Home Download Help Forum Resources Extensions FAQ NetLogo Publications Contact Us Donate Models: Library Community Modeling Commons Beginners Interactive NetLogo Dictionary (BIND) NetLogo Dictionary User Manuals: Web Printable Chinese Czech Farsi / Persian Japanese Spanish
|
NetLogo Models Library: |
If you download the NetLogo application, this model is included. You can also Try running it in NetLogo Web |
This model explores the role of movement and space in a three species ecosystem. The system consists of three species, represented by red patches, green patches, and blue patches, which compete over space. The interactions between the species are based on the game Rock-Paper-Scissors. That is, red beats green, green beats blue, and blue beats red. Organisms compete with their neighbors, move throughout the environment, and reproduce. These interactions result in spiral patterns whose size and stability depends on the movement rate of the organisms.
The model is written in an event-based fashion, to reflect the formulation of the published model. See HOW IT WORKS and EXTENDING THE MODEL.
Each patch can be occupied by one of three species or can be blank. The species are represented by three colors: red, green, and blue. Each tick, the following types of events happen at defined average rates:
The exact number of, for instance, swap events that occur each tick is drawn from a Poisson distribution with mean equal to (count patches) * 10 ^ swap-rate-exponent
. A Poisson distribution defines how many times a particular event occurs given an average rate for that event assuming that the occurrences of that event are independent. Here, the occurrences of the events are approximately independent since they're being performed by different organisms.
The events occur in a random order involving random pairs of neighbors.
Press SETUP to initialize the model and GO to run it.
SWAP-RATE-EXPONENT, REPRODUCE-RATE-EXPONENT, and SELECT-RATE-EXPONENT each control the rate at which their respective actions are performed. There will be an average of count patches * 10 ^ rate-exponent
events each tick for each event type. This means that increasing a slider by 1.0
will result in that event type occurring 10 times more often, no matter what the other sliders are set to. The SWAP-%, REPRODUCE-%, and SELECT-% monitors indicate what percentage of events will be swap, reproduce, and select events (respectively) each tick.
The POPULATIONS plot shows how much of each organism there is over time.
Running the model quickly results in a collection of interconnected spirals in which each species is chasing another species.
Global population levels of each of the species oscillate over time.
The model makes heavy use of the random-poisson
primitive. This primitive is useful when modeling events that happen at various rates. Furthermore, this model uses a technique wherein a list of events is produced and shuffled to simulate the occurrence of each event at each rate while still allowing the events to occur in arbitrary orders.
Wolf Sheep Predation shows a simpler predator prey model.
Reichenbach, T., Mobilia, M., & Frey, E. (2008). Self-organization of mobile populations in cyclic competition. Journal of Theoretical Biology, 254(2), 368–383. https://www.sciencedirect.com/science/article/pii/S0022519308002464?via%3Dihub
Reichenbach, T., Mobilia, M., & Frey, E. (2007). Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature, 448(7157), 1046–1049. https://doi.org/10.1038/nature06095
If you mention this model or the NetLogo software in a publication, we ask that you include the citations below.
For the model itself:
Please cite the NetLogo software as:
Copyright 2017 Uri Wilensky.
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
Commercial licenses are also available. To inquire about commercial licenses, please contact Uri Wilensky at uri@northwestern.edu.
(back to the NetLogo Models Library)