breed [apex] breed [stemcells stemcell ] breed [mosaics mosaic ] breed [pacemakers pacemaker] patches-own [ chemical value ] globals [radius totals secreting] breed [ drawers drawer ] drawers-own [amount-to-move] breed [liners] breed [central] ;breed [slougher] mosaics-own [ energy clock ;; each cell's clock threshold ;; the clock tick at which the cell stops secreting reset-level ;; the clock tick a cell will reset to when it is triggered by other secretions window ;; a cell can't reset its cycle if (clock <= window) ] pacemakers-own [clock threshold energy reset-level window ] to setup ca ; create-central 1 [ setxy 0 0 set shape "leaf" set size 3 set color red ] ;;to draw the cornea with mosaic cells on it... create-apex 1 [setxy 0 0 set color yellow ] ask apex [ ask n-of number patches in-radius 40 [sprout-mosaics 1 ] ] ask mosaics [ initialize-mosaic ] ;; Give some proportional value to cornea with respect to distance from center. ;; This is largely responsible for centripetal migration but I couldn't get the majority ;; of cells to move to the middle without it. ask patches [ let center distancexy 0 0 set value (scale-color yellow center 40 -20) * ( 1 / 20)] ;; color background of cornea (this region has cells that are not visible) ask patches [ let center distancexy 0 0 set pcolor scale-color yellow center 40 -10 ] ;; Generate stemcells at the limbus... set radius max-pxcor - 10 create-ordered-stemcells stem-number ask stemcells [ set color 88 fd radius set size 3 set shape "circle" ] ask n-of ( 0.4 * stem-number ) stemcells [set color 101 ] ;; Create a boundary so that cells don't fly off into space ask patches with [distancexy 0 0 > max-pxcor - 10] [ set pcolor grey] update-plots ask apex [die] end ;; Give some characters to mosaics... to initialize-mosaic set energy random 200 + energy-level let center distancexy 0 0 set color scale-color 101 center 50 -10 set size 3 set shape "leaf" ;; give them a timing property set clock random (round cycle-length) ;; and assign a boundary under which they can secrete chemical and over which ;; they are sensitive to clock resetting. (These are borrowed from "Firefly" model.) set threshold flash-length set reset-level threshold set window -1 end ;; ____________________________________________________________________________________________________________________________________ to go ask mosaics [move reset rechemical kill-crowd camouflage recolor-mosaics ] diffuse chemical 1 ;; To allow emergence of pacemakers from mosaics to represent the result of change in excitability ask (n-of (pacemkr-ratio * 100) mosaics ) [ if random 100 < 10 [ hatch 1 [ set breed pacemakers set color red initialize-pacemaker ]]] ask pacemakers [ move reset rechemical kill-crowd camouflage recolor ] check ;; Scale evaporation according to distance from center. This is a scaling due to ;; the fact that the view is curved and so there appears to be more cells at the periphery ;; when they should be equally dispersed. ask patches [ifelse distancexy 0 0 != 0 [set chemical chemical * evap-rate * (1 / sqrt distancexy 0 0)] [set chemical chemical * evap-rate ]] ;; evaporate chemical] ask patches [ set-boundaries] diffuse chemical 1 set totals count mosaics update-plots ;; Comment out "color-patches-by-chemical" for different view ; color-patches-by-chemical tick end to initialize-pacemaker set shape "leaf" set size 3 set color red let center distancexy 0 0 set color scale-color red center 50 -10 move set clock random (round pacemaker-length) set energy random energy-level + 200 set threshold pacemaker-flash set reset-level threshold set window -1 end ; To show distributions of chemicals... to color-patches-by-chemical let max-chemical 2 ; max [chemical] of patches let min-chemical 0 ;min [chemical] of patches ask patch 0 0 [ ask patches in-radius radius [ set pcolor scale-color green chemical (min-chemical - 0.0001) (max-chemical + 0.0001) ] ] end to move ;; both mosaics and pacemakers do this... if value > 0.1 [ turn-toward-value ifelse ( distancexy 0 0 ) != 0 [fd ((1 / 3) * (1 / sqrt distancexy 0 0)) ] [fd 1]] if chemical > sniff-threshold ;; ignore pheromone unless there's enough here [ turn-toward-chemical ifelse ( distancexy 0 0 ) != 0 [fd ((1 / 3) * (1 / sqrt distancexy 0 0)) ] [fd 1 / 3]] if neighbors = grey [ facexy 0 0 rt random sniff-angle lt random sniff-angle fd ((1 / 3) * (1 / sqrt distancexy 0 0)) ] set energy energy - age-rate if energy <= 0 [ die ] if distancexy 0 0 > radius [ die ] end to turn-toward-value ;; turtle procedure ;; examine the patch ahead of you and two nearby patches; ;; turn in the direction of greatest chemical let ahead 0 let myright 0 let myleft 0 let sniffed-patch patch-ahead 1 if sniffed-patch != nobody [ set ahead [value] of sniffed-patch ] set sniffed-patch patch-right-and-ahead sniff-angle sniff-distance if sniffed-patch != nobody [ set myright [value] of sniffed-patch ] set sniffed-patch patch-left-and-ahead sniff-angle sniff-distance if sniffed-patch != nobody [ set myleft [value] of sniffed-patch ] ifelse (myright >= ahead) and (myright >= myleft) [ rt sniff-angle / 2 ] [ if myleft >= ahead [ lt sniff-angle / 2 ] ] end to turn-toward-chemical ;; turtle procedure ;; examine the patch ahead of you and two nearby patches; ;; turn in the direction of greatest chemical let ahead 0 let myright 0 let myleft 0 let sniffed-patch patch-ahead sniff-distance if sniffed-patch != nobody [ set ahead [chemical] of sniffed-patch ] set sniffed-patch patch-right-and-ahead sniff-angle sniff-distance if sniffed-patch != nobody [ set myright [chemical] of sniffed-patch ] set sniffed-patch patch-left-and-ahead sniff-angle sniff-distance if sniffed-patch != nobody [ set myleft [chemical] of sniffed-patch ] ifelse (myright >= ahead) and (myright >= myleft) [ rt sniff-angle ] [ if myleft >= ahead [ lt sniff-angle ] ] end to reset ;; turtle procedure to allow resetting of clocks if (clock < threshold) [ set secreting 10 set chemical chemical + chemical-concentration * (1 / sqrt distancexy 0 0) ] if ( (clock > window) and (clock >= threshold) ) [ look ] if (clock >= threshold) [ set secreting 0 ] increment-clock end to look ; turtle procedure if count turtles in-radius 1 with [ secreting = 10 ] >= flashes-to-reset [ set clock reset-level ] end ;to slough ; let density = [count turtles in-radius 1] ; if density > 4 [ set breed slougher set color green ] ;end to camouflage ;; To see only the gradient... ifelse show-cells? [st] [ht] end to recolor let pale distancexy 0 0 set color scale-color red pale 50 -10 end to recolor-mosaics let center distancexy 0 0 set color scale-color 101 center 50 -10 end to increment-clock ; turtle procedure set clock (clock + 1) if clock = cycle-length [ set clock 0 ] end to set-boundaries if pcolor = grey [set chemical chemical * 0] end to-report crowding report count turtles in-radius 1 end to kill-crowd if crowding > 10 [ die ] end to rechemical if (clock < threshold) [ set chemical chemical + chemical-concentration * (1 / sqrt distancexy 0 0) ] end to check ask n-of 30 stemcells with [ color = 101 ] [ hatch-mosaics 1 [ initialize-mosaic let center distancexy 0 0 set color scale-color 101 center 50 -10 facexy 0 0 rt random 90 lt random 90 fd ((1 / 3) * (1 / sqrt distancexy 0 0)) ] ] diffuse chemical 1 end to update-plots set-current-plot "total-cell-clusters" set-current-plot-pen "mosaics" plot count mosaics set-current-plot-pen "pacemakers" plot count pacemakers end to draw-frame let num-drawers parallels let polygon-num-sides 60 create-drawers num-drawers [ set heading 90 set color white ] let i 0 foreach sort drawers [ ask ? [ set ycor scale-it i ] set i i + 1 ] ask drawers [ pd ] ask drawers [ set amount-to-move 2 * distancexy 0 0 * (tan ((360 / polygon-num-sides) / 2)) ] ask drawers [ back amount-to-move / 2 ] ask drawers [ repeat polygon-num-sides [ fd amount-to-move rt 360 / polygon-num-sides ] ] create-ordered-liners meridians [fd 3] ask liners [pd set color white] ask liners [fd radius - 2] ask liners [die] ask drawers [ die ] end to draw-square-frame let num-drawers 2 * parallels create-drawers num-drawers [ set heading 90 set color white ] let i 0 - parallels foreach sort drawers [ ask ? [ set ycor scale-it i ] set i i + 1 ] ask drawers [ pd bk 100 fd 100 ] ask drawers [ set heading 0 ] set i 0 - parallels foreach sort drawers [ ask ? [ set xcor scale-it i ] set i i + 1 ] ask drawers [ pd bk 100 fd 100 ] ask drawers [die] end to-report scale-it [ i ] report radius * sin (90 * i / parallels) end to-report inverse-scale-it [ x ] report asin (x / radius) * parallels / 90 end to-report get-fractal-boxes-list let boxlist [] ask turtles [ if (distancexy 0 0 < radius - 0.5) [ let myposition (list (floor inverse-scale-it xcor) (floor inverse-scale-it ycor)) set boxlist fput myposition boxlist ; to check more points on the leaf (instead of just the center, as above), you can add more ; points to the boxlist, with offsets from the xcor and ycor set myposition (list (floor inverse-scale-it xcor) (floor inverse-scale-it (ycor + 0.5))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it (xcor - 0.5)) (floor inverse-scale-it (ycor + 0.5))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it (xcor + 0.5)) (floor inverse-scale-it (ycor + 0.5))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it (xcor + 0.5)) (floor inverse-scale-it (ycor - 0.5))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it (xcor - 0.5)) (floor inverse-scale-it (ycor - 0.5))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it xcor) (floor inverse-scale-it (ycor + 0.25))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it (xcor - 0.25)) (floor inverse-scale-it (ycor + 0.25))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it (xcor + 0.25)) (floor inverse-scale-it (ycor + 0.25))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it (xcor + 0.25)) (floor inverse-scale-it (ycor - 0.25))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it (xcor - 0.25)) (floor inverse-scale-it (ycor - 0.25))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it xcor) (floor inverse-scale-it (ycor + 0.1))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it (xcor - 0.1)) (floor inverse-scale-it (ycor + 0.1))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it (xcor + 0.1)) (floor inverse-scale-it (ycor + 0.1))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it (xcor + 0.1)) (floor inverse-scale-it (ycor - 0.1))) set boxlist fput myposition boxlist set myposition (list (floor inverse-scale-it (xcor - 0.1)) (floor inverse-scale-it (ycor - 0.1))) set boxlist fput myposition boxlist ] ] report (remove-duplicates boxlist) end to-report count-boxes let oldboxlist get-fractal-boxes-list let newboxlist [] foreach oldboxlist [ let myx first ? let myy last ? let neighborcount 0 foreach [ -1 0 1 ] [ let xchange ? foreach [ -1 0 1 ] [ let ychange ? if member? (list (myx + xchange) (myy + ychange)) oldboxlist [ set neighborcount neighborcount + 1 ] ] ] ;print (word ? " has " neighborcount " neighbors") if (neighborcount != 9) [ set newboxlist fput ? newboxlist ] ] report length newboxlist end to clear-frame clear-drawing end @#$#@#$#@ GRAPHICS-WINDOW 190 14 705 550 50 50 5.0 1 4 1 1 1 0 0 0 1 -50 50 -50 50 1 1 1 ticks CC-WINDOW 5 576 958 671 Command Center 0 BUTTON 30 47 96 80 NIL setup NIL 1 T OBSERVER NIL NIL NIL NIL BUTTON 99 47 162 80 NIL Go T 1 T OBSERVER NIL NIL NIL NIL SLIDER 7 87 179 120 number number 0 5000 764 1 1 NIL HORIZONTAL SLIDER 7 169 181 202 sniff-angle sniff-angle 0 180 0 1 1 degrees HORIZONTAL SLIDER 7 204 179 237 sniff-distance sniff-distance 1 20 2 1 1 NIL HORIZONTAL SLIDER 7 251 179 284 energy-level energy-level 100 5000 3058 1 1 NIL HORIZONTAL SLIDER 6 290 178 323 age-rate age-rate 0 10 3 1 1 NIL HORIZONTAL SLIDER 7 123 179 156 stem-number stem-number 75 500 243 1 1 NIL HORIZONTAL BUTTON 39 335 143 368 NIL draw-frame NIL 1 T OBSERVER NIL NIL NIL NIL BUTTON 39 371 143 404 NIL clear-frame NIL 1 T OBSERVER NIL NIL NIL NIL SLIDER 6 410 178 443 parallels parallels 2 200 25 1 1 NIL HORIZONTAL BUTTON 12 493 166 526 NIL draw-square-frame NIL 1 T OBSERVER NIL NIL NIL NIL SLIDER 6 446 178 479 meridians meridians 2 200 25 1 1 NIL HORIZONTAL SLIDER 726 147 851 180 cycle-length cycle-length 1 50 12 1 1 NIL HORIZONTAL SLIDER 726 181 851 214 flash-length flash-length 1 10 3 1 1 NIL HORIZONTAL SLIDER 726 113 851 146 flashes-to-reset flashes-to-reset 1 10 5 1 1 NIL HORIZONTAL SLIDER 727 10 851 43 evap-rate evap-rate 0 1 0.15 0.01 1 NIL HORIZONTAL SLIDER 727 45 851 78 chemical-concentration chemical-concentration 0 100 89.9 0.1 1 NIL HORIZONTAL SLIDER 726 79 851 112 sniff-threshold sniff-threshold 0 1 0.6 0.1 1 NIL HORIZONTAL SLIDER 719 275 860 308 pacemkr-ratio pacemkr-ratio 0 1 0.13 0.01 1 NIL HORIZONTAL SLIDER 713 317 885 350 pacemaker-length pacemaker-length 0 50 8 1 1 NIL HORIZONTAL SWITCH 715 403 887 436 show-cells? show-cells? 0 1 -1000 PLOT 716 442 949 562 total-cell-clusters Time Number 0.0 10.0 0.0 1000.0 true true PENS "mosaics" 1.0 0 -13345367 true "pacemakers" 1.0 0 -2674135 true SLIDER 713 352 885 385 pacemaker-flash pacemaker-flash 1 50 3 1 1 NIL HORIZONTAL MONITOR 741 217 835 262 NIL count-boxes 17 1 11 @#$#@#$#@ WHAT IS IT? ----------- This is a work-in-progress that seeks to understand how mosaic patches in mouse corneas arrange themselves into spirals. In part, it seeks to demonstrate the limitations of the current "stem-cell model", which argues that the pattern results from preferential placement of stem cells at the periphery, coupled to centripetal migration. The yellow represents the parts of the mouse cornea that do not contain labeled clones, i.e., there are cells there but they are not visible. The white ring around the periphery is the limbus, a putative stem cell niche. The dark blue circles within the ring represent stem cells that serve as the sole provider of new "mosaic cells" (leaf shape, a representative cluster of ~16 cells) that ultimately migrate towards the center. Pacemaker cells have the same shape but they are red and have independent adjustable controllers. The cells move based on their ability to respond to a chemical that are secreted periodically by the population. Their rhythm can be entrained but only during a window when they are not secreting. The rules were inspired by coupled-oscillator and Dictyostelium literature. HOW IT WORKS ------------ Cells are assigned an intrinsic energy variable (energy-level) that decreases with each tick according to the age-rate. Once that number reaches 0, the cell disappears/dies. Cells are replenished only through a constant stream of new daughters provided by stem cells. The migration direction is initially recognized by mosaic cells through a patch value that is coupled to the chemical value secreted by both mosaics and pacemakers. Mosaic cells move based on three parameters: sniff-angle, value-threshold and sniff-distance. Sniff-angle represents the angle the mosaic cell can sense a value. Value-threshold represents the amount necessary to respond. Sniff-distance is the number of patches ahead the mosaic cell can sense. The primary difference between mosaics and pacemakers is that they have independent adjustable parameters for cycle and secretion length. Although there is no restriction in this model, pacemakers are generally believed to have a faster cycle. HOW TO USE IT -------------- NUMBER: sets the number of initial mosaic population STEM-NUMBER: sets the number of initial stemcells population SNIFF-ANGLE: sets the degree cone-angle with respect to current heading moving cells detect chemical. Also determines the angle the cell will turn after it determines the highest concentration value. SNIFF-DISTANCE: sets the point distance from current position cell can detect chemical ENERGY-LEVEL: sets the initial amount of energy cells possess. This number is spread out over a range so that cells don't die all at once. AGE-RATE: sets the rate at which cells lose energy. DRAW-FRAME: draws a wire-frame for assigning positions CLEAR-FRAME: clears drawings PARALLELS: sets the number of parallel wires to be drawn MERIDIANS: sets the number of meridian lines to be drawn DRAW-SQUARE-FRAME: draws square vertical and horizontal tangents to parallel lines for estimating fractal dimension using a box counting method. CHEMICAL-CONCENTRATION: sets the amount of chemical secreted with each tick EVAP-RATE: sets the rate at which chemical is lost SNIFF-THRESHOLD: sets the amount of chemical required to attract cell movement FLASHES-TO-RESET: sets the minimum number of secreting neighboring cells required to reset the clock CYCLE-LENGTH: sets the length of one period FLASH-LENGTH: sets the duration during cycle in which cells are secreting, which is also the time in which they are refractory to resetting of their cycle. COUNT-BOXES: reports the number of boxes that cover the periphery. PACEMKR-RATIO: sets a proportional value with respect to the NUMBER slider to genereate pacemakers cells from the extant mosaic population. PACEMAKER-LENGTH: sets the period of the pacemaker cell PACEMAKER-FLASH: sets the duration a pacemaker is secreting ON-OFF SHOW-CELLS?: gives choice as to whether you want the cells to be visible. TOTAL-CELL-CLUSTERS: gives a report of how many cell clusters are present. THINGS TO NOTICE ---------------- How do cells behave at the periphery? How do cells behave near the center? THINGS TO TRY ------------- Try different values to synchronize flashes. How do combinations affect the turtles' movement, formation and shape of clumps? Try to figure out a way to change the shape of the chemical concentration curve near the center. How does this affect the shape of cell clusters. What effect does sniff-angle have? What effect does lowering chemical concentration to 0 have? EXTENDING THE MODEL ------------------- Try adding some adhesion rules. What effect will this have? How about changing the shape of the cornea (changing value)? RELATED MODELS -------------- Ants use a similar idea of creatures that both drop chemical and follow the gradient of the chemical. Synchrony and movement algorithms were borrowed from the Firefly model. CREDITS AND REFERENCES ---------------------- This model was developed at the MIT Media Lab using CM StarLogo. See Resnick, M. (1994) "Turtles, Termites and Traffic Jams: Explorations in Massively Parallel Microworlds." Cambridge, MA: MIT Press. Adapted to StarLogoT, 1997, as part of the Connected Mathematics Project. Adapted to NetLogo, 2000, as part of the Participatory Simulations Project. To refer to this model in academic publications, please use: Wilensky, U. (1997). NetLogo Slime model. http://ccl.northwestern.edu/netlogo/models/Slime. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. In other publications, please use: Copyright 1997 Uri Wilensky. All rights reserved. See http://ccl.northwestern.edu/netlogo/models/Slime for terms of use. Goodwin BC, Cohen MH. (1969). A phase-shift model for the spatial and temporal organization of developing systems. J Theor Biol. 25(1):49-107. Dallon JC, Othmer HG. (1997). A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Philos Trans R Soc Lond B Biol Sci. 352(1351):391-417. Buck, John. (1988). Synchronous Rhythmic Flashing of Fireflies. The Quarterly Review of Biology, September 1988, 265 - 286. @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circle false 0 Circle -7500403 true true 0 0 300 circle 2 false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf true 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 line half true 0 Line -7500403 true 150 0 150 150 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 shark false 0 Polygon -7500403 true true 283 153 288 149 271 146 301 145 300 138 247 119 190 107 104 117 54 133 39 134 10 99 9 112 19 142 9 175 10 185 40 158 69 154 64 164 80 161 86 156 132 160 209 164 Polygon -7500403 true true 199 161 152 166 137 164 169 154 Polygon -7500403 true true 188 108 172 83 160 74 156 76 159 97 153 112 Circle -16777216 true false 256 129 12 Line -16777216 false 222 134 222 150 Line -16777216 false 217 134 217 150 Line -16777216 false 212 134 212 150 Polygon -7500403 true true 78 125 62 118 63 130 Polygon -7500403 true true 121 157 105 161 101 156 106 152 square false 0 Rectangle -7500403 true true 30 30 270 270 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 4.0.4 @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ setup export-view (word "boxcount00.png") go if (ticks mod 40 = 0) [ export-view (word "boxcount" ticks ".png") ] count-boxes @#$#@#$#@ @#$#@#$#@ default 0.0 -0.2 0 1.0 0.0 0.0 1 1.0 0.0 0.2 0 1.0 0.0 link direction true 0 Line -7500403 true 150 150 90 180 Line -7500403 true 150 150 210 180 @#$#@#$#@