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ABSTRACT
For many large-scale combinatorial search/optimization prob-
lems, meta-heuristic algorithms face noisy objective func-
tions, coupled with computationally expensive evaluation
times. In this work, we consider the interaction between
the technique of “fitness caching” and the straightforward
noise reduction approach of “fitness averaging” by repeated
sampling. Fitness caching changes how noise affects a fitness
landscapes, as noisy values become frozen in the cache. As-
suming the use of fitness caching, we seek to develop heuris-
tic methods for predicting the optimal number of sampling
replications for fitness averaging. We derive two analytic
measures for quantifying the effects of noise on a cached fit-
ness landscape (probabilities of creating “false switches” and
“false optima”). We empirically confirm that these measures
correlate well with observed probabilities on a set of four
well-known test-bed functions (sphere, Rosenbrock, Rast-
rigin, Schwefel). We also present results from a prelimi-
nary experimental study on these landscapes, investigating
four possible heuristic approaches for predicting the optimal
sampling, using a random-mutation hill-climber with fitness
caching.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search—heuristic methods

General Terms
Algorithms, Measurement, Experimentation

Keywords
fitness caching, noise reduction, fitness landscapes, uncer-
tainty, sampling, hill climbing, evolutionary algorithms
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1. MOTIVATION
There are a number of problem features that universally

pose challenges for all metaheuristic search/optimization pro-
cesses: predominant among these are noise/uncertainty, and
the slowness of fitness evaluation (i.e., the time necessary to
evaluate the objective function for any point in the search
space). The presence of noise in a fitness function impedes
making accurate comparisons between candidate solutions,
or knowing how close the search process is to reaching a
certain performance objective. In many cases, it is possi-
ble to use an average of many independent fitness function
evaluations in order to reduce the noise. The length of time
required for a single fitness evaluation can be significant, as
it expands the length of the search by a direct multiplicative
factor, and limits the number of evaluations possible for the
search. Sometimes it is possible to use a less accurate surro-
gate fitness function, which can be evaluated more quickly,
but at the cost of additional noise in the fitness estimates (for
a survey of fitness approximation, refer to [7]). In general,
it is impossible to eliminate both of these problem features,
although there are many problems where trade-offs can be
made between the two.

When fitness evaluation is particularly computationally
expensive (e.g., in large complex simulations), it is some-
times attractive to cache fitness values for re-use, to save
the cost of re-evaluating them again later. At least in some
non-noisy optimization problems, this has been shown to be
an effective approach for reducing total computational cost
[11, 12], and we believe there is potential for applying it to
noisy search spaces as well. In this work, we apply a combi-
nation of formal and empirical methods to try to investigate
the relationship between fitness caching and the noise re-
duction technique fitness averaging by repeated sampling. In
noisy environments, too little sampling can make the search
untenable, whereas too much sampling can be unacceptably
slow. Somewhere in between, there exists an ideal number
of sampling repetitions, or “sweet spot”, where the search
most efficiently reaches a desired fitness level. Assuming the
use of fitness caching, and using only information that can
be extracted from the fitness landscape with reasonable effi-
ciency, we would like to be able to predict where this “sweet
spot” will fall.

The basic intuition motivating this research is that some
landscapes are much more sensitive to the effects of noise
than others, with regard to movement through these land-
scapes. For instance, a landscape that contains large steep
mountains may be easily traversed to values of high fit-
ness, despite the presence of significant noise, whereas even



a small amount of noise may cause a landscape comprised of
gentle slopes to become unnavigable. It would be very useful
to have an efficient method of assessing the robustness of a
landscape with respect to noise, in order to choose an appro-
priate sampling rate when applying a meta-heuristic search
technique to the problem. The current study investigates
the correlation between the distribution of fitness gradients
throughout the landscape and the deleterious effects of vary-
ing levels of noise on landscape traversal.

The paper begins by situating the present work in the con-
text of related research in the field. We then propose two
measures to quantify the impact of noise on search processes
within fitness landscapes: the probability that noise gener-
ates false local optima in the landscape, and the probability
that noise will result in an incorrect choice when comparing
two neighboring locations in the space. We offer mathe-
matical expressions for these two measures, which are nu-
merically confirmed by Monte Carlo simulations of the two
respective probabilities, on a set of four well-known test-bed
functions (sphere, Rosenbrock, Rastrigin, Schwefel). Next,
we discuss how these measures could be used in heuristics
for choosing an optimal sampling number for noise reduc-
tion. We then present the results of an experimental study
where we empirically determine optimal sampling rates on
the four test landscapes, given a straightforward local search
technique (stochastic hill climber) that uses fitness caching,
and compare the potential of four heuristic approaches to
predict the “sweet spot” for noise reduction. We conclude
by presenting several avenues for possible future work.

2. RELATED WORK
The beneficial effects of fitness caching (specifically for

genetic algorithms) have been discussed by Kratica [11],
and also applied to a practical problem (plant location) in
[12]. In [12], the authors note that one of the conditions
for successfully applying fitness caching is a large evalua-
tion time for the fitness function. One real-world example
where fitness caching may be beneficial is the the optimiza-
tion of simulation parameters, since complex simulations
may require long running times. However, another aspect
of many real-world optimization problems is the presence
of noise or uncertainty. For example, a recent instance of
fitness caching [18] used two simple meta-heuristic search
algorithms (hill-climbing and genetic algorithms) to explore
the parameter-space of several agent-based simulations of
biologically-inspired flock formation. In this case, the multi-
agent simulations were stochastic, resulting in noisy fitness
evaluation [18]; however, the interaction of fitness caching
with the noise was not explored. Moreover, while there may
be a potential benefit for fitness caching, even in noisy envi-
ronments, we are unaware of prior work discussing the use
of fitness caching in noisy/uncertain optimization problems,
or examining the potential repercussions for search perfor-
mance in detail.

Considerable research has been done in the general area
of meta-heuristic search and optimization in noisy fitness
landscapes, and it remains a topic of considerable interest.
For example, recent work spans from developing efficient
techniques of determining the best individual from a noisy
population [6], to defining standard sets of noisy functions
for benchmarking different optimization techniques [4]. The
breadth of work in this area is beyond the scope of this

paper; for a comprehensive survey of noise/uncertainty in
evolutionary algorithms, see [8].

It is worth highlighting some of the more closely-related
research. One strand of research concerns the analysis of
search spaces or fitness landscapes, such as the study of
Kauffman’s NK-landscapes [9, 10], similarly inspired tun-
able landscapes [16], as well as search performance on such
landscapes (e.g., [14]). Particularly relevant is the work on
adaptive walks through noisy fitness landscapes [13]. Our
work also pertains to adaptive walks (or local neighborhood-
based search algorithms in general) in noisy landscapes, but
with fitness caching the noise becomes frozen, as we will
discuss later. Also, as our application interests are focused
more on simulation optimization rather than understanding
of biological evolutionary processes, we chose to investigate
landscapes based on optimization benchmarks (see Section 2
below). So-called “fitness evolvability portraits” [17] appear
to be another promising direction for fitness landscape anal-
ysis. While [17] currently does not address issues of noise,
several of the ideas about characterizing the landscape at
different fitness levels might be productively incorporated
into future work on the sampling with fitness caching prob-
lem we are addressing here.

Several prior works ([2], and more recently [1]) have dis-
cussed/debated the relative merits of repeated sampling for
noise reduction versus alternative methods, such increasing
population size. However, when fitness caching is used, sep-
arate individuals in a population-based search do not con-
tribute independent fitness trials, so increasing the popula-
tion offers no advantages in reducing the impact of noise.
Rana et al. [15] examine the effects of noise on search land-
scapes, in particular discussing the creation of false local
optima and the soft annealing of peaks (or “melting” effect,
as referred to by Levitan and Kauffman [13]). Our current
work is also interested in the creation of false local optima by
noise, but the use of fitness caching changes both the char-
acter and consequences of such local optima (as we discuss
in Section 3.1).

Our work also follows that of Hughes [5], which derived
analytic expressions quantifying the probability of one indi-
vidual having a higher true fitness than another, given noisy
fitness evaluation, in the context of both single and multi-
objective evolutionary algorithms. Though several of the
derivations are mathematically related, the measures we de-
rive attempt to characterize the fitness landscape as a whole,
rather than a single comparison.

In conclusion, to our knowledge, this paper is the first
to discuss and analyze the effect of fitness caching in noisy
fitness landscapes, and to attempt to develop (preliminary)
heuristics for choosing the number of sampling repetitions
in this case.

3. THEORETICAL ANALYSIS
We will begin from a theoretical perspective, offering a for-

mal description of the problem, and deriving several mathe-
matical measures that may be useful, before we move on to
more experimental methods.

In this paper, we will assume the presence of additive
Gaussian (normally distributed) noise with mean 0. The
situation we are concerned with is the repeated sampling of
a noisy fitness function, and as a result of the Central Limit
Theorem, the shape of the noise distribution will always ap-
proach a normal distribution when a reasonably large num-



ber of samples is used. However, the mathematical deriva-
tions we present below could equally be applied to other
noise distributions, although the resulting expressions may
be symbolically and/or computationally cumbersome. If the
mean value of the noise is unknown (and nonzero), then re-
gardless of any approach, it impossible to determine the true
expected value of the fitness landscape at any point; thus we
will only consider unbiased noise with zero mean. We will
also assume that the variance of the additive noise is uniform
across the search space – while this is not always the case,
it serves as a reasonable first-order approximation to sim-
plify the analysis. The extension of considering noise with
location-dependent variance is left as future work.

We will also make the simplifying assumptions that there
is ample memory such that all encountered fitness values
will be cached and are never cleared, and that the computa-
tion time required for the caching is negligible compared to
the time required for fitness evaluation. These assumptions
are realistic when fitness evaluation is particularly time-
consuming, such as when optimizing complex simulations
with lengthy run-times. In this case, high-capacity disk-
based caching becomes a feasible approach, when the disk-
access time for reading a cached fitness value may be orders
of magnitudes smaller than the run-time of the simulation.

3.1 Derivation of Measures
Let us consider a “true” (noiseless) landscape function L

which has been obscured by some amount of additive noise
(N), which is drawn from a normal distribution with mean 0
and standard deviation of σ (N ∼ N (0, σ2)).1 We will as-
sume the neighborhood-based search, where the task is min-
imization (find x s.t. L(x) is a minimum). Without fitness
caching, each time a search algorithm evaluates a point x1 in
the search space S (x1 ∈ S), a new fitness value L(x1)+N is
returned, where N is independently drawn from N (0, σ2).
Let x2 be a neighbor of x1, such that L(x2) is greater than
L(x1) by a positive amount ε (L(x2) = L(x1) + ε). This
means that if the search process was repeatedly choosing
whether to move between x1 and x2, it would (probabilis-
tically) end up at x1. With fitness caching, this is not the
case. Once fitnesses for x2 and x1 have been chosen, they
are fixed, or frozen. This caching is effectively the same
as reading values from a new “frozen” noisy landscape Ln,
which is generated from L by adding N (N ∼ N (0, σ2) to
every location in X. If the fitness value Ln(x2) turns out to
be smaller than Ln(x1), then noise has caused a comparison
between two points to now be wrong (we will denote this as a
“false switch”). This freezing effect means that when fitness
caching makes the impact of noise more serious. Further-
more, rather than noise having a positive “melting” effect
that can help a search process escape local optima (as fur-
ther discussed in [13, 15], and as is implicit in the design of
simulated annealing), fitness caching causes any new local
optima that are created by the noise to be “frozen” in place.
We will denote local optima that are present in Ln, but not
present in the original L as “false optima”.

When faced with a new landscape to be searched, we do
not know what the landscape looks like. However, it is pos-
sible to probe the landscape for some information, before

1In the context of real-world problems, it may be confusing
to think of there being a “true” fitness landscape with noise
being added to it; alternatively, L may be viewed as the true
expected value of the noisy function.

Figure 1: This figure illustrates variables used to
determine the existence of a false switch. N1 and N2

represent the added noise to the original nodes, and
ε represents the vertical distance between the two
original neighbors. False switches occur whenever
N1 is greater than ε+N2.

starting a search process. Let us assume that we can ob-
tain a reasonable estimate of the true ε-distribution within
the landscape. That is, we would like to capture the dis-
tribution of fitness differences between neighboring points
(|L(xi)− L(xj)| ∀(xi, xj) ∈ S2 s.t. xi and xj are neigh-
bors in the space). We will denote the probability den-
sity function (pdf) for this ε-distribution as P (ε). (Monte
Carlo sampling from Ln will give an estimate of the noisy ε-
distribution, which may be a tolerable approximation of the
true ε-distribution, or may need to be corrected for noise.)

Given the pdf P (ε), we will now derive expressions for the
likelihood of noise creating false switches and false optima,
in terms of the standard deviation of the noise (σ).

For convenience, we will denote the pdf for the Gaussian
distribution with mean value, µ, and standard deviation, σ
by f(x, µ, σ), defined as follows:

f(x, µ, σ) =
1

σ
√

2π
e

0@−(x−µ)2

2σ2

1A
(1)

3.1.1 False Switch Probability
In Equation 2 the inner integral represents the probabil-

ity of the noise added to L(x2), N2 being less than the noise
added to L(x1), N1. The inner two integrals (together) rep-
resent the probability of a false switch for a given difference
between neighbors’ real fitness values, ε. The outermost in-
tegral (integrating across all possible εs) computes the prob-
ability of a false switch for the given an ε-distribution P(ε).

2
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−∞
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«
dN1

«
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Equation 2 can be simplified to Equation 3, where Erf de-
notes the Gaussian error function. It has been remarked in
certain contexts [5] that the Gaussian error function (Erf) is



computationally very time-consuming to compute, and that
more efficient (though slightly less accurate) approximations
may be desirable. However, our approach is to derive a
measure that will characterize the robustness of the fitness
landscape as a whole. This is essentially an offline calcula-
tion which will be completed once before initiating a search
process, rather than an online calculation that must be run
repeatedly during the search process. Furthermore, since
fitness caching is being used, there is an implicit assump-
tion that evaluating a single point from the fitness landscape
takes orders of magnitude longer than other operations, and
the efficiency of numerical approximations is not a primary
concern.

2

Z ∞
0

P (ε)

0BB@1−
1 + Erf

»
ε

2σ

–
2

1CCA dε (3)

3.1.2 False Optima Probability
In order to obtain an analytic formula for the probability

of creating false optima, we must make the additional sim-
plifying assumption that the distribution P (ε) is the same
throughout the space – i.e., at every x, P (ε) is the same
regardless of L(x).

For an arbitrary noise distribution (P (N)), the probability
of being a local optimum in Ln is given by Equation 4.Z ∞

−∞
P (N1)

„Z ∞
−∞

P (ε)

»Z −ε+N1

−∞
P (N2)dN2

–
dε

«n
dN1 (4)

Similarly, the probability of a given point being a local
optimum in both L and Ln is given by Equation 5.

Z ∞
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P (N1)

„Z 0

−∞
P (ε)

»Z −ε+N1

−∞
P (N2)dN2

–
dε

«n
dN1 (5)

False optima are points that appear as local optima af-
ter noise is applied, but were not local optima before noise,
thus the probability of being a false optimum is calculated
by subtracting Equation 5 from Equation 4. Equations 4
and 5 were for arbitrary noise distributions, but since we
are assuming all noise is additive Gaussian noise, we can
transform them into Equations 6 and 7 respectively.
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Given P (ε) (the probability density function for the ε-
distribution of a fitness landscape), we now have closed-form
expressions for the probabilities of a “false switch” occurring
between any two neighboring points, and the probability of
any given point becoming a “false optimum.”2

2Despite being closed-form mathematical expressions, nu-
merical integration approaches will generally be required,
especially since P (ε) may be any arbitrary pdf.

Figure 2: This figure shows 2-D versions of the
sphere, Rosenbrock, Schwefel, and Rastrigin func-
tions we used as our fitness landscapes. The equa-
tions are shown below each plot.

3.2 Fitness Landscapes
The abstract elegance of formally deriving mathematical

measures or descriptive statistics about fitness landscapes
must be grounded by the study of concrete fitness land-
scapes. This partially serves to validate the derivations,
but more importantly it helps us judge the appropriateness
of any simplifying assumptions that were made in order to
make the mathematics tractable.

For our fitness landscapes, we selected four noiseless fit-
ness functions that are often studied in the context of real-
valued black-box optimization, and which exhibit differing
landscape features (such as multi-modality/nonconvexity).
Specifically, we chose the sphere, Rosenbrock, Schwefel, and
Rastrigin functions (adapted from [3]). These noiseless land-
scapes are assumed to be the “true” underlying functions,
which we will combine with varying levels of additive Gaus-
sian noise to create the “obscured” noisy fitness landscapes
that must be searched. Surface plots of the 2-dimensional
versions of these fitness landscapes are shown in Figure 2,
shown for illustrative purposes to communicate the general
shape of these spaces. All results presented in the paper
used the 10-dimensional version of these functions, where
each dimension was discretized on the domain [−5, 5] at a
resolution of 0.05, creating a discrete search space of size
20110 ≈ 1.1 × 1023. The general mathematical function to
generate the N-dimensional case for each landscape is dis-
played below the graphics in Figure 2.

In Figure 3, kernel density distribution plots3 show the ε-
distributions (distribution of differences between the “real”
fitness values at neighboring locations in the fitness space)

3Kernel density distribution plots provide a way to visualize
distributional information that avoids the artifacts caused
by bin-size choices in histograms.



Figure 4: We predicted the probabilities of false switches and false optima occurring using the measures
presented in Section 3 and observed the actual probabilities that each occurred by adding various amounts
of noise to each function and evaluating the resulting proportions of false switches and false optima.

Figure 3: This figure shows the ε-distribution (fit-
ness differences between neighboring locations) for
each fitness landscape.

for each of these landscapes. Note that the different distri-
butions vary significantly in shape and range of values.

3.3 Empirical Measure Validation
We predicted the number of false switches and false op-

tima in each fitness landscape using the measures defined
in Section 3 above and an approximate ε-distribution de-
fined by sampling 5000 differences between neighbors’ real
fitness values. Then we observed the real probability of false
switches being created by noise by testing 10,000 pairs of
neighboring points, which were evaluated before and after
varying amounts of Gaussian noise was added. Similarly, we
used a Monte Carlo method (testing 10,000 points) to esti-
mate the real probability that a point becomes a false opti-
mum as a result of differing magnitudes of Gaussian noise.
As shown in Figure 4, the formulas we derived for these two
measures closely approximate the directly observed mea-
sures.

4. EXPERIMENTS
We are further interested in whether these or other sim-

ple measures can be useful in predicting the performance of
an evolutionary search technique on a noisy landscape. In
particular, it would be most useful to be able to choose the
number of times a noisy function should be evaluated and
averaged, to enable a search mechanism to reach very good
locations in the space with as few function evaluations as
possible. Specifically, we ran experiments at varying noise
levels to determine the number of evaluations required by a
stochastic hill climber to reach an average fitness value that
is in the best 0.0001% of the landscape. These numbers
of evaluations are then scaled by the number of times the
function would need to be evaluated to reach their respec-
tive noise levels. The pseudocode for the simple random-
mutation hill climbing algorithm is given in Table 1.

The noise level (standard deviation of noise) for which the
search progresses most rapidly is denoted σideal (which will
vary for each landscape). See Figure 5 for an illustration of
this process.

We considered four heuristic methods for using a land-
scape’s ε-distribution to predict σideal and compared the



Figure 5: a) Each shaded line shows fitness values reached after some number of evaluations, for a given noise
level, σx. Using this information we calculated the number of evaluations it took to reach a threshold value,
and scaled this by the number of replicate evaluations required to reduce noise to the specified level (σx). b)
This scaled number of evaluations is plotted at each noise level. We denote the noise level corresponding to
the minimum number of evaluations as σideal, which is the “sweet spot” target for noise reduction.

Given a (memoizing) noisy landscape function Ln,
and a function neighbor(x) which returns a new lo-
cation by increasing or decreasing x along a single
randomly chosen dimension:

1. Let xbest = ∅
2. Choose x randomly from S (the search space)
3. If xbest = ∅ or Ln(x) < Ln(xbest): Set xbest = x
4. If evaluation limit exceeded: Return xbest.
5. If x has been compared to all of its neighbors

and is a local minimum: Go to Step 2.
6. Let x′ = neighbor(x)
7. If Ln(x′) < Ln(x): Set x = x′

8. Go to Step 3

Table 1: Pseudocode for a random-mutation hill
climber, which restarts when stalled.

number of evaluations required by the hill climber at each
method’s predicted σideal to those required at the true σideal.

The four heuristics for predicting σideal are listed below.
In order to calibrate the heuristics, it was necessary to use
scaling factors based on the true σideal for the landscape.
We then tested the heuristics by applying them to each
landscape in turn, in order to evaluate whether they could
capture the differences between the landscapes.

• Fixed Noise Level: The geometric mean of the σideal
for each landscape is 1.91 and this constant noise value
was used as the σFixed Noise Level. This is the most
näıve heuristic, as it treats all landscapes the same,
without making use of the ε- distribution information
at all. It is included mainly as a baseline for compari-
son.

• Direct Ratio: The geometric mean of the ratio of the
median of each ε-distribution to the σideal for each
landscape is 3.97. We calculated σDirect Ratio by di-

viding the median of each landscape’s ε-distribution by
this ratio.

• False Switch: The geometric mean of the proportion
of false switch values corresponding to the σideal for
each landscape is 0.084. The standard deviation of
noise which predicts a proportion of false switch value
of 0.084 is the σFalse Switch

• False Optima: The geometric mean of the proportion
of false optima values corresponding to σideal for each
landscape is 5.16×10−5. The standard deviation which
predicts this value is the σFalse Optima.

5. RESULTS AND DISCUSSION
To compare these methods on each of the four landscapes,

we calculate the inefficiency ratio as the number of evalu-
ations required by each method’s prediction for σideal (i.e.,
σFixed Noise Level, σDirect Ratio, σFalse Switch, σFalse Optima)
divided by the number required at the true σideal. Note that
an inefficiency ratio of 1.0 would be a perfect prediction, and
also that ratios higher than 20 have been cut off, due to com-
putational constraints.

To summarize the performance results from Figure 6:

1. None of the methods performed well on the Rosenbrock
landscape. The Rosenbrock function is sometimes re-
ferred to as a “banana function” due to its long bend-
ing valley which must be followed to reach the global
optimum. The failure to predict an optimal level of
noise may be due in large part to the importance of
traversing this valley, where the fitness gradient is not
very strong. In other words, the initial sampling of the
whole space to determine the ε-distribution is mislead-
ing, since a particular region of the space (the valley
floor) is much more important for search performance
than the space at large, and requires lower noise values
to traverse.

2. The fixed noise level method performed quite poorly
on all but one landscape. In general, this is not too



Figure 6: This figure shows how inefficient the standard deviation chosen by each method is by calculating
the ratio of evaluations to that required at optimal noise level, σideal. A perfect solution would have an
inefficiency ratio of 1.0.

surprising. We expect that different landscapes will
require different optimal noise levels, and choosing a
fixed level value to apply to all landscapes is unlikely
to perform well.

3. There is no clear winner among the other three meth-
ods: the false optima and direct ratio methods were
each best on certain landscapes, but the false switch
method also generally performed well. This result is
somewhat disappointing, in that heuristics using our
derived metrics (false switches and false optima) do
not have a strong advantage over the simpler approach
(direct ratio) of scaling by the median value from the
ε-distribution.

While these results are not decisive, it is somewhat en-
couraging that the three methods using information from
the ε-distribution serve as better predictors than the most
naive approach. This shows that the heuristics used are at
least partially correlated with choices for σideal, and perhaps
improved mappings may be developed along similar lines, in
order to offer prescriptive guidelines for choice of sampling
repetitions based on this information.

6. FUTURE WORK AND CONCLUSIONS
The experimental results we have presented are based only

on an examination of four fitness landscapes, which is too
small to be a good representation of the types of fitness land-
scapes encountered in real problems. Furthermore, it has
been argued that some of these particular test landscapes
may not be the most appropriate choice for benchmark func-
tions for evolutionary algorithms [19]. Accordingly, further
studies along similar lines are called for, involving a greater
diversity of noisy fitness landscapes.

However, perhaps a more fundamental issue with our cur-
rent approach is that the search performance on these land-
scapes appear to be significantly different enough that none
of the heuristics approaches we investigated served as a good
predictor for all four landscapes. In particular, the failure
to predict a good noise level for the Rosenbrock landscape
merits further investigation. This may also suggest that a
fundamentally different approach is needed. One hypothesis
is that knowledge of the global ε-distribution for a landscape
is insufficient to make a good prediction of what the opti-
mal noise level would be, and thus additional knowledge is

required. This may be because intelligent search techniques
find relatively good solution areas quickly, and thus spend
very little time in the large poor-performance areas of the
space, in which case a more biased approach for sampling ε-
distributions might be fruitful (e.g., taking inspiration from
[17]). For instance, one could imagine running a sequence
of searches, bootstrapping the ε-distribution from the points
that were encountered by the previous search on the noisy
landscape, thus refining the estimates for optimal sampling
choices in later searches.

In addition to their role in meta-heuristic search processes,
fitness landscapes also play an important role in the study
of many complex systems, and may provide a lens for view-
ing adaptive or evolving systems in new and enlightening
ways (c.f. Kauffman’s work on evolutionary landscapes [9]).
It would be interesting to investigate whether there are in-
terdisciplinary implications for studying frozen noisy land-
scapes, in relation to processes that occur in real biological
systems.

An improved understanding of the extent to which noise
can be present in a fitness landscape without seriously in-
hibiting successful search and adaptation in that space is a
broad but desirable goal, which would significantly advance
the field of search/optimization when dealing with uncertain
problems. Our present research provides some progress to-
ward this goal in the specific context of fitness caching, but
the path is far from clear, and significant work remains to be
done in this direction. The lack of prior literature on fitness
caching with noise may suggest either that the combination
has not been given serious consideration, or possibly that
fitness caching is not an advisable approach when dealing
with noisy search problems. While we believe that in many
cases it would still prove beneficial, this is ultimately an em-
pirical question, and one that we hope will be resolved by
future work using fitness caching in noisy environments.

In conclusion, we have offered a preliminary foray into the
study of the interactions between noisy landscape sampling
and fitness caching. We presented and verified analytic for-
mulas for two measures that could be useful for predicting
the impact of noise on the performance of fitness-caching
neighborhood based meta-heuristic search processes in dis-
crete fitness landscapes. We also explored several heuristics
for choosing an optimal sampling level under these condi-
tions, and while none of these heuristics offer perfect solu-



tions to this problem, they could provide reasonable initial
choices when there is no a priori information about what
sampling level to use for an unknown fitness landscape. Ad-
ditionally, they provide a starting place for developing bet-
ter heuristics for this problem. However, further research is
required before we can offer prescriptive recommendations
for noise level reduction methodology. Similar investigations
on additional fitness landscapes using other meta-heuristic
search methods (simulated annealing, GAs, tabu search,
PSO, etc.) will likely offer further insight into the effects
of noise on landscape structure.
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