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This paper describes part of a project called Modeling Across the Curriculum which is a large-
scale research study in 15 schools across the United States. The specific data presented and
discussed here in this paper is based on BioLogica, a hypermodel, interactive environment for
learning genetics, which was implemented in multiple classes in eight high schools. BioLogica
activities, data logging, and assessments were refined across this series of implementations.
All students took a genetics content knowledge pre- and posttests. Traces of students’ actions
and responses to computer-based tasks were electronically collected (via a “log file” function)
and systematically analyzed. An intensive 3-day field test involving 24 middle school students
served to refine methods and create narrative profiles of students’ learning experiences, out-
comes, and interactions with BioLogica. We report on one high school implementation and
the field test as self-contained studies to document the changes and the outcomes at different
phases of development. A discussion of design changes concludes this paper.
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With support from NSF, the Concord Consor-
tium developed an interactive, computer-based learn-
ing environment, BioLogica, that is designed to sup-
port students in high school classrooms to build a deep
understanding of core concepts in Mendelian genet-
ics. The pedagogical challenges are numerous. What
do we mean by deep understanding? How can we
help them develop deep understanding? How do we
know when they’ve done so? This paper focuses on the
learning that takes place when students use BioLog-
ica, an interactive genetics curriculum, in their high
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school classrooms. It presents the model of learning
we use, what this looks like in practice, how we deter-
mine the nature and extent of student learning when
BioLogica is used in high school classrooms, and what
we’ve learned about all of the above.

MODEL-BASED LEARNING

The theory we employ is an elaboration and
extension of Model-Based Teaching and Learning
(MBTL) set forth in a special issue of the Inter-
national Journal of Science Education (Gobert and
Buckley, 2000). The tenets of model-based learning
are based on the presupposition that understand-
ing requires the construction of mental models of
the phenomena under study, and that all subsequent
problem-solving, inferencing, or reasoning are done
by means of manipulating or “running” these men-
tal models (Johnson-Laird, 1983). We view mental
models as internal, cognitive representations used in
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reasoning of many kinds (Brewer, 1987; Rouse and
Morris, 1986). Mental models, like prior knowledge,
influence our perceptions of phenomena and our un-
derstanding of information. Interactions with phe-
nomena and representations, in turn, influence our
mental models (Gentner and Stevens, 1983; Johnson-
Laird, 1983).

Before proceeding, it is important to define the
different types of models we use in addition to the
notion of models as mental representations of phe-
nomena. Our starting point is Norman’s (1983) dif-
ferentiation of models related to a target system or
phenomenon that is to be represented or modeled.
Norman distinguishes not only the learners’ mental
models but also the scientist’s and designer’s concep-
tual models of the system, as well as the researchers’
conceptualization of the learner’s mental models.

The hypermodels used in this project are another
type of model that we add to the framework of models
described by Norman (1983). Hypermodels are con-
ceptual models realized as computer models embed-
ded in interactive curricula. These are external repre-
sentations (as opposed to mental models, which are
internal representations) with which the learner inter-
acts, and in doing so, constructs and/or revises his/her
mental model. Representations are considered mod-
els only when they represent structural, dynamic,
and/or causal aspects of the target model; that is, they
are not just visualizations or diagrams of phenomena.

With these definitions in mind, we define model-
based learning as a dynamic, recursive process of
learning by constructing mental models of the phe-

Fig. 1. Model-based learning framework.

nomenon under study. It involves the formation, test-
ing, and subsequent reinforcement, revision, or rejec-
tion of mental models. This is analogous to hypoth-
esis development and testing seen among scientists
(Clement, 1989). See Fig. 1.

In response to the demands of a task, a learner
draws on prior knowledge and new information dur-
ing model-formation to construct a mental model
of some phenomenon (Buckley, 1992, 2000; Kozma
et al., 1992). The learner’s prior knowledge may in-
clude a partial mental model of the phenomenon
or naive models that are incompatible with the sci-
entifically accepted model. If the learner’s model is
used successfully to accomplish the task, the model
is reinforced (Clement, 1989) and may eventually be-
come a precompiled, stable model (Vosniadou and
Brewer, 1992) from which students are capable of
making inferences, etc. However, if inconsistencies
and/or deficiencies in the model are noted (Bransford
et al., 1986), the learner may reject the model and
form a new one, or revise the initial model (Chinn
and Brewer, 1993; Clement, 1989; Schauble et al.,
1991). Model revision may involve modifying parts
of the existing model or elaborating the model by
adding to or combining existing models. Embedding a
model in a larger model is an example of elaboration
(deKleer and Brown, 1983; Monaghan and Clement,
1994; Stewart and Hafner, 1991).

Metacognitive processes such as selecting which
perceptual cues to attend to, directing interactions
with representations and phenomena during learning
and inquiry, and monitoring the results of those
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interactions and the evaluation of one’s model also
play an important part in model-based learning as
do reasoning processes such as hypothesis generation
from the model, testing that hypothesis, and interpret-
ing the data that are among higher order inquiry skills.

Thus, the mental model evolves through multi-
ple recursions as it is made increasingly complex and,
hopefully, more accurate (Johnson-Laird, 1983; White
and Frederiksen, 1998).

MODEL-BASED TEACHING WITH THE
BioLogica HYPERMODEL

Hypermodels are software environments that al-
low learners to interact with a manipulable model
of some phenomenon in a domain (Horwitz, 1995;
Horwitz and Christie, 1999). Hypermodels are con-
trolled by short programs, or activity scripts, that me-
diate a learner’s interactions with the model.

The core of the BioLogica hypermodel (see
Fig. 2) is a model of transmission genetics that rep-
resents the genetic mechanisms of inheritance as the
parts and processes that take place at multiple levels
of biological organization. It combines the Mendelian
model of genetics and the molecular and cellular
mechanisms that produce the phenomena Mendel ob-
served. The learner interacts with the model through
manipulable representations appropriate to the task
posed by the activity script. Because the manipulable
representations operate on the core model, changing
any one of them can affect each of the others, as ap-
propriate. For example, altering an organism’s geno-
type affects not only that organism, but also any of its
offspring that happen to inherit the altered gene. The

Fig. 2. BioLogica hypermodel.

activity scripts are used to orchestrate instructional
activities built around a series of challenges.

Research has shown that students have difficulty
interpreting and reasoning with external models and
representations that scaffolding is needed to support
students’ learning (e.g., Gobert and Buckley, 2003;
Gobert and Clement, 1999; Kindfield, 1993/1994;
Larkin, 1989; Larkin and Simon, 1987; Lowe, 1993).
The pedagogical elements outlined in Table I scaf-
fold the learner’s interaction with the challenge, the
manipulable representations, and ultimately with the
model of transmission genetics. Each of the elements
serves both pedagogical purposes and research pur-
poses. For example, embedded questions are intended
to facilitate a deeper engagement on the part of the
learner by posing questions that require more atten-
tion to the details of the activity. They are also in-
tended to elicit responses from which we can infer
the state of the learner’s mental models. Narratives
and instructions model the kind of reasoning a ge-
neticist might pursue in solving a challenge. Activity
scripts also monitor a learner’s actions so that con-
structive feedback can be given as appropriate. Ex-
planations and solutions are provided only after the
learner has had an opportunity to grapple with the
challenge. Each activity also creates a log file that
records students’ actions and responses and can be
processed to yield information useful to teachers, stu-
dents and researchers.

RESEARCH DESIGN AND METHODS

Our research is a large-scale design study
conducted in demographically diverse classrooms to
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Table I. Pedagogical Elements in Activity Scripts

Element Description Location

Advance organizer or orienting
task

Briefly describes expected performance in terms
of focus question, content and actions

Headlines in login screen
Elaborated in introduction screen

Narratives The narrative into which puzzles are woven Begun in introduction and woven throughout
the activity

Tasks and puzzles Require cause-to-effect and effect-to-cause
reasoning, within and between generations

The heart of all activities

Representational assistance Links diagrams with vocabulary, highlights
structures involved in genetics

When new representation or tool is
introduced

Reasoning models Walks learner through reasoning strategies After initial exploration of concept and
representations

Explanations Summarizes concepts and models good
explanations

After completion of task/puzzle

Embedded questions About representations, models, and reasoning
About the pieces of the model central to the

activity

Throughout activity

Feedback on actions and
responses

Monitors responses and problem solving actions More frequent initially then fades away
before assessment questions

Parallel phenomena exposure Scenarios and questions about genetics in others
species and in humans

After in-depth exploration and
experimentation with dragon genetics

Assessment questions General concepts
Activity specific

End of activity

Reflective questions What they knew
What they learned
What they wonder about now

End of activity

inform the development of BioLogica. The activities,
data logging, and assessments were refined across
a series of implementations. Data were collected in
multiple classes from one middle school and eight
high schools. An intensive 3-day field test involving 24
middle school students served to refine methods and
create narrative profiles of students’ learning expe-
riences, outcomes, and interactions with BioLogica.
From this massive amount of data, we will focus on
two studies conducted at various times in the devel-
opment of BioLogica to examine both development
issues and research findings. Since BioLogica activi-
ties, the instruments used to assess learning, and data
logging capabilities changed over the course of the
year, we report on one high school implementation
and the field test as self-contained studies. To provide
a frame for these studies we begin by describing
the development of activities, assessments, and data
logging.

Development of Activities

Prior research with GenScope (Hickey et al.,
1998b, 1999, 2003; Hickey and Kindfield, 1999;
Horwitz et al., 1998; Kindfield and Hickey, 1999)
guided the initial development of BioLogica activ-
ities, which are built around a series of puzzles or

challenges. BioLogica activities began to be used in
classrooms in November 2000. Revision of these ac-
tivities was informed by classroom observations in
three schools, prior research by the authors (Buckley,
2000; Buckley and Boulter, 2000; Gobert, 2000), and
by the model-based teaching and learning frame-
work described earlier. During the first phase of
testing (11/00 through 2/01) BioLogica was used in
three high schools, the number of activities was in-
creased from 8 to 12, the first data logging was im-
plemented, and a Teacher’s Guide was created. See
Appendix A for a complete description of BioLogica
activities.

Development of Pre- and Posttests

Like the activities, the pre- and posttests evolved
over the academic year 2000–2001. In the initial im-
plementation of BioLogica at site “MR” the pre-
and posttests were identical. The instrument con-
sisted of 70 NewWorm items originally developed for
the GenScope project (Hickey et al., 1998a). Iden-
tical pre- and posttests were administered at site
“F,” using a new, shorter, version of NewWorm from
Hickey and Kindfield with the addition of four multi-
ple choice items consisting of published items from
MCAS and NY Regents exams. We learned that
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most students and many teachers considered even the
35-item test too long. In subsequent implementations
items were deleted from the test if the item tested
a concept (such as crossing-over) that was not ad-
dressed in any of the BioLogica activities used in
that implementation. The pretest items were a sub-
set of the posttest items. Additional multiple choice
items were included to better assess how students per-
formed on standardized test items and a few mul-
tiple choice questions were included that addressed
common naive conceptions. Because the NewWorm
test assumes an understanding of genetics terminol-
ogy, but doesn’t test for that understanding indepen-
dent of the problem solving required for most New-
Worm items, we introduced open-ended conceptual
questions beginning with implementations in April
2001.

We examined all items on the pre- and posttests
in three ways: (1) using the matrix of reasoning
patterns identified by Hickey, Wolfe, and Kindfield
(1998b), (2) using a model-based learning perspective
(Buckley and Boulter, 1999, 2000), and (3) identify-
ing the genetics concept tested. The reasoning ma-
trix has two dimensions: between versus within gen-
erations, and cause-to-effect versus effect-to-cause.
Hickey et al. (1998b) demonstrated that questions in-
volving cause-to-effect were easier for students than
effect-to-cause and that reasoning within a generation
was easier than reasoning across generations. Draw-
ing on the model-based learning framework, we ana-
lyzed items using a method developed for analyzing
representations (Buckley and Boulter, 1999, 2000).
This analysis focused primarily on the models of
parts (structures) and processes needed to answer the
question.

Development of Data Logging

First, what do we mean by data logging? When
students use BioLogica activities, the activity scripts
that guide and control students’ interactions with the
underlying genetic models generate log files. The spe-
cific entries in a given log file are generated either
automatically or by design. The automatic entries are
used to capture start and stop times for an activity or
a given challenge within the activity and to capture
learners’ responses to questions posed by the activity
script. The designed entries can be tailored to answer
specific research questions and provide assessment
data for teachers, students, and researchers. Embed-
ded questions were added to activities implemented

in April 2001 and later. In addition, most activity
scripts capture learners’ actions, such as how many
crosses were made or what alleles were changed, as
they explore and experiment with the representa-
tions of the underlying genetic model. Thus, the con-
tent of log files varies not only by activity but also
by user.

The use of data logging increased throughout the
year. During the first use of BioLogica in November
2000 only 5 activities generated log files. Of the 54
logs generated by 13 students only 57% were usable;
that is, the other 43% were empty, lacking even a
time stamp. This is caused either by the user quit-
ting the activity immediately after launch or by a
program crash. By May 2001 all 13 activities gen-
erated log files eventually achieving a yield rate of
94%.

IMPLEMENTATION STUDIES

At “L” high school, three teachers taught both
control classes and experimental classes and three ad-
ditional teachers used BioLogica with a range of bi-
ology classes. These implementations are reported in
Study 1. We used the data collected during the in-
tensive field test conducted at site “MV” to develop
methods for analyzing log files. That work is reported
in Study 2.

Study 1: “L” High School

During this implementation in May 2001, four
teachers used BioLogica daily for 1 week with a range
of classes. In addition, one of the teachers taught two
control classes of ninth grade students matched with
her two experimental classes.

BioLogica activities were more stable at this
point in development, but still not totally bug free.
There were two changes in activities compared to pre-
vious implementations: Sex-Linkage and Sex-Linkage
II were combined and revised into one activity and In-
visible Dragons, a game that requires reasoning from
effect-to-cause between generations, was added. The
data logging generated accurate start and end times.
Although we weren’t able to match log files to indi-
vidual students or classes, we were able to average
across all the logs for this implementation. Table II
summarizes the logs collected at “L” high school for
all classes. We could not determine with precision
what proportion of students completed each activity.
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Table II. Logs Collected at “L” High School

Implementation site L 5/01

Activities logged (N) 13
Students (N) 120
Logs generated (N) 2128
Valid logs (N) 1566
Yield (%) 74
Introduction logs (N) 273
Rules logs (N) 266
Meiosis logs (N) 283
Inheritance logs (N) 130
Monohybrid logs (N) 204
Mutations logs (N) 98
Mutations 2 logs (N) 36
Horns dilemma logs (N) 32
Dihybrid logs (N) 26
Sex-linkage logs (N) 52
Scales logs (N) 35
Plates logs (N) 25
Invisible dragons logs (N) 106

However, we can estimate which activities were com-
pleted and which were not completed by most of the
students. We estimate that the first five activities were
completed by all students. Similarly, it is likely that
most of the students did not complete activities after
Monohybrid. Even Invisible Dragons with 106 logs
may be the result of a small number of students us-
ing the activity multiple times. See Study 2 for more
detailed information on processing and analyzing log
files.

We used this information in conjunction with
item analysis of the posttest to identify which items
on the posttest to exclude from analysis. We exam-
ined the mean score on each item across the entire
data set from “L.” We looked at each item that had
a mean of less than 50% of the possible points and
considered whether it tested a concept that most of
the students had explored with BioLogica. If it tested
understanding of a concept that was included in the
first five activities, we did not exclude the item. Con-
versely, if the items with low mean scores were not

Table III. Comparison of Pretest Means for Ninth Grade Classes

Pretest

Total number F Significance
Class Group N of points Mean SD statistic (p value)

Blue Control 16 40 12.3 2.9
Yellow Control 20 40 13.1 3.5

4.14 0.009a
Green Experimental 22 40 13.6 3.7
Red Experimental 14 40 9.0 6.1
aSignificant at p < 0.05α.

covered in the first five activities we excluded the
item from further analysis. By mistake, an older ver-
sion of the pretest was administered that included
only 23 NewWorm items. The posttest consisted of
32 NewWorm items, 13 multiple choice items that
covered misconceptions and standardized test items,
and 17 open-end concept questions for a total of
106 points. We excluded 19 items, which resulted in
a possible maximum score of 62 points. Therefore,
the analysis reported in this study is based on what
we term “relevant” test items. We report first the
study of the ninth grade classes, then the school wide
results.

Study 1A: Ninth Grade Control and
Experimental Classes

The two control classes received the teacher’s
usual introduction to genetics during the week that
the two experimental classes used BioLogica. One of
the experimental classes received an introductory les-
son prior to using BioLogica but the other did not.

Analysis of Pretest. A t test was computed in
order to test for pretest differences among the four
classes at “L” high school. There was a statistically sig-
nificant difference found between the four groups on
the pretest (see Table III). Post hoc contrasts yielded
that the differences found were between the “red”
group and the other three groups, “yellow, “green,”
and “blue.”

Analysis of Posttest. We pooled the two control
groups and the two experimental groups since it was
the same teacher and the same level of students in
all four groups. The pretest score was used as a co-
variate in order to take into account the pretest dif-
ferences. An Analysis of Variance (ANOVA) was
computed in order to determine whether there were
any statistically significant differences on the to-
tal posttest score between the experimental and
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Table IV. Comparison of Control and Experimental Groups on Posttest Mean With Pretest Covariate

Pretest Posttest

Total number Total number F Significance
Group N of points Mean of points Mean SD statistic (p value)

Control 36 40 12.7 62 25.7 11.0
6.269 0.003a

Experimental 36 40 11.8 62 31.1 10.6
aSignificant at p < 0.05α.

control groups. For this ANOVA the dependent vari-
able was total posttest score, the independent vari-
able was group (control vs. experimental), and the
pretest score was used as a covariate. There was
a statistically significant difference found between
the control and experimental groups on the posttest
with the experimental group scoring higher. See
Table IV.

Analysis of Selected Posttest Items. ANOVAs
were computed in a series of analyses in which we
selected items from the entire posttest and pooled
them according to the concept that they were assess-
ing. The pooled items assessed students’ understand-
ing of: inheritance, dominance, sex linkage, genotype
and phenotype, monohybrid, dihybid, and pedigree.
For each of these analyses, the pretest scores were
used as a covariate to allow us a more accurate mea-
sure of posttest differences between the control and
experimental groups.

There was a statistically significant difference
found between the control group and the experimen-
tal group on two concepts: monohybrid and dihy-
brid. For both concepts the experimental group scored
higher than the control group. A summary of results
on monohybrid and dihybrid can be found Table V.
No statistically significant difference was found on in-
heritance, dominance, sex linkage, genotype and phe-
notype, or pedigree. See Appendix B for a summary
table of this data.

ANOVAs were computed in a series of anal-
yses in which we selected items from the posttest
and pooled them according to the type of reason-

Table V. Concepts With Statistically Significant Differences
Between the Control and Experimental Groups

Dependent variable Mean F statistic Significance (p value)

Monhybrid 5.798 0.005a

Control 7.444
Experimental 9.167

Dihybrid 4.261 0.018a

Control 1.250
Experimental 1.694

aSignificant at p < 0.05.

ing that they were assessing. The pooled items as-
sessed students on seven different types of reason-
ing: cause-to-effect within generations (cew), effect-
to-cause within generations (ecw), cause-to-effect
between generations (ceb), effect-to-cause between
generations (ecb), Punnett square, structure, and pro-
cess. For each of these analyses, the pretest scores
were used as a covariate to allow us a more accurate
measure of posttest differences between the control
and experimental groups.

There was a statistically significant difference
found between the control group and the experi-
mental group on six of the seven types of reason-
ing: cause-to-effect within generations (cew), cause-
to-effect between generations (ceb), effect-to-cause
between generations (ecb), Punnett squares, struc-
ture, and process. The experimental group means
were higher than the control group means on the
following types of reasoning: cause-to-effect within
generations (cew), cause-to-effect between genera-
tions (ceb), Punnett squares, structure, and process.
The control group means were higher than the exper-
imental group means on effect-to-cause between gen-
erations (ecb). It should be noted, however, that the
Levene’s Test of Equality of Error Variances (which
tests whether the error variances of the two groups
are equal, was significant for cause-to-effect within
generations, and effect-to-cause between generations.
Thus, we must interpret the results regarding the two
groups’ performance on these scores with caution.
These results, therefore, should be interpreted with
caution. These results are summarized in Table VI.
No statistically significant difference was found at
p = 0.05α on effect-to-cause within generations. See
Appendix B for a summary table of the data for “L”
High School.

Study 1B: Analysis of All Class Levels at “L”

Although the ninth grade was the only class level
with controls, three other teachers used BioLogica
with their biology students. Analysis of the pre- and
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Table VI. Types of Reasoning With Statistically Significant Differences Between Control and Experimental Groups

Dependent variable Mean Levene’s test F statistic Significance (p value)

Cause-to-effect within generations (cew) 0.019a 5.734 0.005a

Control 4.472
Experimental 5.083

Cause-to-effect between generations (ceb) 0.904 5.951 0.004a

Control 5.958
Experimental 7.056

Effect-to-cause between generations (ecb) 0.011a 3.572 0.033a

Control 5.792
Experimental 5.694

Punnett square 0.987 4.280 0.018a

Control 5.250
Experimental 5.653

Structure 0.192 3.985 0.023a

Control 2.917
Experimental 4.139

Process 0.059 7.420 0.001a

Control 0.667
Experimental 1.194

aSignificant at p < 0.05.

posttest scores for those classes are compared in
Table VII.

Post hoc contrasts (see Table VIII) reveal that
the honors biology class significantly outperformed
the other classes on the posttest and that the business
biology class significantly underperformed the other
classes. It is interesting that the ninth graders did as
well as the college prep biology.

Study 2: Intensive 3-Day Field Test at “MV”

The primary purpose of the intensive field test
was to find bugs in the software. A secondary purpose
was to investigate the usefulness of log files for helping
us understand what and how students learn when us-
ing BioLogica. Log files were intended from the start
as a research tool to help us assess (a) what learners
understand, (b) how that understanding changes, and
(c) how they use BioLogica. We’re trying to develop a

Table VII. Pre- and Posttest Scores for Different Class Levels

Pretest Posttest

Total number Total number F Significance
Type of class N of points Mean of points Mean SD statistic (p value)

Ninth grade 36 40 11.8 62 31.1 10.6 26.941 0.000a,b

Business biology 6 40 8.8 62 17.1 5.5
College prep biology 49 40 13.1 62 31.3 12.6
Honors biology 30 40 21.6 62 47.3 9.4
aSignificant at p < 0.05α.
bLevene’s Test for Equality of Error Variances is significant at p < 0.05α.

fine-grained understanding of how different students
learn with BioLogica. However, we also want to iden-
tify variables that can be quantified and used as co-
variates in analyzing pre- and posttest gains. In this
study we looked for ways to design and process log
files so that they provide the data needed in a format
that can be analyzed with less effort.

The intensive field test was chosen for this study
because it provided a small but diverse population
that completed nearly all of the BioLogica activities
under relatively controlled circumstances. We rea-
soned that because it was not a classroom situation,
learning gains could be attributed more fully to Bio-
Logica use. Therefore, connections between log files
and learning should be more direct and less influenced
by other classroom variables.

In the intensive field test conducted at site “MV”
in April 2001, 24 middle school and high school stu-
dents were paid to use all the BioLogica activities over
a 3-day period and to take the pre- and posttests and
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Table VIII. Tukey HSD Post Hoc Contrasts Across Class Types

Type of class (mean) Type of class Mean SD Significance (p value)

Ninth grade (31.1) Business biology 17.1 5.5 0.025a

College prep biology 31.3 12.6 1.000
Honors biology 47.3 9.4 0.000a

Business biology (17.1) Ninth grade 31.1 10.6 0.025a

College prep biology 31.3 12.6 0.018a

Honors biology 47.3 9.4 0.000a

College prep biology (31.3) Ninth grade 31.1 10.6 1.000
Business biology 17.1 5.5 0.018a

Honors biology 47.3 9.4 0.000a

Honors biology (47.3) Ninth grade 31.1 10.6 0.000a

Business biology 17.1 5.5 0.000a

College prep biology 31.3 12.6 0.000a

aSignificant at p < 0.05α.

surveys. Students used computers in two rooms. In
one room there were 10 students working individually
on iBooks. In the other room 14 students worked on
iMacs; 10 students worked in five pairs and 4 students
worked individually. They used an earlier version of
the same set of activities used in the “L” high school
implementation. The Invisible Dragons activity was
used for the first time on the last day of the field test.

A total of 387 log files were generated, of which
306 or 79% were usable files. Files that contain no
date or data beyond the user name and the activity
name are unusable. They are caused either by the user
deciding not to run the activity or by the activity script
crashing.

An excerpt from an unprocessed log file is shown
in Table IX. The user’s name has been changed for pri-
vacy reasons. Each log contains the following kinds of
data: user name, date and time, question and answer,
and actions (basically mouse clicks), automatically
identified with XML tags such as <user> or <date>.
The XML tags enable the logs to be processed for
different purposes.

Analyzing Log Files for BioLogica Use

The objective in analyzing log files was to identify
and characterize variables we could use to quantify
and compare the use of BioLogica across students.
What kinds of data are useful in explaining the results
of the pre- and posttests? Given the variability across
implementations, one of the first questions is Which
of the activities did the students complete? Related
process questions are How much time did learners
spend on an activity?; How mindful was their inter-
action with the activity?; What challenges did they
accomplish?; How easily?; Which questions did they

Table IX. Selections From an Unprocessed Log File Generated by
the Introduction Activity

- <log>
<user>julia</user>
- <question>
<date>2001.04.17.21.46.01 04/ 17/ 01 | 21:46:01</date>
Good job! You’ve created your first dragon. How would you

describe it? Does anything surprise you about this dragon?
Type your description in the box below.

<answer>this dragon has no arms or wings and also no
fire.</answer>

</question>

- <question>
<date>2001.04.17.21.46.18 04/ 17/ 01 | 21:46:18</date>
Quite a variety of dragons here! Dragons apparently come in

many different colors. What OTHER differences do you
notice? Type your answer in the box below.

<answer>There are many types of dragon. I pictured dragons
to look like the frist male on my list.</answer>

</question>

- <question>
<date>2001.04.17.21.57.40 04/ 17/ 01 | 21:57:40</date>
What did you notice as you examined their chromosomes?

Type your answer in the box below.
<answer>You could have the same chromosomes but if you

had the wrong mixer you could kill the dragon.</answer>
</question>

- <action>
<date>2001.04.17.22.03.17 04/ 17/ 01 | 22:03:17</date>
Matched comparison dragon after 28tries.
</action>

- <question>
<date>2001.04.17.22.20.19 04/ 17/ 01 | 22:20:19</date>
Explain why the dragons you created in this activity look

different from one another.
<answer>they have diffrent types of chromosomes that make

diffrent cells.</answer>
</question>

</log>
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Fig. 3. Scatter plot of posttest scores against pretest scores for field test participants.

attempt?; Were their answers correct?; How thought-
ful were their answers? We cannot yet answer these
questions with a reasonable degree of reliability or
effort.

Even from the brief excerpt in Table IX, it is clear
how time-consuming is to make sense of unprocessed
log files. Therefore, we chose to analyze the logs of
a small subset of learners who represented different
levels of prior knowledge and performance on the
posttest.

We began by analyzing the pre- and posttest
scores to identify the subset of learners. We plotted the
posttest scores against the pretest scores (see Fig. 3).

We chose to examine the log files for five students,
labeled TF, CG, CV, GH, and MB. MB was chosen
for high scores on both the pretest and the posttest.
GH was chosen to represent a successful student with
an average pretest score. TF was chosen because he
came in with a low pretest score and didn’t perform
very well on the posttest. CG and CV were chosen as a
result of observations made while they were working
through BioLogica activities. CG is dyslexic and reads

with difficulty, but worked diligently on activities. CV
scored well on the pretest but was observed mindlessly
clicking through, rather than reasoning through, an
activity.

The next challenge was identifying the logs of
these students. Students could type in any name or
variation of that name when they logged in to use an
activity. In this study we were able, with reasonable
yield and effort, to connect the log files to individual
learners.

To determine which activities the learner used,
we created a computer program to strip out the XML
tags and generate a file of tab-delimited text that could
be imported into a database or spreadsheet, which
could then be sorted. Table X shows the activities used
by student GH in the order in which they were used,
when, and for how long. There were also four empty
logs indicating bugs or aborted launches.

The initial approach to analyzing the log files was
to read through the logs of one student at a time
in order to develop a sense of that student’s path
through BioLogica, what challenges and questions
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Table X. Activities Used by GH

Activity Date Time Length of time

Introduction 4/17/01 21:33:53 0:31
Rules 4/17/01 22:19:44 0:53
Rules 4/17/01 23:06:57 0:01
Meiosis 4/18/01 1:04:17 0:18
Inheritance 4/18/01 1:32:31 0:03
Monohybrid 4/18/01 1:37:40 0:14
Mutations 4/18/01 1:53:28 0:27
Mutations2 4/18/01 2:25:38 0:20
HornsDilemma 4/18/01 21:21:08 0:03
HornsDilemma 4/18/01 21:26:00 0:09
Dihybrid 4/18/01 21:44:23 0:17
Plates 4/18/01 23:17:18 0:05
Sex-linkage 4/18/01 23:25:27 0:21
Total 3:42

were difficult or easy, and how engaged the student
seemed to be. By the time we had read through the
logs for all five students, we began to see patterns of
data that might be relevant and quantifiable. In ad-
dition to the total-time, candidates for further anal-
ysis included the proportion of questions answered,
the proportion of multiple choice questions answered
correctly, how many attempts it took to solve a chal-
lenge, how much time it took to solve the challenge,
the length of time each explanation was displayed. To
date we have been able to investigate only a few of
these possibilities.

We created another computer program to pro-
cess the logs to calculate how many questions the
user encountered and answered in an activity and
how many words were in their answers. We learned
that the data on number-of-questions-encountered
and the number-of-words-per-answer were a better
measure of the state of development of the activities
than of the learner’s engagement with the activity.

We continued to search for some measure of the
quality of a learner’s interaction with the activity. We
knew from classroom observations that time spent
with an activity does not automatically equate to time
engaged with an activity. Similarly, interaction with
the activity in terms of actions taken or number of
mouse clicks does not necessarily equate to mindful
interaction. We conceptualized this quality measure
as an index of interaction and operationalized it as the
length of time a user spends with an activity divided
by the number of actions taken by the user. A low
index of interaction indicates many actions in a short
period of time, while a high index of interaction indi-
cates a few actions in a long period of time. Crashes
also affect the index of interaction. If a user has been

through part of the activity before, the tendency is to
quickly click through to reach the new portion of the
activity.

We learned that our data logging is not yet sys-
tematic enough to produce meaningful numbers for
index of interaction. The median index of interaction
varied over the 11 logged activities from 0.08 to 2.0.
This is primarily a reflection of the variation across
activities in terms of what gets logged, how many chal-
lenges and questions were posed, etc. For a given ac-
tivity there does appear to be a range of productive in-
teraction with outliers at both extremes. One extreme
is the very low index of interaction calculated for CV
who clicked mindlessly through the activities, playing
BioLogica as if it were a game. The other extreme, a
very high index of interaction, was calculated for CG,
a dyslexic but diligent learner, who took a very long
time, even with assistance, to read the instructions and
information in BioLogica, but who could then reason
through the activities very well. Because of the length
of time required for each activity, this learner did not
complete all the activities. Since learners may use dif-
ferent numbers of activities, an index of interaction
averaged across all activities cannot be used for com-
parison across learners.

Analyzing Log Files for Learner’s Models
and Understanding

We were able to make the log files easier to read
with text harvests, like that shown in Table XI. Text
harvests grew out of requests from teachers for a way
of assessing students’ work with BioLogica. A report
generator strips out all the XML tags and other en-
tries leaving only the questions in an activity and the
answers entered by the learner.

Text harvests make it easier to assess a learner’s
models and understanding of genetics. They are much
easier to read than log files and can be coded and
scored just like pre- and posttests. However, they
don’t enable us to infer much about learners’ learn-
ing or reasoning strategies. We need to consider
the learner’s performance on the challenges as well.
Taken together, the pre- and posttests, text harvests,
and log files can be used to describe a learner’s path
through BioLogica. An example using the data gen-
erated by GH is included in Appendix C. The log
files of different students can be compared for a given
activity.

For this paper, the findings of Study 2 relate to
what we’ve learned about creating and analyzing log
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Table XI. Text Harvest From Processed Log File

Introduction roberto <04/ 17/ 01 | 22:26:40>
Q: Quite a variety of dragons here! Dragons apparently come in

many different colors. What OTHER differences do you
notice? Type your answer in the box below.

A: Some dragons have wings, some have arms, legs, both, or
none at all. Others have different shaped tails, some have
horns or none, some breathe fire or not, and they have
different body shapes.

Q: What did you notice as you examined their chromosomes?
Type your answer in the box below.

A: The dominant alleles usually gave them the characteristics
that they have.

Q: In particular, how do the chromosomes of male and female
dragons differ? Type your answer in the box below.

A: The male and female chromosomes respond differently to
the dominant allele.

Q: Why do you think you can’t match both dragons to the
comparison dragon? Type your answer in the box below.

A: I don’t think the female dragon has the genes for the yellow
color dragon.

Q: What do you think ‘phenotype’ means? Tell us in your own
words and give us an example.

A: Phenotype is the physical characteristics of a person who gets
it from the genes. An example would be a girl with wavy
brown hair, big brown eyes, short stature, wing shaped
eyebrows, heart shaped face, etc...

Q: What is the connection between genotype and phenotype?
That is, how does genotype relate to phenotype? Tell us in
your own words and give us an example.

A: They relate to each other because they involve chromosomes
and alleles. The genes from the genotypes give the physical
characteristics of someone, this is the phenotype. Ex. TT this
genotype gives the phenotype tall genes to someone.

Q: Explain why the dragons you created in this activity look
different from one another.

A: They have different colors, shapes, sizes, legs, horns, tails,
wings.

Q: Where are a dragon’s genes located? Click all that apply.
A: chromosomes alleles DNA.
Q: What did you know about phenotype and genotype before

you started this activity?
A: Phenotype are the physical characteristics Genotype are the

letters of the genes.
Q: What do you think you learned while working with this

introductory activity?
A: About the different male and female characteristics.
Q: What question(s) do you currently have about phenotype

and genotype?
A: none at the moment.

files. We present these as an annotated wish list of
requirements for data logging.

• Consistent user IDs

In order to use log files as evidence of pro-
cess and reasoning, each file must be at-
tributable to individual learners. A log-in

procedure that requires students to use pull
down menus to select their name from the
class roster and enter a password is now used.

• Systematic logging of and scoring rubrics for
student performance on challenges

This will require analysis of existing activity
scripts and the logs they generate to develop
the fine-grained data needed and ways of
postprocessing that data for easier analysis.

• ID tags for questions embedded in scripts

Each question embedded in a script should
have an identifier that enables a person or
program to pull all the responses to that
question from the database.

• Precode questions and tasks

Each question, action, and task could be asso-
ciated with one or more data analysis codes
to facilitate content and statistical analysis.

• Fine-grained time stamps and calculations of
time spent working on pedagogical elements

This also requires consistent use of pedagogical
elements within scripts in order to calculate
time spent on activities such as reading ex-
planations or manipulating alleles.

The task of mining useful data from log files con-
tinues as we try to develop ways of generating logs
that are more systematically related to research ques-
tions and variables and ways of analyzing logs in less
labor intensive ways that are useful to teachers and
students as well as researchers.

DISCUSSION

In the studies presented we have tried to illus-
trate how fruitful it can be to conduct classroom-based
research with interactive curricula. We have also illus-
trated how difficult such studies can be. Conducting
the kinds of studies presented in this paper requires
the systematic development of a series of tasks that
engage learners, scaffolding that helps them learn how
to accomplish the tasks, ongoing assessments to help
us understand what and how students are learning,
and how to use technology to support and facilitate
all of the above.
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Study 1: “L” High School, May 2001

The ninth grade students in the experimental
groups used a more stable version of BioLogica than
in previous implementations, also, scaffolding had
been put into about half of the activities at this point
in development. Thus, the findings that the experi-
mental group outperformed out control group was
welcomed! When we examine the kinds of items on
which they outperformed the control group, we see
that it is primarily on the easier type of reasoning
from cause-to-effect which is a good starting point.
We don’t know from the data logs how many of the
activities students actually completed because of the
difficulty of matching logs to individual students. The
experimental groups also outperformed the control
groups on the structure and process items. This is
encouraging because parts and processes are what
students manipulate in many BioLogica activities.
They also are critical aspects of model-based learning
(Buckley, 2000; Buckley and Boulter, 2000; Gobert,
2000; Gobert and Buckley, 2000). Their performance
on Punnett squares is also encouraging because of the
frequency with which Punnett squares are used as rea-
soning tools in BioLogica activities.

This paper has focused on the cognitive aspects
of model-based learning, but there are individual and
classroom factors influencing whether and to what ex-
tent a learner may actually engage in model-based
learning. The presumed motivation for engaging in
model-based learning is a desire to understand. Moti-
vation theorists conceptualize this desire as an intrin-
sic love of “learning for learning’s sake” (Ames, 1992;
Nicholls, 1989). It is also described as intrinsic mo-
tivation (Deci and Ryan, 1985; Lepper and Chabay,
1985; Lepper and Malone, 1987), a learning orienta-
tion rather than a performance orientation (Dweck,
1986), or an intentional learning stance (Bereiter and
Scardamalia, 1989). Extrinsic motivation arising from
teacher assessment is also a factor in students’ engage-
ment in classroom activities whether computer-based
or not.

We acknowledge that both intrinsic motivation
and the extent to which extrinsic factors may influ-
ence motivation and learning differ not only by stu-
dent but also by the context and culture in which the
student learns (Christie, 2002). Christie’s work on stu-
dents’ perceptions of learning (Christie, 1999, 2001,
2002) has shown promising indications that motiva-
tional constructs also vary within domain and between
tasks, according to the modality, e.g., text-based ver-
sus computer-based representations. Thus, students’

achievement cognitions (Christie, 2001, 2002), their
understanding of the nature of models (Gobert et al.,
2002; Gobert and Discenna, 1997) and of science
(Schommer, 1993) may influence not only their mo-
tivation to engage in learning but also the strategies
they employ in response to the task (Songer and Linn,
1991), and ultimately, the outcomes.

Lastly, there are a host of pragmatic factors such
as the availability of computers and classroom time
that constrain how much and when students use Bi-
oLogica and whether it is integrated into the rest of
the biology curriculum.

Future Research and Development

The results of these studies have informed the
templates for the activities created for the Model-
ing Across the Curriculum (MAC) project, an IERI-
funded project at the Concord Consortium. The MAC
project is a large-scale 3-year longitudinal study of
the learning of high school students as they use our
computer-based activities to develop and revise their
mental models of domain phenomena in physical
science, biology, and chemistry. MAC is developing
computer-based learning activities for each of these
areas. The development of the BioLogica and Dynam-
ica (physics) activities are taking place at The Con-
cord Consortium; the development of the Connected
Chemistry activities is taking place at Northwestern
University in collaboration with Uri Wilensky. These
activities support model-based learning through scaf-
folded interactions with manipulable models of do-
main phenomena, thus providing content, tools, and
contexts.

Now in its third year, MAC has (a) developed
computer-based learning activities that scaffold learn-
ers’ interactions with interactive, manipulable mod-
els of domain phenomena and that record and react
to the learners’ interactions; (b) developed and vali-
dated online pre- and posttests aligned to the learning
objectives and activities; (c) developed a technolog-
ical infrastructure to deliver MAC learning activi-
ties to classrooms and collect data when students use
MAC activities; (d) developed a web portal that pro-
vides access to reports of students’ use of activities
to teachers, students, and researchers; and (e) devel-
oped Classroom Communiquès, web forms filed by
teachers via the web portal to provide data about inte-
gration of MAC activities into the taught curriculum.
MAC learning activities are currently in use in more
than a dozen schools across the country.
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There is considerable research begging to be
done on assessment using interactive items (National
Research Council, 2002). We’re not talking about
adaptive testing but rather about using interactive
items to assess a learner’s problem solving or model-
building skills in a hypermodel environment such
as BioLogica. We question how well traditional test
items assess the state of learners’ models of and rea-
soning about phenomena and plan to investigate the
affordances that the hypermodel environment brings
to this question.

APPENDIX A: DESCRIPTION OF
BioLogica ACTIVITIES

(1) Introduction—What Do Dragons
Look Like and Why?

Introduction guides the user through BioLog-
ica’s representations of chromosomes, genes, and al-
leles and stresses the connection between genotype
and phenotype. As learners use pulldown menus in
the Chromosome View to change allele combinations,
they see changes in the Organism View of BioLogica’s
dragons.

Key Concepts

• Genotype determines phenotype
• Definition of traits, genotype, phenotype, chro-

mosomes, genes and alleles

(2) Rules—How Do Genes Affect Appearance?

The Rules activity is divided into three subactivi-
ties that can be invoked independently via a menu se-
lection. These are (1) traits, which deals with the four
autosomal traits of dragons genetics—horns, wings,
number of legs, and shape of tail; (2) firebreathing,
which introduces a sex-linked trait; and (3) colors,
which are polygenic and pleiotropic traits. One of the
color genes contains a recessive lethal allele. Traits
and firebreathing are essential introductions to dom-
inance, recessive, incomplete dominance, and sex-
linkage. At this point in its development, BioLogica
does not build on the colors subactivity.

Key Concepts

• Genotype determines phenotype

• Particular allele combination produces partic-
ular trait
• Dominance/recessive/sex-linked inheritance

(3) Meiosis—What Do Meiosis and Fertilization
Have to Do With Making Offspring?

Meiosis is also subdivided into three subactiv-
ities. Introduction to Meiosis, Meiosis Shuffles and
Deals! and Designer Dragons. Introduction to Meiosis
focuses on learning to use the interface and linking the
representations with the concepts of gametes, meio-
sis, and fertilization. It provides an introductory view
into the process of gamete creation and the random
distribution of the alleles and allows the student to
inspect the alleles in each gamete and to choose com-
binations of gametes to fertilize. Meiosis Shuffles and
Deals! links the representations with the names of the
phases of meiosis found in textbooks. Designer Drag-
ons offers students a series of challenges in the form of
creating specific offspring by examining the chromo-
somes in the gametes from each parent and selecting
those that will produce the desired phenotype in the
offspring.

Key Concepts

• Meiosis
• Fertilization
• Chromosome segregation
• Gamete selection

(4) Inheritance—What Determines What
the Offspring Look Like?

Unlike the Meiosis activity where students select
gametes to determine combinations of alleles that will
be “passed down” to the offspring, the Inheritance
activity uses the pedigree view, which emphasizes the
randomness of this process in nature. It thus serves as
an introduction to the role of probability in genetics.
The Monohybrid activity is a useful follow-on to this
one.

Key Concepts

• Monohybrid inheritance
• Proportions
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(5) Monohybrid—Do Traits Really Skip
Generations?

Monohybrid introduces and uses Punnett
squares to help students understand how the combi-
natorics of meiosis and fertilization (an exhaustive
count of all possible combination of parental genes)
enables one to derive the probability that an offspring
will possess a certain trait, and leads eventually to a
prediction of the likely fraction of offspring with the
trait in a sample of size n.

Key Concepts

• Monohybrid inheritance
• Punnett squares
• Combinatorics→ probability→ statistics

(6) Mutations—What Happens When
You Change the DNA?

This activity introduces and uses the BioLogica
DNA View, which provides an expanded view of the
red lines on chromosomes that represent genes. The
activity introduces students to the DNA and base
pairs that form particular alleles and challenges stu-
dents to modify the DNA of a dragon and to observe
the consequences.

Levels/Views: Organism View, Chromosome
View, DNA View

(7) Mutation Inheritance—How Are Mutations
Inherited?

This activity uses mutations to explore alterna-
tive modes of inheritance of traits that are controlled
by genes with more than two alleles.

Key Concepts

• Modes of inheritance, non-Mendelian genetics

(8) Horns Dilemma—Can Two Horned Parents
Have a Hornless Baby?

This activity focuses students’ attention on the
connection between parental genes and those of the

offspring, in the context of posing a challenge that re-
quires the student to alter a parental gene, making
it heterozygous so that a homozygous recessive off-
spring can result.

Key Concepts

• Inheritance of “hidden” traits

(9) Dihybrid

This activity explores what happens when you
study the inheritance patterns for two traits at a time.
It provides experience with dragons with traits on the
same chromosome and with peas with traits on differ-
ent chromosomes.

Key Concepts

• Effect of independent assortment of chromo-
somes on the inheritance of two traits

(10) Sex Linkage—What Difference Does It
Make if a Gene Is on the X Chromosome?

This activity begins with a review of how the X
and Y chromosomes interact to produce male and
female (introduced in the Rules activity). Once it is
clear to the students that female dragons are XX and
males are XY, the activity uses the firebreathing (re-
cessive, X-linked) trait to help them learn how sex-
linked traits are inherited.

Key Concepts

• Sex-linked inheritance

(11) Scales—What Causes That Scaly Skin?

This is an advanced activity that guides the stu-
dent through the process of investigating a trait—
scaly skin—the gene for which has been hidden. Four
questions are asked: Are scales genetically inherited?
Are they recessive or dominant? Are they sex-linked
or autosomal? And which chromosome are they on?

Key Concepts

• Inference of mode of inheritance from statistics
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(12) Plates

Plates is similar to scales, but with incompletely
dominant traits.

Key Concepts

• Investigating how new traits are inherited from
statistics

(13) Invisible Dragons

In this activity we test the student’s ability to solve
a real genetics puzzle. They are presented with two

APPENDIX B: SUMMARY TABLE FOR SITE “L” (STUDY 1)

Summary Table of Univariate Analyses of Variance Using Pretest as a Covariate

Mean
Question Dependent F Significance Number Total number
subgroup variable Control Experimental statistic (p value) of items of points

All questions Posttest 30.000 34.431 5.355 0.007a 52 106
Concept Inheritance 5.778 6.472 1.870 0.162 10 15

Dominance 3.875 4.722 2.524 0.088b 8 13
Sex-linkage 1.000 1.139 1.143 0.325 6 10
Genotype/phenotype 8.208 9.028 1.527 0.225 11 11
Monohybrid 7.444 9.167 5.798 0.005a 8 19
Dihybrid 1.250 1.694 4.261 0.018a 4 6
Pedigree 0.778 0.750 1.098 0.339 3 6

Type of reasoning cew 4.472 5.083 5.734 0.005a,c 6 6
ecw 2.569 2.750 2.630 0.079b 4 4
ceb 5.958 7.056 5.951 0.004a 11 18
ecb 5.792 5.694 3.572 0.033a,c 15 22
Punnett square 5.250 5.653 4.280 0.018a 4 16
Structure 2.917 4.139 3.985 0.023a 7 10
Process 0.667 1.194 7.420 0.001a 3 6

Notes. Ninth grade classes: total number of students = 72 (control group = 36 students; experimental group = 36 students).
aSignificant at p < 0.05α.
bSignificant at p < 0.10α.
cLevene’s Test for Equality of Error Variances is significant at p < 0.05α.

APPENDIX C: LEARNING PATH OF GH

Based on responses to open-ended questions on
the pretest, GH began the study with a model of in-
heritance as something you receive from parents or
grandparents and that it is a random process. “I guess
it’s when genes are passed down to you.” The chromo-
some is “some sort of gene” and traits as “some quality
of you.” No responses were offered for fertilization,
pedigree, or sex-linked. This is a potentially good basis
for beginning to use BioLogica in that GH recognizes

invisible dragons and their task is to figure out the ge-
netic makeup of this couple. They may make crosses,
look at the chromosomes and even make a backcross,
but all of these costs money. The players start out with
$20000 in the bank. Each procedure costs money as
does each wrong answer. Players make money by an-
swering questions correctly.

GenScope

This is an open-ended interface to all the BioLog-
ica functionality. It has no “story line” or monitoring
functions. GenScope is essentially a BioLogica imple-
mentation of GenScope that runs on the Mac and the
PC.

genotypic entities (genes and chromosomes) as well
as phenotypic entities(traits).

According to available logs, GH did not complete
the Scales activity. GH seemed to have little difficulty
completing most of the challenges in the activities—
until encountering the pedigree view in Monohybrid.
GH answered questions, could define dominant and
recessive in terms of representations by upper case
and lower case letters, respectively, but sometimes had
difficulty applying them to multiple choice questions
embedded in the Rules activity. GH was able to reason
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with and manipulate the meiosis representation and
make the connection between the representations of
chromosomes and alleles in chromosome and meio-
sis views. GH could reason with Punnett squares but
seemed to lack a strategy for making crosses and rea-
soning about the results in pedigree view. [Monohy-
brid seems to be a place where scaffolding is needed to
help learners figure out and reason with this new rep-
resentation.] Dihybrid and Plates logs provide further
evidence of difficulties with pedigree use and reason-
ing. In Plates, for example, GH made just one cross,
looked at chromosomes and concluded (incorrectly)
that plates are recessive because “the quality didn’t
seem to travel through the genes often.” The evidence
for dominance seems to be frequency.

Responses to the questions on the posttest sug-
gest that there is some confusion about the physical
relationship among chromosomes, genes, and alleles.
The chromosome is now “the group of genes or alle-
les that give traits” and a gene is “a group of DNA.”
But allele is “a group of genes/DNA,” which suggests
that allele is not understood. Heterozygous, homozy-
gous, and autosomal alleles are understood, but dom-
inant, recessive, and sex-linked are not. Dominance
seems to associated solely with the frequency with
which it turns up in the offspring. For example, domi-
nance is “the overpowering type of alleles that deter-
mine more in the offspring outcome” while recessive
is “the ‘weak’ type of alleles that determine less in
offspring.” This is echoed in a later explanation “If
there is complete dominance, the offspring should all
have the trait.” Sex linked is “when an allele is dif-
ferent in each of the sexes (on either the X or the Y
chromosome).”

The mechanisms of inheritance (meiosis and fer-
tilization) were defined as “the process in which DNA
is taken from the parents and made into an off-
spring” and “when an egg from the female and sperm
from the male is brought together to form an off-
spring,” respectively. It is not clear whether this is
part of a mental model of meiosis, or a text-based
definition.

In the NewWorm portion of the posttest, the
learner was able to map from genotype to phenotype
and vice versa, determine the sex of the NewWorm,
and create and use Punnett squares effectively to rea-
son about monohybrid inheritance. The facts that (1)
only one of the three dihybrid questions was answered
correctly without explanation and that (2) GH was
able to identify the gametes and offspring in Punnett
square but (3) did not associate them with the out-
comes of meiosis and fertilization, suggests to me the

lack of a mental model. If GH had a mental model
of the chromosomes and the process of meiosis and
fertilization, it would be possible to reason about di-
hybrid inheritance by visualizing the movement of al-
leles on the same or different chromosomes.

GH’s ability to reason with the pedigree repre-
sentation is unclear. GH seems to have forgotten or
did not apply BioLogica activities in this explanation,
“if having small nostrils was recessive, then the baby
couldn’t have them, because the parents don’t. It then
has to be dominant.” This completely ignores the pos-
sibility that the parents could be heterozygous domi-
nant in the trait, the focus of more than one activity.
Answers to the multiple-choice questions were little
changed from the pretest, just one point increase.
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