
Multi-Agent Learning with a Distributed Genetic Algorithm

Exploring Innovation Diffusion on Networks

Forrest Stonedahl†, William Rand†‡, Uri Wilensky†‡
†Center for Connected Learning and Computer-Based Modeling

‡Northwestern Institute on Complex Systems
Northwestern University
Evanston, Illinois, USA

{forrest, wrand, uri}@northwestern.edu

ABSTRACT
Lightweight agents distributed in space have the potential
to solve many complex problems. In this paper, we exam-
ine a model where agents represent individuals in a genetic
algorithm (GA) solving a shared problem. We examine two
questions: (1) How does the network density of connections
between agents affect the performance of the systems? (2)
How does the interaction topology affect the performance
of the system? In our model, agents exist in either a ran-
dom network topology with long-distance communication, or
a location-based topology, where agents only communicate
with near neighbors. We examine both fixed and dynamic
networks. Within the context of our investigation, our initial
results indicate that relatively low network density achieves
the same results as a panmictic, or fully connected, popula-
tion. Additionally, we find that dynamic networks outper-
form fixed networks, and that random network topologies
outperform proximity-based network topologies. We con-
clude by showing how this model can be useful not only for
multi-agent learning, but also for genetic algorithms, agent-
based simulation and models of diffusion of innovation.

Categories and Subject Descriptors: I.2.m [Artificial
Intelligence] Misc.

General Terms: Algorithms

Keywords: Multi-Agent Learning, Genetic Algorithms, Net-
works, Innovation, Diffusion

1. MOTIVATION
Given lightweight agents, that is agents without a large

amount of computational power, and an interaction topology
that allows those agents to communicate, how well can these
agents perform at solving a shared problem? The general
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idea is that it can be difficult for a simple agent to solve a
complex problem on its own, but working together a group
of simple agents may be able to solve the problem. This
question is interesting for a number of fields including multi-
agent learning, robotics, and agent-based modeling (ABM).
In this paper, we will assume that we have a group of agents
who can propose solutions to a problem and evaluate how
good that solution is when compared to other solutions. In
addition, we will assume that these agents have the ability
to compare their solutions with a subset of the other agents
in the group, and they can copy or combine other agent’s
solutions in an effort to improve their own solution.

If we assume that the problem is tractable enough that
it can be solved by such a group of agents in a reasonable
amount of time, then a natural question to ask is: How
do the characteristics of the interaction topology affect the
performance of the group, i.e., the time until the discovery
of an optimal solution? Using this question as our motiva-
tion, we further refined the question to two sub-questions:
(1) how does the network density of the topology affect the
group performance, and (2) how does the structure and dy-
namics of the network affect the group performance? In the
first question, we asked how does the number of agents each
agent can interact with affects the overall performance of
the group. In the second question, we asked if it matters
which agents each agent interacts with, and how relation-
ships between agents can affect group performance.

In this paper, we explore these questions by examining
how a group of distributed individual agents can operate
as a genetic algorithm (GA) to solve a problem. We will
allow these individuals to be influenced and to influence a
set of other individuals in the group, specified by a network
topology. Our parameters of interest will be how many other
individuals each agent communicates with, and how these
other individuals are chosen.

We will begin by discussing related work. Then we will
present the model that we used to examine these two ques-
tions and the initial results of two experiments. We will
conclude by discussing how this model applies to a wide
range of phenomena, and discuss future research.

2. RELATED WORK
As we mentioned, the way we have operationalized our

driving questions is by examining a group of agents that op-
erate together as a GA. As a result, there is relevant research
in the field of evolutionary computation (EC). In particu-
lar, since we are assuming that the agents can eventually



solve the problem that we are giving them, the measure-
ment of “takeover time” from EC is relevant. Takeover time
is the amount of time it takes for a good solution to spread
throughout a population. There has been work in the past
that has looked at how takeover time is affected by differ-
ent network topologies [8] [9] [3]. However, this work has
focused on how a perfect solution percolates through a fixed
network and not how network topologies affect the search for
a perfect solution. Our model is also related to the study of
spatially structured populations in GAs (e.g., evolution tak-
ing place on lattices) [12]. To date, however, the majority of
research has focussed on fixed network structures. We are
interested in comparing fixed and dynamic networks.

Besides EC, there is work in network theory that is rele-
vant, specifically with respect to the diffusion of innovation
that has influenced the development of the model that we
are presenting. In particular, Watts’s work on how inno-
vations diffuse on networks [14]. However, this work also
assumes that there is only one innovation, and the focus
is on the spread of that innovation. Our research seeks to
understand how the network affects the development of in-
novative solutions, and not just their diffusion. Moreover,
Watts’s focused on fixed random networks, we are interested
in examining a wider range of networks. There has also been
interest in understanding how processes of diffusion operate
on dynamic network structures. Moody [7], for instance, has
criticized the practice of studying features of fixed networks
while ignoring the issue of timing and the dynamic nature
of real-world data. Since our work is more theoretical than
Moody’s, we aim to provide more general guidelines to prac-
titioners of social network analysis about the ways in which
dynamic networks differ from their fixed counterparts.

3. THE MODEL AND SETUP
As we mentioned, to operationalize our examination of

how network interactions and topology affect the perfor-
mance of agents solving a shared problem, we construct a
GA constituted of agents. In a standard GA [4], agents
represent a solution to a problem; they are evaluated on
how well they solve the problem, and better solutions con-
tinue to propagate through cloning or by recombining with
other agents in the population. We will use this simple de-
scription as our starting point, but instead of agents being
potential solutions to problems, our agents each possess one
potential solution. The agents in our model do not contain
genetic algorithms, but they participate in a genetic algo-
rithm. The population of 256 agents works together to solve
a problem. Each agent has a local neighborhood (defined
by the network topologies described below) of other agents
that can share information with it. During each generation
agents examine the solutions of a uniformly random subset
(3 agents in the experiments below) of their local neigh-
borhoods (which include themselves) and choose the best
solution in that subset1. This selection process resembles
tournament selection in a standard GA, but the possible
subsets are restricted by the local network neighborhood.
With a certain probability (30% in the experiments below)
the agents take the selected solution for their own. Oth-
erwise (i.e., 70% of the time), they carry out the selection
process again, and combine the two solutions that they have

1Agents only know the performance of their solutions rela-
tive to others; they never know their absolute performance.

selected using one-point crossover [4]. After all agents have
chosen a new solution, each agent probabilistically mutates
its solution. Mutation is per-bit at a rate of 1

2×l
, where l is

the length of the solution string.
In these experiments, we examine a population of agents

trying to solve a bit-matching problem called the hyperplane-
defined function. Hyperplane defined functions (hdf’s) were
constructed to facilitate the study of GAs. The difference
between this new test suite and most other test functions is
that the underlying representation of this suite is schemata
[4]. By utilizing functions that reflect the way the GA
searches, the performance of the GA can be easily observed.
Created by Holland, the hdf’s [5] are an extension of the
Royal Road functions developed by Mitchell et al. [6].

An hdf is composed of positive schemata and negative
“pothole” schemata. For each schema that is matched by an
agent’s solution, the agent is rewarded (the fitness value is
incremented). And for each pothole that is matched, the in-
dividual is punished (the fitness value is decreased). There
are elementary level schemata, which are the foundational
elements, and intermediate-level schemata, which are com-
posed of pieces of the elementary schemata.

We examined two hdf’s with two levels of difficulty. These
two hdf’s are resetricted instances of the general class of
hdf’s and corresponded to static instances of the shaky lad-
der hyperplane-defined functions (sl-hdf’s) [10]. The first
problem was a 100-bit hdf that contained 10 elementary
schemata, 7 intermediate schemata, and 10 potholes. El-
ementary schemata were of length 10 and order 8. We also
used a 200-bit hdf that contained 20 elementary schemata,
17 intermediate schemata, and 20 pot-holes. Elementary
schemata were of length 20 and order 8. The 100-bit hdf is
substantially easier than the 200-bit hdf. Because of the way
the sl-hdf’s are constructed we know a priori their optimal
value and optimal string set [10].

In the simple GA the population is panmictic, meaning
that any solution may breed with any other solution to cre-
ate offspring. In this model, we restrict the breeding neigh-
borhoods by imposing several types of network structure on
the population. In particular, we consider two types of net-
work structures: (1) random networks and (2) “geographi-
cally” defined proximity networks among agents distributed
on a torus world. We will refer to this first type of network
as a random or long-distance network, since the locations
of two agents in space is irrelevant to whether or not they
can communicate. The neighborhood for each agent in the
random networks is a random selection of other agents in
the population; in particular, the structure is created using
the Erdős-Rényi model [2] with an edge probability equal
to the expected network density rate being examined. The
expected network density is the key parameter of control
throughout all of our experiments. An instance of a ran-
dom network is shown in Figure 1. We will refer to the
second type of network as a proximity-based network since
agents only communicate with other agents that are prox-
imate to them on the basis of some distance-measure2. In
these networks, agents are scattered randomly on a wrap-
ping bounded (toroidal) world. The neighborhood for each

2We are agnostic as to whether this distance represents a
physical or trait-based distance. Sometime these proximity
networks are referred to in the organizational science lit-
erature as “silo” networks, since the individuals are biased
toward interacting within their contained silos.



agent is defined by a communication radius; a link is cre-
ated between two agents if the distance between them is less
than this radius. An instance of this type of network is visi-
ble in Figure 2. We compute the communication radius such
that the circular neigbhorhood will contain, on average, the
correct number of agents to achieve the desired expected
network density. This allows us to directly compare the re-
sults from the same expected network densities in both the
random and proximity-based networks.

We also considered one additional parameter, which was
whether the networks are fixed or dynamic. In fixed net-
works agents always communicate with the same other agents
each generation, i.e., the breeding neighborhoods for the
genetic algorithm remain constant. In dynamic networks,
agents may communicate with different agents every gener-
ation, i.e., the breeding neighborhoods change. These two
factors together result in four network topologies that we
will examine: (1) fixed proximity-based, (2) fixed random,
(3) dynamic proximity-based, and (4) dynamic random.

Proximity-based and random networks used different forms
of dynamics. In dynamic proximity-based networks, agents
move slowly (about 1% of the world’s diameter) forward
across the world, turning randomly (up to 15 degrees right
or left) each generation. Agents’ local neighborhoods update
based on the agents currently within their communication
radius. In dynamic random networks, a new network struc-
ture is generated each generation, using the same Erdős-
Rényi model as described above. These particular forms of
dynamics are a subset of a larger class of dynamics. For
example, instead of reassigning every link in the dynamic
random networks we could change a smaller fraction of links
each generation, and in the proximity-based networks, the
rate and method of agent movement could be altered.

We chose these two network topologies to be representa-
tive of two ends of a spectrum from unstructured (random)
to structured (proximity-based) topologies. In future work,
these networks topologies will act as base cases for com-
parison to other topologies. We were also interested in the
effects of dynamics on networks, and examining these base
cases assists in isolating the effects of dynamics from other
complicating factors of network structure.

We conducted two experiments with this model to inves-
tigate how the density affects the overall performance of the
GA. All of the components of the model are implemented
in NetLogo [16]. In all of the experiments described below,
we will run the model with a different level of density until
an optimum solution is found, and we measure how long it
takes to find that optimum solution, or we give up if it takes
more than 3000 generations3.

4. EXPERIMENT 1: NETWORK DENSITY
In the first experiment, we vary the network density from

0% to 100% at 5% increments, and examine all four network
topologies. We also examine both the easy problem (100
bit hdf) and the harder problem (200 bit hdf). For each
parameter set we ran the model sixty (60) times, and record
the time until a perfect solution is found. We average the
results, and present them for the easy problem in Figure 3
and for the harder problem in Figure 4.

4.1 Experiment 1 Results
3Most runs find the optimum well before 3000 generations.

Figure 1: Random Network with density of 0.01 af-
ter discovery of optimum. Agents are colored ac-
cording to the fitness of the solution they possess.
Higher luminance values indicate better solutions.

Figure 2: Proximity Network with density of 0.01
after discovery of optimum. Agents are colored ac-
cording to the fitness of the solution they possess.
Higher luminance values indicate better solutions.
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Figure 3: Average time to optimum versus density
from 0% to 100% for all four network topologies on
the 100-bit hdf problem. Bars show standard error.

In the easier problem (Figure 3), it can be seen that all
four topologies result in similar performance. In all four
cases, as long as the network density is at or above 5%,
the population is able to find solution in roughly the same
amount of average time, around 250 generations.

In the harder problem (Figure 4), a similar qualitative
phenomenon can be observed. With a network density 5%
or greater, the population is always able to find a solution
somewhere between 1000 and 1500 generations. The results
on this harder problem are less consistent than they are on
the easier problem, and there is no discernible pattern as to
when the topologies perform differently.

4.2 Experiment 1 Discussion
Despite the lack of differences in the network topologies

there are several interesting phenomenon to observe. First
of all, the system is robust, even for sparse networks (≤ 5%
density) it performs equivalent to 100% network density.

This panmictic (all mixing) population is equivalent to
global communication. These results indicate that there is
no reason that every individual needs to be in communica-
tion with every other individual in the population. Instead,
each individual needs to only communicate with a small lo-
cal neighborhood, regardless of the interaction topology.

It should also be noted that 0% network density is the
same as every agent working alone. In this model, agents
are only able to measure the performance of their solution
indirectly, by comparing it to the performance of solutions
of other agents they communicate with. Thus, agents oper-
ating alone wind up mutating bits at random.

Values of network density between 0% and 100% reflect
varying degrees of local communication. The results of these
experiments illustrate that little local communication is nec-
essary to achieve the same effects as global communication.
Moreover, these results seem to hold independent of the dif-
ficulty of the problem. In applications, this might guide
decision-making about the amount of effort that should be
invested in inter-agent communication.
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Figure 4: Average time to optimum versus density
from 0% to 100% for all four network topologies on
the 200-bit hdf problem. Bars show standard error.

5. EXPERIMENT 2: A CLOSER LOOK
We designed a follow-up experiment to determine two

things. First, at what network density (between 0% and 5%)
does agent communication break down significantly enough
that the group problem solving efficiency is diminished. Sec-
ond, how do the different network topologies affect the per-
formance of the system, given very low network densities. In
this experiment, we varied the network density from 0% to
5% at 0.1% increments, and again examined results for all
four network topologies on both the easier (100 bit hdf) and
the harder (200 bit hdf) problems. For each parameter set
we ran the model sixty (60) times, and recorded the time un-
til a perfect solution is found. We averaged the results, and
present them for the easy problem in Figure 5 and for the
harder problem in Figure 6. Only network densities between
0% to 3% are shown, to highlight the region of interest.

Additionally, we measured the diversity of the popula-
tion’s solutions at the end of the run (3000 generations).
Our diversity measure was the average pairwise Hamming
distance between agents’ solutions (strings of bits), normal-
ized to be between 0.0 (completely homogenous) and 1.0
(maximally diverse).4 We average the results of the 60 rep-
etitions of the model, and present them for the easy problem
in Figure 7 and for the harder problem in Figure 8.

5.1 Experiment 2 Results
In the easier problem (Figure 5), we now find a difference

in the performances of the four topologies. The dynamic
random structure requires the least amount of network den-
sity in order to achieve the same results as the panmictic
population. After this, the dynamic proximity and fixed
random structures have equivalent behavior. Finally, the
fixed proximity structure has the worst performance of the
four interaction topologies. However, in all four cases, as
long as the network density is over 1.8%, the population is
able to find a solution in roughly the same amount of average
time, around 250 generations.

4This is one of many possible diversity measures.



In the harder problem (Figure 6), a similar qualitative
phenomenon can be observed. The dynamic random struc-
ture performs the best, with the fixed random and dynamic
proximity structures coming in second, and the fixed prox-
imity structures performing the worst. However, with a net-
work density greater than 1.9%, the population is consis-
tently able (on average) to find a solution somewhere be-
tween 1000 and 1500 generations regardless of the network
structure. Again, the results on this harder problem are less
consistent than they are on the easier problem, and there is
no statistically significant pattern as to when the topologies
perform differently after this 1.9%.

The diversity plots (Figures 7 and 8), show that decreases
in diversity occur in the same order as the decreases in time
to optimal. As the expected network density increases, first
the dynamic random network diversity decreases, then the
fixed random and the dynamic proximity, with the fixed
proximity having the slowest decrease in diversity. More-
over, these decreases in diversity occur at roughly the same
network densities as the decreases in time to optimal.

We ran additional experiments identical to this one, ex-
cept with variations on the selection process (i.e., choosing
the best of two (2) or four (4) solutions from the neighbor-
hood, instead of three (3), or using“roulette”selection which
chooses probabilistically from the whole local neighborhood
proportional to each solution’s fitness). These experiments
yielded the same qualitative results as those presented here.

5.2 Experiment 2 Discussion
There are several clear results from this data. First, dy-

namic topologies require less network density to achieve the
same level of performance as do fixed topologies. Second,
random topologies require less network density to achieve
the same level of performance as do proximity-based topolo-
gies. Moreover, these results appear to be independent of
the difficulty of the problem.

Several hypotheses explain these results. First, proximity-
based fixed topologies are still segmented at higher network
densities than the other topologies. Since the network is de-
fined by other agents within a certain local radius, at low
levels of density it is common for not all of the agents to be
connected to each other in one giant component. These iso-
lated components cannot share information with each other,
which prevents global coordination to collectively solve the
problem. Dynamic topologies are not subject to this prob-
lem because they are constantly changing their network con-
nections so isolated groups will eventually be connected to
the rest of the group. The fixed random network topology
is also less susceptible to this problem because the construc-
tion of the random networks means that neighbors of agents
are not likely to be connected to other neighbors of the same
agent, i.e., they have a low clustering coefficient. As a re-
sult, for fairly low network densities there is still a giant
component connecting many of the agents.

A second hypothesis is that the key ingredient to success-
ful group problem solving is the ability for good solutions
to propagate quickly through the whole population. One
important measure for this on fixed networks is the average
length of the path between any two nodes in the network (av-
erage path length). Random networks have a shorter aver-
age path length than proximity-based networks. In dynamic
networks, average path length is not well-defined, but since
agents are constantly changing their partners, the number of

generations it takes for an innovative idea to spread across
the network should be smaller.

A third hypothesis is similar to the second, but instead
the emphasis is on the initial rapidity with which a solution
can reach a reasonably broad audience. In particular, if the
clustering coefficient of the network is too high, then agents
will pass information to their neighbors, who will mostly
pass among each other, rather than passing it to new agents
that haven’t been exposed to it yet. Random networks have
lower clustering coefficients than proximity-based networks.
In the dynamic topologies, the clustering coefficient is not
well-defined, but since agents are not exposed to the same
individuals every generation, good information is more likely
to initially spread more quickly.

The diversity results support these hypotheses that the
key to solving these problems is to have good communica-
tion across the network. High diversity indicates that there
are pockets of the network that are not communicating well
with other pockets of the network and thus have evolved
their own different solutions to the problem. When a topol-
ogy promotes quick communication of good ideas across the
network then you would expect less diversity than when it
takes more time for these partial good solutions to permeate.

These results clearly indicate that random-network topolo-
gies outperform proximity-based network topologies, and
that dynamic topologies outperform fixed topologies.

6. CONCLUSIONS AND FUTURE WORK
We have presented a model of multi-agent learning that

is embedded in a network context, and have discussed three
main results. First, the system is robust (maintains optimal
performance) for a large range of network densities (& 2%),
but below a certain density threshold the performance de-
creases sharply (i.e., there is a phase transition). Second,
this threshold is lower for the dynamic networks than for
the fixed networks. Third, this threshold is lower for the
random topology than the proximity topology.

Beyond these specific research questions, our research has
potential applications in three different disciplines: evolu-
tionary computation (EC), social science, and agent-based
modeling (ABM). From an EC perspective, the presented
model is an investigation into the effect of various breeding
networks in a GA. Such an investigation allows researchers
interested in GAs to develop a new understanding of how
breeding topologies affect the performance of the GA, and
is directly relevant to researchers interested in the question
of takeover time in GAs [8]. Within this field our findings
supports the idea that panmictic populations are not nec-
essary in order to achieve maximal performance in a GA.
There may also be ways to use breeding topologies to in-
crease the performance of a GA. Thus, these results may
have applications in the design of robust distributed GAs.

From a social science perspective, this model examines
the diffusion of innovation in social networks. The agents
can be viewed as individuals in an organization, where each
individual is involved in the process that is called “reinven-
tion” in the diffusion of innovation literature [11]. Rein-
vention is where innovations are modified by individuals in
order to solve a new problem, or to solve an existing prob-
lem better. Our results indicate that little communication
between individuals is necessary for reinvention to work.
Long-range (i.e., cross-silo) communication is superior to
proximity-based communication. Dynamic communication
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Figure 5: Average time to optimum versus network density from 0% to 3% for all four network topologies
on the 100-bit hdf problem. Standard error bars are shown.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  0.5  1  1.5  2  2.5  3

ge
ne

ra
tio

n 
pe

rf
ec

t s
ol

ut
io

n 
w

as
 fo

un
d

network density (percentage)

fixed proximity
dynamic proximity

fixed random
dynamic random

Figure 6: Average time to optimum versus network density from 0% to 3% for all four network topologies
on the 200-bit hdf problem. Standard error bars are shown.
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networks are also beneficial; talking to different people ev-
eryday facilitates reinvention.

From an ABM perspective, we consider how several types
of agent interaction dynamics affect the exchange of infor-
mation. This model can be viewed generally as a model of
agent communication, and our results describe how levels of
communication influence performance. This model provides
researchers, who are interested in communication processes
within ABMs, guidelines for what to expect based upon
how their agents are distributed and how the agents com-
municate. For instance, for engineers interested in using a
cloud of “smart-dust” to collectively solve difficult problems,
our results recommend choices for communication topologies
and connectivity requirements to achieve success.

There are many additional questions that could be con-
sidered when examining this model. For instance, we spec-
ulated that dynamic topologies can more quickly distribute
information across the network, and that they are exposed to
a wider range of information quickly. However, as mentioned
above, the average path lengths and clustering coefficients
are not well-defined for dynamic networks and so the cre-
ation of dynamic or generalized versions of these measures
might facilitate the understanding of how dynamic network
structures affect performance of these systems.

Another phenomena that warrants investigation is the role
that particular nodes play in the system performance. Re-
searchers interested in the diffusion of innovation would be
particularly interested in this question. It has been specu-
lated that “influential” nodes play a key role in the diffusion
of innovation, though this role has recently been brought
under speculation [15]. Influentials could be examined as
highly connected nodes, or as nodes with special properties
(e.g., nodes that only innovate and do not copy from other
nodes), and this model provides a computationally tractable
way of asking this question.

We have also only investigated two classes of network
structures (proximity and random) in this model. Addi-
tional topologies like small-world topologies [13] and scale-
free networks [1] should be investigated. Since scale-free and
small-world both maintain higher clustering coefficients than
expected given their lower average path lengths, they may
provide a way for agents in networks to gain the benefits of
local communication, and long-distance communication at
the same time. Evaluating performance on these networks
would also help us diagnose the primary structural factors
that contribute to stable multi-agent learning in our model.
At very low network densities, how much is performance
controlled by average path length as opposed to clustering
coefficient? If we could answer this question, then we may
be able to design better multi-agent learning systems.

Besides changing the network parameters, we could also
vary the GA parameters. For instance, we could examine
the interaction between the mutation rate and the network
structure. A high mutation rate allows for a greater proba-
bility of innovation, but it can also cause good solutions to
be destroyed before spreading through the population. How-
ever, high network densities may lessen the negative effects
of mutation by raising the rate of spreading, suggesting a
trade-off between mutation rate and network density.

There are many interesting questions that can be ad-
dressed by this model. In general, the goal of our research
project is to take a step back from particular applications
and build higher-level models that can be employed in a

wide variety of circumstances. By studying these “meta-
models” we can provide advice, guidelines, and frameworks
to researchers interested in a wide variety of fields.
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