473	setup	or	to	have	different	results	for	repetitions	random-seed	(474	+	behaviorspace-run-number)	setup

Go	commands:	These	commands	will	be	run	over	and	over	again	to	advance	to	the	model	to	the	next	“step”.	Typically,	this	will	be	the	name	of	a
procedure,	such	as	go,	but	you	may	include	any	commands	you	like.

Stop	condition:	This	lets	you	do	model	runs	of	varying	length,	ending	each	run	when	a	certain	condition	becomes	true.	For	example,	suppose	you
wanted	each	run	to	last	until	there	were	no	more	turtles.	Then	you	would	enter:

not	any?	turtles

If	you	want	the	length	of	runs	to	all	be	of	a	fixed	length,	just	leave	this	blank.

The	run	may	also	stop	because	the	go	commands	use	the	stop	command,	in	the	same	way	that	stop	can	be	used	to	stop	a	forever	button.	The	stop
command	may	be	used	directly	in	the	go	commands,	or	in	a	procedure	called	directly	by	the	go	commands.	(The	intent	is	that	the	same	go	procedure
should	work	both	in	a	button	and	in	a	BehaviorSpace	experiment.)	Note	that	the	step	in	which	stop	is	used	is	considered	to	have	been	aborted,	so	no
results	will	be	recorded	for	that	step.	Therefore,	the	stopping	test	should	be	at	the	beginning	of	the	go	commands	or	procedure,	not	at	the	end.

Post	run	commands:	These	are	any	extra	commands	that	you	want	run	when	each	run	ends.	Usually	this	is	left	blank,	but	you	might	use	it	to	call	the

export-world	command	or	record	the	results	of	the	run	in	some	other	way.

Post	experiment	commands

These	are	any	commands	that	you	want	to	run	at	the	end	of	the	experiment,	after	all	runs	have	completed.

Time	limit:	This	lets	you	set	a	fixed	maximum	length	for	each	run.	If	you	don’t	want	to	set	any	maximum,	but	want	the	length	of	the	runs	to	be
controlled	by	the	stop	condition	instead,	enter	0.

Note	on	pre	and	post	experiment	commands:	These	commands	execute	outside	of	the	actual	runs,	so	they	cannot	affect	the	global	variables	or
agents	in	the	model	(use	the	Setup	commands	and	Post	run	commands	for	that).	If	you	use	primitives	like	file-open	or	the	CSV	extension	in	the	pre	or
post	experiment	commands,	their	internal	state	will	not	carry	over	into	the	runs	and	errors	will	likely	occur	if	used	there.

Importing	and	exporting

(Since	6.4)

Although	experiments	are	tied	to	a	model	and	are	usually	saved	along	with	a	model,	they	can	also	be	imported	and	exported	individually	to	xml	files.
This	allows	you	to	easily	transfer	experiments	between	models,	and	also	prepares	experiments	to	be	run	headlessly.	After	an	experiment	is	exported
to	an	xml	file,	it	can	be	edited	by	hand	or	by	another	script,	not	just	within	NetLogo.

The	Import	button	allows	you	to	import	experiments	from	an	xml	file.	The	selected	files	may	contain	any	number	of	experiments,	but	any	experiments
that	are	formatted	incorrectly	will	not	be	loaded.	If	you	load	an	experiment	that	has	the	same	name	as	an	existing	experiment,	the	name	of	the	loaded
experiment	will	be	slightly	altered	to	ensure	that	experiment	names	remain	unique.

The	Export	button	allows	you	to	export	experiments	to	an	xml	file.	Any	number	of	experiments	may	be	selected	for	export	at	once,	but	they	will	all	be
combined	into	a	single	output	file.

Special	primitives	for	BehaviorSpace	experiments

Currently	there	are	only	two,	behaviorspace-run-number	and	behaviorspace-experiment-name.	The	run	number	reported	by	the	former	primitive
matches	the	run	number	used	in	the	results	files	generated	by	BehaviorSpace.	The	experiment	name	reported	by	the	latter	matches	the	name	with
which	the	experiment	was	set	up.

Running	an	experiment

When	you’re	done	setting	up	your	experiment,	press	the	“OK”	button,	followed	by	the	“Run”	button.	A	dialog	titled	“Run	Options”	will	appear.

Run	options:	formats

The	“Run	Options”	dialog	lets	you	choose	to	create	data	output	files	in	two	primary	formats,	Table	output	and	Spreadsheet	output.	If	one	or	both	of
these	formats	is	selected,	you	can	also	select	the	supplementary	Lists	output	and	Statistics	output.	Each	file	path	can	be	entered	in	its
corresponding	text	box,	or	using	the	*Browse…	button	to	select	a	file	path	using	the	system	file	dialog.	If	you	don’t	wish	to	use	a	particular	format,	you
can	clear	the	file	text	or	click	the	Disable	button	and	it’ll	be	cleared	for	you.	The	frequency	of	data	collection	is	determined	by	the	settings	of	the	Run
metrics	every	step	and	Run	metrics	when	options.	For	Table	output	and	Spreadsheet	output	formats,	the	initial	state	of	the	system	is	recorded,
after	the	setup	commands	run	but	before	the	go	commands	run	for	the	first	time.

After	selecting	your	output	formats,	BehaviorSpace	will	prompt	you	for	the	name	of	a	file	to	save	the	results	to.	The	default	name	ends	in	“.csv”.	You
can	change	it	to	any	name	you	want,	but	don’t	leave	off	the	“.csv”	part;	that	indicates	the	file	is	a	Comma	Separated	Values	(CSV)	file.	This	is	a	plain-
text	data	format	that	is	readable	by	any	text	editor	as	well	as	by	most	popular	spreadsheet	and	database	programs.

All	four	output	formats	will	include	a	header	section	that	has	rows	for	1)	the	NetLogo	app	version	used,	2)	the	name	of	the	NetLogo	model	file	used,	3)
the	name	of	the	BehaviorSpace	experiment	used,	4)	the	date	and	time	at	the	start,	and	5)	the	dimensions	of	the	world	used	at	the	start.

Table	output

This	format	lists	each	measurement	step	from	each	run	in	its	own	row,	with	each	metric	in	a	separate	column.	The	measurement	rows	will	appear	in
the	order	they	happen	in	real	time.	With	the	parallel	runs	option	the	measurements	may	appear	in	a	mixed	order	as	multiple	runs	can	happen
simultaneously.	To	help	identify	which	run	a	row	belongs	to,	there	is	a	column	titled	[run	number]	along	with	a	column	titled	[step]	that	indicates	the
measurement	number	for	that	run.	Each	row	also	includes	the	values	used	for	the	variables	during	initial	setup	of	the	run;	these	values	are	the	same
for	each	of	that	run’s	measurement	rows.	Table	output	data	is	written	to	the	file	as	each	run	completes.

The	Table	output	format	is	good	to	use	when	you	want	to	further	process	the	data	using	another	tool,	such	as	importing	into	a	database,	a	statistics
package,	or	a	spreadsheet	application	for	analysis.

In	the	Table	output	sample	image	below,	the	header	section	is	in	red,	the	run	number	and	step	columns	are	in	blue,	the	initial	values	of	the	variables
for	the	run	are	in	green,	and	the	measurement	metric	data	is	in	purple.

Spreadsheet	output

This	format	lists	the	step	numbers	as	well	as	each	metric	for	each	run	in	a	separate	column,	with	each	row	corresponding	to	a	measurement	step	that
applies	to	all	runs.	If	one	run	finishes	before	another	due	to	a	stop	condition,	then	its	step	numbers	after	that	point	will	be	blank.	At	the	top	of	the	file
there	is	a	[run	number]	row	that	will	have	the	run	number	repeated	for	each	metric	at	the	top	of	the	file.	After	that	are	rows	for	the	initial	values	given
to	each	variable	for	the	run.	The	spreadsheet	output	also	calculates	the	min,	mean,	max,	and	final	values	for	the	step	numbers	as	well	as	each	metric
and	lists	those	after	the	initial	values	before	the	individual	run	measurements.	Then	it	lists	the	actual	number	of	steps	a	run	went	through	in	a	[total
steps]	row.

The	Spreadsheet	output	data	makes	it	easier	to	quickly	compare	runs	against	each	other,	as	they	will	be	aligned	vertically	when	imported	into	a
spreadsheet	application.	It	can	also	make	generating	comparative	graphs	of	results	with	initial	variable	changes	across	runs	easy	for	the	same
reason.

It	is	important	to	note	that	Spreadsheet	output	data	is	not	written	to	the	results	file	until	the	experiment	finishes.	Since	the	data	is	stored	in	memory
until	the	experiment	is	done,	very	large	experiments	could	run	out	of	memory.	You	should	disable	Spreadsheet	output	unless	you	really	want	it.	Also,
if	anything	interrupts	the	experiment	no	spreadsheet	results	will	be	written.	Possible	sources	of	interruptions	would	be	runtime	errors	in	the	model,
running	out	of	memory,	system	crashes,	or	power	outages.	For	long	experiments	you	may	want	to	also	enable	Table	output	format	as	a	precaution
so	that	if	something	happens	and	you	get	no	Spreadsheet	output	you’ll	at	least	get	partial	data	output.

In	the	Spreadsheet	output	sample	image	below,	the	header	section	is	in	red,	the	run	number	row	is	in	blue,	the	initial	values	of	the	variables	for	the
run	are	in	green,	the	extra	calculated	metrics	are	in	orange,	and	the	measurement	metric	data	is	in	purple.

Statistics	output

(Since	6.4)

If	the	Statistics	output	is	enabled,	data	in	either	the	specified	Table	output	or	Spreadsheet	output	is	used	to	calculate	the	mean	and	standard
deviation	of	each	numeric	metric	across	repetitions	for	each	step.	These	calculations	are	done	at	the	end	of	the	experiment.	The	statistics	are	then
saved	in	the	specified	file.	It	is	important	to	note	that	metrics	that	may	produce	non-numeric	measurements	like	strings	are	not	included	in	the
statistics.	If	the	metrics	produce	lists,	the	statistics	are	calculated	across	elements	with	the	same	index	for	each	list.	Statistics	are	not	calculated	for
metrics	that	produce	lists	that	contain	non-numeric	elements.	Also,	the	type	of	the	measurement	must	remain	constant.	For	example,	statistics	are	not
calculated	if	a	metric	produces	measurements	that	can	be	both	lists	and	numbers.	Furthermore,	the	standard	deviation	may	be	“N/A”,	which	means
that	there	were	two	or	fewer	collected	measurements	for	that	step	and	parameter	combination,	producing	a	result	that	is	not	well-defined.	The
experiment	must	use	a	repetitions	setting	of	3	or	more	to	produce	standard	deviation	values.

In	the	Statistics	output	sample	image	below,	the	header	section	is	in	red,	the	parameter	combinations	are	in	green,	the	steps	are	in	blue,	and	the
statistics	are	in	purple.

Lists	output

(Since	6.4)

This	format	is	a	supplement	to	the	other	two	primary	formats,	as	opposed	to	a	complete	data	collection	format.	If	you	have	any	reporters	that	return	a
list,	you	can	use	the	Lists	output	format	to	get	properly	formatted	output	for	those	reporters.	In	both	Spreadsheet	output	and	Table	output	formats,
lists	returned	by	reporters	will	be	condensed	into	a	single	cell,	rather	than	their	elements	being	spread	out	with	one	value	per	cell.	If	you	need	the	list
values	in	individual	cells,	select	the	List	output	format	in	addition	to	one	or	both	of	the	other	formats.

Note	that	the	Lists	output	format,	like	the	Spreadsheet	output	format,	will	not	contain	any	data	until	the	experiment	is	complete.	Also	note	that	the
Lists	output	must	be	used	in	tandem	with	another	format,	it	cannot	be	used	on	its	own.

In	the	Lists	output	sample	image	below,	the	header	section	is	in	red,	the	reporter	name	is	in	orange,	the	run	number	and	step	columns	are	in	blue,
the	initial	values	of	the	variables	for	the	run	are	in	green,	and	the	expanded	list	data	is	in	purple.

Output	File	Changes

(Since	6.4)

Output	files	have	version	numbers.
Spreadsheet	output	always	includes	step	information.
Spreadsheet	output	column	header	[initial	&	final	values]	was	changed	to	the	more	accurate	[final	value].
Statistics	output	was	added.
Lists	output	was	added.

Run	options:	update	plots	and	monitors

The	“Run	Options”	dialog	lets	you	choose	whether	to	update	plots	and	monitors	or	not.	Performance	is	better	when	the	box	is	unchecked.	Note	that
(Since	6.4)	if	you	begin	the	experiment	with	the	box	unchecked,	you	will	not	be	able	to	toggle	between	enabling	and	disabling	the	update	plots
checkbox	in	the	“Running	Experiments”	dialog.	This	gives	you	an	even	greater	performance	improvement	than	was	obtained	before	NetLogo	6.4,
when	such	toggling	was	possible.	Check	the	box	if	you	you	need	to	export	plot	data	using	primitives	such	as	export-interface,	export-plot,	export-
all-plots,	and	export-world.

Run	options:	parallel	runs

The	“Run	Options”	dialog	also	lets	you	select	whether	you	want	multiple	model	runs	to	happen	in	parallel,	and	if	so,	how	many	are	allowed	to	be
simultaneously	active.	The	default	and	recommended	maximum	number	of	parallel	runs	are	shown	below	the	text	box	(Since	6.4).	Your	choice	of
number	of	parallel	runs	is	remembered	from	experiment	to	experiment	(Since	6.4).

There	are	a	few	cautions	associated	with	parallel	runs.

First,	if	multiple	runs	are	active,	only	one	of	them	will	be	in	the	“foreground”	and	cause	the	view	and	plots	to	update.	The	other	runs	will	happen
invisibly	in	the	background.

Second,	invisible	background	runs	can’t	use	primitives	that	only	work	in	the	GUI.	For	example,	a	background	run	can’t	make	a	movie.

Third,	since	parallel	runs	progress	independently	of	each	other,	table	format	output	may	contain	interleaved,	out-of-order	results.	When	you	analyze

your	table	data,	you	may	wish	to	sort	it	by	run	number	first.	(Spreadsheet	format	output	is	not	affected	by	this	issue,	since	it	is	not	written	until	the
experiment	completes	or	is	aborted.)

Fourth,	using	all	available	processor	cores	may	make	your	computer	slow	to	use	for	other	tasks	while	the	experiment	is	running	or	slow	to	complete
runs	as	contention	will	build	for	memory	between	the	runs	themselves.	If	your	model	uses	a	large	amount	of	memory,	you	may	find	that	reducing	the
number	of	runs	will	enable	the	runs	to	complete	in	less	time	overall	since	work	will	be	done	by	the	system	keeping	the	memory	for	each	run	available.
A	good	rule	of	thumb	might	be	to	start	with	the	default	value	shown	in	the	“Run	Options”,	and	bump	up	or	down	from	there	to	see	where	your	“sweet
spot”	is	for	least	time	to	complete	all	runs.

Fifth,	doing	runs	in	parallel	will	multiply	the	experiment’s	memory	requirements	accordingly.	You	may	need	to	increase	NetLogo’s	memory	ceiling	(see
this	FAQ	entry).	By	default	NetLogo	will	not	exceed	50%	of	your	system’s	memory.

Sixth,	each	parallel	run	will	get	its	own	world	for	the	model	to	run	in.	This	world	is	not	cleared	automatically	by	BehaviorSpace	if	a	parallel	run	gets	re-
used	for	another	repetition,	which	happens	quite	frequently.	This	means,	for	example,	if	you	do	ask	patches	[set	pcolor	red]	in	one	run	and	do	not
use	clear-all	or	clear-patches	in	the	setup	commands	of	the	next	run,	then	the	patches	will	all	still	be	red.	In	general	using	clear-all	before	each
run	would	be	a	best	practice,	but	there	are	times	when	you	might	not	want	to,	such	as	loading	data	from	a	file	that	doesn’t	change	run-to-run.	Just	be
careful	with	whatever	data	is	not	cleared	out.

Seventh,	there	is	a	very,	very	small	chance	that	at	startup	multiple	parallel	runs	could	wind	up	with	the	same	random	number	generator	state	if	they
startup	at	the	eact	same	moment	in	time.	This	means	the	runs	would	produce	identical	output	for	all	random	operations	and	likely	the	same	results.
This	would	have	a	chance	to	happen	when	running	on	very	fast	processors	and	with	lots	of	parallel	runs	at	once.	If	you	need	to	make	sure	this	doesn’t
impact	your	results,	you	can	add	random-seed	new-seed	to	your	setup	commands	to	re-generate	a	new	unique	random	seed	for	each	run.	In	fact,
storing	the	new-seed	as	a	global	variable	so	you	can	output	it	with	the	rest	of	your	results	would	let	you	re-run	a	run	later	on	by	manually	using	that
value	to	set	the	random-seed.

Observing	runs

After	you	complete	the	“Run	Options”	dialog,	another	dialog	will	appear,	titled	“Running	Experiment”.	In	this	dialog,	you’ll	see	a	progress	report	of	how
many	runs	have	been	completed	so	far	and	how	much	time	has	passed.	If	you	entered	any	reporters	for	measuring	the	runs,	and	if	you	left	the	“Run
metrics	every	step”	box	checked,	then	you’ll	see	a	plot	of	how	they	vary	over	the	course	of	each	run.

You	can	also	watch	the	runs	in	the	main	NetLogo	window.	(If	the	“Running	Experiment”	dialog	is	in	the	way,	just	move	it	to	a	different	place	on	the
screen.)	If	you	don’t	need	to	see	the	plots	update,	then	use	the	checkboxes	in	the	“Running	Experiment”	dialog	to	turn	the	updating	off.	This	will	make
the	experiment	go	faster.	However,	if	you	already	disabled	updating	plots	and	monitors	in	the	“Run	Options”	dialog,	this	checkbox	will	be	disabled
(Since	6.4).

If	you	want	to	stop	your	experiment	before	it’s	finished,	you	have	two	options.	To	stop	the	experiment	after	the	current	runs	have	completed	and	save
your	progress	for	later,	press	the	“Pause”	button	(Since	6.4).	To	stop	the	experiment	immediately	without	waiting	for	the	current	runs	to	complete,
press	the	“Abort”	button.	Any	output	generated	so	far	will	still	be	saved,	but	pressing	“Abort”	can	lead	to	fragmented	data,	so	aborted	experiments
cannot	be	resumed.

When	all	the	runs	have	finished,	the	experiment	is	complete.	Spreadsheet,	Lists	and	Stats	output	are	created	at	this	point.

Paused	experiments

(Since	6.4)

Paused	experiments	will	appear	in	the	BehaviorSpace	window	marked	with	“In	Progress”.	To	resume	an	experiment	where	you	paused	it,	select	it	and
press	the	“Run”	button.	To	reset	a	paused	experiment	to	its	initial	state,	select	it	and	press	the	“Abort”	button.

If	you	are	using	Spreadsheet	output	a	file	containing	the	data	up	until	the	experiment	is	paused	will	be	written.	This	data	will	be	used	as	part	of	the
creation	of	a	complete	Spreadsheet	file.	Note	that	if	your	experiment	is	writing	to	its	own	external	file	you	may	need	to	make	some	changes	in	order
for	pausing	to	work	correctly.	For	example	you	should	use	file-flush	or	file-close	at	the	end	of	each	run	to	ensure	all	the	data	is	written	to	the	file,
and	should	do	file-open	before	doing	any	writing	during	a	run.	When	opening	a	file	in	writing	mode,	all	new	data	will	be	appended	to	the	end	of	the
original	file,	which	is	probably	the	behavior	you	want.

Note	that	moving	or	deleting	output	files	before	resuming	a	paused	experiment	will	cause	an	error.	Outputting	new	experiment	data	to	a	file
associated	with	an	existing	paused	experiment	may	also	ause	an	error	when	that	experiment	is	resumed.

Advanced	Usage

Running	from	the	command	line

It	is	possible	to	run	BehaviorSpace	experiments	“headless”,	that	is,	from	the	command	line,	without	any	graphical	user	interface	(GUI).	This	is	useful
for	automating	runs	on	a	single	machine	or	a	cluster	of	machines.

No	Java	programming	is	required.	Experiment	setups	can	be	created	in	the	GUI	and	then	run	later	from	the	command	line,	or,	if	you	prefer,	you	can
create	or	edit	experiment	setups	directly	using	XML.

How	to	use	it

Run	NetLogo	using	the	NetLogo_Console	app	with	the	--headless	command	line	argument.	This	is	found	in	the	root	directory	of	your	NetLogo
installation.	The	NetLogo_Console	script	supports	the	following	arguments:

--headless:	Enable	headless	mode	to	run	a	BehaviorSpace	experiment	(required,	will	open	the	graphical	interface	otherwise).
--model	<path>:	pathname	of	model	to	open	(required)
--setup-file	<path>:	read	experiment	setups	from	this	file	instead	of	the	model	file
--experiment	<name>:	name	of	experiment	to	run
--table	<path>:	pathname	to	send	table	output	to	(or	-	for	standard	output)
--spreadsheet	<path>:	pathname	to	send	table	output	to	(or	-	for	standard	output)
--lists	<path>:	pathname	to	send	lists	output	to	(or	-	for	standard	output),	cannot	be	used	without	--table	or	--spreadsheet
–stats	:	pathname	to	send	statistics	output	to	(or	-	for	standard	output)	cannot	be	used	without	--table	or	--spreadsheet
--threads	<number>:	use	this	many	threads	to	do	model	runs	in	parallel,	or	1	to	disable	parallel	runs.	defaults	to	floor(0.75	*	<number	of
processors>).
--update-plots:	enable	plot	updates.	Include	this	if	you	want	to	export	plot	data,	or	exclude	it	for	better	performance.
--min-pxcor	<number>:	override	world	size	setting	in	model	file
--max-pxcor	<number>:	override	world	size	setting	in	model	file

--min-pycor	<number>:	override	world	size	setting	in	model	file
--max-pycor	<number>:	override	world	size	setting	in	model	file

--model	is	required.	If	you	don’t	specify	--experiment,	you	must	specify	--setup-file.	By	default	no	results	are	generated,	so	you’ll	usually	want	to
specify	either	--table	or	--spreadsheet,	or	both.	If	you	specify	any	of	the	world	dimensions,	you	must	specify	all	four.

Note	that	prior	to	NetLogo	6.3.0	the	directions	were	to	use	netlogo-headless.sh	(or	netlogo-headless.bat	on	Windows)	along	with	a	separate
installation	of	Java	of	the	system	to	run	BehaviorSpace	experiments.	The	netlogo-headless.sh	script	is	still	included	with	NetLogo	and	can	still	be
used	as	before,	which	might	be	preferrable	in	server	environments	where	the	installed	Java	version	is	strictly	controlled.	But	the	recommended
method	for	on	a	personal	computer	is	to	use	the	NetLogo_Console	--headless	app.	Because	NetLogo_Console	uses	the	Java	that	comes	bundled	with
NetLogo	it	requires	no	extra	software	installation	or	configuration.

Examples

It	is	easiest	if	you	create	your	experiment	setup	ahead	of	time	in	the	GUI,	so	it	is	saved	as	part	of	the	model.	To	run	an	experiment	setup	saved	in	a
model,	here	is	an	example	command	line,	run	from	the	NetLogo	6.4.0	installation	folder	so	the	paths	to	the	NetLogo_Console	app	and	Wolf	Sheep
Simple	5.nlogo	model	are	correct.

The	below	commands	should	work	as-is	in	a	terminal	on	macOS	and	Linux.	On	Windows	in	the	Command	Prompt	you	can	use	^	instead	of	\	to	break
the	command	across	multiple	lines,	or	just	put	the	command	on	a	single	line.

./NetLogo_Console	--headless	\
		--model	"models/IABM	Textbook/chapter	4/Wolf	Sheep	Simple	5.nlogo"	\
		--experiment	"Wolf	Sheep	Simple	model	analysis"	\
		--table	-

After	the	named	experiment	has	run,	the	results	are	sent	to	standard	output	in	table	format,	as	CSV.	-	is	how	you	specify	standard	output	instead	of
output	to	a	file.

When	running	NetLogo	headless,	it	forces	the	system	property	java.awt.headless	to	be	true.	This	tells	Java	to	run	in	headless	mode,	allowing
NetLogo	to	run	on	machines	when	a	graphical	display	is	not	available.

The	required	--model	argument	is	used	to	specify	the	model	file	you	want	to	open.

The	--experiment	argument	is	used	to	specify	the	name	of	the	experiment	you	want	to	run.	(At	the	time	you	create	an	experiment	setup	in	the	GUI,
you	assign	it	a	name.)

Here’s	another	example	that	shows	some	additional,	optional	arguments:

./NetLogo_Console	--headless	\
		--model	"models/IABM	Textbook/chapter	4/Wolf	Sheep	Simple	5.nlogo"	\
		--experiment	"Wolf	Sheep	Simple	model	analysis"	\
		--max-pxcor	5	\
		--min-pxcor	-5	\
		--max-pycor	5	\
		--min-pycor	-5

Note	the	use	of	the	optional	--max-pxcor,	--max-pycor,	etc.	arguments	to	specify	a	different	world	size	than	that	saved	in	the	model.	(It’s	also	possible
for	the	experiment	setup	to	specify	values	for	the	world	dimensions;	if	they	are	specified	by	the	experiment	setup,	then	there	is	no	need	to	specify
them	on	the	command	line.)

Since	neither	--table	nor	--spreadsheet	is	specified,	no	results	will	be	generated.	This	is	useful	if	the	experiment	setup	generates	all	the	output	you
need	by	some	other	means,	such	as	exporting	world	files	or	writing	to	a	text	file.

Yet	another	example:

./NetLogo_Console	--headless	\
		--model	"models/IABM	Textbook/chapter	4/Wolf	Sheep	Simple	5.nlogo"	\
		--experiment	"Wolf	Sheep	Simple	model	analysis"	\
		--table	wsp5-table-output.csv	\
		--spreadsheet	wsp5-spreadsheet-output.csv	\
		--lists	wsp5-lists-output.csv	\
		--stats	wsp5-stats-output.csv

The	optional	--table	<filename>	argument	specifies	that	output	should	be	generated	in	a	table	format	and	written	to	the	given	file	as	CSV	data.	If	-	is
specified	as	the	filename,	than	the	output	is	sent	to	the	standard	system	output	stream.	Table	data	is	written	as	it	is	generated,	with	each	complete
run.

The	optional	--spreadsheet	<filename>	argument	specifies	that	spreadsheet	output	should	be	generated	and	written	to	the	given	file	as	CSV	data.	If	-
is	specified	as	the	filename,	than	the	output	is	sent	to	the	standard	system	output	stream.	Spreadsheet	data	is	not	written	out	until	all	runs	in	the
experiment	are	finished.

The	optional	--lists	<filename>	argument	specifies	that	lists	output	should	be	generated	and	written	to	the	given	file	as	CSV	data.	If	-	is	specified	as
the	filename,	than	the	output	is	sent	to	the	standard	system	output	stream.	Lists	data	is	not	written	out	until	all	runs	in	the	experiment	are	finished.

The	optional	--stats	<filename>	argument	specifies	that	stats	output	should	be	generated	and	written	to	the	given	file	as	CSV	data.	If	-	is	specified
as	the	filename,	than	the	output	is	sent	to	the	standard	system	output	stream.	Stats	data	is	not	written	out	until	all	runs	in	the	experiment	are	finished.

Note	that	it	is	legal	to	specify	both	--table	and	--spreadsheet,	and	if	you	do,	both	kinds	of	output	file	will	be	generated.	If	you	use	--lists	or	--stats
at	least	one	of	the	--table	or	--spreadsheet	options	must	be	used.

Here	is	an	example	that	shows	how	to	run	an	experiment	setup	which	is	stored	in	a	separate	XML	file,	instead	of	in	the	model	file	(see	below	for	more
information	on	the	XML	file	format).	This	assumes	you’ve	created	a	my-wsp-setups.xml	file	with	a	`My	WSP	Exploration"	experiment	and	placed	it	in
your	home	directory.	The	most	straight-forward	way	to	create	a	setup	file	is	to	create	an	experiment	using	BehaviorSpace	in	the	NetLogo	GUI	and	use
the	**Export	**	option.

./NetLogo_Console	--headless	\
		--model	"models/IABM	Textbook/chapter	4/Wolf	Sheep	Simple	5.nlogo"	\
		--setup-file	~/my-wsp-setups.xml	\
		--experiment	"My	WSP	Exploration"

If	the	XML	file	contains	more	than	one	experiment	setup,	it	is	necessary	to	use	the	--experiment	argument	to	specify	the	name	of	the	setup	to	use.

In	order	to	run	a	NetLogo	3D	experiment,	run	headless	with	the	--3D	argument,	for	example:

./NetLogo_Console	--headless	\
		--3D	\
		--model	"models/3D/Sample	Models/GasLab/GasLab	Free	Gas	3D.nlogo3d"	\
		--experiment	"100	runs"	\
		--table	-

Note	that	you	should	supply	a	3D	model	and	there	are	also	3D	arguments	--max-pzcor	<number>	and	--min-pzcor	<number>.

The	next	section	has	information	on	how	to	create	standalone	experiment	setup	files	using	XML.

Setting	up	experiments	in	XML

We	don’t	yet	have	detailed	documentation	on	authoring	experiment	setups	in	XML,	but	if	you	already	have	some	familiarity	with	XML,	then	the
following	pointers	may	be	enough	to	get	you	started.

The	structure	of	BehaviorSpace	experiment	setups	in	XML	is	determined	by	a	Document	Type	Definition	(DTD)	file.	The	DTD	is	stored	in	NetLogo.jar,
as	system/behaviorspace.dtd.	(JAR	files	are	also	zip	files,	so	you	can	extract	the	DTD	from	the	JAR	using	Java’s	“jar”	utility	or	with	any	program	that
understands	zip	format.)

The	easiest	way	to	learn	what	setups	look	like	in	XML,	though,	is	to	author	a	few	of	them	in	BehaviorSpace’s	GUI,	save	the	model,	export	them	(Since
6.4)	and	then	examine	the	resulting	.xml	file(s)	in	a	text	editor.	The	experiment	setups	can	also	be	found	towards	the	end	of	the	.nlogo	file,	in	a	section
that	begins	and	ends	with	a	experiments	tag.	Example:

<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	experiments	SYSTEM	"behaviorspace.dtd">
<experiments>
		<experiment	name="My	WSP	Exploration"	repetitions="5"	runMetricsEveryStep="false">
				<setup>setup</setup>
				<go>go</go>
				<timeLimit	steps="2000"/>
				<metric>count	wolves</metric>
				<metric>count	sheep</metric>
				<metric>sum	[grass-amount]	of	patches</metric>
				<enumeratedValueSet	variable="energy-gain-from-grass">
						<value	value="2"/>
				</enumeratedValueSet>
				<steppedValueSet	variable="number-of-wolves"	first="5"	step="1"	last="15"/>
				<enumeratedValueSet	variable="movement-cost">
						<value	value="0.5"/>
				</enumeratedValueSet>
				<enumeratedValueSet	variable="energy-gain-from-sheep">
						<value	value="5"/>
				</enumeratedValueSet>
				<enumeratedValueSet	variable="number-of-sheep">
						<value	value="500"/>
				</enumeratedValueSet>
				<enumeratedValueSet	variable="grass-regrowth-rate">
						<value	value="0.3"/>
				</enumeratedValueSet>
		</experiment>
</experiments>

In	this	example,	only	one	experiment	setup	is	given,	but	you	can	put	as	many	as	you	want	between	the	beginning	and	ending	experiments	tags.

Between	looking	at	the	DTD,	and	looking	at	examples	you	create	in	the	GUI,	it	will	hopefully	be	apparent	how	to	use	the	tags	to	specify	different	kind
of	experiments.	The	DTD	specifies	which	tags	are	required	and	which	are	optional,	which	may	be	repeated	and	which	may	not,	and	so	forth.

If	you	want	to	create	a	setup	file	for	NetLogo	6.3.0	and	earlier	versions	for	which	Export	is	not	available	you	need	to	know	that	in	a	model	file	the	XML
for	experiment	setups	does	not	begin	with	any	XML	headers,	because	the	not	whole	file	is	XML,	only	part	of	it.	Therefore	if	you	manually	create	a
separate	file	for	experiment	setups,	the	extension	on	the	file	should	be	.xml	not	.nlogo,	and	you’ll	need	to	begin	the	file	with	proper	XML	headers,	as
follows:

<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	experiments	SYSTEM	"behaviorspace.dtd">

The	second	line	must	be	included	exactly	as	shown.	In	the	first	line,	you	may	specify	a	different	encoding	than	UTF-8,	such	as	ISO-8859-1.

Adjusting	JVM	Parameters

Opening	the	NetLogo	Headless	launcher	script	will	show	the	options	used	to	launch	java	when	running	NetLogo	Headless.	You	can	adjust	various
JVM	parameters	in	this	script.	You	may	also	pass	in	Java	properties	starting	with	-D	to	the	launcher.

NetLogo	allocates	a	maximum	of	half	your	total	system	memory	for	running	your	model	as	it	is	needed.	If	you	want	to	set	a	maximum	amount	of
memory	for	BehaviorSpace	to	use	you	can	use	the	-Xmx	setting	to	specify	a	particular	heap	size.

Note	the	use	of	-Dfile.encoding=UTF-8.	This	forces	all	file	I/O	to	use	UTF-8	encoding.	Doing	so	ensures	that	NetLogo	can	load	all	models
consistently,	and	that	file-*	primitives	work	consistently	on	all	platforms,	including	models	containing	Unicode	characters.

Controlling	API

If	BehaviorSpace	is	not	sufficient	for	your	needs,	a	possible	alternative	is	to	use	our	Controlling	API,	which	lets	you	write	Java	code	that	controls
NetLogo.	The	API	lets	you	run	BehaviorSpace	experiments	from	Java	code,	or,	you	can	write	custom	code	that	controls	NetLogo	more	directly	to	do
BehaviorSpace-like	things.	See	the	Controlling	section	of	the	User	Manual	for	further	details	on	both	possibilities.

System	Dynamics	Guide
NetLogo	6.4.0	User	Manual

This	guide	has	three	parts:

What	is	the	System	Dynamics	Modeler?:	A	general	description	of	the	tool,	including	the	ideas	and	principles
behind	it.
How	It	Works:	Describes	the	interface	and	how	you	use	it.
Tutorial:	Wolf-Sheep	Predation	(aggregate):	Walks	you	through	creating	a	model	with	the	System	Dynamics
Modeler.

What	is	the	NetLogo	System	Dynamics	Modeler?

System	Dynamics	is	a	type	of	modeling	where	you	try	to	understand	how	things	relate	to	one	another.	It	is	a	little
different	from	the	agent-based	approach	we	normally	use	in	NetLogo	models.

With	the	agent-based	approach	we	usually	use	in	NetLogo,	you	program	the	behavior	of	individual	agents	and	watch
what	emerges	from	their	interaction.	In	a	model	of	Wolf-Sheep	Predation,	for	example,	you	provide	rules	for	how	wolves,
sheep	and	grass	interact	with	each	other.	When	you	run	the	simulation,	you	watch	the	emergent	aggregate-level
behavior:	for	example,	how	the	populations	of	wolves	and	sheep	change	over	time.

With	the	System	Dynamics	Modeler,	you	don’t	program	the	behavior	of	individual	agents.	Instead,	you	program	how
populations	of	agents	behave	as	a	whole.	For	example,	using	System	Dynamics	to	model	Wolf-Sheep	Predation,	you
specify	how	the	total	number	of	sheep	would	change	as	the	total	number	of	wolves	goes	up	or	down,	and	vice	versa.
You	then	run	the	simulation	to	see	how	both	populations	change	over	time.

The	System	Dynamics	Modeler	allows	you	to	draw	a	diagram	that	defines	these	populations,	or	“stocks”,	and	how	they
affect	each	other.	The	Modeler	reads	your	diagram	and	generates	the	appropriate	NetLogo	code	–	global	variables,
procedures	and	reporters	–	to	run	your	System	Dynamics	model	inside	of	NetLogo.

Basic	Concepts

A	System	Dynamics	diagram	is	made	of	four	kinds	of	elements:	Stocks,	Variables,	Flows	and	Links.

A	Stock	is	a	collection	of	stuff,	an	aggregate.	For	example,	a	Stock	can	represent	a	population	of	sheep,	the	water	in	a
lake,	or	the	number	of	widgets	in	a	factory.

A	Flow	brings	things	into,	or	out	of	a	Stock.	Flows	look	like	pipes	with	a	faucet	because	the	faucet	controls	how	much
stuff	passes	through	the	pipe.

A	Variable	is	a	value	used	in	the	diagram.	It	can	be	an	equation	that	depends	on	other	Variables,	or	it	can	be	a	constant.

A	Link	makes	a	value	from	one	part	of	the	diagram	available	to	another.	A	link	transmits	a	number	from	a	Variable	or	a
Stock	into	a	Stock	or	a	Flow.

The	System	Dynamics	Modeler	figures	out	how	the	value	of	your	Stocks	change	over	time	by	estimating	them	over	and
over.	The	estimation	isn’t	always	perfect,	but	you	can	affect	its	accuracy	by	changing	the	value	of	dt.	As	dt	decreases,
you	estimate	the	model	more	frequently,	so	it	gets	more	accurate.	However,	decreasing	dt	also	makes	the	model
slower.

Sample	Models

There	are	four	basic	models	in	the	Sample	Models	section	of	the	NetLogo	Models	Library	that	demonstrate	the	use	of
the	System	Dynamics	Modeler.	All	four	basic	models	explore	population	growth	(and,	in	models	with	predation,
population	decline).

Exponential	Growth	and	Logistic	Growth	are	simple	examples	of	growth	in	one	stock.

Wolf	Sheep	Predation	(System	Dynamics)	is	an	example	of	a	system	with	multiple	stocks	influencing	one	another.	It
models	a	predator-prey	ecosystem	using	the	System	Dynamics	Modeler.

Wolf	Sheep	Predation	(Docked	Hybrid)	is	an	example	of	a	model	that	runs	both	the	a	System	Dynamics	model	and	an
agent-based	model	side-by-side.	It	runs	the	System	Dynamics	implementation	of	Wolf-Sheep	Predation	next	to	the
agent-based	Wolf	Sheep	Predation	model	from	the	Biology	section	of	Sample	Models.

How	it	Works

To	open	the	System	Dynamics	Modeler,	choose	the	System	Dynamics	Modeler	item	in	the	Tools	menu.	The	System
Dynamics	Modeler	window	will	appear.

Diagram	Tab

The	Diagram	tab	is	where	you	draw	your	System	Dynamics	diagram.

The	toolbar	contains	buttons	to	edit,	delete	and	create	items	in	your	diagram.

Creating	Diagram	Elements

A	System	Dynamics	diagram	is	made	up	of	four	kinds	of	components:	Stocks,	Variables,	Flows	and	Links.

Stock

To	create	a	Stock,	press	the	Stock	button	in	the	toolbar	and	click	in	the	diagram	area	below.	A	new	Stock	appears.
Each	Stock	requires	a	unique	name,	which	becomes	a	global	variable.	Stocks	also	require	an	**Initial	value**.	It
can	be	a	number,	a	variable,	a	complex	NetLogo	expression,	or	a	call	to	a	NetLogo	reporter.

Variable

To	create	a	Variable,	press	the	Variable	button	and	click	on	the	diagram.	Each	Variable	in	the	System	Dynamics
Model	requires	a	unique	name,	which	becomes	the	name	of	a	procedure,	or	a	global	variable.	Variables	also
require	an	**Expression**.	This	expression	can	be	a	number,	a	variable,	a	complex	NetLogo	expression,	or	a	call
to	a	NetLogo	reporter.

Flow

To	create	a	Flow,	press	the	Flow	button	or	use	the	right	mouse	button	to	Click	and	hold	where	you	want	the	Flow
to	begin	--	either	on	a	Stock	or	in	an	empty	area	--	and	drag	the	mouse	to	where	you	want	the	Flow	to	end	--	on	a
Stock	or	in	an	empty	area.	Each	Flow	requires	a	unique	name,	which	becomes	a	NetLogo	reporter.	Flows	require
an	**Expression**,	which	is	the	rate	of	flow	from	the	input	to	the	output.	This	expression	can	be	a	number,	a
variable,	a	complex	NetLogo	expression,	or	a	call	to	a	NetLogo	reporter.	If	the	value	is	negative,	the	flow	is	in	the
opposite	direction.

When	more	than	one	Flow	is	connected	to	a	Stock,	it	is	important	to	consider	how	they	should	interact	with	one
another.	NetLogo	will	not	enforce	that	the	Flows	out	of	a	stock	occur	in	any	particular	order.	Also,	NetLogo	will	not
ensure	that	the	sum	of	Flows	out	of	a	Stock	are	less	than	or	equal	to	the	value	of	the	Stock.	These	behaviors	can
be	implemented	explicitly	when	creating	the	Expression	for	a	Flow.

For	example,	if	the	Flow	is	defined	as	a	constant	value,	10,	you	can	ensure	it	never	draws	more	than	the	value	of
the	Stock	by	using	the	min	primitive:	min	(list	stock	10).	If	I	want	Flow	A	to	deplete	a	Stock	before	Flow	B	is
calculated,	I	can	link	Flow	A	to	Flow	B	and	modify	Flow	B	to	subtract	Flow	A’s	value	from	the	stock:	min	(list	(max
(list	0	(stock	-	flow-a)))	10).

Link

To	create	a	Link,	press	the	Link	button,	or	using	the	right	mouse	button,	click	and	hold	on	the	starting	point	for	the
link	--	a	Variable,	Stock	or	Flow	--	and	drag	the	mouse	to	the	destination	Variable	or	Flow.

Working	with	Diagram	Elements

When	you	create	a	Stock,	Variable,	or	Flow,	you	see	a	red	question-mark	on	the	element.	The	question-mark	indicates
that	the	element	doesn’t	have	a	name	yet.	The	red	color	indicates	that	the	Stock	is	incomplete:	it’s	missing	one	or	more
values	required	to	generate	a	System	Dynamics	model.	When	a	diagram	element	is	complete,	the	name	turns	black.

Selecting:	To	select	a	diagram	element,	click	on	it.	To	select	multiple	elements,	hold	the	shift	key.	You	can	also	select
one	or	more	elements	by	dragging	a	selection	box.

Editing:	To	edit	a	diagram	element,	select	the	element	and	press	the	“Edit”	button	on	the	toolbar.	Or	just	double-click
the	element.	(You	can	edit	Stocks,	Flows	and	Variables,	but	you	can’t	edit	Links).

Moving:	To	move	a	diagram	element,	select	it	and	drag	the	mouse	to	a	new	location.

Editing	dt

On	the	right	side	of	the	toolbar	is	the	default	dt,	the	interval	used	to	approximate	the	results	of	your	System	Dynamics
model.	To	change	the	value	of	the	default	dt	for	your	aggregate	model,	press	the	Edit	button	next	to	the	dt	display	and
enter	a	new	value.

Errors

When	you	click	the	“check”	button	or	when	you	edit	a	stock,	flow,	or	variable	the	modeler	will	automatically	generate	the
NetLogo	code	the	corresponds	to	your	diagram	and	try	to	compile	that	code.	If	there	is	an	error	the	Code	tab	will	turn
red	and	a	message	will	appear,	and	the	portion	of	the	generated	code	that	is	causing	the	trouble	will	be	highlighted.

This	should	give	you	a	better	idea	which	element	in	the	diagram	is	causing	the	problem.

Code	Tab

The	System	Dynamics	Modeler	generates	NetLogo	variables	and	procedures	based	on	the	contents	of	your	diagram.
These	procedures	are	what	make	the	diagram	actually	perform	calculations.	The	Code	tab	in	the	System	Dynamics
Modeler	window	displays	the	NetLogo	procedures	generated	from	your	diagram.

You	can’t	edit	the	contents	of	the	Code	tab.	To	modify	your	System	Dynamics	mode,	edit	the	diagram.

Let’s	take	a	closer	look	at	how	the	generated	code	relates	to	the	diagram:

Stocks	correspond	to	a	global	variable	that	is	initialized	to	the	value	or	expression	you	provided	in	the	Initial	value
field.	Each	Stock	will	be	updated	every	step	based	on	the	Flows	in	and	out.
Flows	correspond	to	a	procedure	that	contains	the	expression	you	provided	in	the	Expression	field.
Variables	can	either	be	global	variables	or	procedures.	If	the	Expression	you	provided	is	a	constant	it	will	be	a
global	variable	and	initialized	to	that	value.	If	you	used	a	more	complicated	Expression	to	define	the	Variable	it	will
create	a	procedure	like	a	Flow.

The	variables	and	procedures	defined	in	this	tab	are	accessible	in	the	main	NetLogo	window,	just	like	the	variables	and
procedures	you	define	yourself	in	the	main	NetLogo	Code	tab.	You	can	call	the	procedures	from	the	main	Code	tab,
from	the	Command	Center,	or	from	buttons	in	the	Interface	tab.	You	can	refer	to	the	global	variables	anywhere,
including	in	the	main	Code	tab	and	in	monitors.

There	are	three	important	procedures	to	notice:	system-dynamics-setup,	system-dynamics-go,	and	system-dynamics-do-
plot.

system-dynamics-setup	initializes	the	aggregate	model.	It	sets	the	value	of	dt,	calls	reset-ticks,	and	initializes	your
stocks	and	your	converters.	Converters	with	a	constant	value	are	initialized	first,	followed	by	the	stocks	with	constant
values.	The	remaining	stocks	are	initialized	in	alphabetical	order.

system-dynamics-go	runs	the	aggregate	model	for	dt	time	units.	It	computes	the	values	of	Flows	and	Variables	and
updates	the	value	of	Stocks.	It	also	calls	tick-advance	with	the	value	of	dt.	Converters	and	Flows	with	non-constant
Expressions	will	be	calculated	only	once	when	this	procedure	is	called,	however,	their	order	of	evaluation	is	undefined

system-dynamics-do-plot	plots	the	values	of	Stocks	in	the	aggregate	model.	To	use	this,	first	create	a	plot	in	the	main
NetLogo	window.	You	then	need	to	define	a	plot	pen	for	each	Stock	you	want	to	be	plotted.	This	procedure	will	use	the
current	plot,	which	you	can	change	using	the	set-current-plot	command.

The	System	Dynamics	Modeler	and	NetLogo

The	diagram	you	create	with	the	System	Dynamics	Modeler,	and	the	procedures	generated	from	your	diagram,	are	part
of	your	NetLogo	model.	When	you	a	save	the	NetLogo	model,	your	diagram	is	saved	with	it,	in	the	same	file.

Tutorial:	Wolf-Sheep	Predation

Let’s	create	a	model	of	Wolf-Sheep	Predation	with	the	System	Dynamics	Modeler.

Step	1:	Sheep	Reproduction

Open	a	new	model	in	NetLogo.
Launch	the	System	Dynamics	Modeler	in	the	Tools	menu.

Our	model	will	have	a	population	of	wolves	and	a	population	of	sheep.	Let’s	start	with	the	sheep.	First,	create	a	Stock
that	holds	a	population	of	Sheep.

Press	the	Stock	button	in	the	toolbar.

Click	in	the	diagram	area.

You	see	a	Stock	with	a	red	question-mark	in	the	middle.

Double-click	the	Stock	to	edit.
Name	the	stock	sheep
Set	the	initial	value	to	100.
Deselect	the	Allow	Negative	Values	checkbox.	It	doesn’t	make	sense	to	have	negative	sheep!

Our	sheep	population	can	increase	if	new	sheep	are	born.	To	add	this	to	our	diagram,	we	create	a	Flow	into	the	stock	of
sheep.

Click	on	the	Flow	button	in	the	toolbar	and	press	the	mouse	button	in	an	empty	area	to	the	left	of	the
sheep	Stock.	Drag	the	Flow	to	the	right	until	it	connects	to	the	sheep	Stock	and	let	go.
Edit	the	Flow	and	name	it	sheep-births.
For	now,	enter	a	constant,	such	as	1,	into	the	Expression	field.

The	number	of	sheep	born	during	a	period	of	time	depends	on	the	number	of	sheep	that	are	alive:	more	sheep	means
more	reproduction.

Draw	a	Link	from	the	sheep	Stock	to	the	sheep-births	Flow.

The	rate	of	sheep	births	also	depends	on	some	constant	factors	that	are	beyond	the	scope	of	this	model:	the	rate	of
reproduction,	etc.

Create	a	Variable	and	name	it	sheep-birth-rate.	Set	its	value	to	0.04.
Draw	a	Link	from	the	sheep-birth-rate	Variable	to	the	sheep-births.

Your	diagram	should	look	something	like	this:

Our	diagram	has	the	correct	structure	but	we	aren’t	yet	finished	because	it	the	amount	of	sheep	flowing	into	the	stock
doesn’t	depend	upon	the	number	of	sheep	and	sheep	birth	rate.

Edit	the	sheep-births	Flow	and	set	the	expression	to	sheep-birth-rate	*	sheep.

We	now	have	a	complete	diagram.	To	see	the	NetLogo	code	generated	by	our	diagram,	you	can	click	on	the	Code	tab
of	the	System	Dynamics	Modeler	window.	It	looks	like	this:

Step	2:	NetLogo	Integration

Once	you	create	an	aggregate	model	with	the	System	Dynamics	Modeler,	you	can	interact	with	the	model	through	the
main	NetLogo	interface	window.	Let’s	build	our	NetLogo	model	to	run	the	code	generated	by	our	diagram.	We’ll	need	a
setup	and	go	buttons	which	call	the	system-dynamics-setup	and	system-dynamics-go	procedures	created	by	the	System
Dynamics	Modeler.	And	we’ll	want	a	monitor	and	a	plot	to	watch	the	changes	in	sheep	population.

Select	the	main	NetLogo	window
In	the	Code	tab,	write:

to	setup
		ca
		system-dynamics-setup
end

to	go
		system-dynamics-go
		set-current-plot	"populations"
		system-dynamics-do-plot
end

Move	to	the	Interface	tab
Create	a	setup	button
Create	a	go	button	(don’t	forget	to	make	it	forever)
Create	a	sheep	monitor.
Create	a	plot	called	“populations”	with	a	pen	named	“sheep”.

Now	we’re	ready	to	run	our	model.

Press	the	setup	button.
Don’t	press	the	“go”	button	yet.	Instead,	type	go	four	or	five	times	into	the	Command	Center.

Notice	what	happens.	The	sheep	population	increases	exponentially.	After	four	or	five	iterations,	we	have	an	enormous
number	of	sheep.	That’s	because	we	have	sheep	reproduction,	but	our	sheep	never	die.

To	fix	that,	let’s	finish	our	diagram	by	introducing	a	population	of	wolves	which	eat	sheep.

Step	3:	Wolf	Predation

Move	back	to	the	System	Dynamics	window
Add	a	stock	of	wolves
Add	Flows,	Variables	and	Links	to	make	your	diagram	look	like	this:

Add	one	more	Flow	from	the	wolves	Stock	to	the	Flow	that	goes	out	of	the	Sheep	stock.
Fill	in	the	names	of	the	diagram	elements	so	it	looks	like	this:

where	initial-value	of	wolves	is	30,	wolf-deaths	is	wolves	*	wolf-death-rate,	wolf-death-rate	is	0.15,
predator-efficiency	is	.8,	wolf-births	is	wolves	*	predator-efficiency	*	predation-rate	*	sheep ,
predation-rate	is	3.0E-4,	and	sheep-deaths	is	sheep	*	predation-rate	*	wolves .

Adjust	the	dt	of	the	system	dynamics	model	by	selecting	“Edit”	next	to	dt	in	the	toolbar	of	the	system
dynamics	modeler.	In	the	dialog	that	appears,	enter	0.01.

Now	we’re	really	done.

Go	back	to	the	main	NetLogo	window
Add	a	plot	pen	named	“wolves”	to	the	population	plot
Press	setup	and	go	to	see	your	System	Dynamics	Modeler	diagram	in	action.

You	see	a	plot	of	the	populations	that	looks	like	this:

HubNet	Guide
NetLogo	6.4.0	User	Manual

This	section	of	the	User	Manual	introduces	the	HubNet	system	and	includes	instructions	to	set	up	and	run	a	HubNet
activity.

HubNet	is	a	technology	that	lets	you	use	NetLogo	to	run	participatory	simulations	in	the	classroom.	In	a	participatory
simulation,	a	whole	class	takes	part	in	enacting	the	behavior	of	a	system	as	each	student	controls	a	part	of	the	system
by	using	an	individual	device,	such	as	a	networked	computer.

For	example,	in	the	Gridlock	simulation,	each	student	controls	a	traffic	light	in	a	simulated	city.	The	class	as	a	whole	tries
to	make	traffic	flow	efficiently	through	the	city.	As	the	simulation	runs,	data	is	collected	which	can	afterwards	be
analyzed	on	a	computer.

For	more	information	on	participatory	simulations	and	their	learning	potential,	please	visit	the	Participatory	Simulations
Project	web	site.

Understanding	HubNet

NetLogo

NetLogo	is	a	programmable	modeling	environment.	It	comes	with	a	large	library	of	existing	simulations,	both
participatory	and	traditional,	that	you	can	use	and	modify.	Content	areas	include	social	science	and	economics,	biology
and	medicine,	physics	and	chemistry,	and	mathematics	and	computer	science.	You	and	your	students	can	also	use	it	to
build	your	own	simulations.

In	traditional	NetLogo	simulations,	the	simulation	runs	according	to	rules	that	the	simulation	author	specifies.	HubNet
adds	a	new	dimension	to	NetLogo	by	letting	simulations	run	not	just	according	to	rules,	but	by	direct	human
participation.

Since	HubNet	builds	upon	NetLogo,	we	recommend	that	before	trying	HubNet	for	the	first	time,	you	become	familiar	with
the	basics	of	NetLogo.	To	get	started	using	NetLogo	models,	see	Tutorial	#1:	Running	Models	in	the	NetLogo	Users
Manual.

HubNet	Architecture

HubNet	simulations	are	based	on	a	client/server	architecture.	The	activity	leader	uses	the	NetLogo	application	to	run	a
HubNet	activity.	When	NetLogo	is	running	a	HubNet	activity,	we	refer	to	it	as	a	HubNet	server.	Participants	use	a	client
application	to	log	in	and	interact	with	the	HubNet	server.

While	HubNet	is	only	supported	via	the	Java	Desktop	clients	at	the	moment,	we	hope	to	add	support	for	other	types	of
clients	such	as	tablets	and	phones	in	the	future.

Computer	HubNet

Activities

The	following	activities	are	available	in	the	Models	Library,	in	the	HubNet	Activities	folder.	Information	on	how	to	run	the
models	and	activities	can	be	found	in	the	Info	tab	of	each	model.	Additional	discussion	of	educational	goals	and	ways	to
incorporate	many	of	the	activities	into	your	classroom	in	the	Participatory	Simulations	Guide	on	the	Participatory
Simulations	Project	web	site.

Bug	Hunters	Camouflage	-	students	hunt	bugs	and	camouflaging	emerges.
Dice	Stalagmite	HubNet	-	students	roll	dice	and	explore	the	space	of	dependent	and	independent	events.
Disease	-	A	disease	spreads	through	the	simulated	population	of	students.
Disease	Doctors	-	A	slight	modification	to	the	Disease	activity	where	some	students	can	recover	from	the	disease.
Gridlock	-	Students	use	traffic	lights	to	control	the	flow	of	traffic	through	a	city.
Polling	-	Ask	students	questions	and	plot	their	answers.
Root	Beer	Game	-	An	adaptation	of	a	popular	game	created	at	MIT	in	the	early	1960s	that	shows	how	small	delays
in	a	distribution	system	can	create	big	problems.
Sampler	-	Students	engage	in	statistical	analysis	as	individuals	and	as	a	classroom.	Through	these	activities,
students	discover	the	meaning	and	use	of	basic	concepts	in	statistics.
Tragedy	of	the	Commons	-	Students	work	as	farmers	sharing	a	common	resource.

Clients

To	use	the	client	application	you	simply	need	to	launch	the	HubNet	client	application	that	is	bundled	with	NetLogo.

http://ccl.northwestern.edu/rp/ps/index.shtml
http://ccl.northwestern.edu/rp/ps/index.shtml

Requirements

To	use	Computer	HubNet,	you	need	a	networked	computer	with	NetLogo	installed	for	the	server.	When	using	the	client
application	you	will	also	need	a	networked	computer	with	NetLogo	installed	for	each	participant.	When	using	in
classroom	settings	we	also	suggest	an	attached	projector	for	the	leader	to	project	the	entire	simulation	to	the
participants.

Starting	an	activity

You’ll	find	the	HubNet	activities	in	NetLogo’s	Models	Library,	in	the	HubNet	Activities	folder.	We	suggest	doing	a	few
practice	runs	of	an	activity	before	trying	it	in	front	of	a	class.

Open	a	Computer	HubNet	model.	NetLogo	will	prompt	you	to	enter	the	name	of	your	new	HubNet	session.	This	is	the
name	that	participants	will	use	to	identify	this	activity.	You	may	also	see	a	broadcast	network	selection	dropdown	for
which	more	extensive	documentation	is	available	in	the	FAQ.	For	now,	just	enter	a	name	and	press	Start.

NetLogo	will	open	the	HubNet	Control	Center,	which	lets	you	interact	with	the	HubNet	server.

You,	as	the	leader,	should	then	notify	everyone	that	they	may	join.	To	join	the	activity,	participants	launch	the	HubNet
Client	application	and	enter	their	name.	They	should	see	your	activity	listed	and	can	join	your	activity	by	selecting	it	and
pressing	Enter.	If	the	activity	you	started	is	not	listed	the	student	can	enter	the	server	address	manually	which	can	be
found	in	the	HubNet	Control	Center.

HubNet	Control	Center

The	HubNet	Control	Center	lets	you	interact	with	the	HubNet	server.	It	displays	the	name,	activity,	address	and	port
number	of	your	server.	The	“Mirror	2D	View	on	clients”	checkbox	controls	whether	the	HubNet	participants	can	see	the
view	on	their	clients,	assuming	there	is	a	view	in	the	client	setup.	The	“Mirror	plots	on	clients”	checkbox	controls	whether
participants	will	receive	plot	information.

The	client	list	on	the	right	displays	the	names	of	clients	that	are	currently	connected	to	you	activity.	To	remove	a
participant	from	the	activity,	select	their	name	in	the	list	and	press	the	Kick	button.	To	launch	your	own	HubNet	client
press	the	Local	button,	this	is	particularly	useful	when	you	are	debugging	an	activity.	The	“Reset”	button	kicks	out	all

currently	logged	in	clients	and	reloads	the	client	interface.

The	lower	part	of	the	Control	Center	displays	messages	when	a	participant	joins	or	leaves	the	activity.	To	broadcast	a
message	to	all	the	participants,	click	on	the	field	at	the	bottom,	type	your	message	and	press	Broadcast	Message.

Troubleshooting

I	started	a	HubNet	activity,	but	when	participants	open	a	HubNet	Client,	my	activity	isn’t	listed.

On	some	networks,	the	HubNet	Client	cannot	automatically	detect	a	HubNet	server.	Tell	your	participants	to	manually
enter	the	server	address	and	port	of	your	HubNet	server,	which	appear	in	the	HubNet	Control	Center.

Note:	The	technical	details	on	this	are	as	follows.	In	order	for	the	client	to	detect	the	server,	multicast	routing	must	be
available	between	them.	Not	all	networks	support	multicast	routing.	In	particular,	networks	that	use	the	IPsec	protocol
typically	do	not	support	multicast.	The	IPsec	protocol	is	used	on	many	Virtual	Private	Networks	(VPNs).

When	a	participant	tries	to	connect	to	an	activity,	nothing	happens	(the	client	appears	to	hang	or
gives	an	error	saying	that	no	server	was	found).

If	your	computer	or	network	has	a	firewall,	it	may	be	impeding	the	HubNet	server	from	communicating.	Make	sure	that
your	computer	and	network	are	not	blocking	ports	used	by	the	HubNet	server	(ports	9173-9180).

The	view	on	the	HubNet	client	is	gray.

Verify	that	the	“Mirror	2D	view	on	clients”	checkbox	in	the	HubNet	Control	Center	is	selected.
Make	sure	that	the	display	switch	in	the	model	is	on.
If	you	have	made	changes	to	the	size	of	the	view	on	the	server	you	may	need	to	press	the	“Reset”	button	in	the
Control	Center	to	ensure	the	clients	get	the	new	size.

There	is	no	view	on	the	HubNet	client.

Some	activities	don’t	have	a	view	on	the	client.	If	you	want	to	add	a	view	simply	select	“HubNet	Client	Editor”	from	the
Tools	Menu	and	add	a	view	like	any	other	widget.	Make	sure	to	press	the	“Reset”	button	before	having	clients	log	in.

I	can’t	quit	a	HubNet	client.

You	will	have	to	force	the	client	to	quit.	On	OS	X,	force	quit	the	application	by	selecting	Force	Quit…	in	the	Apple	menu.
On	Windows,	press	Ctrl-Alt-Delete	to	open	the	Task	Manager,	select	HubNet	Client	and	press	End	Task.

My	computer	went	to	sleep	while	running	a	HubNet	activity.	When	I	woke	the	computer	up,	I	got	an
error	and	HubNet	wouldn’t	work	anymore.

The	HubNet	server	may	stop	working	if	the	computer	goes	to	sleep.	If	this	happens,	quit	the	NetLogo	application	and
start	over.	Change	the	settings	on	your	computer	so	it	won’t	sleep	again.

My	problem	is	not	addressed	on	this	page.

See	Contacting	Us.

Known	Limitations

If	HubNet	malfunctions,	see	the	bug	reporting	information	at	Contacting	Us.

Please	note	that:

HubNet	has	not	yet	been	extensively	tested	with	large	numbers	of	clients	(i.e.	more	than	about	25).	Unexpected
results	may	occur	with	more	clients.
Out-of-memory	conditions	are	not	handled	gracefully
Sending	large	amounts	of	plotting	messages	to	the	clients	can	take	a	long	time.
NetLogo	does	not	handle	malicious	clients	in	a	robust	manner	(in	other	words,	it	is	likely	vulnerable	to	denial-of-
service	type	attacks).
Performance	does	not	degrade	gracefully	over	slow	or	unreliable	network	connections.
If	you	are	on	a	wireless	network	or	sub-LAN,	the	IP	address	in	the	HubNet	Control	Center	is	not	always	the	entire
IP	address	of	the	server.

Computer	HubNet	has	only	been	tested	on	LANs,	and	not	on	dial-up	connections	or	WANs.

Teacher	workshops

For	information	on	upcoming	workshops	and	NetLogo	and	HubNet	use	in	the	classroom,	please	contact	us.

HubNet	Authoring	Guide

To	learn	about	authoring	or	modifying	HubNet	activities,	see	the	HubNet	Authoring	Guide.

Running	HubNet	in	headless	mode

To	learn	about	running	HubNet	activities	from	the	command	line,	with	no	GUI	on	the	server,	see	the	HubNet	section	in
the	Controlling	Guide.

Getting	help

If	you	have	any	questions	about	HubNet	or	need	help	getting	started,	contact	us.

HubNet	Authoring	Guide
NetLogo	6.4.0	User	Manual

This	guide	shows	how	to	understand	and	modify	the	code	of	existing	HubNet	activities	and	write	your	own	new	ones.	It
assumes	you	are	familiar	with	running	HubNet	activities,	basic	NetLogo	code	and	NetLogo	interface	elements.	For	more
general	information	about	HubNet	see	the	HubNet	Guide.

Coding	HubNet	activities

Many	HubNet	activities	will	share	bits	of	the	same	code.	That	is	the	code	that	it	used	to	setup	the	network	and	the	code
that	is	used	to	receive	information	from	and	send	information	to	the	clients.	If	you	understand	this	code	you	should	be
able	to	easily	make	modifications	to	existing	activities	and	you	should	have	a	good	start	on	writing	your	own	activities.
To	get	you	started	we	have	provided	a	Template	model	(in	HubNet	Activities	->	Code	Examples)	that	contains	the	most
basic	components	that	will	be	in	the	majority	of	HubNet	activities.	You	should	be	able	to	use	this	activity	as	a	starting
point	for	most	projects.

Code	Example:	Template

Setup

To	make	a	NetLogo	model	into	a	HubNet	activity	you	must	first	initialize	the	network.	In	most	HubNet	activities	you	will
use	the	startup	procedure	to	initialize	the	network.	startup	is	a	special	procedure	that	NetLogo	runs	automatically	when
you	open	any	model.	That	makes	it	a	good	place	to	put	code	that	you	want	to	run	once	and	only	once	(no	matter	how
many	times	the	user	runs	the	model).	For	HubNet	we	put	the	command	that	initializes	the	network	in	startup	because
once	the	network	is	setup	we	don’t	need	to	do	so	again.	We	initialize	the	system	using	hubnet-reset,	which	will	ask	the
user	for	a	session	name	and	open	up	the	HubNet	Control	Center.	Here	is	the	startup	procedure	in	the	template	model:

to	startup
		hubnet-reset
end

Now	that	the	network	is	all	setup	you	don’t	need	to	worry	about	calling	hubnet-reset	again.	Take	a	look	at	the	setup
procedure	in	the	template	model:

to	setup
		cp
		cd
		clear-output
		ask	turtles
		[
				set	step-size	1
				hubnet-send	user-id	"step-size"	step-size
]
end

For	the	most	part	it	looks	like	most	other	setup	procedures,	however,	you	should	notice	that	it	does	not	call	clear-all.	In
this	model,	and	in	the	great	majority	of	HubNet	activities	in	the	Models	Library,	we	have	a	breed	of	turtles	that	represent
the	currently	logged	in	clients.	In	this	case	we’ve	called	this	breed	students.	Whenever	a	client	logs	in	we	create	a
student	and	record	any	information	we	might	need	later	about	that	client	in	a	turtle	variable.	Since	we	don’t	want	to
require	users	to	log	out	and	log	back	in	every	time	we	setup	the	activity	we	don’t	want	to	kill	all	the	turtles,	instead,	we
want	to	set	all	the	variables	back	to	initial	values	and	notify	the	clients	of	any	changes	we	make	(more	on	that	later).

Receiving	messages	from	clients

During	the	activity	you	will	be	transferring	data	between	the	HubNet	clients	and	the	server.	Most	HubNet	activities	will
call	a	procedure	in	the	go	loop	that	checks	for	new	messages	from	clients	in	this	case	it’s	called	listen	clients:

to	listen-clients
		while	[hubnet-message-waiting?]
		[
				hubnet-fetch-message
				ifelse	hubnet-enter-message?
				[create-new-student]
				[
						ifelse	hubnet-exit-message?
						[remove-student]
						[execute-command	hubnet-message-tag]
]

]
end

As	long	as	there	are	messages	in	the	queue	this	loop	fetches	each	message	one	at	a	time.	hubnet-fetch-message
makes	the	next	message	in	the	queue	the	current	message	and	sets	the	reporters	hubnet-message-source,	hubnet-
message-tag	and	hubnet-message	to	the	appropriate	values.	The	clients	send	messages	when	the	users	login	and	logout
any	time	the	user	manipulates	one	of	the	interface	elements,	that	is,	pushes	a	button,	moves	a	slider,	clicks	in	the	view,
etc.	We	step	through	each	message	and	decide	what	action	to	take	depending	on	the	type	of	message	(enter,	exit,	or
other),	the	hubnet-message-tag	(the	name	of	the	interface	element),	and	the	hubnet-message-source	of	the	message	(the
name	of	the	client	the	message	came	from).

On	an	enter	message	we	create	a	turtle	with	a	user-id	that	matches	the	hubnet-message-source	which	is	the	name	that
each	user	enters	upon	entering	the	activity,	it	is	guaranteed	to	be	unique.

to	create-new-student
		create-students	1
		[
				set	user-id	hubnet-message-source
				set	label	user-id
				set	step-size	1
				send-info-to-clients
]
end

At	this	point	we	set	any	other	client	variables	to	default	values	and	send	them	to	the	clients	if	appropriate.	We	declared	a
students-own	variable	for	every	interface	element	on	the	client	that	holds	state,	that	is,	anything	that	would	be	a	global
variable	on	the	server,	sliders,	choosers,	switches	and	input	boxes.	It	is	important	to	make	sure	that	these	variables	stay
synchronized	with	the	values	visible	on	the	client.

When	the	clients	logout	they	send	an	exit	message	to	the	server	which	gives	you	a	chance	to	clean	up	any	information
you	have	been	storing	about	the	client,	in	this	case	we	merely	have	to	ask	the	appropriate	turtle	to	die.

to	remove-student
		ask	students	with	[user-id	=	hubnet-message-source]
		[die]
end

All	other	messages	are	interface	elements	identified	by	the	hubnet-message-tag	which	is	the	name	that	appears	in	the
client	interface.	Every	time	an	interface	element	changes	a	message	is	sent	to	the	server.	Unless	you	store	the	state	of
the	values	currently	displayed	in	the	client	interface	will	not	be	accessible	in	other	parts	of	the	model.	That’s	why	we’ve
declared	a	students-own	variable	for	every	interface	element	that	has	a	state	(sliders,	switches,	etc).	When	we	receive
the	message	from	the	client	we	set	the	turtle	variable	to	the	content	of	the	message:

if	hubnet-message-tag	=	"step-size"
[
		ask	students	with	[user-id	=	hubnet-message-source]
				[set	step-size	hubnet-message]
]

Since	buttons	don’t	have	any	associated	data	there	is	generally	no	associated	turtle	variable,	instead	they	indicate	an
action	taken	by	the	client,	just	as	with	a	regular	button	there	is	often	procedure	associated	with	each	button	that	you	call
whenever	you	receive	a	message	indicating	the	button	has	been	pressed.	Though	it	is	certainly	not	required,	the
procedure	is	often	a	turtle	procedure,	that	is,	something	that	the	student	turtle	associated	with	the	message	source	can
execute:

if	command	=	"move	left"
[set	heading	270
		fd	1]

Sending	messages	to	clients

As	mentioned	earlier	you	can	also	send	values	to	any	interface	elements	that	display	information:	monitors,	sliders,
switches,	choosers,	and	input	boxes	(note	that	plots	and	the	view	are	special	cases	that	have	their	own	sections).

There	are	two	primitives	that	allow	you	to	send	information	hubnet-send	and	hubnet-broadcast.	Broadcast	sends	the
information	to	all	the	clients;	send	sends	to	one	client,	or	a	selected	group.

As	suggested	earlier,	nothing	on	the	client	updates	automatically.	If	a	value	changes	on	the	server,	it	is	your
responsibility	as	the	activity	author	to	update	monitors	on	the	client.

For	example,	say	you	have	a	slider	on	the	client	called	step-size	and	a	monitor	called	Step	Size	(note	that	the	names
must	be	different)	you	might	write	updating	code	like	this:

if	hubnet-message-tag	=	"step-size"
[
		ask	student	with	[user-id	=	hubnet-message-source]
		[
				set	step-size	hubnet-message
				hubnet-send	user-id	"Step	Size"	step-size
]
]

You	can	send	any	type	of	data	you	want,	numbers,	strings,	lists,	lists	of	lists,	lists	of	strings,	however,	if	the	data	is	not
appropriate	for	the	receiving	interface	element	(say,	if	you	were	to	send	a	string	to	a	slider)	the	message	will	be	ignored.
Here	are	a	few	code	examples	for	different	types	of	data:

data	type hubnet-broadcast	example hubnet-send	example

number hubnet-broadcast	"A"	3.14 hubnet-send	"jimmy"	"A"	3.14

string hubnet-broadcast	"STR1"	"HI	THERE" hubnet-send	["12"	"15"]	"STR1"	"HI	THERE"

list	of
numbers hubnet-broadcast	"L2"	[1	2	3] hubnet-send	hubnet-message-source	"L2"	[1	2	3]

matrix	of
numbers hubnet-broadcast	"[A]"	[[1	2]	[3	4]] hubnet-send	"susie"	"[A]"	[[1	2]	[3	4]]

list	of
strings

hubnet-broadcast	"user-names"	[["jimmy"
"susie"]	["bob"	"george"]]

hubnet-send	"teacher"	"user-names"	[["jimmy"
"susie"]	["bob"	"george"]]

Examples

Study	the	models	in	the	“HubNet	Activities”	section	of	the	Models	Library	to	see	how	these	primitives	are	used	in
practice	in	the	Code	tab.	Disease	is	a	good	one	to	start	with.

How	to	make	a	client	interface

Open	the	HubNet	Client	Editor,	found	in	the	Tools	Menu.	Add	any	buttons,	sliders,	switches,	monitors,	plots,	choosers,
or	notes	that	you	want	just	as	you	would	in	the	interface	tab.	You’ll	notice	that	the	information	you	enter	for	each	of	the
widgets	is	slightly	different	than	in	the	Interface	panel.	Widgets	on	the	client	don’t	interact	with	the	model	in	the	same
way.	Instead	of	a	direct	link	to	commands	and	reporters	the	widgets	send	messages	back	to	the	server	and	the	model
then	determines	how	those	messages	affect	the	model.	All	widgets	on	the	client	have	a	tag	which	is	a	name	that
uniquely	identifies	the	widget.	When	the	server	receives	a	message	from	that	widget	the	tag	is	found	in	hubnet-message-
tag.

For	example,	if	you	have	a	button	called	“move	left”,	a	slider	called	“step-size”,	a	switch	called	“all-in-one-step?”,	and	a
monitor	called	“Location:”,	the	tags	for	these	interface	elements	will	be	as	follows:

interface
element tag

move	left move	left

step-size step-size

all-in-one-step? all-in-one-step?

Location: Location:

Note	that	you	can	only	have	one	interface	element	with	a	specific	name.	Having	more	than	one	interface	element	with
the	same	tag	in	the	client	interface	will	result	in	unpredictable	behavior	since	it	is	not	clear	which	element	you	intended
to	send	the	information	to.

View	updates	on	the	clients

View	mirroring	lets	views	of	the	world	be	displayed	in	clients	as	well	on	the	server.	View	mirroring	is	enabled	using	a
checkbox	in	the	HubNet	Control	Center.

When	mirroring	is	enabled,	client	views	update	whenever	the	view	on	the	server	does.	To	avoid	excessive	network

traffic,	the	view	should	not	update	more	often	than	necessary.	Therefore	we	strongly	recommend	using	tick-based
updates,	rather	than	continuous	updates.	See	the	View	Updates	section	of	the	Programming	Guide	for	an	explanation	of
the	two	types	of	updates.

With	tick-based	updates,	updates	happen	when	a	tick	or	display	command	runs.	We	recommend	using	these
commands	only	inside	an	every	block,	to	limit	the	frequency	of	view	updates	and	thus	also	limit	network	traffic.	For
example:

every	0.1
[
		display
]

If	there	is	no	View	in	the	clients	or	if	the	Mirror	2D	View	on	Clients	checkbox	in	the	HubNet	Control	Center	is	not
checked,	then	no	view	updates	are	sent	to	the	clients.

Clicking	in	the	view	on	clients

If	the	View	is	included	in	the	client,	two	messages	are	sent	to	the	server	every	time	the	user	clicks	in	the	view.	The	first
message,	when	the	user	presses	the	mouse	button,	has	the	tag	“View”.	The	second	message,	sent	when	the	user
releases	the	mouse	button,	has	the	tag	“Mouse	Up”.	Both	messages	consist	of	a	two	item	list	of	the	x	and	y	coordinates.
For	example,	to	turn	any	patch	that	was	clicked	on	by	the	client	red,	you	would	use	the	following	NetLogo	code:

if	hubnet-message-tag	=	"View"
[
		ask	patches	with	[pxcor	=	(round	item	0	hubnet-message)	and
																					pycor	=	(round	item	1	hubnet-message)]
		[set	pcolor	red]
]

Customizing	the	client’s	view

When	view	mirroring	is	enabled,	by	default	clients	see	the	same	view	the	activity	leader	sees	on	the	server.	But	you	can
change	this	so	that	each	client	sees	something	different,	not	just	a	literal	“mirror”.

You	can	change	what	a	client	sees	in	two	distinct	ways.	We	call	them	“client	perspectives”	and	“client	overrides”.

Changing	a	client’s	perspective	means	making	it	“watch”	or	“follow”	a	particular	agent,	much	like	the	watch	and	follow
commands	that	work	with	ordinary	NetLogo	models.	See	the	dictionary	entries	for	hubnet-send-watch,	hubnet-send-
follow,	and	hubnet-reset-perspective.

Code	Example:	Client	Perspective	Example

Client	overrides	let	you	change	the	appearance	of	patches,	turtles,	and	links	in	the	client	views.	You	can	override	any	of
the	variables	affecting	an	agent’s	appearance,	including	the	hidden?	variable	causing	a	turtle	or	link	to	be	visible	or
invisible.	See	the	dictionary	entries	for	hubnet-send-override,	hubnet-clear-override,	and	hubnet-clear-overrides.

Code	Example:	Client	Overrides	Example

Plot	updates	on	the	clients

If	plot	mirroring	is	enabled	(in	the	HubNet	Control	Center)	and	a	plot	in	the	NetLogo	model	changes	and	a	plot	with	the
exact	same	name	exists	on	the	clients,	a	message	with	that	change	is	sent	to	the	clients	causing	the	client’s	plot	to
make	the	same	change.	For	example,	let’s	pretend	there	is	a	HubNet	model	that	has	a	plot	called	Milk	Supply	in
NetLogo	and	the	clients.	Milk	Supply	is	the	current	plot	in	NetLogo	and	in	the	Command	Center	you	type:

plot	5

This	will	cause	a	message	to	be	sent	to	all	the	clients	telling	them	that	they	need	to	plot	a	point	with	a	y	value	of	5	in	the
next	position	of	the	plot.	Notice,	if	you	are	doing	a	lot	of	plotting	all	at	once,	this	can	generate	a	lot	of	plotting	messages
to	be	sent	to	the	clients.

Modeling	Commons	Guide
NetLogo	6.4.0	User	Manual

Introduction

The	Modeling	Commons	(http://modelingcommons.org/)	is	a	Web-based	collaboration	system	for	NetLogo	modelers.
Users	of	the	Modeling	Commons	can	share,	download,	modify,	create	variations	of,	comment	on,	and	run	NetLogo
models	–	both	those	that	are	a	part	of	the	NetLogo	models	library,	and	also	those	that	have	been	uploaded	by	other
NetLogo	users.

By	uploading	your	NetLogo	models	to	the	Modeling	Commons,	you	make	it	easy	for	others	to	see,	review,	and	comment
on	your	work.	You	can	optionally	keep	the	model	private,	either	to	yourself	or	to	a	group	of	your	choice,	if	you	aren’t
comfortable	with	letting	everyone	see	the	model.	You	can	always	change	the	permissions	associated	with	a	model,	if
you	change	your	mind	later	on.

NetLogo	now	makes	it	possible	to	save	models	to	the	Modeling	Commons,	just	as	you	can	save	them	to	.nlogo	files	on
your	own	computer.	You	can	access	this	functionality	by	selecting	“Upload	to	Modeling	Commons”	from	the	“File”	menu.

Use	of	the	Modeling	Commons	is	free	of	charge.	You	may	use	it	for	your	own	personal	work,	for	your	research	group	or
company,	or	for	a	class	in	which	you	are	a	student	or	teacher.	The	Modeling	Commons	is	sponsored	by	the	CCL,	the
same	group	that	develops	and	distributes	NetLogo.

Modeling	Commons	Accounts

In	order	to	upload	models	to	the	Modeling	Commons,	you	must	first	be	a	registered	user.	Unregistered	users	can	view
and	download	models,	but	cannot	upload,	edit,	or	comment	on	them.

The	first	time	that	you	invoke	“Save	to	Modeling	Commons”	in	NetLogo,	you	will	be	prompted	to	enter	your	e-mail
address	and	password.	If	you	already	have	an	account,	then	you	can	enter	this	information	and	click	on	the	“Login”
button.

If	you	don’t	yet	have	an	account	with	the	Modeling	Commons,	then	you	will	need	to	create	one.	Click	on	the	“Create
Account”	button,	and	enter	the	requested	information.	Once	you	have	done	so,	click	on	the	“Create	Account”	button.	If
there	are	no	errors,	then	you	will	be	prompted	to	upload	a	NetLogo	model.	Alternatively,	you	may	go	to	the	Modeling
Commons	itself	and	register	with	your	Web	browser.

Uploading	Models

There	are	three	ways	to	upload	a	model	to	the	Modeling	Commons:	Uploading,	updating,	and	creating	a	child	(“forking”).
The	following	sections	describe	these	in	detail.

Upload	A	New	Model

A	new	model	will	be	created	in	the	Modeling	Commons,	with	its	own	page,	description,	and	forum.	You	should	use	this
function	the	first	time	that	you	save	a	model	to	the	Modeling	Commons.

http://modelingcommons.org/
http://modelingcommons.org/

You	must	give	your	model	a	name.	Model	names	are	not	required	to	be	unique;	you	could	have	2	or	more	models	with
the	same	name,	though	we	recommend	that	you	not	do	this.

By	default,	anyone	can	view,	fork,	and	update	your	model.	You	can	restrict	the	ability	to	view	and	fork	your	model	by
changing	the	visibility	permission.	You	can	restrict	the	ability	to	update	your	model	by	changing	the	changeability
permission.	In	order	to	set	permissions	for	multiple	people,	assign	your	model	to	a	group,	and	then	restrict	visibility	or
changeability	to	members	of	that	group.	Groups	can	be	created	from	the	Modeling	Commons.	Once	you	have	uploaded
your	model,	you	can	edit	the	permissions	from	the	model’s	Modeling	Commons	page.

You	can	optionally	upload	a	preview	image	to	your	model.	The	preview	image	will	be	displayed	alongside	your	model
whenever	it	is	shown	on	the	Modeling	Commons.	While	uploading	a	preview	image	is	optional,	we	highly	recommend
that	you	do	so,	in	one	of	the	following	three	ways:

The	“Use	current	image”	option	tells	NetLogo	to	use	the	current	view	as	your	preview.	We	recommend	that	you	first
run	the	model,	such	that	it	shows	off	the	key	visual	features.
The	“Auto-generate	image”	feature	auto-generates	a	preview	image	by	running	random-seed	0	setup	repeat	75	[
go].	This	option	will	only	be	enabled	if	you	have	defined	setup	and	go	procedures	for	NetLogo	to	run.
The	“Image	from	file”	feature	allows	you	to	upload	any	PNG	image.	Preview	images	work	best	when	they	are
square.

Upload	A	Child	Of	An	Existing	Model	(“forking”)

Saving	a	model	in	this	way,	sometimes	known	as	“forking,”	does	not	change	or	overwrite	the	original	model.	Rather,	it
creates	a	new	model	on	the	Modeling	Commons,	much	as	a	plain	“save”	would	do,	simultaneously	creating	a	parent-
child	relationship	between	the	old	model	and	the	new	one.	This	relationship	can	be	seen	on	the	“family”	tab	for	a	given
model.	You	may	fork	any	model	for	which	you	have	“view”	permissions,	including	one	that	you	cannot	change.	You	may
wish,	for	example,	to	create	a	variation	on	a	model	in	the	NetLogo	models	library.

http://modelingcommons.org/account/groups#group_tabs_new_group

To	fork	a	model,	you	must	give	your	new	child	a	name,	as	well	as	select	an	existing	model	to	fork.	To	indicate	the
existing	model,	start	typing	the	name	of	the	model	that	you	would	like	to	fork.	Select	its	name	from	among	the	search
results.

Finally,	you	must	enter	a	description	about	what	you	are	changing	in	your	child	model,	and	how	it	relates	to	its	parent.

Updating	An	Existing	Model

Use	this	option	if	you	have	improved	a	model	that	already	exists	in	the	Modeling	Commons.	Existing	attachments,
discussions,	and	social	tags	will	be	preserved,	but	the	model	that	users	can	display,	run,	and	download	will	be	updated.
You	may	only	update	a	model	for	which	you	have	“write”	permissions.

All	versions	of	a	model	are	saved	in	the	Modeling	Commons,	so	you	should	feel	free	to	experiment	with	new	ideas.	If
something	goes	wrong,	you	can	always	refer	to	an	old	version	from	the	“history”	tab	on	a	model’s	page.

To	indicate	which	model	should	be	updated,	start	typing	the	name	of	the	model.	Select	the	name	that	pops	up	with	the
search	results.	Finally,	enter	a	description	about	what	you	are	changing	in	your	new	version.

Logging
NetLogo	6.4.0	User	Manual

NetLogo’s	logging	facility	allows	researchers	to	record	student	actions	for	later	analysis.

Logging	in	NetLogo	is	invisible	to	the	student	once	initiated.	The	researcher	can	choose	the	type	of	events	logged	through	the	NetLogo	preferences	or	by	using	a	custom	command	line	switch	to
start	NetLogo.

In	NetLogo	version	6.2.2	and	earlier,	log4j	was	the	library	used	and	the	logging	output	was	in	XML	format.	See	the	documentation	for	that	prior	version	if	you’re	not	on	the	latest	NetLogo	release.

Starting	Logging

There	is	a	NetLogo	preference	to	enable	logging:

Open	NetLogo,	then	open	Preferences	from	the	Tools	menu.
Check	the	box	for	Enable	Logging:	then	click	OK.
Restart	NetLogo	and	logging	will	be	enabled.

The	setting	will	remain	in	effect	until	it	is	unchecked	and	NetLogo	is	restarted	again.

You	can	also	specify	the	Directory	to	store	logs:	in	the	NetLogo	Preferences.	If	you	leave	this	value	blank	with	logging	enabled	the	default	location	of	the	user’s	home	directory	will	be	used.
See	below	for	more	information	on	the	default	location.

You	can	also	specify	the	Events	to	log:	in	the	NetLogo	Preferences.	This	is	a	comma-separate	list	of	the	event	names	or	“shortcut”	names.	If	you	leave	this	value	blank	with	logging	enabled	a
set	of	default	events	will	be	logged.	See	below	for	more	information	on	the	event	names	and	what	the	defaults	are.

Command	Line	Switches

You	can	also	enable	logging	and	set	the	log	directory	and	log	events	with	command	line	switches.	If	you	specify	either	the	--log-directory	or	--log-events	switch,	then	logging	will	be	enabled
and	the	switch	values	will	override	any	preferences	set	in	the	NetLogo	UI.

Let’s	assume	you	are	running	on	Linux	and	you	have	NetLogo	installed	in	a	NetLogo	6.2.3	directory	in	your	home	folder.	To	enable	logging,	invoke	the	NetLogo	executable	like	so:

~/NetLogo\	6.2.3/NetLogo	--log-directory	~/NetLogoLogs/	--log-events	"default,	ticks,	globals"

Using	Logging

When	NetLogo	starts	up	it	will	ask	for	a	user	name.	This	name	will	appear	in	all	the	logs	generated	during	this	session.

Events

Below	are	all	of	the	events	that	can	be	logged	with	the	logging	app.	By	default	all	of	these	events	are	logged	except	“global”,	“link”,	“tick”,	and	“turtle”	since	they	can	cause	a	large	number	of	log
entries	to	be	created.

button	-	button	widget	presses
chooser	-	chooser	widget	changes
comment	-	any	user	comments,	currently	only	generated	for	compiler	errors
compile	-	when	the	model	code	is	recompiled
command-center	-	when	code	is	run	through	the	command	center
global	-	when	a	global	variable	value	changes
input-box	-	when	an	input	box	widget	changes
link	-	when	a	link	agent	is	created	or	dies
model-open	-	when	a	model	is	opened
slider	-	when	a	slider	widget	changes
speed-slider	-	when	the	speed	slider	changes
start	-	always	the	first	entry	of	a	log,	contains	system	info
switch	-	when	a	switch	widget	changes
stop	-	always	the	last	entry	of	a	log
turtle	-	when	a	turtle	agent	is	created	or	dies
widget-edit	-	when	a	widget	is	added	to	or	removed	from	the	model
tick	-	when	the	tick	counter	is	advanced

There	are	also	some	shortcut	names	you	can	use	in	the	preferences	to	refer	to	collections	of	events:

all	-	button,	chooser,	comment,	compile,	command-center,	global,	input-box,	link,	model-open,	slider,	speed-slider,	start,	switch,	stop,	turtle,	widget-edit,	tick
agents	-	link,	turtle
defaults	-	everything	but	global,	link,	tick,	and	turtle
greens	-	chooser,	input-box,	slider,	switch	-	the	“global	variable”	widgets

Example	logging	strings	you	could	put	in	the	Events	to	log:	setting	in	preferences	dialog	or	use	via	the	--log-events	command	line	switch.

“button,	model-open,	widget-edit”	-	log	only	button	widget	presses,	model	open	events,	and	widget	add/remove
“defaults,	global”	-	add	global	variable	change	events	to	the	defaults	list
“button,	greens,	model-open”	-	log	widget	use	and	model	open	events.

JSON	Output

The	output	is	in	JSON	text	format.	Below	is	an	example	log	file	with	some	small	modifications	to	content	to	fit	better	in	this	document.

Each	line	has	an	“event”	identifying	its	type	along	with	a	“timeStamp”	of	when	it	occured.	Then	there	is	an	“eventInfo”	entry	that	contains	further	information	specific	to	the	event.	For	example,
“model-open”	event	contains	the	model	“name”,	and	the	“button”	events	contain	the	“buttonName”	and	whether	the	click	stopped	a	forever	button,	“wasStopped”.

[
		{"event":"start","timeStamp":"2022-06-17	11:29:56.737","eventInfo":{"studentName":"Larry","modelName":"Slime.nlogo","version":"NetLogo	6.#.#","ipAddress":"192.168.1.11","loginName":"cpu_user","events":["input-box","switch",...,"widget-edit"]}}
,	{"event":"model-open","timeStamp":"2022-06-17	11:29:56.738","eventInfo":{"name":"Slime.nlogo"}}
,	{"event":"compile","timeStamp":"2022-06-17	11:29:57.201","eventInfo":{"code":"patches-own	[chemical]\n...","success":true}}
,	{"event":"button","timeStamp":"2022-06-17	11:29:58.617","eventInfo":{"buttonName":"setup","wasStopped":false}}
,	{"event":"tick","timeStamp":"2022-06-17	11:29:58.675","eventInfo":{"ticks":0.0}}
,	{"event":"button","timeStamp":"2022-06-17	11:29:58.676","eventInfo":{"buttonName":"setup","wasStopped":true}}
,	{"event":"button","timeStamp":"2022-06-17	11:29:58.961","eventInfo":{"buttonName":"go","wasStopped":false}}
,	{"event":"tick","timeStamp":"2022-06-17	11:29:58.993","eventInfo":{"ticks":1.0}}
,	{"event":"tick","timeStamp":"2022-06-17	11:29:59.030","eventInfo":{"ticks":2.0}}
,	{"event":"tick","timeStamp":"2022-06-17	11:29:59.076","eventInfo":{"ticks":3.0}}
,	{"event":"tick","timeStamp":"2022-06-17	11:29:59.123","eventInfo":{"ticks":4.0}}
,	{"event":"button","timeStamp":"2022-06-17	11:29:59.921","eventInfo":{"buttonName":"go","wasStopped":true}}
,	{"event":"slider","timeStamp":"2022-06-17	11:30:01.681","eventInfo":{"valueChanged":true,"min":1.0,"globalName":"population","max":1500.0,"inc":1.0,"buttonReleased":false,"newValue":399.0}}
,	{"event":"slider","timeStamp":"2022-06-17	11:30:01.698","eventInfo":{"valueChanged":true,"min":1.0,"globalName":"population","max":1500.0,"inc":1.0,"buttonReleased":false,"newValue":391.0}}
,	{"event":"slider","timeStamp":"2022-06-17	11:30:02.317","eventInfo":{"valueChanged":true,"min":1.0,"globalName":"population","max":1500.0,"inc":1.0,"buttonReleased":false,"newValue":179.0}}
,	{"event":"button","timeStamp":"2022-06-17	11:30:02.910","eventInfo":{"buttonName":"setup","wasStopped":false}}
,	{"event":"tick","timeStamp":"2022-06-17	11:30:02.919","eventInfo":{"ticks":-1.0}}
,	{"event":"tick","timeStamp":"2022-06-17	11:30:02.922","eventInfo":{"ticks":0.0}}
,	{"event":"button","timeStamp":"2022-06-17	11:30:02.922","eventInfo":{"buttonName":"setup","wasStopped":true}}
,	{"event":"button","timeStamp":"2022-06-17	11:30:03.254","eventInfo":{"buttonName":"go","wasStopped":false}}
,	{"event":"tick","timeStamp":"2022-06-17	11:30:03.258","eventInfo":{"ticks":1.0}}
,	{"event":"tick","timeStamp":"2022-06-17	11:30:03.293","eventInfo":{"ticks":2.0}}
,	{"event":"button","timeStamp":"2022-06-17	11:30:03.763","eventInfo":{"buttonName":"go","wasStopped":true}}
,	{"event":"command-center","timeStamp":"2022-06-17	11:30:08.489","eventInfo":{"owner":"Command	Center","code":"ask	turtles	[set	color	black]","agentType":"O","success":true}}
,	{"event":"stop","timeStamp":"2022-06-17	11:30:09.703"}
]

JSON	is	a	very	common	data	format	so	there	are	numerous	ways	to	use	it.	Most	scripting	and	programming	languages	have	easy	ways	to	read	JSON	data	in	so	that	it	can	be	processed,	fed	to
another	system	(such	as	a	database),	or	re-formatted	somehow	(perhaps	to	a	plot	using	a	plotting	library).

Modern	versions	of	Microsoft	Excel	can	import	JSON	directly.	Google	Sheets	does	not	yet	support	JSON	import	natively,	but	there	are	add-on	scripts	that	can	be	used.	There	are	also	numerous

https://ccl.northwestern.edu/netlogo/6.2.2/docs/
https://en.wikipedia.org/wiki/JSON

online	converters	that	can	turn	JSON	to	a	“flattened”	CSV	or	just	convert	it	to	XML	as	well.

Where	Logs	are	Stored

By	default	logs	are	stored	in	the	operating	system	specific	user’s	home	directory.	On	most	Unix-like	systems	that	is	/home/<username>/.	On	Windows	the	logs	can	be	found	in	C:\Users\
<username>\,	where	<username>	is	the	logged	in	user.	On	macOS	the	usual	location	is	/Users/<username>/.

Managing	Log	Files

There	are	two	convenience	commands	that	will	help	you	manage	the	logs.	__zip-log-files	*filename*	will	gather	all	the	logs	in	the	temp	directory	and	put	them	in	one	zip	file,	at	the	location
specified.	After	doing	__zip-log-files	the	existing	logs	are	not	deleted,	you	can	do	so	explicitly	by	using	__delete-log-files.	Both	commands	stop	the	current	log	file	(so	it	can	be	zipped	or
deleted)	and	a	new	one	is	started	afterwards.

Controlling	Guide
NetLogo	6.4.0	User	Manual

NetLogo	can	be	invoked	and	controlled	by	another	program	running	on	the	Java	Virtual	Machine.	For	example,	you
might	want	to	call	NetLogo	from	a	small	program	that	does	something	simple	like	automate	a	series	of	model	runs.	Or,
you	might	want	to	embed	NetLogo	models	in	a	larger	application.

For	more	information,	go	here.

https://github.com/NetLogo/NetLogo/wiki/Controlling-API

Mathematica	Link
NetLogo	6.4.0	User	Manual

The	NetLogo-Mathematica	link	provides	modelers	with	an	easy	to	use,	real-time	link	between	NetLogo	and
Mathematica.	Together,	these	tools	can	provide	users	with	a	highly	interactive,	self-documenting	work	flow	that	neither
can	provide	alone.

Mathematica	includes	many	of	the	tools	that	agent-based	modelers	rely	on	throughout	the	research	process:	advanced
import	capabilities,	statistical	functions,	data	visualization,	and	document	creation.	With	the	NetLogo-Mathematica	link,
you	can	run	all	of	these	tools	side-by-side	with	NetLogo.

Because	all	Mathematica	documents,	or	notebooks,	contain	comments,	code,	images,	annotations,	and	interactive
objects,	the	integration	of	NetLogo	and	Mathematica	provides	a	more	complete	solution	for	complex	model	exploration
for	students	and	researchers	alike.

The	basic	functionality	of	the	link	is	much	like	the	NetLogo	Controlling	API:	you	can	load	models,	execute	commands,
and	report	back	data	from	NetLogo.	Unlike	the	Controlling	API,	which	is	based	on	Java,	all	interactions	with	the	link	are
interpreted,	making	it	ideal	not	only	for	rapidly	designing	custom	BehaviorSpace-like	experiments,	but	also	as	a
companion	to	NetLogo	in	debugging	your	model.

For	more	information	about	Mathematica,	please	visit	the	Wolfram	Research	web	site.

What	can	I	do	with	it?

Here	are	a	few	examples	of	what	you	can	do	with	the	Mathematica-NetLogo	link.

Analyze	your	model	in	real-time	with	seamless	two-way	data	conversion
Develop	high	quality,	custom	visualizations	of	model	data
Collect	detailed	simulation	data	across	large	multi-dimensional	parameter	spaces
Rapidly	develop	interactive	interfaces	for	exploring	model	behavior
Have	direct	access	to	patches	and	network	data	with	built-in	functions

Installation

The	NetLogo-Mathematica	link	supports	Mathematica	10	or	greater.	To	install	the	NetLogo-Mathematica	link:

1.	 Go	to	the	menu	bar	in	Mathematica
2.	 Click	on	File	and	select	Install…
3.	 In	the	Install	Mathematica	Item	dialog
4.	 Select	Package	for	Type	of	item	to	install
5.	 Click	Source,	and	select	From	file…
6.	 In	the	file	browser,	go	to	the	location	of	your	NetLogo	installation,
7.	 click	on	the	Mathematica	Link	subfolder,	and	select	NetLogo.m.
8.	 For	Install	Name,	enter	NetLogo.

You	can	either	install	the	NetLogo	link	in	your	user	base	directory	or	in	the	system-wide	directory.	If	the	NetLogo	link	is
installed	in	the	user	base	directory,	other	users	on	the	system	must	also	go	through	the	NetLogo-Mathematica	link
installation	process	to	use	it.	This	option	might	be	preferable	if	you	do	not	have	permission	to	modify	files	outside	of	your
home	directory.	Otherwise,	you	can	install	NetLogo-Mathematica	link	in	the	system-wide	Mathematica	base	directory.

Usage

This	section	will	very	briefly	introduce	how	to	use	the	NetLogo-Mathematica	Link.	It	will	show	you	how	to	load	the
NetLogo-Mathematica	Link	package,	start	NetLogo,	execute	commands,	and	retrieve	data	from	NetLogo.

Loading	the	package:	Once	the	NetLogo-Mathematica	link	is	installed,	you	can	load	the	package	by	entering	the
following	into	your	Mathematica	notebook:

<<NetLogo`

Launching	NetLogo	from	Mathematica:	To	begin	your	NetLogo	session	in	Mathematica,	type	the	following	into	your
notebook:

NLStart[“your	netlogo	path”];

where	your	netlogo	path	is	the	directory	that	netlogo	is	located	in.	Typically	on	a	Mac	this	will	be	“/Applications/NetLogo
6.4.0/”

http://www.wolfram.com/

Loading	a	model:	To	load	a	model,	you	must	specify	the	full	path	of	the	model.	In	this	example	we	will	load	the	Forest
Fire	model,	and	the	path	will	be	given	using	the	typical	Mac	install	location.

NLLoadModel["/Applications/NetLogo	6.4.0/models/Sample	Models/Earth	Science/Fire.nlogo"];

Executing	a	NetLogo	command:	Commands	can	be	executed	by	passing	a	string	of	commands	to	NLCommand[].	The
NLCommand[]	function	automatically	splices	common	Mathematica	data	types	into	strings	suitable	for	NetLogo.	The
following	commands	set	the	density	using	a	single	string,	or	set	the	density	using	a	Mathematica	defined	variable,
myDensity.

NLCommand["set	density	50"];
myDensity	=	60;
NLCommand["set	density",	myDensity];

Reporting	information	from	NetLogo:	NetLogo	data	can	be	reported	back	to	Mathematica	using	NLReport[].	This
includes	numbers,	strings,	boolean	values,	and	lists.

NLReport["count	turtles"];
NLReport["[(list	pxcor	pycor)]	of	n-of	10	patches"]

For	more	information,	see	the	NetLogo-Mathematica	Tutorial	notebook	included	with	NetLogo.	The	notebook	walks	you
through	the	process	of	using	the	link,	with	many	examples	along	the	way.	If	you	do	not	have	Mathematica,	but	are
considering	using	the	link,	you	can	find	a	PDF	of	the	notebook	included	with	NetLogo	in	the	“Mathematica	Link”
directory.

Known	Issues

A	NetLogo	session	cannot	be	quit	without	exiting	J/Link	(the	Java-Mathematica	link)	entirely.	This	may	disrupt
other	packages	that	make	use	of	J/Link.
If	a	model	loaded	with	the	NetLogo-Mathematica	link	uses	a	NetLogo	extension,	the	extension	must	be	located	in
the	same	directory	as	the	model	itself.	If	the	extension	is	located	in	NetLogo’s	application-wide	extensions
directory,	it	will	not	be	found.
Calls	to	NetLogo,	such	as	NLCommand[]	and	NLReport[],	cannot	be	aborted.

Source	code

The	source	code	for	the	NetLogo-Mathematica	link	is	in	the	public	domain.	It	is	hosted	on	line	at
https://github.com/NetLogo/Mathematica-Link.

Credits

The	primary	developer	of	the	NetLogo-Mathematica	link	was	Eytan	Bakshy.

To	refer	to	this	package	in	academic	publications,	please	use:	Bakshy,	E.,	Wilensky,	U.	(2007).	NetLogo-Mathematica
Link.	http://ccl.northwestern.edu/netlogo/mathematica.html.	Center	for	Connected	Learning	and	Computer-Based
Modeling,	Northwestern	University,	Evanston,	IL.

https://github.com/NetLogo/Mathematica-Link
http://ccl.northwestern.edu/netlogo/mathematica.html

NetLogo	3D

NetLogo	includes	the	NetLogo	3D	application	that	allows	you	to	create	3D	worlds.

Notice:	NetLogo's	support	for	3D	is	less	developed	than	NetLogo	2D.	Models	created	with	this	release	may	not	be
compatible	with	future	versions.	While	we've	made	efforts	to	ensure	a	quality	product,	NetLogo	3D	has	not	been
subject	to	the	same	level	of	quality	control	as	the	main	application.

Introduction
Tutorial
Dictionary

Introduction

To	get	started	using	NetLogo	3D,	launch	the	NetLogo	3D	application	and	check	out	the	Sample	Models	in	the	3D
section	of	the	Models	Library.

When	you're	ready	to	write	your	own	3D	model,	look	at	the	Code	Examples	in	the	3D	section	of	the	Models	Library.

Code	Example:	Turtle	Perspective	Example	3D	helps	you	learn	about	the	different	perspectives.

Code	Example:	Turtle	and	Observer	Motion	Example	3D	helps	you	understand	how	turtles	and	the	observer	move
in	3D.	You	can	also	step	through	this	model	with	the	tutorial	below.

3D	Worlds

An	unspeakable	horror	seized	me.	There	was	a	darkness;	then	a	dizzy,	sickening	sensation	of	sight	that	was	not	like
seeing;	I	saw	a	Line	that	was	no	Line;	Space	that	was	not	Space:	I	was	myself,	and	not	myself.	When	I	could	find	voice,	I
shrieked	loud	in	agony,	"Either	this	is	madness	or	it	is	Hell."

"It	is	neither,"	calmly	replied	the	voice	of	the	Sphere,	"it	is	Knowledge;	it	is	Three	Dimensions:	open	your	eye	once	again
and	try	to	look	steadily."	
--	Edwin	A.	Abbott,	Flatland:	A	romance	in	many	dimensions

NetLogo	3D's	world	has	width,	height	and	depth.	Patches	are	cubes.	In	addition	to	pxcor	and	pycor,	patches	have
pzcor.

Turtles	have	three	Cartesian	coordinates,	instead	of	two,	to	describe	position.	In	addition	to	xcor	and	ycor,	turtles
have	zcor.

A	turtle's	orientation	is	defined	by	three	turtle	variables,	heading,	pitch	and	roll.	You	can	imagine	the	turtle	as	having
two	vectors	to	define	its	orientation	in	3D	space.	One	vector	comes	straight	out	of	the	nose	of	the	turtle,	this	is	the
direction	the	turtle	will	travel	when	it	moves	forward.	The	second	vector	is	perpendicular	to	the	forward	vector	and
comes	out	of	the	right	side	of	the	turtle	(as	if	the	turtle	were	to	stick	its	right	arm	straight	out	from	its	body).	Heading
is	the	angle	between	the	forward	vector	of	the	turtle	projected	onto	the	xy-plane	and	the	vector	[0	1	0].	Pitch	is	the
angle	between	the	forward	vector	of	the	turtle	and	the	xy-plane	and	finally	roll	is	the	angle	between	the	right	vector	of
the	turtle	and	the	xy-plane.	When	turtle	turns	right	or	left	in	3D	space	it	rotates	around	the	down	vector,	that	is	the
vector	that	is	perpendicular	to	both	the	forward	and	right	vectors.	Depending	on	the	orientation	of	the	turtle	more	than
one	of	the	internal	turtle	variables	may	change	as	the	result	of	a	turn.

The	observer	and	the	3D	view

The	point	of	view	that	you	see	the	world	from	is	considered	the	location	and	orientation	of	the	observer.	This	is
similar	to	the	3D	view	in	NetLogo	2D.	However,	there	are	a	few	more	ways	to	control	the	observer.	You	can	set	the
point	that	the	observer	is	facing	by	using	face	and	facexyz	which	work	the	same	way	as	the	turtle	commands,	the
observer	turns	so	the	center	of	the	view	is	on	the	given	point	or	the	location	of	the	given	agent	at	the	time	it	is	called.
You	can	change	the	location	of	the	observer	using	setxyz.	The	observer	will	move	to	view	the	world	as	if	standing	on
the	given	location,	the	point	the	observer	faces	will	stay	the	same.	For	example	create	a	new	model	and	observer	will
be	located	at	(0,	0,	49.5),	that	is,	on	the	z-axis	49.5	patch	units	away	from	the	origin	and	the	observer	is	facing	the
origin,	(0,	0,	0).	If	you	setxyz	0	49.5	0	the	observer	will	move	so	it	is	on	the	positive	y-axis	but	it	will	keep	the	origin
at	the	center	of	the	view.	You	can	also	move	the	observer	using	the	rotation	primitives	that	will	allow	you	to	move	the
observer	around	the	world	as	if	on	the	surface	of	a	sphere	where	the	center	is	the	location	the	observer	is	facing.
You	may	notice	from	the	above	examples	that	the	observer	is	not	constrained	to	be	within	the	bounds	of	the	world.

Custom	Shapes

NetLogo	automatically	interprets	2D	shapes	so	they	are	extruded,	like	a	cookie	cutter	shape	in	the	3D	view.	You	can
also	use	the	primitive	load-shapes-3d	to	load	shapes	described	in	an	external	file	in	a	custom	format	described	here.
Currently	we	do	not	import	shapes	in	any	standard	formats.

For	each	shape	in	a	custom	3D	shape	file,	a	2D	shape	of	the	same	name	must	exist	as	well.	You	can	create	the	2D
shape	in	the	Turtle	Shapes	Editor.

The	input	file	may	contain	any	number	of	shapes	with	any	number	of	rectangular	or	triangular	surfaces.	The	format	of
the	input	file	should	be	as	follows:

number	of	shapes	in	file
name	of	first	shape
type	of	surface	(quads	or	tris)
surface1
surface2
.
.
.
stop
type	of	surface
surfaceA
.
.
.
stop
end-shape

Each	surface	is	defined	by	a	unit	normal	vector	and	the	vertices	listed	in	clockwise	order,	tris	should	have	three
vertices	and	quads	should	have	four.

normal:	xn	yn	zn
x1	y1	z1
x2	y2	z2
x3	y3	z3
x4	y4	z4

A	file	declaring	just	a	two	dimensional,	patch-sized,	square	in	the	xy-plane	centered	at	the	origin	would	look	like	this:

1
square
quads
normal:	0	0	1
0.15	0.15	0
-0.15	0.15	0
-0.15	-0.15	0
0.15	-0.15	0
normal:	0	0	-1
0.15	0.15	0
0.15	-0.15	0
-0.15	-0.15	0
-0.15	0.15	0
stop
end-shape

Tutorial

Step	1:	Depth

One	of	the	first	things	you	will	notice	when	you	open	NetLogo	3D	is	that	the	world	is	a	cube	instead	of	a	square.

You	can	open	up	the	Model	Settings,	by	clicking	on	the	"Settings..."	button	at	the	top	of	the	3D	View.	You'll	notice	in
addition	to	max-pxcor,	min-pxcor,	max-pycor,	and	min-pycor,	there	is	also	max-pzcor	and	min-pzcor.

The	z-axis	is	perpendicular	to	both	the	x-axis	and	the	y-axis,	when	you	reset-perspective	it	is	the	axis	that	comes
straight	out	of	the	screen.	In	the	default	position	max-pzcor	is	the	face	of	the	cube	nearest	to	you	and	min-pzcor	is	the
face	farthest	from	you.	As	always	min-pxcor	is	on	the	left,	max-pxcor	on	the	right,	min-pycor	on	the	bottom,	and	max-
pycor	on	the	top.

You'll	also	notice	on	the	left	side	of	the	Model	Settings	that	there	are	options	for	wrapping	in	all	three	directions,
however,	they	are	all	checked	and	grayed	out.	Topologies	are	not	yet	supported	in	NetLogo	3D,	so	the	world	always
wraps	in	all	dimensions.

Move	to	the	Command	Center	and	type	print	count	patches.

Is	the	number	smaller	or	larger	than	you	expected?

In	a	3D	world	the	number	of	patches	grows	very	quickly	since	count	patches	=	world-width	*	world-height	*
world-depth.	It's	important	to	keep	this	in	mind	when	you	are	building	your	model.	Lots	of	patches	can	slow	your
model	down	or	even	cause	NetLogo	to	run	out	of	memory.

Type	ask	patch	1	2	3	[set	pcolor	red] 	into	the	Command	Center.
Use	the	mouse	in	the	3D	view	to	rotate	the	world.

Notice	the	shape	of	the	patch	and	its	position	in	relation	to	the	edges	of	the	world.	You'll	also	notice	that	you	now
need	three	coordinates	to	address	patches	in	a	3D	world.

Step	2:	Turtle	Movement

Open	the	Models	Library	in	the	File	menu.	(If	you	are	on	a	Mac	and	you	don't	have	a	File	menu,	click	on	the	main
NetLogo	window	first	and	it	should	reappear.)
Open	Turtle	and	Observer	Motion	Example	3D	in	3D/Code	Examples

Take	a	moment	to	look	for	the	controls	and	monitors.	In	the	bottom	left	you'll	notice	a	group	of	monitors	that	describe
the	location	and	orientation	of	the	turtle,	though	until	you	press	the	setup	button	they'll	all	say	"N/A".

Press	the	"setup"	button

Heading,	pitch,	and	roll	are	turtle	variables	that	represent	the	orientation	of	the	turtle.	Heading	is	absolute	in	relation
to	the	x/y	plane;	it	is	the	rotation	of	the	turtle	around	the	z-axis.

Pitch	is	the	angle	between	the	nose	of	the	turtle	and	the	xy-plane.	It	is	relative	to	heading.

Roll	is	the	rotation	around	the	turtle's	forward	vector.	It	is	relative	to	heading	and	pitch.

When	turtles	are	created	with	create-turtles	or	create-ordered-turtles,	their	initial	headings	vary	but	their	initial
pitch	and	roll	are	always	zero.

Take	a	look	at	the	"Turtle	Movement"	buttons.

Press	the	"left	1"	button.

How	does	the	turtle	move?	Is	is	the	same	or	different	from	2D	NetLogo?	Which	of	the	turtle	variables
change?

Press	the	"pitch-down	1"	button.

How	does	the	turtle	move?	Which	of	the	turtle	variables	change?

Press	the	"left	1"	button	again.

How	does	the	turtle	move?	Is	it	different	than	the	last	time	you	pressed	the	"left	1"	button?

Take	a	little	time	to	play	with	the	Turtle	Movement	buttons,	watching	both	how	the	turtle	moves	and	which	of	the
turtle	variables	change.

You	probably	noticed	that	often	more	than	one	of	the	turtle	variables	may	change	for	a	single	turn.	For	this	reason	we

suggest	that	you	use	the	turtle	commands	rather	than	setting	the	orientation	variables	directly.

Step	3:	Observer	Movement

At	the	bottom	of	the	interface	you	will	see	Orbit,	Zoom,	and	Move	buttons.	If	you	have	ever	used	the	3D	view	in
NetLogo	2D	or	if	you	have	been	using	the	mouse	controls	in	the	3D	view	through	this	tutorial	you	have	been	moving
the	observer.	Changing	the	point	of	view	in	the	3D	view	is	actually	moving	and	changing	the	orientation	of	the
observer.	The	observer	has	x,	y	and	z	coordinates,	just	like	a	turtle	or	patch,	while	turtles	and	patches	are
constrained	to	be	inside	the	world	the	observer	can	be	anywhere.	Like	a	turtle	the	observer	has	a	heading,	pitch	and
roll,	these	variables	control	where	the	observer	is	looking,	that	is,	what	you	see	in	the	view.

Move	to	the	3D	view,	and	make	sure	"Orbit"	is	selected	in	the	bottom	left	corner	of	the	view.
Click	and	hold	the	mouse	button	in	the	middle	of	the	view,	move	the	mouse	left,	right,	up,	and	down.

How	does	the	position	and	orientation	of	the	observer	change?

Press	the	reset-perspective	button	in	the	lower	right	corner	of	the	view	and	select	"Zoom"	in	the	lower	left	corner.
Click	and	hold	the	mouse	button	in	the	middle	of	the	view	and	move	the	mouse	up	and	down.

Which	of	the	observer	variables	change?	Which	stay	the	same?

Try	rotating	the	world	a	bit	and	then	zoom	again.
Press	the	"Move"	button	in	the	lower	left	corner	of	the	view.
Click	and	hold	the	mouse	button	in	the	middle	of	the	view	and	move	the	mouse	up,	down,	left	and	right.

How	does	the	view	change?	How	do	the	observer	variables	change?

After	you	are	done	exploring	the	world	using	the	mouse	controls	you	can	take	a	look	at	the	observer	control	buttons
in	the	lower	left	portion	of	the	interface.

You	may	already	be	familiar	with	the	first	three	buttons	in	the	observer	group	from	your	experience	with	NetLogo	2D.
Watch,	follow,	and	ride,	are	special	modes	that	automatically	update	the	position	and	orientation	of	the	observer.
When	in	follow	or	ride	mode,	the	observer	position	and	orientation	are	the	same	as	the	turtle's.	Note	that	follow	and
ride	are	functionally	exactly	the	same,	the	difference	is	only	visual	in	the	3D	view.	When	in	watch	mode	the	observer
does	not	move	but	updates	to	face	the	target	agent.

Press	the	"setup"	button	again	so	you	are	back	to	the	default	orientation.
Press	the	"orbit-right"	button.

How	did	the	view	change?	Was	it	what	you	expected?	How	is	it	similar	or	different	from	using	the	mouse
controls?

Take	a	little	time	to	experiment	with	orbit,	roll	and	zoom	buttons;	notice	similarities	and	differences	to	the	mouse
controls.

The	direction	of	the	orbit	commands	refer	to	the	direction	that	the	observer	moves.	That	is,	imagine	that	the	observer
is	on	the	surface	of	a	sphere,	the	center	of	the	sphere	is	the	point	that	the	observer	is	facing	represented	by	the	blue
cross,	by	default	(0,0,0).	The	observer	will	always	face	the	center	of	the	sphere	and	the	radius	of	the	sphere	will
remain	constant.	The	directions,	up,	down,	left,	and	right,	refer	to	moving	along	the	lines	of	latitude	and	the	lines	of
longitude	of	the	sphere.	When	you	zoom	the	radius	of	the	sphere	changes	but	the	center	and	the	observer's
orientation	in	relation	to	the	center	of	the	sphere	will	remain	the	same.

Press	one	of	the	"setxyz"	buttons.

How	does	the	view	change?	How	do	the	observer	variables	change?

Press	the	"facexyz"	button.

How	does	the	view	change?	How	do	the	observer	variables	change?

When	you	setxyz	the	center	of	the	sphere	remains	the	same	(so	the	observer	automatically	keeps	that	point	in	the
center	of	the	view.)	However,	the	radius	of	the	sphere	may	change	as	well	as	the	observer's	orientation	in	relation	to
the	center.	When	you	facexyz	or	face,	the	center	of	the	sphere	changes	but	the	observer	does	not	move.	The	radius
of	the	sphere	may	change,	as	well	as	the	orientation	of	the	observer.

Dictionary

Commands	and	Reporters

Turtle-related	primitives

Since	4.1

Since	4.1
Since	4.1

distancexyz	distancexyz-nowrap	dz	left	patch-at	patch-at-heading-pitch-and-distance	tilt-down	tilt-up	right	roll-left	roll-right
setxyz	towards-pitch	towards-pitch-nowrap	towards-pitch-xyz	towards-pitch-xyz-nowrap	turtles-at

Patch-related	primitives

distancexyz	distancexyz-nowrap	neighbors	neighbors6	patch	patch-at	patch-at-heading-pitch-and-distance

Agentset	primitives

at-points	breeds-at	turtles-at

World	primitives

max-pzcor	min-pzcor	random-pzcor	random-zcor	world-depth	load-shapes-3d

Observer	primitives

face	facexyz	orbit-down	orbit-left	orbit-right	orbit-up	__oxcor	__oycor	__ozcor	setxyz	zoom

Link	primitives

link-pitch

Built-In	Variables

Turtles

zcor	pitch	roll

Patches

pzcor

Primitives

at-points

agentset	at-points	[[x1	y1	z1]	[x2	y2	z2]	...]

Reports	a	subset	of	the	given	agentset	that	includes	only	the	agents	on	the	patches	the	given	distances	away	from
this	agent.	The	distances	are	specified	as	a	list	of	three-item	lists,	where	the	three	items	are	the	x,	y,	and	z	offsets.

If	the	caller	is	the	observer,	then	the	points	are	measured	relative	to	the	origin,	in	other	words,	the	points	are	taken
as	absolute	patch	coordinates.

If	the	caller	is	a	turtle,	the	points	are	measured	relative	to	the	turtle's	exact	location,	and	not	from	the	center	of	the
patch	under	the	turtle.

ask	turtles	at-points	[[2	4	0]	[1	2	1]	[10	15	10]]
[fd	1]		;;	only	the	turtles	on	the	patches	at	the
										;;	distances	(2,4,0),	(1,2,1)	and	(10,15,10),
										;;	relative	to	the	caller,	move

distancexyz
distancexyz-nowrap

distancexyz	xcor	ycor	zcor
distancexyz-nowrap	xcor	ycor	zcor
	

Since	4.1

Since	4.1

Since	4.1

Since	4.1.2

Since	4.1

3D	versions	of	distancexy.

Reports	the	distance	from	this	agent	to	the	point	(xcor,	ycor,	zcor).

The	distance	from	a	patch	is	measured	from	the	center	of	the	patch.

distancexyz-nowrap	always	reports	the	in	world	distance,	never	a	distance	that	would	require	wrapping	around	the
edges	of	the	world.	With	distancexyz	the	wrapped	distance	(around	the	edges	of	the	world)	is	used	if	that	distance	is
shorter	than	the	in	world	distance.

if	(distancexyz	0	0	0)	<	10
		[set	color	green]
;;	all	turtles	less	than	10	units	from
;;	the	center	of	the	screen	turn	green.

dz

dz

Reports	the	z-increment	(the	amount	by	which	the	turtle's	zcor	would	change)	if	the	turtle	were	to	take	one	step
forward	at	its	current	heading	and	pitch.

NOTE:	dz	is	simply	the	sine	of	the	turtle's	pitch.	Both	dx	and	dy	have	changed	in	this	case.	So,	dx	=	cos(pitch)	*
sin(heading)	and	dy	=	cos(pitch)	*	cos(heading).

See	also	dx,	dy.

face
facexyz

face	agent
facexyz	x	y	z
	

Set	the	caller's	heading	and	pitch	towards	agent	or	towards	the	point	(x,y,z).

If	the	caller	and	the	target	are	at	the	same	x	and	y	coordinates	the	caller's	heading	will	not	change.	If	the	caller	and
the	target	are	also	at	the	same	z	coordinate	the	pitch	will	not	change	either.

left

left	number

The	turtle	turns	left	by	number	degrees,	relative	to	its	current	orientation.	While	left	in	a	2D	world	only	modifies	the
turtle's	heading,	left	in	a	3D	world	may	also	modify	the	turtle's	pitch	and	roll.

See	also	left,	tilt-up,	tilt-down

link-pitch

link-pitch

Reports	the	pitch	from	end1	to	end2	of	this	link.

ask	link	0	1	[print	link-pitch]
;;	prints	[[towards-pitch	other-end]	of	end1]	of	link	0	1

See	also	link-heading,	pitch

load-shapes-3d

Since	4.1
Since	4.1

Since	4.1
Since	4.1

Since	4.1
Since	4.1
Since	4.1
Since	4.1

load-shapes-3d	filename

Loads	custom	3D	shapes	from	the	given	file.	See	the	3D	guide	for	more	details.	You	must	also	add	a	2D	shape	of
the	same	name	to	the	model	using	the	Turtle	Shapes	Editor.	Custom	shapes	override	built-in	3D	shapes	and
converted	2D	shapes.

max-pzcor
min-pzcor

max-pzcor
min-pzcor

These	reporters	give	the	maximum	and	minimum	z-coordinates	(respectively)	for	patches,	which	determines	the	size
of	the	world.

Unlike	in	older	versions	of	NetLogo	the	origin	does	not	have	to	be	at	the	center	of	the	world.	However,	the	minimum
z-coordinate	has	to	be	less	than	or	equal	to	0	and	the	maximum	z-coordinate	has	to	be	greater	than	or	equal	to	0.

Note:	You	can	set	the	size	of	the	world	only	by	editing	the	view	--	these	are	reporters	which	cannot	be	set.

See	also	max-pxcor,	max-pycor,	min-pxcor,	min-pycor,	and	world-depth.

neighbors
neighbors6

neighbors
neighbors6
	

3D	versions	of	neighbors	and	neighbors4.

Reports	an	agentset	containing	the	26	surrounding	patches	(neighbors)	or	6	surrounding	patches	(neighbors6).

show	sum	values-from	neighbors	[count	turtles-here]
		;;	prints	the	total	number	of	turtles	on	the	twenty-six
		;;	patches	around	this	turtle	or	patch
ask	neighbors6	[set	pcolor	red]
		;;	turns	the	six	neighboring	patches	red

orbit-down
orbit-left
orbit-right
orbit-up

orbit-down	number
orbit-left	number
orbit-right	number
orbit-up	number

Rotate	the	observer	around	the	last	point	faced.	Imagine	the	observer	is	on	the	surface	of	a	sphere,	the	last	point
face	is	the	center	of	that	sphere.	Up	and	down	orbit	along	the	lines	of	longitude	and	right	and	left	orbit	along	the	lines
of	latitude.	The	observer	will	remain	facing	the	last	point	faced	so	the	heading	and	pitch	may	change	as	result	of
orbiting.	However,	because	we	assume	an	absolute	north	pole	(parallel	to	the	positive	z-axis)	the	roll	will	never
change.

See	also	setxyz,	face	and	zoom

__oxcor
__oycor

Since	4.1

Since	4.1

Since	4.1

__ozcor

__oxcor
__oycor
__ozcor

Reports	the	x-,	y-,	or	z-coordinate	of	the	observer.

See	also	setxyz

patch

patch	pxcor	pycor	pzcor

3D	version	of	patch.

Given	three	integers,	reports	the	single	patch	with	the	given	pxcor,	pycor	and	pzcor.	pxcor,	pycor	and	pzcor	must	be
integers.

ask	(patch	3	-4	2)	[set	pcolor	green]
;;	patch	with	pxcor	of	3	and	pycor	of	-4	and	pzcor	of	2	turns	green

See	also	patch

patch-at

patch-at	dx	dy	dz
	

3D	version	of	patch-at.

Reports	the	single	patch	at	(dx,	dy,	dz)	from	the	caller,	that	is,	dx	patches	east,	dy	patches	north	and	dz	patches	up
from	the	caller.

ask	patch-at	1	-1	1	[set	pcolor	green]
;;	turns	the	patch	just	southeast	and	up	from	the	caller	green

patch-at-heading-pitch-and-distance

patch-at-heading-pitch-and-distance	heading	pitch	distance
	

3D	version	of	patch-at-heading-and-distance.

patch-at-heading-pitch-and-distance	reports	the	single	patch	that	is	the	given	distance	from	this	turtle	or	patch,	along
the	given	absolute	heading	and	pitch.	(In	contrast	to	patch-left-and-ahead	and	patch-right-and-ahead,	this	turtle's
current	heading	is	not	taken	into	account.)

ask	patch-at-heading-pitch-and-distance	0	90	1	[set	pcolor	green]
;;	turns	the	patch	directly	above	the	caller	green.

pitch

pitch

This	is	a	built-in	turtle	variable.	Pitch	is	the	angle	between	the	"nose"	of	the	turtle	and	the	xy-plane.	Heading	and
pitch	together	define	the	forward	vector	of	the	turtle	or	the	direction	that	the	turtle	is	facing.

Since	4.1

Since	4.1

Since	4.1

This	is	a	number	greater	than	or	equal	to	0	and	less	than	360.	0	is	parallel	to	the	xy-plane,	90	is	parallel	to	the	z-axis.
While	you	can	set	pitch	we	recommend	that	you	use	the	primitives	to	turn	the	turtle.	Depending	on	the	position	more
than	one	relative	angle	(heading,	pitch	and	roll)	may	change	at	once.

Example:

;;	assume	roll	and	heading	are	0
set	pitch	45						;;	turtle	is	now	north	and	up
set	heading	heading	+	10	;;	same	effect	as	"tilt-up	10"

See	also	heading,	roll,	tilt-up,	tilt-down,	right,	left

pzcor

pzcor
	

This	is	a	built-in	patch	variable.	It	holds	the	z	coordinate	of	the	patch.	It	is	always	an	integer.	You	cannot	set	this
variable,	because	patches	don't	move.

pzcor	is	greater	than	or	equal	to	min-pzcor	and	less	than	or	equal	to	max-pzcor.

All	patch	variables	can	be	directly	accessed	by	any	turtle	standing	on	the	patch.

See	also	pxcor,	pycor,	zcor.

random-pzcor

random-pzcor

Reports	a	random	integer	ranging	from	min-pzcor	to	max-pzcor	inclusive.

ask	turtles	[
		;;	move	each	turtle	to	the	center	of	a	random	patch
		setxyz	random-pxcor	random-pycor	random-pzcor
]

See	also	random-pxcor,	random-pycor.

random-zcor

random-zcor

Reports	a	random	floating	point	number	from	the	allowable	range	of	turtle	coordinates	along	the	z	axis.

Turtle	coordinates	range	from	min-pzcor	-	0.5	(inclusive)	to	max-pzcor	+	0.5	(exclusive).

ask	turtles	[
		;;	move	each	turtle	to	a	random	point
		setxyz	random-xcor	random-ycor	random-zcor
]

See	also	random-xcor,	random-ycor.

right

right	number

The	turtle	turns	right	by	number	degrees,	relative	to	its	current	orientation.	While	right	in	a	2D	world	only	modifies	the
turtle's	heading,	right	in	a	3D	world	may	also	modify	the	turtle's	pitch	and	roll.

See	also	right	and	left

Since	4.1

Since	4.1

Since	4.1

Since	4.1
Since	4.1

Since	4.1
Since	4.1

roll

roll

This	is	a	built-in	turtle	variable.	Roll	is	the	angle	between	the	"wing-tip"	of	the	turtle	and	the	xy-plane.

This	is	a	number	greater	than	or	equal	to	0	and	less	than	360.	You	can	set	this	variable	to	make	a	turtle	roll.	Since
roll	is	always	from	the	turtle's	point	of	view,	rolling	right	and	left	only	only	change	roll	regardless	of	turtle	orientation.

Example:

set	roll	45						;;	turtle	rotated	right
set	roll	roll	+	10	;;	same	effect	as	"roll-right	10"

See	also	heading,	pitch,	roll-left,	roll-right.

roll-left

roll-left	number

The	wingtip	of	the	turtle	rotates	to	the	left	number	degrees	with	respect	to	the	current	heading	and	pitch.

roll-right

roll-right	number

The	wingtip	of	the	turtle	rotates	to	the	right	number	degrees	with	respect	to	the	current	heading	and	pitch.

setxyz

setxyz	x	y	z
	

3D	version	of	setxy.

The	agent,	a	turtle	or	the	observer,	sets	its	x-coordinate	to	x,	its	y-coordinate	to	y	and	its	z-coordinate	to	z.	When	the
observer	uses	setxyz	it	remains	facing	the	same	point	so	the	heading,	pitch,	and	roll,	may	also	change.

For	turtles	equivalent	to	set	xcor	x	set	ycor	y	set	zcor	z,	except	it	happens	in	one	time	step	instead	of	three.

setxyz	0	0	0
;;	agent	moves	to	the	middle	of	the	center	patch

See	also	face

tilt-down
tilt-up

tilt-down	number
tilt-up	number

The	nose	of	the	turtle	rotates	by	number	degrees,	relative	to	its	current	orientation.	Depending	on	the	orientation	of
the	turtle	more	than	one	of	the	relative	angles	(heading,	pitch,	and	roll)	may	change	when	a	turtle	turns.

towards-pitch
towards-pitch-nowrap

Since	4.1
Since	4.1

Since	4.1

Since	4.1

towards-pitch	agent
towards-pitch-nowrap	agent
	

Reports	the	pitch	from	this	agent	to	the	given	agent.

If	the	wrapped	distance	(around	the	edges	of	the	screen)	is	shorter	than	the	on-screen	distance,	towards-pitch	will
report	the	pitch	of	the	wrapped	path.	towards-pitch-nowrap	never	uses	the	wrapped	path.

Note:	In	order	to	get	one	turtle	to	face	another	you	need	to	use	both	towards-pitch	and	towards.

Note:	asking	for	the	pitch	from	an	agent	to	itself,	or	an	agent	on	the	same	location,	will	cause	a	runtime	error.

See	also	towards

towards-pitch-xyz
towards-pitch-xyz-nowrap

towards-pitch-xyz	x	y	z
towards-pitch-xyz-no-wrap	x	y	z
	

Reports	the	pitch	from	this	agent	to	the	coordinates	x,	y,	z

If	the	wrapped	distance	(around	the	edges	of	the	screen)	is	shorter	than	the	on-screen	distance,	towards-pitch	will
report	the	pitch	of	the	wrapped	path.	towards-pitch-nowrap	never	uses	the	wrapped	path.

Note:	In	order	to	get	a	turtle	to	face	a	given	location	you	need	to	use	both	towards-pitch-xyz	and	towardsxy.

Note:	asking	for	the	pitch	from	an	agent	to	the	location	it	is	standing	on	will	cause	a	runtime	error.

See	also	towardsxy

turtles-at
<breeds>-at

turtles-at	dx	dy	dz
<breeds>-at	dx	dy	dz
	

3D	versions	of	turtles-at	and	breeds-at.

Reports	an	agentset	containing	the	turtles	on	the	patch	(dx,	dy,	dz)	from	the	caller	(including	the	caller	itself	if	it's	a
turtle).

;;	suppose	I	have	40	turtles	at	the	origin
show	[count	turtles-at	0	0	0]	of	turtle	0
=>	40

world-depth

world-depth

Reports	the	total	depth	of	the	NetLogo	world.

The	depth	of	the	world	is	the	same	as	max-pzcor	-	min-pzcor	+	1.

See	also	max-pzcor,	min-pzcor,	world-width,	and	world-height

zcor

zcor

Since	4.1

This	is	a	built-in	turtle	variable.	It	holds	the	current	z	coordinate	of	the	turtle.	This	is	a	floating	point	number,	not	an
integer.	You	can	set	this	variable	to	change	the	turtle's	location.

This	variable	is	always	greater	than	or	equal	to	(-	screen-edge-z)	and	strictly	less	than	screen-edge-z.

See	also	setxy,	xcor,	ycor,	pxcor,	pycor,	pzcor

zoom

zoom	number

Move	the	observer	toward	the	point	it	is	facing,	number	steps.	The	observer	will	never	move	beyond	the	point	it	is
facing	so	if	number	is	greater	than	the	distance	to	that	point	it	will	only	move	as	far	as	the	point	it	is	facing.

Extensions	Guide
NetLogo	6.4.0	User	Manual

NetLogo	extensions	allow	users	to	write	new	commands	and	reporters	in	Java	and	other	languages	for	use	in	NetLogo
models.	This	section	of	the	User	Manual	introduces	extensions	and	shows	how	to	use	an	extension	in	your	model	once
you	have	obtained	or	made	one.

Note	that,	in	addition	to	the	numerous	extensions	bundled	with	NetLogo,	there	are	many	other	extensions	that	can	be
installed	through	the	Extension	Manager.

Authoring	and	Sharing

Interested	in	adding	some	new	functionality	to	NetLogo	by	creating	your	own	extension?	Have	an	extension	you	made
and	want	to	add	it	to	the	Extension	Manager?	See	the	extension	authoring	page	to	get	started.

Using	Extensions

To	use	an	extension	in	a	model,	add	the	extensions	keyword	at	the	beginning	of	the	Code	tab,	before	declaring	any
breeds	or	variables.

extensions	is	followed	by	a	pair	of	square	brackets	containing	a	list	of	extension	names.	For	example:

extensions	[sound	speech]

Using	extensions	instructs	NetLogo	to	make	the	specified	extensions’	commands	and	reporters	available	in	the	current
model,	just	as	if	they	were	built-in	NetLogo	primitives.	An	extension	must	be	installed	for	the	extensions	keyword	to	take
effect.

Where	extensions	are	located

NetLogo	will	look	for	extensions	in	several	places:

1.	 In	the	folder	of	the	current	model
2.	 The	extensions	folder	within	your	installation	of	NetLogo.	For	typical	NetLogo	installations:

On	Mac	OS	X:	/Applications/NetLogo	6.4.0/extensions
On	64-bit	Windows	with	64-bit	NetLogo	or	32-bit	Windows	with	32-bit	NetLogo:	C:\Program	Files\NetLogo
6.4.0\extensions
On	64-bit	Windows	with	32-bit	NetLogo:	C:\Program	Files	(x86)\NetLogo	6.4.0\extensions
On	Linux:	the	bin/extensions	subdirectory	of	the	NetLogo	directory	extracted	from	the	installation	.tgz

3.	 This	subfolder	(relative	to	your	home	directory):
On	Mac	OS	X:	Library/Application	Support/NetLogo
On	Windows:	AppData\NetLogo
On	Linux:	.netlogo

4.	 The	.bundled	subfolder	of	the	extensions	folder	mentioned	in	Item	2	(for	example,	/Applications/NetLogo
6.4.0/extensions/.bundled	on	Mac	OS	X).

The	easiest	way	to	install	new	extensions	is	to	use	the	Extension	Manager.	If	an	extension	you	want	to	use	is	not
available	through	the	Extension	Manager,	you	will	have	to	manually	download	it	and	place	it	into	a	location	described	by
Item	1	or	Item	2	above.	Manually	modifying	the	contents	of	Item	3	and	Item	4	above	is	not	supported.

The	order	listed	above	is	the	priority	the	Extension	Manager	will	use.	This	means	that	if	the	Extension	Manager	finds	a
requested	extension	for	a	model	manually	installed	in	the	extensions	folder,	it	will	not	check	the	extensions	library	to	see
if	there	are	any	updated	versions	to	install.	As	such,	you’re	locked	in	to	the	manually	installed	version	until	you	decide	to
remove	it.	Also,	any	extensions	you	install	through	the	Extension	Manager	will	override	the	bundled	extensions	that
come	with	NetLogo.	This	means	you	can	update	the	bundled	extensions	if	fixes	for	them	come	out	after	the	NetLogo
release	with	which	they	were	bundled,	you	don’t	have	to	wait	for	a	full	NetLogo	release	to	get	updates.

Each	NetLogo	extension	consists	of	a	folder	with	the	same	name	as	the	extension,	entirely	in	lower	case.	This	folder
must	contain	a	JAR	file	with	the	same	name	as	the	folder.	For	example,	the	sound	extension	is	stored	in	a	folder	called
sound	with	a	file	inside	called	sound.jar.

Some	extensions	depend	on	additional	files.	These	files	will	be	in	the	extension’s	folder	along	with	the	JAR	file.	The
folder	may	also	contain	other	files	such	as	documentation	and	example	models.

Extension	Authoring	Introduction
NetLogo	6.4.0	User	Manual

NetLogo	supports	extensions	as	a	way	of	adding	functionality	that	it	does	not	already	provide.	Here	are	a	few	common
reasons	you	might	want	to	make	an	extension:

There	can	be	hardware	you	want	NetLogo	to	talk	to	that	it	doesn’t	already	support.	Examples	of	this	include	the
Sound	extension	and	the	Arduino	extension.
There	can	other	programming	languages	that	provide	functionality	you	want	to	use	from	inside	NetLogo	code,	such
as	R’s	statistical	calculations	or	Python’s	machine	learning	libraries.	Examples	here	are	the	R	extension	and	the
Python	extension.
There	can	be	data	structures	or	algorithms	that	are	hard	to	support	with	NetLogo,	like	matrix	manipulation	or
key/value	stores	for	program	data.	The	Matrix	extension	and	the	Table	extension	are	examples	that	solve	these
problems.
You	may	want	to	expose	NetLogo	internal	data	that’s	not	otherwise	available,	or	in	a	different	way	than	the	built-in
primitives	do.	Examples	here	are	the	Profiler	extension,	the	Reflection	extension,	and	the	ExportThe	extension.
You	may	want	to	make	functionality	that	works	identically	between	NetLogo	desktop	and	NetLogo	Web.	For
example,	the	file-*	prims	built	in	to	NetLogo	work	great	for	desktop,	but	they	cannot	be	reproduced	in	NetLogo
Web	due	to	the	differences	in	how	web	browsers	interact	with	files.	So	the	Fetch	extension	and	the	SendTo
extension	were	created	to	operate	identically	in	both	environments.

NetLogo	desktop	extensions	can	be	easily	written	in	any	programming	language	that	targets	the	Java	Virtual	Machine
(JVM).	This	includes	Java,	Scala,	and	Kotlin,	among	others.

Here	is	a	very	brief	outline	of	the	process	to	get	your	project	setup	and	producing	an	extension	you	can	run	with
NetLogo	(see	below	for	technical	details):

Get	a	dependency	on	the	NetLogo	jar	file	and	make	sure	its	on	available	to	your	build	tool	and	your	IDE	(such	as
IntelliJ)	if	you’re	using	one.
Create	an	extension	manifest	file	to	include	in	your	extension’s	jar	file.
Make	sure	your	extension’s	packaged	jar	file	name	matches	the	in-code	name	you’ll	be	using	(so	table	will	have	a
table.jar).
Make	sure	any	dependencies	for	your	extension	(libraries	besides	NetLogo)	are	included	alongside	your	jar	also.
Create	a	ClassManager	for	your	extension,	and	create	Primitive	classes	for	each	extension	primitive	you’re
making.

NetLogo	and	many	of	its	bundled	extensions	are	written	in	Scala	and	so	use	the	Scala	build	tool	(SBT).	We’ve	created	a
NetLogo	extension	plugin	for	SBT	that	handles	many	of	the	above	steps	automatically,	once	it’s	configured	through	the
build.sbt	file.

Technical	Details

For	more	technical	information	on	creating	your	own	extensions,	including	tutorials	and	samples,	please	see	this	page
on	the	NetLogo	repository	wiki.	It	also	includes	ways	to	get	help	or	to	discuss	NetLogo	extension	development.

Sharing	Extensions	with	the	Extension	Manager

To	share	an	extension	you’ve	made	with	the	built-in	Extension	Manager,	you’ll	need	to	have	it	added	to	our	NetLogo-
Libraries	repository.	See	the	instructions	on	the	repository	website	for	more	information.

https://github.com/NetLogo/Sound-Extension
https://github.com/NetLogo/Arduino-Extension
https://github.com/NetLogo/R-Extension
https://github.com/NetLogo/Python-Extension
https://github.com/NetLogo/Matrix-Extension
https://github.com/NetLogo/Table-Extension
https://github.com/NetLogo/Profiler-Extension
https://github.com/NetLogo/Reflection-Extension
https://github.com/NetLogo/ExportThe-Extension
https://github.com/NetLogo/Fetch-Extension
https://github.com/NetLogo/SendTo-Extension
https://github.com/NetLogo/NetLogo-Extension-Plugin
https://github.com/NetLogo/NetLogo/wiki/Extensions-API
https://github.com/NetLogo/NetLogo-Libraries#netlogo-libraries

NetLogo	Arduino	Extension

Using

For	a	first	use	without	compiling	code,	do	the	following:

1.	 Acquire	the	NetLogo	software.	The	Arduino	extension	comes	pre-installed	with	NetLogo	5.2.1	and	later.

2.	 Acquire	an	Arduino	board	and	install	the	arduino	IDE

3.	 Use	the	Arduino	IDE	to	edit	the	Sketch	(if	desired)	and	send	to	the	board.	(See	elaborate	comments	in	the
sketch	for	recommendations	about	what	to	comment	out/leave	in	depending	on	your	setup	&	circuit	on	the
board.)

4.	 Once	the	Arduino	has	the	sketch	loaded	on	it,	it	will	run	that	sketch	whenever	it	is	powered	on.

5.	 Open	the	test	“Arduino	Example”	model	in	the	NetLogo	Models	library	(it’s	in	the	“IABM	Textbook”	>	“Chapter
8”	folder)

6.	 Connect	the	Arduino	to	a	USB	port	on	the	computer	if	it	is	not	still	connected	from	step	3.

7.	 Press	OPEN	to	choose	the	port	to	communicate	with	and	establish	the	connection.

8.	 Use	the	buttons	to	send	byte	commands;	use	the	interface	to	inspect	variable	value(s)	that	your	sketch	is
sending.

9.	 Note	that	by	typing	arduino:primitives	you	can	get	a	list	of	the	available	commands	in	the	extension.

Notes

A	NetLogo	model	using	this	extension	must	work	in	conjunction	with	an	Arduino	Sketch.	These	two	endpoints
communicate	by	way	of	an	application	protocol	that	they	define.	For	example,	if	the	NetLogo	model	sends	a	byte	‘1’
over	the	wire	this	may	mean	something	to	the	Arduino	Sketch,	which	will	respond	accordingly.	The	Arduino	Sketch
for	its	own	part	may	send	name-value	pairs	over	the	serial	port,	which	then	can	be	looked	up	asynchronously	by	the
NetLogo	model.

The	modeler	is	free	to	build	as	simple	or	as	complex	an	application	protocol	on	top	of	this	raw	communication
mechanism.

The	asynchronous	nature	of	the	board-to-computer	communications	has	one	notable	limitation.	If	you	choose	to	try
to	simulate	a	synchronous,	BLOCKING	READ	communications	pattern,	(e.g.,	by	sending	a	byte-based	signal	to	the
board,	which	triggers	a	response	in	a	known	name-value	pair),	then	you	are	likely	to	be	‘off	by	one’	response.	That	is,
if	you	do	the	following	in	NetLogo	code:

arduino:write-byte	b
show	arduino:get	"varname"

You	are	likely	to	get	the	value	of	varname	from	the	PRIOR	command	represented	by	writing	the	byte	b.	This	is
because	the	second	line	of	NetLogo	code	will	execute	while	the	Arduino	is	off	generating	a	new	value	for	varname.

There	are	ways	of	getting	around	this	(simulating	a	blocking	interface	by	polling	on	a	value	to	indicate	fresh	“news”
on	varname).	But	this	extension	works	best	in	settings	where	the	Arduino	Sketch	is	“chatty”	and	the	NetLogo	model
samples	this	stream	when	it	needs	data.

Compatibility

This	code	has	been	tested	on	Windows	7	and	10	with	32-bit	NetLogo	and	on	Mac	OS	X.	You	are	likely	to	encounter
issues	when	running	this	with	64-bit	NetLogo	in	Windows	8	or	Windows	10,	so	if	you	have	Windows	8	or	10,	please
download	the	32-Bit	version	of	NetLogo	if	you	plan	on	using	the	Arduino	extension.	We	strive	for	cross-platform
compatibility	across	Mac,	Win,	and	Linux.	So	if	you	have	troubles,	please	let	us	know.

Questions

If	you	run	into	problems	or	have	questions	about	the	extension,	please	email	ccl-feedback	or
cbrady@inquirelearning.com.

Primitives

http://ccl.northwestern.edu/netlogo/download.shtml
mailto:ccl-feedback@ccl.northwestern.edu
mailto:cbrady@inquirelearning.com

arduino:primitives	arduino:ports	arduino:open	arduino:close	arduino:get	arduino:write-string	arduino:write-int
arduino:write-byte	arduino:is-open?	arduino:debug-to-arduino	arduino:debug-from-arduino

arduino:primitives

arduino:primitives

Reports	a	list	of	primitives	available	in	the	extension,	with	basic	hints	about	their	syntax.

arduino:ports

arduino:ports

Reports	a	list	of	port	names

arduino:open

arduino:open	port-name

Opens	the	port	named	port-name.

arduino:close

arduino:close

Closes	the	currently	open	port.

arduino:get

arduino:get	var-name

Reads	and	reports	the	value	associated	with	var-name	on	the	Arduino	board.	If	there	is	no	value	associated	with	var-
name,	returns	false.	Note:	var-name	is	case	insensitive.

arduino:write-string

arduino:write-string	string-message

Writes	a	string	message	to	the	currently	open	port.

arduino:write-int

arduino:write-int	int-message

Writes	a	integer	message	to	the	currently	open	port.

arduino:write-byte

arduino:write-byte	byte-message

Writes	a	byte	message	to	the	currently	open	port.

arduino:is-open?

arduino:is-open?

Reports	a	boolean	value	(true	or	false)	indicating	if	a	port	is	open.

arduino:debug-to-arduino

arduino:debug-to-arduino

Reports	a	list	of	the	last	messages	sent	from	NetLogo	to	the	Arduino,	up	to	a	maximum	of	5	messages.	Each	entry	in
this	list	is	a	string	beginning	with	“s:”	if	the	message	sent	was	a	string,	“i:”	if	the	message	sent	was	an	int,	and	“b:”	if
the	message	sent	was	a	byte.

arduino:debug-from-arduino

arduino:debug-from-arduino

Reports	a	list	of	lists	containing	any	errant	messages	sent	from	NetLogo	to	the	Arduino,	up	to	a	maximum	of	10
errant	messages.	Each	sublist	contains	the	raw	message	as	its	first	element	and	a	message	describing	the	error	as
the	second	element.

NetLogo	Array	Extension

Using

The	array	extension	is	pre-installed	in	NetLogo.

To	use	the	array	extension	in	your	model,	add	a	line	to	the	top	of	your	Code	tab:

extensions	[array]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so	just	add	array	to	the	list.

For	more	information	on	using	NetLogo	extensions,	see	the	Extensions	Guide

When	to	Use

In	general,	anything	you	can	do	with	an	array	in	NetLogo,	you	could	also	just	use	a	list	for.	But	you	may	want	to
consider	using	an	array	instead	for	speed	reasons.	Lists	and	arrays	have	different	performance	characteristics,	so
you	may	be	able	to	make	your	model	run	faster	by	selecting	the	appropriate	data	structure.

Arrays	are	useful	when	you	need	a	collection	of	values	whose	size	is	fixed.	You	can	quickly	access	or	alter	any	item
in	an	array	if	you	know	its	position.

Unlike	NetLogo’s	lists	and	strings,	arrays	are	“mutable”.	That	means	that	you	can	actually	modify	them	directly,	rather
than	constructing	an	altered	copy	as	with	lists.	If	the	array	is	used	in	more	than	one	place	in	your	code,	any	changes
you	make	will	show	up	everywhere.	It’s	tricky	to	write	code	involving	mutable	structures	and	it’s	easy	to	make	subtle
errors	or	get	surprising	results,	so	we	suggest	sticking	with	lists	and	strings	unless	you’re	certain	you	want	and	need
mutability.

Example	use	of	Array	Extension

let	a	array:from-list	n-values	5	[0]
print	a
=>	{{array:	0	0	0	0	0}}
print	array:length	a
=>	5
foreach	n-values	5	[i	->	i]	[i	->	array:set	a	i	i	*	i]
print	a
=>	{{array:	0	1	4	9	16}}
print	array:item	a	0
=>	0
print	array:item	a	3
=>	9
array:set	a	3	50
print	a
=>	{{array:	0	1	4	50	16}}

Primitives

array:from-list	array:item	array:set	array:length	array:to-list

array:from-list

array:from-list	list

Reports	a	new	array	containing	the	same	items	in	the	same	order	as	the	input	list.

array:item

array:item	array	index

Reports	the	item	in	the	given	array	with	the	given	index	(ranging	from	zero	to	the	length	of	the	array	minus	one).

array:set

array:set	array	index	value

Sets	the	item	in	the	given	array	with	the	given	index	(ranging	from	zero	to	the	length	of	the	array	minus	one)	to	the
given	value.

Note	that	unlike	the	replace-item	primitive	for	lists,	a	new	array	is	not	created.	The	given	array	is	actually	modified.

array:length

array:length	array

Reports	the	length	of	the	given	array,	that	is,	the	number	of	items	in	the	array.

array:to-list

array:to-list	array

Reports	a	new	list	containing	the	same	items	in	the	same	order	as	the	given	array.

NetLogo	Bitmap	Extension

Using

The	bitmap	extension	is	pre-installed	in	NetLogo.	For	instructions	on	using	it,	or	for	more	information	about	NetLogo
extensions,	see	the	NetLogo	User	Manual.

What	does	the	Bitmap	Extension	do?

The	Bitmap	Extension	allows	you	to	manipulate	and	import	images	into	the	drawing	and	patches.	It	offers	features
not	provided	by	the	NetLogo	core	primitives,	such	as:	scaling,	manipulation	of	different	color	channels,	and	width	and
height	reporters.

Getting	started

To	import	and	manipulate	images	you	will	need	to	include	the	bitmap	extension	in	your	NetLogo	model.

extensions[bitmap]

The	image	file	formats	supported	are	determined	by	your	Java	virtual	machine’s	imageio	library.	Typically	this	is
PNG,	JPG,	GIF,	and	BMP.	PNG	is	a	good,	standard	choice	that	is	likely	to	work	everywhere.

If	the	image	format	supports	transparency	(alpha),	that	information	will	be	imported	as	well.

Primitives

bitmap:average-color	bitmap:channel	bitmap:copy-to-drawing	bitmap:copy-to-pcolors	bitmap:difference-rgb
bitmap:export	bitmap:from-base64	bitmap:to-base64	bitmap:from-view	bitmap:to-grayscale	bitmap:height
bitmap:import	bitmap:scaled	bitmap:width

bitmap:average-color

bitmap:average-color	image

Reports	a	3-element	list	describing	the	amount	of	R,	G,	and	B	in	image,	by	summing	across	all	pixels,	and
normalizing	each	component	by	the	number	of	pixels	in	the	image,	so	each	component	ranges	from	0	to	255.

bitmap:channel

bitmap:channel	image	channel

Extracts	either	the	alpha,	red,	green,	or	blue	channel	from	an	image.	The	input	channel	should	be	an	integer	0-3
indicating	the	channel	to	remove	(alpha=0,	red=1,	green=2,	blue=3).	The	resulting	image	is	a	grayscale	image
representing	specified	channel.

bitmap:copy-to-drawing

bitmap:copy-to-drawing	image	x	y

Imports	the	given	image	into	the	drawing	without	scaling	the	image	at	the	given	pixel	coordinates.

bitmap:copy-to-pcolors

bitmap:copy-to-pcolors	image	boolean

Imports	the	given	image	into	the	pcolors,	scaled	to	fit	the	world.	The	second	input	indicates	whether	the	colors
should	be	interpreted	as	NetLogo	colors	or	left	as	RGB	colors.	false	means	RGB	colors.

bitmap:difference-rgb

bitmap:difference-rgb	image1	image2

Reports	an	image	that	is	the	absolute	value	of	the	pixel-wise	RGB	difference	between	two	images.	Note	that	image1
and	image2	MUST	be	the	same	width	and	height	as	each	other,	or	errors	will	ensue.

bitmap:export

bitmap:export	image	filename

Writes	image	to	filename.

bitmap:from-base64

bitmap:from-base64	base64-string

Turns	a	base64	encoded	string	into	a	bitmap	image	for	use	by	the	extension.	The	Fetch	and	Export-The	extensions
would	be	common	sources	of	these	encoded	strings.

bitmap:to-base64

bitmap:to-base64	base64-string

Turns	a	bitmap	image	into	a	base64	encoded	string	with	a	PNG	format.

bitmap:from-view

bitmap:from-view

Reports	an	image	of	the	current	view.

bitmap:to-grayscale

bitmap:to-grayscale	image

Converts	the	given	image	to	grayscale.

bitmap:height

bitmap:height	image

Reports	the	height	of	given	image

bitmap:import

bitmap:import	filename

Reports	a	LogoBitmap	containing	the	image	at	filename.

bitmap:scaled

bitmap:scaled	image	width	height

Reports	a	new	image	that	is	image	scaled	to	the	given	width	and	height

bitmap:width

bitmap:width	image

Reports	the	width	of	the	given	image

https://github.com/NetLogo/Fetch-Extension
https://github.com/NetLogo/ExportThe-Extension

NetLogo	Csv	Extension

Common	use	cases	and	examples

Read	a	file	all	at	once

Just	use	csv:from-file	"/path/to/myfile.csv"!	See	from-file	for	more	information.

Read	a	file	one	line	at	a	time

For	really	big	files,	you	may	not	want	to	store	the	entire	file	in	memory,	but	rather	just	process	it	a	line	at	a	time.	For
instance,	if	you	want	to	sum	each	of	the	columns	of	a	numeric	CSV	file,	you	can	do:

to-report	sum-columns	[file]
		file-open	file
		set	result	csv:from-row	file-read-line
		while	[not	file-at-end?]	[
				let	row	csv:from-row	file-read-line
				set	result	(map	[[[col-total	new-val]	->	col-total	+	new-val]	result	row)
]
		file-close
		report	result
end

You	can	also	use	this	technique	to…

Read	a	file	one	line	per	tick

Here’s	an	example	model	that	reads	in	a	file	one	line	per	tick:

globals	[data]

to	setup
		clear-all
		file-close-all	%	Close	any	files	open	from	last	run
		file-open	"data.csv"
		%	other	setup	goes	here
		reset-ticks
end

to	go
		if	file-at-end?	[stop]
		set	data	csv:from-row	file-read-line
		%	model	update	goes	here
		tick
end

Write	a	file

Just	use	csv:to-file	"/path/to/myfile.csv"	my-data!	See	to-file	for	more	information.

Primitives

Formatting	NetLogo	data	as	CSV

csv:to-row	csv:to-string	csv:to-file

Parsing	CSV	input	to	NetLogo	data

csv:from-row	csv:from-string	csv:from-file

csv:from-row

csv:from-row	string
csv:from-row	string	delimiter

Parses	the	given	string	as	though	it	were	a	row	from	a	CSV	file	and	returns	it	as	a	list	of	values.	For	example:

observer>	show	csv:from-row	"one,two,three"
observer:	["one"	"two"	"three"]

Quotes	can	be	used	when	items	contain	commas:

observer>	show	csv:from-row	"there's,a,comma,\"in,here\""
observer:	["there's"	"a"	"comma"	"in,here"]

You	can	put	two	quotes	in	a	row	to	put	an	actual	quote	in	an	entry.	If	the	entry	is	not	quoted,	you	can	just	use	one
quote:

observer>	foreach	(csv:from-row	"he	said	\"hi	there\",\"afterwards,	she	said	\"\"hello\"\"\"")	print
he	said	"hi	there"
afterwards,	she	said	"hello"

Number-like-entries	will	be	parsed	as	numbers:

observer>	show	csv:from-row	"1,-2.5,1e3"
observer:	[1	-2.5	1000]

true	and	false	with	any	capitalization	will	be	parsed	as	booleans:

observer>	show	csv:from-row	"true,TRUE,False,falsE"
observer:	[true	true	false	false]

To	use	a	different	delimiter,	you	can	specify	a	second,	optional	argument.	Only	single	character	delimiters	are
supported:

observer>	show	(csv:from-row	"1;2;3"	";")
observer:	[1	2	3]

Different	types	of	values	can	be	mixed	freely:

observer>	show	csv:from-row	"one,2,true"
observer:	["one"	2	true]

csv:from-string

csv:from-string	string
csv:from-string	string	delimiter

Parses	a	string	representation	of	one	or	more	CSV	rows	and	returns	it	as	a	list	of	lists	of	values.	For	example:

observer>	show	csv:from-string	"1,two,3\nfour,5,true"
observer:	[[1	"two"	3]	["four"	5	true]]

csv:from-file

csv:from-file	csv-file
csv:from-file	csv-file	delimiter

Parses	an	entire	CSV	file	to	a	list	of	lists	of	values.	For	example,	if	we	have	a	file	example.csv	that	contains:

1,2,3
4,5,6
7,8,9
10,11,12

Then,	we	get:

observer>	show	csv:from-file	"example.csv"
observer:	[[1	2	3]	[4	5	6]	[7	8	9]	[10	11	12]]

The	parser	doesn’t	care	if	the	rows	have	different	numbers	of	items	on	them.	The	number	of	items	in	the	rows	list	will
always	be	<number	of	delimiters>	+	1 ,	though	blank	lines	are	skipped.	This	makes	handling	files	with	headers	quite
easy.	For	instance,	if	we	have	header.csv	that	contains:

My	Data
2/1/2015

Parameters:
start,stop,resolution,population,birth?
0,4,1,100,true

Data:
time,x,y
0,0,0
1,1,1
2,4,8
3,9,27

This	gives:

observer>	foreach	csv:from-file	"header.csv"	show
observer:	["My	Data"]
observer:	["2/1/2015"]
observer:	["Parameters:"]
observer:	["start"	"stop"	"resolution"	"population"	"birth?"]
observer:	[0	4	1	100	true]
observer:	["Data:"]
observer:	["time"	"x"	"y"]
observer:	[0	0	0]
observer:	[1	1	1]
observer:	[2	4	8]
observer:	[3	9	27]

csv:to-row

csv:to-row	list
csv:to-row	list	delimiter

Reports	the	given	list	as	a	CSV	row.	For	example:

observer>	show	csv:to-row	["one"	2	true]
observer:	"one,2,true"

csv:to-string

csv:to-string	list
csv:to-string	list	delimiter

Reports	the	given	list	of	lists	as	a	CSV	string.	For	example:

observer>	show	csv:to-string	[[1	"two"	3]	[4	5]]
observer:	"1,two,3\n4,5"

csv:to-file

csv:to-file	csv-file	list
csv:to-file	csv-file	list	delimiter

Writes	the	given	list	of	lists	to	a	new	CSV	file.	For	example:

observer>	csv:to-file	"myfile.csv"	[[1	"two"	3]	[4	5]]

will	result	in	a	file	myfile.csv	containing:

1,two,3
4,5

NetLogo	Gis	Extension

Using

This	extension	adds	GIS	(Geographic	Information	Systems)	support	to	NetLogo.	It	provides	the	ability	to	load	vector	GIS
data	(points,	lines,	and	polygons),	and	raster	GIS	data	(grids)	into	your	model.

The	extension	supports	vector	data	in	the	form	of	ESRI	shapefiles	and	GeoJSON	files.	The	shapefile	(.shp)	and	GeoJSON
(.geojson)	formats	are	the	most	common	format	for	storing	and	exchanging	vector	GIS	data.	The	extension	supports	raster
data	in	the	form	of	ESRI	ASCII	Grid	files.	The	ASCII	grid	file	(.asc	or	.grd)	is	not	as	common	as	the	shapefile,	but	is
supported	as	an	interchange	format	by	most	GIS	platforms.

How	to	use

In	general,	you	first	define	a	transformation	between	GIS	data	space	and	NetLogo	space,	then	load	datasets	and	perform
various	operations	on	them.	The	easiest	way	to	define	a	transformation	between	GIS	space	and	NetLogo	space	is	to	take
the	union	of	the	“envelopes”	or	bounding	rectangles	of	all	of	your	datasets	in	GIS	space	and	map	that	directly	to	the	bounds
of	the	NetLogo	world.	See	GIS	General	Examples	for	an	example	of	this	technique.

You	may	also	optionally	define	a	projection	for	the	GIS	space,	in	which	case	datasets	will	be	re-projected	to	match	that
projection	as	they	are	loaded,	as	long	as	each	of	your	data	files	has	an	associated	.prj	file	that	describes	the	projection	or
geographic	coordinate	system	of	the	data.	If	no	associated	.prj	file	is	found,	the	extension	will	assume	that	the	dataset
already	uses	the	current	projection,	regardless	of	what	that	projection	is.

Once	the	coordinate	system	is	defined,	you	can	load	datasets	using	gis:load-dataset.	This	primitive	reports	either	a
VectorDataset	or	a	RasterDataset,	depending	on	what	type	of	file	you	pass	it.

A	VectorDataset	consists	of	a	collection	of	VectorFeatures,	each	one	of	which	is	a	point,	line,	or	polygon,	along	with	a	set	of
property	values.	A	single	VectorDataset	may	contain	only	one	of	the	three	possible	types	of	features.

There	are	several	things	you	can	do	with	a	VectorDataset:	ask	it	for	the	names	of	the	properties	of	its	features,	ask	it	for	its
“envelope”	(bounding	rectangle),	ask	for	a	list	of	all	VectorFeatures	in	the	dataset,	search	for	a	single	VectorFeature	or	list
of	VectorFeatures	whose	value	for	a	particular	property	is	less	than	or	greater	than	a	particular	value,	or	lies	within	a	given
range,	or	matches	a	given	string	using	wildcard	matching	(“*”,	which	matches	any	number	of	occurrences	of	any
characters).	If	the	VectorFeatures	are	polygons,	you	can	also	apply	the	values	of	a	particular	property	of	the	dataset’s
features	to	a	given	patch	variable.

For	the	common	use	case	of	converting	a	VectorDataset	of	points	into	a	corresponding	set	of	turtles	with	the	same
attributes,	the	gis:create-turtles-from-points	primitive	should	be	used.

There	are	also	several	things	you	can	do	with	a	VectorFeature	from	a	VectorDataset:	ask	it	for	a	list	of	vertex	lists,	ask	it	for
a	property	value	by	name,	ask	it	for	its	centroid	(center	of	gravity),	and	ask	for	a	subset	of	a	given	agentset	whose	agents
intersect	the	given	VectorFeature.	For	point	data,	each	vertex	list	will	be	a	one-element	list.	For	line	data,	each	vertex	list	will
represent	the	vertices	of	a	line	that	makes	up	that	feature.	For	polygon	data,	each	vertex	list	will	represent	one	“ring”	of	the
polygon,	and	the	first	and	last	vertex	of	the	list	will	be	the	same.	The	vertex	lists	are	made	up	of	values	of	type	Vertex,	and
the	centroid	will	be	a	value	of	type	Vertex	as	well.

For	the	common	use	case	of	spawning	a	number	of	turtles	inside	the	bounds	of	a	Polygon	VectorFeature,	the	gis:create-
turtles-inside-polygon	primitive	should	be	used.	Though	the	gis:random-point-inside	primitive	can	also	be	used	if	you	don’t
want	the	spawned	turtles	to	take	on	the	attributes	of	the	Polygon.

There	are	a	number	of	operations	defined	for	RasterDatasets	as	well.	Mostly	these	involve	sampling	the	values	in	the
dataset,	or	re-sampling	a	raster	to	a	different	resolution.	You	can	also	apply	a	raster	to	a	given	patch	variable,	and	convolve
a	raster	using	an	arbitrary	convolution	matrix.

Code	Example:	GIS	General	Examples	has	general	examples	of	how	to	use	the	extension

Code	Example:	GIS	Gradient	Example	is	a	more	advanced	example	of	raster	dataset	analysis.

Known	Issues

Values	of	type	RasterDataset,	VectorDataset,	VectorFeature,	and	Vertex	are	not	handled	properly	by	export-world	and
import-world.	To	save	datasets,	you	must	use	the	gis:store-dataset	primitive.

There	is	currently	no	way	to	distinguish	positive-area	“shell”	polygons	from	negative-area	“hole”	polygons,	or	to	determine
which	holes	are	associated	with	which	shells.

Credits

The	primary	developer	of	the	GIS	extension	was	Eric	Russell.

Significant	updates,	features,	and	fixes	were	added	by	James	Hovet	in	2020	and	2021.

The	GIS	extension	makes	use	of	several	open-source	software	libraries.	For	copyright	and	license	information	on	those,	see
the	copyright	section	of	the	manual.	The	extension	also	contains	elements	borrowed	from	My	World	GIS.

This	documentation	and	the	example	NetLogo	models	are	in	the	public	domain.	The	GIS	extension	itself	is	free	and	open
source	software.	See	the	README.md	file	in	the	extension/gis	directory	for	details.

We	would	love	to	hear	your	suggestions	on	how	to	improve	the	GIS	extension,	or	just	about	what	you’re	using	it	for.	Post
questions	and	comments	at	the	NetLogo	Users	Group,	or	write	directly	to	Eric	Russell	and	the	NetLogo	team	at	ccl-
gis@ccl.northwestern.edu

Primitives

RasterDataset	Primitives

gis:width-of	gis:height-of	gis:raster-value	gis:set-raster-value	gis:minimum-of	gis:maximum-of	gis:sampling-method-of
gis:set-sampling-method	gis:raster-sample	gis:raster-world-envelope	gis:create-raster	gis:resample	gis:convolve
gis:apply-raster

Dataset	Primitives

gis:load-dataset	gis:store-dataset	gis:type-of	gis:patch-dataset	gis:turtle-dataset	gis:link-dataset

VectorDataset	Primitives

gis:shape-type-of	gis:property-names	gis:feature-list-of	gis:vertex-lists-of	gis:centroid-of	gis:random-point-inside
gis:location-of	gis:set-property-value	gis:property-value	gis:find-features	gis:find-one-feature	gis:find-less-than
gis:find-greater-than	gis:find-range	gis:property-minimum	gis:property-maximum	gis:apply-coverage	gis:create-turtles-
from-points	gis:create-turtles-from-points-manual	gis:create-turtles-inside-polygon	gis:create-turtles-inside-
polygon-manual	gis:coverage-minimum-threshold	gis:set-coverage-minimum-threshold	gis:coverage-maximum-threshold
gis:set-coverage-maximum-threshold	gis:intersects?	gis:contains?	gis:contained-by?	gis:have-relationship?
gis:relationship-of	gis:intersecting

Coordinate	System	Primitives

gis:set-transformation	gis:set-transformation-ds	gis:set-world-envelope	gis:set-world-envelope-ds	gis:world-envelope
gis:envelope-of	gis:envelope-union-of	gis:load-coordinate-system	gis:set-coordinate-system	gis:project-lat-lon
gis:project-lat-lon-from-ellipsoid

Drawing	Primitives

gis:drawing-color	gis:set-drawing-color	gis:draw	gis:fill	gis:paint	gis:import-wms-drawing

gis:set-transformation

gis:set-transformation	gis-envelope	netlogo-envelope

Defines	a	mapping	between	GIS	coordinates	and	NetLogo	coordinates.	The	gis-envelope	and	netlogo-envelope	parameters
must	each	be	four-element	lists	consisting	of:

[minimum-x	maximum-x	minimum-y	maximum-y]

The	scale	of	the	transformation	will	be	equal	to	the	minimum	of	the	scale	necessary	to	make	the	mapping	between	the
ranges	of	x	values	and	the	scale	necessary	to	make	the	mapping	between	the	ranges	of	y	values.	The	GIS	space	will	be
centered	in	NetLogo	space.

For	example,	the	following	two	lists	would	map	all	of	geographic	(latitude	and	longitude)	space	in	degrees	to	NetLogo	world
space,	regardless	of	the	current	dimensions	of	the	NetLogo	world:

(list	-180	180	-90	90)
(list	min-pxcor	max-pxcor	min-pycor	max-pycor)

However,	if	you’re	setting	the	envelope	of	the	NetLogo	world,	you	should	probably	be	using	set-world-envelope.

gis:set-transformation-ds

gis:set-transformation-ds	gis-envelope	netlogo-envelope

https://myworldgis.org
https://groups.google.com/d/forum/netlogo-users
mailto:ccl-gis@ccl.northwestern.edu

Does	the	same	thing	as	set-transformation	above,	except	that	it	allows	the	scale	for	mapping	the	range	of	x	values	to	be
different	than	the	scale	for	y	values.	The	“-ds”	on	the	end	stands	for	“different	scales”.	Using	different	scales	will	cause
distortion	of	the	shape	of	GIS	features,	and	so	it	is	generally	not	recommended,	but	it	may	be	useful	for	some	models.

Here	is	an	example	of	the	difference	between	set-transformation	and	set-transformation-ds:

Using	[set-transformation](#gisset-
transformation),	the	scale	along	the	x	and	y

axis	is	the	same,	preserving	the	round
shape	of	the	Earth	in	this	Orthographic

projection.

Using	[set-transformation-ds](#gisset-
transformation-ds),	the	scale	along	the	x	axis	is

stretched	so	that	the	earth	covers	the	entire
NetLogo	View,	which	in	this	case	distorts	the	shape

of	the	Earth.

gis:set-world-envelope

gis:set-world-envelope	gis-envelope

A	shorthand	for	setting	the	transformation	by	mapping	the	envelope	of	the	NetLogo	world	to	the	given	envelope	in	GIS
space,	while	keeping	the	scales	along	the	x	and	y	axis	the	same.	It	is	equivalent	to:

set-transformation	gis-envelope	(list	min-pxcor	max-pxcor	min-pycor	max-pycor)

This	primitive	is	supplied	because	most	of	the	time	you’ll	want	to	set	the	envelope	of	the	entire	NetLogo	world,	rather	than
just	a	part	of	it.

gis:set-world-envelope-ds

gis:set-world-envelope-ds	gis-envelope

A	shorthand	for	setting	the	transformation	by	mapping	the	envelope	of	the	NetLogo	world	to	the	given	envelope	in	GIS
space,	using	different	scales	along	the	x	and	y	axis	if	necessary.	It	is	equivalent	to:

set-transformation-ds	gis-envelope	(list	min-pxcor	max-pxcor	min-pycor	max-pycor)

See	the	pictures	above	for	the	difference	between	using	equal	scales	for	x	and	y	coordinates	and	using	different	scales.

gis:world-envelope

gis:world-envelope

Reports	the	envelope	(bounding	rectangle)	of	the	NetLogo	world,	transformed	into	GIS	space.	An	envelope	consists	of	a
four-element	list	of	the	form:

[minimum-x	maximum-x	minimum-y	maximum-y]

gis:envelope-of

gis:envelope-of	thing

Reports	the	envelope	(bounding	rectangle)	of	thing	in	GIS	coordinates.	The	thing	may	be	an	Agent,	an	AgentSet,	a
RasterDataset,	a	VectorDataset,	or	a	VectorFeature.	An	envelope	consists	of	a	four-element	list	of	the	form:

[minimum-x	maximum-x	minimum-y	maximum-y]

gis:envelope-union-of

gis:envelope-union-of	envelope1	envelope2
gis:envelope-union-of	envelope1...

Reports	an	envelope	(bounding	rectangle)	that	entirely	contains	the	given	envelopes.	An	envelope	consists	of	a	four-
element	list	of	the	form

[minimum-x	maximum-x	minimum-y	maximum-y]

No	assumption	is	made	about	the	coordinate	system	of	the	arguments,	though	if	they	are	not	in	the	same	coordinate
system,	results	will	be	unpredictable.

gis:load-coordinate-system

gis:load-coordinate-system	file

Loads	a	new	global	projection	used	for	projecting	or	re-	projecting	GIS	data	as	it	is	loaded	from	a	file.	The	file	must	contain	a
valid	Well-Known	Text	(WKT)	projection	description.

WKT	projection	files	are	frequently	distributed	alongside	GIS	data	files,	and	usually	have	a	“.prj”	filename	extension.

Relative	paths	are	resolved	relative	to	the	location	of	the	current	model,	or	the	user’s	home	directory	if	the	current	model
hasn’t	been	saved	yet.

The	GIS	extension	does	not	support	all	WKT	coordinate	systems	and	projections.	Only	geographic	("GEOGCS")	and	projected
("PROJCS")	coordinate	systems	are	supported.	For	projected	coordinate	systems,	only	the	following	projections	are
supported:

Albers_Conic_Equal_Area
Lambert_Conformal_Conic_2SP
Polyconic
Lambert_Azimuthal_Equal_Area
Mercator_1SP
Robinson
Azimuthal_Equidistant
Miller
Stereographic
Cylindrical_Equal_Area
Oblique_Mercator
Transverse_Mercator
Equidistant_Conic
hotine_oblique_mercator
Gnomonic
Orthographic

See	remotesensing.org	for	a	complete	list	of	WKT	projections	and	their	parameters.

gis:set-coordinate-system

gis:set-coordinate-system	system

Sets	the	global	projection	used	for	projecting	or	re-	projecting	GIS	data	as	it	is	loaded.	The	system	must	be	either	a	string	in
Well-Known	Text	(WKT)	format,	or	a	NetLogo	list	that	consists	of	WKT	converted	to	a	list	by	moving	each	keyword	inside	its
associated	brackets	and	putting	quotes	around	it.	The	latter	is	preferred	because	it	makes	the	code	much	more	readable.

The	same	limitations	on	WKT	support	apply	as	described	above	in	the	documentation	for	load-coordinate-system

gis:project-lat-lon

gis:project-lat-lon	latitude	longitude

Report	the	position,	in	NetLogo	space,	of	the	given	latitude	and	longitude	pair	according	to	the	current	map	projection	and
transformation.

Like	the	location-of	primitive,	the	reported	xcor	and	ycor	values	are	reported	in	a	two-item	list	of	[xcor	ycor]	and	an	empty
list	if	the	specified	point	is	outside	of	the	bounds	of	the	netlogo	world.	For	instance:

let	location-of-abbey-road-studios	gis:project-lat-lon	51.5320787	-0.1802646
let	abbey-road-xcor	item	0	location-of-abbey-road-studios
let	abbey-road-ycor	item	1	location-of-abbey-road-studios

Note	that	this	primitive	assumes	that	the	given	lat/lon	pair	are	relative	to	the	WGS84	datum/ellipsoid.	If	your	data	is	based
on	GPS	observations	or	GeoJson	files,	then	your	data	is	already	relative	to	WGS84.	If	you	are	unsure	about	what	datum
your	data	is,	then	you	should	probably	just	assume	it	is	WGS84	and	use	this	primitive.	However,	if	you	do	know	that	your
data	is	relative	to	a	different	datum	and	that	extra	degree	of	precision	is	important	to	you	(if	you	are,	say,	comparing	values
from	location-of	and	project-lat-lon)	then	you	should	use	project-lat-lon-from-ellipsoid	and	specify	the	desired	datum’s

https://www.geoapi.org/3.0/javadoc/org/opengis/referencing/doc-files/WKT.html
http://remotesensing.org/geotiff/proj_list/
http://www.geoapi.org/3.0/javadoc/org/opengis/referencing/doc-files/WKT.html

ellipsoid.

gis:project-lat-lon-from-ellipsoid

gis:project-lat-lon-from-ellipsoid	latitude	longitude	ellipsoid-radius	ellipsoid-inverse-flattening

Report	the	position,	in	NetLogo	space,	of	the	given	latitude	and	longitude	pair	according	to	the	current	map	projection	and
transformation	and	the	given	ellipsoid	parameters.

Like	the	location-of	primitive,	the	reported	xcor	and	ycor	values	are	reported	in	a	two-item	list	of	[xcor	ycor]	and	an	empty
list	if	the	specified	point	is	outside	of	the	bounds	of	the	netlogo	world.

The	two	defining	parameters	of	a	ellipsoid	for	the	purposes	of	this	primitive	are	the	radius	and	the	inverse	flattening	metric.
These	parameters	can	be	easily	found	by	examining	either	the	WKT	definition	of	a	given	projection/datum	pair	or	the	.prj	file
for	the	desired	datum.	For	example,	if	you	open	the	.prj	file	for	a	shapefile	exported	with	the	WGS66	datum	in	a	text	editor,
you	will	see,	somewhere	in	the	file,	this	bit	of	text:	DATUM["D_WGS_1966",SPHEROID["NWL_9D",6378145,298.25]].	If	you	look	at
the	SPHEROID	section	of	that	text,	the	first	number	is	the	radius	of	that	ellipoid	and	the	second	is	the	inverse	flattening.

Once	we	have	these	numbers,	we	can	project	data	that	is	relative	to	WGS66	like	so:

let	location	gis:project-lat-lon	my-lat	my-lon	6378145	298.25

For	more	on	earth	ellipoids,	see:	https://en.wikipedia.org/wiki/Earth_ellipsoid

gis:load-dataset

gis:load-dataset	file

Loads	the	given	data	file,	re-projecting	the	data	as	necessary.

Relative	paths	are	resolved	relative	to	the	location	of	the	current	model,	or	the	user’s	home	directory	if	the	current	model
hasn’t	been	saved	yet.

For	ESRI	shapefiles	and	ESRI	grid	files,	if	there	is	a	“.prj”	file	associated	with	the	file,	then	load-datset	will	consult	that	file
and	re-project	to	the	current	global	projection	if	needed.	If	no	“.prj”	file	is	found,	then	the	data	is	assumed	to	use	the	same
projection	as	the	current	global	coordinate	system.

For	GeoJSON	files,	as	per	the	most-recent	specification	(RFC	7946),	the	coordinate	system	for	GeoJSON	files	is	always
WGS84	and	will	be	imported	accordingly.

Currently,	three	types	of	data	file	are	supported:

“.shp”	(ESRI	shapefile):	contains	vector	data,	consisting	of	points,	lines,	or	polygons.	When	the	target	file	is	a	shapefile,
load-dataset	reports	a	VectorDataset.
“.asc”	or	“.grd”	(ESRI	ASCII	grid):	contains	raster	data,	consisting	of	a	grid	of	values.	When	the	target	file	is	an	ASCII	grid
file,	load-dataset	reports	a	RasterDataset.
“.geojson”	or	“.json”	(GeoJSON):	contains	vector	data	similar	to	shapefiles	and	similarly	reports	a	VectorDataset.

Note	that	not	all	aspects	of	the	GeoJSON	standard	are	supported.	In	particular,	to	be	properly	imported,	a	GeoJSON	file
must	satisfy	the	following:

It	only	contain	numeric	or	string	data	within	the	properties.	all	other	json	data	will	be	stringified.
All	“Features”	within	a	“FeatureCollection”	must	be	of	the	same	shape	type	(“Point”,	“LineString”,	etc.)	Additionally,	if	not
all	the	“Features”	in	the	“FeatureCollection”	have	the	same	set	of	property	names,	default	values	will	be	supplied	where
there	are	missing	entries	(0	for	numbers	and	""	for	strings.)
It	must	not	use	“GeometryCollection”,	which	is	not	supported

Elevation/Z	data	is	partially	supported.	For	both	.geojson	and	.shp	files,	single	points	with	Z	data	will	have	their	Z	coordinate
moved	to	a	new	“_Z”	property	that	can	be	accessed	with	gis:property-value	like	any	other	property.	Any	Z	information	for
other	shape	types	will	be	discarded	upon	import.

gis:store-dataset

gis:store-dataset	dataset	file

Exports	the	given	dataset	to	the	given	file.

For	VectorDatasets,	two	file	formats	are	supported,	ESRI	shapefiles	and	GeoJSON.	If	the	given	file	name	ends	in	“.geojson”
or	“.json”,	then	the	file	will	be	exported	as	a	GeoJSON	file.	If	the	file	name	ends	in	any	other	extension	or	no	extension	at	all,
the	dataset	will	be	exported	as	a	shapefile	and	the	associated	file	extensions	will	be	supplied	(“.shp”,	“.prj”,	etc.)

For	RasterDatasets,	only	ESRI	ASCII	grid	files	are	supported	and	the	associated	file	extensions	will	be	automatically
supplied.

https://en.wikipedia.org/wiki/Earth_ellipsoid

Relative	paths	are	resolved	relative	to	the	location	of	the	current	model,	or	the	user’s	home	directory	if	the	current	model
hasn’t	been	saved	yet.

gis:type-of

gis:type-of	dataset

Reports	the	type	of	the	given	GIS	dataset:	either	“VECTOR”	or	“RASTER”

gis:patch-dataset

gis:patch-dataset	patch-variable

Reports	a	new	raster	whose	cells	correspond	directly	to	NetLogo	patches,	and	whose	cell	values	consist	of	the	values	of	the
given	patch	variable.	This	primitive	is	basically	the	inverse	of	apply-raster;	apply-raster	copies	values	from	a	raster	dataset
to	a	patch	variable,	while	this	primitive	copies	values	from	a	patch	variable	to	a	raster	dataset.

gis:turtle-dataset

gis:turtle-dataset	turtle-set

Reports	a	new,	point	VectorDataset	built	from	the	turtles	in	the	given	agentset.	The	points	are	located	at	locations	of	the
turtles,	translated	from	NetLogo	space	into	GIS	space	using	the	current	coordinate	transformation.	And	the	dataset’s
properties	consist	of	all	of	the	turtle	variables	common	to	every	turtle	in	the	agentset.

gis:link-dataset

gis:link-dataset	link-set

Reports	a	new,	line	VectorDataset	built	from	the	links	in	the	given	agentset.	The	endpoints	of	each	line	are	at	the	location	of
the	turtles	connected	by	each	link,	translated	from	NetLogo	space	into	GIS	space	using	the	current	coordinate
transformation.	And	the	dataset’s	properties	consist	of	all	of	the	link	variables	common	to	every	link	in	the	agentset.

gis:shape-type-of

gis:shape-type-of	VectorDataset

Reports	the	shape	type	of	the	given	dataset.	The	possible	output	values	are	“POINT”,	“LINE”,	and	“POLYGON”.

gis:property-names

gis:property-names	VectorDataset

Reports	a	list	of	strings	where	each	string	is	the	name	of	a	property	possessed	by	each	VectorFeature	in	the	given
VectorDataset,	suitable	for	use	in	gis:property-value.

gis:feature-list-of

gis:feature-list-of	VectorDataset

Reports	a	list	of	all	VectorFeatures	in	the	given	dataset.

gis:vertex-lists-of

gis:vertex-lists-of	VectorFeature

Reports	a	list	of	lists	of	Vertex	values.	For	point	datasets,	each	vertex	list	will	contain	exactly	one	vertex:	the	location	of	a
point.	For	line	datasets,	each	vertex	list	will	contain	at	least	two	points,	and	will	represent	a	“polyline”,	connecting	each
adjacent	pair	of	vertices	in	the	list.	For	polygon	datasets,	each	vertex	list	will	contain	at	least	three	points,	representing	a
polygon	connecting	each	vertex,	and	the	first	and	last	vertices	in	the	list	will	be	the	same.

gis:centroid-of

gis:centroid-of	VectorFeature

Reports	a	single	Vertex	representing	the	centroid	(center	of	gravity)	of	the	given	feature.	For	point	datasets,	the	centroid	is
defined	as	the	average	location	of	all	points	in	the	feature.	For	line	datasets,	the	centroid	is	defined	as	the	average	of	the

locations	of	the	midpoints	of	all	line	segments	in	the	feature,	weighted	by	segment	length.	For	polygon	datasets,	the	centroid
is	defined	as	the	weighted	sum	of	the	centroids	of	a	decomposition	of	the	area	into	(possibly	overlapping)	triangles.	See	this
FAQ	for	more	details	on	the	polygon	centroid	algorithm.

gis:random-point-inside

gis:random-point-inside	VectorFeature

Reports	a	single	randomly-generated	Vertex	that	lies	within	the	given	feature	polygon.	Generated	points	are	uniformly
distributed	within	the	polygon	and	both	polygon	holes	and	multi-polygon	features	are	supported.

;	create	100	turtles	randomly	distributed	throught	a	VectorFeature	`vf`
crt	100	[
		let	loc	gis:location-of	gis:random-point-inside	vf
		set	xcor	item	0	loc
		set	ycor	item	1	loc
]

gis:location-of

gis:location-of	Vertex

Reports	a	two-element	list	containing	the	x	and	y	values	(in	that	order)	of	the	given	vertex	translated	into	NetLogo	world
space	using	the	current	transformation,	or	an	empty	list	if	the	given	vertex	lies	outside	the	NetLogo	world.

gis:set-property-value

gis:set-property-value	VectorFeature	property-name	value

Sets	the	value	of	the	given	property	of	the	given	VectorFeature.	The	type	of	the	given	value	(string	or	number)	must	match
the	property	type	of	the	VectorFeature.	This	command	may	be	used	in	conjunction	with	store-dataset	to	make	changes	to
VectorFeatures	and	export	them	back	as	GIS	datasets.

gis:property-value

gis:property-value	VectorFeature	property-name

Reports	the	value	of	the	property	with	the	given	name	for	the	given	VectorDataset.	The	reported	value	may	be	a	number,	a
string,	or	a	boolean	value,	depending	on	the	type	of	the	field	in	the	underlying	data	file.

For	shapefiles,	values	from	dBase	CHARACTER	and	DATE	fields	are	returned	as	strings,	values	from	NUMBER	and	FLOAT	fields	are
returned	as	numbers,	and	values	from	LOGICAL	fields	are	returned	as	boolean	values.	MEMO	fields	are	not	supported.	DATE
values	are	converted	to	strings	using	ISO	8601	format	(YYYY-MM-DD).

gis:find-features

gis:find-features	VectorDataset	property-name	specified-value

Reports	a	list	of	all	VectorFeatures	in	the	given	dataset	whose	value	for	the	property	property-name	matches	specified-
value	(a	string	or	number).

For	strings,	value	comparison	is	not	case	sensitive,	and	the	wildcard	character	“*”	will	match	any	number	of	occurrences
(including	zero)	of	any	character.

For	numbers,	beware	that	there	are	some	numbers	that	are	too	big	to	be	represented	as	an	integer	in	NetLogo,	so	integer
data	imported	into	NetLogo	may	start	to	lose	precision	if	they	are	larger	than	around	10^14.

gis:find-one-feature

gis:find-one-feature	VectorDataset	property-name	specified-value

Reports	the	first	VectorFeature	in	the	dataset	whose	value	for	the	property	property-name	matches	the	given	string	or
number.	Reports	nobody	if	no	matching	VectorFeature	is	found.

For	strings,	Value	comparison	is	not	case	sensitive,	and	the	wildcard	character	“*”	will	match	any	number	of	occurrences
(including	zero)	of	any	character.	Features	are	searched	in	the	order	that	they	appear	in	the	data	file	that	was	the	source	of
the	dataset,	and	searching	stops	as	soon	as	a	match	is	found.

For	numbers,	beware	that	there	are	some	numbers	that	are	too	big	to	be	represented	as	an	integer	in	NetLogo,	so	if	you
want	to	be	able	to	identify	features	based	on	a	unique	ID,	keep	the	IDs	you	use	on	the	relatively	small	side	to	play	it	safe.

http://www.faqs.org/faqs/graphics/algorithms-faq/

Any	number	that	can	fit	into	a	32	bit	unsigned	integer	will	work,	but	any	larger	than	10^14	and	you	could	run	into	issues.
(Helpfully,	the	NetLogo	app	will	warn	you	if	you	try	to	type	one	of	these	too-large	numbers	into	the	editor	if	you	want	to
check.)

gis:find-less-than

gis:find-less-than	VectorDataset	property-name	value

Reports	a	list	of	all	VectorFeatures	in	the	given	dataset	whose	value	for	the	property	property-name	is	less	than	the	given
value.	String	values	are	compared	using	case-sensitive	lexicographic	order	as	defined	in	the	Java	Documentation.	Using	a
string	value	for	a	numeric	property	or	a	numeric	value	for	a	string	property	will	cause	an	error.

gis:find-greater-than

gis:find-greater-than	VectorDataset	property-name	value

Reports	a	list	of	all	VectorFeatures	in	the	given	dataset	whose	value	for	the	property	property-name	is	greater	than	the
given	value.	String	values	are	compared	using	case-sensitive	lexicographic	order	as	defined	in	the	Java	Documentation.
Using	a	string	value	for	a	numeric	property	or	a	numeric	value	for	a	string	property	will	cause	an	error.

gis:find-range

gis:find-range	VectorDataset	property-name	minimum-value	maximum-value

Reports	a	list	of	all	VectorFeatures	in	the	given	dataset	whose	value	for	the	property	property-name	is	strictly	greater	than
minimum-value	and	strictly	less	than	maximum-value.	String	values	are	compared	using	case-sensitive	lexicographic	order
as	defined	in	the	Java	Documentation.	Using	a	string	value	for	a	numeric	property	or	a	numeric	value	for	a	string	property
will	cause	an	error.

gis:property-minimum

gis:property-minimum	VectorDataset	property-name

Reports	the	smallest	value	for	the	given	property	over	all	of	the	VectorFeatures	in	the	given	dataset.	String	values	are
compared	using	case-sensitive	lexicographic	order	as	defined	in	the	Java	Documentation.

gis:property-maximum

gis:property-maximum	VectorDataset	property-name

Reports	the	largest	value	for	the	given	property	over	all	of	the	VectorFeatures	in	the	given	dataset.	String	values	are
compared	using	case-sensitive	lexicographic	order	as	defined	in	the	Java	Documentation.

gis:apply-coverage

gis:apply-coverage	VectorDataset	property-name	patch-variable

Copies	values	from	the	given	property	of	the	VectorDataset’s	features	to	the	given	patch	variable.	The	dataset	must	be	a
polygon	dataset;	points	and	lines	are	not	supported.

For	each	patch,	it	finds	all	VectorFeatures	that	intersect	that	patch.	Then,	if	the	property	is	a	string	property,	it	computes	the
majority	value	by	computing	the	total	area	of	the	patch	covered	by	VectorFeatures	having	each	possible	value	of	the
property,	then	returning	the	value	which	represents	the	largest	proportion	of	the	patch	area.	If	the	property	is	a	numeric
property,	it	computes	a	weighted	average	of	property	values	from	all	VectorFeatures	which	intersect	the	patch,	weighted	by
the	proportion	of	the	patch	area	they	cover.

There	are	two	exceptions	to	this	default	behavior:

If	a	percentage	of	a	patches’	area	greater	than	the	coverage-maximum-threshold	is	covered	by	a	single
VectorFeature,	then	the	property	value	from	that	VectorFeature	is	copied	directly.	If	more	than	one	VectorFeature
covers	a	percentage	of	area	greater	than	the	threshold,	only	the	first	will	be	used.

If	the	total	percentage	of	a	patches’	area	covered	by	VectorFeatures	is	less	than	the	coverage-minimum-threshold,	the
target	patch	variable	is	set	to	Not	A	Number.

By	default,	the	minimum	threshold	is	10%	and	the	maximum	threshold	is	33%.	These	values	may	be	modified	using	the	four
primitives	that	follow.

gis:create-turtles-from-points

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html#compareTo(java.lang.String)

gis:create-turtles-from-points	VectorDataset	breed	commands

For	each	point	in	a	VectorDataset	of	points,	create	a	turtle	of	the	specified	breed	at	the	point’s	location.	For	each	agent
variable	(as	defined	in	<breeds>-own),	if	there	is	a	property	with	the	same	name	in	the	dataset,	set	that	variable’s	value	to	be
the	value	of	that	property.	Finally,	execute	any	commands	in	the	optional	command	block.	To	use	generic	turtles	as	the
chosen	breed,	simply	supply	turtles	as	the	breed	argument.

Property	names	and	variable	names	are	compared	case-insensitively.	Keep	in	mind	that	when	importing	shapefiles,
property	names	may	be	modified	for	backwards	compatibility	reasons.	The	names	given	by	gis:property-names	can	always
be	trusted	as	authoritative.	For	manually	specifying	a	mapping	between	property	names	and	variable	names,	see	the
create-turtles-from-points-manual	primitive.

For	multi-point	datasets,	a	turtle	is	created	at	each	point	of	multi-point	feature,	each	with	the	same	set	of	variable	values.

Built-in	variables	such	as	“label”	and	“heading”	are	supported.	NetLogo	color	numeric	representations	are	supported	for
setting	“color”	and	“label-color”,	as	well	as	the	15	default	color	string	representations	(“red”,	“blue”,	“black”,	etc.).

As	an	example:	say	you	wanted	to	create	a	turtle	of	breed	“cities/city”	for	each	city	in	a	dataset	of	cities	like	the	one	included
in	the	“GIS	General	Examples”	model	from	the	models	library.	The	cities	dataset	has	four	properties,	“NAME”,	“COUNTRY”,
“POPULATION”,	and	“CAPITAL”.	To	map	them	all	to	NetLogo	turtle	variables	and	set	their	shapes	to	circles,	you	could	do
this:

extensions	[gis]
breed	[cities	city]
cities-own	[name	country	population	capital]
globals	[cities-dataset]

to	setup
		set	cities-dataset	gis:load-dataset	"cities.shp"
		gis:create-turtles-from-points	cities-dataset	cities	[
				set	shape	"circle"
]
end

gis:create-turtles-from-points-manual

gis:create-turtles-from-points-manual	VectorDataset	breed	property-mapping	commands

Like	create-turtles-from-points,	creates	a	turtle	for	each	point	in	a	VectorDataset	of	points	and	populates	their	variables
with	the	values	of	corresponding	gis	properties.

This	primitive	can	be	used	to	specify	additional	mappings	between	gis	property	names	and	NetLogo	variable	names.	These
mappings	are	specified	as	a	list	of	lists	of	strings	like	so:	[["property-name"	"turtle-variable-name"]	["property-name"
"turtle-variable-name"]	(etc.)]

These	manual	mappings	modify	the	automatic	mapping	process	that	takes	place	in	the	create-turtles-from-points
primitive,	so	you	only	need	to	specify	the	changes	you	want	to	make	to	the	default	mappings,	and	the	rest	of	the	mappings
will	be	untouched.

To	return	to	the	cities	example	from	the	create-turtles-from-points	entry,	the	variable	name	“capital”	is	not	very
descriptive.	something	like	“is-capital?”	fits	the	NetLogo	style	much	better.	To	make	that	change,	you	would	modify	the
example	like	so.

extensions	[gis]
breed	[cities	city]
cities-own	[name	country	population	is-capital?]
globals	[cities-dataset]

to	setup
		set	cities-dataset	gis:load-dataset	"cities.shp"
		;;	Since	we	only	want	to	change	how	the	"CAPITAL"	property	is	mapped,	we	only	need	to	specify	that	one	change.
		gis:create-turtles-from-points-manual	cities-dataset	cities	[["CAPITAL"	"is-capital?"]]	[
				set	shape	"circle"
]
		;;	Each	city	turtle	still	has	a	name,	country,	and	population	set	just	like	the	non-manual	version.
end

gis:create-turtles-inside-polygon

gis:create-turtles-inside-polygon	VectorFeature	breed	n	commands

Randomly	create	“n”	turtles	of	the	given	breed	within	the	given	VectorFeature	and	for	each	agent	variable	(as	defined	in	-
own),	if	there	is	a	property	with	the	same	name	in	the	dataset,	set	that	variable’s	value	to	be	the	value	of	that	property.
Finally,	execute	any	commands	in	the	optional	command	block.	To	use	generic	turtles	as	the	chosen	breed,	simply	supply
turtles	as	the	breed	argument.

Property	names	and	variable	names	are	compared	case-insensitively.	Keep	in	mind	that	when	importing	shapefiles,
property	names	may	be	modified	for	backwards	compatibility	reasons.	The	names	given	by	gis:property-names	can	always
be	trusted	as	authoritative.	For	manually	specifying	a	mapping	between	property	names	and	variable	names,	see	the
create-turtles-inside-polygon-manual	primitive.

Built-in	variables	such	as	“label”	and	“heading”	are	supported.	NetLogo	color	numeric	representations	are	supported	for
setting	“color”	and	“label-color”,	as	well	as	the	15	default	color	string	representations	(“red”,	“blue”,	“black”,	etc.).

As	an	example:	say	you	had	a	VectorDataset	of	polygons	representing	different	zip	codes	within	a	state	and	you	want	to
create	100	different	turtles	within	each	zip	code	and	have	each	turtle	know	which	zip	code	it	originated	in.	The
VectorDataset	has	a	field	named	“zip”,	so	you	should	add	a	variable	named	“zip”	to	the	turtles	with	turtles-own.	Then,	loop
through	each	VectorFeature	in	the	VectorDataset	and	use	the	create-turtles-inside-polygon	primitive	to	create	100	new
turtles.

extensions	[gis]
globals	[dataset]
turtles-own	[zip]

to	setup
		set	dataset	gis:load-dataset	"dataset.shp"
		gis:set-world-envelope	envelope-of	dataset
		gis:set-drawing-color	red
		gis:draw	dataset	1

		foreach	gis:feature-list-of	dataset	[this-vector-feature	->
				gis:create-turtles-inside	this-vector-feature	turtles	100	[
						set	shape	"person"
]
]
end

gis:create-turtles-inside-polygon-manual

gis:create-turtles-inside-polygon-manual	VectorFeature	breed	n	property-mapping	commands

Like	create-turtles-inside-polygon,	creates	“n”	different	turtles	within	the	given	VectorFeature	and	populates	their	agent
variables	with	values	corresponding	to	the	property	values	of	the	VectorFeature.

This	primitive	can	be	used	to	specify	additional	mappings	between	gis	property	names	and	NetLogo	variable	names.	These
mappings	are	specified	as	a	list	of	lists	of	strings	like	so:	[["property-name"	"turtle-variable-name"]	["property-name"
"turtle-variable-name"]	(etc.)]

These	manual	mappings	modify	the	automatic	mapping	process	that	takes	place	in	the	create-turtles-inside-polygon
primitive,	so	you	only	need	to	specify	the	changes	you	want	to	make	to	the	default	mappings,	and	the	rest	of	the	mappings
will	be	untouched.

See	the	create-turtles-from-points-manual	entry	for	an	example	of	how	to	override	default	mappings	with	manual	ones.

gis:coverage-minimum-threshold

gis:coverage-minimum-threshold

Reports	the	current	coverage	minimum	threshold	used	by	gis:apply-coverage.

gis:set-coverage-minimum-threshold

gis:set-coverage-minimum-threshold	new-threshold

Sets	the	current	coverage	minimum	threshold	to	be	used	by	gis:apply-coverage.

gis:coverage-maximum-threshold

gis:coverage-maximum-threshold

Reports	the	current	coverage	maximum	threshold	used	by	gis:apply-coverage.

gis:set-coverage-maximum-threshold

gis:set-coverage-maximum-threshold	new-threshold

Sets	the	current	coverage	maximum	threshold	to	be	used	by	gis:apply-coverage.

gis:intersects?

gis:intersects?	x	y

Reports	true	if	the	given	objects’	spatial	representations	share	at	least	one	point	in	common,	and	false	otherwise.	The
objects	x	and	y	may	be	any	one	of:

a	VectorDataset,	in	which	case	the	object’s	spatial	representation	is	the	union	of	all	the	points,	lines,	or	polygons	the
dataset	contains.
a	VectorFeature,	in	which	case	the	object’s	spatial	representation	is	defined	by	the	point,	line,	or	polygon	the	feature
contains.
A	turtle,	in	which	case	the	spatial	representation	is	a	point.
A	link,	whose	spatial	representation	is	a	line	segment	connecting	the	two	points	represented	by	the	turtles	the	link	is
connecting.
A	patch,	whose	spatial	representation	is	a	rectangular	polygon.
An	agentset,	whose	spatial	representation	is	the	union	of	the	representations	of	all	of	the	agents	it	contains.
A	list	containing	of	any	of	the	items	listed	here,	including	another	list.	The	spatial	representation	of	such	a	list	is	the	union
of	the	spatial	representations	of	its	contents.

gis:contains?

gis:contains?	x	y

Reports	true	if	every	point	of	y’s	spatial	representation	is	also	a	part	of	x’s	spatial	representation.	Note	that	this	means	that
polygons	do	contain	their	boundaries.	The	objects	x	and	y	may	be	any	one	of

a	VectorDataset,	in	which	case	the	object’s	spatial	representation	is	the	union	of	all	the	points,	lines,	or	polygons	the
dataset	contains.
a	VectorFeature,	in	which	case	the	object’s	spatial	representation	is	defined	by	the	point,	line,	or	polygon	the	feature
contains.
A	turtle,	in	which	case	the	spatial	representation	is	a	point.
A	link,	whose	spatial	representation	is	a	line	segment	connecting	the	two	points	represented	by	the	turtles	the	link	is
connecting.
A	patch,	whose	spatial	representation	is	a	rectangular	polygon.
An	agentset,	whose	spatial	representation	is	the	union	of	the	representations	of	all	of	the	agents	it	contains.
A	list	containing	of	any	of	the	items	listed	here,	including	another	list.	The	spatial	representation	of	such	a	list	is	the	union
of	the	spatial	representations	of	its	contents.

gis:contained-by?

gis:contained-by?	x	y

Reports	true	if	every	point	of	x’s	spatial	representation	is	also	a	part	of	y’s	spatial	representation.	The	objects	x	and	y	may
be	any	one	of:

a	VectorDataset,	in	which	case	the	object’s	spatial	representation	is	the	union	of	all	the	points,	lines,	or	polygons	the
dataset	contains.
a	VectorFeature,	in	which	case	the	object’s	spatial	representation	is	defined	by	the	point,	line,	or	polygon	the	feature
contains.
A	turtle,	in	which	case	the	spatial	representation	is	a	point.
A	link,	whose	spatial	representation	is	a	line	segment	connecting	the	two	points	represented	by	the	turtles	the	link	is
connecting.
A	patch,	whose	spatial	representation	is	a	rectangular	polygon.
An	agentset,	whose	spatial	representation	is	the	union	of	the	representations	of	all	of	the	agents	it	contains.
A	list	containing	of	any	of	the	items	listed	here,	including	another	list.	The	spatial	representation	of	such	a	list	is	the	union
of	the	spatial	representations	of	its	contents.

gis:have-relationship?

gis:have-relationship?	x	y

Reports	true	if	the	spatial	representations	of	the	two	objects	have	the	given	spatial	relationship,	and	false	otherwise.	The
spatial	relationship	is	specified	using	a	Dimensionally	Extended	Nine-	Intersection	Model	(DE-9IM)	matrix.	The	matrix
consists	of	9	elements,	each	of	which	specifies	the	required	relationship	between	the	two	objects’	interior	space,	boundary
space,	or	exterior	space.	The	elements	must	have	one	of	six	possible	values:

“T”,	meaning	the	spaces	must	intersect	in	some	way
“F”,	meaning	the	spaces	must	not	intersect	in	any	way
“0”,	meaning	the	dimension	of	the	spaces’	intersection	must	be	zero	(i.e.,	it	must	be	a	point	or	non-empty	set	of	points).
“1”,	meaning	the	dimension	of	the	spaces’	intersection	must	be	one	(i.e.,	it	must	be	a	line	or	non-empty	set	of	line
segments).
“2”,	meaning	the	dimension	of	the	spaces’	intersection	must	be	two	(i.e.,	it	must	be	a	polygon	or	set	of	polygons	whose
area	is	greater	than	zero).
“*”,	meaning	that	the	two	spaces	may	have	any	relationship.

For	example,	this	matrix:

x

Interior Boundary Exterior

y

Interior T * *

Boundary * * *

Exterior F F *

would	return	true	if	and	only	if	some	part	of	object	x’s	interior	lies	inside	object	y’s	interior,	and	no	part	of	object	x’s	interior	or
boundary	intersects	object	y’s	exterior.	This	is	essentially	a	more	restrictive	form	of	the	contains?	primitive;	one	in	which
polygons	are	not	considered	to	contain	their	boundaries.

The	matrix	is	given	to	the	have-relationship?	primitive	as	a	string,	whose	elements	are	given	in	the	following	order:

1 2 3

4 5 6

7 8 9

So	to	use	the	example	matrix	above,	you	would	write:

gis:have-relationship?	x	y	"T*****FF*"

A	much	more	detailed	and	formal	description	of	the	DE-9IM	matrix	and	the	associated	point-set	theory	can	be	found	in	the
OpenGIS	Simple	Features	Specification	for	SQL.

The	objects	x	and	y	may	be	any	one	of:

a	VectorDataset,	in	which	case	the	object’s	spatial	representation	is	the	union	of	all	the	points,	lines,	or	polygons	the
dataset	contains.
a	VectorFeature,	in	which	case	the	object’s	spatial	representation	is	defined	by	the	point,	line,	or	polygon	the	feature
contains.
A	turtle,	in	which	case	the	spatial	representation	is	a	point.
A	link,	whose	spatial	representation	is	a	line	segment	connecting	the	two	points	represented	by	the	turtles	the	link	is
connecting.
A	patch,	whose	spatial	representation	is	a	rectangular	polygon.
An	agentset,	whose	spatial	representation	is	the	union	of	the	representations	of	all	of	the	agents	it	contains.
A	list	containing	of	any	of	the	items	listed	here,	including	another	list.	The	spatial	representation	of	such	a	list	is	the	union
of	the	spatial	representations	of	its	contents.

gis:relationship-of

gis:relationship-of	x	y

Reports	the	Dimensionally	Extended	Nine-Intersection	Model	(DE-9IM)	matrix	that	describes	the	spatial	relationship	of
the	two	objects.	The	matrix	consists	of	9	elements,	each	of	which	describes	the	relationship	between	the	two	objects’
interior	space,	boundary	space,	or	exterior	space.	Each	element	will	describe	the	dimension	of	the	intersection	of	two
spaces,	meaning	that	it	may	have	one	of	four	possible	values:

“-1”,	meaning	the	spaces	do	not	intersect
“0”,	meaning	the	dimension	of	the	spaces’	intersection	is	zero	(i.e.,	they	intersect	at	a	point	or	set	of	points).
“1”,	meaning	the	dimension	of	the	spaces’	intersection	is	one	(i.e.,	they	intersect	along	one	or	more	lines).
“2”,	meaning	the	dimension	of	the	spaces’	intersection	is	two	(i.e.,	their	intersection	is	a	non-empty	polygon).

For	example,	the	two	polygons	x	and	y	shown	here:

have	the	following	DE-9IM	matrix:

x

http://www.opengeospatial.org/standards/sfs

Interior Boundary Exterior

y

Interior 2 1 2

Boundary 1 0 1

Exterior 2 1 2

Which	would	be	reported	by	the	relationship-of	primitive	as	the	string	“212101212”.

A	much	more	detailed	and	formal	description	of	the	DE-9IM	matrix	and	the	associated	point-set	theory	can	be	found	in	the
OpenGIS	Simple	Features	Specification	for	SQL.

The	objects	x	and	y	may	be	any	one	of:

a	VectorDataset,	in	which	case	the	object’s	spatial	representation	is	the	union	of	all	the	points,	lines,	or	polygons	the
dataset	contains.
a	VectorFeature,	in	which	case	the	object’s	spatial	representation	is	defined	by	the	point,	line,	or	polygon	the	feature
contains.
A	turtle,	in	which	case	the	spatial	representation	is	a	point.
A	link,	whose	spatial	representation	is	a	line	segment	connecting	the	two	points	represented	by	the	turtles	the	link	is
connecting.
A	patch,	whose	spatial	representation	is	a	rectangular	polygon.
An	agentset,	whose	spatial	representation	is	the	union	of	the	representations	of	all	of	the	agents	it	contains.
A	list	containing	of	any	of	the	items	listed	here,	including	another	list.	The	spatial	representation	of	such	a	list	is	the	union
of	the	spatial	representations	of	its	contents.

gis:intersecting

patch-set	gis:intersecting	data

Reports	a	new	agent	set	containing	only	those	members	of	the	given	agent	set	which	intersect	given	GIS	data,	which	may
be	any	one	of:	a	VectorDataset,	a	VectorFeature,	an	Agent,	an	Agent	Set,	or	a	list	containing	any	of	the	above.

gis:width-of

gis:width-of	RasterDataset

Reports	the	number	of	columns	in	the	dataset.	Note	that	this	is	the	number	of	cells	from	left	to	right,	not	the	width	of	the
dataset	in	GIS	space.

gis:height-of

gis:height-of	RasterDataset

Reports	the	number	of	rows	in	the	dataset.	Note	that	this	is	the	number	of	cells	from	top	to	bottom,	not	the	height	of	the
dataset	in	GIS	space.

gis:raster-value

gis:raster-value	RasterDataset	x	y

Reports	the	value	of	the	given	raster	dataset	in	the	given	cell.	Cell	coordinates	are	numbered	from	left	to	right,	and	from	top
to	bottom,	beginning	with	zero.	So	the	upper	left	cell	is	(0,	0),	and	the	bottom	right	cell	is	(gis:width-of	dataset	-	1,
gis:height-of	dataset 	-	1).

gis:set-raster-value

gis:set-raster-value	RasterDataset	x	y	value

Sets	the	value	of	the	given	raster	dataset	at	the	given	cell	to	a	new	value.	Cell	coordinates	are	numbered	from	left	to	right,
and	from	top	to	bottom,	beginning	with	zero.	So	the	upper	left	cell	is	(0,	0),	and	the	bottom	right	cell	is	(gis:width-of
dataset	-	1,	gis:height-of	dataset 	-	1).

gis:minimum-of

gis:minimum-of	RasterDataset

Reports	the	highest	value	in	the	given	raster	dataset.

http://www.opengeospatial.org/standards/sfs

gis:maximum-of

gis:maximum-of	RasterDataset

Reports	the	lowest	value	in	the	given	raster	dataset.

gis:sampling-method-of

gis:sampling-method-of	RasterDataset

Reports	the	sampling	method	used	to	compute	the	value	of	the	given	raster	dataset	at	a	single	point,	or	over	an	area
smaller	than	a	single	raster	cell.	Sampling	is	performed	by	the	GIS	extension	primitives	raster-sample,	resample,	convolve,
and	apply-raster.	The	sampling	method	will	be	one	of	the	following:

"NEAREST_NEIGHBOR":	the	value	of	the	cell	nearest	the	sampling	location	is	used.
"BILINEAR":	the	value	of	the	four	nearest	cells	are	sampled	by	linear	weighting,	according	to	their	proximity	to	the
sampling	site.
"BICUBIC":	the	value	of	the	sixteen	nearest	cells	are	sampled,	and	their	values	are	combined	by	weight	according	to	a
piecewise	cubic	polynomial	recommended	by	Rifman	(see	Digital	Image	Warping,	George	Wolberg,	1990,	pp	129-131,
IEEE	Computer	Society	Press).
"BICUBIC_2":	the	value	is	sampled	using	the	same	procedure	and	the	same	polynomial	as	with	BICUBIC	above,	but	using	a
different	coefficient.	This	method	may	produce	somewhat	sharper	results	than	BICUBIC,	but	that	result	is	data	dependent.

For	more	information	on	these	sampling	methods	and	on	raster	sampling	in	general,	see	this	wikipedia	article.

gis:set-sampling-method

gis:set-sampling-method	RasterDataset	sampling-method

Sets	the	sampling	method	used	by	the	given	raster	dataset	at	a	single	point,	or	over	an	area	smaller	than	a	single	raster
cell.	Sampling	is	performed	by	the	GIS	extension	primitives	raster-sample,	resample,	convolve,	and	apply-raster.	The
sampling	method	must	be	one	of	the	following:

"NEAREST_NEIGHBOR"
"BILINEAR"
"BICUBIC"
"BICUBIC_2"

See	sampling-method-of	above	for	a	more	specific	description	of	each	sampling	method.

gis:raster-sample

gis:raster-sample	RasterDataset	sample-location

Reports	the	value	of	the	given	raster	over	the	given	location.	The	location	may	be	any	of	the	following:

A	list	of	length	2,	which	is	taken	to	represent	a	point	in	netlogo	space	([xcor	ycor])	of	the	sort	reported	by	location-of
Vertex.	The	raster	dataset	is	sampled	at	the	point	of	that	location.
A	list	of	length	4,	which	is	taken	to	represent	an	envelope	in	GIS	space,	of	the	sort	reported	by	envelope-of.	The	raster
dataset	is	sampled	over	the	area	of	that	envelope.
A	patch,	in	which	case	the	raster	dataset	is	sampled	over	the	area	of	the	patch.
A	turtle,	in	which	case	the	raster	dataset	is	sampled	at	the	location	of	that	turtle.
A	Vertex,	in	which	case	the	raster	dataset	is	sampled	at	the	location	of	that	Vertex.

If	the	requested	location	is	outside	the	area	covered	by	the	raster	dataset,	this	primitive	reports	the	special	value
representing	“not	a	number”,	which	is	printed	by	NetLogo	as	“NaN”.	Using	the	special	“not	a	number”	value	as	an	argument
to	primitives	that	expect	a	number	may	cause	an	error,	but	you	can	test	the	value	reported	by	this	primitive	to	filter	out	“not	a
number”	values.	A	value	that	is	not	a	number	will	be	neither	less	than	nor	greater	than	a	number	value,	so	you	can	detect
“not	a	number”	values	using	the	following:

let	value	gis:raster-sample	dataset	turtle	0
;	set	color	to	blue	if	value	is	a	number,	red	if	value	is	"not	a	number"
ifelse	(value	<=	0)	or	(value	>=	0)
[set	color	blue]
[set	color	red]

If	the	requested	location	is	a	point,	the	sample	is	always	computed	using	the	method	set	by	set-sampling-method.	If	the
requested	location	is	an	area	(i.e.,	an	envelope	or	patch),	the	sample	is	computed	by	taking	the	average	of	all	raster	cells
covered	by	the	requested	area.

gis:raster-world-envelope

https://en.wikipedia.org/wiki/Image_scaling

gis:raster-world-envelope	RasterDataset	x	y

Reports	the	GIS	envelope	needed	to	match	the	boundaries	of	NetLogo	patches	with	the	boundaries	of	cells	in	the	given
raster	dataset.	This	envelope	could	then	be	used	as	an	argument	to	set-transformation-ds.

There	may	be	more	cells	in	the	dataset	than	there	are	patches	in	the	NetLogo	world.	In	that	case,	you	will	need	to	select	a
subset	of	cells	in	the	dataset	by	specifying	which	cell	in	the	dataset	you	want	to	match	with	the	upper-left	corner	of	the
NetLogo	world.	Cells	are	numbered	from	left	to	right,	and	from	top	to	bottom,	beginning	with	zero.	So	the	upper	left	cell	is	(0,
0),	and	the	bottom	right	cell	is	(gis:width-of	dataset	-	1,	gis:height-of	dataset 	-	1).

gis:create-raster

gis:create-raster	width	height	envelope

Creates	and	reports	a	new,	empty	raster	dataset	with	the	given	number	of	columns	and	rows,	covering	the	given	envelope.

gis:resample

gis:resample	RasterDataset	envelope	width	height

Reports	a	new	dataset	that	consists	of	the	given	RasterDataset	resampled	to	cover	the	given	envelope	and	to	contain	the
given	number	of	columns	and	rows.	If	the	new	raster’s	cells	are	smaller	than	the	existing	raster’s	cells,	they	will	be
resampled	using	the	method	set	by	set-sampling-method.	If	the	new	cells	are	larger	than	the	original	cells,	they	will	be
sampled	using	the	"NEAREST_NEIGHBOR"	method.

gis:convolve

gis:convolve	RasterDataset	kernel-rows	kernel-columns	kernel	key-column	key-row

Reports	a	new	raster	whose	data	consists	of	the	given	raster	convolved	with	the	given	kernel.

A	convolution	is	a	mathematical	operation	that	computes	each	output	cell	by	multiplying	elements	of	a	kernel	with	the	cell
values	surrounding	a	particular	source	cell.	A	kernel	is	a	matrix	of	values,	with	one	particular	value	defined	as	the	“key
element”,	the	value	that	is	centered	over	the	source	cell	corresponding	to	the	destination	cell	whose	value	is	being
computed.

The	values	of	the	kernel	matrix	are	given	as	a	list,	which	enumerates	the	elements	of	the	matrix	from	left	to	right,	top	to
bottom.	So	the	elements	of	a	3-by-3	matrix	would	be	listed	in	the	following	order:

1 2 3

4 5 6

7 8 9

The	key	element	is	specified	by	column	and	row	within	the	matrix.	Columns	are	numbered	from	left	to	right,	beginning	with
zero.	Rows	are	numbered	from	top	to	bottom,	also	beginning	with	zero.	So,	for	example,	the	kernel	for	the	horizontal	Sobel
operator,	which	looks	like	this:

1 0 -1

2 0	
(key)

-2

1 0 -1

would	be	specified	as	follows:

let	horizontal-gradient	gis:convolve	dataset	3	3	[1	0	-1	2	0	-2	1	0	-1]	1	1

gis:apply-raster

gis:apply-raster	RasterDataset	patch-variable

Copies	values	from	the	given	raster	dataset	to	the	given	patch	variable,	resampling	the	raster	as	necessary	so	that	its	cell
boundaries	match	up	with	NetLogo	patch	boundaries.	This	resampling	is	done	as	if	using	resample	rather	than	raster-
sample,	for	the	sake	of	efficiency.	However,	patches	not	covered	by	the	raster	are	assigned	values	of	“not	a	number”	in	the
same	way	that	raster-sample	reports	values	for	locations	outside	the	raster.

gis:drawing-color

https://en.wikipedia.org/wiki/Sobel_operator

gis:drawing-color

Reports	the	color	used	by	the	GIS	extension	to	draw	vector	features	into	the	NetLogo	drawing	layer.	Color	can	be
represented	either	as	a	NetLogo	color	(a	single	number	between	zero	and	140)	or	an	RGB	color	(a	list	of	3	numbers).	See
details	in	the	Colors	section	of	the	Programming	Guide.

gis:set-drawing-color

gis:set-drawing-color	color

Sets	the	color	used	by	the	GIS	extension	to	draw	vector	features	into	the	NetLogo	drawing	layer.	Color	can	be	represented
either	as	a	NetLogo	color	(a	single	number	between	zero	and	140)	or	an	RGB	color	(a	list	of	3	numbers).	See	details	in	the
Colors	section	of	the	Programming	Guide.

gis:draw

gis:draw	vector-data	line-thickness

Draws	the	given	vector	data	to	the	NetLogo	drawing	layer,	using	the	current	GIS	drawing	color,	with	the	given	line
thickness.	The	data	may	consist	either	of	an	entire	VectorDataset,	or	a	single	VectorFeature.	This	primitive	draws	only	the
boundary	of	polygon	data,	and	for	point	data,	it	fills	a	circle	with	a	radius	equal	to	the	line	thickness.

gis:fill

gis:fill	vector-data	line-thickness

Fills	the	given	vector	data	in	the	NetLogo	drawing	layer	using	the	current	GIS	drawing	color,	using	the	given	line	thickness
around	the	edges.	The	data	may	consist	either	of	an	entire	VectorDataset,	or	a	single	VectorFeature.	For	point	data,	it	fills	a
circle	with	a	radius	equal	to	the	line	thickness.

gis:paint

gis:paint	RasterDataset	transparency

Paints	the	given	raster	data	to	the	NetLogo	drawing	layer.	The	highest	value	in	the	dataset	is	painted	white,	the	lowest	is
painted	in	black,	and	the	other	values	are	painted	in	shades	of	gray	scaled	linearly	between	white	and	black.

The	transparency	input	determines	how	transparent	the	new	image	in	the	drawing	will	be.	Valid	inputs	range	from	0
(completely	opaque)	to	255	(completely	transparent).

gis:import-wms-drawing

gis:import-wms-drawing	server-url	spatial-reference	layers	transparency

Imports	an	image	into	the	NetLogo	drawing	layer	using	the	Web	Mapping	Service	protocol,	as	defined	by	the	Open
Geospatial	Consortium.

The	spatial	reference	and	layers	inputs	should	be	given	as	strings.	The	spatial	reference	input	corresponds	to	the	SRS
parameter	to	the	GetMap	request	as	defined	in	section	7.2.3.5	of	version	1.1.1	of	the	WMS	standard.	The	layers	input
corresponds	to	the	LAYERS	parameter	to	the	as	defined	in	7.2.3.3	of	version	1.1.1	of	the	WMS	standard.

You	can	find	the	list	of	valid	spatial	reference	codes	and	layer	names	by	examining	the	response	to	a	GetCapabilities
request	to	the	WMS	server.	Consult	the	relevant	standard	for	instructions	on	how	to	issue	a	GetCapabilities	request	to	the
server	and	how	to	interpret	the	results.

The	transparency	input	determines	how	transparent	the	new	image	in	the	drawing	will	be.	Valid	inputs	range	from	0
(completely	opaque)	to	255	(completely	transparent).

http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/

NetLogo	Gogo	Extension

NetLogoLab	and	the	GoGo	Board	Extension	for	sensors	and	robotics

This	is	the	extension	for	physical	computing,	using	sensors,	motors,	etc	in	NetLogo.	It	interfaces	with	GoGo	boards
running	Human	Interface	Driver	(HID)	firmware,	and	it	replaces	the	old	GoGo	Extension,	which	used	USB-serial
communications.	(The	USB-serial	GoGo	extension	is	still	available	for	NetLogo	5.3.1	and	earlier	here.)

This	extension	comes	bundled	with	NetLogo	5.2	and	later.	The	source	code	is	hosted	online	at
https://github.com/NetLogo/GoGo-HID-Extension.

NetLogoLab	and	the	GoGo	Board	Extension

What	is	NetLogoLab?

NetLogoLab	is	the	technological	infrastructure	that	connects	NetLogo	and	the	physical	world.	It	can	be	used	for
robotics,	interactive	art,	scientific	investigations,	and	model	validation.	This	infrastructure	was	created	at	the	CCL
by	Paulo	Blikstein	and	Uri	Wilensky	in	2005	as	part	of	the	Bifocal	Modeling	project.	For	more	information,	please
check	the	new	and	old	websites,	where	you	will	find	academic	papers,	models,	and	demos.

NetLogoLab	is	comprised	of	the	following	software	and	hardware	components:

1.	 A	NetLogo	extension	to	control	a	robotics	or	data-logging	board.
2.	 A	robotics	or	data-logging	board	(also	know	as	a	serial	interface	board,	or	analog-to-digital	board).
3.	 Sensor	and	actuator	toolkits.
4.	 NetLogo	models.

NetLogo’s	robotics/data-logging	board	of	choice	is	the	GoGo	Board,	an	open-source,	easy-to-build,	low-cost	interface
designed	by	Arnan	Sipitakiat	and	Paulo	Blikstein,	first	at	the	MIT	Media	Lab,	then	at	Northwestern’s	CCL,	and	is	in
continuous	refinement.	Other	robotics	hardware	can	be	used	with	NetLogo,	including	those	that	are	commercially
available,	such	as	Arduino	boards,	Vernier	and	Pasco	sensors	and	actuators,	Phidgets,	and	VEX	kits,	but	specific
extensions	have	not	yet	been	developed	for	each	of	those	platforms.	So	far,	only	the	GoGo	Board	extension	is
available	with	NetLogo’s	standard	distribution.

The	GoGo	Board	NetLogo	extension

The	GoGo	Extension	for	NetLogo	provides	primitives	to	communicate	with	a	GoGo	Board.	This	enables	the	user	to
connect	NetLogo	with	the	physical	world	using	sensors,	motors,	light	bulbs,	LEDs,	relays	and	other	devices.

GoGo	Board:	a	low-cost	robotics	and	data-logging	board

A	GoGo	Board	is	a	low	cost,	general	purpose	serial	interface	board	especially	designed	to	be	used	in	school	and	for
educational	projects.	It	was	created	by	Arnan	Sipitakiat	and	Paulo	Blikstein	at	the	MIT	Media	Lab	in	2001,	and	has
been	actively	developed	since	then.	It	is	currently	used	in	over	10	countries,	such	as	the	United	States,	China,
Thailand,	South	Korea,	Brazil,	Portugal,	Mexico,	Malaysia,	and	Egypt.	For	more	information	see	the	the	gogo	board
about	page.

Up	to	8	sensors	(i.e.,	temperature,	light,	pressure)	and	4	output	devices	(i.e.,	motors,	light	bulbs,	LEDs,	relays)	can
be	connected	to	the	board	simultaneously.	The	board	also	has	a	connector	for	add-on	devices	(such	as	displays,
Bluetooth	or	ZigBee	wireless	modules,	voice	recorders,	real-time	clock,	and	GPS).

Sensor	and	actuator	toolkits

NetLogo	models	can	interact	with	the	physical	world	in	two	ways.	First,	they	can	gather	data	from	the	environment.
This	information	can	be	used	by	the	model	to	change	or	calibrate	its	behavior.	This	data	is	gathered	using	electronic
sensors,	which	can	measure	a	wide	range	of	phenomena:	temperature,	light,	touch	(see	pictures	below),	pH,
chemical	concentration,	pressure,	etc.	See	the	Gogo	docs	here	for	info	on	the	the	sensors	that	are	included	with	a
GoGo	board	kit.

The	second	mode	of	interaction	between	NetLogo	and	the	physical	world	is	the	control	of	output	devices,	or
“actuators”	-	motors,	light	bulbs	(see	pictures	below),	LEDs,	and	more	complex	devices	that	include	these	outputs
such	as	toys,	remote	controlled	cars,	electrical	appliances,	and	automated	laboratory	equipment.	See	the	Using
Output	Ports	section	of	the	GoGo	docs	for	more	info.

The	GoGo	board	also	comes	with	Terminal	Connectors	to	wire	in	additional	sensor	that	don’t	come	included.
Additional	sensors	and	actuators	can	be	found	through	online	retailers	such	as	Digikey,	Mouser,	Phidgets,	Spark
Fun,	and	Solarbotics.

https://github.com/NetLogo/GoGo-Serial-Extension
https://github.com/NetLogo/GoGo-HID-Extension
http://www.blikstein.com/paulo
https://tltlab.org/bifocal-modeling/
http://ccl.northwestern.edu/netlogolab/
http://www.gogoboard.org/
http://alumni.media.mit.edu/~arnans/
http://www.blikstein.com/paulo
http://www.arduino.cc/
http://www.vernier.com/
http://www.pasco.com/
http://www.phidgets.com/
http://www.vexrobotics.com/
http://www.gogoboard.org/
http://alumni.media.mit.edu/~arnans/
http://www.blikstein.com/paulo
http://www.media.mit.edu/
https://gogoboard.org/about/
https://docs.gogoboard.org/#/en/sensor/sensor-set
https://docs.gogoboard.org/#/en/04-output
https://docs.gogoboard.org/#/en/sensor/sensor-set?id=terminal-connector-
http://www.digikey.com/
http://www.mouser.com/
http://www.phidgets.com/
http://www.sparkfun.com/
http://www.solarbotics.com/

NetLogo	models

To	make	use	of	the	GoGo	Board	extension	and	the	NetLogoLab	framework,	users	need	to	create	NetLogo	models
using	the	special	primitives	made	available	by	the	extension.	Later	in	this	document,	we	will	provide	examples	of
models	that	do	this.

How	to	get	a	GoGo	Board?

Gogo	Boards	can	be	purchased	from	the	SEED	Foundation.

Installing	and	testing	the	GoGo	Extension

The	GoGo	Board	connects	with	the	computer	via	the	USB	port.	Turn	the	GoGo	Board	on	using	the	switch	behind	the
power	connector:	the	board	will	beep	twice	and	the	red	light	will	turn	on.

Windows

Plug	in	your	GoGo	board	and	go	to	https://code.gogoboard.org/.	The	website	should	prompt	you	to	download	the
gogo	plugin	for	Windows.	You	can	now	try	using	the	NetLogo	GoGo	extension.	If	you	don’t	have	Java	installed,	you
will	be	prompted	to	locate	your	java	executable.	You	will	need	to	install	Java	to	get	the	extension	to	work.	We
recommend	using	the	Java	17	which	is	the	version	used	by	NetLogo	as	of	NetLogo	6.3.0,	installer
here:	https://www.oracle.com/java/technologies/downloads/#java17.	You	can	check	which	Java	version	your	system
is	using	by	running	java	-version	in	the	command	line.

Mac	OS	X

The	GoGo	extension	requires	no	special	installation	on	Mac	OS	X.	If	you	don’t	have	Java	installed,	you	will	need	to
install	Java	17	which	is	the	version	used	by	NetLogo	as	of	NetLogo	6.3.0,	installer
here:	https://www.oracle.com/java/technologies/downloads/#java17.	You	can	check	which	Java	version	your	system
is	using	by	running	java	-version	in	the	command	line.

Linux

Many	versions	of	Linux	require	no	special	installation.

Usage

The	GoGo	Extension	comes	preinstalled	when	you	download	and	install	NetLogo.	To	use	the	extension	in	your
model,	add	this	line	to	the	top	of	your	Code	tab:

extensions	[gogo]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so	just	add	gogo	to	the	list.

After	loading	the	extension,	you	can	see	if	the	gogo	board	is	connected	by	seeing	if	it	will	beep	when	you	type	into
the	command	center:

gogo:beep

Or,	you	can	see	whether	one	or	more	HID-based	gogos	are	on	and	attached	to	the	computer	by	typing	the	following
into	the	command	center:

gogo:howmany-gogos

For	examples	that	use	the	GoGo	extension	see	GoGoMonitor	and	GoGoMonitorSimple	models	in	the	Models	Library
and	the	example	projects	at	the	bottom	of	this	page.

Changes

Compared	to	previous	versions	of	the	GoGo	extension,	this	version	offers:

Improved	robustness.	With	prior	versions	of	the	GoGo	extension,	crashes	were	fairly	common	due	to	problems	in
the	USB-Serial	stack	across	platforms.	The	switch	to	HID	improved	robustness,	and	the	new	extension	also	uses	a
“daemon”	architecture	which	shields	NetLogo	from	any	problems	that	may	occur	in	direct	communication	with	the

https://www.seeedstudio.com/GoGo-Board-Kit-p-2717.html
https://code.gogoboard.org/
https://www.oracle.com/java/technologies/downloads/#java17
https://www.oracle.com/java/technologies/downloads/#java17

GoGo	board.	The	result	is	a	substantial	reduction	in	the	number	of	crashes	of	NetLogo.
No	Installation	of	Drivers.	Because	the	new	GoGo	firmware	presents	the	board	as	an	HID	device,	the	extension
could	be	written	so	as	not	to	require	installing	drivers.	This	means	there	is	no	need	for	the	user	to	have
administrator	rights	on	the	computer.
Directionality	for	Motors.	The	board	now	has	polarity-ensuring	output	connectors,	so	that	“counterclockwise”	or
“clockwise”	can	now	be	specified	in	code.

Primitives

Other	Outputs

gogo:led	gogo:beep

Utilities

gogo:read-all

General

gogo:primitives	gogo:howmany-gogos

Sensors

gogo:read-sensors	gogo:read-sensor

Outputs	and	Servos

gogo:talk-to-output-ports	gogo:set-output-port-power	gogo:output-port-on	gogo:output-port-off	gogo:output-port-
clockwise	gogo:output-port-counterclockwise	gogo:set-servo

gogo:primitives

gogo:primitives

Returns	a	list	of	the	primitives	of	this	extension.

gogo:howmany-gogos

gogo:howmany-gogos

Reports	the	number	of	USB	HID	devices	visible	to	the	computer	and	having	the	correct	vendor	and	product	ID	to	be
a	GoGo	board.	A	board	will	only	be	detected	if	it	is	both	connected	and	powered	on.	Using	this	primitive	is	one	way	to
determine	quickly	whether	a	GoGo	board	has	the	HID	firmware	loaded.	(A	USB-Serial	version	of	the	board	will	not	be
detected.).

gogo:talk-to-output-ports

gogo:talk-to-output-ports	list-of-portnames

Establishes	a	list	of	output	ports	that	will	be	controlled	with	subsequent	output-port	commands.	See	below…

gogo:set-output-port-power

gogo:set-output-port-power	power-level

power-level	is	a	number	between	0	and	100,	reflecting	the	percentage	of	maximum	power.	Sets	the	amount	of
power	that	will	be	fed	to	the	output	ports	indicated	in	talk-to-output-ports.	This	will	not	affect	the	on-off	state	of	the
output	ports.	So,	for	example,	if	a	motor	is	already	connected	to	an	output	port	and	running,	changing	its	power	will
change	its	speed.	If	the	motor	is	not	running,	changing	the	power	level	will	not	turn	it	on;	instead,	it	will	affect	the
speed	at	which	the	motor	starts	when	it	is	turned	on	with	output-port-on.

gogo:output-port-on

gogo:output-port-on

Turns	on	the	output	ports	which	have	been	indicated	with	talk-to-output-ports.	If	none	have	been	set	with	talk-to-
output-ports,	no	ports	will	be	turned	on.

gogo:output-port-off

gogo:output-port-off

Turns	off	the	output	ports	which	have	been	indicated	with	talk-to-output-ports.	If	none	have	been	set	with	talk-to-
output-ports,	no	ports	will	be	turned	off.

gogo:output-port-clockwise

gogo:output-port-clockwise

Sets	the	polarity	of	the	output	port(s)	that	have	been	specified	with	talk-to-output-ports,	so	that	a	motor	attached	to
one	of	these	ports	would	turn	clockwise.

gogo:output-port-counterclockwise

gogo:output-port-counterclockwise

Sets	the	polarity	of	the	output	port(s)	that	have	been	specified	with	talk-to-output-ports,	so	that	a	motor	attached	to
one	of	these	ports	would	turn	counterclockwise.

gogo:set-servo

gogo:set-servo	number

Sets	the	Pulse-Width	Modulation	(PWM)	proportion	of	the	output	port(s)	that	have	been	specified	with	talk-to-output-
ports.	Note	that	the	servo	connectors	are	the	male	pins	next	to	the	standard	motor	connectors.	Different	servos
respond	to	different	PWM	ranges,	but	all	servos	read	PWM	proportions	and	set	the	position	of	their	main	gear
accordingly.

gogo:led

gogo:led	on-or-off

Turns	the	user-LED	on	or	off,	depending	on	the	argument.	gogo:led	1	turns	the	LED	on;	gogo:led	0	turns	it	off.

gogo:beep

gogo:beep

Causes	the	GoGo	board	to	beep.

gogo:read-sensors

gogo:read-sensors

Reports	a	list	containing	the	current	readings	of	all	eight	sensors	ports	of	the	GoGo.

gogo:read-sensor

gogo:read-sensor	which-sensor

Reports	the	value	of	sensor	number	which-sensor,	where	which-sensor	is	a	number	between	0-7.

gogo:read-all

gogo:read-all

Reports	all	data	available	from	the	board,	in	a	raw-list	form	useful	for	debugging.

gogo:send-bytes

gogo:send-bytes	list

Sends	a	list	of	bytes	to	the	GoGo	board.	Useful	for	debugging	or	for	testing	any	new	or	future	functionality	that	is
added	to	the	GoGo	board	with	new	firmware	updates.

Examples	of	NetLogoLab	models

Controlling	a	car

The	first	step	when	creating	a	NetLogoLab	model	is	to	add	the	extensions	keyword	to	NetLogo’s	Code	tab.	Just	go
to	the	Code	tab	and	add	this	line:

extensions	[gogo]

Now	let’s	start	the	model.	Imagine	that	we	want	to	control	a	car	with	four	wheels	and	two	motors	attached	to	the	back
wheels.	We	will	assume	that	you	have	built	such	as	car	and	connected	the	motors	to	the	output	ports	“a”	and	“b”	on
the	GoGo	board.	One	very	simple	approach	could	be	to	create	two	buttons	for	each	motor,	“on”	and	“off”:

The	code	associated	with	these	buttons	is	very	simple:	for	the	“on”	button,	we	could	simply	have

gogo:talk-to-output-ports	["a"]		
gogo:output-port-on
				
For	the	off	button,	it	would	be	very	similar:
				
gogo:talk-to-output-ports	["a"]
gogo:output-port-off

The	other	set	of	“on”	and	“off”	buttons,	used	to	control	the	second	motor,	would	have	very	similar	code,	except	that
we	would	use	the	second	output	port	(“b”),	so:

gogo:talk-to-output-ports	["b"]

We	could	make	our	model	more	interesting	by	adding	a	“toggle	direction”	button,	adding	a	button	with	the	following
code,	which	would	reverse	the	direction	of	motors	“a”	and	“b”:

gogo:talk-to-output-ports	["a"	"b"]
gogo:output-port-reverse

A	simple	sensing	project

To	create	a	simple	sensing	project,	we	will	assume	that	you	have	added	the	GoGo	extension	to	your	model	and
successfully	opened	a	connection	to	the	GoGo	board,	i.e.,	adding	the	“extensions”	command	to	the	Code	Tab.	For
this	sensing	project	we	do	not	need	motors,	but	we	will	need	another	device:	a	temperature	sensor.	A	standard
GoGo	board	comes	with	a	temperature	sensor.	It	is	labeled	(TEMP	Sensor).	More	info	on	the	sensors	that	come
standard	with	a	gogo	board	can	be	found	in	the	GoGo	Docs.	The	simplest	use	of	a	temperature	sensor,	obviously,	is
to	display	the	temperature.	We	could	achieve	this	by	plugging	the	sensor	in	to	input	1	and	adding	a	monitor	to	the

https://docs.gogoboard.org/#/en/sensor/sensor-set

NetLogo	interface	with	this	code:

gogo:read-sensor	1

The	GoGo	docs	say,	“Note	that	the	readout	is	not	in	Celsius	or	Fahrenheit.	The	value	is	reflects	the	resistance	of	the
sensor.	Mappings	between	the	resistance	and	the	standard	units	must	be	done	manually.”	So,	to	figure	out	how
these	values	map	to	a	real	temperature,	you	will	need	to	use	a	thermometer	and	see	how	the	reading	on	the
temperature	sensor	corresponds	to	the	temperature	in	degrees.	If	you	found	out	that	the	conversion	is	to	divide	by
30,	the	monitor	on	the	NetLogo	interface	could	be	changed	to:

gogo:read-sensor	1	/	30

The	sensor	value	could	also	be	used	to	control	on-screen	objects,	such	as	turtles.	For	example,	let	us	create	two
buttons:	a	“create	one	turtle”	button,	which	will	clear	the	world	and	create	a	turtle,	and	a	“move	with	heat”	button,	that
will	cause	the	turtle	to	move	forwards	depending	on	the	temperature	reading	from	the	sensor.	The	code	would	look
like	this:

to	create-one-turtle
		clear-all
		create-turtle
end
				
to	move-with-heat
		if	gogo:read-sensor	1	>	500
				[forward	1]
end

If	the	“move	with	heat”	forever	button	is	activated	and	the	user	heats	up	the	sensor	(by	rubbing	it,	or	slowly	bringing	a
flame	near	it),	the	heat	threshold	will	be	achieved	(>	500)	and	the	turtle	will	move.

A	more	elaborate	use	of	this	sensor	apparatus	would	be	to	control	output	devices,	such	as	motors.	The	user	could,
for	example,	turn	a	motor	on	when	the	value	from	the	temperature	sensor	reaches	500,	using	the	following	code:

to	turn-motor-on-with-heat
		if	gogo:read-sensor	1	>	500
		[
				gogo:talk-to-output-ports	["a"]
				gogo:output-port-on
]
end

Another	possible	use	of	the	sensing	primitives	is	to	plot	and	log	data.	Logging	could	be	useful	for	more	elaborate
data	analysis	and	comparison,	and	can	be	achieved	with	NetLogo’s	list	commands.	For	example,	if	the	user	wants	to
log	sensor	values	from	sensor	1	every	0.5	seconds,	the	code	could	look	like	this:

to	log-data-from-sensor
		set	data-vector	lput	(gogo:read-sensor	1)	data-vector
		wait	0.5
end

Finally,	plotting	data	is	straightforward.	The	following	code,	for	example,	would	create	a	graph	for	the	value	of	sensor
1:

plot	(gogo:read-sensor	1)

NetLogo	Ls	Extension

LevelSpace	fundamentals

LevelSpace	must	be	loaded	in	a	model	using	extensions	[ls]	at	the	top	of	your	model.	Once	this	is	done,	a	model
will	be	able	to	load	up	other	models	using	the	LevelSpace	primitives,	run	commands	and	reporters	in	them,	and	close
them	down	when	they	are	no	longer	needed.

Asking	and	reporting	in	LevelSpace	is	conceptually	pretty	straight	forward:	You	pass	blocks	of	code	to	child	models,
and	the	child	models	respond	as	if	you	had	typed	that	code	into	their	Command	Center.	LevelSpace	allows	you	to
report	strings,	numbers,	and	lists	from	a	child	to	its	parent.	It	is	not	possible	to	directly	report	turtles,	patches,	links,	or
any	of	their	respective	sets.	Further,	it	is	not	possible	to	push	data	from	a	child	to	its	parent	-	parents	must	ask	their
children	to	report.	This	mimicks	the	way	in	which	turtles	cannot	“push”	data	to	the	observer,	but	rely	on	the	observer
to	ask	them	for	it.

In	general,	the	LevelSpace	syntax	has	been	designed	to	align	with	existing	NetLogo	primitives	whenever	possible.

Headless	and	Interactive	Models

LevelSpace	has	two	different	child	model	types;	headless	models	and	interactive	models.	They	each	have	their
strengths	and	weaknesses:

Interactive	models	*	are	full-fledged	models	that	give	full	access	to	their	interface	and	widgets,	*	run	a	bit	slower,	and
use	more	memory	*	are	visible	by	default

Headless	Models	*	only	give	you	access	to	their	view	and	command	center	*	are	faster	and	use	less	memory	than
interactive	models.	*	are	hidden	by	default

Typically	you	will	want	to	use	headless	models	when	you	are	running	a	large	number	of	models,	or	if	you	simply	want
to	run	them	faster.	Interactive	models	are	good	if	you	run	a	small	amount	of	models,	if	you	are	writing	a	LevelSpace
model	and	need	to	be	able	to	debug,	or	if	you	need	access	to	widgets	during	runtime.

Keeping	Track	of	Models

Child	models	are	kept	track	of	in	the	extension	with	an	id	number,	starting	with	0,	and	all	communication	from	parent
to	child	is	done	by	referencing	this	number,	henceforth	referred	to	as	model-id.

The	easiest	way	to	work	with	multiple	models	is	to	store	their	model-id	in	a	list,	and	use	NetLogo’s	list	primitives	to
sort,	filter,	etc.	them	during	runtime.

Keeping	track	of	models	is	important:	Most	LevelSpace	primitives	will	fail	and	cause	a	runtime	interruption	if	provided
a	model-id	to	a	non-existing	model.	You	can	use	ls:model-exists?	model-id	to	check	if	model-id	refers	to	an	existing
model.

A	general	use	case:	Asking	and	Reporting

This	use	case	is	based	on	the	Model	Visualizer	and	Plotter	Example-model	from	the	NetLogo	Models	Library.

A	simple	thing	we	can	do	is	to	open	up	some	models,	run	them	concurrently,	and	calculate	the	average	of	some
reporter.	Let’s	say	that	we	are	interested	in	finding	the	mean	number	of	sheep	in	a	bunch	of	Wolf	Sheep	Predation
models.	First	we	would	open	up	some	of	these	models,	and	set	them	up:

to	setup
		ls:reset
		ca
		ls:create-models	30	"Wolf	Sheep	Predation.nlogo"
		ls:ask	ls:models	[set	grass?	true	setup]
		reset-ticks
end

We	then	want	to	run	all	our	child	models,	and	then	find	out	what	the	mean	number	of	sheep	is:

to	go
				ls:ask	ls:models	[go]
				show	mean	[count	sheep]	ls:of	ls:models
end

A	general	use	case:	Inter-Model	Interactions

This	use	case	is	based	on	the	Model	Interactions	Example-model	from	the	NetLogo	Models	Library.

Let’s	imagine	that	we	have	two	models:	a	Wolf	Sheep	Predation-model	called	WSP,	and	a	Climate	Change	model
called	CC.	Now	let’s	imagine	that	we	want	the	regrowth	time	in	the	wSP	model	to	depend	on	the	temperature	in	the
CC	model.	Using	LevelSpace’s	primitives,	we	could	do	something	like	this:

		;	save	new	regrowth	time	in	a	temporary	LevelSpace	let-variable
		ls:let	new-regrowth-time	25	+	(abs	[temperature	-	55]	ls:of	CC)	/	2

		;	remove	decimals,	pass	it	to	the	wolf	sheep	predation	model	and	change	the	time
		ls:ask	WSP	[
				set	grass-regrowth-time	round	new-regrowth-time
]

		;	finally	ask	both	models	to	go
		ls:ask	ls:models	[go]

A	general	Usecase:	Tidying	up	“Dead”	Child	Models

As	previously	mentioned,	it	is	important	to	keep	track	of	“living”	and	“dead”	models	when	you	dynamically	create	and
dispose	of	models.	Let	us	imagine	we	have	some	lists	of	models	of	different	kinds,	and	we	want	to	make	sure	that	we
only	keep	the	models	that	are	alive.	After	running	code	that	kills	child	models	we	can	use	the	ls:model-exists?
primitive	to	clean	up	our	list	of	models	like	this:

to-report	remove-dead-models	[list-of-models]
		report	filter	[[model-id]	->	ls:model-exists	model-id]	list-of-models
end

We	then	reassign	each	list	of	models	with	this,	e.g.

set	a-list-of-models	remove-dead-models	a-list-of-models
set	another-list-of-models	remove-dead-models	a-list-of-models

Citing	LevelSpace	in	Research

If	you	use	LevelSpace	in	research,	we	ask	that	you	cite	us,

Hjorth,	A.	Head,	B.	&	Wilensky,	U.	(2015).	“LevelSpace	NetLogo	extension”.
http://ccl.northwestern.edu/rp/levelspace/index.shtml	Evanston,	IL:	Center	for	Connected	Learning	and	Computer
Based	Modeling,	Northwestern	University.

Primitives

Commanding	and	Reporting

ls:ask	ls:of	ls:report	ls:with	ls:let	ls:assign

Logic	and	Control

ls:models	ls:show	ls:show-all	ls:hide	ls:hide-all	ls:path-of	ls:name-of	ls:model-exists?

Opening	and	Closing	Models

ls:create-models	ls:create-interactive-models	ls:close	ls:reset

ls:create-models

ls:create-models	number	path
ls:create-models	number	path	anonymous	command

Create	the	specified	number	of	instances	of	the	given	.nlogo	model.	The	path	can	be	absolute,	or	relative	to	the	main
model.	Compared	with	ls:create-interactive-models,	this	primitive	creates	lightweight	models	that	are	hidden	by
default.	You	should	use	this	primitive	if	you	plan	on	having	many	instances	of	the	given	model.	The	models	may	be
shown	using	ls:show;	when	visible,	they	will	have	a	view	and	command	center,	but	no	other	widgets,	e.g.	plots	or
monitors.

http://ccl.northwestern.edu/rp/levelspace/index.shtml

If	given	a	command,	LevelSpace	will	call	the	command	after	loading	each	instance	of	the	model	with	the	model-id	as
the	argument.	This	allows	you	to	easily	store	model	ids	in	a	variable	or	list	when	loading	models,	or	do	other
initialization.	For	example,	to	store	a	model	id	in	a	variable,	you	can	do:

let	model-id	0
(ls:create-models	"My-Model.nlogo"	[[id]	->	set	model-id	id])

Child	model	RNGs	are	seeded	from	the	parent	models	RNG	when	they	are	created.	Thus,	if	you	seed	the	parent’s
model	RNG	before	child	model	before	child	models	are	created,	the	simulation	as	a	whole	will	be	reproducible.	Use
the	ls:random-seed	primitive	to	seed	the	model	system’s	RNGs	after	child	models	have	been	created.

ls:create-interactive-models

ls:create-interactive-models	number	path
ls:create-interactive-models	number	path	anonymous	command

Like	ls:create-models,	creates	the	specified	number	of	instances	of	the	given	.nlogo	model.	Unlike	ls:create-
models,	ls:create-interactive-models	creates	models	that	are	visible	by	default,	and	have	all	widgets.	You	should
use	this	primitive	if	you	plan	on	having	only	a	handful	of	instances	of	the	given	model,	and	would	like	to	be	able	to
interact	with	the	instances	through	their	interfaces	during	runtime.

Child	model	RNGs	are	seeded	from	the	parent	models	RNG	when	they	are	created.	Thus,	if	you	seed	the	parent’s
model	RNG	before	child	model	before	child	models	are	created,	the	simulation	as	a	whole	will	be	reproducible.	Use
the	ls:random-seed	primitive	to	seed	the	model	system’s	RNGs	after	child	models	have	been	created.

ls:close

ls:close	model-or-list-of-models

Close	the	model	or	models	with	the	given	model-id.

ls:reset

ls:reset

Close	down	all	child	models	(and,	recursively,	their	child	models).	You’ll	often	want	to	call	this	in	your	setup
procedure.

Note	that	clear-all	does	not	close	LevelSpace	models.

ls:ask

ls:ask	model-or-list-of-models	command	argument

Ask	the	given	child	model	or	list	of	child	models	to	run	the	given	command.	This	is	the	primary	of	doing	things	with
child	models.	For	example:

ls:ask	model-id	[create-turtles	5]

You	can	also	ask	a	list	of	models	to	all	do	the	same	thing:

ls:ask	ls:models	[create-turtles	5]

You	may	supply	the	command	with	arguments,	just	like	you	would	with	anonymous	commands:

let	turtle-id	0
let	speed	5
(ls:ask	model-id	[[t	s]	->	ask	turtle	t	[fd	s]]	turtle-id	speed)

Note	that	the	commands	cannot	access	variables	in	the	parent	model	directly.	You	must	either	pass	information	in
through	arguments	or	using	ls:let.

ls:of

reporter	ls:of	model-or-list-of-models

Run	the	given	reporter	in	the	given	model	and	report	the	result.

ls:of	is	designed	to	work	like	NetLogo’s	inbuilt	of:	If	you	send	ls:of	a	model-id,	it	will	report	the	value	of	the	reporter
from	that	model.	If	you	send	it	a	list	of	model-ids,	it	will	report	a	list	of	values	of	the	reporter	string	from	all	models.
You	cannot	pass	arguments	to	ls:of,	but	you	can	use	ls:let.

[count	turtles]	ls:of	model-id

ls:report

ls:report	model-or-list-of-models	reporter	argument

Run	the	given	reporter	in	the	given	model	and	report	the	result.	This	form	exists	to	allow	you	to	pass	arguments	to
the	reporter.

let	turtle-id	0
(ls:report	model-id	[[a-turtle]	->	[color]	of	turtle	a-turtle]	turtle-id)

ls:with

list-of-models	ls:with	reporter

Reports	a	new	list	of	models	containing	only	those	models	that	report	true	when	they	run	the	reporter	block.

ls:models	ls:with	[count	turtles	>	100]

ls:let

ls:let	variable-name	value

Creates	a	variable	containing	the	given	data	that	can	be	accessed	by	the	child	models.

ask	turtles	[
		ls:let	my-color	color
		ls:ask	my-model	[
				ask	turtles	[set	color	my-color]
]
]

ls:let	works	quite	similar	to	let	in	that	the	variable	is	only	locally	accessible:

ask	turtles	[
		ls:let	my-color	color
]
;;	my-color	is	innaccessible	here

ls:let	is	very	similar	to	let,	except	in	a	few	cases.

ls:let	will	overwrite	previous	values	in	the	variable

If	you	do

ls:let	my-var	5
ls:let	my-var	6

my-var	will	be	set	equal	to	6.	There	is	no	ls:set.

ls:let	supports	variable	shadowing

If	you	do

ls:let	my-var	5

ask	turtles	[
		ls:let	my-var	6
		ls:ask	child-model	[show	my-var]
]
ls:ask	child-model	[show	my-var]

child-model	will	show	6	and	then	5.	This	is	known	as	variable	shadowing.

The	parent	model	cannot	directly	read	the	value	of	an	ls	variable

For	example,	this	does	not	work.

ls:let	my-var	5
show	my-var

This	is	intentional.	ls	variables	are	meant	to	be	used	for	sharing	data	with	child	models.	The	parent	model	already
has	access	to	the	data.

Furthermore,	changing	the	value	of	an	ls	let	variable	in	a	child	model	will	not	affect	it	in	any	other	model.	For
example:

ls:let	my-var	0
ls:ask	ls:models	[
		set	my-var	my-var	+	1
		show	my-var
]

All	models	will	print	1.

ls:assign

ls:assign	model-or-list-of-models	global-variable	value

Sets	the	given	global	variable	in	child	model	to	given	value.	For	instance

ls:assign	ls:models	glob1	count	turtles

sets	the	global	variable	glob1	in	all	models	to	the	parent’s	model	count	turtles.

ls:models

ls:models

Report	a	list	of	model-ids	for	all	existing	models.

ls:show

ls:show	model-or-list-of-models

Makes	all	of	the	given	models	visible.

ls:show-all

ls:show-all	model-or-list-of-models

Makes	all	of	the	given	models	and	their	descendents	visible.

ls:hide

ls:hide	model-or-list-of-models

Hide	all	of	the	given	models.	Hiding	models	is	a	good	way	of	making	your	simulation	run	faster.

ls:hide-all

https://en.wikipedia.org/wiki/Variable_shadowing

ls:hide-all	model-or-list-of-models

Hide	all	of	the	given	models	and	their	descendents.	Hiding	models	is	a	good	way	of	making	your	simulation	run
faster.

ls:path-of

ls:path-of	model-or-list-of-models

Report	the	full	path,	including	the	.nlogo	file	name,	of	the	model.	If	a	list	of	models	is	given,	a	list	of	paths	is	reported.

ls:name-of

ls:name-of	model-or-list-of-models

Reports	the	name	of	the	.nlogo	file	of	the	model.	This	is	the	name	of	the	window	in	which	the	model	appears	when
visible.	If	a	list	of	models	is	given,	a	list	of	names	is	reported.

ls:model-exists?

ls:model-exists?	model-or-list-of-models

Report	a	boolean	value	for	whether	there	is	a	model	with	that	model-id.	This	is	often	useful	when	you	are	dynamically
generating	models,	and	want	to	ensure	that	you	are	not	asking	models	that	no	longer	exist	to	do	stuff.

ls:random-seed

ls:random-seed	seed

Behaves	exactly	like	NetLogo’s	built-in	primitive	random-seed,	except	that	child	models	have	their	RNGs	seeded
based	on	the	given	seed	as	well	(as	well	their	child	models,	and	their	child	models’	child	models,	and	so	forth).	This
primitive	should	almost	always	be	used	instead	of	NetLogo’s	built-in	one	for	seeding	RNG	when	using	LevelSpace.

NetLogo	Matrix	Extension

Using

The	matrix	extension	adds	a	new	matrix	data	structure	to	NetLogo.	A	matrix	is	a	mutable	2-dimensional	array	containing
only	numbers.

When	to	Use

Although	matrices	store	numbers,	much	like	a	list	of	lists,	or	an	array	of	arrays,	the	primary	reason	to	use	the	matrix	data
type	is	to	take	advantage	of	special	mathematical	operations	associated	with	matrices.	For	instance,	matrix	multiplication
is	a	convenient	way	to	perform	geometric	transformations,	and	the	repeated	application	of	matrix	multiplication	can	also
be	used	to	simulate	other	dynamic	processes	(for	instance,	processes	on	graph/network	structures).

If	you’d	like	to	know	more	about	matrices	and	how	they	can	be	used,	you	might	consider	a	course	on	linear	algebra,	or
search	the	web	for	tutorials.	The	matrix	extension	also	allows	you	to	solve	linear	algebraic	equations	(specified	in	a	matrix
format),	and	even	to	identify	trends	in	your	data	and	perform	linear	(ordinary	least	squares)	regressions	on	data	sets	with
multiple	explanatory	variables.

How	to	Use

The	matrix	extension	comes	preinstalled.

To	use	the	matrix	extension	in	your	model,	add	a	line	to	the	top	of	your	Code	tab:

extensions	[matrix]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so	just	add	matrix	to	the	list.

Example

let	m	matrix:from-row-list	[[1	2	3]	[4	5	6]]
print	m
=>	{{matrix:		[[1	2	3][4	5	6]]}}
print	matrix:pretty-print-text	m
=>
[[1		2		3]
	[4		5		6]]

print	matrix:dimensions	m
=>	[2	3]
;;(NOTE:	row	&	column	indexing	starts	at	0,	not	1)
print	matrix:get	m	1	2	;;	what	number	is	in	row	1,	column	2?
=>	6
matrix:set	m	1	2	10	;;	change	the	6	to	a	10
print	m
=>	{{matrix:		[[1	2	3][4	5	10]]}}

let	m2	matrix:make-identity	3
print	m2
=>	{{matrix:		[[1	0	0][0	1	0][0	0	1]]}}
print	matrix:times	m	m2	;;	multiplying	by	the	identity	changes	nothing
=>	{{matrix:		[[1	2	3][4	5	10]]}}

;;	make	a	new	matrix	with	the	middle	1	changed	to	-1
let	m3	(matrix:set-and-report	m2	1	1	-1)
print	m3
=>	{{matrix:		[[1	0	0][0	-1	0][0	0	1]]}}
print	matrix:times	m	m3
=>	{{matrix:		[[1	-2	3][4	-5	10]]}}

print	matrix:to-row-list	(matrix:plus	m2	m3)
=>	[[2	0	0]	[0	0	0]	[0	0	2]]

Primitives

Matrix	creation	and	conversion	to/from	lists

matrix:make-constant	matrix:make-identity	matrix:from-row-list	matrix:from-column-list	matrix:to-row-list	matrix:to-
column-list	matrix:copy	matrix:pretty-print-text

Advanced	features

matrix:solve	matrix:forecast-linear-growth	matrix:forecast-compound-growth	matrix:forecast-continuous-growth
matrix:regress

Matrix	data	retrieval	and	manipulation

matrix:get	matrix:get-row	matrix:get-column	matrix:set	matrix:set-row	matrix:set-column	matrix:swap-rows	matrix:swap-
columns	matrix:set-and-report	matrix:dimensions	matrix:submatrix	matrix:map

Math	operations

matrix:times-scalar	matrix:times	matrix:*	matrix:times-element-wise	matrix:plus-scalar	matrix:plus	matrix:+
matrix:minus	matrix:-	matrix:inverse	matrix:transpose	matrix:real-eigenvalues	matrix:imaginary-eigenvalues
matrix:eigenvectors	matrix:det	matrix:rank	matrix:trace

matrix:make-constant

matrix:make-constant	n-rows	n-cols	initialValue

Reports	a	new	n-rows	by	n-cols	matrix	object,	with	all	entries	in	the	matrix	containing	the	same	value	(number).

matrix:make-identity

matrix:make-identity	size

Reports	a	new	square	matrix	object	(with	dimensions	n-size	x	n-size),	consisting	of	the	identity	matrix	(1s	along	the	main
diagonal,	0s	elsewhere).

matrix:from-row-list

matrix:from-row-list	nested-list

Reports	a	new	matrix	object,	created	from	a	NetLogo	list,	where	each	item	in	that	list	is	another	list	(corresponding	to
each	of	the	rows	of	the	matrix.)

print	matrix:from-row-list	[[1	2]	[3	4]]
=>	{{matrix:		[[1	2][3	4]]}}
;;	Corresponds	to	this	matrix:
;;	1	2
;;	3	4

matrix:from-column-list

matrix:from-column-list	nested-list

Reports	a	new	matrix	object,	created	from	a	NetLogo	list	containing	each	of	the	columns	of	the	matrix.

matrix:to-row-list

matrix:to-row-list	matrix

Reports	a	list	of	lists,	containing	each	row	of	the	matrix.

matrix:to-column-list

matrix:to-column-list	matrix

Reports	a	list	of	lists,	containing	each	column	of	the	matrix.

matrix:copy

matrix:copy	matrix

Reports	a	new	matrix	that	is	an	exact	copy	of	the	given	matrix.	This	primitive	is	important	because	the	matrix	type	is
mutable	(changeable).	Here’s	a	code	example:

let	m1	matrix:from-column-list	[[1	4	7][2	5	8][3	6	9]]	;	a	3x3	matrix

print	m1
=>	{{matrix:		[[1	2	3][4	5	6][7	8	9]]}}
let	m2	m1	;;	m2	refers	to	the	same	matrix	object	as	m1
let	m3	matrix:copy	m1	;;	m3	is	a	new	copy	containing	m1's	data
matrix:set	m1	0	0	100	;;	now	m1	is	changed

print	m1
=>	{{matrix:		[[100	2	3][4	5	6][7	8	9]]}}

print	m2
=>	{{matrix:		[[100	2	3][4	5	6][7	8	9]]}}
;;Notice	that	m2	was	also	changed,	when	m1	was	changed!

print	m3
=>	{{matrix:		[[1	2	3][4	5	6][7	8	9]]}}

matrix:pretty-print-text

matrix:pretty-print-text	matrix

Reports	a	string	that	is	a	textual	representation	of	the	matrix,	in	a	format	that	is	reasonably	human-readable	when
displayed.

matrix:get

matrix:get	matrix	row-i	col-j

Reports	the	(numeric)	value	at	location	row-i	(second	argument),	col-j	(third	argument),	in	the	given	matrix	given	in	the
first	argument

matrix:get-row

matrix:get-row	matrix	row-i

Reports	a	simple	(not	nested)	NetLogo	list	containing	the	elements	of	row-i	(second	argument)	of	the	matrix	supplied	in
the	first	argument.

matrix:get-column

matrix:get-column	matrix	col-j

Reports	a	simple	(not	nested)	NetLogo	list	containing	the	elements	of	col-j	of	the	matrix	supplied	in	the	first	argument.

matrix:set

matrix:set	matrix	row-i	col-j	new-value

Changes	the	given	matrix	by	setting	the	value	at	location	row-i,	col-j	to	new-value

matrix:set-row

matrix:set-row	matrix	row-i	simple-list

Changes	the	given	matrix	matrix	by	replacing	the	row	at	row-i	with	the	contents	of	the	simple	(not	nested)	NetLogo	list
simple-list.	The	simple-list	must	have	a	length	equal	to	the	number	of	columns	in	the	matrix,	i.e.,	the	matrix	row	length.

matrix:set-column

matrix:set-column	matrix	col-j	simple-list

Changes	the	given	matrix	matrix	by	replacing	the	column	at	col-j	with	the	contents	of	the	simple	(not	nested)	NetLogo	list
simple-list.	The	simple-list	must	have	a	length	equal	to	the	number	of	rows	in	the	matrix,	i.e.,	the	matrix	column	length
length.

matrix:swap-rows

matrix:swap-rows	matrix	row1	row2

Changes	the	given	matrix	matrix	by	swapping	the	rows	at	row1	and	row2	with	each	other.

matrix:swap-columns

matrix:swap-columns	matrix	col1	col2

Changes	the	given	matrix	matrix	by	swapping	the	columns	at	col1	and	col2	with	each	other.

matrix:set-and-report

matrix:set-and-report	matrix	row-i	col-j	new-value

Reports	a	new	matrix,	which	is	a	copy	of	the	given	matrix	except	that	the	value	at	row-i,col-j	has	been	changed	to	new-
value.	A	NetLogo	statement	such	as	set	mat	matrix:set-and-report	mat	2	3	10	will	result	in	mat	pointing	to	this	new
matrix,	a	copy	of	the	old	version	of	mat	with	the	element	at	row	2,	column	3	being	set	to	10.	The	old	version	of	mat	will	be
“lost”.

matrix:dimensions

matrix:dimensions	matrix

Reports	a	2-element	list	([num-rows,num-cols]),	containing	the	number	of	rows	and	number	of	columns	in	the	given
matrix

matrix:submatrix

matrix:submatrix	matrix	r1	c1	r2	c2

Reports	a	new	matrix	object,	consisting	of	a	rectangular	subsection	of	the	given	matrix.	The	rectangular	region	is	from	row
r1	up	to	(but	not	including)	row	r2,	and	from	column	c1	up	to	(but	not	including)	column	c2.

Here	is	an	example:

let	m	matrix:from-row-list	[[1	2	3][4	5	6][7	8	9]]
print	matrix:submatrix	m	0	1	2	3	;	matrix,	row-start,	col-start,	row-end,	col-end
																																	;	rows	from	0	(inclusive)	to	2	(exclusive),
																																	;	columns	from	1	(inclusive)	to	3	(exclusive)
=>	{{matrix:		[[2	3][5	6]]}}

matrix:map

matrix:map	anonymous	reporter	matrix
matrix:map	anonymous	reporter	matrix	anything

Reports	a	new	matrix	which	results	from	applying	reporter	(an	anonymous	reporter	or	the	name	of	a	reporter)	to	each	of
the	elements	of	the	given	matrix.	For	example,

matrix:map	sqrt	matrix

would	take	the	square	root	of	each	element	of	matrix.	If	more	than	one	matrix	argument	is	provided,	the	reporter	is	given
the	elements	of	each	matrix	as	arguments.	Thus,

(matrix:map	+	matrix1	matrix2)

would	add	matrix1	and	matrix2.

This	reporter	is	meant	to	be	the	same	as	map,	but	for	matrices	instead	of	lists.

matrix:times-scalar

matrix:times-scalar	matrix	factor

As	of	NetLogo	5.1,	matrix:times	can	multiply	matrices	by	scalars	making	this	function	obsolete.	Use	matrix:times
instead.

Reports	a	new	matrix,	which	is	the	result	of	multiplying	every	entry	in	the	original	matrix	by	the	given	scaling	factor.

matrix:times

matrix:times	m1	m2
matrix:times	m1	m2	...

Reports	a	matrix,	which	is	the	result	of	multiplying	the	given	matrices	and	scalars	(using	standard	matrix	multiplication	–
make	sure	your	matrix	dimensions	match	up.)	Without	parentheses,	it	takes	two	arguments.	With	parentheses	it	takes	two
or	more.	The	arguments	may	either	be	numbers	or	matrices,	but	at	least	one	must	be	a	matrix.

matrix:*

m1	matrix:*	m2

Reports	a	matrix,	which	is	the	result	of	multiplying	the	given	matrices	and/or	scalars	(using	standard	matrix	multiplication
–	make	sure	your	matrix	dimensions	match	up.)	This	is	exactly	the	same	as	matrix:times	m1	m2

Takes	precedence	over	matrix:+	and	matrix:-,	same	as	normal	multiplication.

matrix:times-element-wise

matrix:times-element-wise	m1	m2

Reports	a	matrix,	which	is	the	result	of	multiplying	the	given	matrices	together,	element-wise.	All	elements	are	multiplied
by	scalar	arguments	as	well.	Note	that	all	matrix	arguments	must	have	the	same	dimensions.	Without	parentheses,	it
takes	two	arguments.	With	parentheses	it	takes	two	or	more.	The	arguments	may	either	be	numbers	or	matrices,	but	at
least	one	must	be	a	matrix.

matrix:plus-scalar

matrix:plus-scalar	matrix	number

As	of	NetLogo	5.1,	matrix:plus	can	add	matrices	and	scalars	making	this	function	obsolete.	Use	matrix:plus	instead.

Reports	a	matrix,	which	is	the	result	of	adding	the	constant	number	to	each	element	of	the	given	matrix.

matrix:plus

matrix:plus	m1	m2
matrix:plus	m1	m2	...

Reports	a	matrix,	which	is	the	result	of	adding	the	given	matrices	and	scalars.	Scalars	are	added	to	each	element.
Without	parentheses,	it	takes	two	arguments.	With	parentheses	it	takes	two	or	more.	The	arguments	may	either	be
numbers	or	matrices,	but	at	least	one	must	be	a	matrix.

matrix:+

m1	matrix:+	m2

Reports	a	matrix,	which	is	the	result	of	adding	the	given	matrices	and/or	scalars.	This	is	exactly	the	same	as	matrix:plus
m1	m2

Takes	precedence	after	matrix:*,	same	as	normal	addition.

matrix:minus

matrix:minus	m1	m2
matrix:minus	m1	m2	...

Reports	a	matrix,	which	is	the	result	of	subtracting	all	arguments	besides	m1	from	m1.	Scalar	arguments	are	treated	as
matrices	of	the	same	size	as	the	matrix	arguments	with	every	element	equal	to	that	scalar.	Without	parentheses,	it	takes
two	arguments.	With	parentheses	it	takes	two	or	more.	The	arguments	may	either	be	numbers	or	matrices,	but	at	least
one	must	be	a	matrix.

matrix:-

m1	matrix:-	m2

Reports	a	matrix,	which	is	the	result	of	subtracting	the	given	matrices	and/or	scalars.	This	is	exactly	the	same	as

matrix:minus	m1	m2

Takes	precedence	after	matrix:*,	same	as	normal	subtraction.

matrix:inverse

matrix:inverse	matrix

Reports	the	inverse	of	the	given	matrix,	or	results	in	an	error	if	the	matrix	is	not	invertible.

matrix:transpose

matrix:transpose	matrix

Reports	the	transpose	of	the	given	matrix.

matrix:real-eigenvalues

matrix:real-eigenvalues	matrix

Reports	a	list	containing	the	real	eigenvalues	of	the	given	matrix.

matrix:imaginary-eigenvalues

matrix:imaginary-eigenvalues	matrix

Reports	a	list	containing	the	imaginary	eigenvalues	of	the	given	matrix.

matrix:eigenvectors

matrix:eigenvectors	matrix

Reports	a	matrix	that	contains	the	eigenvectors	of	the	given	matrix.	(Each	eigenvector	as	a	column	of	the	resulting
matrix.)

matrix:det

matrix:det	matrix

Reports	a	the	determinant	of	the	matrix.

matrix:rank

matrix:rank	matrix

Reports	the	effective	numerical	rank	of	the	matrix,obtained	from	SVD	(Singular	Value	Decomposition).

matrix:trace

matrix:trace	matrix

Reports	the	trace	of	the	matrix,	which	is	simply	the	sum	of	the	main	diagonal	elements.

matrix:solve

matrix:solve	A	C

Reports	the	solution	to	a	linear	system	of	equations,	specified	by	the	A	and	C	matrices.	In	general,	solving	a	set	of	linear
equations	is	akin	to	matrix	division.	That	is,	the	goal	is	to	find	a	matrix	B	such	that	A	*	B	=	C.	(For	simple	linear	systems,	C
and	B	can	both	be	1-dimensional	matrices	–	i.e.	vectors).	If	A	is	not	a	square	matrix,	then	a	“least	squares”	solution	is
returned.

;;	To	solve	the	set	of	equations	x	+	3y	=	10	and	7x	-	4y	=	20
;;	We	make	our	A	matrix	[[1	3][7	-4]],	and	our	C	matrix	[[10][20]]
let	A	matrix:from-row-list	[[1	3][7	-4]]
let	C	matrix:from-row-list	[[10][20]]
print	matrix:solve	A	C
=>	{{matrix:		[[4][2.0000000000000004]]}}
;;	NOTE:	as	you	can	see,	the	results	may	be	only	approximate
;;	(In	this	case,	the	true	solution	should	be	x=4	and	y=2.)

matrix:forecast-linear-growth

matrix:forecast-linear-growth	data-list

Reports	a	four-element	list	of	the	form:

[forecast	constant	slope	R2]

The	forecast	is	the	predicted	next	value	that	would	follow	in	the	sequence	given	by	the	data-list	input,	based	on	a	linear
trend-line.	Normally	data-list	will	contain	observations	on	some	variable,	Y,	from	time	t	=	0	to	time	t	=	(n-1)	where	n	is	the
number	of	observations.	The	forecast	is	the	predicted	value	of	Y	at	t	=	n.	The	constant	and	slope	are	the	parameters	of
the	trend-line

Y	=	*constant*	+	*slope*	*	t.

The	R2	value	measures	the	goodness	of	fit	of	the	trend-line	to	the	data,	with	an	R2	=	1	being	a	perfect	fit	and	an	R2	of	0
indicating	no	discernible	trend.	Linear	growth	assumes	that	the	variable	Y	grows	by	a	constant	absolute	amount	each
period.

;;	a	linear	extrapolation	of	the	next	item	in	the	list.
print	matrix:forecast-linear-growth	[20	25	28	32	35	39]
=>	[42.733333333333334	20.619047619047638	3.6857142857142824	0.9953743395474031]
;;	These	results	tell	us:
;;	*	the	next	predicted	value	is	roughly	42.7333
;;	*	the	linear	trend	line	is	given	by	Y	=	20.6190	+	3.6857	*	t
;;	*	Y	grows	by	approximately	3.6857	units	each	period
;;	*	the	R^2	value	is	roughly	0.9954	(a	good	fit)

matrix:forecast-compound-growth

matrix:forecast-compound-growth	data-list

Reports	a	four-element	list	of	the	form:

[forecast	constant	growth-proportion	R2]

Whereas	matrix:forecast-linear-growth	assumes	growth	by	a	constant	absolute	amount	each	period,	matrix:forecast-
compound-growth	assumes	that	Y	grows	by	a	constant	proportion	each	period.	The	constant	and	growth-proportion	are
the	parameters	of	the	trend-line

Y	=	constant	*	growth-proportiont.

Note	that	the	growth	proportion	is	typically	interpreted	as	growth-proportion	=	(1.0	+	growth-rate).	Therefore,	if
matrix:forecast-compound-growth	returns	a	growth-proportion	of	1.10,	that	implies	that	Y	grows	by	(1.10	-	1.0)	=	10%	each
period.	Note	that	if	growth	is	negative,	matrix:forecast-compound-growth	will	return	a	growth-proportion	of	less	than	one.
E.g.,	a	growth-proportion	of	0.90	implies	a	growth	rate	of	-10%.

NOTE:	The	compound	growth	forecast	is	achieved	by	taking	the	ln	of	Y.	(See	matrix:regress,	below.)	Because	it	is
impossible	to	take	the	natural	log	of	zero	or	a	negative	number,	matrix:forecast-compound-growth	will	result	in	an	error	if	it
finds	a	zero	or	negative	number	in	data-list.

;;	a	compound	growth	extrapolation	of	the	next	item	in	the	list.
print	matrix:forecast-compound-growth	[20	25	28	32	35	39]
=>	[45.60964465307147	21.15254147944863	1.136621034423892	0.9760867518334806]
;;	These	results	tell	us:
;;	*	the	next	predicted	value	is	approximately	45.610
;;	*	the	compound	growth	trend	line	is	given	by	Y	=	21.1525	*	1.1366	^	t
;;	*	Y	grows	by	approximately	13.66%	each	period
;;	*	the	R^2	value	is	roughly	0.9761	(a	good	fit)

matrix:forecast-continuous-growth

matrix:forecast-continuous-growth	data-list

Reports	a	four-element	list	of	the	form:

[forecast	constant		growth-rate		R2].	Whereas	matrix:forecast-compound-growth	assumes	discrete	time	with	Y
growing	by	a	given	proportion	each	finite	period	of	time	(e.g.,	a	month	or	a	year),	matrix:forecast-continuous-growth
assumes	that	Y	is	compounded	continuously	(e.g.,	each	second	or	fraction	of	a	second).	The	constant	and	growth-rate
are	the	parameters	of	the	trend-line

Y	=	constant	*	e(growth-rate	*	t)

matrix:forecast-continuous-growth	is	the	“calculus”	analog	of	matrix:forecast-compound-growth.	The	two	will	normally	yield
similar	(but	not	identical)	results,	as	shown	in	the	example	below.	growth-rate	may,	of	course,	be	negative.

NOTE:	The	continuous	growth	forecast	is	achieved	by	taking	the	ln	of	Y.	(See	matrix:regress,	below.)
Because	it	is	impossible	to	take	the	natural	log	of	zero	or	a	negative	number,	matrix:forecast-continuous-growth
will	result	in	an	error	if	it	finds	a	zero	or	negative	number	in	data-list.

;;	a	continuous	growth	extrapolation	of	the	next	item	in	the	list.
print	matrix:forecast-continuous-growth	[20	25	28	32	35	39]
=>	[45.60964465307146	21.15254147944863	0.12805985615332668	0.9760867518334806]
;;	These	results	tell	us:
;;	*	the	next	predicted	value	is	approximately	45.610
;;	*	the	compound	growth	trend	line	is	given	by	Y	=	21.1525	*	e	^	(0.1281	*	t)
;;	*	Y	grows	by	approximately	12.81%	each	period	if	compounding	takes	place	continuously
;;	*	the	R^2	value	is	roughly	0.9761	(a	good	fit)

matrix:regress

matrix:regress	data-matrix

All	three	of	the	forecast	primitives	above	are	just	special	cases	of	performing	an	OLS	(ordinary-least-squares)	linear
regression	–	the	matrix:regress	primitive	provides	a	flexible/general-purpose	approach.	The	input	is	a	matrix	data-matrix,
with	the	first	column	being	the	observations	on	the	dependent	variable	and	each	subsequent	column	being	the
observations	on	the	(1	or	more)	independent	variables.	Thus	each	row	consists	of	an	observation	of	the	dependent
variable	followed	by	the	corresponding	observations	for	each	independent	variable.

The	output	is	a	Logo	nested	list	composed	of	two	elements.	The	first	element	is	a	list	containing	the	regression	constant
followed	by	the	coefficients	on	each	of	the	independent	variables.	The	second	element	is	a	3-element	list	containing	the
R2	statistic,	the	total	sum	of	squares,	and	the	residual	sum	of	squares.	The	following	code	example	shows	how	the
matrix:regress	primitive	can	be	used	to	perform	the	same	function	as	the	code	examples	shown	in	the	matrix:forecast-*-
growth	primitives	above.	(However,	keep	in	mind	that	the	matrix:regress	primitive	is	more	powerful	than	this,	and	can	have
many	more	independent	variables	in	the	regression,	as	indicated	in	the	fourth	example	below.)

;;	this	is	equivalent	to	what	the	matrix:forecast-linear-growth	does
let	data-list	[20	25	28	32	35	39]
let	indep-var	(n-values	length	data-list	[x	->	x])	;	0,1,2...,5
let	lin-output	matrix:regress	matrix:from-column-list	(list	data-list	indep-var)
let	lincnst	item	0	(item	0	lin-output)
let	linslpe	item	1	(item	0	lin-output)
let	linR2			item	0	(item	1	lin-output)
;;Note	the	"6"	here	is	because	we	want	to	forecast	the	value	at	time	t=6.
print	(list	(lincnst	+	linslpe	*	6)	(lincnst)	(linslpe)	(linR2))

;;	this	is	equivalent	to	what	the	matrix:forecast-compound-growth	does
let	com-log-data-list		(map	ln	[20	25	28	32	35	39])
let	com-indep-var2	(n-values	length	com-log-data-list	[x	->	x])	;	0,1,2...,5
let	com-output	matrix:regress	matrix:from-column-list	(list	com-log-data-list	com-indep-var2)
let	comcnst	exp	item	0	(item	0	com-output)
let	comprop	exp	item	1	(item	0	com-output)
let	comR2							item	0	(item	1	com-output)
;;Note	the	"6"	here	is	because	we	want	to	forecast	the	value	at	time	t=6.
print	(list	(comcnst	*	comprop	^	6)	(comcnst)	(comprop)	(comR2))

;;	this	is	equivalent	to	what	the	matrix:forecast-continuous-growth	does
let	con-log-data-list		(map	ln	[20	25	28	32	35	39])
let	con-indep-var2	(n-values	length	con-log-data-list	[x	->	x])	;	0,1,2...,5
let	con-output	matrix:regress	matrix:from-column-list	(list	con-log-data-list	con-indep-var2)
let	concnst	exp	item	0	(item	0	con-output)
let	conrate					item	1	(item	0	con-output)
let	conR2							item	0	(item	1	con-output)
print	(list	(concnst	*	exp	(conrate	*	6))	(concnst)	(conrate)	(conR2))

;;	example	of	a	regression	with	two	independent	variables:
;;	Pretend	we	have	a	dataset,	and	we	want	to	know	how	well	happiness
;;	is	correlated	to	snack-food	consumption	and	accomplishing	goals.
let	happiness	[2	4	5	8	10]
let	snack-food-consumed	[3	4	3	7	8]

let	goals-accomplished	[2	3	5	8	9]
print	matrix:regress	matrix:from-column-list	(list	happiness	snack-food-consumed	goals-accomplished)
=>	[[-0.14606741573033788	0.3033707865168543	0.8202247191011234]	[0.9801718440185063	40.8	0.8089887640449439]]
;;	linear	regression:	happiness	=	-0.146	+	0.303*snack-food-consumed	+	0.820*goals-accomplished
;;	(Since	the	0.820	coefficient	is	higher	than	the	0.303	coefficient,	it	appears	that	each	goal
;;	accomplished	yields	more	happiness	than	does	each	snack	consumed,	although	both	are	positively
;;	correlated	with	happiness.)
;;	Also,	we	see	that	R^2	=	0.98,	so	the	two	factors	together	provide	a	good	fit.

NetLogo	Nw	Extension

Usage

The	first	thing	that	one	needs	to	understand	in	order	to	work	with	the	network	extension	is	how	to	tell	the	extension
which	network	to	work	with.	Consider	the	following	example	situation:

breed	[bankers	banker]
breed	[clients	client]

undirected-link-breed	[friendships	friendship]
directed-link-breed	[accounts	account]

Basically,	you	have	bankers	and	clients.	Clients	can	have	accounts	with	bankers.	Bankers	can	probably	have	account
with	other	bankers,	and	anyone	can	be	friends	with	anyone.

Now	we	might	want	to	consider	this	whole	thing	as	one	big	network.	If	that	is	the	case,	there	is	nothing	special	to	do:
by	default,	the	NW	extension	primitives	consider	all	turtles	and	all	links	to	be	part	of	the	current	network.

We	could	also,	however,	be	only	interested	in	a	subset	of	the	network.	Maybe	we	want	to	consider	only	friendship
relations.	Furthermore,	maybe	we	want	to	consider	only	the	friendships	between	bankers.	After	all,	having	a	very	high
centrality	in	a	network	of	banker	friendships	is	very	different	from	having	a	high	centrality	in	a	network	of	client
friendships.

To	specify	such	networks,	we	need	to	tell	the	extension	both	which	turtles	and	which	links	we	are	interested	in.	All	the
turtles	from	the	specified	set	of	turtles	will	be	included	in	the	network,	and	only	the	links	from	the	specified	set	of	links
that	are	between	turtles	of	the	specified	set	will	be	included.	For	example,	if	you	ask	for	bankers	and	friendships,
even	the	lonely	bankers	with	no	friends	will	be	included,	but	friendship	links	between	bankers	and	clients	will	not	be
included.	The	way	to	tell	the	extension	about	this	is	with	the	nw:set-context	primitive,	which	you	must	call	prior	to
doing	any	operations	on	a	network.

Some	examples:

nw:set-context	turtles	links 	will	give	you	everything:	bankers	and	clients,	friendships	and	accounts,	as	one	big
network.
nw:set-context	turtles	friendships 	will	give	you	all	the	bankers	and	clients	and	friendships	between	any	of	them.
nw:set-context	bankers	friendships 	will	give	you	all	the	bankers,	and	only	friendships	between	bankers.
nw:set-context	bankers	links 	will	give	you	all	the	bankers,	and	any	links	between	them,	whether	these	links	are
friendships	or	accounts.
nw:set-context	clients	accounts 	will	give	you	all	the	clients,	and	accounts	between	each	other,	but	since	in	our
fictional	example	clients	can	only	have	accounts	with	bankers,	this	will	be	a	completely	disconnected	network.

Special	agentsets	vs	normal	agentsets

It	must	be	noted	that	NetLogo	has	two	types	of	agentsets	that	behave	slightly	differently,	and	that	this	has	an	impact
on	the	way	nw:set-context	works.	We	will	say	a	few	words	about	these	concepts	here	but,	for	a	thorough
understanding,	it	is	highly	recommended	that	you	read	the	section	on	agentsets	in	the	NetLogo	programming	guide.

The	“special”	agentsets	in	NetLogo	are	turtles,	links	and	the	different	“breed”	agentsets.	What	is	special	about
them	is	that	they	can	grow:	if	you	create	a	new	turtle,	it	will	be	added	to	the	turtles	agentset.	If	you	have	a	bankers
breed	and	you	create	a	new	banker,	it	will	be	added	to	the	bankers	agentset	and	to	the	turtles	agentset.	Same	goes
for	links.	Other	agentsets,	such	as	those	created	with	the	with	primitive	(e.g.,	turtles	with	[color	=	red])	or	the
turtle-set	and	link-set	primitives)	are	never	added	to.	The	content	of	normal	agentsets	will	only	change	if	the
agents	that	they	contain	die.

To	show	how	different	types	of	agentsets	interact	with	nw:set-context,	let’s	create	a	very	simple	network:

clear-all
create-turtles	3	[create-links-with	other	turtles]

Let’s	set	the	context	to	turtles	and	links	(which	is	the	default	anyway)	and	use	nw:get-context	to	see	what	we
have:

nw:set-context	turtles	links
show	map	sort	nw:get-context

We	get	all	three	turtles	and	all	three	links:

[[(turtle	0)	(turtle	1)	(turtle	2)]	[(link	0	1)	(link	0	2)	(link	1	2)]]

Now	let’s	kill	one	turtle:

ask	one-of	turtles	[die]
show	map	sort	nw:get-context

As	expected,	the	context	is	updated	to	reflect	the	death	of	the	turtle	and	of	the	two	links	that	died	with	it:

[[(turtle	0)	(turtle	1)]	[(link	0	1)]]

What	if	we	now	create	a	new	turtle?

create-turtles	1
show	map	sort	nw:get-context

Since	our	context	is	using	the	special	turtles	agentset,	the	new	turtle	is	automatically	added:

[[(turtle	0)	(turtle	1)	(turtle	3)]	[(link	0	1)]]

Now	let’s	demonstrate	how	it	works	with	normal	agentsets.	We	start	over	with	a	new	network	of	red	turtles:

clear-all
create-turtles	3	[
		create-links-with	other	turtles
		set	color	red
]

And	we	set	the	context	to	turtles	with	[color	=	red]) 	and	links

nw:set-context	(turtles	with	[color	=	red])	links
show	map	sort	nw:get-context

Since	all	turtles	are	red,	we	get	everything	in	our	context:

[[(turtle	0)	(turtle	1)	(turtle	2)]	[(link	0	1)	(link	0	2)	(link	1	2)]]

But	what	if	we	ask	one	of	them	to	turn	blue?

ask	one-of	turtles	[set	color	blue]
show	map	sort	nw:get-context

No	change.	The	agentset	used	in	our	context	remains	unaffected:

[[(turtle	0)	(turtle	1)	(turtle	2)]	[(link	0	1)	(link	0	2)	(link	1	2)]]

If	we	kill	one	of	them,	however…

ask	one-of	turtles	[die]
show	map	sort	nw:get-context

It	gets	removed	from	the	set:

[[(turtle	0)	(turtle	2)]	[(link	0	2)]]

What	if	we	add	a	new	red	turtle?

create-turtles	1	[set	color	red]
show	map	sort	nw:get-context

Nope:

[[(turtle	0)	(turtle	2)]	[(link	0	2)]]

A	note	regarding	floating	point	calculations

Neither	JGraphT	nor	Jung,	the	two	network	libraries	that	we	use	internally,	use	strictfp	floating	point	calculations.
This	does	mean	that	exact	reproducibility	of	results	involving	floating	point	calculations	between	different	hardware
architectures	is	not	fully	guaranteed.	(NetLogo	itself	always	uses	strict	math	so	this	only	applies	to	some	primitives	of
the	NW	extension.)

Performance

In	order	to	be	fast	in	as	many	circumstances	as	possible,	the	NW	extension	tries	hard	to	never	calculate	things	twice.
It	remembers	all	paths,	distances,	and	centralities	that	it	calculates.	So,	while	the	first	time	you	ask	for	the	distance
between	turtle	0	and	turtle	3782	may	take	some	time,	after	that,	it	should	be	almost	instantaneous.	Furthermore,	it
keeps	track	of	values	it	just	happened	to	calculate	along	the	way.	For	example,	if	turtle	297	is	closer	to	turtle	0
than	turtle	3782	is,	it	may	just	happen	to	figure	out	the	distance	between	turtle	0	and	turtle	297	while	it	figures	out
the	distance	between	turtle	0	and	turtle	3782.	It	will	remember	this	value,	so	that	if	you	ask	it	for	the	distance
between	turtle	0	and	turtle	297,	it	doesn’t	have	to	do	all	that	work	again.

There	are	a	few	circumstances	where	the	NW	extension	has	to	forget	things.	If	the	network	changes	at	all	(you	add
turtles	or	links,	or	remove	turtles	or	links),	it	has	to	forget	everything.	For	weighted	primitives,	if	the	value	of	the	weight
variable	changes	for	any	of	the	links	in	the	network,	it	will	forget	the	values	associated	with	that	weight	variable.

If	you’re	working	on	a	network	that	can	change	regularly,	try	to	do	all	your	network	calculations	at	once,	then	all	your
network	changes	at	once.	The	more	your	interweave	network	calculations	and	network	changes,	the	more	the	NW
extension	will	have	to	recalculate	things.	For	example,	if	you	have	a	traffic	model,	and	cars	need	to	figure	out	the
shortest	path	to	their	destination	based	on	the	traffic	each	tick,	have	all	the	cars	find	their	shortest	paths,	then	change
the	network	weights	to	account	for	how	traffic	has	changed.

There	may	be	rare	occasions	in	which	you	don’t	want	the	NW	extension	to	remember	values.	For	example,	if	you’re
working	on	an	extremely	large	network,	remembering	all	those	values	may	take	more	memory	than	you	have.	In	that
case,	you	can	just	call	nw:set-context	(first	nw:get-context)	(last	nw:get-context) 	to	force	the	NW	extension	to
immediately	forget	everything.

Primitives

Generators

nw:generate-preferential-attachment	nw:generate-random	nw:generate-watts-strogatz	nw:generate-small-world
nw:generate-lattice-2d	nw:generate-ring	nw:generate-star	nw:generate-wheel

Path	and	Distance

nw:turtles-in-radius	nw:turtles-in-reverse-radius	nw:distance-to	nw:weighted-distance-to	nw:path-to	nw:turtles-
on-path-to	nw:weighted-path-to	nw:turtles-on-weighted-path-to	nw:mean-path-length	nw:mean-weighted-path-length

Clusterer/Community	Detection

nw:bicomponent-clusters	nw:weak-component-clusters	nw:louvain-communities	nw:maximal-cliques	nw:biggest-
maximal-cliques

Context	Management

nw:set-context	nw:get-context	nw:with-context

Import	and	Export

nw:save-matrix	nw:load-matrix	nw:save-graphml	nw:load-graphml	nw:load	nw:save

Centrality	Measures

nw:betweenness-centrality	nw:eigenvector-centrality	nw:page-rank	nw:closeness-centrality	nw:weighted-closeness-
centrality

https://github.com/jgrapht
http://jung.sourceforge.net/
https://en.wikipedia.org/wiki/Strictfp

Clustering	Measures

nw:clustering-coefficient	nw:modularity

nw:set-context

nw:set-context	turtleset	linkset

Specifies	the	set	of	turtles	and	the	set	of	links	that	the	extension	will	consider	to	be	the	current	graph.	All	the	turtles
from	turtleset	and	all	the	links	from	linkset	that	connect	two	turtles	from	turtleset	will	be	included.

This	context	is	used	by	all	other	primitives	(unless	specified	otherwise)	until	a	new	context	is	specified.	(At	the
moment,	only	the	generator	primitives	and	the	file	input	primitives	are	exceptions	to	this	rule.)

See	the	usage	section	for	a	much	more	detailed	explanation	of	nw:set-context.

nw:get-context

nw:get-context

Reports	the	content	of	the	current	graph	context	as	a	list	containing	two	agentsets:	the	agentset	of	turtles	that	are	part
of	the	context	and	the	agentset	of	links	that	are	part	of	the	context.

Let’s	say	we	start	with	a	blank	slate	and	the	default	context	consisting	of	turtles	and	links,	nw:get-context	will
report	a	list	the	special	turtles	and	links	breed	agentsets:

observer>	clear-all
observer>	show	nw:get-context
observer:	[turtles	links]

If	we	add	some	turtles	and	links	to	our	context,	we’ll	still	see	the	same	thing,	even	though	turtles	and	links	have
internally	grown:

observer>	crt	2	[create-links-with	other	turtles]
observer>	show	nw:get-context
observer:	[turtles	links]

If	you	had	set	your	context	to	normal	agentsets	instead	(built	with	turtle-set,	link-set	or	with)	here	is	what	you
would	see:

observer>	clear-all
observer>	nw:set-context	turtle-set	turtles	link-set	links
observer>	show	nw:get-context
observer:	[(agentset,	0	turtles)	(agentset,	0	links)]

If	you	then	create	new	turtles	and	links,	they	are	not	added	to	the	context	because	normal	agentsets	don’t	grow	(see
Special	agentsets	vs	normal	agentsets):

observer>	crt	2	[create-links-with	other	turtles]
observer>	show	nw:get-context
observer:	[(agentset,	0	turtles)	(agentset,	0	links)]

But	if	you	construct	new	agentsets	and	set	the	context	to	them,	your	new	agents	will	be	there:

observer>	nw:set-context	turtle-set	turtles	link-set	links
observer>	show	nw:get-context
observer:	[(agentset,	2	turtles)	(agentset,	1	link)]

If	you	want	to	see	the	actual	content	of	your	context,	it	is	easy	to	turn	your	agentsets	into	lists	that	can	be	nicely
displayed.	Just	use	a	combination	of	map	and	sort:

observer>	show	map	sort	nw:get-context
observer:	[[(turtle	0)	(turtle	1)]	[(link	0	1)]]

Finally,	you	can	use	nw:get-context	to	store	a	context	that	you	eventually	want	to	restore:

extensions	[nw]
to	store-and-restore-context
		clear-all
		crt	2	[
				set	color	red
				create-links-with	other	turtles	with	[color	=	red]	[
						set	color	yellow
]
]
		crt	2	[
				set	color	blue
				create-links-with	other	turtles	with	[color	=	blue]	[
						set	color	green
]
]
		nw:set-context	turtles	with	[color	=	red]	links	with	[color	=	yellow]
		show	map	sort	nw:get-context
		let	old-turtles	item	0	nw:get-context
		let	old-links	item	1	nw:get-context
		nw:set-context	turtles	with	[color	=	blue]	links	with	[color	=	green]
		show	map	sort	nw:get-context
		nw:set-context	old-turtles	old-links
		show	map	sort	nw:get-context
end

Here	is	the	result:

observer>	store-and-restore-context
observer:	[[(turtle	0)	(turtle	1)]	[(link	0	1)]]
observer:	[[(turtle	2)	(turtle	3)]	[(link	2	3)]]
observer:	[[(turtle	0)	(turtle	1)]	[(link	0	1)]]

nw:with-context

nw:with-context	turtleset	linkset	command-block

Executes	the	command-block	with	the	context	temporarily	set	to	turtleset	and	linkset.	After	command-block	finishes
running,	the	previous	context	will	be	restored.

For	example:

observer>	create-turtles	3	[create-links-with	other	turtles]
observer>	nw:with-context	(turtle-set	turtle	0	turtle	1)	(link-set	link	0	1)	[show	nw:get-context]
observer:	[(agentset,	2	turtles)	(agentset,	1	link)
observer>	show	nw:get-context
observer:	[turtles	links]

If	you	have	NW	extension	code	running	in	two	forever	buttons	or	loop	blocks	that	each	need	to	use	different	contexts,
you	should	use	nw:with-context	in	each	to	make	sure	they	are	operating	in	the	correct	context.

nw:turtles-in-radius

nw:turtles-in-radius	radius

Returns	the	set	of	turtles	within	the	given	distance	(number	of	links	followed)	of	the	calling	turtle	in	the	current
context,	including	the	calling	turtle.

nw:turtles-in-radius	form	will	follow	both	undirected	links	and	directed	out	links.	You	can	think	of	turtles-in-radius
as	“turtles	who	I	can	get	to	in	radius	steps”.

If	you	want	the	primitive	to	follow	only	undirected	links	or	only	directed	links,	you	can	do	it	by	setting	the	context
appropriately.	For	example:	nw:set-context	turtles	undir-links 	(assuming	undir-links	is	an	undirected	link	breed)
or	nw:set-context	turtles	dir-links 	(assuming	dir-links	is	a	directed	link	breed).

Example:

clear-all
create-turtles	5
ask	turtle	0	[create-link-with	turtle	1]
ask	turtle	0	[create-link-with	turtle	2]
ask	turtle	1	[create-link-with	turtle	3]
ask	turtle	2	[create-link-with	turtle	4]
ask	turtle	0	[
		show	sort	nw:turtles-in-radius	1

]

Will	output:

(turtle	0):	[(turtle	0)	(turtle	1)	(turtle	2)]

As	you	may	have	noticed,	the	result	includes	the	calling	turtle.	This	mimics	the	behavior	of	the	regular	NetLogo	in-
radius	primitive.

nw:turtles-in-reverse-radius

nw:turtles-in-reverse-radius	radius

Like	nw:turtles-in-radius,	but	follows	in-links	instead	of	out-links.	Also	follow	undirected	links.	You	can	think	of
turtles-in-reverse-radius	as	“turtles	who	can	get	to	me	in	radius	steps”.

nw:distance-to

nw:distance-to	target-turtle

Finds	the	shortest	path	to	the	target	turtle	and	reports	the	total	distance	for	this	path,	or	false	if	no	path	exists	in	the
current	context.	Each	link	counts	for	a	distance	of	one.

Example:

to	go
		clear-all
		create-turtles	5
		ask	turtle	0	[create-link-with	turtle	1]
		ask	turtle	1	[create-link-with	turtle	2]
		ask	turtle	0	[create-link-with	turtle	3]
		ask	turtle	3	[create-link-with	turtle	4]
		ask	turtle	4	[create-link-with	turtle	2]
		ask	turtle	0	[show	nw:distance-to	turtle	2]
end

Will	output:

(turtle	0):	2

nw:weighted-distance-to

nw:weighted-distance-to	target-turtle	weight-variable

Like	nw:distance-to,	but	takes	link	weight	into	account.	The	weights	cannot	be	negative	numbers.

Example:

links-own	[weight]
to	go
		clear-all
		create-turtles	5
		ask	turtle	0	[create-link-with	turtle	1	[set	weight	2.0]]
		ask	turtle	1	[create-link-with	turtle	2	[set	weight	2.0]]
		ask	turtle	0	[create-link-with	turtle	3	[set	weight	0.5]]
		ask	turtle	3	[create-link-with	turtle	4	[set	weight	0.5]]
		ask	turtle	4	[create-link-with	turtle	2	[set	weight	0.5]]
		ask	turtle	0	[show	nw:weighted-distance-to	turtle	2	weight]
end

Will	output:

(turtle	0):	1.5

nw:path-to

nw:path-to	target-turtle

Finds	the	shortest	path	to	the	target	turtle	and	reports	the	actual	path	between	the	source	and	the	target	turtle.	The
path	is	reported	as	the	list	of	links	that	constitute	the	path.

If	no	path	exist	between	the	source	and	the	target	turtles,	false	will	be	reported	instead.

Note	that	the	NW-Extension	remembers	paths	that	its	calculated	previously	unless	the	network	changes.	Thus,	you
don’t	need	to	store	paths	to	efficiently	move	across	the	network;	you	can	just	keep	re-calling	one	of	the	path
primitives.	If	the	network	changes,	however,	the	stored	answers	are	forgotten.	Example:

links-own	[weight]
to	go
		clear-all
		create-turtles	5
		ask	turtle	0	[create-link-with	turtle	1]
		ask	turtle	1	[create-link-with	turtle	2]
		ask	turtle	0	[create-link-with	turtle	3]
		ask	turtle	3	[create-link-with	turtle	4]
		ask	turtle	4	[create-link-with	turtle	2]
		ask	turtle	0	[show	nw:path-to	turtle	2]
end

Will	output:

(turtle	0):	[(link	0	1)	(link	1	2)]

nw:turtles-on-path-to

nw:turtles-on-path-to	target-turtle

Like	nw:path-to,	but	the	turtles	on	the	path	are	reported,	instead	of	the	links,	including	the	source	turtle	and	target
turtle.

Example:

to	go
		clear-all
		create-turtles	5
		ask	turtle	0	[create-link-with	turtle	1]
		ask	turtle	1	[create-link-with	turtle	2]
		ask	turtle	0	[create-link-with	turtle	3]
		ask	turtle	3	[create-link-with	turtle	4]
		ask	turtle	4	[create-link-with	turtle	2]
		ask	turtle	0	[show	nw:turtles-on-path-to	turtle	2]
end

Will	output:

(turtle	0):	[(turtle	0)	(turtle	1)	(turtle	2)]

nw:weighted-path-to

nw:weighted-path-to	target-turtle	weight-variable

Like	nw:path-to,	but	takes	link	weight	into	account.

Example:

links-own	[weight]
to	go
		clear-all
		create-turtles	5
		ask	turtle	0	[create-link-with	turtle	1	[set	weight	2.0]]
		ask	turtle	1	[create-link-with	turtle	2	[set	weight	2.0]]
		ask	turtle	0	[create-link-with	turtle	3	[set	weight	0.5]]
		ask	turtle	3	[create-link-with	turtle	4	[set	weight	0.5]]
		ask	turtle	4	[create-link-with	turtle	2	[set	weight	0.5]]
		ask	turtle	0	[show	nw:weighted-path-to	turtle	2	weight]
end

Will	output:

(turtle	0):	[(link	0	3)	(link	3	4)	(link	2	4)]

nw:turtles-on-weighted-path-to

nw:turtles-on-weighted-path-to	target-turtle	weight-variable

Like	nw:turtles-on-path-to,	but	takes	link	weight	into	account.

Example:

links-own	[weight]
to	go
		clear-all
		create-turtles	5
		ask	turtle	0	[create-link-with	turtle	1	[set	weight	2.0]]
		ask	turtle	1	[create-link-with	turtle	2	[set	weight	2.0]]
		ask	turtle	0	[create-link-with	turtle	3	[set	weight	0.5]]
		ask	turtle	3	[create-link-with	turtle	4	[set	weight	0.5]]
		ask	turtle	4	[create-link-with	turtle	2	[set	weight	0.5]]
		ask	turtle	0	[show	nw:weighted-path-to	turtle	2	weight]
end

Will	output:

(turtle	0):	[(turtle	0)	(turtle	3)	(turtle	4)	(turtle	2)]

nw:mean-path-length

nw:mean-path-length

Reports	the	average	shortest-path	length	between	all	distinct	pairs	of	nodes	in	the	current	context.

Reports	false	unless	paths	exist	between	all	pairs.

Example:

links-own	[weight]
to	go
		clear-all
		create-turtles	3
		ask	turtle	0	[create-link-with	turtle	1	[set	weight	2.0]]
		ask	turtle	1	[create-link-with	turtle	2	[set	weight	2.0]]
		show	nw:mean-path-length
		create-turtles	1	;	create	a	new,	disconnected	turtle
		show	nw:mean-path-length
end

Will	ouput:

observer:	1.3333333333333333
observer:	false

nw:mean-weighted-path-length

nw:mean-weighted-path-length	weight-variable

Like	nw:mean-path-length,	but	takes	into	account	link	weights.

Example:

links-own	[weight]
to	go
		clear-all
		create-turtles	3
		ask	turtle	0	[create-link-with	turtle	1	[set	weight	2.0]]
		ask	turtle	1	[create-link-with	turtle	2	[set	weight	2.0]]

		show	nw:mean-path-length
		show	nw:mean-weighted-path-length	weight
		create-turtles	1	;	create	a	new,	disconnected	turtle
		show	nw:mean-path-length
		show	nw:mean-weighted-path-length	weight
end

Will	ouput:

observer:	2.6666666666666665
observer:	false

nw:betweenness-centrality

nw:betweenness-centrality

To	calculate	the	betweenness	centrality	of	a	turtle,	you	take	every	other	possible	pairs	of	turtles	and,	for	each	pair,
you	calculate	the	proportion	of	shortest	paths	between	members	of	the	pair	that	passes	through	the	current	turtle.
The	betweenness	centrality	of	a	turtle	is	the	sum	of	these.

As	of	now,	link	weights	are	not	taken	into	account.

nw:eigenvector-centrality

nw:eigenvector-centrality

The	Eigenvector	centrality	of	a	node	can	be	thought	of	as	the	amount	of	influence	a	node	has	on	a	network.	In
practice,	turtles	that	are	connected	to	a	lot	of	other	turtles	that	are	themselves	well-connected	(and	so	on)	get	a
higher	Eigenvector	centrality	score.

In	this	implementation,	the	eigenvector	centrality	is	normalized	such	that	the	highest	eigenvector	centrality	a	node	can
have	is	1.	This	implementation	is	designed	to	agree	with	Gephi’s	implementation	out	to	at	least	3	decimal	places.	If
you	discover	that	it	disagrees	with	Gephi	on	a	particular	network,	please	report	it.

The	primitive	respects	link	direction,	even	in	mixed-directed	networks.	This	is	the	one	place	where	it	should	disagree
with	Gephi;	Gephi	refuses	to	treat	directed	links	as	directed	in	mixed-networks.

As	of	now,	link	weights	are	not	taken	into	account.

nw:page-rank

nw:page-rank

The	page	rank	of	a	node	can	be	thought	of	as	the	proportion	of	time	that	an	agent	walking	forever	at	random	on	the
network	would	spend	at	this	node.	The	agent	has	an	equal	chance	of	taking	any	of	a	nodes	edges,	and	will	jump
around	the	network	completely	randomly	15%	of	the	time.	In	practice,	like	with	eigenvector	centrality,	turtles	that	are
connected	to	a	lot	of	other	turtles	that	are	themselves	well-connected	(and	so	on)	get	a	higher	page	rank.

Page	rank	is	one	of	the	several	algorithms	that	search	engines	use	to	determine	the	importance	of	a	website.

The	sum	of	all	page	rank	values	should	be	approximately	one.	Unlike	eigenvector	centrality,	page	rank	is	defined	for
all	networks,	no	matter	the	connectivity.	Currently,	it	treats	all	links	as	undirected	links.

As	of	now,	link	weights	are	not	taken	into	account.

nw:closeness-centrality

nw:closeness-centrality

The	closeness	centrality	of	a	turtle	is	defined	as	the	inverse	of	the	average	of	it’s	distances	to	all	other	turtles.	(Some
people	use	the	sum	of	distances	instead	of	the	average,	but	the	extension	uses	the	average.)

Note	that	this	primitive	reports	the	intra-component	closeness	of	a	turtle,	that	is,	it	takes	into	account	only	the
distances	to	the	turtles	that	are	part	of	the	same	component	as	the	current	turtle,	since	distance	to	turtles	in	other
components	is	undefined.	The	closeness	centrality	of	an	isolated	turtle	is	defined	to	be	zero.

nw:weighted-closeness-centrality

https://en.wikipedia.org/wiki/Betweenness_centrality
https://en.wikipedia.org/wiki/Centrality#Eigenvector_centrality
https://github.com/NetLogo/NW-Extension/issues/new
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Centrality#Closeness_centrality
https://en.wikipedia.org/wiki/Connected_component_%2528graph_theory%2529

nw:weighted-closeness-centrality	link-weight-variable

This	is	identical	to	nw:closeness-centrality,	except	that	weights	provided	by	the	given	variable	are	treated	as	the
distances	of	links.

nw:clustering-coefficient

nw:clustering-coefficient

Reports	the	local	clustering	coefficient	of	the	turtle.	The	clustering	coefficient	of	a	node	measures	how	connected	its
neighbors	are.	It	is	defined	as	the	number	of	links	between	the	node’s	neighbors	divided	by	the	total	number	of
possible	links	between	its	neighbors.

nw:clustering-coefficient	takes	the	directedness	of	links	into	account.	A	directed	link	counts	as	a	single	link
whereas	an	undirected	link	counts	as	two	links	(one	going	one-way,	one	going	the	other).

The	global	clustering	coefficient	measures	how	much	nodes	tend	to	cluster	together	in	the	network	in	general.	It	is
defined	based	on	the	types	of	triplets	in	the	network.	A	triplet	consists	of	a	central	node	and	two	of	its	neighbors.	If	its
neighbors	are	also	connected,	it’s	a	closed	triplet.	If	its	neighbors	are	not	connected,	it’s	an	open	triplet.	The	global
clustering	coefficient	is	simply	the	number	of	closed	triplets	in	a	network	divided	by	the	total	number	of	triplets.	It	can
be	calculated	from	the	local	clustering	coefficient	quite	easily	with	the	following	code

to-report	global-clustering-coefficient
		let	closed-triplets	sum	[nw:clustering-coefficient	*	count	my-links	*	(count	my-links	-	1)]	of	turtles
		let	triplets	sum	[count	my-links	*	(count	my-links	-	1)]	of	turtles
		report	closed-triplets	/	triplets
end

Note	that	the	above	will	only	work	with	the	default	context,	and	may	need	to	tweaked	if	you’ve	set	the	turtles	or	links
in	the	network	to	something	other	than	turtles	and	links.

The	average	local	clustering	coefficient	is	another	popular	method	for	measuring	the	amount	of	clustering	in	the
network	as	a	whole.	It	may	be	calculated	with

mean	[nw:clustering-coefficient]	of	turtles

nw:modularity

nw:modularity

Modularity	is	a	measurement	of	community	structure	in	the	network.	It	is	defined	based	on	the	number	of	in-
community	links	versus	the	number	of	between-community	links.	This	primitive	takes	as	input	a	list	of	agentsets,
where	each	of	the	agentsets	is	one	the	communities	that	you’re	separating	the	network	into.

This	measurement	works	on	undirected,	directed,	and	mixed-directedness	networks.	In	the	case	of	mixed-
directedness,	undirected	links	are	treated	essentially	the	same	as	two	opposing	directed	links.	It	does	not	take	weight
into	account.

Example:

nw:modularity	(list	(turtles	with	[color	=	blue])	(turtles	with	[color	=	red]))

nw:bicomponent-clusters

nw:bicomponent-clusters

Reports	the	list	of	bicomponent	clusters	in	the	current	network	context.	A	bicomponent	(also	known	as	a	maximal
biconnected	subgraph)	is	a	part	of	a	network	that	cannot	be	disconnected	by	removing	only	one	node	(i.e.	you	need
to	remove	at	least	two	to	disconnect	it).	The	result	is	reported	as	a	list	of	agentsets,	in	random	order.	Note	that	one
turtle	can	be	a	member	of	more	than	one	bicomponent	at	once.

nw:weak-component-clusters

nw:weak-component-clusters

Reports	the	list	of	“weakly”	connected	components	in	the	current	network	context.	A	weakly	connected	component	is

https://en.wikipedia.org/wiki/Clustering_coefficient#Local_clustering_coefficient
https://en.wikipedia.org/wiki/Clustering_coefficient#Global_clustering_coefficient
https://en.wikipedia.org/wiki/Modularity_(networks)
https://en.wikipedia.org/wiki/Biconnected_component
https://en.wikipedia.org/wiki/Connected_component_%2528graph_theory%2529

simply	a	group	of	nodes	where	there	is	a	path	from	each	node	to	every	other	node.	A	“strongly”	connected
component	would	be	one	where	there	is	a	directed	path	from	each	node	to	every	other.	The	extension	does	not
support	the	identification	of	strongly	connected	components	at	the	moment.

The	result	is	reported	as	a	list	of	agentsets,	in	random	order.	Note	that	one	turtle	cannot	be	a	member	of	more	than
one	weakly	connected	component	at	once.

nw:louvain-communities

nw:louvain-communities

Detects	community	structure	present	in	the	network.	It	does	this	by	maximizing	modularity	using	the	Louvain	method.
The	communities	are	reported	as	a	list	of	turtle-sets.

Often	you’ll	want	to	tell	turtles	about	the	community	that	they	are	in.	You	can	do	this	like	so:

turtles-own	[community]

...

foreach	nw:louvain-communities	[[comm]	->
		ask	comm	[set	community	comm]
]

You	can	give	each	community	its	own	color	with	something	like	this:

let	communities	nw:louvain-communities
let	colors	sublist	0	(length	communities)	base-colors
(foreach	communities	colors	[[community	col]	->
		ask	community	[set	color	col]
])

nw:maximal-cliques

nw:maximal-cliques

A	clique	is	a	subset	of	a	network	in	which	every	node	has	a	direct	link	to	every	other	node.	A	maximal	clique	is	a
clique	that	is	not,	itself,	contained	in	a	bigger	clique.

The	result	is	reported	as	a	list	of	agentsets,	in	random	order.	Note	that	one	turtle	can	be	a	member	of	more	than	one
maximal	clique	at	once.

The	primitive	uses	the	Bron–Kerbosch	algorithm	and	only	works	with	undirected	links.

nw:biggest-maximal-cliques

nw:biggest-maximal-cliques

The	biggest	maximal	cliques	are,	as	the	name	implies,	the	biggest	cliques	in	the	current	context.	Often,	more	than
one	clique	are	tied	for	the	title	of	biggest	clique,	so	the	result	is	reported	as	a	list	of	agentsets,	in	random	order.	If	you
want	only	one	clique,	use	one-of	nw:biggest-maximal-cliques.

The	primitive	uses	the	Bron–Kerbosch	algorithm	and	only	works	with	undirected	links.

nw:generate-preferential-attachment

nw:generate-preferential-attachment	turtle-breed	link-breed	num-nodes	min-degree	optional-command-block

Generates	a	new	network	using	a	version	of	the	Barabási–Albert	algorithm.	This	network	will	have	the	property	of
being	“scale	free”:	the	distribution	of	degrees	(i.e.	the	number	of	links	for	each	turtle)	should	follow	a	power	law.

Generation	works	as	follows	turtles	are	added,	one	by	one,	each	forming	min-degree	links	to	a	previously	added
turtles,	until	num-nodes	is	reached.	The	more	links	a	turtle	already	has,	the	greater	the	probability	that	new	turtles	form
links	with	it	when	they	are	added.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-preferential-attachment	turtles	links	100	1	[set	color	red]

https://en.wikipedia.org/wiki/Louvain_Modularity
https://en.wikipedia.org/wiki/Clique_%2528graph_theory%2529
https://en.wikipedia.org/wiki/Bron%25E2%2580%2593Kerbosch_algorithm
https://en.wikipedia.org/wiki/Clique_%2528graph_theory%2529
https://en.wikipedia.org/wiki/Bron%25E2%2580%2593Kerbosch_algorithm
https://en.wikipedia.org/wiki/Barab%25C3%25A1si%25E2%2580%2593Albert_model

nw:generate-random

nw:generate-random	turtle-breed	link-breed	num-nodes	connection-probability	optional-command-block

Generates	a	new	random	network	of	num-nodes	turtles	in	which	each	one	has	a	connection-probability	(between	0
and	1)	of	being	connected	to	each	other	turtles.	The	algorithm	uses	the	G(n,	p)	variant	of	the	Erdős–Rényi	model.

The	algorithm	is	O(n²)	for	directed	networks	and	O(n²/2)	for	undirected	networks,	so	generating	more	than	a	couple
thousand	nodes	will	likely	take	a	very	long	time.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-random	turtles	links	100	0.5	[set	color	red]

nw:generate-watts-strogatz

nw:generate-watts-strogatz	turtle-breed	link-breed	num-nodes	neighborhood-size	rewire-probability	optional-
command-block

Generates	a	new	Watts-Strogatz	small-world	network.

The	algorithm	begins	by	creating	a	ring	of	nodes,	where	each	node	is	connected	to	neighborhood-size	nodes	on
either	side.	Then,	each	link	is	rewired	with	probability	rewire-prob.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	Furthermore,	the
turtles	are	generated	in	the	order	they	appear	as	in	create-ordered-turtles.	So,	in	order	to	lay	the	ring	out	as	a	ring,
you	can	do	something	like:

nw:generate-watts-strogatz	turtles	links	50	2	0.1	[fd	10]

nw:generate-small-world

nw:generate-small-world	turtle-breed	link-breed	row-count	column-count	clustering-exponent	is-toroidal
optional-command-block

Generates	a	new	small-world	network	using	the	Kleinberg	Model.	Note	that	nw:generate-watts-strogatz	generates	a
more	traditional	small-world	network.

The	algorithm	proceeds	by	generating	a	lattice	of	the	given	number	of	rows	and	columns	(the	lattice	will	wrap	around
itself	if	is-toroidal	is	true).	The	“small	world	effect”	is	created	by	adding	additional	links	between	the	nodes	in	the
lattice.	The	higher	the	clustering-exponent,	the	more	the	algorithm	will	favor	already	close-by	nodes	when	adding	new
links.	A	clustering	exponent	of	2.0	is	typically	used.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-small-world	turtles	links	10	10	2.0	false	[set	color	red]

The	turtles	are	generated	in	the	order	that	they	appear	in	the	lattice.	So,	for	instance,	to	generate	a	kleinberg	lattice
accross	the	entire	world,	and	lay	it	out	accordingly,	try	the	following:

nw:generate-small-world	turtles	links	world-width	world-height	2.0	false
(foreach	(sort	turtles)	(sort	patches)	[[t	p]	->	ask	t	[move-to	p]])

nw:generate-lattice-2d

nw:generate-lattice-2d	turtle-breed	link-breed	row-count	column-count	is-toroidal	optional-command-block

Generates	a	new	2D	lattice	network	(basically,	a	grid)	of	row-count	rows	and	column-count	columns.	The	grid	will
wrap	around	itself	if	is-toroidal	is	true.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-lattice-2d	turtles	links	10	10	false	[set	color	red]

https://en.wikipedia.org/wiki/Erd%25C5%2591s%25E2%2580%2593R%25C3%25A9nyi_model
https://en.wikipedia.org/wiki/Watts_and_Strogatz_model
https://en.wikipedia.org/wiki/Small-world_network
https://en.wikipedia.org/wiki/Small_world_routing#The_Kleinberg_Model
https://en.wikipedia.org/wiki/Lattice_graph

The	turtles	are	generated	in	the	order	that	they	appear	in	the	lattice.	So,	for	instance,	to	generate	a	lattice	accross	the
entire	world,	and	lay	it	out	accordingly,	try	the	following:

nw:generate-lattice-2d	turtles	links	world-width	world-height	false
(foreach	(sort	turtles)	(sort	patches)	[[t	p]	->	ask	t	[move-to	p]])

nw:generate-ring

nw:generate-ring	turtle-breed	link-breed	num-nodes	optional-command-block

Generates	a	ring	network	of	num-nodes	turtles,	in	which	each	turtle	is	connected	to	exactly	two	other	turtles.

The	number	of	nodes	must	be	at	least	three.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-ring	turtles	links	100	[set	color	red]

nw:generate-star

nw:generate-star	turtle-breed	link-breed	num-nodes	optional-command-block

Generates	a	star	network	in	which	there	is	one	central	turtle	and	every	other	turtle	is	connected	only	to	this	central
node.	The	number	of	turtles	can	be	as	low	as	one,	but	it	won’t	look	much	like	a	star.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-star	turtles	links	100	[set	color	red]

nw:generate-wheel

nw:generate-wheel	turtle-breed	link-breed	num-nodes	optional-command-block

Variants:

nw:generate-wheel-inward
nw:generate-wheel-outward

Generates	a	wheel	network,	which	is	basically	a	ring	network	with	an	additional	“central”	turtle	that	is	connected	to
every	other	turtle.

The	number	of	nodes	must	be	at	least	four.

The	nw:generate-wheel	only	works	with	undirected	link	breeds.	The	nw:generate-wheel-inward	and	nw:generate-
wheel-outward	versions	only	work	with	directed	link-breed.	The	inward	and	outward	part	of	the	primitive	names	refer	to
the	direction	that	the	“spokes”	of	the	wheel	point	to	relative	to	the	central	turtle.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:generate-wheel	turtles	links	100	[set	color	red]

nw:save-matrix

nw:save-matrix	file-name

Saves	the	current	network,	as	defined	by	nw:set-context,	to	file-name,	as	a	text	file,	in	the	form	of	a	simple
connection	matrix.

Here	is,	for	example,	a	undirected	ring	network	with	four	nodes:

0.00	1.00	0.00	1.00
1.00	0.00	1.00	0.00
0.00	1.00	0.00	1.00
1.00	0.00	1.00	0.00

https://en.wikipedia.org/wiki/Ring_network
https://en.wikipedia.org/wiki/Star_graph
https://en.wikipedia.org/wiki/Wheel_graph
https://en.wikipedia.org/wiki/Ring_network

And	here	is	the	directed	version:

0.00	1.00	0.00	0.00
0.00	0.00	1.00	0.00
0.00	0.00	0.00	1.00
1.00	0.00	0.00	0.00

At	the	moment,	nw:save-matrix	does	not	support	link	weights.	Every	link	is	represented	as	a	“1.00”	in	the	connection
matrix.	This	will	change	in	a	future	version	of	the	extension.

nw:load-matrix

nw:load-matrix	file-name	turtle-breed	link-breed	optional-command-block

Generates	a	new	network	according	to	the	connection	matrix	saved	in	file-name,	using	turtle-breed	and	link-breed	to
create	the	new	turtles	and	links.

At	the	moment,	nw:load-matrix	does	not	support	link	weights.

Please	be	aware	that	the	breeds	used	to	load	the	matrix	may	be	different	from	those	that	you	used	when	you	saved
it.

For	example:

extensions	[nw]
directed-link-breed	[dirlinks	dirlink]
to	go
		clear-all
		crt	5	[create-dirlinks-to	other	turtles]
		nw:set-context	turtles	dirlinks
		nw:save-matrix	"matrix.txt"
		clear-all
		nw:load-matrix	"matrix.txt"	turtles	links
		layout-circle	turtles	10
end

…will	give	you	back	undirected	links,	even	if	you	saved	directed	links	into	the	matrix.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:load-matrix	"matrix.txt"	turtles	links	[set	color	red]

nw:save-graphml

nw:save-graphml	file-name

You	can	save	the	current	graph	to	GraphML.	The	following	NetLogo	code:

extensions	[nw]

breed	[bankers	banker]
bankers-own	[bank-name]
breed	[clients	client]
clients-own	[hometown]

undirected-link-breed	[friendships	friendship]

directed-link-breed	[accounts	account]
accounts-own	[amount]

to	go
		clear-all
		create-bankers	1	[
				set	bank-name	"The	Bank"
]
		create-clients	1	[
				set	hometown	"Turtle	City"
				create-friendship-with	banker	0
				create-account-to	banker	0	[
						set	amount	9999.99
]
]

		nw:set-context	turtles	links
		nw:save-graphml	"example.graphml"
end

Will	produce	the	following	GraphML	file:

<?xml	version="1.0"	encoding="UTF-8"?>
<graphml	xmlns="http://graphml.graphdrawing.org/xmlns/graphml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns/graphml">
<key	id="PEN-MODE"	for="node"	attr.name="PEN-MODE"	attr.type="string"/>
<key	id="YCOR"	for="node"	attr.name="YCOR"	attr.type="double"/>
<key	id="PEN-SIZE"	for="node"	attr.name="PEN-SIZE"	attr.type="double"/>
<key	id="LABEL"	for="node"	attr.name="LABEL"	attr.type="string"/>
<key	id="SHAPE"	for="node"	attr.name="SHAPE"	attr.type="string"/>
<key	id="BREED"	for="node"	attr.name="BREED"	attr.type="string"/>
<key	id="WHO"	for="node"	attr.name="WHO"	attr.type="double"/>
<key	id="HIDDEN?"	for="node"	attr.name="HIDDEN?"	attr.type="boolean"/>
<key	id="LABEL-COLOR"	for="node"	attr.name="LABEL-COLOR"	attr.type="double"/>
<key	id="HEADING"	for="node"	attr.name="HEADING"	attr.type="double"/>
<key	id="BANK-NAME"	for="node"	attr.name="BANK-NAME"	attr.type="string"/>
<key	id="HOMETOWN"	for="node"	attr.name="HOMETOWN"	attr.type="string"/>
<key	id="COLOR"	for="node"	attr.name="COLOR"	attr.type="double"/>
<key	id="XCOR"	for="node"	attr.name="XCOR"	attr.type="double"/>
<key	id="SIZE"	for="node"	attr.name="SIZE"	attr.type="double"/>
<key	id="END1"	for="edge"	attr.name="END1"	attr.type="string"/>
<key	id="TIE-MODE"	for="edge"	attr.name="TIE-MODE"	attr.type="string"/>
<key	id="END2"	for="edge"	attr.name="END2"	attr.type="string"/>
<key	id="LABEL-COLOR"	for="edge"	attr.name="LABEL-COLOR"	attr.type="double"/>
<key	id="THICKNESS"	for="edge"	attr.name="THICKNESS"	attr.type="double"/>
<key	id="LABEL"	for="edge"	attr.name="LABEL"	attr.type="string"/>
<key	id="SHAPE"	for="edge"	attr.name="SHAPE"	attr.type="string"/>
<key	id="BREED"	for="edge"	attr.name="BREED"	attr.type="string"/>
<key	id="COLOR"	for="edge"	attr.name="COLOR"	attr.type="double"/>
<key	id="AMOUNT"	for="edge"	attr.name="AMOUNT"	attr.type="double"/>
<key	id="HIDDEN?"	for="edge"	attr.name="HIDDEN?"	attr.type="boolean"/>
<graph	edgedefault="undirected">
<node	id="client	1">
<data	key="PEN-MODE">up</data>
<data	key="YCOR">0</data>
<data	key="PEN-SIZE">1</data>
<data	key="LABEL"></data>
<data	key="SHAPE">default</data>
<data	key="BREED">clients</data>
<data	key="WHO">1</data>
<data	key="HIDDEN?">false</data>
<data	key="LABEL-COLOR">9.9</data>
<data	key="HEADING">356</data>
<data	key="HOMETOWN">Turtle	City</data>
<data	key="COLOR">115</data>
<data	key="XCOR">0</data>
<data	key="SIZE">1</data>
</node>
<node	id="banker	0">
<data	key="PEN-MODE">up</data>
<data	key="YCOR">0</data>
<data	key="PEN-SIZE">1</data>
<data	key="LABEL"></data>
<data	key="SHAPE">default</data>
<data	key="BREED">bankers</data>
<data	key="WHO">0</data>
<data	key="HIDDEN?">false</data>
<data	key="LABEL-COLOR">9.9</data>
<data	key="HEADING">32</data>
<data	key="BANK-NAME">The	Bank</data>
<data	key="COLOR">85</data>
<data	key="XCOR">0</data>
<data	key="SIZE">1</data>
</node>
<edge	source="client	1"	target="banker	0">
<data	key="END1">(client	1)</data>
<data	key="TIE-MODE">none</data>
<data	key="END2">(banker	0)</data>
<data	key="LABEL-COLOR">9.9</data>
<data	key="THICKNESS">0</data>
<data	key="LABEL"></data>
<data	key="SHAPE">default</data>
<data	key="BREED">accounts</data>
<data	key="COLOR">5</data>
<data	key="AMOUNT">9999.99</data>
<data	key="HIDDEN?">false</data>
</edge>
<edge	source="banker	0"	target="client	1">
<data	key="END1">(banker	0)</data>
<data	key="TIE-MODE">none</data>

<data	key="END2">(client	1)</data>
<data	key="LABEL-COLOR">9.9</data>
<data	key="THICKNESS">0</data>
<data	key="LABEL"></data>
<data	key="SHAPE">default</data>
<data	key="BREED">friendships</data>
<data	key="COLOR">5</data>
<data	key="HIDDEN?">false</data>
</edge>
</graph>
</graphml>

A	few	things	to	notice:

The	breed	is	stored	as	data	field,	both	for	nodes	and	edges.	Note	that	the	breed	is	stored	in	its	plural	form.
The	data	includes	both	NetLogo’s	internal	variables	and	the	variables	that	were	defined	as	either	breeds-own,
turtles-own,	linkbreeds-own	or	links-own.
Each	key	gets	an	attr.type	based	on	the	actual	types	of	the	values	contained	in	the	agent	variables.	The	three
possible	types	are	"string",	"double"	and	"boolean".	To	determine	the	attribute	type	of	a	particular	agent	variable,
the	extension	will	look	at	the	first	agent	in	the	graph.	To	see	which	agent	is	first,	you	can	look	at	the	result	of
nw:get-context.	Note	that	variables	containing	other	types	of	values,	such	as	turtles,	patches,	lists,	etc.,	will	be
stored	as	strings.
This	example	only	has	a	directed	link,	and	you	will	notice	the	<graph	edgedefault="directed">	element.	If	we	had
only	undirected	links,	we	would	have	<graph	edgedefault="undirected">.	What	if	we	try	to	mix	both	kinds	of	link?
At	the	moment,	the	extension	will	save	such	a	“mixed”	graph	as	if	it	were	an	undirected	graph	(see	this	issue	for
more	details).	The	order	of	the	source	and	target	will	be	respected,	however,	so	if	you	know	which	breeds
represent	directed	links,	you	can	figure	it	out	a	posteriori.

nw:load-graphml

nw:load-graphml	file-name	optional-command-block

Loading	a	GraphML	file	into	NetLogo	with	the	network	extension	should	be	as	simple	as	calling	nw:load-graphml
"example.graphml",	but	there	is	a	bit	of	preparation	involved.

The	key	idea	is	that	nw:load-graphml	will	try	to	assign	the	attribute	values	defined	in	the	GraphML	file	to	NetLogo
agent	variables	of	the	same	names	(this	is	not	case	sensitive).	The	first	one	it	tries	to	set	is	breed	if	it	is	there,	so	the
turtle	or	link	will	get	the	right	breed	and,	hence,	the	right	breed	variables.	The	load	expects	the	plural	form	of	the
breed	for	a	turtle	or	link,	it	will	not	recognize	the	singular	form.

One	special	case	is	the	who	number,	which	is	ignored	by	the	importer	if	it	is	present	as	a	GraphML	attribute:	NetLogo
does	not	allow	you	to	modify	this	number	once	a	turtle	is	created	and,	besides,	there	could	already	be	an	existing
turtle	with	that	number.

The	simplest	case	to	handle	is	when	the	original	GraphML	file	has	been	saved	from	NetLogo	by	using	nw:save-
graphml.	In	this	case,	all	you	should	have	to	do	is	to	make	sure	that	you	have	the	same	breed	and	variables	definition
as	when	you	saved	the	file	and	you	should	get	back	your	original	graph.	For	example,	if	you	want	to	load	the	file	from
the	nw:save-graphml	example	above,	you	should	have	the	following	definitions:

breed	[bankers	banker]
bankers-own	[bank-name]
breed	[clients	client]
clients-own	[hometown]

undirected-link-breed	[friendships	friendship]

directed-link-breed	[accounts	account]
accounts-own	[amount]

Loading	a	graph	that	was	saved	from	a	different	program	than	NetLogo	is	quite	possible	as	well,	but	it	may	take	a	bit
of	tinkering	to	get	all	the	attribute-variable	match	up	right.	If	you	encounter	major	problems,	please	do	not	hesitate	to
open	an	issue.

The	extension	will	try	to	assign	the	type	defined	by	attr.type	to	each	variable	that	it	loads.	If	it’s	unable	to	convert	it
to	that	type,	it	will	load	it	as	a	string.	If	attr.type	is	not	defined,	or	is	set	to	an	unknown	value,	the	extension	will	first
try	to	load	the	value	as	a	double,	then	try	it	as	a	boolean,	and	finally	fall	back	on	a	string.

If	you	specify	an	optional-command-block,	it	is	executed	for	each	turtle	in	the	newly	created	network.	For	example:

nw:load-graphml	"example.graphml"	[set	color	red]

Note	that	this	command	block	can	be	used	to	build	a	list	or	an	agentset	containing	the	newly	created	nodes:

https://github.com/NetLogo/NW-Extension/issues/58
https://github.com/NetLogo/NW-Extension/issues/new

let	node-list	[]
nw:load-graphml	"example.graphml"	[
		set	node-list	lput	self	node-list
]
let	node-set	turtle-set	node-list

nw:load

nw:load	file-name	default-turtle-breed	default-link-breed	optional-command-block

Filetype	specific	variants:

nw:load
nw:load-dl
nw:load-gdf
nw:load-gexf
nw:load-gml
nw:load-vna

Import	the	given	file	into	NetLogo.	Like	nw:load-graphml,	the	importer	will	do	its	best	to	match	node	and	edge
attributes	in	the	file	with	turtle	and	link	variables	in	NetLogo.	If	breed	is	specified	for	nodes	and	edges	in	the	file	and
exists	in	NetLogo,	it	will	be	used.	Otherwise,	the	default	turtle	and	link	breeds	are	used.

Limitations:

Multigraphs	are	not	supported	in	importing.	Even	if	the	file	format	supports	it	(and	many	don’t),	only	the	first	link	will
be	used	on	import.	This	is	due	to	a	limitation	in	the	parsing	libraries	NW	uses.	nw:load-graphml	does	support
multigraphs	with	the	normal	NetLogo	limitation	that	two	turtles	can	share	more	than	one	link	only	if	all	the	links	are
of	different	breeds.

nw:load	determines	the	file-type	of	given	file	based	on	the	extension	and	calls	the	corresponding	load-*	primitive	on
it.	Note	that	GraphML	must	be	imported	with	nw:load-graphml.

nw:save

nw:save	file-name

Filetype	specific	variants:

nw:save-dl
nw:save-gdf
nw:save-gexf
nw:save-gml
nw:save-vna

Export	the	network	context	in	the	given	format	to	the	given	file.	Turtle	and	link	attributes	will	be	exported	to	formats
that	support	node	and	edge	properties.

Limitations:

x	and	y	(not	xcor	and	ycor)	can	only	be	numbers.	x	and	y	are	commonly	used	in	formats	pertaining	to	position	and
behind	the	scenes	NW	uses	Gephi’s	libraries	for	exporting.	Furthermore,	x	and	y	will	be	added	even	if	they	didn’t
exist	in	the	model.	Again,	this	is	because	NW	uses	Gephi’s	libraries	which	assume	that	nodes	have	positions
stored	in	x	and	y.	If	you	wish	to	export	to	Gephi	specifically,	we	recommend	creating	x	and	y	turtles	variables	and
setting	them	to	xcor	and	ycor	before	export.
Color	will	be	exported	in	a	standard	RGB	format.	This	should	hopefully	increase	compatibility	with	other	programs.
Turtle	and	link	variables	that	contain	values	of	different	types	will	be	stored	as	strings.	Unfortunately,	most	network
formats	require	that	node	and	attributes	have	a	single	type.
Many	programs	use	label	to	store	the	id	of	nodes.	Thus,	if	you’re	having	trouble	importing	data	exported	from
NetLogo	into	another	program,	you	might	try	setting	turtles’	labels	to	their	who	number.
Multigraphs	are	not	supported.	Thus,	two	turtles	can	share	at	most	one	link.	nw:save-graphml	does	support
multigraphs,	so	use	that	if	turtles	can	have	more	than	one	type	of	link	connecting	them.

nw:save	determines	the	file-type	of	the	given	file	based	on	the	extension	and	calls	the	corresponding	save-*	primitive
on	it.	Note	that	GraphML	must	be	exported	with	nw:save-graphml.

NetLogo	Palette	Extension

Using	the	Palette	Extension

The	NetLogo	palette	extension	offers	the	user	more	control	over	their	colors.	The	colors	go	beyond	NetLogo	colors,	including	ColorBrewer	color
schemes	and	arbitrary	RGB	colors.	Additionally,	users	can	control	specific	components	of	their	color	such	as	alpha,	hue	and	red.

Getting	Started

To	get	started	with	palettes	add	to	the	top	of	your	Code	tab:

extensions	[palette]

you	can	then	call	any	of	the	primitives	by	adding	palette:	before	the	primitive:

palette:hue-of
palette:set-saturation

palette:scale-gradient
palette:scale-scheme

Background

Review	of	color	representation	in	NetLogo

Colors	can	be	represented	as	NetLogo	colors	or	RGB	or	RGBA	colors

A	NetLogo	color	(NLC	or	NL	color)	is	a	number	in	the	range	0	to	140,	with	the	exception	of	140	itself,	other	values	are	‘wrapped.’
NetLogo	colors	are	shades	of	a	base	color	which	has	units	digit	5,	and	is	in	the	middle	of	the	shade	range.

An	RGB	color	is	a	list	of	3	numbers.
The	numbers	represent	red,	green	and	blue	and	are	in	the	range	0	to	255.

An	RGBA	color	is	a	list	of	4	numbers.
The	fourth	number	is	called	alpha	and	is	in	the	range	0	to	255.
Alpha	represents	transparency	with	0	fully	transparent,	and	255	fully	opaque.

RGB/A	will	be	used	to	denote	a	color	that	is	either	RGB	or	RGBA.

Transparency

The	degree	to	which	one	can	see	through	a	color	can	also	be	specified	by	referring	to	transparency.	Transparency	is	in	the	range	0	to	100,	with	0	fully
opaque	and	100	fully	transparent.	Transparency	is	not	stored	as	part	of	a	color,	but	is	mathematically	converted	to	and	from	alpha.

HSB	Color	Specification

Colors	can	also	be	specified	(but	not	stored	as	color	values)	by	reference	to	HSB	-	hue,	saturation	and	brightness.

Hue	ranges	0	to	360	and	forms	a	cycle.
Saturation	ranges	0	to	100.
Brightness	ranges	0	to	100.
For	more	information,	search	the	web	for	‘hsb	color	system.’

More	control	over	the	color

Palette	primitives	allow	the	user	to:

Report	a	specific	component	of	a	color
e.g.	palette:hue-of

Report	the	result	of	changing	a	specific	component	of	a	color
e.g.	palette:with-hue

Report	a	specific	component	of	an	agent’s	color
e.g.	palette:hue

Change	a	specific	component	of	an	agent’s	color
e.g.	palette:set-hue

The	user	can	also	create	color	gradients	and	access	ColorBrewer	color	schemes.

Varying	an	Agent’s	Transparency	or	Color

You	can	make	a	turtle	more	transparent	by	decreasing	alpha,	or	increasing	transparency.	A	similar	approach	can	be	used	to	adjust	color	components
such	as	brightness.	Here	are	two	examples:

ask	turtles	[palette:set-transparency	palette:transparency		+	10]
ask	turtles	[palette:set-alpha	.9	*	palette:alpha]

Because	an	error	will	result	if	the	value	passed	to	a	set	command	is	not	in	the	correct	range,	a	little	additional	code	is	sometimes	needed.

ask	turtles	[palette:set-transparency	min	list		100	(palette:transparency	+	10)]
ask	turtles	[palette:set-alpha	max	list	0	(palette:alpha	-	25.5)]

How	do	I	choose	a	color	scheme?

ColorBrewer	has	three	kinds	of	color	schemes:	Sequential,	Divergent	and	Qualitative.	Although	choosing	a	color	palette	is	a	design	problem	that	does
not	have	a	single	solution	we	offer	the	following	guidelines	for	choosing	colors	for	a	NetLogo	model:

Decide	first	whether	to	use	a	Sequential,	Divergent	or	Qualitative	color	scheme

Sequential	color	schemes	are	best	for	models	of	continuous	natural	phenomena	such	as	as	heat	diffusion	in	physics	or	fire	in	earth	sciences.
Divergent	color	schemes	are	useful	for	highlighting	a	middle	value	in	a	model.	Therefore	they	could	be	used	with	the	heat	diffusion	model	if	the	goal
were	to	highlight	regions	with	the	middle	temperature.
Qualitative	colors	are	best	for	choosing	colors	in	models	where	color	denotes	category	and	not	value.

Additional	color	considerations

For	agents	that	cover	large	areas	avoid	strong	colors	and	try	to	use	pastel	colors.	However,	for	a	few	small	isolated	agents	try	to	use	strong	colors
such	as	such	an	accent.
The	main	goal	is	to	avoid	having	a	large	area	covered	with	agents	with	a	bright	color	and	or	having	small	areas	having	a	muted	pastel	color.
If	you	are	coloring	both	turtles	and	patches,	make	sure	they	have	different	ranges	of	hue,	saturation	and	value.	For	example,	use	different	hues	of
pastel	for	patches	and	accent	for	turtles.

You	can	learn	more	about	the	use	of	these	color	collections	in	the	original	ColorBrewer	paper	(Harrower,	Brewer	2003),	which	focuses	on	their
application	to	maps.	See	(Kornhauser,	Wilensky,	and	Rand	1999)	for	design	guidelines	for	visualization	of	Agent	Based	Models.

Should	I	use	a	continuous	color	gradient	or	just	a	discrete	color	set?

The	answer	depends	on	the	focus	of	the	user	experience.

For	example,	gradients	are	more	aesthetic	thus	are	more	memorable	than	discrete	colors.	Consequently,	a	gradient	can	be	a	better	choice	for
presentations	where	the	main	goal	of	the	image	is	to	be	attractive	and	memorable.	However,	binning	values	in	a	discrete	set	of	colors	simplifies	tasks
such	as	estimation	and	counting	by	removing	unnecessary	detail	and	focusing	on	the	big	picture.	Thus,	discrete	colors	can	be	a	better	choice	for	a
written	document	for	which	the	user	will	have	the	time	and	interest	to	study	the	visualization.

In	order	to	see	the	difference	you	can	turn	on	and	off	the	gradient	in	the	Heat	Diffusion	model.	You	can	observe	that	turning	gradient	on	makes	the
model	more	aesthetic,	but	it	becomes	harder	to	estimate	the	value	of	a	patch	at	a	given	position.

Example	Models

There	are	a	few	examples	of	using	the	palette	primitives	in	the	Code	Examples	section	of	the	models	library:

Palette	Example
Color	Bubbles
Color	Painting
Color	Reveal

And	one	Sample	Model	that	uses	the	extension:

Heat	Diffusion	-	Alternative	Gradient

Further	Reading

Be	sure	to	check	the	ColorBrewer	web	page.
To	get	a	deeper	understanding	of	how	to	use	the	color	schemes	read	the	ColorBrewer	paper	(Harrower,	Brewer	2003).

Primitives

palette:alpha-of	palette:with-alpha	palette:alpha	palette:set-alpha	palette:transparency-of	palette:with-transparency	palette:transparency
palette:set-transparency	palette:hue-of	palette:with-hue	palette:hue	palette:set-hue	palette:saturation-of	palette:with-saturation
palette:saturation	palette:set-saturation	palette:brightness-of	palette:with-brightness	palette:brightness	palette:set-brightness	palette:R-of
palette:with-R	palette:R	palette:set-R	palette:G-of	palette:with-G	palette:G	palette:set-G	palette:B-of	palette:with-B	palette:B	palette:set-B
palette:scale-gradient	palette:scale-gradient-hsb	palette:scheme-colors	palette:scale-scheme	palette:scheme-dialog

palette:alpha-of

palette:alpha-of	color

Reports	a	value	in	the	range	0	to	255	representing	the	alpha	of	the	given	NL,	RGB	or	RGBA	color.	The	alpha	value	of	an	NL	or	RGB	color	is	255.

Example:

show	palette:alpha-of	red	;;	255
show	palette:alpha-of	[3	14	159	26]	;;	26

palette:with-alpha

color	palette:with-alpha	number

Reports	an	RGBA	color	with	alpha	component	equal	to	number	and	the	RGB	content	of	color.	An	error	message	results	if	alpha	is	not	in	the	range
from	0	to	255.

Example:

show	[12	34	55	6]	palette:with-alpha	99	;;	[12	34	55	99]

palette:alpha

palette:alpha

Get	the	alpha	value	of	the	color	of	the	agent.	The	alpha	value	of	an	NL	or	RGB	color	is	255.

Example:

http://colorbrewer2.org/

show	[palette:alpha]	of	turtles

palette:set-alpha

palette:set-alpha	number

Set	the	color	of	the	agent	to	the	RGBA	color	with	alpha	value	number	and	the	RGB	content	of	the	color	of	the	turtle	or	link	(or	patch	in	NetLogo3D).	An
error	message	results	if	number	is	not	in	the	range	0	to	255.

Example:

ask	turtles	[palette:set-alpha	100]

palette:transparency-of

palette:transparency-of	color

Reports	a	value	in	the	range	0	to	100	representing	the	percent	transparency	of	the	given	NL,	RGB	or	RGBA	color.	The	percent	transparency	of	an	NL
or	RGB	color	is	0.

Example:

show	palette:transparency-of	[100	100	100	100]	;;	60.7843137254902
show	palette:transparency-of	red	;;	0

palette:with-transparency

color	palette:with-transparency	number

Reports	an	RGBA	color	with	an	alpha	value	equivalent	to	the	transparency	number	and	the	RGB	content	of	color.	An	error	message	results	if	number
is	not	in	the	range	0	to	100.

Example:

show	red	palette:with-transparency	100	;;	[215	50	41	0]

palette:transparency

palette:transparency

Reports	the	transparency	equivalent	of	the	agent’s	alpha.

Example:

show	[palette:transparency]	of	turtles

palette:set-transparency

palette:set-transparency	number

Set	the	color	of	the	agent	to	the	RGBA	color	with	alpha	value	equivalent	to	the	transparency	number	and	the	RGB	content	of	the	color	of	the	turtle	or
link.	An	error	message	results	if	number	is	not	in	the	range	0	to	100.

Example:

ask	turtles	[palette:set-transparency	30]

palette:hue-of

palette:hue-of	color

Reports	a	value	in	the	range	0	to	360	representing	the	hue	component	in	HSB	color	space	of	the	given	NL,	RGB	or	RGBA	color.

Example:

show	palette:hue-of	red	;;	3.103

palette:with-hue

color	palette:with-hue	number

Reports	an	RGBA	color	with	hue	component	in	HSB	color	space	equal	to	number	and	the	other	HSB	components	of	the	input	color	unchanged.	An
error	message	results	if	number	is	not	in	the	range	0	to	360.

Example:

show	red	palette:with-hue	100	;;	[99	215	41]

palette:hue

palette:hue

Reports	a	number	in	the	range	0	to	360	that	represents	the	hue	of	an	agent’s	color	or	pcolor.

Example:

crt	1	[set	color	red]
[palette:hue]	of	turtle	0	;;	3.103

palette:set-hue

palette:set-hue	number

Changes	an	agent’s	hue	value	to	number,	leaving	the	other	HSB	components	unchanged.	An	error	message	results	if	number	is	not	in	the	range	from
0	to	360.

Example:

ask	turtles	[palette:set-hue	30]

palette:saturation-of

palette:saturation-of	color

Reports	a	value	in	the	range	0	to	100	representing	the	saturation	component	in	HSB	color	space	of	the	given	NL,	RGB	or	RGBA	color.

Example:

show	palette:saturation-of	red	;;	80.93

palette:with-saturation

color	palette:with-saturation	number

Reports	an	RGBA	color	with	saturation	component	in	HSB	color	space	equal	to	number	and	the	other	HSB	components	of	the	input	color	unchanged.
An	error	message	results	if	number	is	not	in	the	range	0	to	100.

Example:

show	red	palette:with-saturation	50	;;	[215	113	108]

palette:saturation

palette:saturation

Reports	a	number	in	the	range	0	to	100	that	represents	the	saturation	of	an	agent’s	color	or	pcolor.

Example:

crt	1	[set	color	red]
[palette:saturation]	of	turtle	0	;;	80.93

palette:set-saturation

palette:set-saturation	number

Changes	an	agent’s	saturation	leaving	the	other	HSB	components	unchanged.	An	error	message	results	if	number	is	not	in	the	range	from	0	to	100.

Example:

ask	turtles	[palette:set-saturation	30]

palette:brightness-of

palette:brightness-of	color

Reports	a	value	in	the	range	0	to	100	representing	the	brightness	component	in	HSB	color	space	of	the	given	NL,	RGB	or	RGBA	color.

Example:

show	palette:brightness-of	red	;;	84.314

palette:with-brightness

color	palette:with-brightness	number

Reports	an	RGBA	color	with	brightness	component	in	HSB	color	space	equal	to	number	and	the	other	HSB	components	of	the	input	color	unchanged.
An	error	message	results	if	number	is	not	in	the	range	0	to	100.

Example:

show	red	palette:with-brightness	50	;;	[128	30	24]

palette:brightness

palette:brightness

Reports	a	number	in	the	range	0	to	100	that	represents	the	brightness	of	an	agent’s	color	or	pcolor.

Example:

crt	1	[set	color	red]
[palette:brightness]	of	turtle	0	;;	84.314

palette:set-brightness

palette:set-brightness	number

Changes	an	agent’s	brightness	leaving	the	other	HSB	components	unchanged.	An	error	message	results	if	number	is	not	in	the	range	from	0	to	100.

Example:

ask	turtles	[palette:set-brightness	30]

palette:R-of

palette:R-of	color

Reports	a	value	in	the	range	0	to	255	representing	the	red	component	in	the	RGB	color	space	of	the	given	NL,	RGB	or	RGBA	color.

Example:

show	palette:R-of	red	;;	215

palette:with-R

color	palette:with-R	number

Reports	an	RGBA	color	with	red	component	in	RGB	color	space	equal	to	number	and	the	other	RGB	components	of	the	input	color	unchanged.	An
error	message	results	if	number	is	not	in	the	range	0	to	255.

Example:

show	red	palette:with-R	50	;;	[50	50	41]

palette:R

palette:R

Reports	a	number	in	the	range	0	to	255	that	represents	the	red	of	an	agent’s	color	or	pcolor.

Example:

crt	1	[set	color	red]
[palette:R]	of	turtle	0	;;	215

palette:set-R

palette:set-R	number

Changes	an	agent’s	red	component	of	its	RGB/A	color	leaving	the	other	RGB	components	unchanged.	An	error	message	results	if	number	is	not	in
the	range	from	0	to	255.

Example:

ask	turtles	[palette:set-R	30]

palette:G-of

palette:G-of	color

Reports	a	value	in	the	range	0	to	255	representing	the	green	component	in	the	RGB	color	space	of	the	given	NL,	RGB	or	RGBA	color.

Example:

show	palette:G-of	red	;;	50

palette:with-G

color	palette:with-G	number

Reports	an	RGBA	color	with	green	component	in	RGB	color	space	equal	to	number	and	the	other	RGB	components	of	the	input	color	unchanged.	An
error	message	results	if	number	is	not	in	the	range	0	to	255.

Example:

show	red	palette:with-G	56	;;	[215	56	41]

palette:G

palette:G

Reports	a	number	in	the	range	0	to	255	that	represents	the	green	of	an	agent’s	color	or	pcolor.

Example:

crt	1	[set	color	red]
[palette:G]	of	turtle	0	;;	50

palette:set-G

palette:set-G	number

Changes	an	agent’s	green	component	of	its	RGB/A	color	leaving	the	other	RGB	components	unchanged.	An	error	message	results	if	number	is	not	in
the	range	from	0	to	255.

Example:

ask	turtles	[palette:set-G	30]

palette:B-of

palette:B-of	color

Reports	a	value	in	the	range	0	to	255	representing	the	blue	component	in	the	RGB	color	space	of	the	given	NL,	RGB	or	RGBA	color.

Example:

show	palette:B-of	red	;;	41

palette:with-B

color	palette:with-B	number

Reports	an	RGBA	color	with	blue	component	in	RGB	color	space	equal	to	number	and	the	other	RGB	components	of	the	input	color	unchanged.	An
error	message	results	if	number	is	not	in	the	range	0	to	255.

Example:

show	red	palette:with-B	56	;;	[215	50	56]

palette:B

palette:B

Reports	a	number	in	the	range	0	to	255	that	represents	the	blue	of	an	agent’s	color	or	pcolor.

Example:

crt	1	[set	color	red]
[palette:B]	of	turtle	0	;;	41

palette:set-B

palette:set-B	number

Changes	an	agent’s	blue	component	of	its	RGB/A	color	leaving	the	other	RGB	components	unchanged.	An	error	message	results	if	number	is	not	in
the	range	from	0	to	255.

Example:

ask	turtles	[palette:set-B	30]

palette:scale-gradient

palette:scale-gradient	rgb-color-list	number	range1	range2

Reports	an	RGB	color	proportional	to	number	using	a	gradient	generated	with	rgb-color-list.	The	rgb-color-list	is	a	list	containing	NL	or	RGB	colors:	e.g.
[NL1	[r1	g1	b1]	[r2	g2	b2]	[r3	g3	b3]	NL2	…].

When	range1	is	less	than	or	equal	to	range2,	the	color	will	be	directly	mapped	to	gradient	colors.	When	range2	is	less	than	range1,	the	color	gradient
is	inverted.

Let	min-range	be	the	minimum	of	range1	and	range2.	If	number	is	less	than	or	equal	to	min-range,	then	the	result	is	the	same	as	if	number	was	equal
to	min-range.

Let	max-range	be	the	maximum	of	range1	and	range2.	If	number	is	greater	than	max-range,	then	the	result	is	the	same	as	if	number	was	equal	to
max-range.

Example:

ask	patches
[
		set	pcolor	palette:scale-gradient	[[255	0	0]	[0	0	255]]	pxcor	min-pxcor	max-pxcor
]

;;	colors	each	patch	with	a	color	proportional	to	the	gradient

palette:scale-gradient-hsb

palette:scale-gradient-hsb	rgb-color-list	number	range1	range2

Reports	an	RGB	color	equivalent	to	a	color	in	HSB	space	proportional	to	number	using	a	gradient	generated	with	hsb-list.	The	hsb-list	is	a	list
containing	three-element	lists	of	HSB	colors:	[[h1	s1	b1]	[h2	s2	b2]	[h3	s3	b3]	…].

When	range1	is	less	than	or	equal	to	range2,	the	HSB	color	will	be	directly	mapped	to	gradient	HSB	colors.	When	range2	is	less	than	range1,	the
color	gradient	is	inverted.

Let	min-range	be	the	minimum	of	range1	and	range2.	If	number	is	less	than	or	equal	to	min-range,	then	the	result	is	the	same	as	if	number	was	equal
to	min-range.

Let	max-range	be	the	maximum	of	range1	and	range2.	If	number	is	greater	than	max-range,	then	the	result	is	the	same	as	if	number	was	equal	to
max-range.

Example:

ask	patches
[
ask	patches	[set	pcolor	palette:scale-gradient-hsb	[[200	50	50]	[100	60	70]]	pxcor	min-pxcor	max-pxcor]
]

;;	colors	each	patch	with	a	color	proportional	to	the	gradient

palette:scheme-colors

palette:scheme-colors	scheme-type	scheme-color	number-of-classes

Reports	a	list	of	RGB	colors	using	ColorBrewer	scheme	of	type	scheme-type	with	name	scheme-color	containing	number-of-classes	colors.	Scheme
types	are	“Sequential,”	“Divergent”	and	“Qualitative.”	The	choice	of	scheme	names	depends	on	the	scheme	type	and	includes	“Reds”,	“Spectral”	and
“Set1”.	The	minimum	number	of	colors	is	3	and	a	maximum	is	between	8	and	12	depending	on	the	color	scheme.	For	more	information	go	to
http://www.colorbrewer.org.

Example:

show	palette:scheme-colors	"Divergent"	"Spectral"	3
=>	[[252	141	89]	[255	255	191]	[153	213	148]]

;	The	scheme-colors	primitive	can	be	used	with	the	scale-gradient	primitive.
ask	patches
		[set	pcolor	palette:scale-gradient	palette:scheme-colors	"Divergent"	"Spectral"	9	pxcor	min-pxcor	max-pxcor]

palette:scale-scheme

palette:scale-scheme	scheme-type	scheme-color	number-of-classes	number	range1	range2

Reports	an	RGB	color	from	the	ColorBrewer	scheme	of	type	scheme-type	with	name	scheme-color	containing	number-of-classes	colors.	The	color	is
chosen	using	the	proportionality	of	number	in	the	range	specified	by	range1	and	range2.

When	range1	is	less	than	or	equal	to	range2,	the	colors	are	ordered	as	in	the	ColorBrewer	scheme.	When	range2	is	less	than	range1,	the	color	order
is	reversed.

Let	min-range	be	the	minimum	of	range1	and	range2.	If	number	is	less	or	equal	to	than	min-range,	then	the	result	is	the	same	as	if	number	was	equal

http://www.colorbrewer.org

to	min-range.	This	will	be	the	first	color	in	the	color	list	if	range1	is	less	than	range2.

Let	max-range	be	the	maximum	of	range1	and	range2.	If	number	is	greater	than	max-range,	then	the	result	is	the	same	as	if	number	was	equal	to
max-range.	This	will	be	the	last	color	in	the	color	list	if	range1	is	less	than	range2.

Example:

ask	patches
[
		set	pcolor	palette:scale-scheme	"Divergent"	"Spectral"	8	pxcor	min-pxcor	max-pxcor
]

;;	colors	each	patch	with	a	color	from	the	Color	Brewer	Schemes

palette:scheme-dialog

palette:scheme-dialog

Launches	a	dialog	for	previewing	all	the	ColorBrewer	color	schemes.

Use	the	leftmost	pulldown	menu	to	select	the	scheme	type:	“Sequential,”	“Divergent”	or	“Qualitative.”	Use	the	next	pulldown	menu	to	select	a	named
scheme.	Finally	select	the	number	of	colors.	The	maximum	number	depends	on	the	color	scheme.	Use	the	Copy	button	to	copy	the	scheme
information	into	the	clipboard.	This	information	can	be	pasted	into	commands	such	as	palette:scheme-colors.	The	Close	button	can	be	used	to	close
the	dialog.

Example:

		palette:scheme-dialog

		;;	In	the	dialog	the	user	selects	scheme	type	"Divergent,"	the	scheme	named	"Spectral,"	and	the	number	3,	and	clicks	the	*Copy*	button.
		;;	In	the	Command	Center	the	user	types	"show	palette:scheme-colors	"	and	then	pastes	the	clipboard	contents,	and	hits	*Enter*.

		show	palette:scheme-colors	"Divergent"	"Spectral"	3

		=>	[[252	141	89]	[255	255	191]	[153	213	148]]

References

ColorBrewer	www.colorbrewer.org

HARROWER,	M.	and	C.	BREWER	(2003).	ColorBrewer:	An	online	tool	for	selecting	color	schemes	for	maps.	The	Cartographic	Journal	40(1):	27-37.)

HEALEY,	C	G	(2006)	Perception	in	Visualization,	(comprehensive	review	updated	regularly).

HEALEY,	C	G,	BOOTH	K	S,	and	ENNS,	J	T	(1995).	Visualizing	Real-Time	Multivariate	Data	Using	Preattentive	Processing.	ACM	Transactions	on
Modeling	and	Computer	Simulation	5,	3,	190-221.

KORNHAUSER,	D,	WILENSKY,	U	and	RAND,	W	(1999).	Design	Guidelines	for	Agent	Based	Model	Visualization.	Journal	of	Artificial	Societies	and
Social	Simulation	12(2)1.

TUFTE,	E	(1983)	The	Visual	Display	of	Quantitative	Information,	Graphics	Press.

WARE,	C	(2004)	Information	Visualization,	2nd	Ed.,	Morgan	Kaufmann.

http://www.colorbrewer.org
https://www.tandfonline.com/doi/abs/10.1179/000870403235002042
http://www.csc.ncsu.edu/faculty/healey/PP/index.html
https://www.csc2.ncsu.edu/faculty/healey/download/tomacs.95.pdf
https://www.jasss.org/12/2/1.html

NetLogo	Profiler	Extension

Using	the	Profiler	Extension

If	you’d	like	your	model	to	run	faster,	the	profiler	extension	may	be	useful	to	you.	It	includes	primitives	that	measure
how	many	times	the	procedures	in	your	model	are	called	during	a	run	and	how	long	each	call	takes.	You	can	use	this
information	to	where	to	focus	your	speedup	efforts.

Caution:

The	profiler	extension	is	experimental.	It	is	not	yet	well	tested	or	user	friendly.	Nonetheless,	we	think	some	users	will
find	it	useful.

How	to	use

The	profiler	extension	comes	preinstalled.	To	use	the	extension	in	your	model,	add	a	line	to	the	top	of	your	Code	tab:

extensions	[profiler]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so	just	add	profiler	to	the
list.

For	more	information	on	using	NetLogo	extensions,	see	the	Extensions	Guide

Example

setup																		;;	set	up	the	model
profiler:start									;;	start	profiling
repeat	20	[go]							;;	run	something	you	want	to	measure
profiler:stop										;;	stop	profiling
print	profiler:report		;;	view	the	results
profiler:reset									;;	clear	the	data

Another	way	to	use	the	profiler	is	to	export	its	raw	data	using	the	csv	extension	and	the	profiler:data	primitive:

extensions	[csv	profiler]

to	profile
		setup																																										;;	set	up	the	model
		profiler:start																																	;;	start	profiling
		repeat	20	[go]																															;;	run	something	you	want	to	measure
		profiler:stop																																		;;	stop	profiling
		csv:to-file	"profiler_data.csv"	profiler:data		;;	save	the	results
		profiler:reset																																	;;	clear	the	data		
end

Running	the	above	procedure	will	write	a	profiler_data.csv	file	that	you	can	then	load	into	your	favorite	data
analysis	program.	Here	is	an	example	data	file	produced	using	the	Wolf	Sheep	Predation	model:

procedure,calls,inclusive_time,exclusive_time
EAT-SHEEP,1085,1.237283,11.637364
DISPLAY-LABELS,20,17.389512,17.389512
MOVE,3578,14.164451,14.164451
GO,20,683.414619,604.773837
GRASS,3,0.05384,0.05384
DEATH,1085,3.172517,3.172517
REPRODUCE-SHEEP,2493,10.265135,10.265135
REPRODUCE-WOLVES,1039,5.599509,5.599509

Thanks	to	Roger	Peppe	for	his	contributions	to	the	code.

Primitives

profiler:calls	profiler:exclusive-time	profiler:inclusive-time	profiler:start	profiler:stop	profiler:reset
profiler:report	profiler:data

profiler:calls

https://ccl.northwestern.edu/netlogo/models/WolfSheepPredation

profiler:calls	procedure-name

Reports	the	number	of	times	that	procedure-name	was	called.	If	procedure-name	is	not	defined,	then	reports	0.

profiler:exclusive-time

profiler:exclusive-time	procedure-name

Reports	the	exclusive	time,	in	milliseconds,	that	procedure-name	was	running	for.	Exclusive	time	is	the	time	from
when	the	procedure	was	entered,	until	it	finishes,	but	does	not	include	any	time	spent	in	other	user-defined
procedures	which	it	calls.

If	procedure-name	is	not	defined,	then	reports	0.

profiler:inclusive-time

profiler:inclusive-time	procedure-name

Reports	the	inclusive	time,	in	milliseconds,	that	procedure-name	was	running	for.	Inclusive	time	is	the	time	from
when	the	procedure	was	entered,	until	it	finishes.

If	procedure-name	is	not	defined,	then	reports	0.

profiler:start

profiler:start

Instructs	the	profiler	to	begin	recording	user-defined	procedure	calls.

profiler:stop

profiler:stop

Instructs	the	profiler	to	stop	recording	user-defined	procedure	calls.

profiler:reset

profiler:reset

Instructs	the	profiler	to	erase	all	collected	data.

profiler:report

profiler:report

Reports	a	string	containing	a	breakdown	of	all	user-defined	procedure	calls.	The	Calls	column	contains	the	number
of	times	a	user-defined	procedure	was	called.	The	Incl	T(ms)	column	is	the	total	time,	in	milliseconds,	it	took	for	the
call	to	complete,	including	the	time	spent	in	other	user-defined	procedures.	The	Excl	T(ms)	column	is	the	total	time,
in	milliseconds,	spent	within	that	user-defined	procedure,	not	counting	other	user-define	procedures	it	called.	The
Excl/calls	column	is	an	estimate	of	the	time,	in	milliseconds,	spent	in	that	user-defined	procedure	for	each	call.

Here	is	example	output:

Sorted	by	Exclusive	Time
Name																															Calls	Incl	T(ms)	Excl	T(ms)	Excl/calls
CALLTHEM																														13					26.066					19.476						1.498
CALLME																																13						6.413						6.413						0.493
REPORTME																														13						0.177						0.177						0.014

Sorted	by	Inclusive	Time
Name																															Calls	Incl	T(ms)	Excl	T(ms)	Excl/calls
CALLTHEM																														13					26.066					19.476						1.498
CALLME																																13						6.413						6.413						0.493
REPORTME																														13						0.177						0.177						0.014

Sorted	by	Number	of	Calls
Name																															Calls	Incl	T(ms)	Excl	T(ms)	Excl/calls
CALLTHEM																														13					26.066					19.476						1.498

profiler:data

profiler:data

Reports	a	list	of	lists	containing	the	results	of	the	profiler	in	a	format	that	is	suitable	for	exporting	with	the	csv
extension.

The	first	sublist	contains	the	name	of	the	data	columns:	procedure,	calls,	inclusive_time	and	exclusive_time.	This	is
followed	by	one	sublist	containing	the	profiler	data	for	each	user-defined	procedure.	The	reported	times	are	in
milliseconds.

NetLogo	Py	Extension

Using

As	with	all	NetLogo	extensions,	you	must	declare	that	you’re	using	this	extension	in	your	NetLogo	code	with:

extensions	[
		py
		;	...	your	other	extensions
]

The	general	workflow	of	this	extension	is	to	run	py:setup	py:python	to	initialize	the	Python	session	that	NetLogo	will	talk	to,	and	then	use	py:run,	py:runresult,	and	py:set	to	interact	with
that	Python	session.	By	default,	py:python	will	report	the	latest	version	of	Python	that	the	extension	finds	on	your	system.	You	can	also	use	py:python3	or	py:python2	to	use	Python	3	or	2
specifically.	See	the	Configuring	section	below	to	specify	exactly	which	Python	installations	to	use.

Here’s	an	example	to	get	you	started:

observer>	py:setup	py:python
observer>	show	py:runresult	"1	+	1"
observer:	2
observer>	py:run	"print('hi')"
hi
observer>	py:run	"import	math"
observer>	show	py:runresult	"[math.factorial(i)	for	i	in	range(10)]"
observer:	[1	1	2	6	24	120	720	5040	40320	362880]
observer>	py:set	"patch_xs"	[pxcor]	of	patches
observer>	show	py:runresult	"max(patch_xs)"
observer:	16
observer>	py:run	"print(min(patch_xs))"
-16

See	the	documentation	for	each	of	the	particular	primitives	for	details	on,	for	instance,	how	to	multi-line	statements	and	how	object	type	conversions	work.	See	the	demo	models	included	in
the	demo	folder	for	some	examples	of	using	libraries	such	as	numpy	and	tensorflow.

See	the	documentation	on	py:set	to	learn	how	to	have	the	extension	serialize	entire	agents	and	agentsets	into	Python	dictionaries.

There	is	also	a	separate	interactive	Python	console	that	can	be	found	under	Python	>	Interactive	Python	Console.	This	console	is	connected	to	the	same	Python	session	as	all	the	Python
NetLogo	primitives,	so	you	can	define	a	variable	in	your	model	and	access	it	in	the	interactive	Python	console	window.

Error	handling

Python	errors	will	be	reported	in	NetLogo	as	“Extension	exceptions”.	For	instance,	this	code:

py:run	"raise	Exception('hi')"

will	result	in	the	NetLogo	error	“Extension	exception:	hi”.	To	see	the	Python	stack	trace	of	the	exception,	click	“Show	internal	details”.	If	you	then	scroll	down,	you	will	find	the	Python	stack
trace	in	the	middle	of	the	Java	stack	trace.

Configuring

By	default,	the	py:python2,	py:python3,	and	py:python	commands	will	attempt	to	find	a	Python	executable	of	the	appropriate	version.	If	you’d	like	to	change	which	Python	executable	they	use,
or	they	can’t	find	a	Python	executable,	you	should	configure	which	Python	executables	to	use.	You	can	do	this	by	either:

Using	the	configuration	menu	under	the	Python	toolbar	menu	that	appears	when	you	use	a	model	that	uses	the	Python	extension.
Editing	the	python.properties	file	that	appears	in	the	Python	extension	installation	folder	as	follows:

python3=/path/to/python3
python2=/path/to/python2

Primitives

py:setup	py:python	py:python2	py:python3	py:run	py:runresult	py:set

py:setup

py:setup	python-executable

Create	the	Python	session	that	this	extension	will	use	to	execute	code.	The	session	will	be	started	with	the	given	Python	executable.	This	command	must	be	run	before	running	any	other
Python	extension	primitive.	Running	this	command	again	will	shutdown	the	current	Python	environment	and	start	a	new	one.

The	executable	may	be	specified	as	a	relative	path,	absolute	path,	or	just	the	executable	name	if	it	is	on	your	PATH.	Furthermore,	this	extension	offers	a	few	helper	primitives	for	getting
particular	versions	of	Python	in	system	independent	ways.

In	general,	unless	working	with	a	virtual	environment	or	a	specific	system	setup,	you	should	do:

py:setup	py:python		;	if	your	code	works	with	either	Python	2	or	3
py:setup	py:python3	;	for	Python	3
py:setup	py:python2	;	for	Python	2

py:setup	may	be	invoked	by	directly	referring	to	different	Pythons	as	well.	For	instance:

py:setup	"python3"	;	if	`python3`	is	on	your	PATH
py:setup	"python"		;	if	`python`	is	on	your	PATH

If	you	use	virtualenv	or	Conda,	simply	specify	the	path	of	the	Python	executable	in	the	environment	you	wish	to	use:

py:setup	"/path/to/myenv/bin/python"

The	path	may	be	relative	or	absolute.	So,	if	you	have	a	virtual	environment	in	the	same	folder	as	your	model,	you	can	do:

py:setup	"myenv/bin/python"

py:python

py:python

Reports	either	the	path	to	the	latest	version	of	Python	configured	in	the	python.properties	file	or,	if	that	is	blank,	looks	for	a	Python	executable	on	your	system’s	PATH.	For	Windows,	there	is
an	installation	option	for	including	Python	on	your	PATH.	For	MacOS	and	Linux,	it	will	likely	already	be	on	your	PATH.	The	output	of	this	reporter	is	meant	to	be	used	with	py:setup,	but	you
may	also	use	it	to	see	which	Python	installation	this	extension	will	use	by	default.

For	example,	on	MacOS	with	Homebrew	installed	Python	3:

observer>	show	py:python
observer:	"/usr/local/bin/python3"

py:python2

py:python2

Reports	either	the	path	to	Python	2	configured	in	the	python.properties	file	or,	if	that	is	blank,	looks	for	a	Python	2	executable	on	your	system’s	PATH.	For	Windows,	there	is	an	installation
option	for	including	Python	on	your	PATH.	For	MacOS	and	Linux,	it	will	likely	already	be	on	your	PATH.	The	output	of	this	reporter	is	meant	to	be	used	with	py:setup,	but	you	may	also	use	it
to	see	which	Python	2	installation	this	extension	will	use	by	default.

For	example,	on	MacOS	with	Homebrew	installed	Python	2:

observer>	show	py:python2
observer:	"/usr/local/bin/python2"

py:python3

py:python3

Reports	either	the	path	to	Python	3	configured	in	the	python.properties	file	or,	if	that	is	blank,	looks	for	a	Python	3	executable	on	your	system’s	PATH.	For	Windows,	there	is	an	installation
option	for	including	Python	on	your	PATH.	For	MacOS	and	Linux,	it	will	likely	already	be	on	your	PATH.	The	output	of	this	reporter	is	meant	to	be	used	with	py:setup,	but	you	may	also	use	it
to	see	which	Python	3	installation	this	extension	will	use	by	default.

For	example,	on	MacOS	with	Homebrew	installed	Python	3:

observer>	show	py:python3
observer:	"/usr/local/bin/python3"

py:run

py:run	python-statement

Runs	the	given	Python	statements	in	the	current	Python	session.	To	make	multi-line	Python	code	easier	to	run,	this	command	will	take	multiple	strings,	each	of	which	will	be	interpreted	as	a
separate	line	of	Python	code.	For	instance:

(py:run
		"import	matplotlib"
		"matplotlib.use('TkAgg')"
		"import	numpy	as	np"
		"import	matplotlib.pyplot	as	plt"
		"for	i	in	range(10):"
		"				plt.plot([x	**	i	for	x	in	np.arange(-1,	1,	0.1)])"
		"plt.show()"
)

py:run	will	wait	for	the	statements	to	finish	running	before	continuing.	Thus,	if	you	have	long	running	Python	code,	NetLogo	will	pause	while	it	runs.

py:runresult

py:runresult	python-expression

Evaluates	the	given	Python	expression	and	reports	the	result.	py:runresult	attempts	to	convert	from	Python	data	types	to	NetLogo	data	types.	Numbers,	strings,	and	booleans	convert	as
you	would	expect.	Any	list-like	object	in	Python	(that	is,	anything	with	a	length	that	you	can	iterate	through)	will	be	converted	to	a	NetLogo	list.	For	instance,	Python	lists	and	NumPy	arrays	will
convert	to	NetLogo	lists.	Python	dicts	(and	dict-like	objects)	will	convert	to	a	NetLogo	list	of	key-value	pairs	(where	each	pair	is	represented	as	a	list).	None	will	be	converted	to	nobody.	Other
objects	will	simply	be	converted	to	a	string	representation.

Note	that	due	a	current	issue,	dict	keys	will	always	be	reported	as	strings.	If	you	need	to	report	non-string	keys,	report	the	.items()	of	the	dict	instead	of	the	dict	itself.

py:set

py:set	variable-name	value

Sets	a	variable	in	the	Python	session	with	the	given	name	to	the	given	NetLogo	value.	NetLogo	objects	will	be	converted	to	Python	objects	as	expected.

All	vanilla	NetLogo	objects	are	supported,	but	objects	from	other	extensions,	even	other	bundled	extensions,	are	not	supported.

py:set	"x"	[1	2	3]
show	py:runresult	"x"	;;	Shows	[1	2	3]

Agents	are	converted	into	dictionaries	with	elements	for	each	agent	variable.	Agentsets	are	converted	into	lists	of	agent	dictionaries.

breed	[goats	goat]
goats-own	[energy]
create-goats	1	[set	heading	0	set	color	75]
ask	goat	0	[set	energy	42]
py:set	"goat"	goat	0
py:runresult	"str(goat)"	;;	Should	output:	"{'WHO':	0,	'COLOR':	75,	'HEADING':	0,	'XCOR':	0,	'YCOR':	0,	'SHAPE':	'default',	'LABEL':	'',	'LABEL-COLOR':	9.9,	'BREED':	'GOATS',	'HIDDEN?':	False,	'SIZE':	1,	'PEN-SIZE':	1,	'PEN-MODE':	'up',	'ENERGY':	42}"

Agents	with	variables	containing	references	to	agentsets	will	have	those	variables	converted	into	the	string	representation	of	that	agentset.

https://github.com/qiemem/PythonExtension/issues/6

NetLogo	R	Extension

The	R-Extension	of	NetLogo	provides	primitives	to	use	the	statistical	software	R	(Gnu	S)	(see	the	R	Project	website)	within	a
NetLogo	model.	There	are	primitives	to	create	R-Variables	with	values	from	NetLogo	variables	or	agents	and	others	to
evaluate	commands	in	R	with	and	without	return	values.

Using

To	use	the	extension	in	your	model,	add	a	line	to	the	top	of	your	procedures	tab:

extensions	[r]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so	just	add	r	to	the	list.

For	more	information	on	using	NetLogo	extensions,	see	the	Extensions	Guide.

For	examples	of	the	usage	of	the	R-Extension,	models	can	be	downloaded	from	the	project	repository.	These	models	are
installed	with	NetLogo	in	the	“models”	directory	of	the	R	extension.	Please	note	that	(as	of	NetLogo	6.0)	these	models	are
not	included	in	the	NetLogo	models	library.

Some	Tips

Plotting

If	you	want	to	use	the	plot	function	of	R,	you	could	activate	the	JavaGD	plot	device	via	r:setPlotDevice,	see	the	“plot-
example1.nlogo”	model.	This	is	the	prefered	method!

But	you	can	also	use	the	standard	R	device,	but	then,	you	have	to	give	R	some	cpu	time,	e.g.	by	run	an	evalulation	of
sys.sleep(0.01)	with	a	forever	button.	See	the	“plot-example2.nlogo”.	(Many	thanks	to	Thomas	Petzold!).	The	creation	of
plots	into	files	is	also	possible.	See	the	“plot-into-file-example.nlogo”	in	the	examples	folder.

Load	and	Save	data	from/into	file(s)

It’s	possible	to	load	and	save	data	from	file	directly	in	R.	This	code	snippet	illustrates:

r:eval	"dataname	<-	read.table('<path	to	file>')"	;	read	file
r:eval	"write.table(dataname,	file='<filename>')"	;	write	file

Data.frame	with	vector	in	cells

Normally,	a	data.frame	cell	contains	only	a	single	value.	Each	column	is	represented	as	a	vector	and	if	you	would	put	a
vector	of	vectors	to	a	data.frame,	it	would	be	splitted	into	several	columns.	With	the	R-Extension	it	is	possible	to	put	a	vector
into	a	data.frame	cell,	when	you	assign	a	NetLogo	List	to	a	column	which	contains	nested	NetLogo	Lists	for	each	row.	If	you
want,	for	example,	to	use	write.table	on	this	data.frame,	you	have	to	mark	this	column	as	class="AsIs".	You	can	do	this	by
using	the	I(x)-function.

Example:	If	the	column	of	interest	has	the	name	“col1”	of	the	data.frame	“df1”	you	could	execute	r:eval	"df1$col1	<-
I(df1$col1)".	Call	help(I)	from	within	an	R	terminal	for	further	details.

Load	an	R-Script

Furthermore,	you	can	define	functions	in	an	R-Script,	load	it,	and	use	the	functions.	Load	R-files	via	r:eval	"source('<path
to	r-file>')".

Load	a	Package

It’s	also	possible	to	load	R	packages	via	r:eval	"library(<name	of	package>)".

When	you	compile	your	code	containing	extensions	[r]	you	will	create	a	new	R	workspace.	Until	you	reload	the	extension,
open	a	new	model	or	submit	the	primitive	[r:clear](#rclear),	all	R	variables	assigned	in	this	session	will	be	available	like
you	would	use	R	from	the	command	line	or	in	the	R	Console.

Interactive	Shell

You	can	open	an	Interactive	R	Shell	via	r:interactiveShell.	This	shell	is	a	port	to	the	underlaying	R	instance.	This	shell
works	on	the	global	environment	(see	Environments	in	the	R	Extension	below)	while	the	extension	itself	work	on	a	custom
local	environment.	But	there	is	one	automatic	variable	“nl.env”	in	the	global	environment,	which	is	a	reference	to	the	local
environment	of	the	extension.	Don’t	delete	this	variable!
You	can	access	a	variable	created	by	the	extension	via	get("<variable	name>",nl.env),	for	example	myvar	<-
get("myvar",nl.env).	If	you	want	to	plot	from	the	Interactive	Shell	you	should	use	the	included	JavaGD	plot	device	(see

http://www.r-project.org/
https://github.com/NetLogo/R-Extension/tree/master/examples

r:setPlotDevice).	You	can	save	and	load	the	history	of	entered	R	commands	via	a	right-mouse	button	context	menu.

Please	read	the	notes	at	the	top	of	the	output	text	area	after	opening	the	shell!	On	Linux	OS	it	can	happen	that	you	see	an
error	message	from	X11.	Please	check,	if	everything	worked	correcly.	If	so,	you	can	ignore	these	messages.	If	not,	please
write	a	report	to	bugs@ccl.northwestern.edu	or	open	an	issue.

Environments	In	the	R	Extension

When	you	load	a	model	the	R-Extension	creates	a	new	R	environment.	When	you	create	an	R	variable	using	the	R-
Extension,	this	variable	is	created	in	the	local	R	environment.	Furthermore,	all	calls	from	the	R-Extension	work	on	this	local
environment.	This	new	environment	concept	enables	you	to	use	the	extension	in	BehaviorSpace	Experiments.	Therefore,
you	don’t	have	to	care	about	the	environment	while	you’re	not	using	the	Interactive	Shell	or	other	tools,	which	work	on	the
global	environment.	You	can	explicitly	assign	a	variable	to	the	global	environment	by	using	the	<-	operator	or	by	executing
assign(<name>,<value>,envir=.GlobalEnv).	If	you	work	with	the	Interactive	Shell,	see	the	notes	at	the	top	of	the	output	text
area	after	opening	the	shell.

Type	help(environment)	in	an	R	shell	to	learn	more	about	environments.

You	can/should	clear	(i.e.	remove	all	variable	and	free	memory)	the	local	environment	via	r:clearLocal.	If	you	want	to	clear
also	the	global	environment	(the	whole	workspace),	call	r:clear.

Memory

With	the	R-Extension	you	can	load	R	into	the	process	of	NetLogo.	Because	of	the	architecture	of	R,	both	software	share	one
system	process	and	therefore	the	memory	given	to	NetLogo.

In	some	circumstances	it	can	happen	that	you	receive	an	out	of	memory	error	due	to	Java’s	heap	space.	You	can	increase
the	heap	space	before	starting	NetLogo	by	adapting	the	-Xmx	JVM-parameter	(see	also	the	NetLogo	manual	section	on
Windows	memory).	But	on	32-bit	systems,	this	is	very	limited.	Therefore,	it	is	a	good	idea	to	use	a	64-bit	system	if	you
want/need	to	use	high	amount	of	RAM.	You	can	see	the	memory	usage	of	R	by	starting	the	interactive	shell
(r:interactiveShell)	and	type	there:	memory.size(max=F)	and	memory.size(max=T).	Furthermore,	you	can	check	the	memory
limit	by	typing:	memory.limit().
See	also:

R	manual	page	for	memory.profile
R	manual	page	for	object.size
R	manual	page	for	memory.size

If	you	call	the	garbage	collector	in	the	interactive	shell	by	typing	gc(),	you	will	get	some	information	about	the	current	memory
usage	(see	also	http://stat.ethz.ch/R-manual/R-patched/library/base/html/gc.html).

If	you	type	gc(nl.env)	you	will	see	the	percentage	of	memory	used	for	cons	cells	and	vectors.

Don’t	forget	to	call	the	r:gc	primitive	after	removing	an	R	variable	and	don’t	forget	to	remove	R	variable	you	don’t	need
anymore!	See	how	the	memory	usage	changes	after	removing	variable	and	calling	r:gc.

If	you	use	too	much	memory,	it	can	happen,	that	NetLogo	will	close	abruptly.	In	such	a	case,	check	if	there	is	a	way	to
reduce	the	memory	used.	If	not,	try	to	switch	over	to	the	Rserve-extension.	With	the	Rserve-Extension	both	software,
NetLogo	and	R,	run	independently.	There	is,	of	cause,	also	a	limit	of	transferable	data	amount	with	one	request,	but	it	is	less
restrictive.

One	last	note	to	this	topic:	Keep	in	mind	that	R	is	a	vector-oriented	language.	Prevent	mass	calls	with	single	values
whenever	possible	and	replace	them	by	vector	operations.	This	is	much	faster	and	more	stable.

Headless

Since	R-Extension	version	1.1	it	is	possible	use	the	extension	when	NetLogo	is	running	in	headless	mode.	This	is	for
example	the	case,	when	you	run	BehaviorSpace	experiments	from	the	command	line	(see	here).	The	difference	is,	that	the
interactiveShell	is	not	initialized/instanciated.	You	can	use	the	extension	as	you	know	it	from	GUI	mode,	but	it	is	not
possible	to	open	the	interactiveShell	(r:interactiveShell)	and	to	set	the	plot	device	(r:setPlotDevice).	But	one	additional
things	has	to	be	done:	You	have	to	call	r:stop	finally	when	running	NetLogo	headless	to	stop	the	R	engine.	Otherwise
NetLogo	will	not	be	closed	and	you	will	not	get	back	to	the	command	line	prompt.	When	setting	up	a	BehaviorSpace
experiment,	there	is	the	option	to	set	final	commands.	This	is	a	good	place	to	add	the	r:stop	command	(see	image).

mailto:bugs@ccl.northwestern.edu
https://github.com/NetLogo/R-Extension/issues
http://stat.ethz.ch/R-manual/R-patched/library/base/html/memory.profile.html
http://stat.ethz.ch/R-manual/R-patched/library/utils/html/object.size.html
http://stat.ethz.ch/R-manual/R-devel/library/utils/html/memory.size.html
http://stat.ethz.ch/R-manual/R-patched/library/base/html/gc.html
http://rserve-ext.sourceforge.net/

Installing

The	R	Extension	is	bundled	with	NetLogo	6.	To	use	it,	you	will	need	a	compatible	R	installation	and	you	may	need	to
configure	the	extension.

Installing	R

Standard	R	3	installations	should	work	(sometimes	without	configuration).	As	of	NetLogo	6.0.2,	the	following	operating
system	/	R	versions	were	tested:

Mac	OS	X,	R	3.3.3
Windows	10,	R	3.3.2
Ubuntu	14.04	(64-bit),	R	3.0.2

Once	R	is	installed,	you	will	need	to	install	the	rJava	package.	Certain	features	of	the	R	extension	rely	on	the	JavaGD
package.

To	install,	start	the	RGui	from	your	program	list,	click	on	the	item	“Packages”	in	the	menu	bar	and	then	on	“Install
Package(s)”.	Select	your	favorite	server	and	find	“rJava”,	as	well	as	“JavaGD”	and/or	“CommonJavaJars”	(both	optional)	in
the	list	of	packages.

If	you	prefer	using	the	console,	you	can	install	the	same	packages	by	running	the	following	commands	in	the	console	(and
following	the	prompts	they	generate,	as	appropriate).

install.packages("rJava")
install.packages("JavaGD")	#	Optional
install.packages("CommonJavaJars")	#	Optional

Configuring	the	R	extension

If	you	are	using	Linux	or	Mac	OS	and	one	of	the	above	R	versions,	you	may	not	need	to	perform	any	further	configuration.
An	easy	way	to	determine	whether	you	need	to	configure	the	extension	it	to	open	a	new	NetLogo	model,	add	extensions	[r
]	to	the	code	tab	and	press	“Check.”	If	you	see	an	error,	you	need	to	configure	the	R	extension.	The	R	extension	can	be
configured	by	editing	the	“user.properties”	file	in	a	text	editor.	You	should	place	the	“user.properties”	file	in	your	user	folder
as	indicated	by	the	error	message	you	get	when	R	is	not	configured.

The	per-system	user	folders	are	typically:

On	Mac	OS	X:	/Users/YOUR_USERNAME/Library/Application	Support/NetLogo/6.1/r/
On	Windows:	C:\Users\YOUR_USERNAME\AppData\Roaming\NetLogo\6.1\r\
On	Linux:	/home/YOUR_USERNAME/.netlogo/6.1/r/

The	following	keys	are	used	to	configure	the	extension:

r.home:	Controls	which	installation	of	r	is	used.
jri.home.paths:	Controls	the	path	to	the	jri	subdirectory	of	the	rJava	library.

Note	that	you	will	have	to	exit	NetLogo	and	restart	to	see	configuration	changes	take	effect,	as	the	configuration	file	is	only
loaded	once	per	NetLogo	instance.	See	below	on	how	to	determine	the	appropriate	values	to	for	r.home	and	jri.home.paths.

Determining	r.home	and	jri.home.paths

r.home	is	the	path	to	the	“R”	installation	directory	which	contains	the	“bin”	directory.	If	you’re	having	trouble	finding	this,	you
can	run	R.home(component	=	"home") 	in	R,	or	R	RHOME	on	the	command	line	(if	R	is	on	your	path).

R.home(component	=	"home")
#	Returns	"C:/PROGRA~1/R/R-36~1.1"	on	Windows.
#	Will	return	other	results	on	other	platforms	or	configurations

jri.home.paths	is	a	list	of	directories	to	check	for	jri.	It’s	in	the	jri	directory	under	the	rJava	library	installation.	You	can	find
the	jri	directory	in	the	rJava	package	by	running	the	following	in	R:

system.file("jri",	package	=	"rJava")
#	Returns	"C:/Users/USER_NAME/Documents/R/win-library/3.6/rJava/jri"	on	Windows.
#	Will	return	other	results	on	other	platforms	or	configurations

Take	the	path	and	edit	the	user.properties	file,	uncommenting	and	editing	one	set	of	r.home	and	jri.home.paths	to	match	the
values	obtained	in	R.	When	you’re	done,	the	user.properties	file	should	have	the	following	lines	(given	the	above	results):

r.home=C:/PROGRA~1/R/R-36~1.1
jri.home.paths=C:/Users/USER_NAME/Documents/R/win-library/3.6/rJava/jri

Save	user.properties	and	load	a	model	using	the	R	extension.	You	should	see	it	start	and	run	properly.

Windows-Specific	Installation	Steps

The	R	Extension	on	Windows	requires	the	Microsoft	Visual	C++	2013	redistributable	to	be	installed.	You	can	get	that	as	a
free	download	from	Microsoft.

Windows	also	requires	the	additional	configuration	step	of	configuring	the	PATH	environment	variable.	Additionally,	editing
the	user.properties	file	on	Windows	is	slightly	more	difficult	than	on	other	platforms.

Configuring	the	PATH

To	begin,	determine	the	appropriate	directory	from	your	R	installation	to	add	to	your	PATH.	To	do	this,	determine	where	your
R	installation	is	located	(here	we’ll	use	the	location	C:\Program	Files\R\R-),	then	follow	these	steps.

1.	 Open	the	System	Properties	dialog.	You	can	type	“Environment	Variable”	into	Cortana	or	navigate	there	through	“Control
Panel”	>	System	>	“Advanced	system	settings”.

2.	 Click	the	“Environment	variables…”	button	in	the	lower	right	of	the	dialog.
3.	 Click	the	“Path”	variable	in	the	lower	panel,	then	click	the	lower	“Edit…”	button.
4.	 Windows	10	allows	you	to	choose	“New”	and	enter	a	separate	path.	If	you’re	using	Windows	7,	append	the	value,	using	a

semicolon	to	separate	it	from	the	entry	before.

If	you’re	using	32-bit	NetLogo,	enter	the	location	C:\Program	Files\R\R-<version>\bin\i386\
If	you’re	using	64-bit	NetLogo,	enter	the	location	C:\Program	Files\R\R-<version>\bin\x64\

1.	 Choose	OK,	and	OK	again
2.	 Log	out	of	your	user	and	back	in	or	restart	Windows	to	let	the	setting	take	affect.

Note	that	you	will	need	to	update	this	setting	if	you	wish	to	upgrade	the	version	of	R	used	by	NetLogo.

Notes	on	editing	“user.properties”	on	Windows

“user.properties”	is	a	newline-delimited	file.	This	means	if	it	is	opened	in	“Notepad”	it	will	look	like	all	the	text	is	on	a	single
line.	For	this	reason,	it	is	recommended	to	open	first	in	“WordPad”	and	resave	before	editing	in	Notepad.	Alternatively,	if	you
have	a	full-featured	text	editor	(like	Notepad++,	Vim,	or	Emacs)	installed,	you	can	use	that	to	edit	the	file.

To	reiterate	a	warning	given	in	the	“user.properties”	file,	the	directory	separator	for	Windows	must	be	entered	in
user.properties	as	double-backslash	(“\”)	or	single-forward-slash	(“/”).

Primitives

r:clear	r:clearLocal	r:eval	r:__evaldirect	r:gc	r:get	r:interactiveShell	r:put	r:putagent	r:putagentdf	r:putdataframe
r:putlist	r:putnamedlist	r:setPlotDevice	r:stop

https://www.microsoft.com/en-us/download/details.aspx?id=40784

r:clear

r:clear

Clears	the	R-Workspace.	All	variables	in	R	will	be	deleted.	It	evaluates	the	R	command	rm(list=ls())	and
rm(list=ls(nl.env)).	This	deletes	variables	created	in	global	as	well	as	local	environment	(see	R	Environments	for	details
about	environments).	It’s	always	a	good	idea	to	add	this	command	to	your	setup	procedure	under	your	“clear-all”	call.

;;	clear	the	R	workspace
r:clear

r:clearLocal

r:clearLocal

It	clears	the	local	R	environment,	which	is	used	by	the	extension.	All	variables	which	have	been	created	in	the	local
environment	will	be	deleted.	It	evaluates	the	R	command	rm(list=ls(nl.env)).	See	R	Environments	for	details	about
environments.	See	r:clear	for	deleting	all	variables,	i.e.	the	globals	as	well.

;;	delete	the	local	variables
r:clearLocal

r:eval

r:eval	R-command

It	evaluates	the	submitted	R	command.	The	R	command	shouldn’t	return	a	value.

;;	creates	a	new	vector	in	R	with	a	sequence	from	1	to	10
r:eval	"x	<-	seq(1,10)"
show	r:get	"x"

r:__evaldirect

r:__evaldirect	R-command

Evaluates	the	submitted	R	command	in	the	global	environment	(not	in	the	local	environment	like	r:eval	does)	and	without	a
check	(not	using	try-function	internally).	This	can	be	necessary	for	some	R	packages,	like	gglopt2.	Please	note,	that	you	can
produce	name	clashes	when	creating	new	variables	using	this	primitive.	The	variable	will	be	created	into	the	global
environment	and	will	not	overwrite	variable	with	the	same	name	that	have	been	created	into	the	local	environment.	If	you
request	a	variable	with	r:get	it	will	search	in	the	local	environment	first.	Therefore,	if	there	are	variables	with	the	same	name
in	the	local	and	the	global	environment,	it	will	report	the	variable	from	the	local	environment	and	not	the	variable	created	via
r:__evaldirect.	If	there	is	only	a	variable	with	the	requested	name	in	the	global	environment,	everything	will	be	fine	-	r:get
will	report	the	value	of	this	variable.	If	you	want	to	remove	a	variable	created	via	r:__evaldirect,	i.e.	in	the	global
environment,	call	r:eval	"rm(myvar,	envir=.GlobalEnv)",	replace	myvar	by	the	name	of	your	variable.	The	R	command
shouldn’t	return	a	value.	This	primitive	is	experimental.

;;	creates	a	new	vector	in	R	with	a	sequence	from	1	to	10
r:__evaldirect	"x	<-	seq(1,10)"
show	r:get	"x"

r:gc

r:gc

Calls	the	garbage	collector	of	Java	(i.e.	the	R-Extension)	and	R.	Call	this	primitive	after	removing	an	R	variable	to	free	the
memory.

;;	create	a	variable
r:eval	"x	<-	1:10"
;;	remove	the	variable
r:eval	"rm(x)"
;;	call	the	garbage	collector
r:gc

r:get

r:get	R-command

Reports	the	return	value	of	the	submitted	R	command.	Return	type	could	be	a	String,	Number,	Boolean,	NetLogo	List	or	a
NetLogo	List	of	Lists.

R	lists	will	be	converted	into	a	NetLogo	List.	If	the	R	list	itself	contains	further	lists,	it	will	be	converted	into	a	NetLogo	List	with
nested	NetLogo	lists.	Lists	containing	values	of	different	data	types	are	also	supported	(e.g.	mixed	Strings,	Numbers	and
Booleans/Logicals).

Data.frames	will	be	converted	into	a	NetLogo	List	with	nested	List	for	each	column,	but	the	column	names	will	be	lost	(same
for	named	R	lists).

R	matrices	can	be	received,	but	they	are	converted	into	one	NetLogo	list.	NULL	and	NA	values	are	not	converted	and	will
throw	an	error,	because	NetLogo	has	no	corresponding	value.

;;	returns	a	list	with	10	variables
show	r:get	"rnorm(10)"

r:interactiveShell

r:interactiveShell

Opens	a	window	with	two	textareas.	The	upper	one	is	the	R	output	stream	and	in	the	lower	one	you	can	type	R	commands.
This	is	the	access	to	the	underlaying	R	session.	You	can	type	multi-line	commands.	To	submit	commands	press	Ctrl+Enter.
With	“PageUp”	and	“PageDown”	in	the	input	area	you	can	browse	through	the	histroy	of	submitted	commands.	With	right-
mouseclick	context	menu,	you	can	save	and	load	an	RHistory	(interchangeable	with	R	terminal	and	other	R	GUIs).

Please	note,	that	the	Interactive	Shell	works	on	the	global	environment,	while	commands	submitted	from	NetLogo	lives	in	an
local	environment.	A	reference	to	this	local	environment	is	automatically	added	to	the	global	environment	(named	nl.env,
please	do	not	delete	this	variable.	With	a	call	of	r:clear	you	can	restore	it	but	this	will	empty	your	workspace).	You	can	use
this	to	have	access	to	variables	which	you	have	created	from	NetLogo	by	get("<variable	name>",nl.env).	To	copy	for
example	an	variable	with	the	name	var1	from	the	local	environment	to	the	global	environment,	type	var	<-
get("var",nl.env).	See	section	R	Environments	for	details.	If	you	just	want	to	see	the	contents	of	a	variable	which	lives	in
the	local	environment,	you	could	submit	your	command,	for	example	in	the	NetLogo	Command	Center,	and	the	result	will	be
shown	in	the	output	area	of	the	Interactive	Shell.	For	example:

r:put	"test"	(list	world-width	world-height)
r:interactiveShell
r:eval	"print(test)"
r:eval	"str(test)"

Variables	which	have	been	created	in	the	Interactive	Shell	are	available	from	NetLogo,	even	if	they	are	created	in	the	global
environment.	But	if	there	is	a	variable	with	the	same	name	in	the	local	environment,	you	will	get	this	variable	in	NetLogo
instead	the	one	from	the	global	environment.

If	you	want	to	execute	plot	commands	from	the	Interactive	Shell	you	should	activate	the	integrated	JavaGD	plot	device	via
r:setPlotDevice	first.

;;	opens	Interactive	Shell
r:interactiveShell

r:put

r:put	name	value

Creates	a	new	variable	in	R	with	the	name	name.	The	value	can	be	a	String,	Number,	Boolean	or	List.

NetLogo	Lists	are	converted	to	R	vectors,	if	all	entries	are	of	the	same	data	type.	If	a	NetLogo	list	contains	different	data
types	(mixed	Strings,	Numbers	of	Booleans),	it	will	be	converted	into	an	R	list.	If	a	NetLogo	List	contains	other/nested
NetLogo	Lists	it	will	be	converted	into	an	R	list	and	the	nested	Lists	are	handled	by	the	same	rule	(Vectors	if	all	items	are	of
the	same	data	type,	…).

;;	creates	an	R	variable	"testvar"	with	the	size	of	turtle	0
r:put	"testvar"	[size]	of	turtle	0
show	r:get	"testvar"

r:putagent

r:putagent	name	agent	variables
r:putagent	name	agentset	variables

Creates	a	new	named	list	in	R	with	the	name	name.	The	argument	variables	is	any	number	of	strings	which	list	and
variable(s)	of	the	agent|agentset.	Names	of	the	elements	of	the	R	list	will	be	the	same	as	the	names	of	the	agent	variables.
Turtles	will	be	assigned	in	ascending	order	of	their	who-variable.	Patches	will	be	assigned	in	lines	from	upper	left	to	lower
right.	Since	the	arguments	of	this	primitive	are	repeatable,	don’t	forget	the	parentheses	around	the	statement.

;;	creates	an	R-list	"agentlist1"	with	the	size	and	the	id	of	turtles,	don't	forget	the	parentheses
(r:putagent	"agentlist1"	turtles	"size"	"who")
show	r:get	"agentlist1$who"
;;	creates	an	R-list	"agentlist2"	with	the	pcolor,	pxcor	and	pycor	of	patches
(r:putagent	"agentlist2"	patches	"pcolor"	"pxcor"	"pycor")
show	r:get	"agentlist2$pcolor"

r:putagentdf

r:putagentdf	name	agent	variables
r:putagentdf	name	agentset	variables

Same	as	r:putagent	but	creates	an	R	data.frame	instead	a	list.	Please	read	the	notes	about	data.frames	if	one	of	your	agent
variables	contains	NetLogo	Lists.

;;	creates	an	R-list	"agentlist2"	with	the	pcolor,	pxcor	and	pycor	of	patches,	don't	forget	the	parentheses
(r:putagentdf	"df1"	patches	"pcolor"	"pxcor"	"pycor")
show	r:get	"class(df1)"

r:putdataframe

r:putdataframe	name	varname	value
r:putdataframe	name	varname	value	varname2	value2	...

Same	as	r:putnamedlist	but	creates	an	R	data.frame	instead	of	a	list.	If	you	send	more	than	one	list	to	NetLogo	and	the	lists
are	of	different	length,	the	smaller	ones	will	be	filled	with	NA	values.

If	you	send	nested	LogoLists	(e.g.	of	type:	[[]	[]	…])	to	one	column	please	read	the	notes	about	data	frames	with	vectors	in
cells.

;;	creates	an	R-list	"agentlist2"	with	the	pcolor,	pxcor	and	pycor	of	patches,	don't	forget	the	parentheses
(r:putdataframe	"df1"	"v1"	[12	13	14	15	16]	"v2"	["foo1"	"foo2"	"foo3"	"foo4"	"foo5"]	"v3"	[1.1	2.2	3.3	4.4	5.5])
show	r:get	"df1$v3"

r:putlist

r:putlist	name	value

Creates	a	new	list	in	R	with	the	name	name.	Variable	is	repeatable	and	can	be	a	Number,	Boolean	or	List.	Each	“Variable”
will	get	the	name	of	its	position	(1,	2,	3,…).	Since	the	arguments	of	this	primitive	are	repeatable,	don’t	forget	the	parentheses
around	the	statement.

;;	creates	an	R-list	"list1",	don't	forget	the	parentheses
(r:putlist	"list1"	25.5	[25	43	32	53]	"testvalue"		[44.3	32.32	321.2	4.2])
show	r:get	"class(list1)"
show	r:get	"list1[[1]]"
show	r:get	"list1$'0'"
show	r:get	"list1[[2]]"

r:putnamedlist

r:putnamedlist	name	varname	value
r:putnamedlist	name	varname	value	varname2	value2	...

Creates	a	new	named	list	in	R	with	the	name	name.	Variable	names	and	values	follow	in	alternating	sequence	and	may	be
repeated	as	many	times	as	desired.	Values	can	be	a	Number,	Boolean	or	List.	Each	value	will	get	the	name	varname.	Since
the	arguments	of	this	primitive	are	repeatable,	don’t	forget	to	put	the	statement	into	parentheses.

;;	creates	an	R-list	"list1"	,	don't	forget	the	parentheses
(r:putnamedlist	"list1"	"v1"	25.5	"v2"	[25	43	32	53]	"v3"	"testvalue"	"v4"	[44.3	32.32	321.2	4.2])
show	r:get	"class(list1)"
show	r:get	"list1[[1]]"
show	r:get	"list1$v1"

r:setPlotDevice

r:setPlotDevice

To	open	an	R	plot	in	a	window	you	can	use	the	JavaGD	plot	device.	With	this	primitive	you	can	activate	this	device	and	all
following	calls	of	R	plots	will	be	printed	with	this	device.

To	use	this	device,	you	have	to	install	the	JavaGD	package	in	R.	Open	an	R	terminal	or	the	InteractiveShell	(see
r:interactiveShell)	and	type	install.packages("JavaGD").

With	this	plot	window	you	can	save	the	plot	to	an	file	of	different	graphic	type	and	you	can	copy	the	plot	to	the	clipboard.
Please	note,	that	on	Linux	OS	it	can	be	necessary	to	allow	to	add	images	to	the	clipboard	(e.g.	in	KDE	you	have	to	configure
KLIPPER	to	allow	images).	The	resolution	for	raster	images	depends	on	the	size	of	the	plot	window.	If	you	need	high
resolution	maximaze	the	window	(and	don’t	use	jpeg,	because	the	driver	is	bad)	or	better	use	a	vector	image	format.

Please	see	the	notes	about	plotting	for	other	details.

;;	activate	the	JavaGD	plot	device
r:setPlotDevice

r:stop

r:stop

Stops	the	R	engine.	This	is	needed	(only)	if	NetLogo	is	running	in	headless	mode,	for	example	when	running	BehaviorSpace
experiments	from	the	command	line	with	something	like	this:

java	-cp	NetLogo.jar	org.nlogo.headless.Main	--model	mymodel.nlogo	--experiment	exp1	--table	outtab1.csv

Should	be	the	last	call	in	headless	simulation.	See	usage	notes	above	for	details.

r:stop

Troubleshooting

Below	are	some	common	problems	and	some	ideas	on	how	to	remedy	them.	Please	keep	in	mind	that	we	plan	to	continue
to	improve	the	R	extension	following	the	release	of	NetLogo	6.	We	welcome	feedback	on	how	to	improve	the	extension	as
well	as	bug	reports	pointing	us	to	any	new	problems	you	encounter.

Loading	R	packages	fails

See,	for	example,	this	post.

After	changing	the	working	directory	in	R	(e.g.	with	setwd())	NetLogo	doesn’t	find	the	extension

Changing	working	directory	in	R	doesn’t	work	because	it	changes	also	Java’s	library	path	that	NetLogo	needs	to	find	its
extensions.	Please	use	absolute	path	to	any	files	in	R	instead	of	changing	the	working	directory.

Specific	error	code	list

Error	#01.	Invalid	R	Home.	R	home	is	specified	via	the	R_HOME	environment	variable	or	a	properties	file,	but	couldn’t	be
found	at	the	specified	path.	See	above	for	how	to	specify	R	home.
Error	#02:	Cannot	find	rJava/JRI.	The	R	Extension	was	unable	to	locate	your	installation	of	rJava.	Some	steps	to	resolve:
Ensure	that	rJava	(0.9-8	or	later)	is	installed	in	R.	Ensure	that	it’s	installed	either	system-wide	or	for	you	as	a	user
Ensure	that	your	configuration	points	to	the	proper	rJava	location.	If	you	have	a	user.properties	file,	ensure	that
jri.home.paths	includes	the	path	given	by	R	when	you	run	system.file("jri",package="rJava")
Error	#03:	Cannot	load	rJava	libraries.	This	may	indicate	a	corrupted	rJava	installation.	Try	reinstalling	rJava.
Error	#04:	Error	in	R-Extension.	This	is	an	unknown	initialization	error.	Ensure	that	you	are	running	R	3.0.0	or	later	and
have	the	rJava	extension	installed	(version	0.9-8	or	later).	Please	report	this	error	to	bugs@ccl.northwestern.edu	or	open	a
new	issue	on	the	R-Extension	issue	tracker.
Error	#05:	There	was	an	error	setting	R_HOME.	Check	your	user.properties	file	to	ensure	that	r.home	specifies	a	valid	path	to
the	R	extension.	You	may	also	be	able	to	work	around	this	error	by	setting	the	R_HOME	environment	variable.	If	this	error
persists,	please	report	it!
Error	#06:	Cannot	load	R	libraries.	This	may	indicate	a	corrupted	or	improperly	configured	R	installation.	If	you’re	certain
that	your	R	installation	is	fine,	please	report	this	as	an	issue.

Citation

Thiele,	JC;	Grimm,	V	(2010).	NetLogo	meets	R:	Linking	agent-based	models	with	a	toolbox	for	their	analysis.	Environmental
Modelling	and	Software,	Volume	25,	Issue	8:	972	-	974	[DOI:	10.1016/j.envsoft.2010.02.008]

https://beta.groups.yahoo.com/neo/groups/netlogo-users/conversations/topics/18786?reverse=1
mailto:bugs@ccl.northwestern.edu
https://github.com/NetLogo/R-Extension/issues

Copyright	and	License

The	R	extension	is	Copyright	(C)	2009-2016	Jan	C.	Thiele	and	Copyright	(C)	2016	Uri	Wilensky	/	The	Center	for	Connected
Learning.

NetLogo-R-Extension	is	free	software;	you	can	redistribute	it	and/or	modify	it	under	the	terms	of	the	GNU	General	Public
License	as	published	by	the	Free	Software	Foundation;	either	version	2	of	the	License,	or	(at	your	option)	any	later	version.

This	program	is	distributed	in	the	hope	that	it	will	be	useful,	but	WITHOUT	ANY	WARRANTY;	without	even	the	implied
warranty	of	MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	See	the	GNU	General	Public	License	for
more	details.

You	should	have	received	a	copy	of	the	GNU	General	Public	License	along	with	NetLogo-R-Extension	(located	in	GPL.txt).	If
not,	see	http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

NetLogo	Rnd	Extension

This	extension	adds	the	ability	to	do	roulette	wheel	selection	in	NetLogo.	It	provides	a	simpler	way	to	accomplish	the
same	thing	as	the	Lottery	Example	from	the	NetLogo	Models	Library.

Usage

Which	primitive	to	use	depends	on	whether	you	want	to	select	an	item	from	a	list	or	from	an	agenset.	It	also	depends
on	whether	you	want	one	or	many	items	and,	if	you	want	many,	if	repeats	are	allowed	or	not.	The	following	table
summarizes	the	situation:

From	an	AgentSet From	a	List

One	item rnd:weighted-one-of rnd:weighted-one-of-list

Many	items,	without
repeats rnd:weighted-n-of rnd:weighted-n-of-list

Many	items,	with	repeats rnd:weighted-n-of-with-repeats rnd:weighted-n-of-list-with-repeats

(Note:	the	initial	version	of	the	extension	had	a	single	set	of	primitives	for	both	lists	and	agentsets,	but	it	turned	out	to
be	confusing,	so	we	changed	it.	If	you	were	using	the	old	version	of	the	extension,	you	will	need	to	modify	your	code
to	use	the	new	primitives.)

In	all	cases,	you	will	need	to	provide	two	things	to	the	primitive:

The	“candidates”:	the	items	that	the	primitive	will	select	from.
The	“weight”:	how	likely	it	is	for	each	candidate	to	be	selected.

If	you	want	to	select	more	than	one	items,	you	will	also	need	to	tell	it:

How	many	items	to	select.

A	note	about	performance

The	extension	uses	Keith	Schwarz’s	implementation	of	Vose’s	Alias	Method	(see	Schwarz’s	Darts,	Dice,	and	Coins
page).	Assuming	you	are	choosing	n	candidates	for	a	collection	of	size	m	with	repeats,	this	method	has	an
initialization	cost	of	O(m)	followed	by	a	cost	of	O(1)	for	each	item	you	pick,	so	O(m	+	n)	overall.

For	example,	in	the	following	code:

let	candidates	n-values	500	[[n]	->	n]
rnd:weighted-n-of-list-with-repeats	100	candidates	[[w]	->	w]
n-values	100	[rnd:weighted-one-of-list	candidates	[[w]	->	w]]

…the	line	using	rnd:weighted-n-of-list-with-repeats	will	likely	run	100	times	faster	than	the	line	using	a
combination	of	n-values	and	rnd:weighted-one-of-list.	This	is	because	rnd:weighted-n-of-list-with-repeats	only
initializes	the	algorithm	once	and	rnd:weighted-one-of	does	it	each	time	it	is	called.

(Note	that	composing	n-values	with	rnd:weighted-one-of-list	does	not	preserve	the	order	of	the	original	candidate
list,	while	rnd:weighted-n-of-list-with-repeats	does.)

Things	are	a	bit	more	complicated	if	you	are	choosing	without	repeats,	however.	In	this	case,	the	algorithm	may
have	to	discard	some	picks	because	the	candidates	have	already	been	selected.	When	this	starts	happening	too
often	(maybe	because	some	weights	are	much	bigger	than	others),	the	extension	re-initializes	the	algorithm	with	the
already-picked	candidates	excluded.	This	should	not	happen	too	often,	however,	so	while	picking	without	repeats
has	an	upper	bound	of	O(m	*	n)	in	theory,	it	should	usually	not	be	much	more	than	O(m	+	n)	in	practice.

The	previous	remarks	apply	to	agentset	primitives	as	much	as	they	apply	to	list	primitives.

Primitives

AgentSet	Primitives

rnd:weighted-one-of	rnd:weighted-n-of	rnd:weighted-n-of-with-repeats

List	Primitives

https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://github.com/NetLogo/models/blob/master/Code%20Examples/Lottery%20Example.nlogo
http://www.keithschwarz.com/darts-dice-coins/

rnd:weighted-one-of-list	rnd:weighted-n-of-list	rnd:weighted-n-of-list-with-repeats

rnd:weighted-one-of

rnd:weighted-one-of	agentset	reporter

Reports	a	random	agent	from	agentset.

The	probability	of	each	agent	being	picked	is	proportional	to	the	weight	given	by	the	reporter	for	that	agent.	The
weights	must	not	be	negative.

If	the	agentset	is	empty,	it	reports	nobody.

Here	is	a	full	rewrite	of	the	Lottery	Example	model	using	the	rnd:weighted-one-of	primitive:

extensions	[rnd]

to	setup
		clear-all
		;	create	a	turtle	on	every	fifth	patch
		ask	patches	with	[pxcor	mod	5	=	0	and	pycor	mod	5	=	0]	[
				sprout	1	[
						set	size	2	+	random	6	;	vary	the	size	of	the	turtles
						set	label	0											;	start	them	out	with	no	wins
						set	color	color	-	2			;	make	turtles	darker	so	the	labels	stand	out
]
]
		reset-ticks
end

to	go
		ask	rnd:weighted-one-of	turtles	[size]	[
				set	label	label	+	1
]
		tick
end

rnd:weighted-n-of

rnd:weighted-n-of	size	agentset	[reporter]

Reports	an	agentset	of	the	given	size	randomly	chosen	from	the	agentset,	with	no	repeats.

The	probability	of	each	agent	being	picked	is	proportional	to	the	weight	given	by	the	reporter	for	that	agent.	The
weights	must	be	non-negative	numbers.

It	is	an	error	for	size	to	be	greater	than	the	size	of	the	agentset.

If,	at	some	point	during	the	selection,	there	remains	only	candidates	with	a	weight	of	0.0,	they	all	have	an	equal
probability	of	getting	picked.

rnd:weighted-n-of-with-repeats

rnd:weighted-n-of-with-repeats	size	agentset	[reporter]

Reports	a	list	of	the	given	size	randomly	chosen	from	the	agentset,	with	repeats.	(Why	a	list	instead	of	an	agentset?
Because	an	agentset	cannot	contain	the	same	agent	more	than	once.)

The	probability	of	each	agent	being	picked	is	proportional	to	the	weight	given	by	the	reporter	for	that	agent.	The
weights	must	be	non-negative	numbers.

It	is	not	an	error	for	size	to	be	greater	than	the	size	of	the	agentset,	but	there	has	to	be	at	least	one	candidate.

If,	at	some	point	during	the	selection,	there	remains	only	candidates	with	a	weight	of	0.0,	they	all	have	an	equal
probability	of	getting	picked.

If	all	weights	are	0.0,	each	candidate	has	an	equal	probability	of	being	picked.

rnd:weighted-one-of-list

rnd:weighted-one-of-list	list	anonymous-reporter

Reports	a	random	item	from	list.

The	probability	of	each	item	being	picked	is	proportional	to	the	weight	given	by	the	anonymous-reporter	for	that	item.
The	weights	must	not	be	negative.	The	first	argument	passed	to	the	anonymous	procedure	refers	to	the	list	item.
(See	the	Anonymous	Procedures	section	of	the	Programming	Guide	for	more	details.)

It	is	an	error	for	the	list	to	be	empty.

A	common	way	to	use	the	primitive	is	to	have	a	list	of	lists,	where	the	first	item	of	each	sublist	is	the	thing	you	want	to
choose	and	the	second	item	is	the	weight.	Here	is	a	short	example:

let	pairs	[["A"	0.2]	["B"	0.8]]
repeat	25	[
		;	report	the	first	item	of	the	pair	selected	using
		;	the	second	item	(i.e.,	`last	p`)	as	the	weight
		type	first	rnd:weighted-one-of-list	pairs	[[p]	->	last	p]
]

This	should	print	B	roughly	four	times	more	often	than	it	prints	A.

If	you	happen	to	have	your	items	and	your	weights	in	two	separate	lists,	you	can	combine	them	into	pairs	by	using	a
combination	of	map	and	list:

let	items	["A"	"B"	"C"]
let	weights	[0.1	0.2	0.7]
let	pairs	(map	list	items	weights)

Since	we	apply	map	to	both	the	items	list	and	the	weights	list,	the	parentheses	are	needed	in	(map	list	items
weights).	We	also	use	the	concise	anonymous	procedure	syntax	(see	the	programming	guide)	to	pass	list	as	the
reporter	for	map.	The	same	thing	could	have	been	written	(map	[[a	b]	->	list	a	b]	items	weights) .

rnd:weighted-n-of-list

rnd:weighted-n-of-list	size	list	anonymous-reporter

Reports	a	list	of	the	given	size	randomly	chosen	from	the	list	of	candidates,	with	no	repeats.

The	probability	of	each	item	being	picked	is	proportional	to	the	weight	given	by	the	anonymous-reporter	for	that	item.
The	weights	must	not	be	negative.	The	first	argument	passed	to	the	anonymous	procedure	refers	to	the	list	item.
(See	the	Anonymous	Procedures	section	of	the	Programming	Guide	for	more	details.)

It	is	an	error	for	size	to	be	greater	than	the	size	of	the	list	of	candidates.

If,	at	some	point	during	the	selection,	there	remains	only	candidates	with	a	weight	of	0.0,	they	all	have	an	equal
probability	of	getting	picked.

The	items	in	the	resulting	list	appear	in	the	same	order	that	they	appeared	in	the	list	of	candidates.	(If	you	want	them
in	random	order,	use	shuffle	on	the	result).

Example:

let	candidates	n-values	8	[[n]	->	2	^	(n	+	1)]	;	make	a	list	with	the	powers	of	two
print	rnd:weighted-n-of-list	4	candidates	[[w]	->	w]

This	should	print	a	list	of	four	numbers,	where	the	bigger	numbers	(32,	64,	128,	256)	have	a	much	better	chance	to
show	up	than	the	smaller	ones	(2,	4,	8,	16).

rnd:weighted-n-of-list-with-repeats

rnd:weighted-n-of-list-with-repeats	size	list	anonymous-reporter

Reports	a	list	of	the	given	size	randomly	chosen	from	the	list	of	candidates,	with	repeats.

The	probability	of	each	item	being	picked	is	proportional	to	the	weight	given	by	the	anonymous-reporter	for	that	item.
The	weights	must	not	be	negative.	The	first	argument	passed	to	the	anonymous	procedure	refers	to	the	list	item.
(See	the	Anonymous	Procedures	section	of	the	Programming	Guide	for	more	details.)

It	is	not	an	error	for	size	to	be	greater	than	the	size	of	the	list	of	candidates,	but	there	has	to	be	at	least	one
candidate.

If,	at	some	point	during	the	selection,	there	remains	only	candidates	with	a	weight	of	0.0,	they	all	have	an	equal
probability	of	getting	picked.

If	all	weights	are	0.0,	each	candidate	has	an	equal	probability	of	being	picked.

The	items	in	the	resulting	list	appear	in	the	same	order	that	they	appeared	in	the	list	of	candidates.	(If	you	want	them
in	random	order,	use	shuffle	on	the	result).

Example:

let	pairs	[["A"	0.2]	["B"	0.8]]
print	map	first	rnd:weighted-n-of-list-with-repeats	25	pairs	[[p]	->	last	p]

This	should	print	a	list	of	25	As	and	Bs,	with	roughly	four	times	as	many	Bs	than	As.

NetLogo	Sound	Extension

Using

The	Sound	Extension	lets	NetLogo	models	make	two	kinds	of	sounds:	MIDI	sounds	and	playback	of	pre-recorded
sound	files.

The	Java	APIs	used	are	javax.sound.midi	and	java.applet.AudioClip.

How	to	Use

The	sound	extension	comes	preinstalled.	To	use	the	extension	in	your	model,	add	this	at	the	top	of	your	Code	tab:

extensions	[sound]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so	just	add	sound	to	the	list.

For	more	information	on	using	NetLogo	extensions,	see	the	Extensions	Guide

For	examples	that	use	the	sound	extension,	see	the	Sound	section	under	Code	Examples	in	the	NetLogo	Models
Library.

MIDI	support

The	MIDI	part	of	the	extension	simulates	a	128-key	electronic	keyboard	with	47	drums	and	128	melodic	instruments,
as	provided	by	General	MIDI	Level	1	specification.

It	supports	15	polyphonic	instrument	channels	and	a	single	percussion	channel.	Using	more	than	15	different	melodic
instruments	simultaneously	in	a	model	will	cause	some	sounds	to	be	lost	or	cut	off.

The	pitch	of	a	melodic	instrument	is	specified	by	a	key	number.	The	keys	on	the	keyboard	are	numbered
consecutively	from	0	to	127,	where	0	is	the	left-most	key.	Middle	C	is	key	number	60.

The	loudness	of	an	instrument	is	specified	by	a	velocity,	which	represents	the	force	with	which	the	keyboard	key	is
depressed.	Velocity	ranges	from	0	to	127,	where	64	is	the	standard	velocity.	A	higher	velocity	results	in	a	louder
sound.

Primitives

sound:drums	sound:instruments	sound:play-drum	sound:play-note	sound:play-note-later

sound:drums

sound:drums

Reports	a	list	of	the	names	of	the	47	drums	for	use	with	sound:play-drum.

sound:instruments

sound:instruments

Reports	a	list	of	the	names	of	the	128	instruments	for	use	with	sound:play-note,	sound:play-note-later,
sound:start-note	and	sound:stop-note.

sound:play-drum

sound:play-drum	drum	velocity

Plays	a	drum.

Example:

sound:play-drum	"ACOUSTIC	SNARE"	64

https://www.midi.org/about-midi/gm/gm1_spec.shtml

sound:play-note

sound:play-note	instrument	keynumber	velocity	duration

Plays	a	note	for	a	specified	duration,	in	seconds.	The	agent	does	not	wait	for	the	note	to	finish	before	continuing	to
next	command.

;;	play	a	trumpet	at	middle	C	for	two	seconds
sound:play-note	"TRUMPET"	60	64	2

sound:play-note-later

sound:play-note-later	delay	instrument	keynumber	velocity	duration

Waits	for	the	specified	delay	before	playing	the	note	for	a	specified	duration,	in	seconds.	The	agent	does	not	wait	for
the	note	to	finish	before	continuing	to	next	command.

Example:

;;	in	one	second,	play	a	trumpet	at	middle	C	for	two	seconds
sound:play-note-later	1	"TRUMPET"	60	64	2

Drum	Names

35.	Acoustic	Bass	Drum													59.	Ride	Cymbal	2
36.	Bass	Drum	1																				60.	Hi	Bongo
37.	Side	Stick																					61.	Low	Bongo
38.	Acoustic	Snare																	62.	Mute	Hi	Conga
39.	Hand	Clap																						63.	Open	Hi	Conga
40.	Electric	Snare																	64.	Low	Conga
41.	Low	Floor	Tom																		65.	Hi	Timbale
42.	Closed	Hi	Hat																		66.	Low	Timbale
43.	Hi	Floor	Tom																			67.	Hi	Agogo
44.	Pedal	Hi	Hat																			68.	Low	Agogo
45.	Low	Tom																								69.	Cabasa
47.	Open	Hi	Hat																				70.	Maracas
47.	Low	Mid	Tom																				71.	Short	Whistle
48.	Hi	Mid	Tom																					72.	Long	Whistle
49.	Crash	Cymbal	1																	73.	Short	Guiro
50.	Hi	Tom																									74.	Long	Guiro
51.	Ride	Cymbal	1																		75.	Claves
52.	Chinese	Cymbal																	76.	Hi	Wood	Block
53.	Ride	Bell																						77.	Low	Wood	Block
54.	Tambourine																					78.	Mute	Cuica
55.	Splash	Cymbal																		79.	Open	Cuica
56.	Cowbell																								80.	Mute	Triangle
57.	Crash	Cymbal	2																	81.	Open	Triangle
58.	Vibraslap

Instrument	Names

Piano																														*Reed*
1.	Acoustic	Grand	Piano												65.	Soprano	Sax
2.	Bright	Acoustic	Piano											66.	Alto	Sax
3.	Electric	Grand	Piano												67.	Tenor	Sax
4.	Honky-tonk	Piano																68.	Baritone	Sax
5.	Electric	Piano	1																69.	Oboe
6.	Electric	Piano	2																70.	English	Horn
7.	Harpsichord																					71.	Bassoon
8.	Clavi																											72.	Clarinet

Chromatic	Percussion															*Pipe*
9.	Celesta																									73.	Piccolo
10.	Glockenspiel																			74.	Flute
11.	Music	Box																						75.	Recorder
12.	Vibraphone																					76.	Pan	Flute
13.	Marimba																								77.	Blown	Bottle
14.	Xylophone																						78.	Shakuhachi
15.	Tubular	Bells																		79.	Whistle
16.	Dulcimer																							80.	Ocarina

Organ																														*Synth	Lead*

17.	Drawbar	Organ																		81.	Square	Wave
18.	Percussive	Organ															82.	Sawtooth	Wave
19.	Rock	Organ																					83.	Calliope
20.	Church	Organ																			84.	Chiff
21.	Reed	Organ																					85.	Charang
22.	Accordion																						86.	Voice
23.	Harmonica																						87.	Fifths
24.	Tango	Accordion																88.	Bass	and	Lead

Guitar																													*Synth	Pad*
25.	Nylon	String	Guitar												89.	New	Age
26.	Steel	Acoustic	Guitar										90.	Warm
27.	Jazz	Electric	Guitar											91.	Polysynth
28.	Clean	Electric	Guitar										92.	Choir
29.	Muted	Electric	Guitar										93.	Bowed
30.	Overdriven	Guitar														94.	Metal
31.	Distortion	Guitar														95.	Halo
32.	Guitar	harmonics															96.	Sweep

Bass																															*Synth	Effects*
33.	Acoustic	Bass																		97.	Rain
34.	Fingered	Electric	Bass									98.	Soundtrack
35.	Picked	Electric	Bass											99.	Crystal
36.	Fretless	Bass																		100.	Atmosphere
37.	Slap	Bass	1																				101.	Brightness
38.	Slap	Bass	2																				102.	Goblins
39.	Synth	Bass	1																			103.	Echoes
40.	Synth	Bass	2																			104.	Sci-fi

Strings																												*Ethnic*
41.	Violin																									105.	Sitar
42.	Viola																										106.	Banjo
43.	Cello																										107.	Shamisen
44.	Contrabass																					108.	Koto
45.	Tremolo	Strings																109.	Kalimba
47.	Pizzicato	Strings														110.	Bag	pipe
47.	Orchestral	Harp																111.	Fiddle
48.	Timpani																								112.	Shanai

Ensemble																											*Percussive*
49.	String	Ensemble	1														113.	Tinkle	Bell
50.	String	Ensemble	2														114.	Agogo
51.	Synth	Strings	1																115.	Steel	Drums
52.	Synth	Strings	2																116.	Woodblock
53.	Choir	Aahs																					117.	Taiko	Drum
54.	Voice	Oohs																					118.	Melodic	Tom
55.	Synth	Voice																				119.	Synth	Drum
56.	Orchestra	Hit																		120.	Reverse	Cymbal

Brass																														*Sound	Effects*
57.	Trumpet																								121.	Guitar	Fret	Noise
58.	Trombone																							122.	Breath	Noise
59.	Tuba																											123.	Seashore
60.	Muted	Trumpet																		124.	Bird	Tweet
61.	French	Horn																				125.	Telephone	Ring
62.	Brass	Section																		126.	Helicopter
63.	Synth	Brass	1																		127.	Applause
64.	Synth	Brass	2																		128.	Gunshot

NetLogo	Table	Extension

Using

The	table	extension	is	pre-installed	in	NetLogo.

To	use	the	table	extension	in	your	model,	add	a	line	to	the	top	of	your	Code	tab:

extensions	[table]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so	just	add	table	to	the	list.

For	more	information	on	using	NetLogo	extensions,	see	the	Extensions	Guide

When	to	Use

In	general,	anything	you	can	do	with	an	table	in	NetLogo,	you	could	also	just	use	a	list	for.	But	you	may	want	to	consider	using	an	table	instead	for	speed
reasons.	Lists	and	tables	have	different	performance	characteristics,	so	you	may	be	able	to	make	your	model	run	faster	by	selecting	the	appropriate	data
structure.

Tables	are	useful	when	you	need	to	do	associate	values	with	other	values.	For	example,	you	might	make	a	table	of	words	and	their	definitions.	Then	you	can
look	up	the	definition	of	any	word.	Here,	the	words	are	the	"keys".	You	can	easily	retrieve	the	value	for	any	key	in	the	table,	but	not	vice	versa.

Unlike	NetLogo’s	lists	and	strings,	tables	are	“mutable”.	That	means	that	you	can	actually	modify	them	directly,	rather	than	constructing	an	altered	copy	as	with
lists.	If	the	table	is	used	in	more	than	one	place	in	your	code,	any	changes	you	make	will	show	up	everywhere.	It’s	tricky	to	write	code	involving	mutable
structures	and	it’s	easy	to	make	subtle	errors	or	get	surprising	results,	so	we	suggest	sticking	with	lists	and	strings	unless	you’re	certain	you	want	and	need
mutability.

Example

let	dict	table:make
table:put	dict	"turtle"	"cute"
table:put	dict	"bunny"	"cutest"
print	dict
=>	{{table:	"turtle"	->	"cute",	"bunny"	->	"cutest"	}}
print	table:length	dict
=>	2
print	table:get	dict	"turtle"
=>	"cute"
print	table:get	dict	"leopard"
=>	(error)
print	table:keys	dict
=>	["turtle"	"bunny"]

Manipulating	Tables

If	the	same	key	is	used	with	table:put	more	than	once	for	the	same	table,	the	value	provided	to	last	call	of	table:put	will	be	the	value	shown	when	table:get	is
used.	Here	is	an	example:

let	dict	table:make
table:put	dict	"a"	5
table:put	dict	"a"	3
print	table:get	dict	"a"
=>	3

Because	tables	are	mutable,	manipulating	existing	values	should	be	done	by	calling	table:get	or	table:get-or-default	on	a	key,	transforming	the	returned
value,	and	then	calling	table:put	to	update	the	transformed	value	in	the	table.	Here	is	an	example	procedure	which	increments	a	value	in	a	table	at	a	given	key.
If	the	key	doesn’t	exist,	it	puts	a	1	at	that	key	instead.

to	increment-table-value	[dict	key]
		let	i	table:get-or-default	dict	key	0
		table:put	dict	key	i	+	1
end

As	increment-table-value	shows,	when	a	table	is	given	as	an	input	for	a	procedure,	modifications	made	to	it	with	table:put,	table:remove,	or	table:clear	are
reflected	in	the	original	value	outside	of	the	procedure.	This	is	different	behavior	than	with	list	values,	which	are	immutable	and	so	cannot	be	changed	when
given	as	inputs.	Caution	needs	to	be	exercised	when	using	let	or	set,	as	they	can	give	a	different	variable	name	to	the	same	table.	If	you	change	the	value	for	a
key	in	the	table	using	one	variable,	any	other	variables	assigned	that	same	table	will	also	reflect	the	change.

let	dict	table:make
table:put	dict	"a"	5
let	alt	dict
table:put	alt	"a"	3
print	table:get	dict	"a"
=>	3	;	changed	because	`dict`	and	`alt`	refer	to	the	same	table
print	table:get	alt	"a"
=>	3

If	you	want	to	create	a	copy	of	a	table	instead	of	assigning	the	same	table	to	multiple	variable	names,	here	is	a	simple	reporter	for	creating	a	duplicate	table	from
an	existing	one:

to-report	copy-table	[orig]
		let	copy	table:make
		foreach	(table:keys	orig)	[
				[key]	->	table:put	copy	key	(table:get	orig	key)
]
		report	copy
end

And	here	is	a	sample	usage	of	the	copy-table	reporter:

let	dict	table:make
table:put	dict	"a"	5

let	alt	copy-table	dict
table:put	alt	"a"	3
print	table:get	dict	"a"
=>	5	;	`dict`	is	not	changed	because	we	created	a	new	table	copy	for	`alt`
print	table:get	alt	"a"
=>	3

Key	Restrictions

Table	keys	are	limited	to	the	following	NetLogo	types:

Numbers
Strings
Booleans
Lists	containing	only	elements	which	are	themselves	valid	keys

If	you	attempt	to	use	an	illegal	value,	the	table	extension	will	raise	an	exception,	as	shown	in	the	following	example.

crt	1
let	dict	table:make
table:put	dict	(one-of	turtles)	10
;;	Errors	with	the	following	message:
;;	(turtle	0)	is	not	a	valid	table	key	(a	table	key	may	only	be	a	number,	a	string,	true	or	false,	or	a	list	whose	items	are	valid	keys)

Primitives

table:clear	table:counts	table:group-agents	table:group-items	table:from-list	table:from-json	table:from-json-file	table:get	table:get-or-default
table:has-key?	table:keys	table:length	table:make	table:put	table:remove	table:to-list	table:to-json	table:values

table:clear

table:clear	table

Removes	all	key-value	pairs	from	table.

table:counts

table:counts	list

Counts	the	occurrences	of	each	element	of	the	given	list	and	reports	the	counts	in	a	table.

table:group-agents

table:group-agents	agentset	anonymous	reporter

Groups	the	agents	in	the	agentset	based	on	the	given	reporter.	Agents	that	report	the	same	thing	for	reporter	will	be	grouped	together.	The	results	of	the
reporter	will	be	used	as	the	keys	in	the	resulting	table	and	the	groups	will	be	agentsets.

For	example:

observer>	create-turtles	100	[set	color	one-of	[red	green	blue]]
observer>	show	table:group-agents	turtles	[color]
observer:	{{table:	[[105	(agentset,	38	turtles)]	[55	(agentset,	32	turtles)]	[15	(agentset,	30	turtles)]]}}

table:group-items

table:group-items	list	anonymous-reporter

Groups	the	items	of	the	list	based	on	the	given	reporter.	The	reporter	should	take	a	single	argument,	which	will	be	the	items	of	the	list.	Items	that	report	the
same	thing	when	passed	to	the	reporter	will	be	grouped	together.	The	results	of	the	reporter	will	be	used	as	the	keys	in	the	resulting	table	and	the	groups	will	be
lists.

For	example:

observer>	show	table:group-items	range	10	[num	->	num	mod	3]
observer:	{{table:	[[0	[0	3	6	9]]	[1	[1	4	7]]	[2	[2	5	8]]]}}

table:from-list

table:from-list	list

Reports	a	new	table	with	the	contents	of	list.	list	must	be	a	list	of	two	element	lists,	or	pairs.	The	first	element	in	the	pair	is	the	key	and	the	second	element	is	the
value.

table:from-json

table:from-json	string

Reads	in	the	JSON	object	from	the	given	string	argument,	converts	it	to	a	table,	and	reports	the	table.
The	JSON	object	in	the	argument	must	be	an	object,	not	an	array	(i.e.	the	outmost	characters	must	be	`{`	and	`}`,	not	`[`	and	`]`),
but	there	can	be	arrays	inside	the	JSON	object	which	will	be	converted	to	NetLogo	lists.

table:from-json-file

table:from-json-file	filename

Reads	in	the	JSON	object	from	*filename.json*,	converts	it	to	a	table	and	reports	the	table.
The	JSON	object	in	*filename.json*	must	be	an	object,	not	an	array	(i.e.	the	outmost	characters	of	the	file	must	be	`{`	and	`}`,	not	`[`	and	`]`),
but	there	can	be	arrays	inside	the	JSON	object	which	will	be	converted	to	NetLogo	lists.

table:get

table:get	table	key

Reports	the	value	that	key	is	mapped	to	in	the	table.	Causes	an	error	if	there	is	no	entry	for	the	key.

table:get-or-default

table:get-or-default	table	key	default-value

Reports	the	value	that	key	is	mapped	to	in	the	table.	Reports	the	default-value	if	there	is	no	entry	for	the	key.

table:has-key?

table:has-key?	table	key

Reports	true	if	key	has	an	entry	in	table.

table:keys

table:keys	table

Reports	a	list	of	all	the	keys	in	table,	in	the	same	order	the	keys	were	inserted.

table:length

table:length	table

Reports	the	number	of	entries	in	table.

table:make

table:make

Reports	a	new,	empty	table.

table:put

table:put	table	key	value

Maps	key	to	value	in	table.	If	an	entry	already	exists	in	the	table	for	the	given	key,	it	is	replaced.

table:remove

table:remove	table	key

Removes	the	mapping	in	table	for	key.

table:to-list

table:to-list	table

Reports	a	list	with	the	content	of	table.	The	list	will	be	a	list	of	two	element	lists,	or	pairs.	The	first	element	in	the	pair	is	the	key	and	the	second	element	is	the
value.	The	keys	appear	in	the	same	order	they	were	inserted.

table:to-json

table:to-json	table

Reports	a	string	with	the	contents	of	the	given	table	as	a	JSON	string.

table:values

table:values	table

Reports	a	list	with	the	entries	of	table.	The	entries	will	appear	in	the	same	order	they	were	inserted,	with	duplicates	included.

NetLogo	Time	Extension

The	Time	extension	provides	NetLogo	with	three	kinds	of	capabilities	for	models	that	use	discrete-event	simulation	or
represent	time	explicitly.	The	package	provides	tools	for	common	date	and	time	operations,	discrete	event	scheduling,	and
using	time-series	input	data.

Quickstart
What	is	it?
Installation
Examples
Behavior
Format
Primitives
Date/Time	Utilities
Time	Series	Tool
Discrete	Event	Scheduler
Building
Authors
Feedback
Credits
Terms	of	use

Quickstart

Include	the	extension	in	your	NetLogo	model	(at	the	top):

extensions	[time]

Date/Time	Utilities

Create	a	global	date/time	and	initialize	in	the	setup	procedure:

globals[dt]
to	setup
		set	dt	time:create	"2000/01/01	10:00"
end

From	the	console,	execute	setup	and	then	print	a	formatted	version	of	your	date/time	to	the	console:

setup
print	time:show	dt	"EEEE,	MMMM	d,	yyyy"
;;	prints	"Sunday,	January	2,	2000"

Print	the	hour	of	the	day,	the	day	of	the	week,	and	the	day	of	the	year:

print	time:get	"hour"	dt		;;	prints	10
print	time:get	"dayofweek"	dt		;;	prints	6
print	time:get	"dayofyear"	dt	;;	prints	1

Add	3	days	to	your	date/time	and	print	the	date/time	object	to	the	screen:

set	dt	time:plus	dt	3	"days"
print	dt

Compare	your	date/time	to	some	other	date/time:

ifelse	time:is-after?	dt	(time:create	"2000-01-01	12:00")	[print	"yes"][print	"no"]

Time	Series	Tool

NOTE:	The	time	series	tool	is	not	currently	included	in	the	extension.	However,	all	of	the	functionality	(plus	some)	has	been
reproduced	in	NetLogo	code	in	the	time-series.nls	file	in	this	repo	which	you	can	download	by	clicking	that	link	and	then
right	clicking	the	“raw”	button	on	the	upper	right	of	the	file	and	selecting	“download	linked	file”.	You	might	have	to	remove	a
‘.txt’	file	extension	so	that	the	file	ends	with	the	‘.nls’	extension.	You	can	then	include	that	file	with	the	__includes	primitive.

Download	this	example	time	series	file	and	place	in	the	same	directory	as	your	NetLogo	model.	Here	are	the	first	10	lines
of	the	file:

;	meta	data	at	the	top	of	the	file

https://github.com/NetLogo/Time-Extension/blob/master/time-series.nls
file:///var/folders/zt/6c8vmb4j16717kzllw2gjr7sz8sj3f/T/sbt_ff6864f9/dict/includes.html
https://github.com/colinsheppard/Time-Extension/raw/master/examples/time-series-data.csv

;	is	skipped	when	preceded	by
;	a	semi-colon
timestamp,flow,temperature
2000-01-01	00:00:00,1000,10
2000-01-01	01:00:00,1010,11
2000-01-01	03:00:00,1030,13
2000-01-01	04:00:00,1040,14
2000-01-01	05:00:00,1050,15
…
…

Create	a	global	to	store	a	LogoTimeSeries	object.	In	your	setup	procedure,	load	the	data	from	the	CSV	file:

globals[time-series]

set	time-series	ts-load	"time-series-data.csv"

Create	a	LogoTime	and	use	it	to	extract	the	value	from	the	“flow”	column	that	is	nearest	in	time	to	that	object:

let	current-time	time:create	"2000-01-01	01:20:00"

let	current-flow	ts-get	time-series	current-time	"flow"

;;	By	default,	the	nearest	record	in	the	time	series	is	retrieved	(in	this	case	1010),
;;	you	can	alternatively	require	an	exact	match	or	do	linear	interpolation.

Discrete	Event	Scheduler

Create	a	few	turtles	and	schedule	them	to	go	forward	at	tick	10,	then	schedule	one	of	them	to	also	go	forward	at	tick	5.

create-turtles	5

time:schedule-event	turtles	([[]	->	fd	1])	10
time:schedule-event	(turtle	1)	([[]	->	fd	1])	5

Execute	the	discrete	event	schedule	(all	events	will	be	executed	in	order	of	time):

time:go

;;	turtle	1	will	go	foward	at	tick	5,
;;	then	all	5	turtles	will	go	forward	at	tick	10

back	to	top

What	is	it?

This	package	contains	the	NetLogo	time	extension,	which	provides	NetLogo	with	three	kinds	of	capabilities	for	models
that	use	discrete-event	simulation	or	represent	time	explicitly.	The	package	provides	tools	for	common	date	and	time
operations,	discrete	event	scheduling,	and	using	time-series	input	data.

Dates	and	Times

The	extension	provides	tools	for	representing	time	explicitly,	especially	by	linking	NetLogo’s	ticks	to	a	specific	time	interval.
It	allows	users	to	do	things	such	as	starting	a	simulation	on	1	January	of	2010	and	end	on	31	December	2015,	have	each
tick	represent	6	hours,	and	check	whether	the	current	simulation	date	is	between	1	and	15	March.

This	extension	is	powered	by	the	Java	Time	Library,	which	has	very	sophisticated	and	comprehensive	date/time	facilities.
A	subset	of	these	capabilities	have	been	extended	to	NetLogo.	The	time	extension	makes	it	easy	to	convert	string
representations	of	dates	and	date/times	to	a	LogoTime	object	which	can	then	be	used	to	do	many	common	time
manipulations	such	as	incrementing	the	time	by	some	amount	(e.g.	add	3.5	days	to	2001-02-22	10:00	to	get	2001-02-25
22:00).

Time	Series	Utilities

Modelers	commonly	need	to	use	time	series	data	in	NetLogo.	The	time	extension	no	longer	provides	time	series
functionality	(plus	some),	but	the	same	functionality	is	included	the	time-series.nls	file	in	this	repo	which	you	can	download
by	clicking	that	link	and	then	right	clicking	the	“raw”	button	on	the	upper	right	of	the	file	and	selecting	“download	linked	file”
(you	might	have	to	remove	a	‘.txt’	file	extension	so	that	the	file	ends	with	the	‘.nls’	extension).	You	can	then	include	that	file
with	the	__includes	primitive.	The	time-series.nls	file	includes	convenient	procedures	for	handling	time	series	data.	With	a
single	command,	you	can	load	an	entire	time	series	data	set	from	a	text	file.	The	first	column	in	that	text	file	holds	dates	or
datetimes.	The	remaining	columns	can	be	numeric	or	string	values.	You	then	access	the	data	by	time	and	by	column
heading,	akin	to	saying	“get	the	flow	from	May	8,	2008”.

Users	can	also	create	and	record	a	time	series	of	events	within	their	model,	access	that	series	during	simulations,	and
export	it	to	a	file	for	analysis.	For	example,	a	market	model	could	create	a	time	series	object	into	which	is	recorded	the	date

https://github.com/NetLogo/Time-Extension/blob/master/time-series.nls
file:///var/folders/zt/6c8vmb4j16717kzllw2gjr7sz8sj3f/T/sbt_ff6864f9/dict/includes.html

and	time,	trader,	price,	and	size	of	each	trade.	The	time	series	utilities	let	model	code	get	(for	example)	the	mean	price
over	the	previous	day	or	week,	and	save	all	the	trades	to	a	file	at	the	end	of	a	run.

Discrete	Event	Scheduling

Note:	Formerly	this	capability	was	published	as	the	Dynamic	Scheduler	Extension,	but	that	extension	has	been	merged
into	the	time	extension	in	order	to	integrate	the	functionality	of	both.

The	time	extension	enables	a	different	approach	to	scheduling	actions	in	NetLogo.	Traditionally,	a	NetLogo	modeler	puts
a	series	of	actions	or	procedure	calls	into	the	“go”	procedure,	which	is	executed	once	each	tick.	Sometimes	it	is	more
natural	or	more	efficient	to	instead	say	“have	agent	X	execute	procedure	Y	at	time	Z”.	This	is	what	discrete	event
scheduling	(also	know	as	“dynamic	scheduling”")	enables.	Discrete	event	simulation	has	a	long	history	and	extensive
literature,	and	this	extension	makes	it	much	easier	to	use	in	NetLogo.

When	is	discrete	event	scheduling	useful?	Discrete	event	scheduling	is	most	useful	for	models	where	agents	spend	a	lot	of
time	sitting	idle	despite	knowing	when	they	need	to	act	next.	Sometimes	in	a	NetLogo	model,	you	end	up	testing	a	certain
condition	or	set	of	conditions	for	every	agent	on	every	tick	(usually	in	the	form	of	an	“ask”),	just	waiting	for	the	time	to	be
ripe….	this	can	get	cumbersome	and	expensive.	In	some	models,	you	might	know	in	advance	exactly	when	a	particular
agent	needs	to	act.	Dynamic	scheduling	cuts	out	all	of	those	superfluous	tests.	The	action	is	performed	only	when	needed,
with	no	condition	testing	and	very	little	overhead.

For	example,	if	an	agent	is	a	state	machine	and	spends	most	of	the	time	in	the	state	“at	rest”	and	has	a	predictable
schedule	that	knows	that	the	agent	should	transition	to	the	state	“awake”	at	tick	105,	then	using	a	dynamic	scheduler
allows	you	to	avoid	code	that	looks	like:	“if	ticks	=	105	[do-something]”,	which	has	to	be	evaluated	every	tick!

A	second	common	use	of	discrete	event	scheduling	is	when	it	is	important	to	keep	track	of	exactly	when	events	occur	in
continuous	time,	so	the	simplifying	assumption	that	all	events	happen	only	at	regular	ticks	is	not	appropriate.	One	classic
example	is	queuing	models	(e.g.,	how	long	customers	have	to	stand	in	line	for	a	bank	teller),	which	use	a	continuous
random	number	distribution	(e.g.,	an	exponential	distribution)	to	determine	when	the	next	agent	enters	the	queue.

back	to	top

Installation

The	Time	extension	comes	bundled	with	NetLogo.	Simply	include	extensions	[time]	at	the	top	of	the	model	and	it	will	be
loaded.	New	versions	of	the	extension	are	available	through	the	Netlogo	extensions	manager	as	they	are	released.

Alternatively,	download	the	latest	version	of	the	extension	(Note	that	this	extension	is	compiled	for	NetLogo	6.1	and	may
not	work	for	earlier	versions	of	NetLogo)	Unzip	the	archive	and	rename	the	directory	to	“time”.	Move	the	renamed	directory
to	the	“extensions”	directory	inside	your	NetLogo	application	folder	(i.e.	[NETLOGO]/extensions/).	Or	you	can	place	the
time	directory	under	the	same	directory	holding	the	NetLogo	model	in	which	you	want	to	use	this	extension.

For	more	information	on	NetLogo	extensions:	http://ccl.northwestern.edu/netlogo/docs/extensions.html

back	to	top

Examples

See	the	example	models	in	the	time	extension’s	subfolder	“examples”	for	thorough	demonstrations	of	usage.

Data	Types

The	time	extension	introduces	some	new	data	types	(more	detail	about	these	is	provided	in	the	behavior	section):

LogoTime	-	A	LogoTime	object	stores	a	time	stamp;	it	can	track	a	full	date	and	time,	or	just	a	date	(with	no
associated	time).

LogoEvent	-	A	LogoEvent	encapsulates	a	who,	a	what,	and	a	when.	It	allows	you	to	define,	for	example,	that	you
want	turtle	7	to	execute	the	go-forward	procedure	at	tick	10.	When	scheduling	an	event	using	the	time	extension
you	pass	the	who,	what,	and	when	as	arguments	(e.g.	“time:schedule-event	(turtle	1)	fd	5”).

Discrete	Event	Schedule	-	A	discrete	event	schedule	is	a	sorted	list	of	LogoEvents	that	is	maintained	by	this
extension	and	manages	the	dispatch	(execution)	of	those	events.	Users	do	not	need	to	manipulate	or	manage	this
schedule	directly,	but	it	is	useful	to	understand	that	it	stores	and	executes	LogoEvents	when	the	“time:go”	or
“time:go-until”	commands	are	issued.	As	the	schedule	is	executed,	the	time	extension	automatically	updates	the
NetLogo	ticks	to	match	the	current	event	in	the	schedule.

The	time-series.nls	file	in	this	repo	provides	one	more	datatype.	*	LogoTimeSeries	-	A	LogoTimeSeries	object	stores	a
table	of	data	indexed	by	LogoTime.	The	time	series	can	be	read	in	from	a	file	or	recorded	by	the	code	during	a	simulation.
It	is	currently	implemented	in	NetLogo	code	using	a	list	of	lists.

back	to	top

Behavior

https://raw.githubusercontent.com/NetLogo/NetLogo-Libraries/6.1/extensions/time-2.0beta.zip

The	time	extension	has	the	following	notable	behavior:

LogoTimes	can	store	DATETIMEs,	DATEs,	or	DAYs	-	A	LogoTime	is	a	flexible	data	structure	that	will	represent	your
time	data	as	one	of	three	varieties	depending	on	how	you	create	the	LogoTime	object.	A	LogoTime	can	be	a
DATETIME,	a	DATE,	or	a	DAY:
A	DATETIME	is	a	fully	specified	instant	in	time,	with	precision	down	to	a	millisecond	(e.g.	January	2,	2000	at	3:04am
and	5.678	seconds).
A	DATE	is	a	fully	specified	day	in	time	but	lacks	any	information	about	the	time	of	day	(e.g.	January	2,	2000).
A	DAY	is	a	generic	date	that	does	not	specify	a	year	(e.g.	January	2).

The	behavior	of	the	time	extension	primitives	depend	on	which	variety	of	LogoTime	you	are	storing.	For	example,	the
difference	between	two	DATETIMES	will	have	millisecond	resolution,	while	the	difference	between	two	DATES	or	two
DAYS	will	only	have	resolution	to	the	nearest	whole	day.

As	another	example,	a	DAY	representing	01/01	is	always	considered	to	be	before	12/31.	Because	there’s	no	wrapping
around	for	DAYs,	they	are	only	useful	if	your	entire	model	occurs	within	one	year	and	doesn’t	pass	from	December	to
January.	If	you	need	to	wrap,	use	a	DATE	and	pick	a	year	for	your	model,	even	if	there’s	no	basis	in	reality	for	that	year.
(DAY	LogoTime	variables	are	useful,	however,	as	parameters	defining	the	date	when	something	happens	every	simulated
year.	You	can,	for	example,	use	time	extension	commands	to	say	that	a	species’	breeding	season	starts	on	one	DAY—15
May—and	ends	on	another—25	June—each	year.)

You	create	LogoTime	objects	by	passing	a	string	-	The	time:create	primitive	was	designed	to	both	follow	the
standard	used	by	the	Java	time	library,	and	to	make	date	time	parsing	more	convenient	by	allowing	a	wider	range	of
delimiters	and	formats.	For	example,	the	following	are	all	valid	DATETIME	strings:
“2000-01-02T03:04:05.678”
“2000-01-02T3:04:05.678”
“2000-01-02	03:04:05”
“2000-01-02	3:04:05”
“2000-01-02	03:04”
“2000-01-02	3:04”
“2000-01-02	03”
“2000-01-02	3”
“2000/01/02	03:04:05.678”
“2000-1-02	03:04:05.678”
“2000-01-2	03:04:05.678”
“2000-1-2	03:04:05.678”

The	following	are	all	valid	DATE	strings:	*	“2000-01-02”	*	“2000-01-2”	*	“2000-1-02”	*	“2000/1/02”

The	following	are	all	valid	DAY	strings:	*	“01-02”	*	“01-2”	*	“1-02”	*	“1/2”

Note	that	if	you	do	not	include	a	time	in	your	string,	the	time	extension	will	assume	you	want	a	DATE.	If	you	want	a
DATETIME	that	happens	to	be	at	midnight,	specify	the	time	as	zeros:	“2000-01-02	00:00”.

Time	extension	recognizes	“period	types”	-	In	order	to	make	it	easy	to	specify	a	time	period	like	“2	days”	or	“4
weeks”,	the	time	extension	will	accept	strings	to	specify	a	period	type.	The	following	is	a	table	of	the	period	types	and
strings	that	time	recognizes	(note:	any	of	these	period	type	strings	can	be	pluralized	and	are	case	insensitive):

PERIOD	TYPE Valid	string	specifiers

YEAR “year”

MONTH “month”

WEEK “week”

DAY “day”,	“dayofmonth”,	“dom”

DAYOFYEAR “dayofyear”,	“doy”,	“julianday”,	“jday”

DAYOFWEEK “dayofweek”,	“dow”,	“weekday”,
“wday”

HOUR “hour”

MINUTE “minute”

SECOND “second”

MILLI “milli”

Time	extension	has	millisecond	resolution	-	This	is	a	fundamental	feature	of	the	Java	Time	library	and	cannot	be
changed.	Milliseconds	are	represented	as	fractions	of	a	second,	truncated	to	the	third	decimal	place	to	prevent
parsing	issues	with	the	Java	Time	library.	This	truncation	can	create	artifacts;	for	example	if	time:plus	is	used	to	add
a	value	that	is	less	than	one	whole	millisecond,	it	does	nothing.

Daylight	savings	time	is	ignored	-	All	times	are	treated	as	local,	or	“zoneless”,	and	daylight	savings	time	(DST)	is
ignored.	It	is	assumed	that	most	NetLogo	users	don’t	need	to	convert	times	between	time	zones	or	be	able	to	follow
the	rules	of	DST	for	any	particular	locale.	Instead,	users	are	much	more	likely	to	need	the	ability	to	load	a	time	series

and	perform	date	and	time	operations	without	worrying	about	when	DST	starts	and	whether	an	hour	of	their	time
series	will	get	skipped	in	the	spring	or	repeated	in	the	fall.	It	should	be	noted	that	the	Time	library	definitely	can
handle	DST	for	most	locales	on	Earth,	but	that	capability	is	not	extended	to	NetLogo	here	and	won’t	be	unless	by
popular	demand.

Leap	days	are	included	-	While	we	simplify	things	by	excluding	time	zones	and	DST,	leap	days	are	kept	to	allow
users	to	reliably	use	real-world	time	series	in	their	NetLogo	model.	LogoTime	variable	type	DAY	assumes	a	leap
year,	so	DAY	variables	can	include	2/29.	(If	you	add	one	day	to	a	DAY	with	value	of	28	February,	the	result	is	29
February,	not	1	March.)

LogoTimes	are	mutable	when	anchored	-	If	you	anchor	a	LogoTime	(using	the	time:anchor-to-ticks	primitive)	you
end	up	with	a	variable	whose	value	changes	as	the	value	of	Netlogo	ticks	changes.	If	you	have	an	anchored	variable
called	“anchored-time”	and	you	assign	it	to	another	variable	“set	new-time	anchored-time”,	your	new	variable	will	also
be	mutable	and	change	with	ticks.	If	what	you	want	is	a	snapshot	of	the	anchored-time	that	doesn’t	change,	then	use
the	time:copy	primitive:	“set	new-time	time:copy	anchored-time”.

Decimal	versus	whole	number	time	periods	-	In	this	extension,	decimal	values	can	be	used	by	the	plus	and
anchor-to-ticks	primitives	for	seconds,	minutes,	hours,	days,	and	weeks	(milliseconds	can’t	be	fractional	because
they	are	the	base	unit	of	time).	These	units	are	treated	as	durations	because	they	can	unambiguously	be	converted
from	a	decimal	number	to	a	whole	number	of	milliseconds.	But	there	is	ambiguity	in	how	many	milliseconds	there	are
in	1	month	or	1	year,	so	month	and	year	increments	are	treated	as	periods	which	are	by	definition	whole	number
valued.	So	if	you	use	the	time:plus	primitive	to	add	1	month	to	the	date	“2012-02-02”,	you	will	get	“2012-03-02”;	and	if
you	add	another	month	you	get	“2012-04-02”	even	though	February	and	March	have	different	numbers	of	days.	If
you	try	to	use	a	fractional	number	of	months	or	years,	it	will	be	rounded	to	the	nearest	integer	and	then	added.	If	you
want	to	increment	a	time	variable	by	one	and	a	half	365-day	years,	then	just	increment	by	1.5	*	365	days	instead	of
1.5	years.

LogoEvents	are	dispatched	in	order,	and	ties	go	to	the	first	created	-	If	multiple	LogoEvents	are	scheduled	for
the	exact	same	time,	they	are	dispatched	(executed)	in	the	order	in	which	they	were	added	to	the	discrete	event
schedule.

LogoEvents	can	be	created	for	an	agentset	-	When	an	agentset	is	scheduled	to	perform	an	anonymous	command
(before	NetLogo	6.0	these	were	called	tasks)	at	the	same	time,	the	individual	agents	execute	the	procedure	in	a	non-
random	order,	which	is	different	from	ask	which	shuffles	the	agents.	Not	shuffling	the	agents	may	save	some
execution	time.	To	shuffle	the	order,	use	the	add-shuffled	primitive,	which	will	execute	the	actions	in	random	order
with	low	overhead.

LogoEvents	won’t	break	if	an	agent	dies	-	If	an	agent	is	scheduled	to	perform	an	anonymous	command	in	the
future	but	dies	before	the	event	is	dispatched,	the	event	will	be	silently	skipped.

LogoEvents	can	be	scheduled	to	occur	at	a	LogoTime	-	LogoTimes	are	acceptable	alternatives	to	specifying	tick
numbers	for	when	events	should	occur.	However,	for	this	to	work	the	discrete	event	schedule	must	be	“anchored”	to
a	reference	time	so	it	knows	a	relationship	between	ticks	and	time.	See	time:anchor-schedule*	below	for	an	example
of	anchoring.

back	to	top

Format

The	time	extension	utilizes	rules	and	standards,	provided	by	the	Java	8	time	library,	to	parse	and	accept	valid	dates.	The
extension	provides	default	formats	for	quickly	creating	time	objects,	but	includes	an	option	for	specifying	a	custom	format.
In	addition,	the	extension	adheres	to	the	ISO	8601	standard,	following	the	Java	8	STRICT	format	and	24	hour	clock	format.
The	same	formats	are	used	for	both	input	and	output.

Date	Format

Date	formats	are	encoded	strings	with	unique	characters	that	represent	various	units	of	time	and	their	position	(date	and
time).	Each	character	is	meant	to	be	placed	in	a	contiguous	group	to	indicate	its	expected	location	and	type.	If	a	user
provides	a	date	string	that	does	not	follow	the	parsing	format	or	bounds,	then	an	exception	will	be	thrown.	With	create
primitives,	the	selected	default	format	can	create	a	date-time,	date,	and	day	object	depending	on	the	string	provided.	The
set	of	default	formats	are	below.	The	default	delimiter	between	months,	days	and	years	is	‘/’,	between	hours,	minutes	and
seconds	is	“:”	and	between	seconds	and	milliseconds	is	“.”.	Using	any	other	delimiter	requires	using	a	custom	formatter
(see	User	Defined	Formatting).

DateTime	Default	Formatter

MM/dd/yyyy	HH:mm:ss.SSS

For	date-time	formatters,	the	format	specifies	all	7	units	(month,day,year,etc)	will	be	available	for	parsing	and	generating	a
date-time	object.

Date	Default	Formatter

MM/dd/yyyy

For	date	formatters,	the	month,	day,	and	year	need	to	be	specified	to	obtain	a	date	object.

Day	Default	Formatter

MM/dd

For	day	formatters,	the	month	and	day	need	to	be	specified	to	obtain	a	day	object.	Day	objects	are	based	on	the	year
2000,	which	contains	a	leap	day,	which	could	lead	to	miscalculations	if	only	28	days	are	expected	in	February.

Supported	Format	Characters

For	supported	format	characters	(‘H’,‘m’,etc),	there	are	three	main	modes	for	parsing:	shorthand,	sized,	and	full.	Each
mode	controls	the	number	of	acceptable	charcters	for	parsing	digits.

Shorthand	For	all	units,	except	the	millisecond	and	year	fields,	“shorthand”	formats	use	a	single	unique	character	meant
to	accept	1	or	2	digits	for	the	corresponding	unit.	The	short-hand	case	is	a	lenient	option	for	values	that	can	fluctuate
values	between	1	or	2	digits.	An	example:

M/d

Sized	For	year	and	millisecond,	the	number	of	characters	for	a	specific	unit	of	time	determines	the	number	of
acceptable	numbers.	For	example,	a	format	of	“MM/dd/yyyy	HH:mm:ss.S”	assumes	that	that	the	input/output	has	tenths
of	seconds	while	“MM/dd/yyyy	HH:mm:ss.SSS”	assumes	that	the	input/output	has	miliseconds.

MM/dd/yyyy	HH:mm:ss.SSS
MM/dd/yyyy	HH:mm:ss.S

Full	For	all	units	of	time,	the	maximum	number	of	representable	formatting	characters	can	be	used	to	provide	a	verbose
and	accurrate	representation	of	the	time	objects.	If	the	string	does	not	follow	the	format,	an	exception	will	be	thrown.
Example:

MM/dd/yyyy	HH:mm:ss.SSS

Month Day Year Hour Minute Second Millisecond

MM	or	M dd	or
d

yyyy	or
yy

HH	or
H

mm	or	m ss	or	s SSS	or	SS	or
S

NOTE:	generally	‘yyyy’	(or	‘uuuu’)	should	be	used	for	years	and	not	‘YYYY’	which	is	a	“week	based	year.”	This	means	that
a	date	at	the	very	end	of	one	year,	e.g.	12/31/2000	might	be	given	the	year	2001	if	‘YYYY’	is	used,	because	it	is	counted
as	part	of	the	first	week	of	2001.

Date-time	Bounds

Since	not	all	dates	are	representable	within	the	time	extension,	a	strict	formatting	is	enforced	to	minimize	the	effects	of
invalid	input.	Dates	are	bounded	by	the	Gregorian	calendar	while	the	time	is	bounded	with	their	respective	unit	of	time.

Month Day Year Hour Minute Second Millisecond

1	-	12 1	-	31	or	30	or	29	or
28 1000-9999 0-23 0-59 0-59 0	-	999

User	Defined	Formatting

The	time	extension	supports	user-defined	formatters	for	brevity	and	control.	User	defined	formatters	allow	for	reordering
format	characters	for	units	of	time	and	using	alternative	delimiters	from	the	defaults.

M:yyyy:d
MM/d/yyyy	HH:mm

back	to	top

Primitives

Date/Time	Utilities

time:create

time:create	time-string

Reports	a	LogoTime	created	by	parsing	the	time-string	argument.	A	LogoTime	is	a	custom	data	type	included	with	this
extension,	used	to	store	time	in	the	form	of	a	DATETIME,	a	DATE,	or	a	DAY.	All	other	primitives	associated	with	this
extension	take	one	or	more	LogoTimes	as	as	an	argument.	See	the	“Behavior”	section	above	for	more	information	on	the
behavior	of	LogoTime	objects.	The	time:create	primitive	raises	an	error	if	time-string	does	not	represent	a	real	date	or
time,	e.g.,	if	the	day	exceeds	the	number	of	days	in	the	month	or	the	month	is	not	between	1	and	12.	Hours	must	have
values	0-23,	and	minutes	and	seconds	must	be	0-59.	Seconds	with	milliseconds	must	be	between	0.000	and	59.999.

;;	Create	a	datetime,	a	date,	and	a	day
let	t-datetime	time:create	"2000-01-02	03:04:05.678"
let	t-date	time:create	"2000/01/02"
let	t-day	time:create	"01-02"

time:create-with-format

time:create-with-format	time-string	format-string

Like	time:create,	but	parses	the	time-string	argument	using	the	format-string	argument	as	the	format	specifier.

;;	Create	a	datetime,	a	date,	and	a	day	using	American	convention	for	dates:	Month/Day/Year
let	t-datetime	time:create-with-format	"01-02-2000	03:04:05.678"	"MM-dd-yyyy	HH:mm:ss.SSS"
let	t-date	time:create-with-format	"01/02/2000"	"MM/dd/yyyy"
let	t-day	time:create-with-format	"01-02"	"MM-dd"

See	the	following	link	for	a	full	description	of	the	available	format	options:

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

time:show

time:show	logotime	string-format

Reports	a	string	containing	the	logotime	formatted	according	the	string-format	argument.

let	t-datetime	time:create	"2000-01-02	03:04:05.678"

print	time:show	t-datetime	"EEEE,	MMMM	d,	yyyy"
;;	prints	"Sunday,	January	2,	2000"

print	time:show	t-datetime	"yyyy-MM-dd	HH:mm"
;;	prints	"2000-01-02	03:04"

See	the	following	link	for	a	full	description	of	the	available	format	options:

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Note	In	the	case	for	DATE	and	DAY	variables,	time:get	returns	default	values	for	unsupported	values.	Day	has	a	default
year	of	2000	to	calculate	for	leap	years.

let	t-date	(time:create	"2000-01-01")
let	t-day	(time:create	"01-01")

print	time:show	t-date	"HH"
print	time:show	t-day	"HH"
;;	print	00

print	time:show	t-date	"mm"
print	time:show	t-day	"mm"
;;	print	00

print	time:show	t-date	"ss"
print	time:show	t-day	"ss"
;;	print	00

print	time:show	t-date	"SSS"
print	time:show	t-day	"SSS"
;;	print	000

print	time:show	t-day	"yyyy"
;;	print	2000

time:get

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

time:get	period-type-string	logotime

Retrieves	the	numeric	value	from	the	logotime	argument	corresponding	to	the	period-type-string	argument.	For	DATETIME
variables,	all	period	types	are	valid;	for	DATEs,	only	period	types	of	a	day	or	higher	are	valid;	for	DAYs,	the	only	valid
period	types	are	“day”	and	“month”.	For	accessing	seconds,	seconds	are	not	rounded	to	the	nearest	integer,	but	truncated.
When	time:get	is	used	with	a	sub-day	period	type	(“hour”,	“minute”)	and	a	logotime	that	is	a	DATE	or	DAY	instead	of	a
DATETIME,	it	returns	zero.	Getting	the	year	of	a	DAY	variable	returns	the	default	of	2000.

let	t-datetime	(time:create	"2000-02-02	03:04:05.678")

print	time:get	"year"	t-datetime
;;prints	"2000"

print	time:get	"month"	t-datetime
;;prints	"1"

print	time:get	"day"	t-datetime
;;prints	"2"

print	time:get	"dayofyear"	t-datetime
;;prints	"33"

print	time:get	"hour"	t-datetime
;;prints	"3"

print	time:get	"second"	t-datetime
;;prints	"5"

print	time:get	"milli"	t-datetime
;;prints	"678"

Note	In	the	case	for	Day	and	Date	time	formats,	time:get	returns	default	values	for	unsupported	values.	Day	has	a	default
year	of	2000	to	calculate	for	leap	years.

let	t-date	(time:create	"2000-01-01")
let	t-day	(time:create	"01-01")

print	time:get	"hour"	t-date
print	time:get	"hour"	t-day
;;	print	0

	print	time:get	"minute"	t-date
	print	time:get	"minute"	t-day
;;	print	0

print	time:get	"second"	t-date
print	time:get	"second"	t-day
;;	print	0

print	time:get	"milli"	t-date
print	time:get	"milli"	t-day
;;	print	0

print	time:get	"year"	t-day
;;	print	2000

time:plus

time:plus	logotime	number	period-type-string

Reports	a	LogoTime	resulting	from	the	addition	of	some	time	period	to	the	logotime	argument.	The	time	period	to	be	added
is	specified	by	the	number	and	period-type-string	arguments.	Valid	period	types	are	YEAR,	MONTH,	WEEK,	DAY,
DAYOFYEAR,	HOUR,	MINUTE,	SECOND,	and	MILLI.	To	subtract	time,	use	a	negative	value	of	number.	When	applying
additions	to	LogoTimes,	addition	is	applied	through	converting	the	format	to	datetime,	adding	the	values,	and	reconverting
LogoTime	to	its	respective	format.	This	can	lead	to	incorrectly	applying	time	updates	and	lost	information.

let	t-datetime	(time:create	"2000-01-02	03:04:05.678")

;;	Add	some	period	to	the	datetime
print	time:plus	t-datetime	10	"milli"
;;	prints	"{{time:logotime	2000-01-02	03:04:06.688}}"

print	time:plus	t-datetime	1.0	"seconds"
;;	prints	"{{time:logotime	2000-01-02	03:04:06.678}}"

print	time:plus	t-datetime	1.0	"minutes"
;;	prints	"{{time:logotime	2000-01-02	03:05:05.678}}"

print	time:plus	t-datetime	(60.0	*	24)	"minutes"
;;	prints	"{{time:logotime	2000-01-03	03:04:05.678}}"

print	time:plus	t-datetime	1	"week"

;;	prints	"{{time:logotime	2000-01-09	03:04:05.678}}"

print	time:plus	t-datetime	1.0	"weeks"
;;	prints	"{{time:logotime	2000-01-09	03:04:05.678}}"

print	time:plus	t-datetime	1.0	"months"
;;	note	that	decimal	months	or	years	are	rounded	to	the	nearest	whole	number
;;	prints	"{{time:logotime	2000-02-02	03:04:05.678}}"

print	time:plus	t-datetime	1.0	"years"
;;	prints	"{{time:logotime	2001-01-02	03:04:05.678}}"

Addition	with	Decimals

Week,	Day,	DayOfYear,	Hour,	Minute,	and	Second	all	support	decimal	addition	so	you	can	add	half	a	day,	a	quarter	of	a
second,	or	another	subvalue.	You	cannot	add	fractions	of	milliseconds	because	LogoTime	variables	do	not	have	sub-
millisecond	resolution.	You	can	add	fractions	of	days	(or	hours,	minutes,	etc.)	to	LogoTime	variables	of	type	DATE	and
DAY,	but	the	result	will	be	truncated	to	an	integer	day.	This	causes	some	information	to	be	lost.	For	example:

print	time:plus	(time:create	"2000-01-01	00:00:00.000")	2.3	"day"	=>	"2000-01-03	07:11:59.999"
print	time:plus	(time:create	"2000-01-01")	2.3	"day"	=>	"2000-01-03"

print	time:plus	(time:create	"2000-01-04	00:00:00.000")	-2.3	"day"	=>	"2000-01-01	2000-01-01	16:48:00.001"
print	time:plus	(time:create	"2000-01-04")	-2.3	"day"	=>	"2000-01-01"

Year	and	Month	both	round	the	provided	number	to	the	nearest	integer.	There	is	no	decimial	addition	support	for	year
and	month.

Addition	with	Negative	Decimal	Numbers

Year,	Month,	Week,	Day,	DayOfYear,	Hour,	Minute,	Second,	and	Millisecond	all	support	subtraction	through	the	use	of
negative	numbers.	Subtracting	with	whole	numbers	works	as	expected,	but	when	subtracting	with	decimals	the	results
may	produce	unexpected	behavior.	When	subtracting	with	DateTime,	DateTime	objects	maintain	accurate	times	without
truncation	or	rounding.	With	DATE	and	DAY	variables,	when	decimals	are	subtracted	two	conversions	are	applied.	First
the	DATE/DAY	is	converted	to	a	DATETIME	starting	at	midnight	(00:00:00),	tthen	the	subraction	iis	made,	and	the
resulting	DATETIME	is	converted	back	the	original	DATE	or	DAY	type	by	setting	the	hours,	minutes,	etc.	to	zero.	One
example	is	with	subtracting	an	hour	from	a	DATE.	Subtracting	one	hour	from	a	DATE	variable	equal	to	01/02/2000	would
generate	a	date	of	01/01/2000	because	of	the	default	(00:00:00)	conversion	and	the	truncation	after	applying	the
addition.

“2000-01-02”	(convert)	=>	“2000-01-02	00:00:00.000”	(subtract	hour)	=>	“2000-01-01	23:00:00.000”	(application)	=>
“2000-01-01”	(restore	type)

How	Rounding,	Truncating	and	Converting	works

Week,	Day,	DayOfYear,	Hour,	Minute,	Second,	and	Millisecond:	convert	user	provided	time/unit	to	milliseconds	as	a
long	integer	=>	apply	addition	=>	convert	to	initial	format	(DateTime,	Date,	or	Day)	=>	Remove	unsupported	units	(Date,
Day)
Year	and	Month:	round	user	provided	time/value	to	the	nearest	integer	=>	apply	addition	=>	convert	to	initial	foramt	=>
Remove	Unsupported	units	(Day)

Carryover

Week,	Day,	DayOfYear,	Hour,	Minute,	Second,	and	Millisecond:	All	time	types	allow	carrying	over	values	from	their
subunits.	This	means	that	if	24	hours	(or	100,000	seconds)	are	added	to	a	DATE	or	DAY,	result	is	the	next	day.	If	23
hours	are	added	to	a	DATE	or	DAY,	its	value	will	not	change	thanks	to	truncation.	DATETIME	variables	can	have
carryover	with	decimal	addition	since	a	DATETIME	can	represent	decimal	values.
Year	and	Month	numbers	are	rounded	to	the	nearest	integer	before	being	added.

time:is-before?
time:is-after?
time:is-equal?
time:is-between?

time:is-before?	logotime1	logotime2
time:is-after?	logotime1	logotime2
time:is-equal?	logotime1	logotime2
time:is-between?	logotime1	logotime2	logotime3

Note:	Prior	versions	of	the	time	extension	included	these	primitives	without	the	“?”	at	the	end.	If	you	have	used	an	older
version	of	the	time	extension,	you	will	need	to	update	your	code	accordingly.

Reports	a	boolean	for	the	test	of	whether	logotime1	is	before/after/equal-to	logotime2.	The	is-between?	primitive	returns
true	if	logotime1	is	between	logotime2	and	logotime3.	All	LogoTime	arguments	must	be	of	the	same	variety	(DATETIME,
DATE,	or	DAY).

print	time:is-before?	(time:create	"2000-01-02")	(time:create	"2000-01-03")
;;prints	"true"

print	time:is-before?	(time:create	"2000-01-03")	(time:create	"2000-01-02")
;;prints	"false"

print	time:is-after?		(time:create	"2000-01-03")	(time:create	"2000-01-02")
;;prints	"true"

print	time:is-equal?		(time:create	"2000-01-02")	(time:create	"2000-01-02")
;;prints	"true"

print	time:is-equal?		(time:create	"2000-01-02")	(time:create	"2000-01-03")
;;prints	"false"

print	time:is-between?	(time:create	"2000-03-08")		(time:create	"1999-12-02")	(time:create	"2000-05-03")
;;prints	"true"

time:difference-between

time:difference-between	logotime1	logotime2	period-type-string

Reports	the	amount	of	time	between	logotime1	and	logotime2	in	units	of	period-type-string.	Note	that	if	the	period	type	is
YEAR	or	MONTH,	then	the	reported	value	will	be	a	whole	number	based	soley	on	the	month	and	year	components	of	the
LogoTimes.	If	logotime2	is	smaller	(earlier	than)	logotime1,	the	reported	value	will	be	negative.

This	primitive	is	useful	for	recording	the	elapsed	time	between	model	events	because	(unlike	time:get)	it	reports	the	total
number	of	time	units,	including	fractions	of	units.	For	example,	if	start-time	is	a	LogoTime	variable	for	the	time	a	simulation
starts	and	end-time	is	when	the	simulation	stops,	then	use	show	time:difference-between	start-time	end-time	“days”	to	see
how	many	days	were	simulated.

**	Note	**

For	period	type	of	“MONTH”,	difference-between	reports	the	difference	in	the	month	number	(1-12)	of	logotime1	and
logotime2,	not	the	total	number	of	months	between	the	two	dates,	even	if	the	two	times	are	DATETIME	or	DATE	values.
This	difference	is	calculated	as	the	number	of	times	the	day	number	(1-31)	of	logotime1	occurs	between	the	two	dates.	For
example,	if	logotime1	is	2000-01-02	then	difference-between	reports	0	months	for	logotime2	=	2000-02-01,	1	month	for
2000-02-02,	and	-1	month	for	logotime2	=	1999-12-01.	However,	the	value	reported	is	never	greater	than	11	or	less	than	-
11;	it	reverts	to	zero	when	logotime2	reaches	one	year	from	logotime1	and	then	is	1	when	logotime2	is	13	months	after
logotime1,	etc.

For	“YEAR”,	difference-between	reports	the	number	[integer]	of	years	there	are	between	two	logotime	instances.	The
difference	is	calculated	through	matching	the	day	and	month	while	truncating	values	around	that	date.	This	should	apply
for	leap	years,	as	well.	For	example,	if	logotime1	is	2000-01-02	then	time:difference-between	reports	0	years	for
logotime2	=	2001-01-01,	1	year	for	2000-01-02,	and	5	years	for	2005-01-02.	The	total	number	of	months	between	two
dates	can	therefore	be	calculated	as	12	times	the	value	of	time:difference-between	in	years	plus	the	value	of
time:difference-between	in	months.

print	time:difference-between	(time:create	"2000-01-02	00:00")	(time:create	"2000-02-02	00:00")	"days"
;;prints	"31"

print	time:difference-between	(time:create	"2000-01-02")	(time:create	"2001-02-02")	"days"
;;prints	"397"

print	time:difference-between	(time:create	"01-02")	(time:create	"01-01")	"hours"
;;prints	"-24"

print	time:difference-between	(time:create	"2000-01-02")	(time:create	"2000-02-15")	"months"
;;prints	"1"

time:anchor-to-ticks

time:anchor-to-ticks	logotime	number	period-type

Reports	a	new	LogoTime	object	which	is	“anchored”	to	the	native	time	tracking	mechanism	in	NetLogo	(i.e	the	value	of
ticks).	Once	anchored,	this	LogoTime	object	will	always	hold	the	value	of	the	current	time	as	tracked	by	ticks.	Any	of	the
three	varieties	of	LogoTime	can	be	achored	to	the	tick.	The	time	value	of	the	logotime	argument	is	assumed	to	be	the	time
at	tick	zero.	The	number	and	period-type	arguments	describe	the	time	represented	by	one	tick	(e.g.	a	tick	can	be	worth	1
day	or	2	hours	or	90	seconds,	etc.)

Note:	time:anchor-to-ticks	is	a	one-way	coupling.	Changes	to	the	value	of	ticks	(e.g.	when	using	the	tick	or	tick-advance
commands)	will	automatically	update	the	anchored	LogoTime,	but	changing	the	value	of	the	LogoTime	variable	will	not
update	the	value	of	ticks;	in	fact	it	is	a	bad	idea	for	anything	other	than	ticks	to	change	an	anchored	variable.	However,	see
the	discrete	event	scheduling	capability	and	the	time:anchor-schedule	command	to	influence	the	value	of	ticks	through	the
use	of	LogoTimes.

set	tick-datetime	time:anchor-to-ticks	(time:create	"2000-01-02	03:04:05.678")	1	"hour"
set	tick-date	time:anchor-to-ticks	(time:create	"2000-01-02")	2	"days"
set	tick-day	time:anchor-to-ticks	(time:create	"01-02")	3	"months"

reset-ticks
tick
print	(word	"tick	"	ticks)		;;	prints	"tick	1"
print	(word	"tick-datetime	"	tick-datetime)		;;	prints	"tick-dateime	{{time:logotime	2000-01-02	04:04:05.678}}"
print	(word	"tick-date	"	tick-date)		;;	prints	"tick-date	{{time:logotime	2000-01-04}}"
print	(word	"tick-day	"	tick-day)		;;	prints	"tick-day	{{time:logotime	04-02}}"

tick
print	(word	"tick	"	ticks)		;;	prints	"tick	2"
print	(word	"tick-datetime	"	tick-datetime)		;;	prints	"tick-dateime	{{time:logotime	2000-01-02	05:04:05.678}}"
print	(word	"tick-date	"	tick-date)		;;	prints	"tick-date	{{time:logotime	2000-01-06}}""
print	(word	"tick-day	"	tick-day)		;;	prints	"tick-day	{{time:logotime	07-02}}""

back	to	top

time:copy

time:copy	logotime

Returns	a	new	LogoTime	object	that	holds	the	same	date/time	as	the	logotime	argument.	The	copy	will	not	be	anchored
regardless	of	the	argument,	making	this	the	recommended	way	to	store	a	snapshot	of	an	anchored	LogoTime.

set	tick-date	time:anchor-to-ticks	(time:create	"2000-01-02")	2	"days"
reset-ticks
tick
print	(word	"tick	"	ticks)		;;	prints	"tick	1"
print	(word	"tick-date	"	tick-date)		;;	prints	"tick-date	{{time:logotime	2000-01-04}}"

set	store-date	time:copy	tick-date

tick
print	(word	"tick	"	ticks)		;;	prints	"tick	1"
print	(word	"tick-date	"	tick-date)		;;	prints	"tick-date	{{time:logotime	2000-01-06}}"
print	(word	"store-date	"	store-date)		;;	prints	"store-date	{{time:logotime	2000-01-04}}"

Time	Series	Tool

NOTE:	The	time	series	tool	is	not	currently	included	in	the	extension.	However,	all	of	the	functionality	(plus	some)	has	been
reproduced	in	NetLogo	code.	It	is	in	the	time-series.nls	file	in	this	repo	which	you	can	download	by	clicking	that	link	and
then	right	clicking	the	“raw”	button	on	the	upper	right	of	the	file	and	selecting	“download	linked	file”	(you	might	have	to
remove	a	‘.txt’	file	extension	so	that	the	file	ends	with	the	‘.nls’	extension).	You	can	then	include	that	file	with	the
__includes	primitive.	Since	it	is	not	part	of	the	extension,	these	“primitives”	don’t	have	the	“time:”	prefix.	Also,	the	NetLogo
file	must	have	the	csv	extension	for	the	time-series.nls	functionality	to	work.

ts-create

ts-create	column-name-list

Reports	a	new,	empty	LogoTimeSeries.	The	number	of	data	columns	and	their	names	are	defined	by	the	number	and
values	of	column-name-list	parameter,	which	must	be	a	list	of	strings.	The	first	column,	which	contains	dates	or	times,	is
created	automatically.	The	words	“ALL”	and	“LOGOTIME”	(in	any	combination	of	lower-	or	upper-case)	cannot	be	used	as
column	names	because	they	have	special	meanings	in	the	ts-get	and	ts-get-range	primitives.

let	turtle-move-times	(ts-create	["turtle-show"	"new-xcor"	"new-ycor"])

ts-add-row	NOTE:	This	is	the	only	time-series	functionality	in	time-series.nls	that	is	not	backwards	compatible	with	the	old
time	extension.	Since	time-series.nls	implements	time	series	with	native	NetLogo	lists,	they	are	immutable.	So,	ts-add-row
returns	a	new	timeseries,	it	does	not	mutate	the	old	one.	This	means	that	variables	holding	the	time	series	must	be	re-
assigned.

ts-add-row	logotimeseries	row-list

Returns	a	new	LogoTimeSeries	with	row-list	added	to	logotimeseries.	This	primitive	is	how	data	are	added	to	a
LogoTimeSeries.	The	row-list	should	be	a	list	containing	a	LogoTime	as	the	first	element	and	the	rest	of	the	data
corresponding	to	the	number	of	columns	in	the	LogoTimeSeries	object.	Columns	are	either	numeric	or	string	valued.

;;	A	turtle	records	the	time	and	destination	each	time	it	moves
;;	model-time	is	a	DATETIME	variable	anchored	to	ticks.

https://github.com/NetLogo/Time-Extension/blob/master/time-series.nls
file:///var/folders/zt/6c8vmb4j16717kzllw2gjr7sz8sj3f/T/sbt_ff6864f9/dict/includes.html

set	turtle-move-times	ts-add-row	turtle-move-times	(sentence	model-time	who	xcor	ycor)

ts-get

ts-get	logotimeseries	logotime	column-name

Reports	the	value	from	the	column-name	column	of	the	logotimeseries	in	the	row	matching	logotime.	If	there	is	not	an
exact	match	with	logotime,	the	row	with	the	nearest	date/time	will	be	used.	If	there	are	multiple	rows	with	the	same
logotime,	only	one	will	be	returned.	For	LogoTimeSeries	containing	multiple	rows	with	the	same	logotime	value,	using	ts-
get-range	to	return	a	list	of	all	times	within	a	range	is	recommended	instead	of	ts-get.	If	“ALL”	or	“all”	is	specified	as	the
column	name,	then	the	entire	row,	including	the	logotime,	is	returned	as	a	list.

print	ts-get	ts	(time:create	"2000-01-01	10:00:00")	"flow"
;;	prints	the	value	from	the	flow	column	in	the	row	containing	a	time	stamp	of	2000-01-01	10:00:00

ts-get-interp

ts-get-interp	logotimeseries	logotime	column-name

Behaves	like	ts-get,	except	that	if	there	is	not	an	exact	match	with	the	logotime,	then	the	value	returned	is	a	linear
interpolation	between	the	two	values	with	date/times	nearest	(just	before	and	just	after)	logotime.	This	command	will	throw
an	exception	if	the	values	in	the	column	are	strings	instead	of	numeric.

print	ts-get-interp	ts	(time:create	"2000-01-01	10:30:00")	"flow"

ts-get-exact

ts-get-exact	logotimeseries	logotime	column-name

Behaves	like	ts-get,	except	that	if	there	is	not	an	exact	match	with	the	date/time	stamp,	then	an	exception	is	thrown.	If
there	are	multiple	rows	with	the	same	logotime,	only	one	will	be	returned.	In	such	a	case,	usinig	ts-get-range	to	return	a
list	of	all	times	within	a	range	is	recommended	instead.

print	ts-get-exact	ts	(time:create	"2000-01-01	10:30:00")	"flow"

ts-get-range

ts-get-range	logotimeseries	logotime1	logotime2	column-name

Reports	a	list	of	all	of	the	values	from	the	column-name	column	of	the	logotimeseries	in	the	rows	between	logotime1	and
logotime2	(inclusively).	If	“ALL”	or	“all”	is	specified	as	the	column	name,	then	a	list	of	lists	is	reported,	with	one	sub-list	for
each	column	in	logotimeseries,	including	the	date/time	column.	If	“LOGOTIME”	or	“logotime”	is	specified	as	the	column
name,	then	the	date/time	column	is	returned.

If	in	the	event	logotime1	is	after	logotime2,	ts-get-range	will	reverse	their	values,	so	it	does	not	matter	which	of	these
inputs	is	smaller.

print	ts-get-range	time-series	time:create	"2000-01-02	12:30:00"	time:create	"2000-01-03	00:30:00"	"all"

ts-has-repeat-times?	ts-has-repeat-times?	logotimeseries

Reports	whether	there	are	any	repeated	times	in	the	logotimeseries	(i.e.	two	rows	with	the	same	time).	This	can	be	helpful
for	determining	if	it	is	appropriate	to	use	ts-get	or	ts-get-range.

ts-has-repeat-of-time?	ts-has-repeat-of-time?	logotimeries	logotime

Reports	whether	logotime	appears	more	than	once	in	logotimeseries.

ts-load

ts-load	filepath

Loads	time	series	data	from	a	text	input	file	(comma	or	tab	separated)	and	reports	a	new	LogoTimeSeries	object	that
contains	the	data.

let	ts	ts-load	"time-series-data.csv"

Each	input	file	and	LogoTimeSeries	object	can	contain	one	or	more	variables,	which	are	accessed	by	the	column	names
provided	on	the	first	line	of	the	file.	The	first	line	of	the	file	must	therefore	start	with	the	date/time	column	name,	followed	by
the	names	of	the	variables	(other	columns)	in	the	file.	Do	not	use	“all”	or	“ALL,”	or	“logotime”	or	"LOGOTIME”	for	a	column
name	as	thse	are	reserved	keywords	(see	ts-get	and	ts-get-range).

The	first	column	of	the	file	must	be	timestamps	that	can	be	parsed	by	this	extension	(see	the	behavior	section	for
acceptable	string	formats).	Finally,	if	the	timestamps	do	not	appear	in	chronological	order	in	the	text	file,	they	will	be
automatically	sorted	into	order	when	loaded.

Comment	lines	can	appear	at	the	start	of	input	file,	but	nowhere	else	in	it.	Comment	lines	must	start	with	a	semicolon.

The	following	is	an	example	of	hourly	river	flow	and	water	temperature	data	that	is	formatted	correctly:

;	Flow	and	temperature	data	for	Big	Muddy	River
timestamp,flow,temperature
2000-01-01	00:00:00,1000,10
2000-01-01	01:00:00,1010,11
2000-01-01	03:00:00,1030,13

back	to	top

ts-load-with-format

ts-load	filepath	format-string

Identical	to	ts-load	except	that	the	first	column	is	parsed	based	on	the	format-string	specifier.

let	ts	ts-load	"time-series-data-custom-date-format.csv"	"dd-MM-yyyy	HH:mm:ss"

See	Behavior	and	Format	above	concerning	format-string	options.

ts-write

ts-write	logotimeseries	filepath

Writes	the	time	series	data	to	a	text	file	in	CSV	(comma-separated)	format.

ts-write	ts	"time-series-output.csv"

The	column	names	will	be	written	as	the	header	line,	for	example:

timestamp,flow,temperature
2000-01-01	00:00:00,1000,10
2000-01-01	01:00:00,1010,11
2000-01-01	03:00:00,1030,13

back	to	top

Discrete	Event	Scheduler

time:anchor-schedule

time:anchor-schedule	logotime	number	period-type

Anchors	the	discrete	event	schedule	to	the	native	time	tracking	mechanism	in	NetLogo	(i.e	the	value	of	ticks).	Once
anchored,	LogoTimes	can	be	used	for	discrete	event	scheduling	(e.g.	schedule	agent	3	to	perform	some	anonymous
command	on	June	10,	2013).	The	value	of	the	logotime	argument	is	assumed	to	be	the	time	at	tick	zero.	The	number	and
period-type	arguments	describe	the	length	of	one	tick	(e.g.	a	tick	can	represent	1	day,	2	hours,	90	seconds,	etc.)

time:anchor-schedule	time:create	"2013-05-30"	1	"hour"

time:schedule-event

time:schedule-event	agent	anonymous-command	tick-or-time	

time:schedule-event	agentset	anonymous-command	tick-or-time
time:schedule-event	“observer”	anonymous-command	tick-or-time

Add	an	event	to	the	discrete	event	schedule.	The	order	in	which	events	are	added	to	the	schedule	is	not	important;	they
will	be	dispatched	in	order	of	the	times	specified	as	the	last	argument	of	this	command.	An	agent,	an	agentset,	or	the	string
“observer”	can	be	passed	as	the	first	argument	along	with	an	anonymous	command	as	the	second.	The	anonymous
command	is	executed	by	the	agent(s)	or	the	observer	at	tick-or-time	(either	a	number	indicating	the	tick	or	a	LogoTime),
which	is	a	time	greater	than	or	equal	to	the	present	moment	(>=	ticks).*.

If	tick-or-time	is	a	LogoTime,	then	the	discrete	event	schedule	must	be	anchored	(see	time:anchor-schedule).	If	tick-or-time
is	in	the	past	(less	than	the	current	tick/time),	a	run-time	error	is	raised.	(The	is-after?	primitive	can	be	used	to	defend
against	this	error:	add	an	event	to	the	schedule	only	if	its	scheduled	time	is	after	the	current	time.)

Once	an	event	has	been	added	to	the	discrete	event	schedule,	there	is	no	way	to	remove	or	cancel	it.

time:schedule-event	turtles	[[]	->	go-forward]	1.0
time:schedule-event	turtles	[[]	->	fd	1]	1.0
time:schedule-event	"observer"	[[]	->	print	"hello	world"]	1.0

time:schedule-event-shuffled

time:schedule-event-shuffled	agentset	anonymous-command	tick-or-time

Add	an	event	to	the	discrete	event	schedule	and	shuffle	the	agentset	during	execution.	This	is	identical	to	time:schedule-
event	but	the	individuals	in	the	agentset	execute	the	action	in	randomized	order.

time:schedule-event-shuffled	turtles	[[]	->	go-forward]	1.0

time:schedule-repeating-event	
time:schedule-repeating-event-with-period

time:schedule-repeating-event	agent	anonymous-command	tick-or-time	interval-number	
time:schedule-repeating-event	agentset	anonymous-command	tick-or-time-number	interval-number
time:schedule-repeating-event	“observer”	anonymous-command	tick-or-time	interval-number	
time:schedule-repeating-event-with-period	agent	anonymous-command	tick-or-time	period-duration	period-type-string	
time:schedule-repeating-event-with-period	agentset	anonymous-command	tick-or-time-number	period-duration	period-
type-string
time:schedule-repeating-event-with-period	“observer”	anonymous-command	tick-or-time	period-duration	period-type-string

Add	a	repeating	event	to	the	discrete	event	schedule.	This	primitive	behaves	almost	identically	to	time:schedule-event
except	that	after	the	event	is	dispatched	it	is	immediately	rescheduled	interval-number	ticks	into	the	future	using	the	same
agent	(or	agentset)	and	anonymous-command.	If	the	schedule	is	anchored	(see	time:anchor-schedule),	then
time:schedule-repeating-event-with-period	can	be	used	to	expressed	the	repeat	interval	as	a	period	(e.g.	1	“day”	or	2.5
“hours”).	Warning:	repeating	events	can	cause	an	infinite	loop	to	occur	if	you	execute	the	schedule	with	time:go.	To	avoid
infinite	loops,	use	time:go-until.

time:schedule-repeating-event	turtles	[[]	->	go-forward]	2.5	1.0
time:schedule-repeating-event-with-period	turtles	[[]	->	go-forward]	2.5	1.0	"hours"

time:schedule-repeating-event-shuffled	
time:schedule-repeating-event-shuffled-with-period

time:schedule-repeating-event-shuffled	agentset	anonymous-command	tick-or-time-number	interval-number
time:schedule-repeating-event-shuffled-with-period	agentset	anonymous-command	tick-or-time-number	interval-number

Add	a	repeating	event	to	the	discrete	event	schedule	and	shuffle	the	agentset	during	execution.	This	is	identical	to
time:schedule-repeating-event	but	the	individuals	in	the	agentset	execute	the	action	in	randomized	order.	If	the	schedule	is
anchored	(see	time:anchor-schedule),	then	time:schedule-repeating-event-shuffled-with-period	can	be	used	to	expressed
the	repeat	interval	as	a	period	(e.g.	1	“day”	or	2.5	“hours”).	Warning:	repeating	events	can	cause	an	infinite	loop	to	occur	if
you	execute	the	schedule	with	time:go.	To	avoid	infinite	loops,	use	time:go-until.

time:schedule-repeating-event-shuffled	turtles	[[]	->	go-forward]	2.5	1.0
time:schedule-repeating-event-shuffled-with-period	turtles	[[]	->	go-forward]	2.5	1.0	"month"

time:clear-schedule

time:clear-schedule

Clear	all	events	from	the	discrete	event	schedule.

time:clear-schedule

time:go

time:go

Dispatch	(execute)	all	of	the	events	in	the	discrete	event	schedule.	When	each	event	is	executed,	NetLogo’s	tick	counter
(and	any	LogoTime	variables	anchored	to	ticks)	is	updated	to	that	event’s	time.	Note	that	this	command	will	continue	to
dispatch	events	until	the	discrete	event	schedule	is	empty.	If	repeating	events	are	in	the	discrete	event	schedule	or	if
procedures	in	the	schedule	end	up	scheduling	new	events,	it’s	possible	for	this	to	become	an	infinite	loop.

time:go

time:go-until

time:go-until	halt-tick-or-time

Dispatch	all	of	the	events	in	the	discrete	event	schedule	that	are	scheduled	for	times	up	until	halt-tick-or-time.	If	the
temporal	extent	of	your	model	is	known	in	advance,	this	variant	of	time:go	is	the	recommended	way	to	dispatch	your
model.	This	primitive	can	also	be	used	to	execute	all	the	events	scheduled	before	the	next	whole	tick,	which	is	useful	if
other	model	actions	take	place	on	whole	ticks.

time:go-until	100.0
;;	Execute	events	up	to	tick	100

time:go-until	time:plus	t-datetime	1.0	"hour"
;;	Execute	events	within	the	next	hour;	t-datetime	is	the	current	time.

time:show-schedule

time:show-schedule

Reports	all	of	the	events	in	the	schedule	as	a	single	string	in	tab-separated	format	with	three	columns:	tick,semi-colon-
separated-list-of-agents,anonymous-command.

print	time:show-schedule

time:size-of-schedule

time:size-of-schedule

Reports	the	number	of	events	in	the	discrete	event	schedule.

if	time:size-of-schedule	>	0[
		time:go
]

back	to	top

Building	with	SBT

Using	SBT,	create	a	package	that	will	generate	the	time.jar.	For	example:

sbt	package

If	compilation	succeeds,	time.jar	will	be	created.	See	Installation	for	instructions	on	where	to	put	your	compiled	extension.

Authors

Colin	Sheppard,	Steve	Railsback	and	Jacob	Kelter

Feedback?	Bugs?	Feature	Requests?

Please	visit	the	github	issue	tracker	to	submit	comments,	bug	reports,	or	feature	requests.	I’m	also	more	than	willing	to

https://github.com/colinsheppard/Time-Extension/issues?state=open

accept	pull	requests.

Credits

This	extension	is	inspired	by	the	Ecoswarm	Time	Manager	Library.	Allison	Campbell	helped	benchmark	discrete	event
scheduling	versus	static	scheduling.	The	extension	was	funded	in	part	by	the	Swarm	Development	Group.

Terms	of	Use

The	NetLogo	dynamic	scheduler	extension	is	in	the	public	domain.	To	the	extent	possible	under	law,	Colin	Sheppard	and
Steve	Railsback	have	waived	all	copyright	and	related	or	neighboring	rights.

back	to	top

Primitives

http://creativecommons.org/publicdomain/zero/1.0/

NetLogo	Vid	Extension

Concepts

Video	Source

The	vid	extension	has	a	built-in	concept	of	a	video	source.	At	the	moment,	the	only	video	sources	available	are
movies	in	the	directory	the	model	lives	in	and	cameras	attached	to	the	computer.	The	vid	extension	opens	a	new
video	source	with	the	vid:<source>-open	and	vid:<source>-select.	These	primitives	change	the	source	to	the
selected	source.	If	a	source	is	already	open,	it	closes	it	before	opening	a	new	one.

Source	Lifecycle

Movie	sources	are	“stopped”	after	being	created	by	vid:movie-select	or	vid:movie-open.	Camera	sources	start	off	as
“playing”	after	being	created	by	vid:camera-select	or	vid:camera-open.	If	a	source	is	in	status	“stopped”	it	can	be
started	with	vid:start.	Conversely,	if	the	source	is	“playing”	it	can	be	stopped	with	vid:stop.	When	a	source	is
“stopped”,	each	call	to	vid:capture-image	will	return	the	same	image.

Video	Recorder

The	vid	extension	also	has	the	concept	of	a	recording,	a	series	of	frames	which	can	be	sewn	into	an	“mp4”	movie.
The	recorder	status	can	be	queried	using	vid:recorder-status.	The	recorder	status	is	“inactive”	until	started	with
vid:start-recorder,	which	sets	it	to	“recording”.	While	the	recorder	is	“recording”	the	vid:record-view,	vid:record-
interface,	and	vid:record-source	can	be	used	to	save	frames	to	the	recording.	You	can	choose	to	save	the
recording	while	recording	using	vid:save-recording	which	saves	the	movie	to	the	specified	file	and	reset	the
recording	status	to	“inactive”.	If	you	would	prefer	to	throw	away	the	recorded	frames	without	saving,	use	vid:reset-
recorder.

Known	Issues

When	running	the	extension	on	macOS	and	using	vid:camera-open	or	vid:camera-select	and	then	starting	a
different	program	(like	Zoom)	and	using	the	same	camera	will	crash	NetLogo.	If	you	start	the	other	program	first	and
then	start	NetLogo	things	should	work	better.

Primitives

vid:camera-names	vid:camera-open	vid:camera-select	vid:movie-select	vid:movie-open	vid:movie-open-remote
vid:close	vid:start	vid:stop	vid:status	vid:capture-image	vid:set-time	vid:show-player	vid:hide-player
vid:record-view	vid:record-interface	vid:record-source	vid:recorder-status	vid:reset-recorder	vid:start-
recorder	vid:save-recording

vid:camera-names

vid:camera-names

Provides	a	list	of	all	available	cameras.

Example:

vid:camera-names	=>	[]
vid:camera-names	=>	["Mac	Camera"]
vid:camera-names	=>	["Logitech	Camera"]

vid:camera-open

vid:camera-open

Opens	the	named	camera	as	a	video	source.	If	no	name	is	provided,	opens	the	first	camera	that	would	be	listed	by
camera-names.

Example:

vid:camera-open	;	opens	first	camera
(vid:camera-open	"Logitech	Camera")

Errors:

Message	"vid:	no	cameras	found" :	no	cameras	are	available.
Message	"vid:	camera	"\<name\>"	not	found":	if	the	named	camera	is	not	available.

vid:camera-select

vid:camera-select

Prompts	the	user	to	select	a	camera	as	video	source.	This	command	does	not	error	if	the	user	cancels.	Use
vid:status	to	see	if	a	user	selected	a	camera.

Example:

vid:camera-select

Errors:

Message	“vid:	no	cameras	found”:	no	cameras	are	available.

vid:movie-select

vid:movie-select

Prompts	the	user	to	select	a	movie	to	use	as	a	video	source.	The	formats	supported	are	those	supported	by
JavaFX2.	This	command	does	not	error	if	the	user	cancels.	Use	vid:status	to	see	if	the	user	selected	a	movie.

Example:

vid:movie-select

Errors:

Message	"vid:	format	not	supported":	the	user	selected	a	movie	with	an	unsupported	format.

vid:movie-open

vid:movie-open	filename

Opens	a	video	from	the	file	system.	If	the	provided	path	is	not	absolute	the	extension	searches	for	the	given	path
relative	to	the	current	model	directory.	If	the	provided	path	is	absolute	the	extension	opens	the	file.

Example:

vid:movie-open	"foo.mp4"						;	Opens	foo.mp4	in	the	directory	containing	the	model
vid:movie-open	user-file						;	Opens	a	dialog	for	the	user	to	select	a	movie
vid:movie-open	"/tmp/foo.mp4"	;	Opens	a	movie	from	the	"/tmp"	directory

Errors:

Message	"vid:	no	movie	found" :	the	movie	could	not	be	found.
Message	"vid:	format	not	supported":	the	user	selected	a	movie	with	an	unsupported	format.

vid:movie-open-remote

vid:movie-open-remote	url

Opens	a	remote	video	from	a	website	or	ftp	server.

Example:

vid:movie-open-remote	"http://example.org/foo.mp4"

Errors:

https://docs.oracle.com/javafx/2/api/javafx/scene/media/package-summary.html#SupportedMediaTypes

Message	"vid:	no	movie	found" :	The	specified	URL	could	not	be	loaded	or	errored	while	loading.
Message	"vid:	format	not	supported":	The	file	type	of	the	remote	movie	is	not	supported.
Message	"vid:	protocol	not	supported":	The	movie	was	at	an	unsupported	URL	protocol.	Supported	protocols
are	ftp	and	http.

vid:close

vid:close

Closes	the	currently	selected	video	source.	Has	no	effect	if	there	is	no	active	video	source.

Example:

vid:close

vid:start

vid:start

Starts	the	selected	video	source.	A	video	source	must	have	been	selected	before	calling	vid:start.

Example:

vid:start

Errors:

Message	"vid:	no	selected	source":	There	is	no	currently	selected	video	source.	Select	a	source	with	vid:movie-
open,	vid:movie-select,	vid:camera-open,	or	vid:camera-select.

vid:stop

vid:stop

Stops	the	currently	running	video	source.

Example:

vid:stop

vid:status

vid:status

Reports	the	current	status	of	an	active	video.	Note	that	after	calling	vid:movie-open	or	vid:movie-select	the	status
will	be	set	to	“stopped”,	while	after	calling	vid:camera-open	or	vid:camera-select	the	status	will	be	“playing”.

Example:

vid:status					;	=>	"inactive"

vid:movie-open	"foobar.mp4"
vid:status						;	=>	"stopped"

vid:movie-start
vid:status							;	=>	"playing"

vid:capture-image

vid:capture-image	width	height

Captures	an	image	from	the	currently	selected	active	source.

If	width	and	height	are	not	specified,	the	image	is	captured	at	the	current	source	resolution.

Example:

extensions	[vid	bitmap]

to	capture
		;	capture	an	image	if	a	video	source	is	open,
		;	have	the	user	select	a	camera	if	no	video	source	found
		carefully	[
				;	when	camera	open,	take	an	image
				let	image	vid:capture-image	;	returns	image	suitable	for	use	with	bitmap	extension
				bitmap:copy-to-drawing	image	0	0
]	[
				if	error-message	=	"Extension	exception:	vid:	no	selected	source"	[
						vid:camera-select
						vid:start
						let	image	vid:capture-image
						bitmap:copy-to-drawing	image	0	0
]
]
end

If	you	want	to	capture	images	at	a	different	resolution,	simply	replace	vid:capture-image	with,	e.g.,	(vid:capture-
image	640	480).

Errors:

Message	"vid:	no	selected	source":	There	is	no	currently	selected	video	source.	Select	a	source	with	vid:movie-
open,	vid:movie-select,	vid:camera-open,	or	vid:camera-select.
Message	"vid:	invalid	dimensions":	The	selected	dimensions	are	invalid	(one	of	the	dimensions	is	zero	or
negative).

vid:set-time

vid:set-time	seconds

Sets	the	time	of	the	current	video	source	to	*seconds*.	This	has	no	effect	when	the	current	video	source	is	a	camera.

Example:

vid:set-time	100

Errors:

Message	"vid:	no	selected	source":	There	is	no	currently	selected	video	source.	Select	a	source	with	vid:movie-
open,	vid:movie-select,	vid:camera-open,	or	vid:camera-select.
Message	"vid:	invalid	time":	The	currently	active	video	does	not	contain	the	specified	second.	The	second	may
be	negative,	or	greater	than	the	length	of	the	video.

vid:show-player

vid:show-player	width	height

Shows	a	player	in	a	separate	window.	If	there	is	no	video	source,	the	window	will	be	an	empty	black	frame.	If	there	is
an	active	video	source,	it	will	be	displayed	in	the	window	with	the	specified	width	and	height.	If	there	is	a	playing
video	source,	it	will	be	displayed	in	the	window	at	its	specified	width	and	height.	If	width	and	height	are	omitted,	the
video	will	be	displayed	in	its	native	resolution.

Example	with	native	resolution:

vid:show-player

Example	with	custom	resolution:

(vid:show-player	640	480)

Errors:

Message	"vid:	invalid	dimensions":	The	selected	dimensions	are	invalid	(one	of	the	dimensions	is	zero	or
negative).

vid:hide-player

vid:hide-player

Hides	the	player	if	open.	Does	nothing	if	there	is	no	player	window.

Example:

vid:hide-player

vid:record-view

vid:record-view

Records	the	current	image	shown	in	the	NetLogo	view	to	the	active	recording.

Example:

vid:record-view

Errors:

Message	"vid:	recorder	not	started":	The	recorder	has	not	been	started.	Start	the	recorder	with	vid:start-
recorder.

vid:record-interface

vid:record-interface

Records	the	NetLogo	interface	view	to	the	active	recording.

Example:

vid:record-interface

Errors:

Message	"vid:	recorder	not	started":	The	recorder	has	not	been	started.	Start	the	recorder	with	vid:start-
recorder.
Message	"vid:	export	interface	not	supported":	The	calling	NetLogo	version	does	not	support	interface
exports.	This	will	occur	when	running	NetLogo	headlessly.

vid:record-source

vid:record-source

Records	a	frame	to	the	active	recording	from	the	currently	active	source.

Example:

vid:record-source

Errors:

Message	"vid:	recorder	not	started":	The	recorder	has	not	been	started.	Start	the	recorder	with	vid:start-
recorder.
Message	"vid:	no	selected	source":	There	is	no	currently	selected	video	source.	Select	a	source	with	vid:movie-
open,	vid:movie-select,	vid:camera-open,	or	vid:camera-select.

vid:recorder-status

vid:recorder-status

Reports	the	current	status	of	the	recorder.	Initially	and	after	the	recorder	is	saved	(via	vid:save-recording)	or	reset
(via	vid:reset-recorder)	the	recorder	status	is	“inactive”.	After	calling	vid:start-recorder	the	status	will	be
“recording”.

Example:

vid:recorder-status	;	=>	"inactive"

vid:start-recorder
vid:recorder-status	;	=>	"recording"

vid:reset-recorder
vid:recorder-status	;	=>	"inactive"

vid:reset-recorder

vid:reset-recorder

Stops	the	current	recording,	discards	any	recorded	frames	without	saving	them,	and	forgets	the	currently	set
recording	resolution.

vid:start-recorder

vid:start-recorder

Starts	the	recorder.	If	the	recorder	is	already	running	this	will	cause	an	error	to	be	raised.	If	desired,	a	recording	width
and	height	can	be	supplied.	If	width	and	height	are	not	supplied,	they	will	be	determined	from	the	first	frame
recorded.

Example:

vid:start-recorder
(vid:start-recorder	640	480)

Errors:

Message	"vid:	recorder	already	started":	The	recorder	has	already	been	started.	The	existing	recording	should
be	saved	or	reset	before	starting	the	recording.
Message	"vid:	invalid	dimensions":	The	selected	dimensions	are	invalid	(one	of	the	dimensions	is	zero	or
negative).

vid:save-recording

vid:save-recording	filename

Saves	the	recording	to	the	specified	path.	If	the	recorder	is	not	running	this	will	cause	an	error	to	be	raised.	Note	that
at	present	the	recording	will	always	be	saved	in	the	“mp4”	format.	If	the	supplied	filename	does	not	end	in	“.mp4”,	the
“.mp4”	suffix	will	be	added.	Note	that	vid:save-recording	will	overwrite	existing	files	of	the	same	name.	vid:save-
recording	will	error	if	the	recorder	has	not	been	started	or	if	the	file	cannot	be	written	since	the	containing	directory
does	not	exist.

Example:

vid:save-recording	"foo.mp4"						;	Saves	to	foo.mp4	in	the	directory	containing	the	model
vid:save-recording	user-new-file		;	Opens	a	dialog	for	the	user	to	select	a	save	path
vid:save-recording	"/tmp/foo.mp4"	;	Saves	the	recording	to	the	"/tmp"	directory

Errors:

Message	"vid:	recorder	not	started":	The	recorder	has	not	been	started.	Start	the	recorder	with	vid:start-
recorder.
Message	"vid:	no	such	directory":	The	directory	containing	the	specified	save	file	does	not	exist.
Message	"vid:	no	frames	recorded":	You	tried	to	save	a	recording	with	no	frames	recorded.	Check	that	you	are
recording	properly	or	use	vid:reset-recording	to	to	change	the	recording	format	without	saving.

NetLogo	View2.5d	Extension

The	View2.5D	extension	offers	visualization	for	Patch	and	Turtle	reporters,	in	real	time,	in	a	simulation’s	context.

How	to	Use

The	view2.5d	extension	is	pre-installed	in	NetLogo.

To	use	the	view2.5d	extension	in	your	model,	add	a	line	to	the	top	of	your	Code	tab:

extensions	[view2.5d]

If	your	model	already	uses	other	extensions,	then	it	already	has	an	extensions	line	in	it,	so	just	add	view2.5d	to	the
list.

For	more	information	on	using	NetLogo	extensions,	see	the	Extensions	Guide

Incorporating	Into	Models

open	a	window	using	either	the	view2.5d:patch-view	or	view2.5d:turtle-view	commands	(it	can	be	a	good	idea	to
put	these	in	your	‘SETUP’	procedure	or	a	separate	button).

update	your	window’s	view	using	one	of	the	update	commands	(put	these	in	your	‘GO’	procedure).

See	the	View2.5d	Code	Examples	in	the	NetLogo	models	library.

Feedback

Send	comments,	bugs,	or	other	feedback	to	CCL	Feedback.

Primitives

view2.5d:patch-view	view2.5d:decorate-patch-view	view2.5d:undecorate-patch-view	view2.5d:turtle-view
view2.5d:update-all-patch-views	view2.5d:update-patch-view	view2.5d:update-turtle-view	view2.5d:get-z-scale
view2.5d:set-z-scale	view2.5d:set-turtle-stem-thickness	view2.5d:set-turtle-stem-color	view2.5d:show-links-xy-
plane	view2.5d:show-links-xyz	view2.5d:get-observer-angles	view2.5d:set-observer-angles	view2.5d:get-observer-
xy-focus	view2.5d:set-observer-xy-focus	view2.5d:get-observer-distance	view2.5d:set-observer-distance
view2.5d:remove-patch-view	view2.5d:remove-turtle-view	view2.5d:remove-all-patch-views	view2.5d:remove-all-
turtle-views	view2.5d:count-windows

view2.5d:patch-view

view2.5d:patch-view	Title	Reporter

This	command	must	be	called	from	the	Observer	context.	(Attempting	to	call	from	another	context	causes	an	error)
The	Title	is	a	string,	which	will	be	used	to	label	the	new	Window	and	to	call	for	subsequent	updates	and
modifications.	Specification	of	the	Reporter	uses	the	NetLogo	anonymous	procedure	syntax,	from	the	Observer
perspective.

Example:

view2.5d:patch-view	"Test"		[[the-patch]	->	[pxcor]	of	the-patch]

view2.5d:decorate-patch-view

view2.5d:decorate-patch-view	Title

This	command	must	be	called	from	the	Observer	context.	(Attempting	to	call	from	another	context	causes	an	error)
The	Title	is	a	string,	the	label	of	an	existing	Patch	View	Window.	Effect:	draws	the	turtles	of	the	model	at	their	current
location,	on	top	of	the	Patch	view	display

NOTE:	only	has	an	effect	in	the	“structures”	patch	view	(in	the	others,	the	patch	value	is	inclined	based
on	neighbors	&	gradient)

mailto:ccl-feedback@ccl.northwestern.edu

NOTE:	for	negative	patch	values,	the	turtle	shapes	are	drawn	below	(orbit	underneath	to	see	them)

Example:

view2.5d:decorate-patch-view	"Test"

view2.5d:undecorate-patch-view

view2.5d:undecorate-patch-view	Title

This	command	must	be	called	from	the	Observer	context.	(Attempting	to	call	from	another	context	causes	an	error)

The	Title	is	a	string,	the	label	of	an	existing	Patch	View	Window.	Effect:	STOPS	drawing	the	turtles	of	the	model	at
their	current	location,	on	top	of	the	Patch	view	display

Example:

view2.5d:undecorate-patch-view	"Test"

view2.5d:turtle-view

view2.5d:turtle-view	Title	Agents	Reporter

This	command	must	be	called	from	the	Observer	context.	(Attempting	to	call	from	another	context	causes	an	error)
The	Title	is	a	string,	which	will	be	used	to	label	the	new	Window	and	to	call	for	subsequent	updates.	The	turtle-set	is
any	selector	for	turtles.	Reporter	is	an	anonymous	reporter	that	should	take	a	turtle	as	input,	and	report	some	number
from	it.

Example:

view2.5d:turtle-view	"Test"	turtles	with	[color	=	red]	[the-turtle	->	[energy]	of	the-turtle]
;	This	would	create	a	new	2.5d	window,	plotting	the	ENERGY	value	of	all	turtles	that	are	red.

view2.5d:update-all-patch-views

view2.5d:update-all-patch-views

This	command	must	be	called	from	the	Observer	context.	Updates	all	existing	patch-view	windows	according	to	the
latest	values.

view2.5d:update-patch-view

view2.5d:update-patch-view	Title

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	patch-view	window	with	the	specified	title
(if	any).

view2.5d:update-turtle-view

view2.5d:update-turtle-view	Title	Agents

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	window	with	the	specified	title
(if	any).	The	turtle-set	selector	must	be	supplied	to	refresh	the	set	of	turtles.

view2.5d:get-z-scale

view2.5d:get-z-scale	title

This	reporter	must	be	called	from	the	Observer	context.	Returns	the	current	z-scale	of	the	turtle-view	or	patch-view
window	with	the	specified	title	(if	any).

view2.5d:set-z-scale

view2.5d:set-z-scale	Title	new-z-scale

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	or	patch-view	window	with	the
specified	title	(if	any).	The	view	is	now	displayed	with	the	new	z-scale.

view2.5d:set-turtle-stem-thickness

view2.5d:set-turtle-stem-thickness	Title	thickness

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	window	with	the	specified	title
(if	any).	Turtles	are	now	drawn	with	“pins”	or	“stems”	that	have	the	specified	thickness	(instead	of	the	hairline
default).

view2.5d:set-turtle-stem-color

view2.5d:set-turtle-stem-color	Title	colorReporter

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	window	with	the	specified	title
(if	any).	colorReporter	is	an	anonymous	reporter	that	should	take	a	turtle	as	input,	and	report	some	number
representing	a	color	from	it.	Turtles	are	now	drawn	with	“pins”	or	“stems”	that	have	the	specified	color	(instead	of	the
grey	default).

Example:

;;	setup	view	with	2	turtles
crt	1	[set	color	green		setxy	2	3]
crt	1	[set	color	red		setxy	5	4]
view2.5d:turtle-view	"Test"	turtles	[the-turtle	->	[xcor]	of	the-turtle]
view2.5d:set-observer-distance	"Test"	40
view2.5d:set-z-scale	"Test"	2
view2.5d:set-observer-angles	"Test"	25	30

;;	increase	the	stem	thickness
view2.5d:set-turtle-stem-thickness	"Test"	.2

;;	change	the	stem	color	to		match	the	turtle-color
view2.5d:set-turtle-stem-color	"Test"	[the-turtle	->	[color]	of	the-turtle]

;	now	make	the	stems	orange
view2.5d:set-turtle-stem-color	"Test"	[orange]

view2.5d:show-links-xy-plane

view2.5d:show-links-xy-plane	Title

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	or	patch-view	window	with	the
specified	title	(if	any).	Links	are	drawn	in	the	xy-plane	(instead	of	the	turtle	to	turtle	default).	This	option	can	be
selected	using	the	Link	Options	xy-plane	radio	Button	in	the	3D	view.

view2.5d:show-links-xyz

view2.5d:show-links-xyz	Title

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	or	patch-view	window	with	the
specified	title	(if	any).	Links	are	drawn	from	turtle	to	turtle	(this	is	the	default	way	links	are	displayed).	This	option	can
be	selected	using	the	Link	Options	xyz	radio	Button	in	the	3D	view.

view2.5d:get-observer-angles

view2.5d:get-observer-angles	Title

This	reporter	must	be	called	from	the	Observer	context.	Returns	a	list	reflecting	the	observer’s	angular	perspective	{
heading	pitch	}	(the	place	on	an	imaginary	sphere	at	the	zoom	distance	is	updated	to	obey	heading	&	pitch	given)

view2.5d:set-observer-angles

view2.5d:set-observer-angles	Title	heading	pitch

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	window	with	the	specified	title
(if	any).	Sets	the	observer’s	angular	perspective	(the	place	on	an	imaginary	sphere	at	the	zoom	distance	is	updated
to	obey	heading	&	pitch	given)

view2.5d:get-observer-xy-focus

view2.5d:get-observer-xy-focus	Title

This	reporter	must	be	called	from	the	Observer	context.	Returns	a	list	reflecting	the	x	and	y	coordinates	the	observer
is	“looking	at”	in	the	patch	plane.

view2.5d:set-observer-xy-focus

view2.5d:set-observer-xy-focus	Title	number	ycor

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	window	with	the	specified	title
(if	any).	Sets	the	x	and	y	coordinates	the	observer	that	is	“looking	at”	in	the	patch	plane.

view2.5d:get-observer-distance

view2.5d:get-observer-distance	Title

This	reporter	must	be	called	from	the	Observer	context.	Returns	the	observer’s	distance	from	its	“focus	point”

view2.5d:set-observer-distance

view2.5d:set-observer-distance	Title	new-distance

This	command	must	be	called	from	the	Observer	context.	Updates	only	the	turtle-view	window	with	the	specified	title
(if	any).	Sets	the	observer’s	distance	from	its	“focus	point”

view2.5d:remove-patch-view

view2.5d:remove-patch-view	Title

This	command	closes	and	removes	the	specified	patch	view	programmatically	(equivalent	to	closing	the	window
manually).

view2.5d:remove-turtle-view

view2.5d:remove-turtle-view	Title

This	command	closes	and	removes	the	specified	turtle	view	programmatically	(equivalent	to	closing	the	window
manually).

view2.5d:remove-all-patch-views

view2.5d:remove-all-patch-views

This	command	closes	and	removes	all	patch	views	programmatically	(equivalent	to	closing	the	windows	manually).

view2.5d:remove-all-turtle-views

view2.5d:remove-all-turtle-views

This	command	closes	and	removes	all	turtle	views	programmatically	(equivalent	to	closing	the	windows	manually).

view2.5d:count-windows

view2.5d:count-windows

This	reporter	returns	the	number	of	turtle	and	patch	views	that	are	currently	active.

FAQ	(Frequently	Asked	Questions)
NetLogo	6.4.0	User	Manual

Feedback	from	users	is	very	valuable	to	us	in	designing	and	improving	NetLogo.	We’d	like	to	hear	from	you.	(See	Contacting	Us.)

General

Why	is	it	called	NetLogo?

The	“Logo”	part	is	because	NetLogo	is	a	dialect	of	the	Logo	language.

“Net”	is	meant	to	evoke	the	decentralized,	interconnected	nature	of	the	phenomena	you	can	model	with	NetLogo,	including
network	phenomena.	It	also	refers	to	HubNet,	the	multiuser	participatory	simulation	environment	included	in	NetLogo.

How	do	I	cite	NetLogo	or	HubNet	in	a	publication?

If	you	use	or	refer	to	NetLogo,	HubNet	or	a	model	from	the	NetLogo	models	library,	we	ask	that	you	cite	it	as	follows:

NetLogo	itself:	Wilensky,	U.	1999.	NetLogo.	http://ccl.northwestern.edu/netlogo/.	Center	for	Connected	Learning	and	Computer-
Based	Modeling,	Northwestern	University.	Evanston,	IL.

HubNet:	Wilensky,	U.	&	Stroup,	W.,	1999.	HubNet.	http://ccl.northwestern.edu/netlogo/hubnet.html.	Center	for	Connected
Learning	and	Computer-Based	Modeling,	Northwestern	University.	Evanston,	IL.

How	do	I	cite	a	model	from	the	Models	Library	in	a	publication?

The	correct	citation	is	included	in	the	“Credits	and	References”	section	of	each	model’s	Info	tab.

Where	and	when	was	NetLogo	created?

NetLogo	was	first	created	in	1999	by	Uri	Wilensky	at	the	Center	for	Connected	Learning	and	Computer-Based	Modeling,	then	at
Tufts	University	in	the	Boston	area.	NetLogo	grew	out	of	StarLogoT,	which	was	authored	by	Wilensky	in	1997.	In	2000,	the	CCL
moved	to	Northwestern	University,	in	the	Chicago	area.	NetLogo	1.0	came	out	in	2002,	2.0	in	2003,	3.0	in	2005,	4.0	in	2007,	4.1
in	2009,	and	5.0	in	2012.

What	programming	language	was	NetLogo	written	in?

NetLogo	is	written	mostly	in	Scala,	with	some	parts	in	Java.	(Scala	code	compiles	to	Java	byte	code	and	is	fully	interoperable
with	Java	and	other	JVM	languages.)

What’s	the	relationship	between	StarLogo	and	NetLogo?

The	original	StarLogo	began	at	the	MIT	Media	Lab	in	1989	and	ran	on	the	Connection	Machine.	Later	versions	were	developed
for	Macintosh	computers:	MacStarLogo	(1994,	MIT)	and	StarLogoT	(1997,	Tufts).

Today	there	are	two	StarLogo	descendants	under	active	development:	NetLogo	(from	the	CCL	at	Northwestern	University)	and
StarLogo	TNG	(from	MIT).	NetLogo	is	the	most	widely	used	agent-based	modeling	environment	in	both	education	and	research.
StarLogo	TNG	is	distinguished	by	its	programming	interface	based	on	colored	blocks.

Under	what	license	is	NetLogo	released?	Is	the	source	code	available?

NetLogo	is	free,	open	source	software	under	the	GPL	(GNU	General	Public	License),	version	2,	or	(at	your	option)	any	later
version.

Commercial	licenses	are	also	available.	To	inquire	about	commercial	licenses,	please	contact	Uri	Wilensky	at
uri@northwestern.edu.

The	source	code	is	on	GitHub,	here.	Development	discussion	is	on	the	netlogo-devel	group.

The	User	Manual	is	published	under	a	Creative	Commons	Attribution-ShareAlike	license	(CC	BY-SA	3.0).

Source	code	for	all	of	the	extensions	bundled	with	NetLogo	is	on	GitHub,	here.	Most	of	the	extensions	are	in	the	public	domain
(CC0	notice).	Other	extensions	are	released	under	open	source	licenses.	See	each	extension’s	README	for	details.

The	Code	Examples	in	the	Models	Library	are	in	the	public	domain	(CC0	notice).

The	rest	of	the	models	in	the	Models	Library	are	provided	under	a	variety	of	licenses.	Some	are	public	domain	and	some	are
open	source,	but	most	are	under	the	Creative	Commons	Attribution-ShareAlike	license	(CC	BY-NC-SA),	which	is	not	an	open
source	license,	though	the	models	are	free	for	noncommercial	distribution	and	use.

See	each	model’s	Info	tab	to	check	its	particular	license.

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/hubnet.html
http://www.gnu.org/licenses/gpl-2.0.html
mailto:uri@northwestern.edu
https://github.com/NetLogo/NetLogo
https://groups.google.com/group/netlogo-devel
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/NetLogo/
https://creativecommons.org/about/cc0
https://creativecommons.org/about/cc0
https://creativecommons.org/licenses/by-nc-sa/3.0/

The	models	are	in	a	public	Git	repository	here.

Do	you	offer	any	workshops	or	other	training	opportunities	for	NetLogo?

We	offer	workshops	from	time	to	time.	If	a	workshop	has	been	scheduled,	we	will	announce	it	on	the	NetLogo	Users	Group.

Are	there	any	NetLogo	textbooks?

The	CCL	has	published	a	textbook	(written	by	the	author	of	NetLogo)	that	gives	an	introduction	to	agent-based	modeling	methods
using	NetLogo.	It	goes	step	by	step	with	coding	examples	how	to	design,	build,	revise,	and	analyze	models.	And	it	presents	some
advanced	techniques.

See	www.intro-to-abm.com	for	more	information	on	that	textbook.

See	the	Textbooks	section	of	our	Resources	page.

We	at	the	CCL	have	hoped	to	write	several	more	NetLogo	textbooks.	These	could	be	aimed	at	different	audiences,	such	as:
middle	school,	high	school,	undergraduate	course	in	modeling	or	complexity,	practical	guide	for	interested	adults.

Unfortunately,	we	have	not	yet	been	able	to	find	the	time	to	make	these	happen.	If	anyone	from	the	user	community	would	like	to
collaborate	on	such	a	venture,	please	let	us	know.	We	would	welcome	it.

Is	NetLogo	available	in	other	languages	besides	English?

Volunteers	have	translated	the	user	manual	into	Chinese	and	Czech.	The	translated	versions	are	available	from	the	NetLogo	web
site.

So	far,	the	NetLogo	user	interface	has	been	localized	in	English,	Spanish,	Chinese,	Russian,	and	Japanese.	All	five	languages
are	included	in	the	standard	download.

We	are	seeking	volunteers	to	complete	and	improve	these	localizations	and	to	translate	the	NetLogo	software	and	manual	into	as
many	other	languages	as	possible.	If	you’re	able	to	help	in	this	endeavor,	please	contact	us.

Is	NetLogo	compiled	or	interpreted?

Short	answer:	some	of	both.

Long	answer:	NetLogo	does	include	a	compiler	that	generates	Java	byte	code.	However,	this	compiler	does	not	yet	support	the
entire	language,	so	some	parts	of	user	code	remain	interpreted.	Note	that	our	compiler	generates	Java	byte	code,	and	Java
virtual	machines	have	“just-in-time”	compilers	that	in	turn	compile	Java	byte	code	all	the	way	to	native	code,	so	much	user	code
is	ultimately	translated	to	native	code.

Has	anyone	built	a	model	of	<x>?

Try	looking	at	the	NetLogo	Models	Library,	the	NetLogo	Modeling	Commons,	our	Community	Models	page,	and	our	list	of
references	to	NetLogo	in	outside	works.

You	might	also	ask	the	question	on	the	NetLogo	Users	Group	and/or	search	past	messages	on	the	group.

Are	NetLogo	models	runs	scientifically	reproducible?

Yes.	NetLogo’s	pseudorandom	number	generator	and	agent	scheduling	algorithms	are	deterministic,	and	NetLogo	always	uses
Java’s	“strict	math”	library,	which	gives	bit-for-bit	identical	results	regardless	of	platform.	But	keep	the	following	cautions	in	mind:

If	your	model	uses	random	numbers,	then	in	order	to	get	reproducible	behavior,	you	must	use	the	random-seed	command	to
set	the	random	seed	in	advance,	so	that	your	model	will	receive	the	exact	same	sequence	of	random	numbers	every	time.
Remember	that	agentsets	are	always	in	random	order,	so	anything	you	do	with	agentsets	uses	random	numbers.
If	your	model	uses	the	every	or	wait	commands	in	such	a	way	that	affects	the	outcome	of	the	model,	then	you	may	get
different	results	on	different	computers,	or	even	on	the	same	computer,	since	the	model	may	run	at	a	different	speed.
In	order	to	reproduce	model	runs	exactly,	you	must	be	using	the	exact	same	version	of	NetLogo.	The	details	of	the	agent
scheduling	mechanism	and	the	random	number	generator	may	change	between	NetLogo	versions,	and	other	changes
(bugfixes	in	the	engine,	language	changes,	and	so	forth)	may	also	affect	the	behavior	of	your	model.	(Then	again,	they	may
not.)
We	have	expended	every	effort	to	make	NetLogo	model	runs	fully	reproducible,	but	of	course	this	can	never	truly	be	an
iron-clad	guarantee,	due	not	only	to	the	possibility	of	random	hardware	failure,	but	also	the	possibility	of	human	error	in	the
design	of:	your	model,	NetLogo,	your	Java	VM,	your	hardware,	and	so	on.

Will	NetLogo	and	NetLogo	3D	remain	separate?

For	now,	yes.	NetLogo	3D	is	included	with	NetLogo,	but	it	is	still	a	separate	application.

https://github.com/NetLogo/models
http://groups.google.com/d/forum/netlogo-users
http://www.intro-to-abm.com
http://ccl.northwestern.edu/netlogo/resources.shtml
http://ccl.northwestern.edu/netlogo/models/
http://modelingcommons.org/
http://ccl.northwestern.edu/netlogo/models/community/
http://ccl.northwestern.edu/netlogo/references.shtml
http://groups.google.com/d/forum/netlogo-users

Ideally	a	single	unified	application	would	support	both	2D	and	3D	modeling.	We	would	design	the	3D	world	support	so	it	doesn’t
get	in	the	way	when	you	are	building	2D	models.	Models	built	in	NetLogo	3D	might	require	changes	in	order	to	run	in	the
hypothetical	unified	application.

Can	I	run	NetLogo	on	my	phone	or	tablet?

No.	Neither	iOS,	nor	Android,	nor	Windows	RT	supports	running	Java	applications	such	as	NetLogo.

We	are	working	on	an	alternate	implementation	of	NetLogo	on	a	JavaScript	and	HTML5	base,	instead	of	Java.	It	will	work	on	a
variety	of	tablets	and	phones.	We	don’t	know	yet	when	it	will	be	ready,	and	we	expect	that	for	a	long	time	it	will	only	support	a
subset	of	the	features	in	desktop	NetLogo.	The	many	person-years	of	development	effort	that	have	gone	into	the	Java	version
can’t	cheaply	or	easily	be	replicated	on	another	platform.

For	technical	details	on	this	new	project,	go	here.

Downloading

Can	I	have	multiple	versions	of	NetLogo	installed	at	the	same	time?

Yes.	When	you	install	NetLogo,	the	folder	that	is	created	contains	has	the	version	number	in	its	name,	so	multiple	versions	can
coexist.

On	Windows	systems,	whichever	version	you	installed	last	will	be	the	version	that	opens	when	you	double	click	a	model	file	in
Windows	Explorer.	On	Macs,	you	can	control	what	version	opens	via	“Get	Info”	in	the	Finder.

I’m	on	a	UNIX	system	and	I	can’t	untar	the	download.	Why?

Some	of	the	files	in	the	tarball	have	long	pathnames,	too	long	for	the	standard	tar	format.	You	must	use	the	GNU	version	of	tar
instead	(or	another	program	which	understands	the	GNU	tar	extensions).	On	some	systems,	the	GNU	version	of	tar	is	available
under	the	name	“gnutar”.	You	can	find	out	if	you	are	already	using	the	GNU	version	by	typing	tar	--version	and	seeing	if	the
output	says	“tar	(GNU	tar)”.

How	do	I	install	NetLogo	unattended?

It	depends	on	which	platform	you	are	using.

Linux:	Untar	NetLogo	into	the	appropriate	place.
Mac:	Copy	the	NetLogo	directory	from	the	disk	image	into	the	Applications	folder.
Windows:	The	installer	is	an	MSI	which	can	be	run	using	one	of	the	following	commands	(these	may	require	admin
privileges):

msiexec.exe	/i	C:\Path\to\NetLogo.msi	ALLUSERS=1	ADDLOCAL=Shortcuts			::	To	install	with	desktop	shortcuts
msiexec.exe	/i	C:\Path\to\NetLogo.msi	ALLUSERS=1	ADDLOCAL=BaseInstall	::	To	install	without	desktop	shortcuts

We	also	maintain	an	advanced	installation	wiki	page	which	may	have	additional	tips	and	tricks.	We	encourage	users	who	have
problems	with	unattended	installation	or	ideas	on	how	it	could	be	improved	to	email	feedback@ccl.northwestern.edu.

Running

Can	I	run	NetLogo	from	a	CD,	a	network	drive,	or	a	USB	drive?

Yes.	NetLogo	runs	fine	from	any	file	system,	including	read-only	file	systems.

Why	is	NetLogo	so	much	slower	when	I	unplug	my	Windows	laptop?

Your	computer	is	switching	to	power	saving	mode	when	unplugged.	It’s	normal	for	this	to	reduce	speed	a	little,	but	unfortunately
there	is	a	bug	in	Java	that	drastically	slows	down	Swing	applications,	including	NetLogo.

One	workaround	is	to	change	the	power	settings	on	your	computer	so	it	doesn’t	go	into	power	saving	mode	when	you	unplug	it.	(If
you	do	this,	your	battery	won’t	last	as	long.)

Another	workaround	is	to	run	NetLogo	with	an	option	recommended	by	Oracle,	by	editing	the	NetLogo	6.4.0.vmoptions	file,	found
in	the	NetLogo	directory	(under	Program	Files	on	your	hard	drive,	unless	you	installed	NetLogo	in	a	different	location).	Add	on	a
new	line:

-Dsun.java2d.ddoffscreen=false

You	can	see	the	details	of	the	Java	bug	and	vote	for	Oracle	to	fix	it	here.

https://github.com/NetLogo/NetLogo/wiki/Tortoise
https://github.com/NetLogo/NetLogo/wiki/Advanced-Installation
mailto:feedback@ccl.northwestern.edu?subject=Unattended%20Installation
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id

Why	does	NetLogo	bundle	Java?

Since	Mac	OS	X	Lion,	Apple	have	encouraged	Mac	application	developers	to	bundle	Java.	NetLogo	bundles	Java	because	it
allows	us	to	deliver	a	consistent,	convenient	experience	to	our	users.	Bundling	Java	allows	us	to	test	for	compatibility	once	and
avoid	any	bugs	caused	by	version	mismatches	or	Java	configuration	incompatibilities.

If	users	are	interested	in	using	Java	on	their	system	instead	of	the	version	of	Java	bundled	with	NetLogo,	they	can	configure
NetLogo	to	use	a	different	Java	runtime.	Please	note	that	this	change	is	done	at	your	own	risk.	We	are	unable	to	offer	support
for	problems	caused	by	running	NetLogo	with	an	alternate	Java	Runtime.	To	change	the	Java	runtime	used	by	NetLogo,	open	the
NetLogo.cfg	file	and	modify	the	app.runtime	property	to	the	path	of	your	preferred	Java	Runtime.

How	come	NetLogo	won’t	start	up	on	my	Linux	machine?

We	bundle	Bellsoft’s	OpenJDK-based	Java	runtime	when	using	NetLogo	on	Linux.	If	you	would	like	to	change	the	version	of	linux
used,	you	can	modify	the	.cfg	files	to	point	to	a	different	version	of	Java	(see	How	big	can	my	model	be?	for	more	information).

In	theory,	any	Java	11	or	later	runtime	will	run	NetLogo.	In	practice,	some	Java	implementations	aren’t	high	enough	quality.
Recent	versions	of	OpenJDK	should	work;	older	ones	may	not.	GNU	libgcj	does	not	work.

Ubuntu	users	should	consult	https://help.ubuntu.com/community/Java.

When	I	try	to	install	NetLogo	on	Windows,	I	see	“Windows	protected	your	PC”

Windows	attempts	to	protect	users	from	downloading	malicious	software	by	maintaining	a	list	of	“good”	and	“malicious”	software.
The	first	users	to	install	any	NetLogo	release	will	see	this	warning.	Later	users	may	or	may	not	see	this	warning.	Before	going
any	further,	ensure	you	are	protected.	The	CCL	can	only	vouch	for	NetLogo	downloads	hosted	on	the	CCL	Website.	NetLogo	can
be	freely	downloaded	from	the	official	NetLogo	download	page.	If	you	obtain	NetLogo	from	anywhere	else,	you	install	it	at	your
own	risk!

You	can	continue	past	the	Windows	prompt	by	taking	the	following	steps:

In	the	“Windows	protected	your	PC”	prompt,	click	“More	Info”,	the	prompt	will	change
In	the	changed	prompt,	click	“Run	Anyway”	and	continue	with	installation	as	normal

Note	in	order	to	see	the	“More	Info”	or	“Run	Anyway”	options,	you	will	need	to	run	the	installer	as	an	administrator.	If	you	do	not
see	those	options,	right-click	and	choose	“Run	as	administrator”	and/or	change	your	user	account	to	an	administrator	account
before	installing.

We	at	the	CCL	are	working	on	solving	this	problem	and	hope	to	free	our	users	of	the	added	installation	difficulty	soon!

When	I	try	to	start	NetLogo	on	Windows	I	get	an	error	“The	JVM	could	not	be	started”.	Help!

A	nearly	certain	fix	is	to	use	a	text	editor	to	edit	the	NetLogo.cfg	file,	changing	1024m	to	a	smaller	number,	like	512m.	This	should
permit	NetLogo	to	start,	although	the	lower	heap	size	limit	may	affect	your	ability	to	run	models	with	many	agents.	See	How	big
can	my	model	be?	for	information	on	model	size	and	how	to	edit	the	cfg	file.

If	running	with	the	lower	heap	size	limit	is	unacceptable,	read	on.

Some	Windows	systems	have	trouble	allocating	large	amounts	of	contiguous	virtual	memory.	Upgrading	to	a	newer	version	of
Windows	may	help.

Running	Windows	in	64-bit	mode	instead	of	32-bit	mode	may	also	help.	Double	check	that	Windows	is	actually	running	in	64-bit
mode;	see	Microsoft’s	FAQ	page	on	64-bit	Windows.

NetLogo	won’t	start	on	Mac	OS	Sierra	(or	later)

Some	users	have	reported	problems	opening	NetLogo	6	on	Mac	OS	Sierra.	We’ve	been	unable	to	determine	a	root	cause	for	this
problem,	but	we’re	continuing	to	investigate.	We’re	looking	for	assistance	from	you	if	you	run	into	this	problem.	It	would	be
extremely	helpful	if	you	could	run	the	following	command	in	the	“Terminal”	application	and	send	the	output	in	an	email	to
bugs@ccl.northwestern.edu.

xattr	-pl	com.apple.quarantine	/Applications/NetLogo\	6.4.0/NetLogo\	6.4.0.app

running	it	should	give	you	a	single	line	of	output	(something	like	com.apple.quarantine:	01e1;58ac6af2;Firefox;F2E0B1E2-D203-
4B05-8DF9-ABA58B52EFEA,	but	yours	will	have	different	numbers,	letters,	and	words).	Please	copy	and	paste	this	string	into	the
email	you	send	us.

There	is	also	a	partial	workaround!	Running	the	following	command	in	the	Terminal	will	enable	users	to	run	NetLogo	without
turning	Gatekeeper	completely	off.	The	command	is:

sudo	xattr	-dr	com.apple.quarantine	/Applications/NetLogo\	6.4.0/NetLogo\	6.4.0.app

https://help.ubuntu.com/community/Java
http://ccl.northwestern.edu/netlogo/download.shtml
https://windows.microsoft.com/en-US/windows-vista/32-bit-and-64-bit-Windows-frequently-asked-questions
mailto:bugs@ccl.northwestern.edu?subject=Sierra%20NetLogo%206%20Bug

Note	that	if	you	plan	to	run	NetLogo	3D	or	HubNet	Client	you	may	also	need	to	re-run	that	command	once	for	each	of	those
applications.	If	the	workaround	was	not	effective	for	you,	please	send	us	an	email	and	let	us	know.

NetLogo	won’t	start	on	Windows	or	crashes	suddenly	on	Mac	OS	Sierra

Some	users	on	Mac	OS	with	discrete	graphics	cards	experience	sudden	crashes	of	NetLogo	when	switching	between	integrated
and	discrete	graphics.	It’s	possible	to	prevent	these	crashes	by	disabling	automatic	graphics	switching	in	System	Preferences.

Some	Windows	users	may	also	be	unable	to	open	NetLogo	due	to	graphics	card	settings	or	drivers.	If	you	are	unable	to	open
NetLogo	on	Windows,	you	might	be	able	to	fix	this	by	updating	or	reinstalling	your	graphics	driver	and/or	disabling	any	graphics
card	utilities.	Because	NetLogo	might	be	unable	to	start	for	a	number	of	reasons,	we	encourage	you	to	contact	us	if	these	steps
aren’t	effective	in	resolving	the	problem.

Can	I	run	NetLogo	from	the	command	line,	without	the	GUI?

Yes.	The	easiest	way	is	to	set	up	your	model	run	or	runs	as	a	BehaviorSpace	experiment.	No	additional	programming	is	required.
See	the	BehaviorSpace	Guide	for	details.

Another	option	is	to	use	our	Controlling	API.	Some	light	Java	programming	is	required.	See	the	Controlling	API	Guide	for	details
and	sample	code.

Does	NetLogo	take	advantage	of	multiple	processors?

Only	when	using	BehaviorSpace.	BehaviorSpace	does	parallel	runs,	one	per	processor.

For	a	single	model	run,	only	one	processor	is	used.

We	are	seeking	funding	to	make	it	possible	to	split	a	single	model	run	across	multiple	processors	or	multiple	computers.

Can	I	distribute	NetLogo	model	runs	across	a	cluster	or	grid	of	computers?

Many	of	the	same	comments	in	the	previous	answer	apply.	It	is	not	possible	to	split	a	single	model	run	across	multiple
computers,	but	you	can	have	each	machine	in	a	cluster	doing	one	or	more	separate,	independent	model	runs,	using	either
BehaviorSpace	or	our	Controlling	API.	We	don’t	have	automated	support	for	splitting	the	runs	across	clusters,	so	you’ll	need	to
arrange	that	yourself.

Various	users	are	already	using	NetLogo	on	clusters,	with	a	variety	of	hardware	and	software.	You	can	seek	them	out	on	the
NetLogo	Users	Group.

Is	there	any	way	to	recover	lost	work	if	NetLogo	crashes	or	freezes?

Yes.	NetLogo	auto-saves	files	as	you	are	working	on	them.	The	path	to	the	auto-save	file	depends	on	whether	or	not	the	NetLogo
model	has	been	saved.

For	NetLogo	models	which	have	been	saved,	a	hidden	file	with	the	name	“.filename.tmp.nlogo”	will	be	created	in	the	same
directory	as	the	NetLogo	model.

For	unsaved	NetLogo	models,	autosave	files	can	be	found	in	your	OS-specific	java	temporary	directory.	The	files	are	named
according	to	the	following	format:	autosave_yyyy-MM-dd.HH_mm_ss.nlogo	where	the	time	and	date	are	the	time	and	date	the	model
was	opened.	The	exact	path	will	depend	on	your	operating	system:

On	Mac	OS,	the	temporary	directory	is	/var/folders/68/<30-character-alphanumeric-sequence>/T/.	The	30-character-
alphanumeric-sequence	is	unique	to	each	machine.
On	Windows	the	logs	can	be	found	in	C:\Users\<user>\AppData\Local\Temp,	where	<user>	is	the	logged	in	user.
On	most	non-Mac	Unix-like	systems	the	temp	directory	is	/tmp.

Why	is	HubNet	Discovery	Not	Working?

HubNet	discovery	provides	the	ability	for	HubNet	clients	running	on	the	same	local	network	as	the	HubNet	server	to	automatically
display	the	IP	address	and	current	activity	of	the	server.	This	uses	IPv4	multicast	over	a	local	area	network	-	it	won’t	identify
HubNet	servers	on	the	internet	or	on	different	networks.	Some	networks	also	do	not	support	multicast	traffic	and	it	will	simply	not
work	on	those	networks.	For	HubNet	Discovery	to	work,	the	server	must	be	broadcasting	to	the	same	network	that	the	client	is
polling	for	messages.	Often,	both	the	client	and	server	are	only	connected	to	a	single	network	and	there	is	no	need	for	further
configuration.

Since	NetLogo	6.0.3,	we	have	tools	in	place	to	allow	clients	and/or	servers	connected	to	multiple	networks	to	select	the	network
on	which	they	will	broadcast/listen.	When	running	a	HubNet	server,	this	is	done	by	selecting	the	appropriate	“broadcast	network”
via	selection	dropdown	when	starting	a	HubNet	server.	This	preference	will	be	remembered	until	NetLogo	is	restarted,	so	if	you
end	up	needing	to	broadcast	on	a	different	network,	restart	NetLogo.	HubNet	clients	also	see	a	similar	dropdown	when	selecting
which	activity	to	join.	Unlike	HubNet	server,	clients	may	change	the	network	on	which	they	listen	at	any	time.	HubNet	discovery
will	only	work	when	both	client	and	server	are	listening/broadcasting	on	the	same	network,	so	some	trial	and	error	may	be
required	to	figure	out	a	working	configuration.	Generally	speaking,	the	shared	network	is	the	one	on	which	the	client	and	the
server	have	the	most	similar	IP	address	prefixes.	For	instance,	if	the	server	selects	to	broadcast	on	a	network	where	it	has	IP

mailto:bugs@ccl.northwestern.edu?subject=Sierra%20NetLogo%206%20Bug%20Workaround
https://support.apple.com/en-us/HT202043
mailto:bugs@ccl.northwestern.edu?subject=NetLogo%206%20Launch%20Problem%20in%20Windows
https://github.com/NetLogo/NetLogo/wiki/Controlling-API
http://groups.google.com/d/forum/netlogo-users

address	192.168.0.101,	a	client	should	prefer	listening	on	a	network	where	it	has	an	IP	like	192.167.0.203	over	a	network	where	it
has	an	IP	like	10.5.0.101.	Even	when	the	same	network	is	selected,	it	is	possible	that	that	network	may	not	support	IPv4
multicast,	in	which	case	discovery	will	not	work	and	clients	must	enter	IP	addresses	manually.

Note	that	the	change	made	in	6.0.3	simply	enable	selection	of	the	network	on	which	clients	and	servers	broadcast/listen	on.	The
HubNet	server	still	listens	on	all	network	connections,	so	all	listed	IP	addresses	given	in	the	server	broadcast	network	selection
dropdown	are	potentially	valid	for	a	HubNet	client	(even	a	client	on	a	different	network)	to	connect	to.	Similarly	HubNet	clients
may	connect	to	any	HubNet	server	reachable	from	their	computer.

Usage

When	I	move	the	speed	slider	all	the	way	to	the	right,	why	does	my	model	seem	to	stop?

The	only	way	NetLogo	can	make	your	model	run	faster	is	by	updating	the	view	less	frequently.	As	you	move	the	speed	slider	to
the	right,	view	updates	become	less	and	less	frequent.	Since	view	updates	take	time,	that	means	more	speed.

However,	fewer	updates	also	means	that	the	updates	come	farther	apart.	When	several	seconds	pass	between	updates,	it	may
seem	like	your	model	has	stopped.	It	hasn’t.	It’s	running	at	full	speed.	Watch	the	tick	counter!	(If	your	model	uses	it.	If	it	doesn’t,
watch	something	else,	like	a	plot.)

To	get	a	feel	for	what’s	going	on,	try	moving	the	slider	to	the	right	gradually	rather	than	suddenly.	If	you	find	the	updates	too
infrequent	at	the	rightmost	position,	just	don’t	push	the	slider	that	far.

Can	I	use	the	mouse	to	“paint”	in	the	view?

NetLogo	does	not	have	a	built-in	set	of	painting	tools	for	painting	in	the	view.	But	with	only	a	few	lines	of	code,	you	can	add
painting	capability	to	your	model.	To	see	how	it’s	done,	look	at	Mouse	Example,	in	the	Code	Examples	section	of	the	Models
Library.	The	same	techniques	can	be	used	to	let	the	user	interact	with	your	model	using	the	mouse	in	other	ways,	too.

Another	possibility	is	to	create	an	image	in	another	program	and	import	it	using	the	import	items	on	the	File	menu	or	the	import-*
primitives.

How	big	can	my	model	be?	How	many	turtles,	patches,	procedures,	buttons,	and	so	on	can	my
model	contain?

We	have	tested	NetLogo	with	models	that	use	hundreds	of	megabytes	of	RAM	and	they	work	fine.	We	have	reports	from	NetLogo
users	that	they	have	run	models	that	required	up	to	50	gigabytes	of	RAM	to	use	millions	of	patches	and	tens	of	thousands	of
agents,	and	they	worked	as	desired	with	the	proper	Java	settings.	Theoretically	the	only	limit	is	the	RAM	available	on	your
system,	but	you	might	hit	some	limits	that	are	inherent	in	the	underlying	Java	runtime	or	the	operating	system	(either	designed-in
limits,	or	bugs).

The	NetLogo	engine	has	no	fixed	limits	on	model	size.	By	default	NetLogo	sets	Java	to	use	up	to	half	of	your	available	system
memory.	If	your	model	exceeds	that	memory	limit,	you’ll	get	an	OutOfMemoryError	dialog.

If	you	are	using	BehaviorSpace,	note	that	doing	runs	in	parallel	will	multiply	your	RAM	usage	accordingly.	Similarly,	using
LevelSpace	with	many	child	models	increases	RAM	usage	greatly.

If	you	want	to	increase	the	memory	limit	Java	uses,	you	can	do	so	using	the	NetLogo	app	configuration	files.

Each	platform	contains	“.cfg”	files	containing	JVM	settings.	There	is	one	cfg	file	for	each	sub-application	(NetLogo,	NetLogo	3D,
HubNet	Client,	etc.).	Windows	also	has	a	cfg	file	for	the	NetLogo_Console	app;	on	macOS	and	Linux	the	cfg	file	for
NetLogo_Console	is	just	the	NetLogo.cfg	file.	Although	the	file	location	varies	by	platform,	the	process	for	changing	it	is	the	same.
Locate	the	section	of	the	file	that	looks	like	the	following:

[JavaOptions]
#	there	may	be	one	or	more	lines,	leave	them	unchanged
java-options=-XX:MaxRAMPercentage=50
#	there	may	be	one	or	more	lines,	leave	them	unchanged

You	can	change	the	percentage	number	from	50	to	whatever	you	want.	Save	the	file	and	restart	NetLogo	for	the	setting	to	take
effect.	If	you	need	to	set	an	exact	amount	of	memory	(as	opposed	to	a	percentage),	you	can	also	comment	out	the	java-
options=-XX:MaxRAMPercentage=50	line	with	a	#	at	the	start	and	add	a	new	line	with	java-options=-Xmx####m.	Replace	the	####m
with	whatever	amount	of	memory	you	like;	using	4096m	would	limit	NetLogo	to	4096	megabytes	of	memory,	or	4	gigabytes.

Platform	specific	notes	follow:

Windows:	The	file	will	typically	be	in	C:\Program	Files\NetLogo	6.4.0\app,	unless	you	are	running	32	bit	NetLogo	on	a	64
bit	Windows,	then	it	will	be	in	C:\Program	Files	(x86)\NetLogo	6.4.0\app.
Mac	OS	X:	The	file	for	NetLogo	will	be	located	at:	/Applications/NetLogo	6.4.0/NetLogo	6.4.0.app/Contents/app/NetLogo
6.4.0.cfg	For	NetLogo	3D	and	the	other	applications,	you	will	find	the	file	in	the	corresponding	location	for	each	application
package.	You	can	reach	the	cfg	file	by	control-clicking	the	application	in	the	Finder	and	choosing	“Show	Package	Contents”
from	the	popup	menu.

Please	note	that	depending	on	your	version	of	Mac	OS	X,	changing	the	cfg	file	may	break	application	signing.	If	this

happens,	follow	Apple’s	directions	on	this	page	to	temporarily	allow	apps	from	“Anywhere”,	run	NetLogo	once,	then	restore
the	setting	to	“Mac	App	Store	and	Identified	Developers”.

Linux:	The	cfg	files	will	be	located	in	the	NetLogo	6.4.0/lib/app	folder	after	untarring.

By	default,	Mac	builds	of	NetLogo	bundle	a	64-bit	JVM.	Windows	and	Linux	will	bundle	a	32-bit	or	64-bit	JVM,	depending	on
which	version	you	have	downloaded.	It	is	recommended	that	you	install	64-bit	NetLogo	on	all	64-bit	operating	systems	for	best
performance.

Can	I	use	GIS	data	in	NetLogo?

Yes,	many	users	are	using	GIS	data	with	NetLogo.	The	most	complete	way	to	do	that	is	with	the	GIS	extension.	See	the	GIS
Extension	Guide.

A	simpler	way	is	to	use	import-pcolors,	but	that	only	works	for	importing	maps	that	are	images,	not	maps	in	other	formats.

It	is	also	possible	to	write	NetLogo	code	that	reads	GIS	data	using	our	file	I/O	primitives	such	as	file-open.	For	example,	see	the
Grand	Canyon	model	in	the	Earth	Science	section	of	Sample	Models.

My	model	runs	slowly.	How	can	I	speed	it	up?

Here’s	some	ways	to	make	it	run	faster	without	changing	the	structure	of	the	code:

Use	tick-based	view	updates,	not	continuous	updates.
Decrease	the	frequency	of	view	updates	by	pushing	the	speed	slider	to	the	right,	or	turn	updates	off	using	the	checkbox.
If	your	model	is	using	all	available	RAM	on	your	computer,	then	installing	more	RAM	should	help.	If	your	hard	drive	makes	a
lot	of	noise	while	your	model	is	running,	you	probably	need	more	RAM.
Use	turtle	size	1,	1.5,	or	2,	as	the	2D	renderings	for	these	sizes	are	cached	by	NetLogo.	(This	only	affects	graphics	speed	in
the	2D	view,	not	computation	speed.)

In	many	cases,	though,	if	you	want	your	model	to	run	faster,	you	may	need	to	make	some	changes	to	the	code.	Usually	the	most
obvious	opportunity	for	speedup	is	that	you’re	doing	too	many	computations	that	involve	all	the	turtles	or	all	the	patches.	Often
this	can	be	reduced	by	reworking	the	model	so	that	it	does	less	computation	per	time	step.	The	members	of	the	NetLogo	Users
Group	may	be	able	to	help	with	this.

The	profiler	extension	is	useful	for	identifying	which	parts	of	your	code	are	taking	the	most	time.

Unless	you	are	running	the	exact	same	strings	over	and	over,	using	run	and	runresult	are	much	slower	than	running	code
directly;	you	should	avoid	using	these	primitives	on	fresh	strings	in	performance-critical	code.

Can	I	have	more	than	one	model	open	at	a	time?

One	instance	of	NetLogo	can	only	have	one	model	open	at	a	time.	(Unfortunately,	it	is	unlikely	that	this	will	change	in	a	future
version,	due	to	the	engineering	difficulties	involved.)

You	can	have	multiple	models	open	by	opening	multiple	instances	of	NetLogo,	though.	On	Windows	and	Linux,	simply	start	the
application	again.	On	a	Mac,	you’ll	need	to	duplicate	the	application	(not	the	whole	folder,	just	the	application	itself)	in	the	Finder,
then	open	the	copy.	(The	copy	takes	up	only	a	very	small	amount	of	additional	disk	space.)

Can	I	change	the	choices	in	a	chooser	on	the	fly?

No.

Can	I	divide	the	code	for	my	model	up	into	several	files?

On	an	experimental	basis,	this	is	available	using	the	__includes	keyword.

Programming

How	does	the	NetLogo	language	differ	from	other	Logos?

This	is	answered	in	detail	at	the	end	of	the	Programming	Guide.

How	come	my	model	from	an	earlier	NetLogo	doesn’t	work	right?

See	the	Transition	Guide	for	help.

How	do	I	take	the	negative	of	a	number?

Any	of	these	ways:

https://support.apple.com/en-us/HT202491
http://groups.google.com/d/forum/netlogo-users

(-	x)
-1	*	x
0	-	x

With	the	first	way,	the	parentheses	are	required.

My	turtle	moved	forward	1,	but	it’s	still	on	the	same	patch.	Why?

If	you	have	disabled	wrapping	at	the	world	edges	in	your	model,	then	the	turtle	might	be	at	a	world	edge	and	unable	to	move	any
further.	You	can	test	for	this	using	can-move?.

Assuming	the	turtle	isn’t	hitting	a	world	edge,	moving	forward	1	is	only	guaranteed	to	take	a	turtle	to	a	new	patch	if	the	turtle’s
heading	is	a	multiple	of	90	(that	is,	exactly	north,	south,	east,	or	west).

It’s	because	the	turtle	might	not	be	standing	in	the	center	of	a	patch.	It	might	be	near	the	corner	of	a	patch.	For	example,	suppose
your	turtle	is	close	to	the	southwest	corner	of	a	patch	and	is	facing	northeast.	The	length	of	the	patch	diagonal	is	1.414…	(the
square	root	of	two),	so	fd	1	will	leave	the	turtle	near	the	northeast	corner	of	the	same	patch.

If	you	don’t	want	to	have	to	think	about	these	issues,	one	possibility	is	to	write	your	model	in	such	a	way	that	your	turtles	always
come	to	rest	on	patch	centers.	See	next	question.

How	do	I	keep	my	turtles	on	patch	centers?

A	turtle	is	on	a	patch	center	when	its	xcor	and	ycor	are	integers.

You	can	move	a	turtle	to	the	center	of	its	current	patch	with	either	of	these	two	equivalent	commands:

move-to	patch-here
setxy	pxcor	pycor

But	you’ll	never	need	to	do	that	if	you	never	allow	turtles	off	of	patch	centers	in	the	first	place.

The	sprout	command	creates	turtles	on	patch	centers.	For	example:

ask	n-of	50	patches	[sprout	1	[face	one-of	neighbors4]]

Another	way	for	a	turtle	to	start	on	a	patch	center	is	with	a	command	such	as	this	line	of	turtle	code,	which	moves	it	to	the	center
of	a	random	patch:

move-to	one-of	patches

Once	a	turtle	is	on	a	patch	center,	as	long	as	its	heading	always	stays	an	exact	multiple	of	90	(that	is	to	say,	due	north,	east,
south,	or	west),	and	as	it	long	as	it	moves	forward	or	back	by	integer	amounts,	it	will	always	land	on	patch	centers.

See	Random	Grid	Walk	Example,	in	the	Code	Examples	section	of	the	Models	Library,	to	see	these	code	snippets	in	use.

patch-ahead	1	is	reporting	the	same	patch	my	turtle	is	already	standing	on.	Why?

See	the	answer	two	answers	up.	It’s	the	same	issue.

This	might	not	be	the	meaning	of	“ahead”	you	were	expecting.	With	patch-ahead,	you	must	specify	the	distance	ahead	that	you
want	to	look.	If	you	want	to	know	the	next	patch	a	turtle	would	cross	into	if	it	moved	forward	continuously,	it	is	possible	to	find	that
out.	See	Next	Patch	Example,	in	the	Code	Examples	section	of	the	Models	Library.

How	do	I	give	my	turtles	“vision”?

You	can	use	in-radius	to	let	a	turtle	see	a	circular	area	around	it.

Several	primitives	let	the	turtle	“look”	at	specific	points.	The	patch-ahead	primitive	is	useful	for	letting	a	turtle	see	what	is	directly	in
front	of	it.	If	you	want	the	turtle	to	look	in	another	direction	besides	straight	ahead,	try	patch-left-and-ahead	and	patch-right-
and-ahead.

If	you	want	the	turtle	to	have	a	full	“cone”	of	vision,	use	the	in-cone	primitive.

You	can	also	find	out	the	next	patch	a	turtle	would	cross	into	if	it	moved	forward	continuously.	See	Next	Patch	Example,	in	the
Code	Examples	section	of	the	Models	Library.

Can	agents	sense	what’s	in	the	drawing	layer?

No.	If	you	want	to	make	marks	that	agents	can	sense,	use	patch	colors.

I’m	getting	numbers	like	0.10000000004	and	0.799999999999	instead	of	0.1	and	0.8.	Why?

See	the	“Math”	section	of	the	Programming	Guide	for	a	discussion	of	this	issue.

The	documentation	says	that	random-float	1	might	return	0	but	will	never	return	1.	What	if	I	want
1	to	be	included?

It	really	doesn’t	matter.	Even	if	1	were	a	possible	result,	it	would	only	come	up	approximately	1	in	2^64	tries,	which	means	you’d
be	waiting	hundreds	of	years	before	it	ever	came	up	exactly	1.

Nonetheless,	if	you	are	convinced	that	it	really	must	be	possible	to	get	1,	you	can	use	precision	to	round	your	answer	to	a	certain
number	of	decimal	places.	For	example:

print	precision	(random-float	1)	10
0.2745173723

(If	you	use	this	method,	note	that	0	and	1	are	only	half	as	likely	to	come	up	as	other	answers.	To	see	why	this	is	so,	consider	the
case	where	you	only	keep	one	digit	after	the	decimal	point.	Results	between	0	and	0.5	get	rounded	to	0,	but	results	between	0.5
and	1.5	get	rounded	to	1;	the	latter	range	is	twice	as	large.	If	you	want	0,	0.1,	0.2,	…,	0.9,	and	1	to	all	be	equally	likely,	an
alternative	is	to	write	random	11	/	10 ;	this	gives	all	11	answers	with	equal	probability.)

Why	is	the	number	value	in	my	monitor	widget	changing	even	though	nothing	is	happening	in
my	model?

This	is	caused	by	a	combination	of	a	few	things:

1.	 NetLogo’s	use	of	floating	point	numbers,	which	can	produce	small	accuracy	issues.	See	Floating	point	accuracy	in	the
NetLogo	programming	guide.

2.	 Agentsets	such	as	turtles	are	always	returned	in	a	random	order.
3.	 Monitors	re-run	their	reporter	calculation	constantly,	even	when	you	are	not	running	any	model	code	with	a	forever	button	or

through	the	command	center.

So	the	monitor	constantly	re-runs	its	mean	[xcor]	of	turtles 	reporter,	but	the	turtles	agentset	gives	the	turtles	in	a	random
order,	and	so	the	floating-point	inaccuracies	for	mean	will	accumulate	in	a	slightly	different	way	each	time	due	to	the	order
differences.	The	end	result	is	you	see	very	slightly	different	numbers	flashing	through	the	monitor	widget	while	nothing	is
happening.

You	see	the	same	problem	doing	sum	[xcor]	of	turtles ,	variance	[xcor]	of	turtles ,	or	standard-deviation	[xcor]	of
turtles	-	anytime	you’re	reducing	a	bunch	of	floating	point	numbers	from	an	agentset	into	a	single	value.	You	can	also	see	the
problem	running	your	reporter	code	directly	in	the	command	center	repeatedly,	without	a	monitor	widget	at	all.

The	fixes	are	straightforward:

Sort	your	numbers	before	you	calculate:	mean	sort	[xcor]	of	turtles ,	sum	sort	[xcor]	of	turtles ,	variance	sort	[xcor]
of	turtles.	If	the	numbers	are	in	the	same	order	you’ll	still	have	small	floating-point	inaccuracies,	but	they’ll	be	the	the
same	every	time	so	you	won’t	see	the	values	change.	This	is	probably	the	best	solution,	but	it	can	be	slow	if	you	have	a
really	large	agentset.
Change	the	Decimal	places	setting	of	your	monitors	to	a	number	where	you	don’t	notice	the	changing	values.	Since	the
differences	in	results	should	be	small,	this	is	usually	possible.

How	can	I	keep	two	turtles	from	occupying	the	same	patch?

See	One	Turtle	Per	Patch	Example,	in	the	Code	Examples	section	of	the	Models	Library.

How	can	I	find	out	if	a	turtle	is	dead?

When	a	turtle	dies,	it	turns	into	nobody.	nobody	is	a	special	value	used	in	NetLogo	used	to	indicate	the	absence	of	a	turtle	or	patch.
So	for	example:

if	turtle	0	!=	nobody	[...]

You	could	also	use	is-turtle?:

if	is-turtle?	turtle	0	[...]

Does	NetLogo	have	arrays?

Nearly	all	models	should	just	use	lists	for	this.

The	usual	motivation	for	using	arrays	in	other	programming	languages	is	that	they	provide	fast	random	access	(item)	and
mutation	(replace-item).	But	NetLogo’s	lists,	even	though	they	are	immutable,	now	provide	near	constant	time	performance	on
these	operations.

Lists	in	earlier	versions	of	NetLogo	(4.1	and	4.0)	were	simple	singly-linked	lists	and	therefore	these	operations	took	linear	time.
The	data	structure	underlying	NetLogo’s	lists	now	is	the	immutable	Vector	class	from	the	Scala	collections	library.	It	uses	32-wide
hash	array	mapped	tries,	as	implemented	by	Tiark	Rompf,	based	in	part	on	work	by	Phil	Bagwell	and	Rich	Hickey.

If	you	are	certain	you	want	to	use	raw,	mutable	JVM	arrays	in	your	model,	they	are	provided	by	the	array	extension.	See	the
Arrays	&	Tables	section	of	the	User	Manual.

Does	NetLogo	have	hash	tables	or	associative	arrays?

Yes,	using	the	table	extension.	See	the	Arrays	&	Tables	section	of	the	User	Manual.

How	can	I	use	different	patch	“neighborhoods”	(circular,	Von	Neumann,	Moore,	etc.)?

The	in-radius	primitives	lets	you	access	circular	neighborhoods	of	any	radius.

The	neighbors	primitive	gives	you	a	Moore	neighborhood	of	radius	1,	and	the	neighbors4	primitive	gives	you	a	Von	Neumann
neighborhood	of	radius	1.

For	Moore	or	Von	Neumann	neighborhoods	of	a	larger	radius,	see	Moore	&	Von	Neumann	Example	in	the	Code	Examples
section	of	the	Models	Library.

How	can	I	convert	an	agentset	to	a	list	of	agents,	or	vice	versa?

If	you	want	the	list	in	a	particular	order,	use	the	sort	or	sort-by	primitives.	The	Lists	section	of	the	Programming	Guide	explains
how	to	do	this.	See	also	Ask	Ordering	Example,	in	the	Code	Examples	section	of	the	Models	Library.

If	you	want	the	list	in	a	random	order,	here’s	how:

[self]	of	<agentset>

Because	all	operations	on	agentsets	are	in	random	order,	the	resulting	list	is	in	random	order.

To	convert	a	list	of	agents	to	an	agentset,	use	the	turtle-set,	patch-set,	or	link-set	primitives.

How	do	I	stop	foreach?

To	stop	a	foreach	from	executing	you	need	to	define	a	separate	procedure	that	contains	only	the	foreach,	for	example:

to	test
		foreach	[1	2	3]	[i	->
				if	i	=	2	[stop]
				print	i
]
end

This	code	will	only	print	the	number	1.	The	stop	returns	from	the	current	procedure	so	nothing	after	the	foreach	will	be	executed
either.	(If	the	procedure	is	a	reporter	procedure,	use	report	instead	of	stop.)

I’m	trying	to	make	a	list.	Why	do	I	keep	getting	the	error	“Expected	a	literal	value”?

If	a	list	contains	only	literal	values,	you	can	write	it	down	just	by	putting	square	brackets	around	it,	like	[1	2	3] .

If	you	want	your	list	to	contain	items	that	may	vary	at	runtime,	the	list	cannot	be	written	down	directly.	Instead,	you	build	it	using
the	list	primitive.

BehaviorSpace

Why	are	the	rows	in	my	BehaviorSpace	table	results	out	of	order?

This	is	normal	when	doing	multiple	runs	in	parallel.	For	a	discussion	of	the	issue,	see	the	section	on	parallel	runs	in	the
BehaviorSpace	Guide	section	of	the	User	Manual.

How	do	I	measure	runs	every	n	ticks?

Use	repeat	in	your	experiment’s	go	commands,	e.g.:

https://en.wikipedia.org/wiki/Hash_array_mapped_trie

repeat	10	[go]

to	measure	the	run	after	every	10	ticks.	Essentially	you	are	making	one	experiment	step	equal	10	ticks.

I’m	varying	a	global	variable	I	declared	in	the	Code	tab,	but	it	doesn’t	work.	Why?

It’s	probably	because	your	setup	commands	or	setup	procedure	are	using	clear-all,	causing	the	values	set	by	BehaviorSpace	to
be	cleared.

One	possible	workaround	is	to	change	your	experiment’s	setup	commands	to	preserve	the	value	of	the	variable,	e.g.:

let	old-var1	var1
setup
set	var1	old-var1

This	works	because	even	clear-all	doesn’t	clear	the	values	of	local	variables	made	with	let

Another	possible	workaround	is	to	change	your	model’s	setup	procedure	to	use	more	specific	clearing	commands	to	clear	only
what	you	want	cleared.

NetLogo	3D

Does	NetLogo	work	with	my	stereoscopic	device?

NetLogo	supports	fullscreen	exclusive	mode.	If	that	is	all	your	device	needs	then,	possibly	yes.	However,	it	can	be	tricky	to	get	it
working.	We	don’t	have	any	such	devices	so	it	is	difficult	for	us	to	make	the	process	easier.	If	your	device	needs	something	else,
for	example,	quadbuffers	enabled,	the	answer	is	probably	no.

Extensions

I’m	writing	an	extension.	Why	does	the	compiler	say	it	can’t	find	 org.nlogo.api?

You	need	to	add	NetLogo.jar	to	your	classpath	when	compiling.	NetLogo.jar	is	included	with	NetLogo.

NetLogo	Dictionary
NetLogo	6.4.0	User	Manual

Alphabetical:	A	B	C	D	E	F	G	H	I	J	L	M	N	O	P	R	S	T	U	V	W	X	Y	->

Categories:	Turtle	-	Patch	-	Links	-	Agentset	-	Color	-	Anonymous	Procedures	-	Control/Logic	-	World	
Perspective	-	Input/Output	-	File	-	List	-	String	-	Math	-	Plotting	-	System	-	HubNet

Special:	Variables	-	Keywords	-	Constants

Categories

This	is	an	approximate	grouping.	Remember	that	a	turtle-related	primitive	might	still	be	used	by	patches	or	the	observer,	and	vice	versa.	To
see	which	agents	(turtles,	patches,	links,	observer)	can	actually	run	a	primitive,	consult	its	dictionary	entry.

Turtle-related

back	(bk)	<breeds>-at	<breeds>-here	<breeds>-on	can-move?	clear-turtles	(ct)	create-<breeds>	create-ordered-<breeds>	create-ordered-
turtles	(cro)	create-turtles	(crt)	die	distance	distancexy	downhill	downhill4	dx	dy	face	facexy	forward	(fd)	hatch	hatch-<breeds>	hide-turtle	(ht)
home	inspect	is-<breed>?	is-turtle?	jump	layout-circle	left	(lt)	move-to	myself	nobody	no-turtles	of	other	patch-ahead	patch-at	patch-at-heading-
and-distance	patch-here	patch-left-and-ahead	patch-right-and-ahead	pen-down	(pd)	pen-erase	(pe)	pen-up	(pu)	random-xcor	random-ycor
right	(rt)	self	set-default-shape	__set-line-thickness	setxy	shapes	show-turtle	(st)	sprout	sprout-<breeds>	stamp	stamp-erase	stop-inspecting
subject	subtract-headings	tie	towards	towardsxy	turtle	turtle-set	turtles	turtles-at	turtles-here	turtles-on	turtles-own	untie	uphill	uphill4

Patch-related

clear-patches	(cp)	diffuse	diffuse4	distance	distancexy	import-pcolors	import-pcolors-rgb	inspect	is-patch?	myself	neighbors	neighbors4
nobody	no-patches	of	other	patch	patch-at	patch-ahead	patch-at-heading-and-distance	patch-here	patch-left-and-ahead	patch-right-and-ahead
patch-set	patches	patches-own	random-pxcor	random-pycor	self	sprout	sprout-<breeds>	stop-inspecting	subject	turtles-here

Link-related

both-ends	clear-links	create-<breed>-from	create-<breeds>-from	create-<breed>-to	create-<breeds>-to	create-<breed>-with	create-<breeds>-
with	create-link-from	create-links-from	create-link-to	create-links-to	create-link-with	create-links-with	die	directed-link-breed	hide-link	in-
<breed>-neighbor?	in-<breed>-neighbors	in-<breed>-from	in-link-neighbor?	in-link-neighbors	in-link-from	inspect	is-directed-link?	is-link?	is-
link-set?	is-<link-breed>?	is-undirected-link?	layout-radial	layout-spring	layout-tutte	<breed>-neighbor?	<breed>-neighbors	<breed>-with	link-
heading	link-length	link-neighbor?	link	links	links-own	<link-breeds>-own	link-neighbors	link-with	my-<breeds>	my-in-<breeds>	my-in-links	my-
links	my-out-<breeds>	my-out-links	no-links	other-end	out-<breed>-neighbor?	out-<breed>-neighbors	out-<breed>-to	out-link-neighbor?	out-
link-neighbors	out-link-to	show-link	stop-inspecting	tie	undirected-link-breed	untie

Agentset

all?	any?	ask	ask-concurrent	at-points	<breeds>-at	<breeds>-here	<breeds>-on	count	in-cone	in-radius	is-agent?	is-agentset?	is-patch-set?
is-turtle-set?	link-set	max-n-of	max-one-of	member?	min-n-of	min-one-of	n-of	neighbors	neighbors4	no-links	no-patches	no-turtles	of	one-of
other	patch-set	patches	sort	sort-by	sort-on	turtle-set	turtles	turtles-at	turtles-here	turtles-on	up-to-n-of	who-are-not	with	with-max	with-min

Color

approximate-hsb	approximate-rgb	base-colors	color	extract-hsb	extract-rgb	hsb	import-pcolors	import-pcolors-rgb	pcolor	rgb	scale-color
shade-of?	wrap-color

Control	flow	and	logic

and	ask	ask-concurrent	carefully	end	error	error-message	every	if	ifelse	ifelse-value	let	loop	not	or	repeat	report	run	runresult	;	(semicolon)	set
stop	startup	to	to-report	wait	while	with-local-randomness	without-interruption	xor

Anonymous	Procedures

->	(anonymous	procedure)	filter	foreach	is-anonymous-command?	is-anonymous-reporter?	map	n-values	reduce	run	runresult	sort-by

World

clear-all	(ca)	clear-drawing	(cd)	clear-globals	clear-patches	(cp)	clear-ticks	clear-turtles	(ct)	display	import-drawing	import-pcolors	import-
pcolors-rgb	no-display	max-pxcor	max-pycor	min-pxcor	min-pycor	patch-size	reset-ticks	resize-world	set-patch-size	stop-inspecting-dead-
agents	tick	tick-advance	ticks	world-width	world-height

Perspective

follow	follow-me	reset-perspective	(rp)	ride	ride-me	subject	watch	watch-me

HubNet

hubnet-broadcast	hubnet-broadcast-clear-output	hubnet-broadcast-message	hubnet-clear-override	hubnet-clear-overrides	hubnet-clients-list
hubnet-enter-message?	hubnet-exit-message?	hubnet-kick-all-clients	hubnet-kick-client	hubnet-fetch-message	hubnet-message	hubnet-
message-source	hubnet-message-tag	hubnet-message-waiting?	hubnet-reset	hubnet-reset-perspective	hubnet-send	hubnet-send-clear-output
hubnet-send-follow	hubnet-send-message	hubnet-send-override	hubnet-send-watch

Input/output

beep	clear-output	date-and-time	export-view	export-interface	export-output	export-plot	export-all-plots	export-world	import-drawing	import-
pcolors	import-pcolors-rgb	import-world	mouse-down?	mouse-inside?	mouse-xcor	mouse-ycor	output-print	output-show	output-type	output-

write	print	read-from-string	reset-timer	set-current-directory	show	timer	type	user-directory	user-file	user-new-file	user-input	user-message	user-
one-of	user-yes-or-no?	write

File

file-at-end?	file-close	file-close-all	file-delete	file-exists?	file-flush	file-open	file-print	file-read	file-read-characters	file-read-line	file-show	file-type
file-write	user-directory	user-file	user-new-file

List

but-first	but-last	empty?	filter	first	foreach	fput	histogram	insert-item	is-list?	item	last	length	list	lput	map	max	member?	min	modes	n-of	n-values
of	position	one-of	range	reduce	remove	remove-duplicates	remove-item	replace-item	reverse	sentence	shuffle	sort	sort-by	sort-on	sublist	up-
to-n-of

String

Operators	(<,	>,	=,	!=,	<=,	>=)	but-first	but-last	empty?	first	insert-item	is-string?	item	last	length	member?	position	remove	remove-item	read-
from-string	replace-item	reverse	substring	word

Mathematical

Arithmetic	Operators	(+,	*,	-,	/,	^,	<,	>,	=,	!=,	<=,	>=)	abs	acos	asin	atan	ceiling	cos	e	exp	floor	int	is-number?	ln	log	max	mean	median	min	mod
modes	new-seed	pi	precision	random	random-exponential	random-float	random-gamma	random-normal	random-poisson	random-seed
remainder	round	sin	sqrt	standard-deviation	subtract-headings	sum	tan	variance

Plotting

autoplot?	auto-plot-off	auto-plot-on	clear-all-plots	clear-plot	create-temporary-plot-pen	export-plot	export-all-plots	histogram	plot	plot-name	plot-
pen-exists?	plot-pen-down	plot-pen-reset	plot-pen-up	plot-x-max	plot-x-min	plot-y-max	plot-y-min	plotxy	set-current-plot	set-current-plot-pen
set-histogram-num-bars	set-plot-background-color	set-plot-pen-color	set-plot-pen-interval	set-plot-pen-mode	set-plot-x-range	set-plot-y-range
setup-plots	update-plots

BehaviorSpace

behaviorspace-experiment-name	behaviorspace-run-number

System

netlogo-version	netlogo-web?

Built-In	Variables

Turtles

breed	color	heading	hidden?	label	label-color	pen-mode	pen-size	shape	size	who	xcor	ycor

Patches

pcolor	plabel	plabel-color	pxcor	pycor

Links

breed	color	end1	end2	hidden?	label	label-color	shape	thickness	tie-mode

Keywords

breed	directed-link-breed	end	extensions	globals	__includes	links-own	patches-own	to	to-report	turtles-own	undirected-link-breed

Constants

Mathematical	Constants

e	=	2.718281828459045	
pi	=	3.141592653589793

Boolean	Constants

false	
true

Color	Constants

black	=	0	
gray	=	5	
white	=	9.9	
red	=	15	
orange	=	25	
brown	=	35	

Since	1.0

Since	1.3

Since	4.0

Since	1.0

Since	2.0

yellow	=	45	
green	=	55	
lime	=	65	
turquoise	=	75	
cyan	=	85	
sky	=	95	
blue	=	105	
violet	=	115	
magenta	=	125	
pink	=	135

See	the	Colors	section	of	the	Programming	Guide	for	more	details.

A

abs

abs	number

Reports	the	absolute	value	of	number.

show	abs	-7
=>	7
show	abs	5
=>	5

acos

acos	number

Reports	the	arc	cosine	(inverse	cosine)	of	the	given	number.	The	input	must	be	in	the	range	-1	to	1.	The	result	is	in	degrees,	and	lies	in	the
range	0	to	180.

all?

all?	agentset	[reporter]

Reports	true	if	all	of	the	agents	in	the	agentset	report	true	for	the	given	reporter.	Otherwise	reports	false	as	soon	as	a	counterexample	is
found.

If	the	agentset	is	empty,	reports	true.

The	reporter	must	report	a	boolean	value	for	every	agent	(either	true	or	false),	otherwise	an	error	occurs.

if	all?	turtles	[color	=	red]
		[show	"every	turtle	is	red!"]

See	also	any?.

and

boolean1	and	boolean2

Reports	true	if	both	boolean1	and	boolean2	are	true.	Otherwise	reports	false.

Note	that	if	boolean1	is	false,	then	boolean2	will	not	be	run	(since	it	can't	affect	the	result).	See	the	programming	guide	for	more	information
on	logical	operator	precedence.

if	(pxcor	>	0)	and	(pycor	>	0)
		[set	pcolor	blue]		;;	the	upper-right	quadrant	of
																							;;	patches	turn	blue

any?

any?	agentset

Reports	true	if	the	given	agentset	is	non-empty,	false	otherwise.

Equivalent	to	"count	agentset	>	0",	but	more	efficient	(and	arguably	more	readable).

if	any?	turtles	with	[color	=	red]
		[show	"at	least	one	turtle	is	red!"]

Note:	nobody	is	not	an	agentset.	You	only	get	nobody	back	in	situations	where	you	were	expecting	a	single	agent,	not	a	whole	agentset.	If
any?	gets	nobody	as	input,	an	error	results.

See	also	all?,	nobody.

Since	4.0

Since	4.0

Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0
Since	1.0

Since	1.3

approximate-hsb

approximate-hsb	hue	saturation	brightness

Reports	a	number	in	the	range	0	to	140,	not	including	140	itself,	that	represents	the	given	color,	specified	in	the	HSB	spectrum,	in	NetLogo's
color	space.

The	first	value	(hue)	should	be	in	the	range	of	0	to	360,	the	second	and	third	(saturation	and	brightness)	in	the	range	between	0	and	100.

The	color	reported	may	be	only	an	approximation,	since	the	NetLogo	color	space	does	not	include	all	possible	colors.

show	approximate-hsb	0	0	0
=>	0		;;	(black)
show	approximate-hsb	180	57.143	76.863
=>	85	;;	(cyan)

See	also	extract-hsb,	approximate-rgb,	extract-rgb.

approximate-rgb

approximate-rgb	red	green	blue

Reports	a	number	in	the	range	0	to	140,	not	including	140	itself,	that	represents	the	given	color,	specified	in	the	RGB	spectrum,	in	NetLogo's
color	space.

All	three	inputs	should	be	in	the	range	0	to	255.

The	color	reported	may	be	only	an	approximation,	since	the	NetLogo	color	space	does	not	include	all	possible	colors.

show	approximate-rgb	0	0	0
=>	0		;;	black
show	approximate-rgb	0	255	255
=>	85.2	;;	cyan

See	also	extract-rgb,	approximate-hsb,	and	extract-hsb.

Arithmetic	Operators
+
*
-
/
^
<
>
=
!=
<=
>=

All	of	these	operators	take	two	inputs,	and	all	act	as	"infix	operators"	(going	between	the	two	inputs,	as	in	standard	mathematical	use).
NetLogo	correctly	supports	order	of	operations	for	infix	operators.

The	operators	work	as	follows:	+	is	addition,	*	is	multiplication,	-	is	subtraction,	/	is	division,	^	is	exponentiation,	<	is	less	than,	>	is	greater
than,	=	is	equal	to,	!=	is	not	equal	to,	<=	is	less	than	or	equal,	>=	is	greater	than	or	equal.

Note	that	the	subtraction	operator	(-)	always	takes	two	inputs	unless	you	put	parentheses	around	it,	in	which	case	it	can	take	one	input.	For
example,	to	take	the	negative	of	x,	write	(-	x),	with	the	parentheses.

All	of	the	comparison	operators	also	work	on	strings.

All	of	the	comparison	operators	work	on	agents.	Turtles	are	compared	by	who	number.	Patches	are	compared	top	to	bottom	left	to	right,	so
patch	0	10	is	less	than	patch	0	9	and	patch	9	0	is	less	than	patch	10	0.	Links	are	ordered	by	end	points	and	in	case	of	a	tie	by	breed.	So	link	0
9	is	before	link	1	10	as	the	end1	is	smaller,	and	link	0	8	is	less	than	link	0	9.	If	there	are	multiple	breeds	of	links	unbreeded	links	will	come
before	breeded	links	of	the	same	end	points	and	breeded	links	will	be	sorted	in	the	order	they	are	declared	in	the	Code	tab.

Agentsets	can	be	tested	for	equality	or	inequality.	Two	agentsets	are	equal	if	they	are	the	same	type	(turtle	or	patch	or	link)	and	contain	the
same	agents.

If	you	are	not	sure	how	NetLogo	will	interpret	your	code,	you	should	add	parentheses.

show	5	*	6	+	6	/	3
=>	32
show	5	*	(6	+	6)	/	3
=>	20

Many	extension	objects	may	be	tested	for	equality	and	inequality	using	=	and	!=.	For	instance,	the	array,	matrix,	and	table	objects	returned	by
their	respective	extensions	may	be	compared	for	equality	/	inequality.	Extension	objects	may	not	be	tested	using	<,	>,	<=,	or	>=.

asin

Since	1.0

Since	4.0

Since	1.0

Since	1.0

asin	number

Reports	the	arc	sine	(inverse	sine)	of	the	given	number.	The	input	must	be	in	the	range	-1	to	1.	The	result	is	in	degrees,	and	lies	in	the	range	-
90	to	90.

ask

ask	agentset	[commands]
ask	agent	[commands]

The	specified	agent	or	agentset	runs	the	given	commands.	Because	agentset	members	are	always	read	in	a	random	order,	when	ask	is	used
with	an	agentset	each	agent	will	take	its	turn	in	a	random	order.	See	Agentsets	for	more	information.

ask	turtles	[fd	1]
		;;	all	turtles	move	forward	one	step
ask	patches	[set	pcolor	red]
		;;	all	patches	turn	red
ask	turtle	4	[rt	90]
		;;	only	the	turtle	with	id	4	turns	right

Note:	only	the	observer	can	ask	all	turtles	or	all	patches.	This	prevents	you	from	inadvertently	having	all	turtles	ask	all	turtles	or	all	patches	ask
all	patches,	which	is	a	common	mistake	to	make	if	you're	not	careful	about	which	agents	will	run	the	code	you	are	writing.

Note:	Only	the	agents	that	are	in	the	agentset	at	the	time	the	ask	begins	run	the	commands.

ask-concurrent

ask-concurrent	agentset	[commands]

This	primitive	exists	only	for	backwards	compatibility.	We	don't	recommend	using	it	new	models.

The	agents	in	the	given	agentset	run	the	given	commands,	using	a	turn-taking	mechanism	to	produce	simulated	concurrency.	See	the	Ask-
Concurrent	section	of	the	Programming	Guide	for	details	on	how	this	works.

Note:	Only	the	agents	that	are	in	the	agentset	at	the	time	the	ask	begins	run	the	commands.

See	also	without-interruption.

at-points

agentset	at-points	[[x1	y1]	[x2	y2]	...]

Reports	a	subset	of	the	given	agentset	that	includes	only	the	agents	on	the	patches	at	the	given	coordinates	(relative	to	this	agent).	The
coordinates	are	specified	as	a	list	of	two-item	lists,	where	the	two	items	are	the	x	and	y	offsets.

If	the	caller	is	the	observer,	then	the	points	are	measured	relative	to	the	origin,	in	other	words,	the	points	are	taken	as	absolute	patch
coordinates.

If	the	caller	is	a	turtle,	the	points	are	measured	relative	to	the	turtle's	exact	location,	and	not	from	the	center	of	the	patch	under	the	turtle.

ask	turtles	at-points	[[2	4]	[1	2]	[10	15]]
		[fd	1]		;;	only	the	turtles	on	the	patches	at	the
												;;	coordinates	(2,4),	(1,2)	and	(10,15),
												;;	relative	to	the	caller,	move

atan

atan	x	y

Converts	x	and	y	offsets	to	a	turtle	heading	in	degrees	(from	0	to	360).

Note	that	this	version	of	atan	is	designed	to	conform	to	the	geometry	of	the	NetLogo	world,	where	a	heading	of	0	is	straight	up,	90	is	to	the
right,	and	so	on	clockwise	around	the	circle.	(Normally	in	geometry	an	angle	of	0	is	right,	90	is	up,	and	so	on,	counterclockwise	around	the
circle,	and	atan	would	be	defined	accordingly.)

When	y	is	0:	if	x	is	positive,	it	reports	90;	if	x	is	negative,	it	reports	270;	if	x	is	zero,	you	get	an	error.

show	atan	1	-1
=>	135
show	atan	-1	1
=>	315
crt	1	[set	heading	30		fd	1		print	atan	xcor	ycor]
=>	30

In	the	final	example,	note	that	the	result	of	atan	equals	the	turtle's	heading.

If	you	ever	need	to	convert	a	turtle	heading	(obtained	with	atan	or	otherwise)	to	a	normal	mathematical	angle,	the	following	should	be	helpful:

to-report	heading-to-angle	[h]
		report	(90	-	h)	mod	360
end

Since	1.0

Since	1.0
Since	1.0

Since	1.0
Since	1.0

Since	4.0

Since	2.1

Since	5.2

Since	4.1.1

autoplot?

autoplot?

Reports	true	if	auto-plotting	is	on	for	the	current	plot,	false	otherwise.

auto-plot-off
auto-plot-on

auto-plot-off
auto-plot-on

This	pair	of	commands	is	used	to	control	the	NetLogo	feature	of	auto-plotting	in	the	current	plot.	Auto-plotting	will	automatically	update	the	x
and	y	axes	of	the	plot	whenever	the	current	pen	exceeds	these	boundaries	when	adding	a	new	point	with	plot	or	plotxy.	When	using
histogram	to	plot	values,	only	the	y	axis	will	automatically	update	its	ranges,	the	x	axis	will	be	unchanged.	Each	plot	has	an	auto-plotting
setting	called	Auto	Scale?	in	the	user	interface	that	determines	if	the	plot	will	enable	auto-plotting	when	the	model	starts.	Auto-plotting	is
useful	when	wanting	to	show	all	plotted	values	in	the	current	plot,	regardless	of	the	current	plot	ranges.

These	commands	will	produce	a	runtime	error	if	the	current	plot	has	not	been	set.

See	also	plot,	plotxy,	and	histogram,	and	also	the	Plots	section	of	the	Interface	Tab	guide.

B

back
bk

back	number

The	turtle	moves	backward	by	number	steps.	(If	number	is	negative,	the	turtle	moves	forward.)

Turtles	using	this	primitive	can	move	a	maximum	of	one	unit	per	time	increment.	So	bk	0.5	and	bk	1	both	take	one	unit	of	time,	but	bk	3	takes
three.

If	the	turtle	cannot	move	backward	number	steps	because	it	is	not	permitted	by	the	current	topology	the	turtle	will	complete	as	many	steps	of
1	as	it	can	and	stop.

See	also	forward,	jump,	can-move?.

base-colors

base-colors

Reports	a	list	of	the	14	basic	NetLogo	hues.

print	base-colors
=>	[5	15	25	35	45	55	65	75	85	95	105	115	125	135]
ask	turtles	[set	color	one-of	base-colors]
;;	each	turtle	turns	a	random	base	color
ask	turtles	[set	color	one-of	remove	gray	base-colors]
;;	each	turtle	turns	a	random	base	color	except	for	gray

beep

beep

Emits	a	beep.	Note	that	the	beep	sounds	immediately,	so	several	beep	commands	in	close	succession	may	produce	only	one	audible	sound.

Example:

beep																							;;	emits	one	beep
repeat	3	[beep]										;;	emits	3	beeps	at	once,
																											;;	so	you	only	hear	one	sound
repeat	3	[beep	wait	0.1]	;;	produces	3	beeps	in	succession,
																											;;	separated	by	1/10th	of	a	second

When	running	headless,	this	command	has	no	effect.

behaviorspace-experiment-name

behaviorspace-experiment-name

Reports	the	current	experiment	name	in	the	current	experiment.

If	no	BehaviorSpace	experiment	is	running,	reports	"".

behaviorspace-run-number

Since	4.0

Since	1.0
Since	1.0
Since	1.0

behaviorspace-run-number

Reports	the	current	run	number	in	the	current	BehaviorSpace	experiment,	starting	at	1.

If	no	BehaviorSpace	experiment	is	running,	reports	0.

both-ends

both-ends

Reports	the	agentset	of	the	2	nodes	connected	by	this	link.

crt	2
ask	turtle	0	[create-link-with	turtle	1]
ask	link	0	1	[
		ask	both-ends	[set	color	red]	;;	turtles	0	and	1	both	turn	red
]

breed

breed
	

This	is	a	built-in	turtle	and	link	variable.	It	holds	the	agentset	of	all	turtles	or	links	of	the	same	breed	as	this	turtle	or	link.	(For	turtles	or	links
that	do	not	have	any	particular	breed,	this	is	the	turtles	agentset	of	all	turtles	or	the	links	agentset	of	all	links	respectively.)

You	can	set	this	variable	to	change	a	turtle	or	link's	breed.	(When	a	turtle	changes	breeds,	its	shape	is	reset	to	the	default	shape	for	that
breed.	See	set-default-shape.)

See	also	breed,	directed-link-breed,	undirected-link-breed

Example:

breed	[cats	cat]
breed	[dogs	dog]
;;	turtle	code:
if	breed	=	cats	[show	"meow!"]
set	breed	dogs
show	"woof!"

directed-link-breed	[roads	road]
;;	link	code
if	breed	=	roads	[set	color	gray]

breed

breed	[<breeds>	<breed>]

This	keyword,	like	the	globals,	turtles-own,	and	patches-own	keywords,	can	only	be	used	at	the	beginning	of	the	Code	tab,	before	any
procedure	definitions.	It	defines	a	breed.	The	first	input	defines	the	name	of	the	agentset	associated	with	the	breed.	The	second	input	defines
the	name	of	a	single	member	of	the	breed.

Any	turtle	of	the	given	breed:

is	part	of	the	agentset	named	by	the	breed	name
has	its	breed	built-in	variable	set	to	that	agentset

Most	often,	the	agentset	is	used	in	conjunction	with	ask	to	give	commands	to	only	the	turtles	of	a	particular	breed.

breed	[mice	mouse]
breed	[frogs	frog]
to	setup
		clear-all
		create-mice	50
		ask	mice	[set	color	white]
		create-frogs	50
		ask	frogs	[set	color	green]
		show	[breed]	of	one-of	mice				;;	prints	mice
		show	[breed]	of	one-of	frogs			;;	prints	frogs
end

show	mouse	1
;;	prints	(mouse	1)
show	frog	51
;;	prints	(frog	51)
show	turtle	51
;;	prints	(frog	51)

See	also	globals,	patches-own,	turtles-own,	<breeds>-own,	create-<breeds>,	<breeds>-at,	<breeds>-here.

but-first
butfirst
bf

Since	1.0
Since	1.0
Since	1.0

Since	3.1

Since	2.1

Since	1.0

Since	1.0
Since	1.0

Since	1.0

but-last
butlast
bl

but-first	list
but-first	string
but-last	list
but-last	string

When	used	on	a	list,	but-first	reports	all	of	the	list	items	of	list	except	the	first,	and	but-last	reports	all	of	the	list	items	of	list	except	the	last.

On	strings,	but-first	and	but-last	report	a	shorter	string	omitting	the	first	or	last	character	of	the	original	string.

;;	mylist	is	[2	4	6	5	8	12]
set	mylist	but-first	mylist
;;	mylist	is	now	[4	6	5	8	12]
set	mylist	but-last	mylist
;;	mylist	is	now	[4	6	5	8]
show	but-first	"string"
;;	prints	"tring"
show	but-last	"string"
;;	prints	"strin"

C

can-move?

can-move?	distance

Reports	true	if	this	turtle	can	move	distance	in	the	direction	it	is	facing	without	violating	the	topology;	reports	false	otherwise.

It	is	equivalent	to:

										patch-ahead	distance	!=	nobody

carefully

carefully	[commands1]	[commands2]

Runs	commands1.	If	a	runtime	error	occurs	inside	commands1,	NetLogo	won't	stop	and	alert	the	user	that	an	error	occurred.	It	will	suppress
the	error	and	run	commands2	instead.

The	error-message	reporter	can	be	used	in	commands2	to	find	out	what	error	was	suppressed	in	commands1.	See	error-message.

carefully	[print	one-of	[1	2	3]]	[print	error-message]
=>	3
observer>	carefully	[print	one-of	[]]	[print	error-message]
=>	ONE-OF	got	an	empty	list	as	input.

ceiling

ceiling	number

Reports	the	smallest	integer	greater	than	or	equal	to	number.

show	ceiling	4.5
=>	5
show	ceiling	-4.5
=>	-4

See	also	floor,	round,	precision.

clear-all
ca

clear-all

Combines	the	effects	of	clear-globals,	clear-ticks,	clear-turtles,	clear-patches,	clear-drawing,	clear-all-plots,	and	clear-output.

clear-all-plots

clear-all-plots

Clears	every	plot	in	the	model.	See	clear-plot	for	more	information.

Since	3.0
Since	3.0

Since	5.2

Since	4.0

Since	1.0

Since	1.0
Since	1.0

Since	5.0

Since	1.0
Since	1.0

clear-drawing
cd

clear-drawing

Clears	all	lines	and	stamps	drawn	by	turtles.

clear-globals

clear-globals

Sets	all	code-defined	global	variables	(i.e.,	those	defined	inside	of	globals	[...])	to	0.	Global	variables	defined	by	widgets	are	not	affected
by	this	primitive.

clear-links

clear-links

Kills	all	links.

See	also	die.

clear-output

clear-output

Clears	all	text	from	the	model's	output	area,	if	it	has	one.	Otherwise	does	nothing.

clear-patches
cp

clear-patches

Clears	the	patches	by	resetting	all	patch	variables	to	their	default	initial	values,	including	setting	their	color	to	black.

clear-plot

clear-plot

In	the	current	plot	only,	resets	all	plot	pens,	deletes	all	temporary	plot	pens,	resets	the	plot	to	its	default	values	(for	x	range,	y	range,	etc.),	and
resets	all	permanent	plot	pens	to	their	default	values.	The	default	values	for	the	plot	and	for	the	permanent	plot	pens	are	set	in	the	plot	Edit
dialog,	which	is	displayed	when	you	edit	the	plot.	If	there	are	no	plot	pens	after	deleting	all	temporary	pens,	that	is	to	say	if	there	are	no
permanent	plot	pens,	a	default	plot	pen	will	be	created	with	the	following	initial	settings:

Pen:	down
Color:	black
Mode:	0	(line	mode)
Name:	"default"
Interval:	1

See	also	clear-all-plots.

This	command	will	produce	a	runtime	error	if	the	current	plot	has	not	been	set.

clear-ticks

clear-ticks

Clears	the	tick	counter.

Does	not	set	the	counter	to	zero.	After	this	command	runs,	the	tick	counter	has	no	value.	Attempting	to	access	or	update	it	is	an	error	until
reset-ticks	is	called.	This	is	useful	if	you	want	to	set	the	model	to	a	"pre-setup"	state	with	some	forever	buttons	disabled.

See	also	reset-ticks.

clear-turtles
ct

clear-turtles

Kills	all	turtles.

Since	1.0

Since	1.0

Since	4.0
Since	4.0

Since	4.0
Since	4.0
Since	4.0
Since	4.0
Since	4.0
Since	4.0

Also	resets	the	who	numbering,	so	the	next	turtle	created	will	be	turtle	0.

See	also	die.

color

color
	

This	is	a	built-in	turtle	or	link	variable.	It	holds	the	color	of	the	turtle	or	link.	You	can	set	this	variable	to	make	the	turtle	or	link	change	color.
Color	can	be	represented	either	as	a	NetLogo	color	(a	single	number),	or	an	RGB	color	(a	list	of	3	numbers	or	4	numbers	with	transparency).
See	details	in	the	Colors	section	of	the	Programming	Guide.

See	also	pcolor.

cos

cos	number

Reports	the	cosine	of	the	given	angle.	Assumes	the	angle	is	given	in	degrees.

show	cos	180
=>	-1

count

count	agentset

Reports	the	number	of	agents	in	the	given	agentset.

show	count	turtles
;;	prints	the	total	number	of	turtles
show	count	patches	with	[pcolor	=	red]
;;	prints	the	total	number	of	red	patches

create-ordered-turtles
cro

create-ordered-turtles	number
create-ordered-turtles	number	[commands]
create-ordered<breeds>	number
create-ordered<breeds>	number	[commands]

Creates	number	new	turtles.	New	turtles	start	at	position	(0,	0),	are	created	with	the	14	primary	colors,	and	have	headings	from	0	to	360,
evenly	spaced.

If	the	create-ordered-<breeds>	form	is	used,	the	new	turtles	are	created	as	members	of	the	given	breed.

If	commands	are	supplied,	the	new	turtles	immediately	run	them.	This	is	useful	for	giving	the	new	turtles	a	different	color,	heading,	or
whatever.	(The	new	turtles	are	created	all	at	once	then	run	one	at	a	time,	in	random	order.)

If	number	is	fractional,	it	will	be	rounded	down	to	the	nearest	integer	(4.5	becomes	4,	10.9	becomes	10).

cro	100	[fd	10]		;;	makes	an	evenly	spaced	circle

create-<breed>-to
create-<breeds>-to
create-<breed>-from
create-<breeds>-from
create-<breed>-with
create-<breeds>-with
create-link-to
create-links-to
create-link-from
create-links-from
create-link-with
create-links-with

create-<breed>-to	turtle
create-<breed>-to	turtle	[commands]
create-<breed>-from	turtle
create-<breed>-from	turtle	[commands]
create-<breed>-with	turtle
create-<breed>-with	turtle	[commands]
create-<breeds>-to	turtleset
create-<breeds>-to	turtleset	[commands]

Since	1.0
Since	1.0

create-<breeds>-from	turtleset
create-<breeds>-from	turtleset	[commands]
create-<breeds>-with	turtleset
create-<breeds>-with	turtleset	[commands]
create-link-to	turtle
create-link-to	turtle	[commands]
create-link-from	turtle
create-link-from	turtle	[commands]
create-link-with	turtle
create-link-with	turtle	[commands]
create-links-to	turtleset
create-links-to	turtleset	[commands]
create-links-from	turtleset
create-links-from	turtleset	[commands]
create-links-with	turtleset
create-links-with	turtleset	[commands]

Used	for	creating	breeded	and	unbreeded	links	between	turtles.

create-link-with	creates	an	undirected	link	between	the	caller	and	agent.	create-link-to	creates	a	directed	link	from	the	caller	to	agent.
create-link-from	creates	a	directed	link	from	agent	to	the	caller.

When	the	plural	form	of	the	breed	name	is	used,	an	agentset	is	expected	instead	of	an	agent	and	links	are	created	between	the	caller	and	all
agents	in	the	agentset.

The	optional	command	block	is	the	set	of	commands	each	newly	formed	link	runs.	(The	links	are	created	all	at	once	then	run	one	at	a	time,	in
random	order.)

A	node	cannot	be	linked	to	itself.	Also,	you	cannot	have	more	than	one	undirected	link	of	the	same	breed	between	the	same	two	nodes,	nor
can	you	have	more	than	one	directed	link	of	the	same	breed	going	in	the	same	direction	between	two	nodes.

If	you	try	to	create	a	link	where	one	(of	the	same	breed)	already	exists,	nothing	happens.	If	you	try	to	create	a	link	from	a	turtle	to	itself	you	get
a	runtime	error.

to	setup
		clear-all
		create-turtles	5
		;;	turtle	1	creates	links	with	all	other	turtles
		;;	the	link	between	the	turtle	and	itself	is	ignored
		ask	turtle	0	[create-links-with	other	turtles]
		show	count	links	;;	shows	4
		;;	this	does	nothing	since	the	link	already	exists
		ask	turtle	0	[create-link-with	turtle	1]
		show	count	links	;;	shows	4	since	the	previous	link	already	existed
		ask	turtle	2	[create-link-with	turtle	1]
		show	count	links	;;	shows	5
end

directed-link-breed	[red-links	red-link]
undirected-link-breed	[blue-links	blue-link]

to	setup
		clear-all
		create-turtles	5
		;;	create	links	in	both	directions	between	turtle	0
		;;	and	all	other	turtles
		ask	turtle	0	[create-red-links-to	other	turtles]
		ask	turtle	0	[create-red-links-from	other	turtles]
		show	count	links	;;	shows	8
		;;	now	create	undirected	links	between	turtle	0	and	other	turtles
		ask	turtle	0	[create-blue-links-with	other	turtles]
		show	count	links	;;	shows	12
end

create-turtles
crt

create-turtles	number
create-turtles	number	[commands]
create-<breeds>	number
create-<breeds>	number	[commands]

Creates	number	new	turtles	at	the	origin.	New	turtles	have	random	integer	headings	and	the	color	is	randomly	selected	from	the	14	primary
colors.

If	the	create-<breeds>	form	is	used,	the	new	turtles	are	created	as	members	of	the	given	breed.

If	commands	are	supplied,	the	new	turtles	immediately	run	them.	This	is	useful	for	giving	the	new	turtles	a	different	color,	heading,	or
whatever.	(The	new	turtles	are	created	all	at	once	then	run	one	at	a	time,	in	random	order.)

If	number	is	fractional,	it	will	be	rounded	down	to	the	nearest	integer	(4.5	becomes	4,	10.9	becomes	10).

crt	100	[fd	10]					;;	makes	a	randomly	spaced	circle

breed	[canaries	canary]

Since	1.1

Since	3.0

Since	1.0

Since	1.0

breed	[snakes	snake]
to	setup
		clear-all
		create-canaries	50	[set	color	yellow]
		create-snakes	50	[set	color	green]
end

See	also	hatch,	sprout.

create-temporary-plot-pen

create-temporary-plot-pen	string

A	new	temporary	plot	pen	with	the	given	name	is	created	in	the	current	plot	and	set	to	be	the	current	pen.

Few	models	will	want	to	use	this	primitive,	because	all	temporary	pens	disappear	when	clear-plot	or	clear-all-plots	are	called.	The	normal	way
to	make	a	pen	is	to	make	a	permanent	pen	in	the	plot's	Edit	dialog.

If	a	pen	with	that	name	already	exists	in	the	current	plot,	no	new	pen	is	created,	and	the	existing	pen	is	set	to	the	current	pen.

The	new	temporary	plot	pen	has	the	following	initial	settings:

Pen:	down
Color:	black
Mode:	0	(line	mode)
Interval:	1

This	command	will	produce	a	runtime	error	if	the	current	plot	has	not	been	set.

See:	clear-plot,	clear-all-plots,	and	set-current-plot-pen.

D

date-and-time

date-and-time

Reports	a	string	containing	the	current	date	and	time.	The	format	is	shown	below.	All	fields	are	fixed	width,	so	they	are	always	at	the	same
locations	in	the	string.	The	potential	resolution	of	the	clock	is	milliseconds.	(Whether	you	get	resolution	that	high	in	practice	may	vary	from
system	to	system,	depending	on	the	capabilities	of	the	underlying	Java	Virtual	Machine.)

show	date-and-time
=>	"01:19:36.685	PM	19-Sep-2002"

die

die
	

The	turtle	or	link	dies.

if	xcor	>	20	[die]
;;	all	turtles	with	xcor	greater	than	20	die
ask	links	with	[color	=	blue]	[die]
;;	all	the	blue	links	will	die

A	dead	agent	ceases	to	exist.	The	effects	of	this	include:

The	agent	will	not	execute	any	further	code.	So	if	you	write	ask	turtles	[die	print	"last	words?"] ,	no	last	words	will	be	printed,
because	the	turtles	are	already	dead	before	they	have	a	chance	to	print	anything.
The	agent	will	disappear	from	any	agentsets	it	was	in,	reducing	the	size	of	those	agentsets	by	one.
Any	variable	that	was	storing	the	agent	will	now	instead	have	nobody	in	it.	So	for	example	let	x	one-of	turtles	ask	x	[die]	print	x
prints	nobody.
If	the	dead	agent	was	a	turtle,	every	link	connected	to	it	also	dies.
If	the	observer	was	watching	or	following	the	agent,	the	observer's	perspective	resets,	as	if	reset-perspective	had	been	run.

See	also:	clear-turtles	clear-links

diffuse

diffuse	patch-variable	number

Tells	each	patch	to	give	equal	shares	of	(number	*	100)	percent	of	the	value	of	patch-variable	to	its	eight	neighboring	patches.	number	should
be	between	0	and	1.	Regardless	of	topology	the	sum	of	patch-variable	will	be	conserved	across	the	world.	(If	a	patch	has	fewer	than	eight
neighbors,	each	neighbor	still	gets	an	eighth	share;	the	patch	keeps	any	leftover	shares.)

Note	that	this	is	an	observer	command	only,	even	though	you	might	expect	it	to	be	a	patch	command.	(The	reason	is	that	it	acts	on	all	the
patches	at	once	--	patch	commands	act	on	individual	patches.)

diffuse	chemical	0.5

Since	1.0

Since	1.0

Since	1.0

;;	each	patch	diffuses	50%	of	its	variable
;;	chemical	to	its	neighboring	8	patches.	Thus,
;;	each	patch	gets	1/8	of	50%	of	the	chemical
;;	from	each	neighboring	patch.)

diffuse4

diffuse4	patch-variable	number

Like	diffuse,	but	only	diffuses	to	the	four	neighboring	patches	(to	the	north,	south,	east,	and	west),	not	to	the	diagonal	neighbors.

diffuse4	chemical	0.5
;;	each	patch	diffuses	50%	of	its	variable
;;	chemical	to	its	neighboring	4	patches.	Thus,
;;	each	patch	gets	1/4	of	50%	of	the	chemical
;;	from	each	neighboring	patch.)

directed-link-breed

directed-link-breed	[<link-breeds>	<link-breed>]

This	keyword,	like	the	globals	and	breeds	keywords,	can	only	be	used	at	the	beginning	of	the	Code	tab,	before	any	procedure	definitions.	It
defines	a	directed	link	breed.	Links	of	a	particular	breed	are	always	all	directed	or	all	undirected	The	first	input	defines	the	name	of	the
agentset	associated	with	the	link	breed.	The	second	input	defines	the	name	of	a	single	member	of	the	breed.	Directed	links	can	be	created
using	create-link(s)-to,	and	create-link(s)-from,	but	not	create-link(s)-with

Any	link	of	the	given	link	breed:

is	part	of	the	agentset	named	by	the	link	breed	name
has	its	built-in	variable	breed	set	to	that	agentset
is	directed	or	undirected	as	declared	by	the	keyword

Most	often,	the	agentset	is	used	in	conjunction	with	ask	to	give	commands	to	only	the	links	of	a	particular	breed.

directed-link-breed	[streets	street]
directed-link-breed	[highways	highway]
to	setup
		clear-all
		crt	2
		;;	create	a	link	from	turtle	0	to	turtle	1
		ask	turtle	0	[create-street-to	turtle	1]
		;;	create	a	link	from	turtle	1	to	turtle	0
		ask	turtle	0	[create-highway-from	turtle	1]
end

ask	turtle	0	[show	one-of	my-in-links]
;;	prints	(street	0	1)
ask	turtle	0	[show	one-of	my-out-links]
;;	prints	(highway	1	0)

See	also	breed,	undirected-link-breed

display

display

Causes	the	view	to	be	updated	immediately.	(Exception:	if	the	user	is	using	the	speed	slider	to	fast-forward	the	model,	then	the	update	may
be	skipped.)

Also	undoes	the	effect	of	the	no-display	command,	so	that	if	view	updates	were	suspended	by	that	command,	they	will	resume.

no-display
ask	turtles	[jump	10	set	color	blue	set	size	5]
display
;;	turtles	move,	change	color,	and	grow,	with	none	of
;;	their	intermediate	states	visible	to	the	user,	only
;;	their	final	state

Even	if	no-display	was	not	used,	"display"	can	still	be	useful,	because	ordinarily	NetLogo	is	free	to	skip	some	view	updates,	so	that	fewer	total
updates	take	place,	so	that	models	run	faster.	This	command	lets	you	force	a	view	update,	so	whatever	changes	have	taken	place	in	the
world	are	visible	to	the	user.

ask	turtles	[set	color	red]
display
ask	turtles	[set	color	blue]
;;	turtles	turn	red,	then	blue;	use	of	"display"	forces
;;	red	turtles	to	appear	briefly

Note	that	display	and	no-display	operate	independently	of	the	switch	in	the	view	control	strip	that	freezes	the	view.

See	also	no-display.

distance

Since	1.0

Since	1.0
Since	1.0

Since	1.0
Since	1.0

Since	1.0

distance	agent
	

Reports	the	distance	from	this	agent	to	the	given	turtle	or	patch.

The	distance	to	or	a	from	a	patch	is	measured	from	the	center	of	the	patch.	Turtles	and	patches	use	the	wrapped	distance	(around	the	edges
of	the	world)	if	wrapping	is	allowed	by	the	topology	and	the	wrapped	distance	is	shorter.

ask	turtles	[show	max-one-of	turtles	[distance	myself]]
;;	each	turtle	prints	the	turtle	farthest	from	itself

distancexy

distancexy	x	y
	

Reports	the	distance	from	this	agent	to	the	point	(x,	y).

The	distance	from	a	patch	is	measured	from	the	center	of	the	patch.	Turtles	and	patches	use	the	wrapped	distance	(around	the	edges	of	the
world)	if	wrapping	is	allowed	by	the	topology	and	the	wrapped	distance	is	shorter.

if	(distancexy	0	0)	>	10
		[set	color	green]
;;	all	turtles	more	than	10	units	from
;;	the	center	of	the	world	turn	green.

downhill
downhill4

downhill	patch-variable
downhill4	patch-variable

Moves	the	turtle	to	the	neighboring	patch	with	the	lowest	value	for	patch-variable.	If	no	neighboring	patch	has	a	smaller	value	than	the	current
patch,	the	turtle	stays	put.	If	there	are	multiple	patches	with	the	same	lowest	value,	the	turtle	picks	one	randomly.	Non-numeric	values	are
ignored.

downhill	considers	the	eight	neighboring	patches;	downhill4	only	considers	the	four	neighbors.

Equivalent	to	the	following	code	(assumes	variable	values	are	numeric):

										move-to	patch-here		;;	go	to	patch	center
										let	p	min-one-of	neighbors	[patch-variable]		;;	or	neighbors4
										if	[patch-variable]	of	p	<	patch-variable	[
										face	p
										move-to	p
]

Note	that	the	turtle	always	ends	up	on	a	patch	center	and	has	a	heading	that	is	a	multiple	of	45	(downhill)	or	90	(downhill4).

See	also	uphill,	uphill4.

dx
dy

dx
dy

Reports	the	x-increment	or	y-increment	(the	amount	by	which	the	turtle's	xcor	or	ycor	would	change)	if	the	turtle	were	to	take	one	step	forward
in	its	current	heading.

Note:	dx	is	simply	the	sine	of	the	turtle's	heading,	and	dy	is	simply	the	cosine.	(If	this	is	the	reverse	of	what	you	expected,	it's	because	in
NetLogo	a	heading	of	0	is	north	and	90	is	east,	which	is	the	reverse	of	how	angles	are	usually	defined	in	geometry.)

Note:	In	earlier	versions	of	NetLogo,	these	primitives	were	used	in	many	situations	where	the	new	patch-ahead	primitive	is	now	more
appropriate.

E

empty?

empty?	list
empty?	string

Reports	true	if	the	given	list	or	string	is	empty,	false	otherwise.

Note:	the	empty	list	is	written	[].	The	empty	string	is	written	"".

Since	4.0

Since	4.0

Since	5.0

Since	2.1

Since	1.0

Since	1.0

end

end

Used	to	conclude	a	procedure.	See	to	and	to-report.

end1

end1

This	is	a	built-in	link	variable.	It	indicates	the	first	endpoint	(turtle)	of	a	link.	For	directed	links	this	will	always	be	the	source	for	undirected	links
it	will	always	be	the	turtle	with	the	lower	who	number.	You	cannot	set	end1.

crt	2
ask	turtle	0
[create-link-to	turtle	1]
ask	links
[show	end1]	;;	shows	turtle	0

end2

end2

This	is	a	built-in	link	variable.	It	indicates	the	second	endpoint	(turtle)	of	a	link.	For	directed	links	this	will	always	be	the	destination	for
undirected	links	it	will	always	be	the	turtle	with	the	higher	who	number.	You	cannot	set	end2.

crt	2
ask	turtle	1
[create-link-with	turtle	0]
ask	links
[show	end2]	;;	shows	turtle	1

error

error	value

Causes	a	runtime	error	to	occur.

The	given	value	is	converted	to	a	string	(if	it	isn't	one	already)	and	used	as	the	error	message.

See	also	error-message,	carefully.

error-message

error-message

Reports	a	string	describing	the	error	that	was	suppressed	by	carefully.

This	reporter	can	only	be	used	in	the	second	block	of	a	carefully	command.

See	also	error,	carefully.

every

every	number	[commands]

Runs	the	given	commands	only	if	it's	been	more	than	number	seconds	since	the	last	time	this	agent	ran	them	in	this	context.	Otherwise,	the
commands	are	skipped.

By	itself,	every	doesn't	make	commands	run	over	and	over	again.	You	need	to	use	every	inside	a	loop,	or	inside	a	forever	button,	if	you	want
the	commands	run	over	and	over	again.	every	only	limits	how	often	the	commands	run.

Above,	"in	this	context"	means	during	the	same	ask	(or	button	press	or	command	typed	in	the	Command	Center).	So	it	doesn't	make	sense	to
write	ask	turtles	[every	0.5	[...]],	because	when	the	ask	finishes	the	turtles	will	all	discard	their	timers	for	the	"every".	The	correct
usage	is	shown	below.

every	0.5	[ask	turtles	[fd	1]]
;;	twice	a	second	the	turtles	will	move	forward	1
every	2	[set	index	index	+	1]
;;	every	2	seconds	index	is	incremented

See	also	wait.

exp

exp	number

Since	3.0
Since	2.0
Since	1.0
Since	1.0

Since	1.2.1
Since	1.0

Since	1.0

Reports	the	value	of	e	raised	to	the	number	power.

Note:	This	is	the	same	as	e	^	number.

export-view
export-interface
export-output
export-plot
export-all-plots
export-world

export-view	filename
export-interface	filename
export-output	filename
export-plot	plotname	filename
export-all-plots	filename
export-world	filename

export-view	writes	the	current	contents	of	the	current	view	to	an	external	file	given	by	the	string	filename.	The	file	is	saved	in	PNG	(Portable
Network	Graphics)	format,	so	it	is	recommended	to	supply	a	filename	ending	in	".png".

export-interface	is	similar,	but	for	the	whole	interface	tab.

Note	that	export-view	still	works	when	running	NetLogo	in	headless	mode,	but	export-interface	doesn't.

export-output	writes	the	contents	of	the	model's	output	area	to	an	external	file	given	by	the	string	filename.	(If	the	model	does	not	have	a
separate	output	area,	the	output	portion	of	the	Command	Center	is	used.)

export-plot	writes	the	x	and	y	values	of	all	points	plotted	by	all	the	plot	pens	in	the	plot	given	by	the	string	plotname	to	an	external	file	given	by
the	string	filename.	If	a	pen	is	in	bar	mode	(mode	0)	and	the	y	value	of	the	point	plotted	is	greater	than	0,	the	upper-left	corner	point	of	the	bar
will	be	exported.	If	the	y	value	is	less	than	0,	then	the	lower-left	corner	point	of	the	bar	will	be	exported.

export-all-plots	writes	every	plot	in	the	current	model	to	an	external	file	given	by	the	string	filename.	Each	plot	is	identical	in	format	to	the
output	of	export-plot.

export-world	writes	the	values	of	all	variables,	both	built-in	and	user-defined,	including	all	observer,	turtle,	and	patch	variables,	the	drawing,
the	contents	of	the	output	area	if	one	exists,	the	contents	of	any	plots	and	the	state	of	the	random	number	generator,	to	an	external	file	given
by	the	string	filename.	(The	result	file	can	be	read	back	into	NetLogo	with	the	import-world	primitive.)	export-world	does	not	save	the	state	of
open	files.

export-plot,	export-all-plots	and	export-world	save	files	in	in	plain-text,	"comma-separated	values"	(.csv)	format.	CSV	files	can	be	read	by	most
popular	spreadsheet	and	database	programs	as	well	as	any	text	editor.

If	you	wish	to	export	to	a	file	in	a	location	other	than	the	model's	location,	you	should	include	the	full	path	to	the	file	you	wish	to	export.	(Use
the	forward-slash	"/"	as	the	folder	separator.)

Note	that	the	functionality	of	these	primitives	is	also	available	directly	from	NetLogo's	File	menu.

export-world	"fire.csv"
;;	exports	the	state	of	the	model	to	the	file	fire.csv
;;	located	in	the	NetLogo	folder
export-plot	"Temperature"	"c:/My	Documents/plot.csv"
;;	exports	the	plot	named
;;	"Temperature"	to	the	file	plot.csv	located	in
;;	the	C:\My	Documents	folder
export-all-plots	"c:/My	Documents/plots.csv"
;;	exports	all	plots	to	the	file	plots.csv
;;	located	in	the	C:\My	Documents	folder

If	the	file	already	exists,	it	is	overwritten.	To	avoid	this	you	may	wish	to	use	some	method	of	generating	fresh	names.	Examples:

export-world	user-new-file
export-world	(word	"results	"	date-and-time	".csv")	;;	Colon	characters	in	the	time	cause	errors	on	Windows
export-world	(word	"results	"	random-float	1.0	".csv")

extensions

extensions	[name	...]

Allows	the	model	to	use	primitives	from	the	extensions	with	the	given	names.	See	the	Extensions	guide	for	more	information.

extract-hsb

extract-hsb	color

Reports	a	list	of	three	values,	the	first	(hue)	in	the	range	of	0	to	360,	the	second	and	third	(brightness	and	saturation)	in	the	range	of	0	to	100.

The	given	color	can	either	be	a	NetLogo	color	in	the	range	0	to	140,	not	including	140	itself,	or	an	RGB	list	of	three	values	in	the	range	0	to
255	representing	the	levels	of	red,	green,	and	blue.

show	extract-hsb	cyan
=>	[180	57.143	76.863]
show	extract-hsb	red

Since	1.0

Since	3.0

Since	3.0

Since	2.0

Since	2.0

Since	2.0

=>	[3.103	80.93	84.314]
show	extract-hsb	[255	0	0]
=>	[0	100	100]

See	also	approximate-hsb,	approximate-rgb,	extract-rgb.

extract-rgb

extract-rgb	color

Reports	a	list	of	three	values	in	the	range	0	to	255	representing	the	levels	of	red,	green,	and	blue,	respectively,	of	the	given	NetLogo	or
RGB(A)	color.

show	extract-rgb	red
=>	[215	50	41]
show	extract-rgb	cyan
=>	[84	196	196]
show	extract-rgb	[31	41	59]
=>	[31	41	59]

See	also	approximate-rgb,	approximate-hsb,	extract-hsb.

F

face

face	agent

Set	the	caller's	heading	towards	agent.

If	wrapping	is	allowed	by	the	topology	and	the	wrapped	distance	(around	the	edges	of	the	world)	is	shorter,	face	will	use	the	wrapped	path.

If	the	caller	and	the	agent	are	at	the	exact	same	position,	the	caller's	heading	won't	change.

facexy

facexy	x	y

Set	the	caller's	heading	towards	the	point	(x,y).

If	wrapping	is	allowed	by	the	topology	and	the	wrapped	distance	(around	the	edges	of	the	world)	is	shorter	and	wrapping	is	allowed,	facexy
will	use	the	wrapped	path.

If	the	caller	is	on	the	point	(x,y),	the	caller's	heading	won't	change.

file-at-end?

file-at-end?

Reports	true	when	there	are	no	more	characters	left	to	read	in	from	the	current	file	(that	was	opened	previously	with	file-open).	Otherwise,
reports	false.

file-open	"my-file.txt"
print	file-at-end?
=>	false	;;	Can	still	read	in	more	characters
print	file-read-line
=>	This	is	the	last	line	in	file
print	file-at-end?
=>	true	;;	We	reached	the	end	of	the	file

See	also	file-open,	file-close-all.

file-close

file-close

Closes	a	file	that	has	been	opened	previously	with	file-open.

Note	that	this	and	file-close-all	are	the	only	ways	to	restart	to	the	beginning	of	an	opened	file	or	to	switch	between	file	modes.

If	no	file	is	open,	does	nothing.

See	also	file-close-all,	file-open.

file-close-all

file-close-all

Since	2.0

Since	2.0

Since	4.0

Since	2.0

Since	2.0

Since	2.0

Closes	all	files	(if	any)	that	have	been	opened	previously	with	file-open.

See	also	file-close,	file-open.

file-delete

file-delete	string

Deletes	the	file	specified	as	string

string	must	be	an	existing	file	with	writable	permission	by	the	user.	Also,	the	file	cannot	be	open.	Use	the	command	file-close	to	close	an
opened	file	before	deletion.

Note	that	the	string	can	either	be	a	file	name	or	an	absolute	file	path.	If	it	is	a	file	name,	it	looks	in	whatever	the	current	directory	is.	This	can
be	changed	using	the	command	set-current-directory.	It	is	defaulted	to	the	model's	directory.

file-exists?

file-exists?	string

Reports	true	if	string	is	the	name	of	an	existing	file	on	the	system.	Otherwise	it	reports	false.

Note	that	the	string	can	either	be	a	file	name	or	an	absolute	file	path.	If	it	is	a	file	name,	it	looks	in	whatever	the	current	directory	is.	This	can
be	changed	using	the	command	set-current-directory.	It	defaults	to	to	the	model's	directory.

file-flush

file-flush

Forces	file	updates	to	be	written	to	disk.	When	you	use	file-write	or	other	output	commands,	the	values	may	not	be	immediately	written	to	disk.
This	improves	the	performance	of	the	file	output	commands.	Closing	a	file	ensures	that	all	output	is	written	to	disk.

Sometimes	you	need	to	ensure	that	data	is	written	to	disk	without	closing	the	file.	For	example,	you	could	be	using	a	file	to	communicate	with
another	program	on	your	machine	and	want	the	other	program	to	be	able	to	see	the	output	immediately.

file-open

file-open	string

This	command	will	interpret	string	as	a	path	name	to	a	file	and	open	the	file.	You	may	then	use	the	reporters	file-read,	file-read-line,	and	file-
read-characters	to	read	in	from	the	file,	or	file-write,	file-print,	file-type,	or	file-show	to	write	out	to	the	file.

Note	that	you	can	only	open	a	file	for	reading	or	writing	but	not	both.	The	next	file	i/o	primitive	you	use	after	this	command	dictates	which
mode	the	file	is	opened	in.	To	switch	modes,	you	need	to	close	the	file	using	file-close.

Also,	the	file	must	already	exist	if	opening	a	file	in	reading	mode.

When	opening	a	file	in	writing	mode,	all	new	data	will	be	appended	to	the	end	of	the	original	file.	If	there	is	no	original	file,	a	new	blank	file	will
be	created	in	its	place.	(You	must	have	write	permission	in	the	file's	directory.)	(If	you	don't	want	to	append,	but	want	to	replace	the	file's
existing	contents,	use	file-delete	to	delete	it	first,	perhaps	inside	a	carefully	if	you're	not	sure	whether	it	already	exists.)

Note	that	the	string	can	either	be	a	file	name	or	an	absolute	file	path.	If	it	is	a	file	name,	it	looks	in	whatever	the	current	directory	is.	This	can
be	changed	using	the	command	set-current-directory.	It	is	defaulted	to	the	model's	directory.

file-open	"my-file-in.txt"
print	file-read-line
=>	First	line	in	file	;;	File	is	in	reading	mode
file-open	"C:\\NetLogo\\my-file-out.txt"
;;	assuming	Windows	machine
file-print	"Hello	World"	;;	File	is	in	writing	mode

Opening	a	file	does	not	close	previously	opened	files.	You	can	use	file-open	to	switch	back	and	forth	between	multiple	open	files.

See	also	file-close	See	also	file-close-all.

file-print

file-print	value

Prints	value	to	an	opened	file,	followed	by	a	carriage	return.

This	agent	is	not	printed	before	the	value,	unlike	file-show.

Note	that	this	command	is	the	file	i/o	equivalent	of	print,	and	file-open	needs	to	be	called	before	this	command	can	be	used.

See	also	file-show,	file-type,	file-write,	and	Output	(programming	guide).

file-read

file-read

This	reporter	will	read	in	the	next	constant	from	the	opened	file	and	interpret	it	as	if	it	had	been	typed	in	the	Command	Center.	It	reports	the

Since	2.0

Since	2.0

Since	2.0

Since	2.0

Since	2.0

resulting	value.	The	result	may	be	a	number,	list,	string,	boolean,	or	the	special	value	nobody.

Whitespace	separates	the	constants.	Each	call	to	file-read	will	skip	past	both	leading	and	trailing	whitespace.

Note	that	strings	need	to	have	quotes	around	them.	Use	the	command	file-write	to	have	quotes	included.

Also	note	that	the	file-open	command	must	be	called	before	this	reporter	can	be	used,	and	there	must	be	data	remaining	in	the	file.	Use	the
reporter	file-at-end?	to	determine	if	you	are	at	the	end	of	the	file.

file-open	"my-file.data"
print	file-read	+	5
;;	Next	value	is	the	number	1
=>	6
print	length	file-read
;;	Next	value	is	the	list	[1	2	3	4]
=>	4

Note:	This	primitive	is	not	compatible	with	NetLogo	Web.	If	you	wish	to	read	the	contents	of	a	file	with	the	same	code	and	the	same	behavior
in	both	NetLogo	and	NetLogo	Web,	see	fetch:user-file-async.

See	also	file-open	and	file-write.

file-read-characters

file-read-characters	number

Reports	the	given	number	of	characters	from	an	opened	file	as	a	string.	If	there	are	fewer	than	that	many	characters	left,	it	will	report	all	of	the
remaining	characters.

Note	that	it	will	return	every	character	including	newlines	and	spaces.

Also	note	that	the	file-open	command	must	be	called	before	this	reporter	can	be	used,	and	there	must	be	data	remaining	in	the	file.	Use	the
reporter	file-at-end?	to	determine	if	you	are	at	the	end	of	the	file.

file-open	"my-file.txt"
print	file-read-characters	5
;;	Current	line	in	file	is	"Hello	World"
=>	Hello

See	also	file-open.

file-read-line

file-read-line

Reads	the	next	line	in	the	file	and	reports	it	as	a	string.	It	determines	the	end	of	the	file	by	a	carriage	return,	an	end	of	file	character	or	both	in
a	row.	It	does	not	return	the	line	terminator	characters.

Also	note	that	the	file-open	command	must	be	called	before	this	reporter	can	be	used,	and	there	must	be	data	remaining	in	the	file.	Use	the
reporter	file-at-end?	to	determine	if	you	are	at	the	end	of	the	file.

file-open	"my-file.txt"
print	file-read-line
=>	Hello	World

See	also	file-open.

file-show

file-show	value

Prints	value	to	an	opened	file,	preceded	by	this	agent	agent,	and	followed	by	a	carriage	return.	(This	agent	is	included	to	help	you	keep	track
of	what	agents	are	producing	which	lines	of	output.)	Also,	all	strings	have	their	quotes	included	similar	to	file-write.

Note	that	this	command	is	the	file	i/o	equivalent	of	show,	and	file-open	needs	to	be	called	before	this	command	can	be	used.

See	also	file-print,	file-type,	file-write,	and	Output	(programming	guide).

file-type

file-type	value

Prints	value	to	an	opened	file,	not	followed	by	a	carriage	return	(unlike	file-print	and	file-show).	The	lack	of	a	carriage	return	allows	you	to	print
several	values	on	the	same	line.

This	agent	is	not	printed	before	the	value.	unlike	file-show.

Note	that	this	command	is	the	file	i/o	equivalent	of	type,	and	file-open	needs	to	be	called	before	this	command	can	be	used.

See	also	file-print,	file-show,	file-write,	and	Output	(programming	guide).

file-write

https://github.com/NetLogo/Fetch-Extension#readme

Since	1.3

Since	1.0

Since	1.0

Since	3.0

Since	3.0

Since	1.3

file-write	value

This	command	will	output	value,	which	can	be	a	number,	string,	list,	boolean,	or	nobody	to	an	opened	file,	not	followed	by	a	carriage	return
(unlike	file-print	and	file-show).

This	agent	is	not	printed	before	the	value,	unlike	file-show.	Its	output	also	includes	quotes	around	strings	and	is	prepended	with	a	space.	It	will
output	the	value	in	such	a	manner	that	file-read	will	be	able	to	interpret	it.

Note	that	this	command	is	the	file	i/o	equivalent	of	write,	and	file-open	needs	to	be	called	before	this	command	can	be	used.

file-open	"locations.txt"
ask	turtles
		[file-write	xcor	file-write	ycor]

See	also	file-print,	file-show,	file-type,	and	Output	(programming	guide).

filter

filter	reporter	list

Reports	a	list	containing	only	those	items	of	list	for	which	the	reporter	reports	true	--	in	other	words,	the	items	satisfying	the	given	condition.
reporter	may	be	an	anonymous	reporter	or	the	name	of	a	reporter.

show	filter	is-number?	[1	"2"	3]
=>	[1	3]
show	filter	[i	->	i	<	3]	[1	3	2]
=>	[1	2]
show	filter	[s	->	first	s	!=	"t"]	["hi"	"there"	"everyone"]
=>	["hi"	"everyone"]

See	also	map,	reduce,	->	(anonymous	procedure).

first

first	list
first	string

On	a	list,	reports	the	first	(0th)	item	in	the	list.

On	a	string,	reports	a	one-character	string	containing	only	the	first	character	of	the	original	string.

floor

floor	number

Reports	the	largest	integer	less	than	or	equal	to	number.

show	floor	4.5
=>	4
show	floor	-4.5
=>	-5

See	also	ceiling,	round,	precision.

follow

follow	turtle

Similar	to	ride,	but,	in	the	3D	view,	the	observer's	vantage	point	is	behind	and	above	turtle.

The	observer	may	only	watch	or	follow	a	single	subject.	Calling	follow	will	alter	the	highlight	created	by	prior	calls	to	watch	and	watch-me,
highlighting	the	followed	turtle	instead.

See	also	follow-me,	ride,	reset-perspective,	watch,	subject.

follow-me

follow-me

Asks	the	observer	to	follow	this	turtle.

The	observer	may	only	watch	or	follow	a	single	subject.	Calling	follow-me	will	remove	the	highlight	created	by	prior	calls	to	watch	and	watch-
me,	highlighting	this	turtle	instead.

See	also	follow.

foreach

Since	1.0
Since	1.0

Since	1.0

Since	1.0

foreach	list	command
(foreach	list1	...	command)

With	a	single	list,	runs	the	command	for	each	item	of	list.	command	may	be	the	name	of	a	command,	or	an	anonymous	command	created	with
->.

foreach	[1.1	2.2	2.6]	show
=>	1.1
=>	2.2
=>	2.6
foreach	[1.1	2.2	2.6]	[x	->	show	(word	x	"	->	"	round	x)]
=>	1.1	->	1
=>	2.2	->	2
=>	2.6	->	3

With	multiple	lists,	runs	command	for	each	group	of	items	from	each	list.	So,	they	are	run	once	for	the	first	items,	once	for	the	second	items,
and	so	on.	All	the	lists	must	be	the	same	length.

Some	examples	make	this	clearer:

(foreach	[1	2	3]	[2	4	6]
			[[a	b]	->	show	word	"the	sum	is:	"	(a	+	b)])
=>	"the	sum	is:	3"
=>	"the	sum	is:	6"
=>	"the	sum	is:	9"
(foreach	list	(turtle	1)	(turtle	2)	[3	4]
		[[the-turtle	num-steps]	->	ask	the-turtle	[fd	num-steps]])
;;	turtle	1	moves	forward	3	patches
;;	turtle	2	moves	forward	4	patches

See	also	map,	->	(anonymous	procedure).

forward
fd

forward	number

The	turtle	moves	forward	by	number	steps,	one	step	at	a	time.	(If	number	is	negative,	the	turtle	moves	backward.)

fd	10	is	equivalent	to	repeat	10	[jump	1] .	fd	10.5	is	equivalent	to	repeat	10	[jump	1]	jump	0.5.

If	the	turtle	cannot	move	forward	number	steps	because	it	is	not	permitted	by	the	current	topology	the	turtle	will	complete	as	many	steps	of	1
as	it	can,	then	stop.

See	also	jump,	can-move?.

fput

fput	item	list

Adds	item	to	the	beginning	of	a	list	and	reports	the	new	list.

;;	suppose	mylist	is	[5	7	10]
set	mylist	fput	2	mylist
;;	mylist	is	now	[2	5	7	10]

G

globals

globals	[var1	...]

This	keyword,	like	the	breed,	<breeds>-own,	patches-own,	and	turtles-own	keywords,	can	only	be	used	at	the	beginning	of	a	program,	before
any	function	definitions.	It	defines	new	global	variables.	Global	variables	are	"global"	because	they	are	accessible	by	all	agents	and	can	be
used	anywhere	in	a	model.

Most	often,	globals	is	used	to	define	variables	or	constants	that	need	to	be	used	in	many	parts	of	the	program.

H

hatch

hatch	number	[commands]
hatch-<breeds>	number	[commands]

This	turtle	creates	number	new	turtles.	Each	new	turtle	inherits	of	all	its	variables,	including	its	location,	from	its	parent.	(Exceptions:	each	new
turtle	will	have	a	new	who	number,	and	it	may	be	of	a	different	breed	than	its	parent	if	the	hatch-<breeds>	form	is	used.)

The	new	turtles	then	run	commands.	You	can	use	the	commands	to	give	the	new	turtles	different	colors,	headings,	locations,	or	whatever.

Since	4.0

Since	1.0
Since	1.0

Since	1.0

(The	new	turtles	are	created	all	at	once,	then	run	one	at	a	time,	in	random	order.)

If	the	hatch-<breeds>	form	is	used,	the	new	turtles	are	created	as	members	of	the	given	breed.	Otherwise,	the	new	turtles	are	the	same
breed	as	their	parent.

hatch	1	[lt	45	fd	1]
;;	this	turtle	creates	one	new	turtle,
;;	and	the	child	turns	and	moves	away
hatch-sheep	1	[set	color	black]
;;	this	turtle	creates	a	new	turtle
;;	of	the	sheep	breed

See	also	create-turtles,	sprout.

heading

heading

This	is	a	built-in	turtle	variable.	It	indicates	the	direction	the	turtle	is	facing.	This	is	a	number	greater	than	or	equal	to	0	and	less	than	360.	0	is
north,	90	is	east,	and	so	on.	You	can	set	this	variable	to	make	a	turtle	turn.

See	also	right,	left,	dx,	dy.

Example:

set	heading	45						;;	turtle	is	now	facing	northeast
set	heading	heading	+	10	;;	same	effect	as	"rt	10"

hidden?

hidden?
	

This	is	a	built-in	turtle	or	link	variable.	It	holds	a	boolean	(true	or	false)	value	indicating	whether	the	turtle	or	link	is	currently	hidden	(i.e.,
invisible).	You	can	set	this	variable	to	make	a	turtle	or	link	disappear	or	reappear.

See	also	hide-turtle,	show-turtle,	hide-link,	show-link

Example:

set	hidden?	not	hidden?
;;	if	turtle	was	showing,	it	hides,	and	if	it	was	hiding,
;;	it	reappears

hide-link

hide-link

The	link	makes	itself	invisible.

Note:	This	command	is	equivalent	to	setting	the	link	variable	"hidden?"	to	true.

See	also	show-link.

hide-turtle
ht

hide-turtle

The	turtle	makes	itself	invisible.

Note:	This	command	is	equivalent	to	setting	the	turtle	variable	"hidden?"	to	true.

See	also	show-turtle.

histogram

histogram	list

Histograms	the	values	in	the	given	list

Draws	a	histogram	showing	the	frequency	distribution	of	the	values	in	the	list.	The	heights	of	the	bars	in	the	histogram	represent	the	numbers
of	values	in	each	subrange.

Before	the	histogram	is	drawn,	first	any	previous	points	drawn	by	the	current	plot	pen	are	removed.

Any	non-numeric	values	in	the	list	are	ignored.

Since	1.0

Since	1.0

Since	1.1

Since	4.1

Since	4.1

Since	4.1
Since	4.1

Since	5.0

Since	1.2.1

The	histogram	is	drawn	on	the	current	plot	using	the	current	plot	pen	and	pen	color.	Auto	scaling	does	not	affect	a	histogram's	horizontal
range,	so	set-plot-x-range	should	be	used	to	control	the	range,	and	the	pen	interval	can	then	be	set	(either	directly	with	set-plot-pen-interval,
or	indirectly	via	set-histogram-num-bars)	to	control	how	many	bars	that	range	is	split	up	into.

Be	sure	that	if	you	want	the	histogram	drawn	with	bars	that	the	current	pen	is	in	bar	mode	(mode	1).

For	histogramming	purposes	the	plot's	X	range	is	not	considered	to	include	the	maximum	X	value.	Values	equal	to	the	maximum	X	will	fall
outside	of	the	histogram's	range.

histogram	[color]	of	turtles
;;	draws	a	histogram	showing	how	many	turtles	there	are
;;	of	each	color

This	command	will	produce	a	runtime	error	if	either	the	current	plot	or	the	current	pen	has	not	been	set.

See	also	set-histogram-num-bars,	set-plot-pen-interval,	set-plot-x-range.

home

home

This	turtle	moves	to	the	origin	(0,0).	Equivalent	to	setxy	0	0.

hsb

hsb	hue	saturation	brightness

Reports	a	RGB	list	when	given	three	numbers	describing	an	HSB	color.	Hue,	saturation,	and	brightness	are	integers	in	the	range	0-360,	0-
100,	0-100	respectively.	The	RGB	list	contains	three	integers	in	the	range	of	0-255.

See	also	rgb

hubnet-broadcast

hubnet-broadcast	tag-name	value

This	broadcasts	value	from	NetLogo	to	the	interface	element	with	the	name	tag-name	on	the	clients.

See	the	HubNet	Authoring	Guide	for	details	and	instructions.

hubnet-broadcast-clear-output

hubnet-broadcast-clear-output

This	clears	all	messages	printed	to	the	text	area	on	every	client.

See	also:	hubnet-broadcast-message,	hubnet-send-clear-output

hubnet-broadcast-message

hubnet-broadcast-message	value

This	prints	the	value	in	the	text	area	on	each	client.	This	is	the	same	functionality	as	the	"Broadcast	Message"	button	in	the	HubNet	Control
Center.

See	also:	hubnet-send-message

hubnet-clear-override
hubnet-clear-overrides

hubnet-clear-override	client	agent-or-set	variable-name
hubnet-clear-overrides	client

Remove	overrides	from	the	override	list	on	client.	hubnet-clear-override	removes	only	the	override	for	the	specified	variable	for	the	specified
agent	or	agentset.	hubnet-clear-overrides	removes	all	overrides	from	the	specified	client.

See	also:	hubnet-send-override

hubnet-clients-list

hubnet-clients-list

Reports	a	list	containing	the	names	of	all	the	clients	currently	connected	to	the	HubNet	server.

hubnet-enter-message?

hubnet-enter-message?

Since	1.2.1

Since	1.1

Since	5.0

Since	5.0

Since	1.1

Since	1.1

Since	1.1

Since	1.1

Since	1.1

Reports	true	if	a	new	client	just	entered	the	simulation.	Reports	false	otherwise.	hubnet-message-source	will	contain	the	user	name	of	the
client	that	just	logged	on.

See	the	HubNet	Authoring	Guide	for	details	and	instructions.

hubnet-exit-message?

hubnet-exit-message?

Reports	true	if	a	client	just	exited	the	simulation.	Reports	false	otherwise.	hubnet-message-source	will	contain	the	user	name	of	the	client	that
just	logged	off.

See	the	HubNet	Authoring	Guide	for	details	and	instructions.

hubnet-fetch-message

hubnet-fetch-message

If	there	is	any	new	data	sent	by	the	clients,	this	retrieves	the	next	piece	of	data,	so	that	it	can	be	accessed	by	hubnet-message,	hubnet-
message-source,	and	hubnet-message-tag.	This	will	cause	an	error	if	there	is	no	new	data	from	the	clients.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-kick-client

hubnet-kick-client	client-name

Kicks	the	client	with	the	given	client-name.	This	is	equivalent	to	clicking	the	client	name	in	the	HubNet	Control	Center	and	pressing	the	Kick
button.

hubnet-kick-all-clients

hubnet-kick-all-clients

Kicks	out	all	currently	connected	HubNet	clients.	This	is	equivalent	to	selecting	all	clients	in	the	HubNet	Control	Center	and	pressing	the	Kick
button.

hubnet-message

hubnet-message

Reports	the	message	retrieved	by	hubnet-fetch-message.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-message-source

hubnet-message-source

Reports	the	name	of	the	client	that	sent	the	message	retrieved	by	hubnet-fetch-message.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-message-tag

hubnet-message-tag

Reports	the	tag	that	is	associated	with	the	data	that	was	retrieved	by	hubnet-fetch-message.	The	tag	will	be	one	of	the	Display	Names	of	the
interface	elements	in	the	client	interface.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-message-waiting?

hubnet-message-waiting?

This	looks	for	a	new	message	sent	by	the	clients.	It	reports	true	if	there	is	one,	and	false	if	there	is	not.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-reset

hubnet-reset

Starts	up	the	HubNet	system.	HubNet	must	be	started	to	use	any	of	the	other	hubnet	primitives.

See	the	HubNet	Authoring	Guide	for	details.

Since	4.1

Since	1.1

Since	4.1

Since	4.1

Since	4.1

Since	4.1

Since	4.1

hubnet-reset-perspective

hubnet-reset-perspective	tag-name

Clears	watch	or	follow	sent	directly	to	the	client.	The	view	perspective	will	revert	to	the	server	perspective.

See	also:	hubnet-send-watch	hubnet-send-follow

hubnet-send

hubnet-send	string	tag-name	value

hubnet-send	list-of-strings	tag-name	value

For	a	string,	this	sends	value	from	NetLogo	to	the	tag	tag-name	on	the	client	that	has	string	for	its	user	name.

For	a	list-of-strings,	this	sends	value	from	NetLogo	to	the	tag	tag-name	on	all	the	clients	that	have	a	user	name	that	is	in	the	list-of-strings.

Sending	a	message	to	a	non-existent	client,	using	hubnet-send,	generates	a	hubnet-exit-message.

See	the	HubNet	Authoring	Guide	for	details.

hubnet-send-clear-output

hubnet-send-clear-output	string

hubnet-send-clear-output	list-of-strings

This	clears	all	messages	printed	to	the	text	area	on	the	given	client	or	clients	(specified	in	the	string	or	list-of-strings.

See	also:	hubnet-send-message,	hubnet-broadcast-clear-output

hubnet-send-follow

hubnet-send-follow	client-name	agent	radius

Tells	the	client	associated	with	client-name	to	follow	agent	showing	a	radius	sized	Moore	neighborhood	around	the	agent.

A	client	may	only	watch	or	follow	a	single	subject.	Calling	hubnet-send-follow	will	alter	the	highlight	created	by	prior	calls	to	hubnet-send-
watch,	highlighting	the	followed	agent	instead.

See	also:	hubnet-send-watch,	hubnet-reset-perspective

hubnet-send-message

hubnet-send-message	string	value

This	prints	value	in	the	text	area	on	the	client	specified	by	string.

See	also:	hubnet-broadcast-message

hubnet-send-override

hubnet-send-override	client-name	agent-or-set	variable-name
[reporter]

Evaluates	reporter	for	the	agent	or	agentset	indicated	then	sends	the	values	to	the	client	to	"override"	the	value	of	variable-name	only	on
client-name.	This	is	used	to	change	the	appearance	of	agents	in	the	client	view,	hence,	only	built-in	variables	that	affect	the	appearance	of	the
agent	may	be	selected.	For	example,	you	can	override	the	color	variable	of	a	turtle:

ask	turtles	[hubnet-send-override	client-name	self	"color"	[red]]

In	this	example	assume	that	there	is	a	turtles-own	variable	client-name	which	is	associated	with	a	logged	in	client,	and	all	the	turtles	are	blue.
This	code	makes	the	turtle	associated	with	each	client	appear	red	in	his	or	her	own	view	but	not	on	anyone	else's	or	on	the	server.

See	also:	hubnet-clear-overrides

hubnet-send-watch

hubnet-send-watch	client-name	agent

Tells	the	client	associated	with	client-name	to	watch	agent.

A	client	may	only	watch	or	follow	a	single	subject.	Calling	hubnet-send-watch	will	undo	perspective	changes	caused	by	prior	calls	to	hubnet-
send-follow.

See	also:	hubnet-send-follow,	hubnet-reset-perspective

I

Since	1.0

Since	1.0

Since	6.1

Since	2.0

Since	6.1

if

if	boolean	[commands]

If	boolean	reports	true	then	the	commands	are	run,	otherwise	the	commands	are	not	run	if	boolean	reports	false.

If	boolean	reports	a	value	other	than	true	or	false	a	runtime	error	will	occur.

The	boolean	may	report	a	different	value	for	different	agents	when	used	with	a	primitive	like	ask,	so	some	agents	may	run	commands	and
others	don't.

ask	turtles	[
		if	xcor	>	0	[set	color	blue]
		;;	turtles	in	the	right	half	of	the	world
		;;	turn	blue
]

See	also	ifelse,	ifelse-value.

ifelse

ifelse	boolean1	[commands1]	[elsecommands]
(ifelse	boolean1	[commands1]	boolean2	[commands2]	...	[elsecommands])

For	the	first	boolean	that	reports	true,	runs	the	commands	that	follow.

If	no	boolean	reports	true,	runs	elsecommands	or	does	nothing	if	elsecommands	is	not	given.	When	using	only	one	boolean	you	do	not	need
to	surround	the	entire	ifelse	primitive	and	its	blocks	in	parentheses.

If	a	boolean	reports	a	value	other	than	true	or	false	a	runtime	error	will	occur.

ask	patches
		[ifelse	pxcor	>	0
						[set	pcolor	blue]
						[set	pcolor	red]]
;;	the	left	half	of	the	world	turns	red	and
;;	the	right	half	turns	blue

The	reporters	may	report	a	different	value	for	different	agents,	so	some	agents	may	run	different	command	blocks.	When	using	more	than	one
boolean	you	must	surround	the	whole	ifelse	primitive	and	its	blocks	in	parentheses.	This	functionality	was	added	in	NetLogo	6.1.

ask	patches	[
		let	choice	random	4
		(ifelse
				choice	=	0	[
						set	pcolor	red
						set	plabel	"r"
]
				choice	=	1	[
						set	pcolor	blue
						set	plabel	"b"
]
				choice	=	2	[
						set	pcolor	green
						set	plabel	"g"
]
				;	elsecommands
				[
						set	pcolor	yellow
						set	plabel	"y"
])
]

See	also	if,	ifelse-value.

ifelse-value

ifelse-value	boolean1	[reporter1]	[elsereporter]
(ifelse-value	boolean1	[reporter1]	boolean2	[reporter2]	...	[elsereporter])

For	the	first	boolean	that	reports	true,	runs	the	reporter	that	follows	and	reports	that	result.	When	using	only	one	boolean	you	do	not	need	to
surround	the	entire	ifelse-value	primitive	and	its	blocks	in	parentheses.

If	all	booleans	report	false,	the	result	is	the	value	of	elsereporter.	You	may	leave	out	the	elsereporter,	but	if	all	booleans	report	false	then	a
runtime	error	will	occur.

If	a	boolean	reports	a	value	other	than	true	or	false	a	runtime	error	will	occur.

This	can	be	used	when	a	conditional	is	needed	in	the	context	of	a	reporter,	where	commands	(such	as	ifelse)	are	not	allowed.

ask	patches	[
		set	pcolor	ifelse-value	(pxcor	>	0)	[blue]	[red]
]
;;	the	left	half	of	the	world	turns	red	and
;;	the	right	half	turns	blue
show	n-values	10	[n	->	ifelse-value	(n	<	5)	[0]	[1]]

Since	3.0

Since	3.0

Since	4.0

Since	1.0

=>	[0	0	0	0	0	1	1	1	1	1]
show	reduce	[[a	b]	->	ifelse-value	(a	>	b)	[a]	[b]]
		[1	3	2	5	3	8	3	2	1]
=>	8

When	using	more	than	one	boolean	you	must	surround	the	whole	ifelse-value	primitive	and	its	blocks	in	parentheses.	This	functionality	was
added	in	NetLogo	6.1.

ask	patches	[
		let	choice	random	4
		set	pcolor	(ifelse-value
				choice	=	0	[red]
				choice	=	1	[blue]
				choice	=	2	[green]
															[yellow])
]

A	runtime	error	can	occur	if	there	is	no	elsereporter.

ask	patches	[
		let	x	=	2
		set	pcolor	(ifelse-value
				x	=	0	[red]
				x	=	1	[blue]
				;	no	final	else	reporter	is	given,	and	x	is	2	so	there	will	be	a	runtime	error
)

See	also	if,	ifelse.

import-drawing

import-drawing	filename

Reads	an	image	file	into	the	drawing,	scaling	it	to	the	size	of	the	world,	while	retaining	the	original	aspect	ratio	of	the	image.	The	image	is
centered	in	the	drawing.	The	old	drawing	is	not	cleared	first.

Agents	cannot	sense	the	drawing,	so	they	cannot	interact	with	or	process	images	imported	by	import-drawing.	If	you	need	agents	to	sense	an
image,	use	import-pcolors	or	import-pcolors-rgb.

The	following	image	file	formats	are	supported:	BMP,	JPG,	GIF,	and	PNG.	If	the	image	format	supports	transparency	(alpha),	that	information
will	be	imported	as	well.

Note:	This	primitive	is	not	compatible	with	NetLogo	Web.	If	you	wish	to	import	a	drawing	with	the	same	code	and	the	same	behavior	in	both
NetLogo	and	NetLogo	Web,	see	import-a:drawing.

import-pcolors

import-pcolors	filename

Reads	an	image	file,	scales	it	to	the	same	dimensions	as	the	patch	grid	while	maintaining	the	original	aspect	ratio	of	the	image,	and	transfers
the	resulting	pixel	colors	to	the	patches.	The	image	is	centered	in	the	patch	grid.	The	resulting	patch	colors	may	be	distorted,	since	the
NetLogo	color	space	does	not	include	all	possible	colors.	(See	the	Color	section	of	the	Programming	Guide.)	import-pcolors	may	be	slow	for
some	images,	particularly	when	you	have	many	patches	and	a	large	image	with	many	different	colors.

Since	import-pcolors	sets	the	pcolor	of	patches,	agents	can	sense	the	image.	This	is	useful	if	agents	need	to	analyze,	process,	or	otherwise
interact	with	the	image.	If	you	want	to	simply	display	a	static	backdrop,	without	color	distortion,	see	import-drawing.

The	following	image	file	formats	are	supported:	BMP,	JPG,	GIF,	and	PNG.	If	the	image	format	supports	transparency	(alpha),	then	all	fully
transparent	pixels	will	be	ignored.	(Partially	transparent	pixels	will	be	treated	as	opaque.)

Note:	This	primitive	is	not	compatible	with	NetLogo	Web.	If	you	wish	to	import	patch	colors	with	the	same	code	and	the	same	behavior	in	both
NetLogo	and	NetLogo	Web,	see	import-a:pcolors.

import-pcolors-rgb

import-pcolors-rgb	filename

Reads	an	image	file,	scales	it	to	the	same	dimensions	as	the	patch	grid	while	maintaining	the	original	aspect	ratio	of	the	image,	and	transfers
the	resulting	pixel	colors	to	the	patches.	The	image	is	centered	in	the	patch	grid.	Unlike	import-pcolors	the	exact	colors	in	the	original	image
are	retained.	The	pcolor	variable	of	all	the	patches	will	be	an	RGB	list	rather	than	an	(approximated)	NetLogo	color.

The	following	image	file	formats	are	supported:	BMP,	JPG,	GIF,	and	PNG.	If	the	image	format	supports	transparency	(alpha),	then	all	fully
transparent	pixels	will	be	ignored.	(Partially	transparent	pixels	will	be	treated	as	opaque.)

Note:	This	primitive	is	not	compatible	with	NetLogo	Web.	If	you	wish	to	import	patch	colors	with	the	same	code	and	the	same	behavior	in	both
NetLogo	and	NetLogo	Web,	see	import-a:pcolors-rgb.

import-world

import-world	filename

https://github.com/NetLogo/ImportA-Extension#readme
https://github.com/NetLogo/ImportA-Extension#readme
https://github.com/NetLogo/ImportA-Extension#readme

Since	3.0

Since	4.0

Since	4.0

Since	4.0

Reads	the	values	of	all	variables	for	a	model,	both	built-in	and	user-defined,	including	all	observer,	turtle,	and	patch	variables,	from	an	external
file	named	by	the	given	string.	The	file	should	be	in	the	format	used	by	the	export-world	primitive.

Note	that	the	functionality	of	this	primitive	is	also	directly	available	from	NetLogo's	File	menu.

When	using	import-world,	to	avoid	errors,	perform	these	steps	in	the	following	order:

1.	 Open	the	model	from	which	you	created	the	export	file.
2.	 Press	the	Setup	button,	to	get	the	model	in	a	state	from	which	it	can	be	run.
3.	 Import	the	file.
4.	 Re-open	any	files	that	the	model	had	opened	with	the	file-open	command.
5.	 If	you	want,	press	Go	button	to	continue	running	the	model	from	the	point	where	it	left	off.

If	you	wish	to	import	a	file	from	a	location	other	than	the	model's	location,	you	may	include	the	full	path	to	the	file	you	wish	to	import.	See
export-world	for	an	example.

Note:	This	primitive	is	not	compatible	with	NetLogo	Web.	If	you	wish	to	import	a	world	with	the	same	code	and	the	same	behavior	in	both
NetLogo	and	NetLogo	Web,	see	import-a:world.

in-cone

agentset	in-cone	distance	angle

This	reporter	lets	you	give	a	turtle	a	"cone	of	vision"	in	front	of	itself.	The	cone	is	defined	by	the	two	inputs,	the	vision	distance	(radius)	and	the
viewing	angle.	The	viewing	angle	may	range	from	0	to	360	and	is	centered	around	the	turtle's	current	heading.	(If	the	angle	is	360,	then	in-
cone	is	equivalent	to	in-radius.)

in-cone	reports	an	agentset	that	includes	only	those	agents	from	the	original	agentset	that	fall	in	the	cone.	(This	can	include	the	agent	itself.)

The	distance	to	a	patch	is	measured	from	the	center	of	the	patch.

ask	turtles
		[ask	patches	in-cone	3	60
						[set	pcolor	red]]
;;	each	turtle	makes	a	red	"splotch"	of	patches	in	a	60	degree
;;	cone	of	radius	3	ahead	of	itself

in-<breed>-neighbor?
in-link-neighbor?

in-<breed>-neighbor?	agent
in-link-neighbor?	turtle

Reports	true	if	there	is	a	directed	link	going	from	turtle	to	the	caller	or	an	undirected	link	connecting	turtle	to	the	caller.	You	can	think	of	this	as
"is	there	a	link	I	can	use	to	get	from	turtle	to	the	caller?"

crt	2
ask	turtle	0	[
		create-link-to	turtle	1
		show	in-link-neighbor?	turtle	1		;;	prints	false
		show	out-link-neighbor?	turtle	1	;;	prints	true
]
ask	turtle	1	[
		show	in-link-neighbor?	turtle	0		;;	prints	true
		show	out-link-neighbor?	turtle	0	;;	prints	false
]

in-<breed>-neighbors
in-link-neighbors

in-<breed>-neighbors
in-link-neighbors

Reports	the	agentset	of	all	the	turtles	that	have	directed	links	coming	from	them	to	the	caller	as	well	as	all	turtles	that	have	an	undirected	link
connecting	them	with	the	caller.	You	can	think	of	this	as	"all	the	turtles	that	can	get	to	the	caller	using	a	link."

crt	4
ask	turtle	0	[create-links-to	other	turtles]
ask	turtle	1	[ask	in-link-neighbors	[set	color	blue]]	;;	turtle	0	turns	blue

in-<breed>-from
in-link-from

in-<breed>-from	turtle
in-link-from	turtle

Reports	a	directed	link	from	turtle	to	the	caller	or	an	undirected	link	connecting	the	two.	If	no	link	exists	then	it	reports	nobody.	If	more	than	one
such	link	exists,	reports	a	random	one.	You	can	think	of	this	as	"give	me	a	link	that	I	can	use	to	travel	from	turtle	to	the	caller."

https://github.com/NetLogo/ImportA-Extension#readme

Since	4.0

Since	1.0

Since	6.0.2

Since	1.1

Since	1.0

crt	2
ask	turtle	0	[create-link-to	turtle	1]
ask	turtle	1	[show	in-link-from	turtle	0]	;;	shows	link	0	1
ask	turtle	0	[show	in-link-from	turtle	1]	;;	shows	nobody

See	also:	out-link-to	link-with

__includes

__includes	[filename	...]

Causes	external	NetLogo	source	files	(with	the	.nls	suffix)	to	be	included	in	this	model.	Included	files	may	contain	breed,	variable,	and
procedure	definitions.	__includes	can	only	be	used	once	per	file.

The	file	names	must	be	strings,	for	example:

__includes	["utils.nls"]

Or,	for	multiple	files:

__includes	["utils1.nls"	"utils2.nls"]

in-radius

agentset	in-radius	number
	

Reports	an	agentset	that	includes	only	those	agents	from	the	original	agentset	whose	distance	from	the	caller	is	less	than	or	equal	to	number.
(This	can	include	the	agent	itself.)

The	distance	to	or	a	from	a	patch	is	measured	from	the	center	of	the	patch.

ask	turtles
		[ask	patches	in-radius	3
						[set	pcolor	red]]
;;	each	turtle	makes	a	red	"splotch"	around	itself

insert-item

insert-item	index	list	value
insert-item	index	string1	string2

On	a	list,	inserts	an	item	in	that	list.	index	is	the	index	where	the	item	will	be	inserted.	The	first	item	has	an	index	of	0.	(The	6th	item	in	a	list
would	have	an	index	of	5.)

Likewise	for	a	string,	but	all	characters	in	a	multiple-character	string2	are	inserted	at	index.

show	insert-item	2	[2	7	4	5]	15
=>	[2	7	15	4	5]
show	insert-item	2	"cat"	"re"
=>	"caret"

inspect

inspect	agent

Opens	an	agent	monitor	for	the	given	agent	(turtle	or	patch	or	link).

inspect	patch	2	4
;;	an	agent	monitor	opens	for	that	patch
inspect	one-of	sheep
;;	an	agent	monitor	opens	for	a	random	turtle	from
;;	the	"sheep"	breed
inspect	one-of	links
;;	an	agent	monitor	opens	for	a	random	link

See	stop-inspecting	and	stop-inspecting-dead-agents

int

int	number

Reports	the	integer	part	of	number	--	any	fractional	part	is	discarded.

show	int	4.7
=>	4
show	int	-3.5
=>	-3

Since	1.2.1
Since	1.2.1
Since	6.0
Since	6.0

Since	1.2.1
Since	4.0
Since	4.0
Since	4.0
Since	1.0

Since	1.2.1
Since	1.2.1
Since	4.0
Since	1.0

Since	1.2.1
Since	4.0
Since	4.0

Since	1.0

Since	1.0

is-agent?
is-agentset?
is-anonymous-command?
is-anonymous-reporter?
is-boolean?
is-directed-link?
is-link?
is-link-set?
is-list?
is-number?
is-patch?
is-patch-set?
is-string?
is-turtle?
is-turtle-set?
is-undirected-link?

is-agent?	value
is-agentset?	value
is-anonymous-command?	value
is-anonymous-reporter?	value
is-boolean?	value
is-<breed>?	value
is-<link-breed>?	value
is-directed-link?	value
is-link?	value
is-link-set?	value
is-list?	value
is-number?	value
is-patch?	value
is-patch-set?	value
is-string?	value
is-turtle?	value
is-turtle-set?	value
is-undirected-link?	value

Reports	true	if	value	is	of	the	given	type,	false	otherwise.

item

item	index	list
item	index	string

On	lists,	reports	the	value	of	the	item	in	the	given	list	with	the	given	index.

On	strings,	reports	the	character	in	the	given	string	at	the	given	index.

Note	that	the	indices	begin	from	0,	not	1.	(The	first	item	is	item	0,	the	second	item	is	item	1,	and	so	on.)

If	index	is	fractional,	it	will	be	rounded	down	to	the	nearest	integer	(4.5	becomes	4,	10.9	becomes	10).

;;	suppose	mylist	is	[2	4	6	8	10]
show	item	2	mylist
=>	6
show	item	3	"my-shoe"
=>	"s"

J

jump

jump	number

The	turtle	moves	forward	by	number	units	all	at	once	(rather	than	one	step	at	a	time	as	with	the	forward	command).

If	the	turtle	cannot	jump	number	units	because	it	is	not	permitted	by	the	current	topology	the	turtle	does	not	move	at	all.

See	also	forward,	can-move?.

L

label

label
	

Since	1.0

Since	4.0

Since	4.0

This	is	a	built-in	turtle	or	link	variable.	It	may	hold	a	value	of	any	type.	The	turtle	or	link	appears	in	the	view	with	the	given	value	"attached"	to	it
as	text.	You	can	set	this	variable	to	add,	change,	or	remove	a	turtle	or	link's	label.

See	also	label-color,	plabel,	plabel-color.

Example:

ask	turtles	[set	label	who]
;;	all	the	turtles	now	are	labeled	with	their
;;	who	numbers
ask	turtles	[set	label	""]
;;	all	turtles	now	are	not	labeled

label-color

label-color
	

This	is	a	built-in	turtle	or	link	variable.	It	holds	a	number	greater	than	or	equal	to	0	and	less	than	140.	This	number	determines	what	color	the
turtle	or	link's	label	appears	in	(if	it	has	a	label).	You	can	set	this	variable	to	change	the	color	of	a	turtle	or	link's	label.

See	also	label,	plabel,	plabel-color.

Example:

ask	turtles	[set	label-color	red]
;;	all	the	turtles	now	have	red	labels

last

last	list
last	string

On	a	list,	reports	the	last	item	in	the	list.

On	a	string,	reports	a	one-character	string	containing	only	the	last	character	of	the	original	string.

layout-circle

layout-circle	agentset	radius
layout-circle	list-of-turtles	radius

Arranges	the	given	turtles	in	a	circle	centered	on	the	patch	at	the	center	of	the	world	with	the	given	radius.	(If	the	world	has	an	even	size	the
center	of	the	circle	is	rounded	down	to	the	nearest	patch.)	The	turtles	point	outwards.

If	the	first	input	is	an	agentset,	the	turtles	are	arranged	in	random	order.

If	the	first	input	is	a	list,	the	turtles	are	arranged	clockwise	in	the	given	order,	starting	at	the	top	of	the	circle.	(Any	non-turtles	in	the	list	are
ignored.)

;;	in	random	order
layout-circle	turtles	10
;;	in	order	by	who	number
layout-circle	sort	turtles	10
;;	in	order	by	size
layout-circle	sort-by	[[a	b]	->	[size]	of	a	<	[size]	of	b]	turtles	10

layout-radial

layout-radial	turtle-set	link-set	root-agent

Arranges	the	turtles	in	turtle-set	connected	by	links	in	link-set,	in	a	radial	tree	layout,	centered	around	the	root-agent	which	is	moved	to	the
center	of	the	world	view.

Only	links	in	the	link-set	will	be	used	to	determine	the	layout.	If	links	connect	turtles	that	are	not	in	turtle-set	those	turtles	will	remain	stationary.

Even	if	the	network	does	contain	cycles,	and	is	not	a	true	tree	structure,	this	layout	will	still	work,	although	the	results	will	not	always	be	pretty.

to	make-a-tree
		set-default-shape	turtles	"circle"
		crt	6
		ask	turtle	0	[
				create-link-with	turtle	1
				create-link-with	turtle	2
				create-link-with	turtle	3
]
		ask	turtle	1	[
				create-link-with	turtle	4
				create-link-with	turtle	5
]
		;	do	a	radial	tree	layout,	centered	on	turtle	0
		layout-radial	turtles	links	(turtle	0)
end

Since	4.0

Since	4.0

Since	1.0
Since	1.0

Since	1.0

layout-spring

layout-spring	turtle-set	link-set	spring-constant	spring-length	repulsion-constant

Arranges	the	turtles	in	turtle-set,	as	if	the	links	in	link-set	are	springs	and	the	turtles	are	repelling	each	other.	Turtles	that	are	connected	by
links	in	link-set	but	not	included	in	turtle-set	are	treated	as	anchors	and	are	not	moved.

spring-constant	is	a	measure	of	the	"tautness"	of	the	spring.	It	is	the	"resistance"	to	change	in	their	length.	spring-constant	is	the	force	the
spring	would	exert	if	it's	length	were	changed	by	1	unit.

spring-length	is	the	"zero-force"	length	or	the	natural	length	of	the	springs.	This	is	the	length	which	all	springs	try	to	achieve	either	by	pushing
out	their	nodes	or	pulling	them	in.

repulsion-constant	is	a	measure	of	repulsion	between	the	nodes.	It	is	the	force	that	2	nodes	at	a	distance	of	1	unit	will	exert	on	each	other.

The	repulsion	effect	tries	to	get	the	nodes	as	far	as	possible	from	each	other,	in	order	to	avoid	crowding	and	the	spring	effect	tries	to	keep
them	at	"about"	a	certain	distance	from	the	nodes	they	are	connected	to.	The	result	is	the	laying	out	of	the	whole	network	in	a	way	which
highlights	relationships	among	the	nodes	and	at	the	same	time	is	crowded	less	and	is	visually	pleasing.

The	layout	algorithm	is	based	on	the	Fruchterman-Reingold	layout	algorithm.	More	information	about	this	algorithm	can	be	obtained	here.

to	make-a-triangle
		set-default-shape	turtles	"circle"
		crt	3
		ask	turtle	0
		[
				create-links-with	other	turtles
]
		ask	turtle	1
		[
				create-link-with	turtle	2
]
		repeat	30	[layout-spring	turtles	links	0.2	5	1]	;;	lays	the	nodes	in	a	triangle
end

layout-tutte

layout-tutte	turtle-set	link-set	radius

The	turtles	that	are	connected	by	links	in	link-set	but	not	included	in	turtle-set	are	placed	in	a	circle	layout	with	the	given	radius.	There	should
be	at	least	3	agents	in	this	agentset.

The	turtles	in	turtle-set	are	then	laid	out	in	the	following	manner:	Each	turtle	is	placed	at	centroid	(or	barycenter)	of	the	polygon	formed	by	its
linked	neighbors.	(The	centroid	is	like	a	2-dimensional	average	of	the	coordinates	of	the	neighbors.)

(The	purpose	of	the	circle	of	"anchor	agents"	is	to	prevent	all	the	turtles	from	collapsing	down	to	one	point.)

After	a	few	iterations	of	this,	the	layout	will	stabilize.

This	layout	is	named	after	the	mathematician	William	Thomas	Tutte,	who	proposed	it	as	a	method	for	graph	layout.

to	make-a-tree
		set-default-shape	turtles	"circle"
		crt	8
		ask	turtle	0	[
				create-link-with	turtle	1
				create-link-with	turtle	2
				create-link-with	turtle	3
]
		ask	turtle	1	[
				create-link-with	turtle	4
				create-link-with	turtle	5
				create-link-with	turtle	6
				create-link-with	turtle	7
]
		;	place	all	the	turtles	with	just	one
		;	neighbor	on	the	perimeter	of	a	circle
		;	and	then	place	the	remaining	turtles	inside
		;	this	circle,	spread	between	their	neighbors.
		repeat	10	[layout-tutte	(turtles	with	[count	link-neighbors	>	1])	links	8]
end

left
lt

left	number

The	turtle	turns	left	by	number	degrees.	(If	number	is	negative,	it	turns	right.)

length

length	list
length	string

Reports	the	number	of	items	in	the	given	list,	or	the	number	of	characters	in	the	given	string.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8444

Since	2.1

Since	4.0

Since	4.0

Since	4.0

Since	4.0

let

let	variable	value

Creates	a	new	local	variable	and	gives	it	the	given	value.	A	local	variable	is	one	that	exists	only	within	the	enclosing	block	of	commands.

If	you	want	to	change	the	value	afterwards,	use	set.

Example:

let	prey	one-of	sheep-here
if	prey	!=	nobody
		[ask	prey	[die]]

You	can	also	create	multiple	local	variables	if	you	put	the	variable	names	in	a	list	format.	The	values	for	the	new	variables	will	be	taken	from
the	list	given	as	the	second	argument.	This	can	be	particular	useful	when	you	want	to	calculate	multiple	values	in	a	reporter	procedure,	as	you
can	easily	create	multiple	variables	with	the	results.	A	runtime	error	will	occur	if	you	do	not	give	a	list	of	values	or	the	list	you	provide	doesn't
have	enough	values	for	all	the	variables.

let	[x	y	z]	[10	15	20]
show	x	;	prints	10
show	y	;	prints	15
show	z	;	prints	20

let	[a	b	c]	[10]	;	causes	a	runtime	error	as	we	need	at	least	3	values	in	the	list

link

link	end1	end2
<breed>	end1	end2

Given	the	who	numbers	of	the	endpoints,	reports	the	link	connecting	the	turtles.	If	there	is	no	such	link	reports	nobody.	To	refer	to	breeded
links	you	must	use	the	singular	breed	form	with	the	endpoints.

ask	link	0	1	[set	color	green]
;;	unbreeded	link	connecting	turtle	0	and	turtle	1	will	turn	green
ask	directed-link	0	1	[set	color	red]
;;	directed	link	connecting	turtle	0	and	turtle	1	will	turn	red

See	also	patch-at.

link-heading

link-heading

Reports	the	heading	in	degrees	(at	least	0,	less	than	360)	from	end1	to	end2	of	the	link.	Throws	a	runtime	error	if	the	endpoints	are	at	the	same
location.

ask	link	0	1	[print	link-heading]
;;	prints	[[towards	other-end]	of	end1]	of	link	0	1

See	also	link-length

link-length

link-length

Reports	the	distance	between	the	endpoints	of	the	link.

ask	link	0	1	[print	link-length]
;;	prints	[[distance	other-end]	of	end1]	of	link	0	1

See	also	link-heading

link-set

link-set	value
(link-set	value1	value2	...)

Reports	an	agentset	containing	all	of	the	links	anywhere	in	any	of	the	inputs.	The	inputs	may	be	individual	links,	link	agentsets,	nobody,	or	lists
(or	nested	lists)	containing	any	of	the	above.

link-set	self
link-set	[my-links]	of	nodes	with	[color	=	red]

See	also	turtle-set,	patch-set.

Since	4.0

Since	4.0

Since	1.0

Since	1.0

Since	1.0

Since	1.0

link-shapes

link-shapes

Reports	a	list	of	strings	containing	all	of	the	link	shapes	in	the	model.

New	shapes	can	be	created,	or	imported	from	other	models,	in	the	Link	Shapes	Editor.

show	link-shapes
=>	["default"]

links

links

Reports	the	agentset	consisting	of	all	links.	This	is	a	special	agentset	that	can	grow	as	links	are	added	to	the	world,	see	the	programming
guide	for	more	info.

show	count	links
;;	prints	the	number	of	links

links-own

links-own	[var1	...]
<link-breeds>-own	[var1	...]

The	links-own	keyword,	like	the	globals,	breed,	<breeds>-own,	turtles-own,	and	patches-own	keywords,	can	only	be	used	at	the	beginning	of
a	program,	before	any	function	definitions.	It	defines	the	variables	belonging	to	each	link.

If	you	specify	a	breed	instead	of	"links",	only	links	of	that	breed	have	the	listed	variables.	(More	than	one	link	breed	may	list	the	same
variable.)

undirected-link-breed	[sidewalks	sidewalk]
directed-link-breed	[streets	street]
links-own	[traffic]			;;	applies	to	all	breeds
sidewalks-own	[pedestrians]
streets-own	[cars	bikes]

list

list	value1	value2
(list	value1	...)

Reports	a	list	containing	the	given	items.	The	items	can	be	of	any	type,	produced	by	any	kind	of	reporter.

show	list	(random	10)	(random	10)
=>	[4	9]		;;	or	similar	list
show	(list	5)
=>	[5]
show	(list	(random	10)	1	2	3	(random	10))
=>	[4	1	2	3	9]		;;	or	similar	list

ln

ln	number

Reports	the	natural	logarithm	of	number,	that	is,	the	logarithm	to	the	base	e	(2.71828...).

See	also	e,	log.

log

log	number	base

Reports	the	logarithm	of	number	in	base	base.

show	log	64	2
=>	6

See	also	ln.

loop

loop	[commands]

Repeats	the	commands	forever,	or	until	the	enclosing	procedure	exits	through	use	of	the	stop	or	report	commands.

Since	1.0

Since	1.3

Since	1.0

Since	4.0

to	move-to-world-edge		;;	turtle	procedure
		loop	[
				if	not	can-move?	1	[stop]
				fd	1
]
end

In	this	example,	stop	exits	not	just	the	loop,	but	the	entire	procedure.

Note:	in	many	circumstances,	it	is	more	appropriate	to	use	a	forever	button	to	repeat	something	indefinitely.	See	Buttons	in	the	Programming
Guide.

lput

lput	value	list

Adds	value	to	the	end	of	a	list	and	reports	the	new	list.

;;	suppose	mylist	is	[2	7	10	"Bob"]
set	mylist	lput	42	mylist
;;	mylist	now	is	[2	7	10	"Bob"	42]

M

map

map	reporter	list
(map	reporter	list1	...)

With	a	single	list,	the	given	reporter	is	run	for	each	item	in	the	list,	and	a	list	of	the	results	is	collected	and	reported.	reporter	may	be	an
anonymous	reporter	or	the	name	of	a	reporter.

show	map	round	[1.1	2.2	2.7]
=>	[1	2	3]
show	map	[i	->	i	*	i]	[1	2	3]
=>	[1	4	9]

With	multiple	lists,	the	given	reporter	is	run	for	each	group	of	items	from	each	list.	So,	it	is	run	once	for	the	first	items,	once	for	the	second
items,	and	so	on.	All	the	lists	must	be	the	same	length.

Some	examples	make	this	clearer:

show	(map	+	[1	2	3]	[2	4	6])
=>	[3	6	9]
show	(map	[[a	b	c]	->	a	+	b	=	c]	[1	2	3]	[2	4	6]	[3	5	9])
=>	[true	false	true]

See	also	foreach,	->	(anonymous	procedure).

max

max	list

Reports	the	maximum	number	value	in	the	list.	It	ignores	other	types	of	items.

show	max	[xcor]	of	turtles
;;	prints	the	x	coordinate	of	the	turtle	which	is
;;	farthest	right	in	the	world
show	max	list	a	b
;;	prints	the	larger	of	the	two	variables	a	and	b
show	max	(list	a	b	c)
;;	prints	the	largest	of	the	three	variables	a,	b,	and	c

max-n-of

max-n-of	number	agentset	[reporter]

Reports	an	agentset	containing	number	agents	from	agentset	with	the	highest	values	of	reporter.	The	agentset	is	built	by	finding	all	the	agents
with	the	highest	value	of	reporter,	if	there	are	not	number	agents	with	that	value	then	agents	with	the	second	highest	value	are	found,	and	so
on.	At	the	end,	if	there	is	a	tie	that	would	make	the	resulting	agentset	too	large,	the	tie	is	broken	randomly.

;;	assume	the	world	is	11	x	11
show	max-n-of	5	patches	[pxcor]
;;	shows	5	patches	with	pxcor	=	max-pxcor
show	max-n-of	5	patches	with	[pycor	=	0]	[pxcor]
;;	shows	an	agentset	containing:
;;	(patch	1	0)	(patch	2	0)	(patch	3	0)	(patch	4	0)	(patch	5	0)

See	also	max-one-of,	with-max.

Since	1.0

Since	3.1
Since	3.1

Since	1.0

Since	1.0

Since	1.0

max-one-of

max-one-of	agentset	[reporter]

Reports	the	agent	in	the	agentset	that	has	the	highest	value	for	the	given	reporter.	If	there	is	a	tie	this	command	reports	one	random	agent
with	the	highest	value.	If	you	want	all	such	agents,	use	with-max	instead.

										show	max-one-of	patches	[count	turtles-here]
										
;;	prints	the	first	patch	with	the	most	turtles	on	it

See	also	max-n-of,	with-max.

max-pxcor
max-pycor

max-pxcor
max-pycor

These	reporters	give	the	maximum	x-coordinate	and	maximum	y-coordinate,	(respectively)	for	patches,	which	determines	the	size	of	the
world.

Unlike	in	older	versions	of	NetLogo	the	origin	does	not	have	to	be	at	the	center	of	the	world.	However,	the	maximum	x-	and	y-	coordinates
must	be	greater	than	or	equal	to	zero.

Note:	You	can	set	the	size	of	the	world	by	editing	the	view	or	using	resize-world.

crt	100	[setxy	random-float	max-pxcor
																random-float	max-pycor]
;;	distributes	100	turtles	randomly	in	the
;;	first	quadrant

See	also	min-pxcor,	min-pycor,	world-width,	and	world-height

mean

mean	list

Reports	the	statistical	mean	of	the	numeric	items	in	the	given	list.	Ignores	non-numeric	items.	The	mean	is	the	average,	i.e.,	the	sum	of	the
items	divided	by	the	total	number	of	items.

In	NetLogo	6.1.1	and	earlier,	mean	would	error	when	finding	non-number	values	in	the	given	list.

show	mean	[xcor]	of	turtles
;;	prints	the	average	of	all	the	turtles'	x	coordinates

See	this	FAQ	question	for	information	on	possible	issues	using	mean	with	agentsets

median

median	list

Reports	the	statistical	median	of	the	numeric	items	of	the	given	list.	Ignores	non-numeric	items.	The	median	is	the	item	that	would	be	in	the
middle	if	all	the	items	were	arranged	in	order.	(If	two	items	would	be	in	the	middle,	the	median	is	the	average	of	the	two.)

show	median	[xcor]	of	turtles
;;	prints	the	median	of	all	the	turtles'	x	coordinates

member?

member?	value	list
member?	string1	string2
member?	agent	agentset

For	a	list,	reports	true	if	the	given	value	appears	in	the	given	list,	otherwise	reports	false.

For	a	string,	reports	true	or	false	depending	on	whether	string1	appears	anywhere	inside	string2	as	a	substring.

For	an	agentset,	reports	true	if	the	given	agent	is	appears	in	the	given	agentset,	otherwise	reports	false.

show	member?	2	[1	2	3]
=>	true
show	member?	4	[1	2	3]
=>	false
show	member?	"bat"	"abate"
=>	true
show	member?	turtle	0	turtles
=>	true
show	member?	turtle	0	patches
=>	false

Since	1.0

Since	4.0

Since	1.0

Since	3.1
Since	3.1

Since	1.0

See	also	position.

min

min	list

Reports	the	minimum	number	value	in	the	list.	It	ignores	other	types	of	items.

show	min	[xcor]	of	turtles
;;	prints	the	lowest	x-coordinate	of	all	the	turtles
show	min	list	a	b
;;	prints	the	smaller	of	the	two	variables	a	and	b
show	min	(list	a	b	c)
;;	prints	the	smallest	of	the	three	variables	a,	b,	and	c

min-n-of

min-n-of	number	agentset	[reporter]

Reports	an	agentset	containing	number	agents	from	agentset	with	the	lowest	values	of	reporter.	The	agentset	is	built	by	finding	all	the	agents
with	the	lowest	value	of	reporter,	if	there	are	not	number	agents	with	that	value	then	the	agents	with	the	second	lowest	value	are	found,	and
so	on.	At	the	end,	if	there	is	a	tie	that	would	make	the	resulting	agentset	too	large,	the	tie	is	broken	randomly.

;;	assume	the	world	is	11	x	11
show	min-n-of	5	patches	[pxcor]
;;	shows	5	patches	with	pxcor	=	min-pxcor
show	min-n-of	5	patches	with	[pycor	=	0]	[pxcor]
;;	shows	an	agentset	containing:
;;	(patch	-5	0)	(patch	-4	0)	(patch	-3	0)	(patch	-2	0)	(patch	-1	0)

See	also	min-one-of,	with-min.

min-one-of

min-one-of	agentset	[reporter]

Reports	a	random	agent	in	the	agentset	that	reports	the	lowest	value	for	the	given	reporter.	If	there	is	a	tie,	this	command	reports	one	random
agent	that	meets	the	condition.	If	you	want	all	such	agents	use	with-min	instead.

show	min-one-of	turtles	[xcor	+	ycor]
;;	reports	the	first	turtle	with	the	smallest	sum	of
;;	coordinates

See	also	with-min,	min-n-of.

min-pxcor
min-pycor

min-pxcor
min-pycor

These	reporters	give	the	minimum	x-coordinate	and	minimum	y-coordinate,	(respectively)	for	patches,	which	determines	the	size	of	the	world.

Unlike	in	older	versions	of	NetLogo	the	origin	does	not	have	to	be	at	the	center	of	the	world.	However,	the	minimum	x-	and	y-	coordinates
must	be	less	than	or	equal	to	zero.

Note:	You	can	set	the	size	of	the	world	by	editing	the	view	or	using	resize-world.

crt	100	[setxy	random-float	min-pxcor
																random-float	min-pycor]
;;	distributes	100	turtles	randomly	in	the
;;	third	quadrant

See	also	max-pxcor,	max-pycor,	world-width,	and	world-height

mod

number1	mod	number2

Reports	number1	modulo	number2:	that	is,	the	residue	of	number1	(mod	number2).	mod	is	is	equivalent	to	the	following	NetLogo	code:

										number1	-	(floor	(number1	/	number2))	*	number2

Note	that	mod	is	"infix",	that	is,	it	comes	between	its	two	inputs.

show	62	mod	5
=>	2
show	-8	mod	3

Since	2.0

Since	1.0

Since	3.0

Since	1.0
Since	1.0

Since	4.0

Since	4.0

=>	1

See	also	remainder.	mod	and	remainder	behave	the	same	for	positive	numbers,	but	differently	for	negative	numbers.

modes

modes	list

Reports	a	list	of	the	most	common	item	or	items	in	list.

The	input	list	may	contain	any	NetLogo	values.

If	the	input	is	an	empty	list,	reports	an	empty	list.

show	modes	[1	2	2	3	4]
=>	[2]
show	modes	[1	2	2	3	3	4]
=>	[2	3]
show	modes	[[1	2	[3]]	[1	2	[3]]	[2	3	4]]
=>	[[1	2	[3]]]
show	modes	[pxcor]	of	turtles
;;	shows	which	columns	of	patches	have	the	most
;;	turtles	on	them

mouse-down?

mouse-down?

Reports	true	if	the	mouse	button	is	down,	false	otherwise.

Note:	If	the	mouse	pointer	is	outside	of	the	current	view	,	mouse-down?	will	always	report	false.

mouse-inside?

mouse-inside?

Reports	true	if	the	mouse	pointer	is	inside	the	world	boundaries	inside	the	current	view,	false	otherwise.	In	the	case	of	an	unwrapped	world
and	using	follow	on	an	agent,	It's	possible	for	the	mouse	pointer	to	be	inside	the	view	but	not	inside	the	world	boundaries.

mouse-xcor
mouse-ycor

mouse-xcor
mouse-ycor

Reports	the	x	or	y	coordinate	of	the	mouse	in	the	2D	view.	The	value	is	in	terms	of	turtle	coordinates,	so	it	might	not	be	an	integer.	If	you	want
patch	coordinates,	use	round	mouse-xcor	and	round	mouse-ycor.

Note:	If	the	mouse	is	outside	of	the	2D	view,	reports	the	value	from	the	last	time	it	was	inside.

;;	to	make	the	mouse	"draw"	in	red:
if	mouse-down?
		[ask	patch	mouse-xcor	mouse-ycor	[set	pcolor	red]]

move-to

move-to	agent

The	turtle	sets	its	x	and	y	coordinates	to	be	the	same	as	the	given	agent's.

(If	that	agent	is	a	patch,	the	effect	is	to	move	the	turtle	to	the	center	of	that	patch.)

move-to	turtle	5
;;	turtle	moves	to	same	point	as	turtle	5
move-to	one-of	patches
;;	turtle	moves	to	the	center	of	a	random	patch
move-to	max-one-of	turtles	[size]
;;	turtle	moves	to	same	point	as	biggest	turtle

Note	that	the	turtle's	heading	is	unaltered.	You	may	want	to	use	the	face	command	first	to	orient	the	turtle	in	the	direction	of	motion.

See	also	setxy.

my-<breeds>
my-links

my-<breeds>
my-links

Since	4.0

Since	4.0

Since	1.0

Reports	an	agentset	of	all	links	connected	to	the	caller	of	the	corresponding	breed,	regardless	of	directedness.	Generally,	you	might	consider
using	my-out-links	instead	of	this	primitive,	as	it	works	well	for	either	directed	or	undirected	networks	(since	it	excludes	directed,	incoming
links).

crt	5
ask	turtle	0
[
		create-links-with	other	turtles
		show	my-links	;;	prints	the	agentset	containing	all	links
																;;	(since	all	the	links	we	created	were	with	turtle	0)
]
ask	turtle	1
[
		show	my-links	;;	shows	an	agentset	containing	the	link	0	1
]
end

If	you	only	want	the	undirected	links	connected	to	a	node,	you	can	do	my-links	with	[not	is-directed-link?	self].

my-in-<breeds>
my-in-links

my-in-<breeds>
my-in-links

Reports	an	agentset	of	all	the	directed	links	coming	in	from	other	nodes	to	the	caller	as	well	as	all	undirected	links	connected	to	the	caller.	You
can	think	of	this	as	"all	links	that	you	can	use	to	travel	to	this	node".

crt	5
ask	turtle	0
[
		create-links-to	other	turtles
		show	my-in-links	;;	shows	an	empty	agentset
]
ask	turtle	1
[
		show	my-in-links	;;	shows	an	agentset	containing	the	link	0	1
]

my-out-<breeds>
my-out-links

my-out-<breeds>
my-out-links

Reports	an	agentset	of	all	the	directed	links	going	out	from	the	caller	to	other	nodes	as	well	as	undirected	links	connected	to	the	caller.	You
can	think	of	this	as	"all	links	you	can	use	to	travel	from	this	node".

crt	5
ask	turtle	0
[
		create-links-to	other	turtles
		show	my-out-links	;;	shows	agentset	containing	all	the	links
]
ask	turtle	1
[
		show	my-out-links	;;	shows	an	empty	agentset
]

myself

myself
	 	

"self"	and	"myself"	are	very	different.	"self"	is	simple;	it	means	"me".	"myself"	means	"the	turtle,	patch	or	link	who	asked	me	to	do	what	I'm
doing	right	now."

When	an	agent	has	been	asked	to	run	some	code,	using	myself	in	that	code	reports	the	agent	(turtle,	patch	or	link)	that	did	the	asking.

myself	is	most	often	used	in	conjunction	with	of	to	read	or	set	variables	in	the	asking	agent.

myself	can	be	used	within	blocks	of	code	not	just	in	the	ask	command,	but	also	hatch,	sprout,	of,	with,	all?,	with-min,	with-max,	min-one-of,
max-one-of,	min-n-of,	max-n-of.

ask	turtles
		[ask	patches	in-radius	3
						[set	pcolor	[color]	of	myself]]
;;	each	turtle	makes	a	colored	"splotch"	around	itself

See	the	"Myself	Example"	code	example	for	more	examples.

See	also	self.

Since	3.1

Since	2.0

Since	1.1
Since	1.1

Since	4.0

N

n-of

n-of	size	agentset
n-of	size	list

From	an	agentset,	reports	an	agentset	of	size	size	randomly	chosen	from	the	input	set,	with	no	repeats.

From	a	list,	reports	a	list	of	size	size	randomly	chosen	from	the	input	set,	with	no	repeats.	The	items	in	the	result	appear	in	the	same	order	that
they	appeared	in	the	input	list.	(If	you	want	them	in	random	order,	use	shuffle	on	the	result.)

It	is	an	error	for	size	to	be	greater	than	the	size	of	the	input.

If	size	is	fractional,	it	will	be	rounded	down	to	the	nearest	integer	(4.5	becomes	4,	10.9	becomes	10).

ask	n-of	50	patches	[set	pcolor	green]
;;	50	randomly	chosen	patches	turn	green

See	also	one-of	and	up-to-n-of,	a	version	that	does	not	error	with	a	size	greater	than	the	size	of	the	input.

n-values

n-values	size	reporter

Reports	a	list	of	length	size	containing	values	computed	by	repeatedly	running	the	reporter.	reporter	may	be	an	anonymous	reporter	or	the
name	of	a	reporter.

If	the	reporter	accepts	inputs,	the	input	will	be	the	number	of	the	item	currently	being	computed,	starting	from	zero.

If	size	is	fractional,	it	will	be	rounded	down	to	the	nearest	integer	(4.5	becomes	4,	10.9	becomes	10).

show	n-values	5	[1]
=>	[1	1	1	1	1]
show	n-values	5	[i	->	i]
=>	[0	1	2	3	4]
show	n-values	3	turtle
=>	[(turtle	0)	(turtle	1)	(turtle	2)]
show	n-values	5	[x	->	x	*	x]
=>	[0	1	4	9	16]

See	also	reduce,	filter,	->	(anonymous	procedure),	range.

neighbors
neighbors4

neighbors
neighbors4
	

Reports	an	agentset	containing	the	8	surrounding	patches	(neighbors)	or	4	surrounding	patches	(neighbors4).

show	sum	[count	turtles-here]	of	neighbors
		;;	prints	the	total	number	of	turtles	on	the	eight
		;;	patches	around	this	turtle	or	patch
show	count	turtles-on	neighbors
		;;	a	shorter	way	to	say	the	same	thing
ask	neighbors4	[set	pcolor	red]
		;;	turns	the	four	neighboring	patches	red

<breed>-neighbors
link-neighbors

<breed>-neighbors
link-neighbors

Reports	the	agentset	of	all	turtles	found	at	the	other	end	of	any	links	(undirected	or	directed,	incoming	or	outgoing)	connected	to	this	turtle.

crt	3
ask	turtle	0
[
		create-links-with	other	turtles
		ask	link-neighbors	[set	color	red]	;;	turtles	1	and	2	turn	red
]
ask	turtle	1
[
		ask	link-neighbors	[set	color	blue]	;;	turtle	0	turns	blue
]
end

Since	4.0

Since	3.0

Since	5.2

Since	3.0

Since	1.0

Since	4.0

<breed>-neighbor?
link-neighbor?

<breed>-neighbor?	turtle
link-neighbor?	turtle

Reports	true	if	there	is	a	link	(either	directed	or	undirected,	incoming	or	outgoing)	between	turtle	and	the	caller.

crt	2
ask	turtle	0
[
		create-link-with	turtle	1
		show	link-neighbor?	turtle	1		;;	prints	true
]
ask	turtle	1
[
		show	link-neighbor?	turtle	0					;;	prints	true
]

netlogo-version

netlogo-version

Reports	a	string	containing	the	version	number	of	the	NetLogo	you	are	running.

show	netlogo-version
=>	"6.4.0"

netlogo-web?

netlogo-web?

Reports	true	if	the	model	is	running	in	NetLogo	Web.

new-seed

new-seed

Reports	a	number	suitable	for	seeding	the	random	number	generator.

The	numbers	reported	by	new-seed	are	based	on	the	current	date	and	time	in	milliseconds	and	lie	in	the	generator's	usable	range	of	seeds,	-
2147483648	to	2147483647.

new-seed	never	reports	the	same	number	twice	in	succession,	even	across	parallel	BehaviorSpace	runs.	(This	is	accomplished	by	waiting	a
millisecond	if	the	seed	for	the	current	millisecond	was	already	used.)

See	also	random-seed.

no-display

no-display

Turns	off	all	updates	to	the	current	view	until	the	display	command	is	issued.	This	has	two	major	uses.

One,	you	can	control	when	the	user	sees	view	updates.	You	might	want	to	change	lots	of	things	on	the	view	behind	the	user's	back,	so	to
speak,	then	make	them	visible	to	the	user	all	at	once.

Two,	your	model	will	run	faster	when	view	updating	is	off,	so	if	you're	in	a	hurry,	this	command	will	let	you	get	results	faster.	(Note	that
normally	you	don't	need	to	use	no-display	for	this,	since	you	can	also	use	the	on/off	switch	in	view	control	strip	to	freeze	the	view.)

Note	that	display	and	no-display	operate	independently	of	the	switch	in	the	view	control	strip	that	freezes	the	view.

See	also	display.

nobody

nobody

This	is	a	special	value	which	some	primitives	such	as	turtle,	one-of,	max-one-of,	etc.	report	to	indicate	that	no	agent	was	found.	Also,	when	a
turtle	dies,	it	becomes	equal	to	nobody.

Note:	Empty	agentsets	are	not	equal	to	nobody.	If	you	want	to	test	for	an	empty	agentset,	use	any?.	You	only	get	nobody	back	in	situations
where	you	were	expecting	a	single	agent,	not	a	whole	agentset.

set	target	one-of	other	turtles-here
if	target	!=	nobody
		[ask	target	[set	color	red]]

no-links

Since	4.0

Since	1.0

Since	4.0

Since	4.0

Since	1.0

Since	1.0

no-links

Reports	an	empty	link	agentset.

no-patches

no-patches

Reports	an	empty	patch	agentset.

not

not	boolean

Reports	true	if	boolean	is	false,	otherwise	reports	false.

if	not	any?	turtles	[crt	10]

no-turtles

no-turtles

Reports	an	empty	turtle	agentset.

O

of

[reporter]	of	agent
[reporter]	of	agentset

For	an	agent,	reports	the	value	of	the	reporter	for	that	agent	(turtle	or	patch).

show	[pxcor]	of	patch	3	5
;;	prints	3
show	[pxcor]	of	one-of	patches
;;	prints	the	value	of	a	random	patch's	pxcor	variable
show	[who	*	who]	of	turtle	5
=>	25
show	[count	turtles	in-radius	3]	of	patch	0	0
;;	prints	the	number	of	turtles	located	within	a
;;	three-patch	radius	of	the	origin

For	an	agentset,	reports	a	list	that	contains	the	value	of	the	reporter	for	each	agent	in	the	agentset	(in	random	order).

crt	4
show	sort	[who]	of	turtles
=>	[0	1	2	3]
show	sort	[who	*	who]	of	turtles
=>	[0	1	4	9]

one-of

one-of	agentset
one-of	list

From	an	agentset,	reports	a	random	agent.	If	the	agentset	is	empty,	reports	nobody.

From	a	list,	reports	a	random	list	item.	It	is	an	error	for	the	list	to	be	empty.

ask	one-of	patches	[set	pcolor	green]
;;	a	random	patch	turns	green
ask	patches	with	[any?	turtles-here]
		[show	one-of	turtles-here]
;;	for	each	patch	containing	turtles,	prints	one	of
;;	those	turtles

;;	suppose	mylist	is	[1	2	3	4	5	6]
show	one-of	mylist
;;	prints	a	value	randomly	chosen	from	the	list

See	also	n-of,	up-to-n-of.

or

boolean1	or	boolean2

Reports	true	if	boolean1	is	true,	boolean2	is	true,	or	both	are	true.	Otherwise	returns	false	if	both	booleans	are	false.

Since	4.0

Since	4.0

Since	4.0

Since	4.0

Note	that	if	boolean1	is	true,	then	boolean2	will	not	be	run	(since	it	can't	affect	the	result).	See	the	programming	guide	for	more	information	on
logical	operator	precedence.

if	(pxcor	>	0)	or	(pycor	>	0)	[set	pcolor	red]
;;	patches	turn	red	except	in	lower-left	quadrant

other

other	agentset
	

Reports	an	agentset	which	is	the	same	as	the	input	agentset	but	omits	this	agent.

show	count	turtles-here
=>	10
show	count	other	turtles-here
=>	9

other-end

other-end
	

If	run	by	a	turtle,	reports	the	turtle	at	the	other	end	of	the	asking	link.

If	run	by	a	link,	reports	the	turtle	at	the	end	of	the	link	that	isn't	the	asking	turtle.

These	definitions	are	difficult	to	understand	in	the	abstract,	but	the	following	examples	should	help:

ask	turtle	0	[create-link-with	turtle	1]
ask	turtle	0	[ask	link	0	1	[show	other-end]]	;;	prints	turtle	1
ask	turtle	1	[ask	link	0	1	[show	other-end]]	;;	prints	turtle	0
ask	link	0	1	[ask	turtle	0	[show	other-end]]	;;	prints	turtle	1

As	these	examples	hopefully	make	plain,	the	"other"	end	is	the	end	that	is	neither	asking	nor	being	asked.

out-<breed>-neighbor?
out-link-neighbor?

out-<breed>-neighbor?	turtle
out-link-neighbor?	turtle

Reports	true	if	there	is	a	directed	link	going	from	the	caller	to	turtle	or	if	there	is	an	undirected	link	connecting	the	caller	with	turtle.	You	can
think	of	this	as	"can	I	get	from	the	caller	to	turtle	using	a	link?"

crt	2
ask	turtle	0	[
		create-link-to	turtle	1
		show	in-link-neighbor?	turtle	1		;;	prints	false
		show	out-link-neighbor?	turtle	1	;;	prints	true
]
ask	turtle	1	[
		show	in-link-neighbor?	turtle	0		;;	prints	true
		show	out-link-neighbor?	turtle	0	;;	prints	false
]

out-<breed>-neighbors
out-link-neighbors

out-<breed>-neighbors
out-link-neighbors

Reports	the	agentset	of	all	the	turtles	that	have	directed	links	from	the	caller,	or	undirected	links	with	the	caller.	You	can	think	of	this	as	"who
can	I	get	to	from	the	caller	using	a	link?"

crt	4
ask	turtle	0
[
		create-links-to	other	turtles
		ask	out-link-neighbors	[set	color	pink]	;;	turtles	1-3	turn	pink
]
ask	turtle	1
[
		ask	out-link-neighbors	[set	color	orange]		;;	no	turtles	change	colors
																																															;;	since	turtle	1	only	has	in-links
]
end

Since	4.0

Since	2.1
Since	2.1
Since	2.1
Since	2.1

Since	1.0

Since	2.0

Since	1.0

out-<breed>-to
out-link-to

out-<breed>-to	turtle
out-link-to	turtle

Reports	a	directed	link	from	the	caller	to	turtle	or	an	undirected	link	connecting	the	two.	If	no	link	exists	then	it	reports	nobody.	If	more	than	one
such	link	exists,	reports	a	random	one.	You	can	think	of	this	as	"give	me	a	link	that	I	can	use	to	travel	from	the	caller	to	turtle."

crt	2
ask	turtle	0	[
		create-link-to	turtle	1
		show	out-link-to	turtle	1	;;	shows	link	0	1
]
ask	turtle	1
[
		show	out-link-to	turtle	0	;;	shows	nobody
]

See	also:	in-link-from	link-with

output-print
output-show
output-type
output-write

output-print	value
output-show	value
output-type	value
output-write	value

These	commands	are	the	same	as	the	print,	show,	type,	and	write	commands	except	that	value	is	printed	in	the	model's	output	area,	instead
of	in	the	Command	Center.	(If	the	model	does	not	have	a	separate	output	area,	then	the	Command	Center	is	used.)	See	also	Output
(programming	guide).

P

patch

patch	xcor	ycor

Given	the	x	and	y	coordinates	of	a	point,	reports	the	patch	containing	that	point.	(The	coordinates	are	absolute	coordinates;	they	are	not
computed	relative	to	this	agent,	as	with	patch-at.)

If	x	and	y	are	integers,	the	point	is	the	center	of	a	patch.	If	x	or	y	is	not	an	integer,	rounding	to	the	nearest	integer	is	used	to	determine	which
patch	contains	the	point.

If	wrapping	is	allowed	by	the	topology,	the	given	coordinates	will	be	wrapped	to	be	within	the	world.	If	wrapping	is	not	allowed	and	the	given
coordinates	are	outside	the	world,	reports	nobody.

ask	patch	3	-4	[set	pcolor	green]
;;	patch	with	pxcor	of	3	and	pycor	of	-4	turns	green
show	patch	1.2	3.7
;;	prints	(patch	1	4);	note	rounding
show	patch	18	19
;;	supposing	min-pxcor	and	min-pycor	are	-17
;;	and	max-pxcor	and	max-pycor	are	17,
;;	in	a	wrapping	topology,	prints	(patch	-17	-16);
;;	in	a	non-wrapping	topology,	prints	nobody

See	also	patch-at.

patch-ahead

patch-ahead	distance

Reports	the	single	patch	that	is	the	given	distance	"ahead"	of	this	turtle,	that	is,	along	the	turtle's	current	heading.	Reports	nobody	if	the	patch
does	not	exist	because	it	is	outside	the	world.

ask	patch-ahead	1	[set	pcolor	green]
;;	turns	the	patch	1	in	front	of	this	turtle
;;			green;	note	that	this	might	be	the	same	patch
;;			the	turtle	is	standing	on

See	also	patch-at,	patch-left-and-ahead,	patch-right-and-ahead,	patch-at-heading-and-distance.

patch-at

Since	2.0

Since	1.0

Since	2.0
Since	2.0

Since	4.0

Since	4.1

patch-at	dx	dy
	

Reports	the	patch	at	(dx,	dy)	from	the	caller,	that	is,	the	patch	containing	the	point	dx	east	and	dy	patches	north	of	this	agent.

Reports	nobody	if	there	is	no	such	patch	because	that	point	is	beyond	a	non-wrapping	world	boundary.

ask	patch-at	1	-1	[set	pcolor	green]
;;	if	caller	is	a	turtle	or	patch,	turns	the
;;			patch	just	southeast	of	the	caller	green

See	also	patch,	patch-ahead,	patch-left-and-ahead,	patch-right-and-ahead,	patch-at-heading-and-distance.

patch-at-heading-and-distance

patch-at-heading-and-distance	heading	distance
	

patch-at-heading-and-distance	reports	the	single	patch	that	is	the	given	distance	from	this	turtle	or	patch,	along	the	given	absolute	heading.
(In	contrast	to	patch-left-and-ahead	and	patch-right-and-ahead,	this	turtle's	current	heading	is	not	taken	into	account.)	Reports	nobody	if	the
patch	does	not	exist	because	it	is	outside	the	world.

ask	patch-at-heading-and-distance	-90	1	[set	pcolor	green]
;;	turns	the	patch	1	to	the	west	of	this	patch	green

See	also	patch,	patch-at,	patch-left-and-ahead,	patch-right-and-ahead.

patch-here

patch-here

patch-here	reports	the	patch	under	the	turtle.

Note	that	this	reporter	isn't	available	to	a	patch	because	a	patch	can	just	say	"self".

patch-left-and-ahead
patch-right-and-ahead

patch-left-and-ahead	angle	distance
patch-right-and-ahead	angle	distance

Reports	the	single	patch	that	is	the	given	distance	from	this	turtle,	in	the	direction	turned	left	or	right	the	given	angle	(in	degrees)	from	the
turtle's	current	heading.	Reports	nobody	if	the	patch	does	not	exist	because	it	is	outside	the	world.

(If	you	want	to	find	a	patch	in	a	given	absolute	heading,	rather	than	one	relative	to	the	current	turtle's	heading,	use	patch-at-heading-and-
distance	instead.)

ask	patch-right-and-ahead	30	1	[set	pcolor	green]
;;	this	turtle	"looks"	30	degrees	right	of	its
;;			current	heading	at	the	patch	1	unit	away,	and	turns
;;			that	patch	green;	note	that	this	might	be	the	same
;;			patch	the	turtle	is	standing	on

See	also	patch,	patch-at,	patch-at-heading-and-distance.

patch-set

patch-set	value1
(patch-set	value1	value2	...)

Reports	an	agentset	containing	all	of	the	patches	anywhere	in	any	of	the	inputs.	The	inputs	may	be	individual	patches,	patch	agentsets,
nobody,	or	lists	(or	nested	lists)	containing	any	of	the	above.

patch-set	self
patch-set	patch-here
(patch-set	self	neighbors)
(patch-set	patch-here	neighbors)
(patch-set	patch	0	0	patch	1	3	patch	4	-2)
(patch-set	patch-at	-1	1	patch-at	0	1	patch-at	1	1)
patch-set	[patch-here]	of	turtles
patch-set	[neighbors]	of	turtles

See	also	turtle-set,	link-set.

patch-size

patch-size

Since	1.0

Since	1.0
Since	1.0
Since	3.0
Since	3.0
Since	1.0
Since	1.0

Reports	the	size	of	the	patches	in	the	view	in	pixels.	The	size	is	typically	an	integer,	but	may	also	be	a	floating	point	number.

See	also	set-patch-size.

patches

patches

Reports	the	agentset	consisting	of	all	patches.

patches-own

patches-own	[var1	...]

This	keyword,	like	the	globals,	breed,	<breed>-own,	and	turtles-own	keywords,	can	only	be	used	at	the	beginning	of	a	program,	before	any
function	definitions.	It	defines	the	variables	that	all	patches	can	use.

All	patches	will	then	have	the	given	variables	and	be	able	to	use	them.

All	patch	variables	can	also	be	directly	accessed	by	any	turtle	standing	on	the	patch.

See	also	globals,	turtles-own,	breed,	<breeds>-own.

pcolor

pcolor
	

This	is	a	built-in	patch	variable.	It	holds	the	color	of	the	patch.	You	can	set	this	variable	to	make	the	patch	change	color.

All	patch	variables	can	be	directly	accessed	by	any	turtle	standing	on	the	patch.	Color	can	be	represented	either	as	a	NetLogo	color	(a	single
number)	or	an	RGB	color	(a	list	of	3	numbers).	See	details	in	the	Colors	section	of	the	Programming	Guide.	If	you	give	an	RGBA	color	with	4
numbers	the	transparency	value	will	be	ignored	(except	in	NetLogo	3D).

See	also	color.

pen-down
pd
pen-erase
pe
pen-up
pu

pen-down
pen-erase
pen-up

The	turtle	changes	modes	between	drawing	lines,	removing	lines	or	neither.	The	lines	will	always	be	displayed	on	top	of	the	patches	and
below	the	turtles.	To	change	the	color	of	the	pen	set	the	color	of	the	turtle	using	set	color.

Note:	When	a	turtle's	pen	is	down,	all	movement	commands	cause	lines	to	be	drawn,	including	jump,	setxy,	and	move-to.

Note:	These	commands	are	equivalent	to	setting	the	turtle	variable	"pen-mode"	to	"down"	,	"up",	and	"erase".

Note:	On	Windows	drawing	and	erasing	a	line	might	not	erase	every	pixel.

pen-mode

This	is	a	built-in	turtle	variable.	It	holds	the	state	of	the	turtle's	pen.	You	set	the	variable	to	draw	lines,	erase	lines	or	stop	either	of	these
actions.	Possible	values	are	"up",	"down",	and	"erase".

pen-size

This	is	a	built-in	turtle	variable.	It	holds	the	width	of	the	line,	in	pixels,	that	the	turtle	will	draw	(or	erase)	when	the	pen	is	down	(or	erasing).

plabel

plabel
	

This	is	a	built-in	patch	variable.	It	may	hold	a	value	of	any	type.	The	patch	appears	in	the	view	with	the	given	value	"attached"	to	it	as	text.	You
can	set	this	variable	to	add,	change,	or	remove	a	patch's	label.

All	patch	variables	can	be	directly	accessed	by	any	turtle	standing	on	the	patch.

Since	1.0

Since	1.0

Since	4.0

Since	1.0
Since	1.0

Since	1.0

Since	1.0

Since	1.0
Since	1.0
Since	1.0
Since	1.0

See	also	plabel-color,	label,	label-color.

plabel-color

plabel-color
	

This	is	a	built-in	patch	variable.	It	holds	a	number	greater	than	or	equal	to	0	and	less	than	140.	This	number	determines	what	color	the	patch's
label	appears	in	(if	it	has	a	label).	You	can	set	this	variable	to	change	the	color	of	a	patch's	label.

All	patch	variables	can	be	directly	accessed	by	any	turtle	standing	on	the	patch.

See	also	plabel,	label,	label-color.

plot

plot	number

Increments	the	x-value	of	the	plot	pen	by	plot-pen-interval,	then	plots	a	point	at	the	updated	x-value	and	a	y-value	of	number.	(The	first	time
the	command	is	used	on	a	plot,	the	point	plotted	has	an	x-value	of	0.)

This	command	will	produce	a	runtime	error	if	the	current	plot	has	not	been	set.

plot-name

plot-name

Reports	the	name	of	the	current	plot	(a	string)

This	command	will	produce	a	runtime	error	if	the	current	plot	has	not	been	set.

plot-pen-exists?

plot-pen-exists?	string

Reports	true	if	a	plot	pen	with	the	given	name	is	defined	in	the	current	plot.	Otherwise	reports	false.

This	command	will	produce	a	runtime	error	if	the	current	plot	has	not	been	set.

plot-pen-down
plot-pen-up

plot-pen-down
plot-pen-up

Puts	down	(or	up)	the	current	plot-pen,	so	that	it	draws	(or	doesn't).	(By	default,	all	pens	are	down	initially.)

These	commands	will	produce	a	runtime	error	if	either	the	current	plot	or	the	current	pen	has	not	been	set.

plot-pen-reset

plot-pen-reset

Clears	everything	the	current	plot	pen	has	drawn,	moves	it	to	(0,0),	and	puts	it	down.	If	the	pen	is	a	permanent	pen,	the	color,	mode,	and
interval	are	reset	to	the	default	values	from	the	plot	Edit	dialog.

This	command	will	produce	a	runtime	error	if	either	the	current	plot	or	the	current	pen	has	not	been	set.

plotxy

plotxy	number1	number2

Moves	the	current	plot	pen	to	the	point	with	coordinates	(number1,	number2).	If	the	pen	is	down,	a	line,	bar,	or	point	will	be	drawn	(depending
on	the	pen's	mode).

This	command	will	produce	a	runtime	error	if	the	current	plot	has	not	been	set.

plot-x-min
plot-x-max
plot-y-min
plot-y-max

plot-x-min
plot-x-max
plot-y-min
plot-y-max

Reports	the	minimum	or	maximum	value	on	the	x	or	y	axis	of	the	current	plot.

Since	1.0

Since	1.0

Since	1.0

Since	1.0

These	values	can	be	set	with	the	commands	set-plot-x-range	and	set-plot-y-range.	(Their	default	values	are	set	from	the	plot	Edit	dialog.)

These	commands	will	produce	a	runtime	error	if	the	current	plot	has	not	been	set.

position

position	item	list
position	string1	string2

On	a	list,	reports	the	first	position	of	item	in	list,	or	false	if	it	does	not	appear.

On	strings,	reports	the	position	of	the	first	appearance	string1	as	a	substring	of	string2,	or	false	if	it	does	not	appear.

Note:	The	positions	are	numbered	beginning	with	0,	not	with	1.

;;	suppose	mylist	is	[2	7	4	7	"Bob"]
show	position	7	mylist
=>	1
show	position	10	mylist
=>	false
show	position	"in"	"string"
=>	3

See	also	member?.

precision

precision	number	places

Reports	number	rounded	to	places	decimal	places.

If	places	is	negative,	the	rounding	takes	place	to	the	left	of	the	decimal	point.

show	precision	1.23456789	3
=>	1.235
show	precision	3834	-3
=>	4000

See	also	round,	ceiling,	floor.

print

print	value

Prints	value	in	the	Command	Center,	followed	by	a	carriage	return.

This	agent	is	not	printed	before	the	value,	unlike	show.

See	also	show,	type,	write,	output-print,	and	Output	(programming	guide).

pxcor
pycor

pxcor
pycor
	

These	are	built-in	patch	variables.	They	hold	the	x	and	y	coordinate	of	the	patch.	They	are	always	integers.	You	cannot	set	these	variables,
because	patches	don't	move.

pxcor	is	greater	than	or	equal	to	min-pxcor	and	less	than	or	equal	to	max-pxcor;	similarly	for	pycor	and	min-pycor	and	max-pycor.

All	patch	variables	can	be	directly	accessed	by	any	turtle	standing	on	the	patch.

See	also	xcor,	ycor.

R

random

random	number

If	number	is	positive,	reports	a	random	integer	greater	than	or	equal	to	0,	but	strictly	less	than	number.

If	number	is	negative,	reports	a	random	integer	less	than	or	equal	to	0,	but	strictly	greater	than	number.

If	number	is	zero,	the	result	is	always	0	as	well.

Note:	In	versions	of	NetLogo	prior	to	version	2.0,	this	primitive	reported	a	floating	point	number	if	given	a	non-integer	input.	This	is	no	longer
the	case.	If	you	want	a	floating	point	answer,	you	must	now	use	random-float	instead.

Since	2.0

Since	1.2.1
Since	2.0

Since	1.2.1
Since	1.2.1

Since	3.1
Since	3.1

Since	1.0

show	random	3
;;	prints	0,	1,		or	2
show	random	-3
;;	prints	0,	-1,	or	-2
show	random	3.5
;;	prints	0,	1,	2,	or	3

See	also	random-float.

random-float

random-float	number

If	number	is	positive,	reports	a	random	floating	point	number	greater	than	or	equal	to	0	but	strictly	less	than	number.

If	number	is	negative,	reports	a	random	floating	point	number	less	than	or	equal	to	0,	but	strictly	greater	than	number.

If	number	is	zero,	the	result	is	always	0.

show	random-float	3
;;	prints	a	number	at	least	0	but	less	than	3,
;;	for	example	2.589444906014774
show	random-float	2.5
;;	prints	a	number	at	least	0	but	less	than	2.5,
;;	for	example	1.0897423196760796

random-exponential
random-gamma
random-normal
random-poisson

random-exponential	mean
random-gamma	alpha	lambda
random-normal	mean	standard-deviation
random-poisson	mean

Reports	an	accordingly	distributed	random	number	with	the	mean	and,	in	the	case	of	the	normal	distribution,	the	standard-deviation.	(The
standard	deviation	may	not	be	negative.)

random-exponential	reports	an	exponentially	distributed	random	floating	point	number.	It	is	equivalent	to	(-	mean)	*	ln	random-float	1.0.

random-gamma	reports	a	gamma-distributed	random	floating	point	number	as	controlled	by	the	floating	point	alpha	and	lambda	parameters.
Both	inputs	must	be	greater	than	zero.	(Note:	for	results	with	a	given	mean	and	variance,	use	inputs	as	follows:	alpha	=	mean	*	mean	/
variance;	lambda	=	1	/	(variance	/	mean).)

random-normal	reports	a	normally	distributed	random	floating	point	number.

random-poisson	reports	a	Poisson-distributed	random	integer.

show	random-exponential	2
;;	prints	an	exponentially	distributed	random	floating
;;	point	number	with	a	mean	of	2
show	random-normal	10.1	5.2
;;	prints	a	normally	distributed	random	floating	point
;;	number	with	a	mean	of	10.1	and	a	standard	deviation
;;	of	5.2
show	random-poisson	3.4
;;	prints	a	Poisson-distributed	random	integer	with	a
;;	mean	of	3.4

random-pxcor
random-pycor

random-pxcor
random-pycor

Reports	a	random	integer	ranging	from	min-pxcor	(or	-y)	to	max-pxcor	(or	-y)	inclusive.

ask	turtles	[
		;;	move	each	turtle	to	the	center	of	a	random	patch
		setxy	random-pxcor	random-pycor
]

See	also	random-xcor,	random-ycor.

random-seed

random-seed	number

Sets	the	seed	of	the	pseudo-random	number	generator	to	the	integer	part	of	number.	The	seed	must	be	in	the	range	-2147483648	to
2147483647;	note	that	this	is	smaller	than	the	full	range	of	integers	supported	by	NetLogo	(-9007199254740992	to	9007199254740992).

Since	3.1
Since	3.1

Since	6.0

Since	1.1

Since	1.3

See	the	Random	Numbers	section	of	the	Programming	Guide	for	more	details.

random-seed	47822
show	random	100
=>	50
show	random	100
=>	35
random-seed	47822
show	random	100
=>	50
show	random	100
=>	35

See	also	the	new-seed	reporter	that	generates	proper	random	seed	values.

random-xcor
random-ycor

random-xcor
random-ycor

Reports	a	random	floating	point	number	from	the	allowable	range	of	turtle	coordinates	along	the	given	axis,	x	or	y.

Turtle	coordinates	range	from	min-pxcor	-	0.5	(inclusive)	to	max-pxcor	+	0.5	(exclusive)	horizontally;	vertically,	substitute	-y	for	-x.

ask	turtles	[
		;;	move	each	turtle	to	a	random	point
		setxy	random-xcor	random-ycor
]

See	also	random-pxcor,	random-pycor.

range

range	stop
(range	start	stop)
(range	start	stop	step)

Generates	a	list	of	numbers,	starting	at	start,	ending	before	stop,	counting	by	step.	start	defaults	to	0	and	step	defaults	to	1.

show	range	5
=>	[0	1	2	3	4]
show	(range	2	5)
=>	[2	3	4]
show	(range	2	5	0.5)
=>	[2	2.5	3	3.5	4	4.5]
show	(range	10	0	-1)
=>	[10	9	8	7	6	5	4	3	2	1]

See	also	n-values

read-from-string

read-from-string	string

Interprets	the	given	string	as	if	it	had	been	typed	in	the	Command	Center,	and	reports	the	resulting	value.	The	result	may	be	a	number,	list,
string,	or	boolean	value,	or	the	special	value	"nobody".

Useful	in	conjunction	with	the	user-input	primitive	for	converting	the	user's	input	into	usable	form.

show	read-from-string	"3"	+	read-from-string	"5"
=>	8
show	length	read-from-string	"[1	2	3]"
=>	3
crt	read-from-string	user-input	"Make	how	many	turtles?"
;;	the	number	of	turtles	input	by	the	user
;;	are	created

Note:	This	primitive	is	not	compatible	with	NetLogo	Web.	If	you	wish	to	read	user	input	with	the	same	code	and	the	same	behavior	in	both
NetLogo	and	NetLogo	Web,	see	dialog:user-input.

reduce

reduce	reporter	list

Reduces	a	list	from	left	to	right	using	the	given	reporter,	resulting	in	a	single	value.	This	means,	for	example,	that	reduce	[[a	b]	->	a	+	b]
[1	2	3	4]	is	equivalent	to	(((1	+	2)	+	3)	+	4).	If	list	has	a	single	item,	that	item	is	reported.	It	is	an	error	to	reduce	an	empty	list.	reporter	may	be
an	anonymous	reporter	or	the	name	of	a	reporter.

The	first	input	passed	to	the	reporter	is	the	result	so	far,	and	the	second	input	is	the	next	item	in	the	list.

Since	it	can	be	difficult	to	develop	an	intuition	about	what	reduce	does,	here	are	some	simple	examples	which,	while	not	useful	in	themselves,
may	give	you	a	better	understanding	of	this	primitive:

https://github.com/NetLogo/Dialog-Extension#readme

Since	1.2.1

Since	1.0

Since	1.0

show	reduce	+	[1	2	3]
=>	6
show	reduce	-	[1	2	3]
=>	-4
show	reduce	[[result-so-far	next-item]	->	next-item	-	result-so-far]	[1	2	3]
=>	2
show	reduce	[[result-so-far	ignored-item]	->	result-so-far]	[1	2	3]
=>	1
show	reduce	[[ignored	next-item]	->	next-item]	[1	2	3]
=>	3
show	reduce	sentence	[[1	2]	[3	[4]]	5]
=>	[1	2	3	[4]	5]
show	reduce	[[result-so-far	next-item]	->	fput	next-item	result-so-far]	(fput	[]	[1	2	3	4	5])
=>	[5	4	3	2	1]

Here	are	some	more	useful	examples:

;;	find	the	longest	string	in	a	list
to-report	longest-string	[strings]
		report	reduce
				[[longest-so-far	next-string]	->	ifelse-value	(length	longest-so-far	>=	length	next-string)	[longest-so-far]	[next-string]]
				strings
end

show	longest-string	["hi"	"there"	"!"]
=>	"there"

;;	count	the	number	of	occurrences	of	an	item	in	a	list
to-report	occurrences	[x	the-list]
		report	reduce
				[[occurrence-count	next-item]	->	ifelse-value	(next-item	=	x)	[occurrence-count	+	1]	[occurrence-count]]	(fput	0	the-list)
end

show	occurrences	1	[1	2	1	3	1	2	3	1	1	4	5	1]
=>	6

;;	evaluate	the	polynomial,	with	given	coefficients,	at	x
to-report	evaluate-polynomial	[coefficients	x]
		report	reduce	[[value	coefficient]	->	(x	*	value)	+	coefficient]	coefficients
end

;;	evaluate	3x^2	+	2x	+	1	at	x	=	4
show	evaluate-polynomial	[3	2	1]	4
=>	57

See	also	filter,	->	(anonymous	procedure.

remainder

remainder	number1	number2

Reports	the	remainder	when	number1	is	divided	by	number2.	This	is	equivalent	to	the	following	NetLogo	code:

										number1	-	(int	(number1	/	number2))	*	number2

show	remainder	62	5
=>	2
show	remainder	-8	3
=>	-2

See	also	mod.	mod	and	remainder	behave	the	same	for	positive	numbers,	but	differently	for	negative	numbers.

remove

remove	item	list
remove	string1	string2

For	a	list,	reports	a	copy	of	list	with	all	instances	of	item	removed.

For	strings,	reports	a	copy	of	string2	with	all	the	appearances	of	string1	as	a	substring	removed.

set	mylist	[2	7	4	7	"Bob"]
set	mylist	remove	7	mylist
;;	mylist	is	now	[2	4	"Bob"]
show	remove	"to"	"phototonic"
=>	"phonic"

remove-duplicates

remove-duplicates	list

Reports	a	copy	of	list	with	all	duplicate	items	removed.	The	first	of	each	item	remains	in	place.

set	mylist	[2	7	4	7	"Bob"	7]
set	mylist	remove-duplicates	mylist
;;	mylist	is	now	[2	7	4	"Bob"]

Since	2.0

Since	1.0

Since	1.0

Since	1.0

Since	3.0
Since	3.0

Since	4.0

Since	1.0

remove-item

remove-item	index	list
remove-item	index	string

For	a	list,	reports	a	copy	of	list	with	the	item	at	the	given	index	removed.

For	strings,	reports	a	copy	of	string	with	the	character	at	the	given	index	removed.

Note	that	the	indices	begin	from	0,	not	1.	(The	first	item	is	item	0,	the	second	item	is	item	1,	and	so	on.)

If	index	is	fractional,	it	will	be	rounded	down	to	the	nearest	integer	(4.5	becomes	4,	10.9	becomes	10).

set	mylist	[2	7	4	7	"Bob"]
set	mylist	remove-item	2	mylist
;;	mylist	is	now	[2	7	7	"Bob"]
show	remove-item	2	"string"
=>	"sting"

repeat

repeat	number	[commands]

Runs	commands	number	times.

pd	repeat	36	[fd	1	rt	10]
;;	the	turtle	draws	a	circle

replace-item

replace-item	index	list	value
replace-item	index	string1	string2

On	a	list,	replaces	an	item	in	that	list.	index	is	the	index	of	the	item	to	be	replaced,	starting	with	0.	(The	6th	item	in	a	list	would	have	an	index
of	5.)	Note	that	"replace-item"	is	used	in	conjunction	with	"set"	to	change	a	list.

Likewise	for	a	string,	but	the	given	character	of	string1	removed	and	the	contents	of	string2	spliced	in	instead.

If	index	is	fractional,	it	will	be	rounded	down	to	the	nearest	integer	(4.5	becomes	4,	10.9	becomes	10).

show	replace-item	2	[2	7	4	5]	15
=>	[2	7	15	5]
show	replace-item	1	"cat"	"are"
=>	"caret"

report

report	value

Immediately	exits	from	the	current	to-report	procedure	and	reports	value	as	the	result	of	that	procedure.	report	and	to-report	are	always	used
in	conjunction	with	each	other.	See	to-report	for	a	discussion	of	how	to	use	them.

reset-perspective
rp

reset-perspective

The	observer	stops	watching,	following,	or	riding	any	turtles	(or	patches	or	links).	(If	it	wasn't	watching,	following,	or	riding	anybody,	nothing
happens.)	In	the	3D	view,	the	observer	also	returns	to	its	default	position	(above	the	origin,	looking	straight	down).	Note:	following	and	riding
are	valid	for	turtles	only.

See	also	follow,	ride,	watch.

reset-ticks

reset-ticks

Resets	the	tick	counter	to	zero,	sets	up	all	plots,	then	updates	all	plots	(so	that	the	initial	state	of	the	world	is	plotted).

Normally	reset-ticks	goes	at	the	end	of	a	setup	procedure.

See	also	clear-ticks,	tick,	ticks,	tick-advance,	setup-plots,	update-plots.

reset-timer

reset-timer

Since	4.1

Since	1.0

Since	1.0

Since	3.0

Since	3.0

Since	1.0
Since	1.0

Since	1.0

Resets	the	timer	to	zero	seconds.	See	also	timer.

Note	that	the	timer	is	different	from	the	tick	counter.	The	timer	measures	elapsed	real	time	in	seconds;	the	tick	counter	measures	elapsed
model	time	in	ticks.

resize-world

resize-world	min-pxcor	max-pxcor	min-pycor	max-pycor

Changes	the	size	of	the	patch	grid.

If	the	given	patch	grid	coordinates	are	different	than	the	ones	in	use,	all	turtles	and	links	die,	and	the	existing	patch	grid	is	discarded	and	new
patches	created.	Otherwise,	existing	turtles	and	links	will	live	if	the	grid	coordinates	are	unchanged.

Retaining	references	to	old	patches	or	patch	sets	is	inadvisable	and	may	subsequently	cause	runtime	errors	or	other	unexpected	behavior.

If	any	coordinate	is	fractional,	it	will	be	rounded	to	the	nearest	integer	towards	zero	(4.5	becomes	4,	10.9	becomes	10,	-2.9	becomes	-2).

See	also	set-patch-size.

reverse

reverse	list
reverse	string

Reports	a	reversed	copy	of	the	given	list	or	string.

show	mylist
;;	mylist	is	[2	7	4	"Bob"]
set	mylist	reverse	mylist
;;	mylist	now	is	["Bob"	4	7	2]
show	reverse	"live"
=>	"evil"

rgb

rgb	red	green	blue

Reports	a	RGB	list	when	given	three	numbers	describing	an	RGB	color.	The	numbers	are	range	checked	to	be	between	0	and	255.

See	also	hsb

ride

ride	turtle

Set	the	perspective	to	turtle.

Every	time	turtle	moves	the	observer	also	moves.	Thus,	in	the	2D	View	the	turtle	will	stay	at	the	center	of	the	view.	In	the	3D	view	it	is	as	if
looking	through	the	eyes	of	the	turtle.	If	the	turtle	dies,	the	perspective	resets	to	the	default.

The	observer	may	only	watch	or	follow	a	single	subject.	Calling	ride	will	remove	the	highlight	created	by	prior	calls	to	watch	and	watch-me,
highlighting	the	ridden	turtle	instead.

See	also	reset-perspective,	watch,	follow,	subject.

ride-me

ride-me

Asks	the	observer	to	ride	this	turtle.

The	observer	may	only	watch	or	follow	a	single	subject.	Calling	ride-me	will	remove	the	highlight	created	by	prior	calls	to	watch	and	watch-me,
highlighting	this	turtle	instead.

See	also	ride.

right
rt

right	number

The	turtle	turns	right	by	number	degrees.	(If	number	is	negative,	it	turns	left.)

round

Since	1.3
Since	1.3

Since	1.0

Since	1.3

round	number

Reports	the	integer	nearest	to	number.

If	the	decimal	portion	of	number	is	exactly	.5,	the	number	is	rounded	in	the	positive	direction.

Note	that	rounding	in	the	positive	direction	is	not	always	how	rounding	is	done	in	other	software	programs.	(In	particular,	it	does	not	match	the
behavior	of	StarLogoT,	which	always	rounded	numbers	ending	in	0.5	to	the	nearest	even	integer.)	The	rationale	for	this	behavior	is	that	it
matches	how	turtle	coordinates	relate	to	patch	coordinates	in	NetLogo.	For	example,	if	a	turtle's	xcor	is	-4.5,	then	it	is	on	the	boundary
between	a	patch	whose	pxcor	is	-4	and	a	patch	whose	pxcor	is	-5,	but	the	turtle	must	be	considered	to	be	in	one	patch	or	the	other,	so	the
turtle	is	considered	to	be	in	the	patch	whose	pxcor	is	-4,	because	we	round	towards	the	positive	numbers.

show	round	4.2
=>	4
show	round	4.5
=>	5
show	round	-4.5
=>	-4

See	also	precision,	ceiling,	floor.

run
runresult

run	command
(run	command	input1	...)
run	string
runresult	reporter
(runresult	reporter	input1	...)
runresult	string

The	run	form	expects	the	name	of	a	command,	an	anonymous	command,	or	a	string	containing	commands.	This	agent	then	runs	them.

The	runresult	form	expects	the	name	of	a	reporter,	an	anonymous	reporter,	or	a	string	containing	a	reporter.	This	agent	runs	it	and	reports
the	result.

Note	that	you	can't	use	run	to	define	or	redefine	procedures.	If	you	care	about	performance,	note	that	the	code	must	be	compiled	first	which
takes	time.	However,	compiled	bits	of	code	are	cached	by	NetLogo	and	thus	using	run	on	the	same	string	over	and	over	is	much	faster	than
running	different	strings.	The	first	run,	though,	will	be	many	times	slower	than	running	the	same	code	directly,	or	in	an	anonymous	command.

Anonymous	procedures	are	recommended	over	strings	whenever	possible.	(An	example	of	when	you	must	use	strings	is	if	you	accept	pieces
of	code	from	the	user	of	your	model.)

Anonymous	procedures	may	freely	read	and/or	set	local	variables	and	procedure	inputs.	Trying	to	do	the	same	with	strings	may	or	may	not
work	and	should	not	be	relied	on.

When	using	anonymous	procedures,	you	can	provide	them	with	inputs,	if	you	surround	the	entire	call	with	parentheses.	For	example:

(run	[[turtle-count	step-count]	->	crt	turtle-count	[fd	step-count]]	10	5)
;;	creates	10	turtles	and	move	them	forward	5	steps
show	(runresult	[[a	b]	->	a	+	b]	10	5)
=>	15
;;	adds	10	and	5

See	also	foreach,	->	(anonymous	procedure).

S

scale-color

scale-color	color	number	range1	range2

Reports	a	shade	of	color	proportional	to	the	value	of	number.

When	range1	is	less	than	or	equal	to	range2,	then	the	larger	the	number,	the	lighter	the	shade	of	color.	However,	if	range2	is	less	than
range1,	the	color	scaling	is	inverted.

Let	min-range	be	the	minimum	of	range1	and	range2.	If	number	is	less	than	or	equal	to	min-range,	then	the	result	is	the	same	as	if	number
was	equal	to	min-range.	Let	max-range	be	the	maximum	of	range1	and	range2.	If	number	is	greater	than	max-range,	then	the	result	is	the
same	as	if	number	was	equal	to	max-range.

Note:	for	color	shade	is	irrelevant,	e.g.	green	and	green	+	2	are	equivalent,	and	the	same	spectrum	of	colors	will	be	used.

ask	turtles	[set	color	scale-color	red	age	0	50]
;;	colors	each	turtle	a	shade	of	red	proportional
;;	to	its	value	for	the	age	variable

self

self
	 	

Since	1.0
Since	1.0

Since	1.0

Since	2.0

Reports	this	turtle,	patch,	or	link.

"self"	and	"myself"	are	very	different.	"self"	is	simple;	it	means	"me".	"myself"	means	"the	agent	who	asked	me	to	do	what	I'm	doing	right	now."

Note	that	it	is	always	redundant	to	write	[foo]	of	self.	This	is	always	equivalent	to	simply	writing	foo.

See	also	myself.

;	(semicolon)

;	comments

After	a	semicolon,	the	rest	of	the	line	is	ignored.	This	is	useful	for	adding	"comments"	to	your	code	--	text	that	explains	the	code	to	human
readers.	Extra	semicolons	can	be	added	for	visual	effect.

NetLogo's	Edit	menu	has	items	that	let	you	comment	or	uncomment	whole	sections	of	code.

sentence
se

sentence	value1	value2
(sentence	value1	...)

Makes	a	list	out	of	the	values.	If	any	value	is	a	list,	its	items	are	included	in	the	result	directly,	rather	than	being	included	as	a	sublist.
Examples	make	this	clearer:

show	sentence	1	2
=>	[1	2]
show	sentence	[1	2]	3
=>	[1	2	3]
show	sentence	1	[2	3]
=>	[1	2	3]
show	sentence	[1	2]	[3	4]
=>	[1	2	3	4]
show	sentence	[[1	2]]	[[3	4]]
=>	[[1	2]	[3	4]]
show	(sentence	[1	2]	3	[4	5]	(3	+	3)	7)
=>	[1	2	3	4	5	6	7]

set

set	variable	value

Sets	variable	to	the	given	value.

Variable	can	be	any	of	the	following:

A	global	variable	declared	using	"globals"
The	global	variable	associated	with	a	slider,	switch,	chooser,	or	input	box.
A	variable	belonging	to	this	agent
If	this	agent	is	a	turtle,	a	variable	belonging	to	the	patch	under	the	turtle.
A	local	variable	created	by	the	let	command.
An	input	to	the	current	procedure.

Example:

ask	turtles	[
		set	color	red
		set	size	2
		set	shape	"arrow"
]

You	can	also	give	a	list	of	variable	names	as	the	first	argument	for	set	and	they	will	be	assigned	the	values	from	a	list	given	as	the	second
argument.	This	can	be	particular	useful	when	you	want	to	calculate	multiple	values	in	a	reporter	procedure,	as	you	can	easily	set	multiple
variables	with	the	results.	A	runtime	error	will	occur	if	the	second	argument	is	not	a	list	value	or	if	there	are	not	enough	values	in	the	list	for	all
the	variables	specified.

ask	turtles	[
		set	[color	size	shape]	[red	2	"arrow"]
		show	color	;	prints	15
		show	size	;	prints	2
		show	shape	;	prints	"arrow"
]
ask	turtles	[
		set	[color	size	shape]	[red]	;	causes	a	runtime	error	as	we	need	at	least	3	values	in	the	list
]
						

set-current-directory

set-current-directory	string

Sets	the	current	directory	that	is	used	by	the	primitives	file-delete,	file-exists?,	and	file-open.

Since	1.0

Since	1.0

Since	1.0

Since	1.0

The	current	directory	is	not	used	if	the	above	commands	are	given	an	absolute	file	path.	This	is	defaulted	to	the	user's	home	directory	for	new
models,	and	is	changed	to	the	model's	directory	when	a	model	is	opened.

Note	that	in	Windows	file	paths	the	backslash	needs	to	be	escaped	within	a	string	by	using	another	backslash	"C:\\"

The	change	is	temporary	and	is	not	saved	with	the	model.

set-current-directory	"C:\\NetLogo"
;;	Assume	it	is	a	Windows	Machine
file-open	"my-file.txt"
;;	Opens	file	"C:\\NetLogo\\my-file.txt"

set-current-plot

set-current-plot	plotname

Sets	the	current	plot	to	the	plot	with	the	given	name	(a	string).	Subsequent	plotting	commands	will	affect	the	current	plot.

set-current-plot-pen

set-current-plot-pen	penname

The	current	plot's	current	pen	is	set	to	the	pen	named	penname	(a	string).	If	no	such	pen	exists	in	the	current	plot,	a	runtime	error	occurs.	If
the	current	plot	has	not	been	set,	a	runtime	error	occurs.

set-default-shape

set-default-shape	turtles	string
set-default-shape	links	string
set-default-shape	breed	string

Specifies	a	default	initial	shape	for	all	turtles	or	links,	or	for	a	particular	breed	of	turtles	or	links.	When	a	turtle	or	link	is	created,	or	it	changes
breeds,	it	shape	is	set	to	the	given	shape.

This	command	doesn't	affect	existing	agents,	only	agents	you	create	afterwards.

The	given	breed	must	be	either	turtles,	links,	or	the	name	of	a	breed.	The	given	string	must	be	the	name	of	a	currently	defined	shape.

In	new	models,	the	default	shape	for	all	turtles	is	"default".

Note	that	specifying	a	default	shape	does	not	prevent	you	from	changing	an	agent's	shape	later.	Agents	don't	have	to	be	stuck	with	their
breed's	default	shape.

create-turtles	1	;;	new	turtle's	shape	is	"default"
create-cats	1				;;	new	turtle's	shape	is	"default"

set-default-shape	turtles	"circle"
create-turtles	1	;;	new	turtle's	shape	is	"circle"
create-cats	1				;;	new	turtle's	shape	is	"circle"

set-default-shape	cats	"cat"
set-default-shape	dogs	"dog"
create-cats	1			;;	new	turtle's	shape	is	"cat"
ask	cats	[set	breed	dogs]
		;;	all	cats	become	dogs,	and	automatically
		;;	change	their	shape	to	"dog"

See	also	shape.

set-histogram-num-bars

set-histogram-num-bars	number

Set	the	current	plot	pen's	plot	interval	so	that,	given	the	current	x	range	for	the	plot,	there	would	be	number	number	of	bars	drawn	if	the
histogram	command	is	called.

See	also	histogram.

This	command	will	produce	a	runtime	error	if	either	the	current	plot	or	the	current	pen	has	not	been	set.

__set-line-thickness

__set-line-thickness	number

Specifies	the	thickness	of	lines	and	outlined	elements	in	the	turtle's	shape.

The	default	value	is	0.	This	always	produces	lines	one	pixel	thick.

Non-zero	values	are	interpreted	as	thickness	in	patches.	A	thickness	of	1,	for	example,	produces	lines	which	appear	one	patch	thick.	(It's
common	to	use	a	smaller	value	such	as	0.5	or	0.2.)

Since	4.1

Since	6.0.2

Since	1.0

Since	1.0

Since	1.0

Since	5.0

Since	1.0
Since	1.0

Lines	are	always	at	least	one	pixel	thick.

This	command	is	experimental	and	may	change	in	later	releases.

set-patch-size

set-patch-size	size

Sets	the	size	of	the	patches	of	the	view	in	pixels.	The	size	is	typically	an	integer,	but	may	also	be	a	floating	point	number.

See	also	patch-size,	resize-world.

set-plot-background-color

set-plot-background-color	color

Sets	the	background	color	of	the	current	plot.	The	color	may	be	specified	as	a	number	or	a	list.	See	the	Colors	section	of	the	programming
guide	for	more	details.	This	change	is	temporary	and	is	not	saved	with	the	model.	When	the	plot	is	cleared,	the	background	color	will	revert	to
white.

Note:	Plot	backgrounds	do	not	support	transparency.	If	a	list	is	used	to	set	the	color,	the	alpha	component	will	be	ignored.

This	command	will	produce	a	runtime	error	if	the	current	plot	has	not	been	set.

set-plot-pen-color

set-plot-pen-color	color

Sets	the	color	of	the	current	plot	pen	to	color.

This	command	will	produce	a	runtime	error	if	either	the	current	plot	or	the	current	pen	has	not	been	set.

set-plot-pen-interval

set-plot-pen-interval	number

Tells	the	current	plot	pen	to	move	a	distance	of	number	in	the	x	direction	during	each	use	of	the	plot	command.	(The	plot	pen	interval	also
affects	the	behavior	of	the	histogram	command.)

This	command	will	produce	a	runtime	error	if	either	the	current	plot	or	the	current	pen	has	not	been	set.

set-plot-pen-mode

set-plot-pen-mode	number

Sets	the	mode	the	current	plot	pen	draws	in	to	number.	The	allowed	plot	pen	modes	are:

0	(line	mode)	the	plot	pen	draws	a	line	connecting	two	points	together.
1	(bar	mode):	the	plot	pen	draws	a	bar	of	width	plot-pen-interval	with	the	point	plotted	as	the	upper	(or	lower,	if	you	are	plotting	a	negative
number)	left	corner	of	the	bar.
2	(point	mode):	the	plot	pen	draws	a	point	at	the	point	plotted.	Points	are	not	connected.

The	default	mode	for	new	pens	is	0	(line	mode).

This	command	will	produce	a	runtime	error	if	either	the	current	plot	or	the	current	pen	has	not	been	set.

setup-plots

setup-plots

For	each	plot,	runs	that	plot's	setup	commands,	including	the	setup	code	for	any	pens	in	the	plot.

reset-ticks	has	the	same	effect,	so	in	models	that	use	the	tick	counter,	this	primitive	is	not	normally	used.

See	the	Plotting	section	of	the	Programming	Guide	for	more	details.

See	also	update-plots.

set-plot-x-range
set-plot-y-range

set-plot-x-range	min	max
set-plot-y-range	min	max

Sets	the	minimum	and	maximum	values	of	the	x	or	y	axis	of	the	current	plot.

The	change	is	temporary	and	is	not	saved	with	the	model.	When	the	plot	is	cleared,	the	ranges	will	revert	to	their	default	values	as	set	in	the
plot's	Edit	dialog.

These	commands	will	produce	a	runtime	error	if	the	current	plot	has	not	been	set.

Since	1.0

Since	1.0

Since	2.1

Since	1.0

Since	1.0
Since	1.0

setxy

setxy	x	y

The	turtle	sets	its	x-coordinate	to	x	and	its	y-coordinate	to	y.

Equivalent	to	set	xcor	x	set	ycor	y,	except	it	happens	in	one	time	step	instead	of	two.

If	x	or	y	is	outside	the	world,	NetLogo	will	throw	a	runtime	error,	unless	wrapping	is	turned	on	in	the	relevant	dimensions.	For	example,	with
wrapping	turned	on	in	both	dimensions	and	the	default	world	size	where	min-pxcor	=	-16,	max-pxcor	=	16,	min-pycor	=	-16	and	max-pycor	=
16,	asking	a	turtle	to	setxy	17	17	will	move	it	to	the	center	of	patch	(-16,	-16).

setxy	0	0
;;	turtle	moves	to	the	middle	of	the	center	patch
setxy	random-xcor	random-ycor
;;	turtle	moves	to	a	random	point
setxy	random-pxcor	random-pycor
;;	turtle	moves	to	the	center	of	a	random	patch

See	also	move-to.

shade-of?

shade-of?	color1	color2

Reports	true	if	both	colors	are	shades	of	one	another,	false	otherwise.

show	shade-of?	blue	red
=>	false
show	shade-of?	blue	(blue	+	1)
=>	true
show	shade-of?	gray	white
=>	true

shape

shape
	

This	is	a	built-in	turtle	and	link	variable.	It	holds	a	string	that	is	the	name	of	the	turtle	or	link's	current	shape.	You	can	set	this	variable	to
change	the	shape.	New	turtles	and	links	have	the	shape	"default"	unless	the	a	different	shape	has	been	specified	using	set-default-shape.

Example:

										ask	turtles	[set	shape	"wolf"]
										;;	assumes	you	have	made	a	"wolf"
										;;	shape	in	NetLogo's	Turtle	Shapes	Editor
										ask	links	[set	shape	"link	1"]
										;;	assumes	you	have	made	a	"link	1"	shape	in
										;;	the	Link	Shapes	Editor

See	also	set-default-shape,	shapes.

shapes

shapes

Reports	a	list	of	strings	containing	all	of	the	turtle	shapes	in	the	model.

New	shapes	can	be	created,	or	imported	from	the	shapes	library	or	from	other	models,	in	the	Shapes	Editor.

show	shapes
=>	["default"	"airplane"	"arrow"	"box"	"bug"	...
ask	turtles	[set	shape	one-of	shapes]

show

show	value

Prints	value	in	the	Command	Center,	preceded	by	this	agent,	and	followed	by	a	carriage	return.	(This	agent	is	included	to	help	you	keep	track
of	what	agents	are	producing	which	lines	of	output.)	Also,	all	strings	have	their	quotes	included	similar	to	write.

See	also	print,	type,	write,	output-show,	and	Output	(programming	guide).

show-turtle
st

show-turtle

Since	4.0

Since	2.0

Since	1.0

Since	1.0

The	turtle	becomes	visible	again.

Note:	This	command	is	equivalent	to	setting	the	turtle	variable	"hidden?"	to	false.

See	also	hide-turtle.

show-link

show-link

The	link	becomes	visible	again.

Note:	This	command	is	equivalent	to	setting	the	link	variable	"hidden?"	to	false.

See	also	hide-link.

shuffle

shuffle	list

Reports	a	new	list	containing	the	same	items	as	the	input	list,	but	in	randomized	order.

show	shuffle	[1	2	3	4	5]
=>	[5	2	4	1	3]
show	shuffle	[1	2	3	4	5]
=>	[1	3	5	2	4]

sin

sin	number

Reports	the	sine	of	the	given	angle.	Assumes	angle	is	given	in	degrees.

show	sin	270
=>	-1

size

size

This	is	a	built-in	turtle	variable.	It	holds	a	number	that	is	the	turtle's	apparent	size.	The	default	size	is	1,	which	means	that	the	turtle	is	the	same
size	as	a	patch.	You	can	set	this	variable	to	change	a	turtle's	size.

sort

sort	list
sort	agentset

Reports	a	sorted	list	of	numbers,	strings,	or	agents.

If	the	input	contains	no	numbers,	strings,	or	agents,	the	result	is	the	empty	list.

If	the	input	contains	at	least	one	number,	the	numbers	in	the	list	are	sorted	in	ascending	order	and	a	new	list	reported;	non-numbers	are
ignored.

Or,	if	the	input	contains	at	least	one	string,	the	strings	in	the	list	are	sorted	in	ascending	order	and	a	new	list	reported;	non-strings	are	ignored.

Or,	if	the	input	is	an	agentset	or	a	list	containing	at	least	one	agent,	a	sorted	list	of	agents	(never	an	agentset)	is	reported;	non-agents	are
ignored.	Agents	are	sorted	in	the	same	order	the	<	operator	uses.	(Patches	are	sorted	with	the	top	left-most	patch	first	and	the	bottom	right-
most	patch	last,	turtles	are	sorted	by	who	number).

show	sort	[3	1	4	2]
=>	[1	2	3	4]
show	sort	[2	1	"a"]
=>	[1	2]
show	sort	(list	"a"	"c"	"b"	(patch	0	0))
=>	["a"	"b"	"c"]
show	sort	(list	(patch	0	0)	(patch	0	1)	(patch	1	0))
=>	[(patch	0	1)	(patch	0	0)	(patch	1	0)]

;;	label	patches	with	numbers	in	left-to-right,	top-to-bottom	order
let	n	0
foreach	sort	patches	[the-patch	->
		ask	the-patch	[
				set	plabel	n
				set	n	n	+	1
]
]

Since	1.3

Since	5.0

Since	1.0

Since	1.0

Since	1.0

;;	some	additional	examples	to	clarify	behavior	in	strange	cases
show	sort	(list	patch	0	0	patch	0	1	patch	1	0	turtle	0	turtle	1)	;	turtles	are	always	sorted	lower	than	patches
=>	[(turtle	0)	(turtle	1)	(patch	0	1)	(patch	0	0)	(patch	1	0)]
show	sort	(list	nobody	false	true)	;	booleans	and	nobody	cannot	be	sorted
=>	[]
show	sort	(list	[1	2	3]	turtles)	;	lists	and	agentsets	are	not	included	if	they	are	inside	a	list	passed	to	sort
=>	[]

See	also	sort-by,	sort-on.

sort-by

sort-by	reporter	list
sort-by	reporter	agentset

If	the	input	is	a	list,	reports	a	new	list	containing	the	same	items	as	the	input	list,	in	a	sorted	order	defined	by	the	boolean	reporter.	reporter
may	be	an	anonymous	reporter	or	the	name	of	a	reporter.

The	two	inputs	to	reporter	are	the	values	being	compared.	The	reporter	should	report	true	if	the	first	argument	comes	strictly	before	the
second	in	the	desired	sort	order,	and	false	otherwise.

If	the	input	is	an	agentset	or	a	list	of	agents,	reports	a	list	(never	an	agentset)	of	agents.

If	the	input	is	a	list,	the	sort	is	stable,	that	is,	the	order	of	items	considered	equal	by	the	reporter	is	not	disturbed.	If	the	input	is	an	agentset,
ties	are	broken	randomly.

show	sort-by	<	[3	1	4	2]
=>	[1	2	3	4]
show	sort-by	>	[3	1	4	2]
=>	[4	3	2	1]
show	sort-by	[[string1	string2]	->	length	string1	<	length	string2]	["Grumpy"	"Doc"	"Happy"]
=>	["Doc"	"Happy"	"Grumpy"]

See	also	sort,	sort-on,	->	(anonymous	procedure).

sort-on

sort-on	[reporter]	agentset

Reports	a	list	of	agents,	sorted	according	to	each	agent's	value	for	reporter.	Ties	are	broken	randomly.

The	values	must	be	all	numbers,	all	strings,	or	all	agents	of	the	same	type.

crt	3
show	sort-on	[who]	turtles
=>	[(turtle	0)	(turtle	1)	(turtle	2)]
show	sort-on	[(-	who)]	turtles
=>	[(turtle	2)	(turtle	1)	(turtle	0)]
foreach	sort-on	[size]	turtles
		[the-turtle	->	ask	the-turtle	[do-something]]
;;	turtles	run	"do-something"	one	at	a	time,	in
;;	ascending	order	by	size

See	also	sort,	sort-by.

sprout

sprout	number	[commands]
sprout-<breeds>	number	[commands]

Creates	number	new	turtles	on	the	current	patch.	The	new	turtles	have	random	integer	headings	and	the	color	is	randomly	selected	from	the
14	primary	colors.	The	turtles	immediately	run	commands.	This	is	useful	for	giving	the	new	turtles	different	colors,	headings,	or	whatever.
(The	new	turtles	are	created	all	at	once	then	run	one	at	a	time,	in	random	order.)

If	the	sprout-<breeds>	form	is	used,	the	new	turtles	are	created	as	members	of	the	given	breed.

If	number	is	fractional,	it	will	be	rounded	down	to	the	nearest	integer	(4.5	becomes	4,	10.9	becomes	10).

sprout	5
sprout-wolves	10
sprout	1	[set	color	red]
sprout-sheep	1	[set	color	black]

See	also	create-turtles,	hatch.

sqrt

sqrt	number

Reports	the	square	root	of	number.

stamp

Since	3.1

Since	1.0

Since	1.0

Since	5.2

Since	5.2

stamp
	

This	turtle	or	link	leaves	an	image	of	its	shape	in	the	drawing	at	its	current	location.

Note:	The	shapes	made	by	stamp	may	not	be	pixel-for-pixel	identical	from	computer	to	computer.

stamp-erase

stamp-erase
	

This	turtle	or	link	removes	any	pixels	below	it	in	the	drawing	inside	the	bounds	of	its	shape.

Note:	The	shapes	made	by	stamp-erase	may	not	be	pixel-for-pixel	identical	from	computer	to	computer.

standard-deviation

standard-deviation	list

Reports	the	sample	standard	deviation	of	a	list	of	numbers.	Ignores	other	types	of	items.

(Note	that	this	estimates	the	standard	deviation	for	a	sample,	rather	than	for	a	whole	population,	using	Bessel's	correction.)

show	standard-deviation	[1	2	3	4	5	6]
=>	1.8708286933869707
show	standard-deviation	[energy]	of	turtles
;;	prints	the	standard	deviation	of	the	variable	"energy"
;;	from	all	the	turtles

See	this	FAQ	question	for	information	on	possible	issues	using	standard-deviation	with	agentsets

startup

startup

User-defined	procedure	which,	if	it	exists,	will	be	called	when	a	model	is	first	loaded	in	the	NetLogo	application.

to	startup
		setup
end

startup	does	not	run	when	a	model	is	run	headless	from	the	command	line,	or	by	parallel	BehaviorSpace.

stop

stop

This	agent	exits	immediately	from	the	enclosing	procedure,	ask,	or	ask-like	construct	(e.g.	crt,	hatch,	sprout).	Only	the	enclosing	procedure	or
construct	stops,	not	all	execution	for	the	agent.

if	not	any?	turtles	[stop]
;;	exits	if	there	are	no	more	turtles

Note:	stop	can	also	be	used	to	stop	a	forever	button.	See	Buttons	in	the	Programming	Guide	for	details.

stop	can	also	be	used	to	stop	a	BehaviorSpace	model	run.	If	the	go	commands	directly	call	a	procedure,	then	when	that	procedure	calls	stop,
the	run	ends.

stop-inspecting

stop-inspecting	agent

Closes	the	agent	monitor	for	the	given	agent	(turtle	or	patch	or	link).	In	the	case	that	no	agent	monitor	is	open,	stop-inspecting	does	nothing.

stop-inspecting	patch	2	4
;;	the	agent	monitor	for	that	patch	closes
ask	sheep	[stop-inspecting	self]
;;	close	all	agent	monitors	for	sheep
ask	links	[stop-inspecting	self]
;;	close	all	agent	monitors	for	links

See	inspect	and	stop-inspecting-dead-agents.

stop-inspecting-dead-agents

stop-inspecting-dead-agents

Since	3.0

Since	2.1
Since	1.0

Since	2.1

Since	1.0

Since	1.0

Closes	all	agent	monitors	for	dead	agents.	See	inspect	and	stop-inspecting.

subject

subject

Reports	the	turtle	(or	patch	or	link)	that	the	observer	is	currently	watching,	following,	or	riding.	Reports	nobody	if	there	is	no	such	turtle	(or
patch	or	link).	Note:	following	and	riding	are	valid	for	turtles	only.

See	also	watch,	follow,	ride.

sublist
substring

sublist	list	position1	position2
substring	string	position1	position2

Reports	just	a	section	of	the	given	list	or	string,	ranging	between	the	first	position	(inclusive)	and	the	second	position	(exclusive).

If	either	position	is	fractional,	it	will	be	rounded	down	to	the	nearest	integer	(4.5	becomes	4,	10.9	becomes	10).

Note:	The	positions	are	numbered	beginning	with	0,	not	with	1.

show	sublist	[99	88	77	66]	1	3
=>	[88	77]
show	substring	"apartment"	1	5
=>	"part"

subtract-headings

subtract-headings	heading1	heading2

Computes	the	difference	between	the	given	headings,	that	is,	the	number	of	degrees	in	the	smallest	angle	by	which	heading2	could	be
rotated	to	produce	heading1.	A	positive	answer	means	a	clockwise	rotation,	a	negative	answer	counterclockwise.	The	result	is	always	in	the
range	-180	to	180,	but	is	never	exactly	-180.

Note	that	simply	subtracting	the	two	headings	using	the	-	(minus)	operator	wouldn't	work.	Just	subtracting	corresponds	to	always	rotating
clockwise	from	heading2	to	heading1;	but	sometimes	the	counterclockwise	rotation	is	shorter.	For	example,	the	difference	between	5	degrees
and	355	degrees	is	10	degrees,	not	-350	degrees.

show	subtract-headings	80	60
=>	20
show	subtract-headings	60	80
=>	-20
show	subtract-headings	5	355
=>	10
show	subtract-headings	355	5
=>	-10
show	subtract-headings	180	0
=>	180
show	subtract-headings	0	180
=>	180

sum

sum	list

Reports	the	sum	of	the	items	in	the	list.

show	sum	[energy]	of	turtles
;;	prints	the	total	of	the	variable	"energy"
;;	from	all	the	turtles

See	this	FAQ	question	for	information	on	possible	issues	using	sum	with	agentsets

T

tan

tan	number

Reports	the	tangent	of	the	given	angle.	Assumes	the	angle	is	given	in	degrees.

thickness

thickness

This	is	a	built-in	link	variable.	It	holds	a	number	that	is	the	link's	apparent	size	as	a	fraction	of	the	patch	size.	The	default	thickness	is	0,	which

Since	4.0

Since	4.0

Since	4.0

Since	4.0

Since	1.0

means	that	regardless	of	patch-size	the	links	will	always	appear	1	pixel	wide.	You	can	set	this	variable	to	change	a	link's	thickness.

tick

tick

Advances	the	tick	counter	by	one	and	updates	all	plots.

If	the	tick	counter	has	not	been	started	yet	with	reset-ticks,	an	error	results.

Normally	tick	goes	at	the	end	of	a	go	procedure.

See	also	ticks,	tick-advance,	reset-ticks,	clear-ticks,	update-plots.

tick-advance

tick-advance	number

Advances	the	tick	counter	by	number.	The	input	may	be	an	integer	or	a	floating	point	number.	(Some	models	divide	ticks	more	finely	than	by
ones.)	The	input	may	not	be	negative.

When	using	tick-based	view	updates,	the	view	is	normally	updated	every	1.0	ticks,	so	using	tick-advance	with	a	number	less	then	1.0	may
not	always	trigger	an	update.	If	you	want	to	make	sure	that	the	view	is	updated,	you	can	use	the	display	command.

If	the	tick	counter	has	not	been	started	yet	with	reset-ticks,	an	error	results.

Does	not	update	plots.

See	also	tick,	ticks,	reset-ticks,	clear-ticks.

ticks

ticks

Reports	the	current	value	of	the	tick	counter.	The	result	is	always	a	number	and	never	negative.

If	the	tick	counter	has	not	been	started	yet	with	reset-ticks,	an	error	results.

Most	models	use	the	tick	command	to	advance	the	tick	counter,	in	which	case	ticks	will	always	report	an	integer.	If	the	tick-advance
command	is	used,	then	ticks	may	report	a	floating	point	number.

See	also	tick,	tick-advance,	reset-ticks,	clear-ticks.

tie

tie

Ties	end1	and	end2	of	the	link	together.	If	the	link	is	a	directed	link	end1	is	the	root	turtle	and	end2	is	the	leaf	turtle.	The	movement	of	the	root
turtle	affects	the	location	and	heading	of	the	leaf	turtle.	If	the	link	is	undirected	the	tie	is	reciprocal	so	both	turtles	can	be	considered	root
turtles	and	leaf	turtles.	Movement	or	change	in	heading	of	either	turtle	affects	the	location	and	heading	of	the	other	turtle.

When	the	root	turtle	moves,	the	leaf	turtles	moves	the	same	distance,	in	the	same	direction.	The	heading	of	the	leaf	turtle	is	not	affected.	This
works	with	forward,	jump,	and	setting	the	xcor	or	ycor	of	the	root	turtle.

When	the	root	turtle	turns	right	or	left,	the	leaf	turtle	is	rotated	around	the	root	turtle	the	same	amount.	The	heading	of	the	leaf	turtle	is	also
changed	by	the	same	amount.

If	the	link	dies,	the	tie	relation	is	removed.

crt	2	[fd	3]
;;	creates	a	link	and	ties	turtle	1	to	turtle	0
ask	turtle	0	[create-link-to	turtle	1	[tie]]

See	also	untie

tie-mode

tie-mode

This	is	a	built-in	link	variable.	It	holds	a	string	that	is	the	name	of	the	tie	mode	the	link	is	currently	in.	Using	the	tie	and	untie	commands
changes	the	mode	of	the	link.	You	can	also	set	tie-mode	to	"free"	to	create	a	non-rigid	joint	between	two	turtles	(see	the	Tie	section	of	the
Programming	Guide	for	details).	By	default	links	are	not	tied.

See	also:	tie,	untie

timer

timer

Since	1.0

Since	1.0

Since	1.0

Reports	how	many	seconds	have	passed	since	the	command	reset-timer	was	last	run	(or	since	NetLogo	started).	The	potential	resolution	of
the	clock	is	milliseconds.	(Whether	you	get	resolution	that	high	in	practice	may	vary	from	system	to	system,	depending	on	the	capabilities	of
the	underlying	Java	Virtual	Machine.)

See	also	reset-timer.

Note	that	the	timer	is	different	from	the	tick	counter.	The	timer	measures	elapsed	real	time	in	seconds;	the	tick	counter	measures	elapsed
model	time	in	ticks.

to

to	procedure-name
to	procedure-name	[input1	...]

Used	to	begin	a	command	procedure.

to	setup
		clear-all
		crt	500
end

to	circle	[radius]
		crt	100	[fd	radius]
end

to-report

to-report	procedure-name
to-report	procedure-name	[input1	...]

Used	to	begin	a	reporter	procedure.

The	body	of	the	procedure	should	use	report	to	report	a	value	for	the	procedure.	See	report.

to-report	average	[a	b]
		report	(a	+	b)	/	2
end

to-report	absolute-value	[number]
		ifelse	number	>=	0
				[report	number]
				[report	(-	number)]
end

to-report	first-turtle?
		report	who	=	0		;;	reports	true	or	false
end

towards

towards	agent
	

Reports	the	heading	from	this	agent	to	the	given	agent.

If	wrapping	is	allowed	by	the	topology	and	the	wrapped	distance	(around	the	edges	of	the	world)	is	shorter,	towards	will	use	the	wrapped	path.

Note:	asking	for	the	heading	from	an	agent	to	itself,	or	an	agent	on	the	same	location,	will	cause	a	runtime	error.

set	heading	towards	turtle	1
;;	same	as	"face	turtle	1"

See	also	face.

towardsxy

towardsxy	x	y
	

Reports	the	heading	from	the	turtle	or	patch	towards	the	point	(x,y).

If	wrapping	is	allowed	by	the	topology	and	the	wrapped	distance	(around	the	edges	of	the	world)	is	shorter,	towardsxy	will	use	the	wrapped
path.

Note:	asking	for	the	heading	to	the	point	the	agent	is	already	standing	on	will	cause	a	runtime	error.

See	also	facexy.

turtle

turtle	number

Since	4.0

Since	1.0

Since	1.0

Since	1.0

Since	2.0

<breed>	number

Reports	the	turtle	with	the	given	who	number,	or	nobody	if	there	is	no	such	turtle.	For	breeded	turtles	you	may	also	use	the	single	breed	form
to	refer	to	them.

ask	turtle	5	[set	color	red]
;;	turtle	with	who	number	5	turns	red

turtle-set

turtle-set	value1
(turtle-set	value1	value2	...)

Reports	an	agentset	containing	all	of	the	turtles	anywhere	in	any	of	the	inputs.	The	inputs	may	be	individual	turtles,	turtle	agentsets,	nobody,
or	lists	(or	nested	lists)	containing	any	of	the	above.

turtle-set	self
(turtle-set	self	turtles-on	neighbors)
(turtle-set	turtle	0	turtle	2	turtle	9)
(turtle-set	frogs	mice)

See	also	patch-set,	link-set.

turtles

turtles

Reports	the	agentset	consisting	of	all	turtles.	This	is	a	special	agentset	that	can	grow	as	turtles	are	added	to	the	world,	see	the	programming
guide	for	more	info.

show	count	turtles
;;	prints	the	number	of	turtles

turtles-at

turtles-at	dx	dy
<breeds>-at	dx	dy
	

Reports	an	agentset	containing	the	turtles	on	the	patch	(dx,	dy)	from	the	caller.	(The	result	may	include	the	caller	itself	if	the	caller	is	a	turtle.)

create-turtles	5	[setxy	2	3]
show	count	[turtles-at	1	1]	of	patch	1	2
=>	5

If	the	name	of	a	breed	is	substituted	for	"turtles",	then	only	turtles	of	that	breed	are	included.

turtles-here

turtles-here
<breeds>-here
	

Reports	an	agentset	containing	all	the	turtles	on	the	caller's	patch	(including	the	caller	itself	if	it's	a	turtle).

crt	10
ask	turtle	0	[show	count	turtles-here]
=>	10

If	the	name	of	a	breed	is	substituted	for	"turtles",	then	only	turtles	of	that	breed	are	included.

breed	[cats	cat]
breed	[dogs	dog]
create-cats	5
create-dogs	1
ask	dogs	[show	count	cats-here]
=>	5

turtles-on

turtles-on	agent
turtles-on	agentset
<breeds>-on	agent
<breeds>-on	agentset
	

Reports	an	agentset	containing	all	the	turtles	that	are	on	the	given	patch	or	patches,	or	standing	on	the	same	patch	as	the	given	turtle	or

Since	1.0

Since	4.0

turtles.

ask	turtles	[
		if	not	any?	turtles-on	patch-ahead	1
				[fd	1]
]
ask	turtles	[
		if	not	any?	turtles-on	neighbors	[
				die-of-loneliness
]
]

If	the	name	of	a	breed	is	substituted	for	"turtles",	then	only	turtles	of	that	breed	are	included.

turtles-own

turtles-own	[var1	...]
<breeds>-own	[var1	...]

The	turtles-own	keyword,	like	the	globals,	breed,	<breeds>-own,	and	patches-own	keywords,	can	only	be	used	at	the	beginning	of	a	program,
before	any	function	definitions.	It	defines	the	variables	belonging	to	each	turtle.

If	you	specify	a	breed	instead	of	"turtles",	only	turtles	of	that	breed	have	the	listed	variables.	(More	than	one	turtle	breed	may	list	the	same
variable.)

breed	[cats	cat]
breed	[dogs	dog]
breed	[hamsters	hamster]
turtles-own	[eyes	legs]			;;	applies	to	all	breeds
cats-own	[fur	kittens]
hamsters-own	[fur	cage]
dogs-own	[hair	puppies]

See	also	globals,	patches-own,	breed,	<breeds>-own.

type

type	value

Prints	value	in	the	Command	Center,	not	followed	by	a	carriage	return	(unlike	print	and	show).	The	lack	of	a	carriage	return	allows	you	to	print
several	values	on	the	same	line.

This	agent	is	not	printed	before	the	value.	unlike	show.

type	3	type	"	"	print	4
=>	3	4

See	also	print,	show,	write,	output-type,	and	Output	(programming	guide).

U

undirected-link-breed

undirected-link-breed	[<link-breeds>	<link-breed>]

This	keyword,	like	the	globals	and	breeds	keywords,	can	only	be	used	at	the	beginning	of	the	Code	tab,	before	any	procedure	definitions.	It
defines	an	undirected	link	breed.	Links	of	a	particular	breed	are	always	either	all	directed	or	all	undirected.	The	first	input	defines	the	name	of
the	agentset	associated	with	the	link	breed.	The	second	input	defines	the	name	of	a	single	member	of	the	breed.

Any	link	of	the	given	link	breed:

is	part	of	the	agentset	named	by	the	link	breed	name
has	its	built-in	variable	breed	set	to	that	agentset
is	directed	or	undirected	as	declared	by	the	keyword

Most	often,	the	agentset	is	used	in	conjunction	with	ask	to	give	commands	to	only	the	links	of	a	particular	breed.

undirected-link-breed	[streets	street]
undirected-link-breed	[highways	highway]
to	setup
		clear-all
		crt	2
		ask	turtle	0	[create-street-with	turtle	1]
		ask	turtle	0	[create-highway-with	turtle	1]
end

ask	turtle	0	[show	sort	my-links]
;;	prints	[(street	0	1)	(highway	0	1)]

See	also	breed,	directed-link-breed

untie

Since	6.1

Since	5.0

Since	1.0
Since	1.0

Since	3.1

Since	3.1

untie

Unties	end2	from	end1	(sets	tie-mode	to	"none")	if	they	were	previously	tied	together.	If	the	link	is	an	undirected	link,	then	it	will	untie	end1
from	end2	as	well.	It	does	not	remove	the	link	between	the	two	turtles.

See	also	tie

See	the	Tie	section	of	the	Programming	Guide	for	more	details.

up-to-n-of

up-to-n-of	size	agentset
up-to-n-of	size	list

From	an	agentset,	reports	an	agentset	of	size	size	randomly	chosen	from	the	input	set,	with	no	repeats.	If	the	input	does	not	have	enough
agents	to	satisfy	the	size,	reports	the	entire	agentset.

From	a	list,	reports	a	list	of	size	size	randomly	chosen	from	the	input	set,	with	no	repeats.	The	items	in	the	result	appear	in	the	same	order	that
they	appeared	in	the	input	list.	(If	you	want	them	in	random	order,	use	shuffle	on	the	result.)	If	the	input	does	not	have	enough	items	to	satisfy
the	size,	reports	the	entire	list.

If	size	is	fractional,	it	will	be	rounded	down	to	the	nearest	integer	(4.5	becomes	4,	10.9	becomes	10).

ask	up-to-n-of	50	patches	[set	pcolor	green]
;;	50	randomly	chosen	patches	turn	green
;;	if	less	than	50	patches	exist,	they	all	turn	green

See	also	n-of,	one-of.

update-plots

update-plots

For	each	plot,	runs	that	plot's	update	commands,	including	the	update	code	for	any	pens	in	the	plot.

tick	has	the	same	effect,	so	in	models	that	use	the	tick	counter,	this	primitive	is	not	normally	used.	Models	that	use	fractional	ticks	may	need
update-plots,	since	tick-advance	does	not	update	the	plots.

See	the	Plotting	section	of	the	Programming	Guide	for	more	details.

See	also	setup-plots.

uphill
uphill4

uphill	patch-variable
uphill4	patch-variable

Moves	the	turtle	to	the	neighboring	patch	with	the	highest	value	for	patch-variable.	If	no	neighboring	patch	has	a	higher	value	than	the	current
patch,	the	turtle	stays	put.	If	there	are	multiple	patches	with	the	same	highest	value,	the	turtle	picks	one	randomly.	Non-numeric	values	are
ignored.

uphill	considers	the	eight	neighboring	patches;	uphill4	only	considers	the	four	neighbors.

Equivalent	to	the	following	code	(assumes	variable	values	are	numeric):

										move-to	patch-here		;;	go	to	patch	center
										let	p	max-one-of	neighbors	[patch-variable]		;;	or	neighbors4
										if	[patch-variable]	of	p	>	patch-variable	[
										face	p
										move-to	p
]

Note	that	the	turtle	always	ends	up	on	a	patch	center	and	has	a	heading	that	is	a	multiple	of	45	(uphill)	or	90	(uphill4).

See	also	downhill,	downhill4.

user-directory

user-directory

Opens	a	dialog	that	allows	the	user	to	choose	an	existing	directory	on	the	system.

It	reports	a	string	with	the	absolute	path	or	false	if	the	user	cancels.

set-current-directory	user-directory
;;	Assumes	the	user	will	choose	a	directory

user-file

Since	3.1

Since	1.1

Since	1.1

Since	3.1

Since	2.0

user-file

Opens	a	dialog	that	allows	the	user	to	choose	an	existing	file	on	the	system.

It	reports	a	string	with	the	absolute	file	path	or	false	if	the	user	cancels.

file-open	user-file
;;	Assumes	the	user	will	choose	a	file

user-new-file

user-new-file

Opens	a	dialog	that	allows	the	user	to	choose	a	location	and	name	of	a	new	file	to	be	created.	It	reports	a	string	with	the	absolute	file	path	or
false	if	the	user	cancels.

file-open	user-new-file
;;	Assumes	the	user	will	choose	a	file

Note	that	this	reporter	doesn't	actually	create	the	file;	normally	you	would	create	the	file	using	file-open,	as	in	the	example.

If	the	user	chooses	an	existing	file,	they	will	be	asked	if	they	wish	to	replace	it	or	not,	but	the	reporter	itself	doesn't	cause	the	file	to	be
replaced.	To	do	that	you	would	use	file-delete.

Note:	This	primitive	is	not	compatible	with	NetLogo	Web.	If	you	wish	to	read	the	contents	of	a	file	with	the	same	code	and	the	same	behavior
in	both	NetLogo	and	NetLogo	Web,	see	fetch:user-file-async.

user-input

user-input	value

Reports	the	string	that	a	user	types	into	an	entry	field	in	a	dialog	with	title	value.

value	may	be	of	any	type,	but	is	typically	a	string.

show	user-input	"What	is	your	name?"

See	the	User	Interaction	Primitives	section	of	the	Programming	Guide	for	additional	details.

user-message

user-message	value

Opens	a	dialog	with	value	displayed	as	the	message	to	the	user.

value	may	be	of	any	type,	but	is	typically	a	string.

user-message	(word	"There	are	"	count	turtles	"	turtles.")

Note	that	if	a	user	closes	the	user-message	dialog	with	the	"X"	in	the	corner,	the	behavior	will	be	the	same	as	if	they	had	clicked	"OK".

See	the	User	Interaction	Primitives	section	of	the	Programming	Guide	for	additional	details.

user-one-of

user-one-of	value	list-of-choices

Opens	a	dialog	with	value	displayed	as	the	message	and	list-of-choices	displayed	as	a	popup	menu	for	the	user	to	select	from.

Reports	the	item	in	list-of-choices	selected	by	the	user.

value	may	be	of	any	type,	but	is	typically	a	string.

if	"yes"	=	user-one-of	"Set	up	the	model?"	["yes"	"no"]
		[setup]

Note:	This	primitive	is	not	compatible	with	NetLogo	Web.	If	you	wish	to	read	a	chooser	value	from	the	user	with	the	same	code	and	the	same
behavior	in	both	NetLogo	and	NetLogo	Web,	see	dialog:user-one-of.

See	the	User	Interaction	Primitives	section	of	the	Programming	Guide	for	additional	details.

user-yes-or-no?

user-yes-or-no?	value

Reports	true	or	false	based	on	the	user's	response	to	value.

value	may	be	of	any	type,	but	is	typically	a	string.

https://github.com/NetLogo/Fetch-Extension#readme
https://github.com/NetLogo/Dialog-Extension#readme

Since	1.0

Since	1.0

Since	3.0

Since	3.0

Since	1.0

if	user-yes-or-no?	"Set	up	the	model?"
		[setup]

Note:	This	primitive	is	not	compatible	with	NetLogo	Web.	If	you	wish	to	read	a	true	or	false	value	from	the	user	with	the	same	code	and	the
same	behavior	in	both	NetLogo	and	NetLogo	Web,	see	dialog:user-yes-or-no?.

See	the	User	Interaction	Primitives	section	of	the	Programming	Guide	for	additional	details.

V

variance

variance	list

Reports	the	sample	variance	of	a	list	of	numbers.	Ignores	other	types	of	items.

(Note	that	this	computes	an	unbiased	estimate	of	the	variance	for	a	sample,	rather	than	for	a	whole	population,	using	Bessel's	correction.)

The	sample	variance	is	the	sum	of	the	squares	of	the	deviations	of	the	numbers	from	their	mean,	divided	by	one	less	than	the	number	of
numbers	in	the	list.

show	variance	[2	7	4	3	5]
=>	3.7

See	this	FAQ	question	for	information	on	possible	issues	using	variance	with	agentsets

W

wait

wait	number

Wait	the	given	number	of	seconds.	(This	needn't	be	an	integer;	you	can	specify	fractions	of	seconds.)	Note	that	you	can't	expect	complete
precision;	the	agent	will	never	wait	less	than	the	given	amount,	but	might	wait	slightly	more.

repeat	10	[fd	1	wait	0.5]

While	the	agent	is	waiting,	no	other	agents	can	do	anything.	Everything	stops	until	the	agent	is	done.

See	also	every.

watch

watch	agent

Puts	a	spotlight	on	agent.	In	the	3D	view	the	observer	will	also	turn	to	face	the	subject.

The	observer	may	only	watch	or	follow	a	single	subject.	Calling	watch	will	undo	perspective	changes	caused	by	prior	calls	to	follow,	follow-
me,	ride,	and	ride-me.

See	also	follow,	subject,	reset-perspective,	ride,	ride-me,	watch-me.

watch-me

watch-me
	 	

Asks	the	observer	to	watch	this	agent.

The	observer	may	only	watch	or	follow	a	single	subject.	Calling	watch	will	undo	perspective	changes	caused	by	prior	calls	to	follow,	follow-
me,	ride,	and	ride-me.

See	also	follow,	subject,	reset-perspective,	ride,	ride-me,	watch.

while

while	[reporter]	[commands]

If	reporter	reports	false,	exit	the	loop.	Otherwise	run	commands	and	repeat.

The	reporter	may	have	different	values	for	different	agents,	so	some	agents	may	run	commands	a	different	number	of	times	than	other
agents.

while	[any?	other	turtles-here]
		[fd	1]
;;	turtle	moves	until	it	finds	a	patch	that	has
;;	no	other	turtles	on	it

https://github.com/NetLogo/Dialog-Extension#readme

Since	6.3.1

Since	1.0

Since	4.0

who

who

This	is	a	built-in	turtle	variable.	It	holds	the	turtle's	"who	number"	or	ID	number,	an	integer	greater	than	or	equal	to	zero.	You	cannot	set	this
variable;	a	turtle's	who	number	never	changes.

Who	numbers	start	at	0.	A	dead	turtle's	number	will	not	be	reassigned	to	a	new	turtle	until	you	use	the	clear-turtles	or	clear-all	commands,	at
which	time	who	numbering	starts	over	again	at	0.

Example:

show	[who]	of	turtles	with	[color	=	red]
;;	prints	a	list	of	the	who	numbers	of	all	red	turtles
;;	in	the	Command	Center,	in	random	order
crt	100
		[ifelse	who	<	50
						[set	color	red]
						[set	color	blue]]
;;	turtles	0	through	49	are	red,	turtles	50
;;	through	99	are	blue

You	can	use	the	turtle	reporter	to	retrieve	a	turtle	with	a	given	who	number.	See	also	turtle.

Note	that	who	numbers	aren't	breed-specific.	No	two	turtles	can	have	the	same	who	number,	even	if	they	are	different	breeds:

clear-turtles
create-frogs	1
create-mice	1
ask	turtles	[print	who]
;;	prints	(in	some	random	order):
;;	(frog	0):	0
;;	(mouse	1):	1

Even	though	we	only	have	one	mouse,	it	is	mouse	1	not	mouse	0,	because	the	who	number	0	was	already	taken	by	the	frog.

who-are-not

agentset	who-are-not	agentset
agentset	who-are-not	agent

Takes	an	agentset	on	the	left	and	an	agentset	or	an	agent	on	the	right.	Reports	a	new	agentset	containing	all	agents	from	the	left-hand
agentset	that	are	not	in	the	right-hand	agentset	(or	are	not	the	right-hand	agent).

breed	[frogs	frog]
breed	[mice	mouse]

create-frogs	10
create-mice	10
create-turtles	10

;	contains	all	the	turtles	who	are	not	frogs
ask	turtles	who-are-not	frogs	[
		forward	1
]

Another	example:

ask	turtles	[
		;	contains	all	the	turtles	this	turtle	is	not	linked	to
		let	targets	(other	turtles	who-are-not	link-neighbors)
		if	count	targets	>	0	[
				create-link-with	one-of	targets
]
]

with

agentset	with	[reporter]

Takes	two	inputs:	on	the	left,	an	agentset	(usually	"turtles"	or	"patches").	On	the	right,	a	boolean	reporter.	Reports	a	new	agentset	containing
only	those	agents	that	reported	true	--	in	other	words,	the	agents	satisfying	the	given	condition.

show	count	patches	with	[pcolor	=	red]
;;	prints	the	number	of	red	patches

<breed>-with
link-with

<breed>-with	turtle
link-with	turtle

Since	2.1

Since	2.1

Since	4.0

Since	1.1

Reports	a	link	between	turtle	and	the	caller	(directed	or	undirected,	incoming	or	outgoing).	If	no	link	exists	then	it	reports	nobody.	If	more	than
one	such	link	exists,	reports	a	random	one.

crt	2
ask	turtle	0	[
		create-link-with	turtle	1
		show	link-with	turtle	1	;;	prints	link	0	1
]

See	also:	in-link-from,	out-link-to

with-max

agentset	with-max	[reporter]

Takes	two	inputs:	on	the	left,	an	agentset	(usually	"turtles"	or	"patches").	On	the	right,	a	reporter.	Reports	a	new	agentset	containing	all	agents
reporting	the	maximum	value	of	the	given	reporter.

show	count	patches	with-max	[pxcor]
;;	prints	the	number	of	patches	on	the	right	edge

See	also	max-one-of,	max-n-of.

with-min

agentset	with-min	[reporter]

Takes	two	inputs:	on	the	left,	an	agentset	(usually	"turtles"	or	"patches").	On	the	right,	a	reporter.	Reports	a	new	agentset	containing	only
those	agents	that	have	the	minimum	value	of	the	given	reporter.

show	count	patches	with-min	[pycor]
;;	prints	the	number	of	patches	on	the	bottom	edge

See	also	min-one-of,	min-n-of.

with-local-randomness

with-local-randomness	[commands]

The	commands	are	run	without	affecting	subsequent	random	events.	This	is	useful	for	performing	extra	operations	(such	as	output)	without
changing	the	outcome	of	a	model.

Example:

;;	Run	#1:
random-seed	50	setup	repeat	10	[go]
;;	Run	#2:
random-seed	50	setup
with-local-randomness	[watch	one-of	turtles]
repeat	10	[go]

Since	one-of	is	used	inside	with-local-randomness,	both	runs	will	be	identical.

Specifically	how	it	works	is,	the	state	of	the	random	number	generator	is	remembered	before	the	commands	run,	then	restored	afterwards.	(If
you	want	to	run	the	commands	with	a	fresh	random	state	instead	of	the	same	random	state	that	will	be	restored	later,	you	can	begin	the
commands	with	random-seed	new-seed.)

The	following	example	demonstrates	that	the	random	number	generator	state	is	the	same	both	before	the	commands	run	and	afterwards.

random-seed	10
with-local-randomness	[print	n-values	10	[random	10]]
;;	prints	[8	9	8	4	2	4	5	4	7	9]
print	n-values	10	[random	10]
;;	prints	[8	9	8	4	2	4	5	4	7	9]

without-interruption

without-interruption	[commands]

This	primitive	exists	only	for	backwards	compatibility.	We	don't	recommend	using	it	in	new	models.

The	agent	runs	all	the	commands	in	the	block	without	allowing	other	agents	using	ask-concurrent	to	"interrupt".	That	is,	other	agents	are	put
"on	hold"	and	do	not	run	any	commands	until	the	commands	in	the	block	are	finished.

Note:	This	command	is	only	useful	in	conjunction	with	ask-concurrent.

See	also	ask-concurrent.

Since	1.0

Since	3.1
Since	3.1

Since	1.0

Since	2.0

Since	1.0

word

word	value1	value2
(word	value1	...)

Concatenates	the	inputs	together	and	reports	the	result	as	a	string.

show	word	"tur"	"tle"
=>	"turtle"
word	"a"	6
=>	"a6"
set	directory	"c:\\foo\\fish\\"
show	word	directory	"bar.txt"
=>	"c:\foo\fish\bar.txt"
show	word	[1	54	8]	"fishy"
=>	"[1	54	8]fishy"
show	(word	3)
=>	"3"
show	(word	"a"	"b"	"c"	1	23)
=>	"abc123"

world-width
world-height

world-width
world-height

These	reporters	give	the	total	width	and	height	of	the	NetLogo	world.

The	width	equals	max-pxcor	-	min-pxcor	+	1	and	the	height	equals	max-pycor	-	min-pycor	+	1.

See	also	max-pxcor,	max-pycor,	min-pxcor,	and	min-pycor

wrap-color

wrap-color	number

wrap-color	checks	whether	number	is	in	the	NetLogo	color	range	of	0	to	140	(not	including	140	itself).	If	it	is	not,	wrap-color	"wraps"	the
numeric	input	to	the	0	to	140	range.

The	wrapping	is	done	by	repeatedly	adding	or	subtracting	140	from	the	given	number	until	it	is	in	the	0	to	140	range.	(This	is	the	same
wrapping	that	is	done	automatically	if	you	assign	an	out-of-range	number	to	the	color	turtle	variable	or	pcolor	patch	variable.)

show	wrap-color	150
=>	10
show	wrap-color	-10
=>	130

write

write	value

This	command	will	output	value,	which	can	be	a	number,	string,	list,	boolean,	or	nobody	to	the	Command	Center,	not	followed	by	a	carriage
return	(unlike	print	and	show).

This	agent	is	not	printed	before	the	value,	unlike	show.	Its	output	also	includes	quotes	around	strings	and	is	prepended	with	a	space.

write	"hello	world"
=>		"hello	world"

See	also	print,	show,	type,	output-write,	and	Output	(programming	guide).

X

xcor

xcor

This	is	a	built-in	turtle	variable.	It	holds	the	current	x	coordinate	of	the	turtle.	You	can	set	this	variable	to	change	the	turtle's	location.

This	variable	is	always	greater	than	or	equal	to	(min-pxcor	-	0.5)	and	strictly	less	than	(max-pxcor	+	0.5).

See	also	setxy,	ycor,	pxcor,	pycor,

xor

boolean1	xor	boolean2

Reports	true	if	either	boolean1	or	boolean2	is	true,	but	not	when	both	are	true.	Otherwise	returns	false.	See	the	programming	guide	for	more

Since	6.0

information	on	logical	operator	precedence.

if	(pxcor	>	0)	xor	(pycor	>	0)
		[set	pcolor	blue]
;;	upper-left	and	lower-right	quadrants	turn	blue

Y

ycor

ycor

This	is	a	built-in	turtle	variable.	It	holds	the	current	y	coordinate	of	the	turtle.	You	can	set	this	variable	to	change	the	turtle's	location.

This	variable	is	always	greater	than	or	equal	to	(min-pycor	-	0.5)	and	strictly	less	than	(max-pycor	+	0.5).

See	also	setxy,	xcor,	pxcor,	pycor,

->

->

[[args]	->	commands]
[[args]	->	reporter]

Creates	and	reports	an	anonymous	procedure	-	a	command	or	reporter	-	depending	on	the	input.	Within	commands	or	reporter	the	listed	args
may	be	used	just	as	you	would	use	let	or	procedure	variables.	The	variable	names	in	args	have	the	same	restrictions	as	variable	names	of
commands	and	reporters.	In	addition,	they	must	not	match	the	name	of	any	let	or	procedure	variable	in	their	procedure.

Anonymous	procedures	are	commonly	used	with	the	primitives	foreach,	map,	reduce,	filter,	sort-by,	and	n-values.	See	those	entries	for
example	usage.

See	the	Anonymous	Procedures	section	of	the	Programming	Guide	for	details.

	Table of Contents
	What is NetLogo?
	Features

	Copyright and License Information
	How to reference
	Acknowledgments
	NetLogo license
	Commercial licenses
	NetLogo User Manual license
	Open source
	Third party licenses
	Scala
	MersenneTwisterFast
	Colt
	Config
	Apache Commons Codec (TM)
	Flexmark
	JHotDraw
	JOGL
	Matrix3D
	ASM
	PicoContainer
	Parboiled
	RSyntaxTextArea
	JCodec
	Java-Objective-C Bridge
	Webcam-capture
	Guava
	Gephi
	R Extension
	JNA

	What's new?
	Version 6.4.0 (November 2023)
	BehaviorSpace New Features
	Language Changes
	Bug Fixes and Changes
	BehaviorSpace Bug fixes and changes

	Extension Updates
	Documentation Updates
	Models Library Changes
	New Sample Models:
	Sample Model Changes

	Version 6.3.0 (September 2022)
	Bug Fixes and Changes
	Extension Updates
	Documentation Updates
	Models Library Changes
	New Sample Models:
	New Curricular Models:
	New Code Examples:
	Sample Model Changes
	Curricular Models Changes:
	Newly Verified Models

	Version 6.2.2 (December 2021)
	Fixes and Changes

	Version 6.2.1 (October 2021)
	Features and Changes
	Documentation Updates
	Bugfixes
	Models Library Changes
	New Sample Models:
	New Curricula Models:
	New Code Examples:
	Sample Models
	Code Examples

	Version 6.2.0 (December 2020)
	Features
	Bugfixes
	Logging Improvements
	NetLogo 3D Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes
	New Sample Models:
	New Curricular Models:
	New Code Examples:
	Sample Model Updates:

	Alternative Visualization Updates:
	Curricular Model Updates:
	Code Examples Updates:
	HubNet Activities Updates:
	IABM Model Updates:

	Version 6.1.1 (September 2019)
	Bugfixes
	Features
	Extension Changes
	Documentation Changes
	Model Changes

	Version 6.1.0 (May 2019)
	Feature Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes

	Version 6.0.4 (June 2018)
	Feature Changes
	Bugfixes
	Documentation Changes
	Model Changes
	New Curricular Models
	Revised Sample Models
	Revised Code Examples
	Revised Curricular Models
	Revised Alternative Visualizations

	Version 6.0.3 (March 2018)
	Feature Changes
	Documentation Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes
	New Sample Models:
	New Curricular Models
	New HubNet Activities:
	Revised Code Examples:
	Revised Curricular Models:
	Revised Sample Models:
	Revised IABM Models:
	† - Models Updated to Correctly Reference the HIV Model

	Version 6.0.2 (August 2017)
	Feature Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Model Changes
	New Sample Models:
	New Curricular Models:
	Revised Sample Models:
	Revised Curricular Models:
	Revised HubNet Activities:
	Revised Code Examples:

	Version 6.0.1 (March 2017)
	Feature Changes
	Bugfixes
	Extension Changes
	Documentation Changes
	Models
	New Sample Model
	New Curricular Model
	Revised Sample Models
	Revised Curricular Models

	Version 6.0 (December 2016)
	Feature Changes
	Bugfixes
	Language Changes
	Extension Changes
	Operating System Support
	Documentation Changes
	Internationalization Changes
	Models
	New Sample Models:
	New Curricular Models:
	New Code Examples:
	Promoted Models (improved and no longer “unverified”):
	Revised Sample Models:
	Revised HubNet Activities:
	Revised Curricular Models:
	Revised IABM models:
	Revised Code Examples:
	Demoted model:

	Version 5.3.1 (February 2016)
	Feature Changes
	Extension Changes
	Bugfixes

	Version 5.3 (December 2015)
	Feature Changes
	Extension Changes

	Version 5.2.1 (September 2015)
	Extensions
	New features
	Bug fixes
	Model changes

	Version 5.2.0 (April 2015)
	Extensions
	New features
	Bug fixes
	Model changes

	Version 5.1.0 (July 2014)
	Version 5.0.4 (March 2013)
	Version 5.0 (February 2012)
	Version 4.1.3 (April 2011)
	Version 4.1 (December 2009)
	Version 4.0 (September 2007)
	Version 3.1 (April 2006)
	Version 3.0 (September 2005)
	Version 2.1 (December 2004)
	Version 2.0.2 (August 2004)
	Version 2.0 (December 2003)
	Version 1.3 (June 2003)
	Version 1.2 (March 2003)
	Version 1.1 (July 2002)
	Version 1.0 (April 2002)

	System Requirements
	Application Requirements
	Windows
	Mac OS X
	Linux

	3D Requirements
	32-bit or 64-bit?

	Contacting Us
	Web site
	Feedback, questions, etc.
	Reporting bugs
	Open source

	Sample Model: Party
	At a Party
	Challenge
	Thinking with models
	What’s next?

	Tutorial #1: Models
	Sample Model: Wolf Sheep Predation
	Controlling the Model: Buttons
	Controlling speed: Speed Slider
	Adjusting Settings: Choosers, Sliders, and Switches
	Gathering Information: Plots and Monitors
	Plots
	Monitors

	Controlling the View
	Models Library
	Sample Models
	Curricular Models
	Code Examples
	HubNet Activities

	What’s Next?

	Tutorial #2: Commands
	Sample Model: Traffic Basic
	Command Center
	Working with colors
	Agent Monitors and Agent Commanders
	What’s Next?

	Tutorial #3: Procedures
	Agents and procedures
	Making the setup button
	Switching to tick-based view updates
	Making the go button
	Experimenting with commands
	Patches and variables
	Turtle variables
	Monitors
	Switches and labels
	More procedures
	Plotting
	Tick counter
	Some more details
	What’s next?
	Appendix: Complete code

	Interface Guide
	Menus
	Chart: NetLogo menus

	Tabs
	International Usage
	Character sets
	Languages
	Default language

	Support for translators

	Interface Tab Guide
	Working with interface elements
	Chart: Interface Toolbar
	The 2D and 3D views
	Manipulating the 3D View
	Fullscreen Mode
	3D Shapes

	Command Center
	Reporters
	Accessing previous commands
	Clearing
	Arranging

	Plots
	Plot Pens
	Plot Pen Advanced Settings

	Sliders
	Agent Monitors

	Info Tab
	Editing
	Headings
	Input

	Paragraphs
	Example
	Formatted

	Italicized and bold text
	Example
	Formatted

	Ordered lists
	Example
	Formatted

	Unordered lists
	Example
	Formatted

	Links
	Automatic links
	Example
	Formatted

	Links with text
	Example
	Formatted

	Local links
	Example
	Example

	Images
	Example
	Formatted
	Local images
	Example
	Formatted

	Block quotations
	Example
	Formatted

	Code
	Example
	Formatted

	Code blocks
	Example
	Formatted

	Superscripts and subscripts
	Example
	Formatted

	Notes on usage
	Other features

	Code Tab Guide
	Checking for Errors
	Separate Code tab
	Find & Replace
	Automatic Indentation
	More Editing Options
	Included Files Menu

	Programming Guide
	Agents
	Procedures
	Variables
	Tick counter
	When to tick
	Fractional ticks

	Colors
	Ask
	Agentsets
	Special agentsets
	Agentsets and lists

	Breeds
	Link breeds

	Buttons
	Lists
	Math
	Random numbers
	Auxiliary generator
	Local randomness
	Saving a Random Seed for a Run

	Turtle shapes
	Link shapes
	View updates
	Continuous updates
	Tick-based updates
	Choosing a mode
	Frame rate

	Plotting
	Plotting points
	Plot commands
	Other kinds of plots
	Histograms
	Clearing and resetting
	Ranges and auto scaling
	Using a Legend
	Temporary plot pens
	set-current-plot and set-current-plot-pen
	Conclusion

	Strings
	Output
	How Output Primitives Differ

	File I/O
	Movies
	Perspective
	Drawing
	Topology
	Links
	Anonymous procedures
	Anonymous procedure primitives
	Anonymous procedure inputs
	Anonymous procedures and strings
	Concise syntax
	Anonymous procedures as closures
	Nonlocal exits
	Anonymous procedures and extensions
	Limitations
	What is Optional?
	Code example

	Ask-Concurrent
	User Interaction Primitives
	What does “Halt” mean?

	Tie
	Multiple source files
	Syntax
	Colors
	Notice
	Keywords
	Identifiers
	Scope
	Comments
	Structure
	Commands and reporters
	Compared to other Logos
	Surface differences
	Deeper differences

	Transition Guide
	Changes for NetLogo 6.1.0
	CF Extension Removal
	ifelse-value Precedence Change with Infix Operators

	Changes for NetLogo 6.0.3
	Arduino Extension Changes
	CF Extension Changes

	Changes for NetLogo 6.0
	Tasks replaced by Anonymous Procedures
	Link reporters overhauled to be more consistent and flexible
	New link reporter behavior
	Old link reporter behavior

	Removal of Applets
	Changes to the NetLogo User Interface
	Nobody Not Permitted as a Chooser Value
	Breeds must have singular and plural names
	Removal of “Movie” Prims
	Improved Name Collision Detection
	Removal of hubnet-set-client-interface
	Improved & Updated Extensions API
	Add range primitive

	Changes for NetLogo 5.2
	hsb primitives
	GoGo extension

	Changes for NetLogo 5.0
	Plotting
	Tick counter
	reset-ticks
	reset-ticks and plotting
	__clear-all-and-reset-ticks

	Unicode characters
	Info tabs
	Model speed
	List performance
	Extensions API
	Syntax constants
	LogoList construction
	Primitive classes

	Changes for NetLogo 4.1
	Combining set and of

	Changes for NetLogo 4.0
	Who numbering
	Turtle creation: randomized vs. “ordered”
	Adding strings and lists
	The -at primitives
	Links
	New “of” syntax
	Serial ask
	Tick counter
	View update modes
	How to make a model use ticks and tick-based updates

	Speed slider
	Numbers
	Agentset building
	RGB Colors
	Tie

	Changes for NetLogo 3.1
	Agentsets
	Wrapping
	Random turtle coordinates

	Extension Manager Guide
	Authoring and Sharing
	Interface

	Shapes Editor Guide
	Getting started
	Importing shapes

	Creating and editing turtle shapes
	Tools
	Previews
	Overlapping shapes
	Undo
	Colors
	Other buttons
	Shape design
	Keeping a shape

	Creating and editing link shapes
	Changing link shape properties

	Using shapes in a model

	BehaviorSpace Guide
	What is BehaviorSpace?
	Why BehaviorSpace?

	How It Works
	Managing experiment setups
	Creating an experiment setup
	Combinatorial syntaxes
	Subexperiment syntax
	Run metrics when

	Importing and exporting
	Special primitives for BehaviorSpace experiments
	Running an experiment
	Run options: formats
	Table output
	Spreadsheet output
	Statistics output
	Lists output
	Output File Changes
	Run options: update plots and monitors
	Run options: parallel runs
	Observing runs
	Paused experiments

	Advanced Usage
	Running from the command line
	How to use it
	Examples

	Setting up experiments in XML
	Adjusting JVM Parameters
	Controlling API

	System Dynamics Guide
	What is the NetLogo System Dynamics Modeler?
	Basic Concepts
	Sample Models

	How it Works
	Diagram Tab
	Creating Diagram Elements
	Working with Diagram Elements
	Editing dt
	Errors

	Code Tab
	The System Dynamics Modeler and NetLogo

	Tutorial: Wolf-Sheep Predation
	Step 1: Sheep Reproduction
	Step 2: NetLogo Integration
	Step 3: Wolf Predation

	HubNet Guide
	Understanding HubNet
	NetLogo
	HubNet Architecture

	Computer HubNet
	Activities
	Clients
	Requirements
	Starting an activity
	HubNet Control Center
	Troubleshooting
	I started a HubNet activity, but when participants open a HubNet Client, my activity isn’t listed.
	When a participant tries to connect to an activity, nothing happens (the client appears to hang or gives an error saying that no server was found).
	The view on the HubNet client is gray.
	There is no view on the HubNet client.
	I can’t quit a HubNet client.
	My computer went to sleep while running a HubNet activity. When I woke the computer up, I got an error and HubNet wouldn’t work anymore.
	My problem is not addressed on this page.

	Known Limitations

	Teacher workshops
	HubNet Authoring Guide
	Running HubNet in headless mode
	Getting help

	HubNet Authoring Guide
	Coding HubNet activities
	Setup
	Receiving messages from clients
	Sending messages to clients
	Examples

	How to make a client interface
	View updates on the clients
	Clicking in the view on clients
	Customizing the client’s view
	Plot updates on the clients

	Modeling Commons Guide
	Introduction
	Modeling Commons Accounts
	Uploading Models
	Upload A New Model
	Upload A Child Of An Existing Model (“forking”)

	Updating An Existing Model

	Logging
	Starting Logging
	Command Line Switches

	Using Logging
	Events
	JSON Output
	Where Logs are Stored
	Managing Log Files

	Controlling Guide
	Mathematica Link
	What can I do with it?
	Installation
	Usage
	Known Issues
	Source code
	Credits

	NetLogo 3D
	Introduction
	3D Worlds
	The observer and the 3D view
	Custom Shapes

	Tutorial
	Step 1: Depth
	Step 2: Turtle Movement
	Step 3: Observer Movement

	Dictionary
	Commands and Reporters
	Turtle-related primitives
	Patch-related primitives
	Agentset primitives
	World primitives
	Observer primitives
	Link primitives

	Built-In Variables
	Turtles
	Patches

	Primitives
	at-points4.1
	agentset at-points [[x1 y1 z1] [x2 y2 z2] ...]

	distancexyz4.1 distancexyz-nowrap4.1
	distancexyz xcor ycor zcor distancexyz-nowrap xcor ycor zcor

	dz4.1
	dz

	face facexyz4.1
	face agent facexyz x y z

	left4.1
	left number

	link-pitch4.1.2
	link-pitch

	load-shapes-3d4.1
	load-shapes-3d filename

	max-pzcor4.1 min-pzcor4.1
	max-pzcor min-pzcor

	neighbors4.1 neighbors64.1
	neighbors neighbors6

	orbit-down4.1 orbit-left4.1 orbit-right4.1 orbit-up4.1
	orbit-down number orbit-left number orbit-right number orbit-up number

	__oxcor __oycor __ozcor
	__oxcor __oycor __ozcor

	patch4.1
	patch pxcor pycor pzcor

	patch-at4.1
	patch-at dx dy dz

	patch-at-heading-pitch-and-distance4.1
	patch-at-heading-pitch-and-distance heading pitch distance

	pitch
	pitch

	pzcor
	pzcor

	random-pzcor4.1
	random-pzcor

	random-zcor4.1
	random-zcor

	right4.1
	right number

	roll
	roll

	roll-left4.1
	roll-left number

	roll-right4.1
	roll-right number

	setxyz4.1
	setxyz x y z

	tilt-down4.1 tilt-up4.1
	tilt-down number tilt-up number

	towards-pitch4.1 towards-pitch-nowrap4.1
	towards-pitch agent towards-pitch-nowrap agent

	towards-pitch-xyz4.1 towards-pitch-xyz-nowrap4.1
	towards-pitch-xyz x y z towards-pitch-xyz-no-wrap x y z

	turtles-at4.1 <breeds>-at
	turtles-at dx dy dz <breeds>-at dx dy dz

	world-depth4.1
	world-depth

	zcor
	zcor

	zoom4.1
	zoom number

	Extensions Guide
	Authoring and Sharing
	Using Extensions
	Where extensions are located

	Extension Authoring Introduction
	Technical Details
	Sharing Extensions with the Extension Manager

	NetLogo Arduino Extension
	Using
	Notes
	Compatibility
	Questions

	Primitives
	arduino:primitives
	arduino:primitives

	arduino:ports
	arduino:ports

	arduino:open
	arduino:open port-name

	arduino:close
	arduino:close

	arduino:get
	arduino:get var-name

	arduino:write-string
	arduino:write-string string-message

	arduino:write-int
	arduino:write-int int-message

	arduino:write-byte
	arduino:write-byte byte-message

	arduino:is-open?
	arduino:is-open?

	arduino:debug-to-arduino
	arduino:debug-to-arduino

	arduino:debug-from-arduino
	arduino:debug-from-arduino

	NetLogo Array Extension
	Using
	When to Use
	Example use of Array Extension

	Primitives
	array:from-list
	array:from-list list

	array:item
	array:item array index

	array:set
	array:set array index value

	array:length
	array:length array

	array:to-list
	array:to-list array

	NetLogo Bitmap Extension
	Using
	What does the Bitmap Extension do?
	Getting started

	Primitives
	bitmap:average-color
	bitmap:average-color image

	bitmap:channel
	bitmap:channel image channel

	bitmap:copy-to-drawing
	bitmap:copy-to-drawing image x y

	bitmap:copy-to-pcolors
	bitmap:copy-to-pcolors image boolean

	bitmap:difference-rgb
	bitmap:difference-rgb image1 image2

	bitmap:export
	bitmap:export image filename

	bitmap:from-base64
	bitmap:from-base64 base64-string

	bitmap:to-base64
	bitmap:to-base64 base64-string

	bitmap:from-view
	bitmap:from-view

	bitmap:to-grayscale
	bitmap:to-grayscale image

	bitmap:height
	bitmap:height image

	bitmap:import
	bitmap:import filename

	bitmap:scaled
	bitmap:scaled image width height

	bitmap:width
	bitmap:width image

	NetLogo Csv Extension
	Common use cases and examples
	Read a file all at once
	Read a file one line at a time
	Read a file one line per tick
	Write a file

	Primitives
	Formatting NetLogo data as CSV
	Parsing CSV input to NetLogo data
	csv:from-row
	csv:from-row string csv:from-row string delimiter

	csv:from-string
	csv:from-string string csv:from-string string delimiter

	csv:from-file
	csv:from-file csv-file csv:from-file csv-file delimiter

	csv:to-row
	csv:to-row list csv:to-row list delimiter

	csv:to-string
	csv:to-string list csv:to-string list delimiter

	csv:to-file
	csv:to-file csv-file list csv:to-file csv-file list delimiter

	NetLogo Gis Extension
	Using
	How to use
	Known Issues
	Credits

	Primitives
	RasterDataset Primitives
	Dataset Primitives
	VectorDataset Primitives
	Coordinate System Primitives
	Drawing Primitives
	gis:set-transformation
	gis:set-transformation gis-envelope netlogo-envelope

	gis:set-transformation-ds
	gis:set-transformation-ds gis-envelope netlogo-envelope

	gis:set-world-envelope
	gis:set-world-envelope gis-envelope

	gis:set-world-envelope-ds
	gis:set-world-envelope-ds gis-envelope

	gis:world-envelope
	gis:world-envelope

	gis:envelope-of
	gis:envelope-of thing

	gis:envelope-union-of
	gis:envelope-union-of envelope1 envelope2 gis:envelope-union-of envelope1...

	gis:load-coordinate-system
	gis:load-coordinate-system file

	gis:set-coordinate-system
	gis:set-coordinate-system system

	gis:project-lat-lon
	gis:project-lat-lon latitude longitude

	gis:project-lat-lon-from-ellipsoid
	gis:project-lat-lon-from-ellipsoid latitude longitude ellipsoid-radius ellipsoid-inverse-flattening

	gis:load-dataset
	gis:load-dataset file

	gis:store-dataset
	gis:store-dataset dataset file

	gis:type-of
	gis:type-of dataset

	gis:patch-dataset
	gis:patch-dataset patch-variable

	gis:turtle-dataset
	gis:turtle-dataset turtle-set

	gis:link-dataset
	gis:link-dataset link-set

	gis:shape-type-of
	gis:shape-type-of VectorDataset

	gis:property-names
	gis:property-names VectorDataset

	gis:feature-list-of
	gis:feature-list-of VectorDataset

	gis:vertex-lists-of
	gis:vertex-lists-of VectorFeature

	gis:centroid-of
	gis:centroid-of VectorFeature

	gis:random-point-inside
	gis:random-point-inside VectorFeature

	gis:location-of
	gis:location-of Vertex

	gis:set-property-value
	gis:set-property-value VectorFeature property-name value

	gis:property-value
	gis:property-value VectorFeature property-name

	gis:find-features
	gis:find-features VectorDataset property-name specified-value

	gis:find-one-feature
	gis:find-one-feature VectorDataset property-name specified-value

	gis:find-less-than
	gis:find-less-than VectorDataset property-name value

	gis:find-greater-than
	gis:find-greater-than VectorDataset property-name value

	gis:find-range
	gis:find-range VectorDataset property-name minimum-value maximum-value

	gis:property-minimum
	gis:property-minimum VectorDataset property-name

	gis:property-maximum
	gis:property-maximum VectorDataset property-name

	gis:apply-coverage
	gis:apply-coverage VectorDataset property-name patch-variable

	gis:create-turtles-from-points
	gis:create-turtles-from-points VectorDataset breed commands

	gis:create-turtles-from-points-manual
	gis:create-turtles-from-points-manual VectorDataset breed property-mapping commands

	gis:create-turtles-inside-polygon
	gis:create-turtles-inside-polygon VectorFeature breed n commands

	gis:create-turtles-inside-polygon-manual
	gis:create-turtles-inside-polygon-manual VectorFeature breed n property-mapping commands

	gis:coverage-minimum-threshold
	gis:coverage-minimum-threshold

	gis:set-coverage-minimum-threshold
	gis:set-coverage-minimum-threshold new-threshold

	gis:coverage-maximum-threshold
	gis:coverage-maximum-threshold

	gis:set-coverage-maximum-threshold
	gis:set-coverage-maximum-threshold new-threshold

	gis:intersects?
	gis:intersects? x y

	gis:contains?
	gis:contains? x y

	gis:contained-by?
	gis:contained-by? x y

	gis:have-relationship?
	gis:have-relationship? x y

	gis:relationship-of
	gis:relationship-of x y

	gis:intersecting
	patch-set gis:intersecting data

	gis:width-of
	gis:width-of RasterDataset

	gis:height-of
	gis:height-of RasterDataset

	gis:raster-value
	gis:raster-value RasterDataset x y

	gis:set-raster-value
	gis:set-raster-value RasterDataset x y value

	gis:minimum-of
	gis:minimum-of RasterDataset

	gis:maximum-of
	gis:maximum-of RasterDataset

	gis:sampling-method-of
	gis:sampling-method-of RasterDataset

	gis:set-sampling-method
	gis:set-sampling-method RasterDataset sampling-method

	gis:raster-sample
	gis:raster-sample RasterDataset sample-location

	gis:raster-world-envelope
	gis:raster-world-envelope RasterDataset x y

	gis:create-raster
	gis:create-raster width height envelope

	gis:resample
	gis:resample RasterDataset envelope width height

	gis:convolve
	gis:convolve RasterDataset kernel-rows kernel-columns kernel key-column key-row

	gis:apply-raster
	gis:apply-raster RasterDataset patch-variable

	gis:drawing-color
	gis:drawing-color

	gis:set-drawing-color
	gis:set-drawing-color color

	gis:draw
	gis:draw vector-data line-thickness

	gis:fill
	gis:fill vector-data line-thickness

	gis:paint
	gis:paint RasterDataset transparency

	gis:import-wms-drawing
	gis:import-wms-drawing server-url spatial-reference layers transparency

	NetLogo Gogo Extension
	NetLogoLab and the GoGo Board Extension for sensors and robotics

	NetLogoLab and the GoGo Board Extension
	What is NetLogoLab?
	The GoGo Board NetLogo extension
	GoGo Board: a low-cost robotics and data-logging board
	Sensor and actuator toolkits
	NetLogo models

	How to get a GoGo Board?
	Installing and testing the GoGo Extension
	Windows
	Mac OS X
	Linux

	Usage
	Changes
	Primitives
	Other Outputs
	Utilities
	General
	Sensors
	Outputs and Servos
	gogo:primitives
	gogo:primitives

	gogo:howmany-gogos
	gogo:howmany-gogos

	gogo:talk-to-output-ports
	gogo:talk-to-output-ports list-of-portnames

	gogo:set-output-port-power
	gogo:set-output-port-power power-level

	gogo:output-port-on
	gogo:output-port-on

	gogo:output-port-off
	gogo:output-port-off

	gogo:output-port-clockwise
	gogo:output-port-clockwise

	gogo:output-port-counterclockwise
	gogo:output-port-counterclockwise

	gogo:set-servo
	gogo:set-servo number

	gogo:led
	gogo:led on-or-off

	gogo:beep
	gogo:beep

	gogo:read-sensors
	gogo:read-sensors

	gogo:read-sensor
	gogo:read-sensor which-sensor

	gogo:read-all
	gogo:read-all

	gogo:send-bytes
	gogo:send-bytes list

	Examples of NetLogoLab models
	Controlling a car
	A simple sensing project

	NetLogo Ls Extension
	LevelSpace fundamentals
	Headless and Interactive Models
	Keeping Track of Models
	A general use case: Asking and Reporting
	A general use case: Inter-Model Interactions
	A general Usecase: Tidying up “Dead” Child Models

	Citing LevelSpace in Research
	Primitives
	Commanding and Reporting
	Logic and Control
	Opening and Closing Models
	ls:create-models
	ls:create-models number path ls:create-models number path anonymous command

	ls:create-interactive-models
	ls:create-interactive-models number path ls:create-interactive-models number path anonymous command

	ls:close
	ls:close model-or-list-of-models

	ls:reset
	ls:reset

	ls:ask
	ls:ask model-or-list-of-models command argument

	ls:of
	reporter ls:of model-or-list-of-models

	ls:report
	ls:report model-or-list-of-models reporter argument

	ls:with
	list-of-models ls:with reporter

	ls:let
	ls:let variable-name value

	ls:assign
	ls:assign model-or-list-of-models global-variable value

	ls:models
	ls:models

	ls:show
	ls:show model-or-list-of-models

	ls:show-all
	ls:show-all model-or-list-of-models

	ls:hide
	ls:hide model-or-list-of-models

	ls:hide-all
	ls:hide-all model-or-list-of-models

	ls:path-of
	ls:path-of model-or-list-of-models

	ls:name-of
	ls:name-of model-or-list-of-models

	ls:model-exists?
	ls:model-exists? model-or-list-of-models

	ls:random-seed
	ls:random-seed seed

	NetLogo Matrix Extension
	Using
	When to Use
	How to Use
	Example

	Primitives
	Matrix creation and conversion to/from lists
	Advanced features
	Matrix data retrieval and manipulation
	Math operations
	matrix:make-constant
	matrix:make-constant n-rows n-cols initialValue

	matrix:make-identity
	matrix:make-identity size

	matrix:from-row-list
	matrix:from-row-list nested-list

	matrix:from-column-list
	matrix:from-column-list nested-list

	matrix:to-row-list
	matrix:to-row-list matrix

	matrix:to-column-list
	matrix:to-column-list matrix

	matrix:copy
	matrix:copy matrix

	matrix:pretty-print-text
	matrix:pretty-print-text matrix

	matrix:get
	matrix:get matrix row-i col-j

	matrix:get-row
	matrix:get-row matrix row-i

	matrix:get-column
	matrix:get-column matrix col-j

	matrix:set
	matrix:set matrix row-i col-j new-value

	matrix:set-row
	matrix:set-row matrix row-i simple-list

	matrix:set-column
	matrix:set-column matrix col-j simple-list

	matrix:swap-rows
	matrix:swap-rows matrix row1 row2

	matrix:swap-columns
	matrix:swap-columns matrix col1 col2

	matrix:set-and-report
	matrix:set-and-report matrix row-i col-j new-value

	matrix:dimensions
	matrix:dimensions matrix

	matrix:submatrix
	matrix:submatrix matrix r1 c1 r2 c2

	matrix:map
	matrix:map anonymous reporter matrix matrix:map anonymous reporter matrix anything

	matrix:times-scalar
	matrix:times-scalar matrix factor

	matrix:times
	matrix:times m1 m2 matrix:times m1 m2 ...

	matrix:*
	m1 matrix:* m2

	matrix:times-element-wise
	matrix:times-element-wise m1 m2

	matrix:plus-scalar
	matrix:plus-scalar matrix number

	matrix:plus
	matrix:plus m1 m2 matrix:plus m1 m2 ...

	matrix:+
	m1 matrix:+ m2

	matrix:minus
	matrix:minus m1 m2 matrix:minus m1 m2 ...

	matrix:-
	m1 matrix:- m2

	matrix:inverse
	matrix:inverse matrix

	matrix:transpose
	matrix:transpose matrix

	matrix:real-eigenvalues
	matrix:real-eigenvalues matrix

	matrix:imaginary-eigenvalues
	matrix:imaginary-eigenvalues matrix

	matrix:eigenvectors
	matrix:eigenvectors matrix

	matrix:det
	matrix:det matrix

	matrix:rank
	matrix:rank matrix

	matrix:trace
	matrix:trace matrix

	matrix:solve
	matrix:solve A C

	matrix:forecast-linear-growth
	matrix:forecast-linear-growth data-list

	matrix:forecast-compound-growth
	matrix:forecast-compound-growth data-list

	matrix:forecast-continuous-growth
	matrix:forecast-continuous-growth data-list

	matrix:regress
	matrix:regress data-matrix

	NetLogo Nw Extension
	Usage
	Special agentsets vs normal agentsets

	A note regarding floating point calculations
	Performance
	Primitives
	Generators
	Path and Distance
	Clusterer/Community Detection
	Context Management
	Import and Export
	Centrality Measures
	Clustering Measures
	nw:set-context
	nw:set-context turtleset linkset

	nw:get-context
	nw:get-context

	nw:with-context
	nw:with-context turtleset linkset command-block

	nw:turtles-in-radius
	nw:turtles-in-radius radius

	nw:turtles-in-reverse-radius
	nw:turtles-in-reverse-radius radius

	nw:distance-to
	nw:distance-to target-turtle

	nw:weighted-distance-to
	nw:weighted-distance-to target-turtle weight-variable

	nw:path-to
	nw:path-to target-turtle

	nw:turtles-on-path-to
	nw:turtles-on-path-to target-turtle

	nw:weighted-path-to
	nw:weighted-path-to target-turtle weight-variable

	nw:turtles-on-weighted-path-to
	nw:turtles-on-weighted-path-to target-turtle weight-variable

	nw:mean-path-length
	nw:mean-path-length

	nw:mean-weighted-path-length
	nw:mean-weighted-path-length weight-variable

	nw:betweenness-centrality
	nw:betweenness-centrality

	nw:eigenvector-centrality
	nw:eigenvector-centrality

	nw:page-rank
	nw:page-rank

	nw:closeness-centrality
	nw:closeness-centrality

	nw:weighted-closeness-centrality
	nw:weighted-closeness-centrality link-weight-variable

	nw:clustering-coefficient
	nw:clustering-coefficient

	nw:modularity
	nw:modularity

	nw:bicomponent-clusters
	nw:bicomponent-clusters

	nw:weak-component-clusters
	nw:weak-component-clusters

	nw:louvain-communities
	nw:louvain-communities

	nw:maximal-cliques
	nw:maximal-cliques

	nw:biggest-maximal-cliques
	nw:biggest-maximal-cliques

	nw:generate-preferential-attachment
	nw:generate-preferential-attachment turtle-breed link-breed num-nodes min-degree optional-command-block

	nw:generate-random
	nw:generate-random turtle-breed link-breed num-nodes connection-probability optional-command-block

	nw:generate-watts-strogatz
	nw:generate-watts-strogatz turtle-breed link-breed num-nodes neighborhood-size rewire-probability optional-command-block

	nw:generate-small-world
	nw:generate-small-world turtle-breed link-breed row-count column-count clustering-exponent is-toroidal optional-command-block

	nw:generate-lattice-2d
	nw:generate-lattice-2d turtle-breed link-breed row-count column-count is-toroidal optional-command-block

	nw:generate-ring
	nw:generate-ring turtle-breed link-breed num-nodes optional-command-block

	nw:generate-star
	nw:generate-star turtle-breed link-breed num-nodes optional-command-block

	nw:generate-wheel
	nw:generate-wheel turtle-breed link-breed num-nodes optional-command-block

	nw:save-matrix
	nw:save-matrix file-name

	nw:load-matrix
	nw:load-matrix file-name turtle-breed link-breed optional-command-block

	nw:save-graphml
	nw:save-graphml file-name

	nw:load-graphml
	nw:load-graphml file-name optional-command-block

	nw:load
	nw:load file-name default-turtle-breed default-link-breed optional-command-block

	nw:save
	nw:save file-name

	NetLogo Palette Extension
	Using the Palette Extension
	Getting Started
	Background
	Review of color representation in NetLogo
	Colors can be represented as NetLogo colors or RGB or RGBA colors
	Transparency
	HSB Color Specification

	More control over the color
	Varying an Agent’s Transparency or Color
	How do I choose a color scheme?
	Decide first whether to use a Sequential, Divergent or Qualitative color scheme
	Additional color considerations

	Should I use a continuous color gradient or just a discrete color set?
	Example Models
	Further Reading

	Primitives
	palette:alpha-of
	palette:alpha-of color

	palette:with-alpha
	color palette:with-alpha number

	palette:alpha
	palette:alpha

	palette:set-alpha
	palette:set-alpha number

	palette:transparency-of
	palette:transparency-of color

	palette:with-transparency
	color palette:with-transparency number

	palette:transparency
	palette:transparency

	palette:set-transparency
	palette:set-transparency number

	palette:hue-of
	palette:hue-of color

	palette:with-hue
	color palette:with-hue number

	palette:hue
	palette:hue

	palette:set-hue
	palette:set-hue number

	palette:saturation-of
	palette:saturation-of color

	palette:with-saturation
	color palette:with-saturation number

	palette:saturation
	palette:saturation

	palette:set-saturation
	palette:set-saturation number

	palette:brightness-of
	palette:brightness-of color

	palette:with-brightness
	color palette:with-brightness number

	palette:brightness
	palette:brightness

	palette:set-brightness
	palette:set-brightness number

	palette:R-of
	palette:R-of color

	palette:with-R
	color palette:with-R number

	palette:R
	palette:R

	palette:set-R
	palette:set-R number

	palette:G-of
	palette:G-of color

	palette:with-G
	color palette:with-G number

	palette:G
	palette:G

	palette:set-G
	palette:set-G number

	palette:B-of
	palette:B-of color

	palette:with-B
	color palette:with-B number

	palette:B
	palette:B

	palette:set-B
	palette:set-B number

	palette:scale-gradient
	palette:scale-gradient rgb-color-list number range1 range2

	palette:scale-gradient-hsb
	palette:scale-gradient-hsb rgb-color-list number range1 range2

	palette:scheme-colors
	palette:scheme-colors scheme-type scheme-color number-of-classes

	palette:scale-scheme
	palette:scale-scheme scheme-type scheme-color number-of-classes number range1 range2

	palette:scheme-dialog
	palette:scheme-dialog

	References

	NetLogo Profiler Extension
	Using the Profiler Extension
	How to use
	Example

	Primitives
	profiler:calls
	profiler:calls procedure-name

	profiler:exclusive-time
	profiler:exclusive-time procedure-name

	profiler:inclusive-time
	profiler:inclusive-time procedure-name

	profiler:start
	profiler:start

	profiler:stop
	profiler:stop

	profiler:reset
	profiler:reset

	profiler:report
	profiler:report

	profiler:data
	profiler:data

	NetLogo Py Extension
	Using
	Error handling

	Configuring
	Primitives
	py:setup
	py:setup python-executable

	py:python
	py:python

	py:python2
	py:python2

	py:python3
	py:python3

	py:run
	py:run python-statement

	py:runresult
	py:runresult python-expression

	py:set
	py:set variable-name value

	NetLogo R Extension
	Using
	Some Tips
	Plotting
	Load and Save data from/into file(s)
	Data.frame with vector in cells
	Load an R-Script
	Load a Package
	Interactive Shell
	Environments In the R Extension
	Memory
	Headless

	Installing
	Installing R
	Configuring the R extension
	Determining r.home and jri.home.paths
	Windows-Specific Installation Steps
	Configuring the PATH
	Notes on editing “user.properties” on Windows

	Primitives
	r:clear
	r:clear

	r:clearLocal
	r:clearLocal

	r:eval
	r:eval R-command

	r:__evaldirect
	r:__evaldirect R-command

	r:gc
	r:gc

	r:get
	r:get R-command

	r:interactiveShell
	r:interactiveShell

	r:put
	r:put name value

	r:putagent
	r:putagent name agent variables r:putagent name agentset variables

	r:putagentdf
	r:putagentdf name agent variables r:putagentdf name agentset variables

	r:putdataframe
	r:putdataframe name varname value r:putdataframe name varname value varname2 value2 ...

	r:putlist
	r:putlist name value

	r:putnamedlist
	r:putnamedlist name varname value r:putnamedlist name varname value varname2 value2 ...

	r:setPlotDevice
	r:setPlotDevice

	r:stop
	r:stop

	Troubleshooting
	Loading R packages fails
	After changing the working directory in R (e.g. with setwd()) NetLogo doesn’t find the extension
	Specific error code list

	Citation
	Copyright and License

	NetLogo Rnd Extension
	Usage
	A note about performance
	Primitives
	AgentSet Primitives
	List Primitives
	rnd:weighted-one-of
	rnd:weighted-one-of agentset reporter

	rnd:weighted-n-of
	rnd:weighted-n-of size agentset [reporter]

	rnd:weighted-n-of-with-repeats
	rnd:weighted-n-of-with-repeats size agentset [reporter]

	rnd:weighted-one-of-list
	rnd:weighted-one-of-list list anonymous-reporter

	rnd:weighted-n-of-list
	rnd:weighted-n-of-list size list anonymous-reporter

	rnd:weighted-n-of-list-with-repeats
	rnd:weighted-n-of-list-with-repeats size list anonymous-reporter

	NetLogo Sound Extension
	Using
	How to Use
	MIDI support

	Primitives
	sound:drums
	sound:drums

	sound:instruments
	sound:instruments

	sound:play-drum
	sound:play-drum drum velocity

	sound:play-note
	sound:play-note instrument keynumber velocity duration

	sound:play-note-later
	sound:play-note-later delay instrument keynumber velocity duration

	Drum Names
	Instrument Names

	NetLogo Table Extension
	Using
	When to Use
	Example
	Manipulating Tables
	Key Restrictions

	Primitives
	table:clear
	table:clear table

	table:counts
	table:counts list

	table:group-agents
	table:group-agents agentset anonymous reporter

	table:group-items
	table:group-items list anonymous-reporter

	table:from-list
	table:from-list list

	table:from-json
	table:from-json string

	table:from-json-file
	table:from-json-file filename

	table:get
	table:get table key

	table:get-or-default
	table:get-or-default table key default-value

	table:has-key?
	table:has-key? table key

	table:keys
	table:keys table

	table:length
	table:length table

	table:make
	table:make

	table:put
	table:put table key value

	table:remove
	table:remove table key

	table:to-list
	table:to-list table

	table:to-json
	table:to-json table

	table:values
	table:values table

	NetLogo Time Extension
	Quickstart
	What is it?
	Installation
	Examples
	Data Types
	Behavior
	Format
	Date Format
	Supported Format Characters
	Date-time Bounds
	User Defined Formatting

	Primitives
	Date/Time Utilities
	Time Series Tool

	back to top
	Discrete Event Scheduler

	Building with SBT
	Authors
	Feedback? Bugs? Feature Requests?
	Credits
	Terms of Use
	Primitives

	NetLogo Vid Extension
	Concepts
	Video Source
	Source Lifecycle
	Video Recorder
	Known Issues

	Primitives
	vid:camera-names
	vid:camera-names

	vid:camera-open
	vid:camera-open

	vid:camera-select
	vid:camera-select

	vid:movie-select
	vid:movie-select

	vid:movie-open
	vid:movie-open filename

	vid:movie-open-remote
	vid:movie-open-remote url

	vid:close
	vid:close

	vid:start
	vid:start

	vid:stop
	vid:stop

	vid:status
	vid:status

	vid:capture-image
	vid:capture-image width height

	vid:set-time
	vid:set-time seconds

	vid:show-player
	vid:show-player width height

	vid:hide-player
	vid:hide-player

	vid:record-view
	vid:record-view

	vid:record-interface
	vid:record-interface

	vid:record-source
	vid:record-source

	vid:recorder-status
	vid:recorder-status

	vid:reset-recorder
	vid:reset-recorder

	vid:start-recorder
	vid:start-recorder

	vid:save-recording
	vid:save-recording filename

	NetLogo View2.5d Extension
	How to Use
	Incorporating Into Models
	Feedback

	Primitives
	view2.5d:patch-view
	view2.5d:patch-view Title Reporter

	view2.5d:decorate-patch-view
	view2.5d:decorate-patch-view Title

	view2.5d:undecorate-patch-view
	view2.5d:undecorate-patch-view Title

	view2.5d:turtle-view
	view2.5d:turtle-view Title Agents Reporter

	view2.5d:update-all-patch-views
	view2.5d:update-all-patch-views

	view2.5d:update-patch-view
	view2.5d:update-patch-view Title

	view2.5d:update-turtle-view
	view2.5d:update-turtle-view Title Agents

	view2.5d:get-z-scale
	view2.5d:get-z-scale title

	view2.5d:set-z-scale
	view2.5d:set-z-scale Title new-z-scale

	view2.5d:set-turtle-stem-thickness
	view2.5d:set-turtle-stem-thickness Title thickness

	view2.5d:set-turtle-stem-color
	view2.5d:set-turtle-stem-color Title colorReporter

	view2.5d:show-links-xy-plane
	view2.5d:show-links-xy-plane Title

	view2.5d:show-links-xyz
	view2.5d:show-links-xyz Title

	view2.5d:get-observer-angles
	view2.5d:get-observer-angles Title

	view2.5d:set-observer-angles
	view2.5d:set-observer-angles Title heading pitch

	view2.5d:get-observer-xy-focus
	view2.5d:get-observer-xy-focus Title

	view2.5d:set-observer-xy-focus
	view2.5d:set-observer-xy-focus Title number ycor

	view2.5d:get-observer-distance
	view2.5d:get-observer-distance Title

	view2.5d:set-observer-distance
	view2.5d:set-observer-distance Title new-distance

	view2.5d:remove-patch-view
	view2.5d:remove-patch-view Title

	view2.5d:remove-turtle-view
	view2.5d:remove-turtle-view Title

	view2.5d:remove-all-patch-views
	view2.5d:remove-all-patch-views

	view2.5d:remove-all-turtle-views
	view2.5d:remove-all-turtle-views

	view2.5d:count-windows
	view2.5d:count-windows

	FAQ (Frequently Asked Questions)
	General
	Why is it called NetLogo?
	How do I cite NetLogo or HubNet in a publication?
	How do I cite a model from the Models Library in a publication?
	Where and when was NetLogo created?
	What programming language was NetLogo written in?
	What’s the relationship between StarLogo and NetLogo?
	Under what license is NetLogo released? Is the source code available?
	Do you offer any workshops or other training opportunities for NetLogo?
	Are there any NetLogo textbooks?
	Is NetLogo available in other languages besides English?
	Is NetLogo compiled or interpreted?
	Has anyone built a model of <x>?
	Are NetLogo models runs scientifically reproducible?
	Will NetLogo and NetLogo 3D remain separate?
	Can I run NetLogo on my phone or tablet?

	Downloading
	Can I have multiple versions of NetLogo installed at the same time?
	I’m on a UNIX system and I can’t untar the download. Why?
	How do I install NetLogo unattended?

	Running
	Can I run NetLogo from a CD, a network drive, or a USB drive?
	Why is NetLogo so much slower when I unplug my Windows laptop?
	Why does NetLogo bundle Java?
	How come NetLogo won’t start up on my Linux machine?
	When I try to install NetLogo on Windows, I see “Windows protected your PC”
	When I try to start NetLogo on Windows I get an error “The JVM could not be started”. Help!
	NetLogo won’t start on Mac OS Sierra (or later)
	NetLogo won’t start on Windows or crashes suddenly on Mac OS Sierra
	Can I run NetLogo from the command line, without the GUI?
	Does NetLogo take advantage of multiple processors?
	Can I distribute NetLogo model runs across a cluster or grid of computers?
	Is there any way to recover lost work if NetLogo crashes or freezes?
	Why is HubNet Discovery Not Working?

	Usage
	When I move the speed slider all the way to the right, why does my model seem to stop?
	Can I use the mouse to “paint” in the view?
	How big can my model be? How many turtles, patches, procedures, buttons, and so on can my model contain?
	Can I use GIS data in NetLogo?
	My model runs slowly. How can I speed it up?
	Can I have more than one model open at a time?
	Can I change the choices in a chooser on the fly?
	Can I divide the code for my model up into several files?

	Programming
	How does the NetLogo language differ from other Logos?
	How come my model from an earlier NetLogo doesn’t work right?
	How do I take the negative of a number?
	My turtle moved forward 1, but it’s still on the same patch. Why?
	How do I keep my turtles on patch centers?
	patch-ahead 1 is reporting the same patch my turtle is already standing on. Why?
	How do I give my turtles “vision”?
	Can agents sense what’s in the drawing layer?
	I’m getting numbers like 0.10000000004 and 0.799999999999 instead of 0.1 and 0.8. Why?
	The documentation says that random-float 1 might return 0 but will never return 1. What if I want 1 to be included?
	Why is the number value in my monitor widget changing even though nothing is happening in my model?
	How can I keep two turtles from occupying the same patch?
	How can I find out if a turtle is dead?
	Does NetLogo have arrays?
	Does NetLogo have hash tables or associative arrays?
	How can I use different patch “neighborhoods” (circular, Von Neumann, Moore, etc.)?
	How can I convert an agentset to a list of agents, or vice versa?
	How do I stop foreach?
	I’m trying to make a list. Why do I keep getting the error “Expected a literal value”?

	BehaviorSpace
	Why are the rows in my BehaviorSpace table results out of order?
	How do I measure runs every n ticks?
	I’m varying a global variable I declared in the Code tab, but it doesn’t work. Why?

	NetLogo 3D
	Does NetLogo work with my stereoscopic device?

	Extensions
	I’m writing an extension. Why does the compiler say it can’t find org.nlogo.api?

	NetLogo Dictionary
	Categories
	Turtle-related
	Patch-related
	Link-related
	Agentset
	Color
	Control flow and logic
	Anonymous Procedures
	World
	Perspective
	HubNet
	Input/output
	File
	List
	String
	Mathematical
	Plotting
	BehaviorSpace
	System

	Built-In Variables
	Turtles
	Patches
	Links

	Keywords
	Constants
	Mathematical Constants
	Boolean Constants
	Color Constants

	A
	abs1.0
	abs number

	acos1.3
	acos number

	all?4.0
	all? agentset [reporter]

	and1.0
	boolean1 and boolean2

	any?2.0
	any? agentset

	approximate-hsb4.0
	approximate-hsb hue saturation brightness

	approximate-rgb4.0
	approximate-rgb red green blue

	Arithmetic Operators +1.0 *1.0 -1.0 /1.0 ^1.0 <1.0 >1.0 =1.0 !=1.0 <=1.0 >=1.0
	asin1.3
	asin number

	ask1.0
	ask agentset [commands] ask agent [commands]

	ask-concurrent4.0
	ask-concurrent agentset [commands]

	at-points1.0
	agentset at-points [[x1 y1] [x2 y2] ...]

	atan1.0
	atan x y

	autoplot?1.0
	autoplot?

	auto-plot-off1.0 auto-plot-on1.0
	auto-plot-off auto-plot-on

	B
	back1.0 bk1.0
	back number

	base-colors4.0
	base-colors

	beep2.1
	beep

	behaviorspace-experiment-name5.2
	behaviorspace-experiment-name

	behaviorspace-run-number4.1.1
	behaviorspace-run-number

	both-ends4.0
	both-ends

	breed
	breed

	breed
	breed [<breeds> <breed>]

	but-first1.0 butfirst1.0 bf1.0 but-last1.0 butlast1.0 bl1.0
	but-first list but-first string but-last list but-last string

	C
	can-move?3.1
	can-move? distance

	carefully2.1
	carefully [commands1] [commands2]

	ceiling1.0
	ceiling number

	clear-all1.0 ca1.0
	clear-all

	clear-all-plots1.0
	clear-all-plots

	clear-drawing3.0 cd3.0
	clear-drawing

	clear-globals5.2
	clear-globals

	clear-links4.0
	clear-links

	clear-output1.0
	clear-output

	clear-patches1.0 cp1.0
	clear-patches

	clear-plot
	clear-plot

	clear-ticks5.0
	clear-ticks

	clear-turtles1.0 ct1.0
	clear-turtles

	color
	color

	cos1.0
	cos number

	count1.0
	count agentset

	create-ordered-turtles4.0 cro4.0
	create-ordered-turtles number create-ordered-turtles number [commands] create-ordered<breeds> number create-ordered<breeds> number [commands]

	create-<breed>-to create-<breeds>-to create-<breed>-from create-<breeds>-from create-<breed>-with create-<breeds>-with create-link-to4.0 create-links-to4.0 create-link-from4.0 create-links-from4.0 create-link-with4.0 create-links-with4.0
	create-<breed>-to turtle create-<breed>-to turtle [commands] create-<breed>-from turtle create-<breed>-from turtle [commands] create-<breed>-with turtle create-<breed>-with turtle [commands] create-<breeds>-to turtleset create-<breeds>-to turtleset [commands] create-<breeds>-from turtleset create-<breeds>-from turtleset [commands] create-<breeds>-with turtleset create-<breeds>-with turtleset [commands] create-link-to turtle create-link-to turtle [commands] create-link-from turtle create-link-from turtle [commands] create-link-with turtle create-link-with turtle [commands] create-links-to turtleset create-links-to turtleset [commands] create-links-from turtleset create-links-from turtleset [commands] create-links-with turtleset create-links-with turtleset [commands]

	create-turtles1.0 crt1.0
	create-turtles number create-turtles number [commands] create-<breeds> number create-<breeds> number [commands]

	create-temporary-plot-pen1.1
	create-temporary-plot-pen string

	D
	date-and-time3.0
	date-and-time

	die1.0
	die

	diffuse1.0
	diffuse patch-variable number

	diffuse41.0
	diffuse4 patch-variable number

	directed-link-breed
	directed-link-breed [<link-breeds> <link-breed>]

	display1.0
	display

	distance1.0
	distance agent

	distancexy1.0
	distancexy x y

	downhill1.0 downhill41.0
	downhill patch-variable downhill4 patch-variable

	dx1.0 dy1.0
	dx dy

	E
	empty?1.0
	empty? list empty? string

	end
	end

	end14.0
	end1

	end24.0
	end2

	error5.0
	error value

	error-message2.1
	error-message

	every1.0
	every number [commands]

	exp1.0
	exp number

	export-view3.0 export-interface2.0 export-output1.0 export-plot1.0 export-all-plots1.2.1 export-world1.0
	export-view filename export-interface filename export-output filename export-plot plotname filename export-all-plots filename export-world filename

	extensions
	extensions [name ...]

	extract-hsb1.0
	extract-hsb color

	extract-rgb1.0
	extract-rgb color

	F
	face3.0
	face agent

	facexy3.0
	facexy x y

	file-at-end?2.0
	file-at-end?

	file-close2.0
	file-close

	file-close-all2.0
	file-close-all

	file-delete2.0
	file-delete string

	file-exists?2.0
	file-exists? string

	file-flush4.0
	file-flush

	file-open2.0
	file-open string

	file-print2.0
	file-print value

	file-read2.0
	file-read

	file-read-characters2.0
	file-read-characters number

	file-read-line2.0
	file-read-line

	file-show2.0
	file-show value

	file-type2.0
	file-type value

	file-write2.0
	file-write value

	filter1.3
	filter reporter list

	first1.0
	first list first string

	floor1.0
	floor number

	follow3.0
	follow turtle

	follow-me3.0
	follow-me

	foreach1.3
	foreach list command (foreach list1 ... command)

	forward1.0 fd1.0
	forward number

	fput1.0
	fput item list

	G
	globals
	globals [var1 ...]

	H
	hatch1.0
	hatch number [commands] hatch-<breeds> number [commands]

	heading
	heading

	hidden?
	hidden?

	hide-link4.0
	hide-link

	hide-turtle1.0 ht1.0
	hide-turtle

	histogram1.0
	histogram list

	home1.0
	home

	hsb1.0
	hsb hue saturation brightness

	hubnet-broadcast1.1
	hubnet-broadcast tag-name value

	hubnet-broadcast-clear-output4.1
	hubnet-broadcast-clear-output

	hubnet-broadcast-message4.1
	hubnet-broadcast-message value

	hubnet-clear-override4.1 hubnet-clear-overrides4.1
	hubnet-clear-override client agent-or-set variable-name hubnet-clear-overrides client

	hubnet-clients-list5.0
	hubnet-clients-list

	hubnet-enter-message?1.2.1
	hubnet-enter-message?

	hubnet-exit-message?1.2.1
	hubnet-exit-message?

	hubnet-fetch-message1.1
	hubnet-fetch-message

	hubnet-kick-client5.0
	hubnet-kick-client client-name

	hubnet-kick-all-clients5.0
	hubnet-kick-all-clients

	hubnet-message1.1
	hubnet-message

	hubnet-message-source1.1
	hubnet-message-source

	hubnet-message-tag1.1
	hubnet-message-tag

	hubnet-message-waiting?1.1
	hubnet-message-waiting?

	hubnet-reset1.1
	hubnet-reset

	hubnet-reset-perspective4.1
	hubnet-reset-perspective tag-name

	hubnet-send1.1
	hubnet-send string tag-name value
	hubnet-send list-of-strings tag-name value

	hubnet-send-clear-output4.1
	hubnet-send-clear-output string
	hubnet-send-clear-output list-of-strings

	hubnet-send-follow4.1
	hubnet-send-follow client-name agent radius

	hubnet-send-message4.1
	hubnet-send-message string value

	hubnet-send-override4.1
	hubnet-send-override client-name agent-or-set variable-name [reporter]

	hubnet-send-watch4.1
	hubnet-send-watch client-name agent

	I
	if1.0
	if boolean [commands]

	ifelse1.0
	ifelse boolean1 [commands1] [elsecommands] (ifelse boolean1 [commands1] boolean2 [commands2] ... [elsecommands])6.1

	ifelse-value2.0
	ifelse-value boolean1 [reporter1] [elsereporter] (ifelse-value boolean1 [reporter1] boolean2 [reporter2] ... [elsereporter])6.1

	import-drawing3.0
	import-drawing filename

	import-pcolors3.0
	import-pcolors filename

	import-pcolors-rgb4.0
	import-pcolors-rgb filename

	import-world1.0
	import-world filename

	in-cone3.0
	agentset in-cone distance angle

	in-<breed>-neighbor? in-link-neighbor?4.0
	in-<breed>-neighbor? agent in-link-neighbor? turtle

	in-<breed>-neighbors in-link-neighbors4.0
	in-<breed>-neighbors in-link-neighbors

	in-<breed>-from in-link-from4.0
	in-<breed>-from turtle in-link-from turtle

	__includes4.0
	__includes [filename ...]

	in-radius1.0
	agentset in-radius number

	insert-item6.0.2
	insert-item index list value insert-item index string1 string2

	inspect1.1
	inspect agent

	int1.0
	int number

	is-agent?1.2.1 is-agentset?1.2.1 is-anonymous-command?6.0 is-anonymous-reporter?6.0 is-boolean?1.2.1 is-directed-link?4.0 is-link?4.0 is-link-set?4.0 is-list?1.0 is-number?1.2.1 is-patch?1.2.1 is-patch-set?4.0 is-string?1.0 is-turtle?1.2.1 is-turtle-set?4.0 is-undirected-link?4.0
	is-agent? value is-agentset? value is-anonymous-command? value is-anonymous-reporter? value is-boolean? value is-<breed>? value is-<link-breed>? value is-directed-link? value is-link? value is-link-set? value is-list? value is-number? value is-patch? value is-patch-set? value is-string? value is-turtle? value is-turtle-set? value is-undirected-link? value

	item1.0
	item index list item index string

	J
	jump1.0
	jump number

	L
	label
	label

	label-color
	label-color

	last1.0
	last list last string

	layout-circle4.0
	layout-circle agentset radius layout-circle list-of-turtles radius

	layout-radial4.0
	layout-radial turtle-set link-set root-agent

	layout-spring4.0
	layout-spring turtle-set link-set spring-constant spring-length repulsion-constant

	layout-tutte4.0
	layout-tutte turtle-set link-set radius

	left1.0 lt1.0
	left number

	length1.0
	length list length string

	let2.1
	let variable value

	link4.0
	link end1 end2 <breed> end1 end2

	link-heading4.0
	link-heading

	link-length4.0
	link-length

	link-set4.0
	link-set value (link-set value1 value2 ...)

	link-shapes4.0
	link-shapes

	links4.0
	links

	links-own
	links-own [var1 ...] <link-breeds>-own [var1 ...]

	list1.0
	list value1 value2 (list value1 ...)

	ln1.0
	ln number

	log1.0
	log number base

	loop1.0
	loop [commands]

	lput1.0
	lput value list

	M
	map1.3
	map reporter list (map reporter list1 ...)

	max1.0
	max list

	max-n-of4.0
	max-n-of number agentset [reporter]

	max-one-of1.0
	max-one-of agentset [reporter]

	max-pxcor3.1 max-pycor3.1
	max-pxcor max-pycor

	mean1.0
	mean list

	median1.0
	median list

	member?1.0
	member? value list member? string1 string2 member? agent agentset

	min1.0
	min list

	min-n-of4.0
	min-n-of number agentset [reporter]

	min-one-of1.0
	min-one-of agentset [reporter]

	min-pxcor3.1 min-pycor3.1
	min-pxcor min-pycor

	mod1.0
	number1 mod number2

	modes2.0
	modes list

	mouse-down?1.0
	mouse-down?

	mouse-inside?3.0
	mouse-inside?

	mouse-xcor1.0 mouse-ycor1.0
	mouse-xcor mouse-ycor

	move-to4.0
	move-to agent

	my-<breeds> my-links4.0
	my-<breeds> my-links

	my-in-<breeds> my-in-links4.0
	my-in-<breeds> my-in-links

	my-out-<breeds> my-out-links4.0
	my-out-<breeds> my-out-links

	myself1.0
	myself

	N
	n-of3.1
	n-of size agentset n-of size list

	n-values2.0
	n-values size reporter

	neighbors1.1 neighbors41.1
	neighbors neighbors4

	<breed>-neighbors link-neighbors4.0
	<breed>-neighbors link-neighbors

	<breed>-neighbor? link-neighbor?4.0
	<breed>-neighbor? turtle link-neighbor? turtle

	netlogo-version3.0
	netlogo-version

	netlogo-web?5.2
	netlogo-web?

	new-seed3.0
	new-seed

	no-display1.0
	no-display

	nobody
	nobody

	no-links4.0
	no-links

	no-patches4.0
	no-patches

	not1.0
	not boolean

	no-turtles4.0
	no-turtles

	O
	of4.0
	[reporter] of agent [reporter] of agentset

	one-of1.0
	one-of agentset one-of list

	or1.0
	boolean1 or boolean2

	other4.0
	other agentset

	other-end4.0
	other-end

	out-<breed>-neighbor? out-link-neighbor?4.0
	out-<breed>-neighbor? turtle out-link-neighbor? turtle

	out-<breed>-neighbors out-link-neighbors4.0
	out-<breed>-neighbors out-link-neighbors

	out-<breed>-to out-link-to4.0
	out-<breed>-to turtle out-link-to turtle

	output-print2.1 output-show2.1 output-type2.1 output-write2.1
	output-print value output-show value output-type value output-write value

	P
	patch1.0
	patch xcor ycor

	patch-ahead2.0
	patch-ahead distance

	patch-at1.0
	patch-at dx dy

	patch-at-heading-and-distance2.0
	patch-at-heading-and-distance heading distance

	patch-here1.0
	patch-here

	patch-left-and-ahead2.0 patch-right-and-ahead2.0
	patch-left-and-ahead angle distance patch-right-and-ahead angle distance

	patch-set4.0
	patch-set value1 (patch-set value1 value2 ...)

	patch-size4.1
	patch-size

	patches1.0
	patches

	patches-own
	patches-own [var1 ...]

	pcolor
	pcolor

	pen-down1.0 pd1.0 pen-erase3.0 pe3.0 pen-up1.0 pu1.0
	pen-down pen-erase pen-up

	pen-mode
	pen-size
	plabel
	plabel

	plabel-color
	plabel-color

	plot1.0
	plot number

	plot-name1.0
	plot-name

	plot-pen-exists?4.0
	plot-pen-exists? string

	plot-pen-down1.0 plot-pen-up1.0
	plot-pen-down plot-pen-up

	plot-pen-reset1.0
	plot-pen-reset

	plotxy1.0
	plotxy number1 number2

	plot-x-min1.0 plot-x-max1.0 plot-y-min1.0 plot-y-max1.0
	plot-x-min plot-x-max plot-y-min plot-y-max

	position1.0
	position item list position string1 string2

	precision1.0
	precision number places

	print1.0
	print value

	pxcor pycor
	pxcor pycor

	R
	random1.0
	random number

	random-float2.0
	random-float number

	random-exponential1.2.1 random-gamma2.0 random-normal1.2.1 random-poisson1.2.1
	random-exponential mean random-gamma alpha lambda random-normal mean standard-deviation random-poisson mean

	random-pxcor3.1 random-pycor3.1
	random-pxcor random-pycor

	random-seed1.0
	random-seed number

	random-xcor3.1 random-ycor3.1
	random-xcor random-ycor

	range6.0
	range stop (range start stop) (range start stop step)

	read-from-string1.1
	read-from-string string

	reduce1.3
	reduce reporter list

	remainder1.2.1
	remainder number1 number2

	remove1.0
	remove item list remove string1 string2

	remove-duplicates1.0
	remove-duplicates list

	remove-item2.0
	remove-item index list remove-item index string

	repeat1.0
	repeat number [commands]

	replace-item1.0
	replace-item index list value replace-item index string1 string2

	report1.0
	report value

	reset-perspective3.0 rp3.0
	reset-perspective

	reset-ticks4.0
	reset-ticks

	reset-timer1.0
	reset-timer

	resize-world4.1
	resize-world min-pxcor max-pxcor min-pycor max-pycor

	reverse1.0
	reverse list reverse string

	rgb1.0
	rgb red green blue

	ride3.0
	ride turtle

	ride-me3.0
	ride-me

	right1.0 rt1.0
	right number

	round1.0
	round number

	run1.3 runresult1.3
	run command (run command input1 ...) run string runresult reporter (runresult reporter input1 ...) runresult string

	S
	scale-color1.0
	scale-color color number range1 range2

	self1.3
	self

	; (semicolon)
	; comments

	sentence1.0 se1.0
	sentence value1 value2 (sentence value1 ...)

	set1.0
	set variable value

	set-current-directory2.0
	set-current-directory string

	set-current-plot1.0
	set-current-plot plotname

	set-current-plot-pen1.0
	set-current-plot-pen penname

	set-default-shape1.0
	set-default-shape turtles string set-default-shape links string set-default-shape breed string

	set-histogram-num-bars1.0
	set-histogram-num-bars number

	__set-line-thickness
	__set-line-thickness number

	set-patch-size4.1
	set-patch-size size

	set-plot-background-color6.0.2
	set-plot-background-color color

	set-plot-pen-color1.0
	set-plot-pen-color color

	set-plot-pen-interval1.0
	set-plot-pen-interval number

	set-plot-pen-mode1.0
	set-plot-pen-mode number

	setup-plots5.0
	setup-plots

	set-plot-x-range1.0 set-plot-y-range1.0
	set-plot-x-range min max set-plot-y-range min max

	setxy1.0
	setxy x y

	shade-of?1.0
	shade-of? color1 color2

	shape
	shape

	shapes2.1
	shapes

	show1.0
	show value

	show-turtle1.0 st1.0
	show-turtle

	show-link4.0
	show-link

	shuffle2.0
	shuffle list

	sin1.0
	sin number

	size
	size

	sort1.0
	sort list sort agentset

	sort-by1.3
	sort-by reporter list sort-by reporter agentset

	sort-on5.0
	sort-on [reporter] agentset

	sprout1.0
	sprout number [commands] sprout-<breeds> number [commands]

	sqrt1.0
	sqrt number

	stamp1.0
	stamp

	stamp-erase3.1
	stamp-erase

	standard-deviation1.0
	standard-deviation list

	startup
	startup

	stop1.0
	stop

	stop-inspecting5.2
	stop-inspecting agent

	stop-inspecting-dead-agents5.2
	stop-inspecting-dead-agents

	subject3.0
	subject

	sublist2.1 substring1.0
	sublist list position1 position2 substring string position1 position2

	subtract-headings2.1
	subtract-headings heading1 heading2

	sum1.0
	sum list

	T
	tan1.0
	tan number

	thickness
	thickness

	tick4.0
	tick

	tick-advance4.0
	tick-advance number

	ticks4.0
	ticks

	tie4.0
	tie

	tie-mode
	tie-mode

	timer1.0
	timer

	to
	to procedure-name to procedure-name [input1 ...]

	to-report
	to-report procedure-name to-report procedure-name [input1 ...]

	towards1.0
	towards agent

	towardsxy1.0
	towardsxy x y

	turtle1.0
	turtle number <breed> number

	turtle-set4.0
	turtle-set value1 (turtle-set value1 value2 ...)

	turtles1.0
	turtles

	turtles-at1.0
	turtles-at dx dy <breeds>-at dx dy

	turtles-here1.0
	turtles-here <breeds>-here

	turtles-on2.0
	turtles-on agent turtles-on agentset <breeds>-on agent <breeds>-on agentset

	turtles-own
	turtles-own [var1 ...] <breeds>-own [var1 ...]

	type1.0
	type value

	U
	undirected-link-breed
	undirected-link-breed [<link-breeds> <link-breed>]

	untie4.0
	untie

	up-to-n-of6.1
	up-to-n-of size agentset up-to-n-of size list

	update-plots5.0
	update-plots

	uphill1.0 uphill41.0
	uphill patch-variable uphill4 patch-variable

	user-directory3.1
	user-directory

	user-file3.1
	user-file

	user-new-file3.1
	user-new-file

	user-input1.1
	user-input value

	user-message1.1
	user-message value

	user-one-of3.1
	user-one-of value list-of-choices

	user-yes-or-no?2.0
	user-yes-or-no? value

	V
	variance1.0
	variance list

	W
	wait1.0
	wait number

	watch3.0
	watch agent

	watch-me3.0
	watch-me

	while1.0
	while [reporter] [commands]

	who
	who

	who-are-not6.3.1
	agentset who-are-not agentset agentset who-are-not agent

	with1.0
	agentset with [reporter]

	<breed>-with link-with4.0
	<breed>-with turtle link-with turtle

	with-max2.1
	agentset with-max [reporter]

	with-min2.1
	agentset with-min [reporter]

	with-local-randomness4.0
	with-local-randomness [commands]

	without-interruption1.1
	without-interruption [commands]

	word1.0
	word value1 value2 (word value1 ...)

	world-width3.1 world-height3.1
	world-width world-height

	wrap-color1.0
	wrap-color number

	write2.0
	write value

	X
	xcor
	xcor

	xor1.0
	boolean1 xor boolean2

	Y
	ycor
	ycor

	->
	->6.0
	[[args] -> commands] [[args] -> reporter]

