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Chapter 1

MAgICS:
Toward a Multi-Agent Introduction 

to Computer Science

Forrest Stonedahl
Northwestern University, USA

Michelle Wilkerson-Jerde
Northwestern University, USA

Uri Wilensky
Northwestern University, USA

IntroductIon and MotIvatIon

Two years ago, Rick Rashid, a senior vice presi-
dent for research at Microsoft, asked the rhetorical 

question of whether computer science is a dying 
profession (Rashid, 2008). Indeed, shrinking 
undergraduate computer science enrollment and 
concern about the underrepresentation of both 
women and minorities in computer science has 
been the subject of much debate, particularly in 

abstract

The authors present a preliminary version of the MAgICS (Multi-Agent Introduction to Computer Science) 
framework, which is a new approach for revitalizing introductory undergraduate or high school computer 
science curricula through the deep integration of agent-based modeling (ABM) and multi-agent systems 
(MAS) perspectives. The authors discuss the merits of using multi-agent systems as a lens for conceptual 
understanding across disciplines, compare multi-agent approaches to traditional serial ones, and explore 
how this approach can bring together disparate topics in computer science through the common focus 
on emergent systems to promote a broader view of the field as a whole. To exemplify this approach, they 
have developed a suite of curricular models for topics spanning from searching and sorting to machine 
learning and networks and security. By introducing these topics with a focus on parallel, distributed, 
and stochastic methods, they can make traditionally upper-level topics both motivating and accessible 
to introductory-level students. The authors review findings from a short implementation of several ele-
ments of MAgICS in an introductory computer science classroom with regard to student motivation and 
evidence of learning of distributed design strategies.
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North America (Denning & McGettrick, 2005; 
Goode, 2007; Katz, Allbritton, Aronis, Wilson, 
& Soffa, 2006). Diversifying the introductory 
curriculum is one method for reaching a broader 
audience (see, e.g., Cushing, Weiss, & Moritani, 
2007; Denning & McGettrick, 2005; Downey 
& Stein, 2006), which has met with some suc-
cess. In this chapter, we present the MAgICS 
(Multi-Agent Introduction to Computer Science) 
framework as a new and powerful approach to 
diversifying the introductory computer science 
curriculum. Through the MAgICS framework, 
we demonstrate the potential to address many 
conventional topics of computer science (such 
as searching, sorting, optimization, graphics, 
machine learning, networks/security) through an 
agent-based modeling (ABM) and multi-agent 
systems (MAS) perspective.

Agent-based modeling (Epstein & Axtell, 
1996; Wilensky & Resnick, 1999) is a form of 
computational modeling whereby a population 
of individual (“micro-level”) computational 
agents are given simple rules to govern their 
behavior: for example, traffic flow can be mod-
eled by programming a number of “car” agents 
to speed up and slow down under different local 
conditions. The models are then run so that the 
aggregate (“macro-level”) results of those agent 
behaviors can be investigated (e.g. traffic patterns; 
(Wilensky, 1997b)). The ABM/MAS paradigm 
has become increasingly popular within computer 
science (Davidsson, 2002; Panait & Luke, 2005; 
Wilensky & Rand, in press), and has proven to 
be a powerful computational modeling tool for 
the natural and social sciences (NRC, 2003). 
Because many systems in the world can be pro-
ductively conceptualized as a collection of agents 
contributing to some macro-level phenomenon 
(atoms and molecules comprise matter, individual 
consumers comprise markets), it is conducive to 
interdisciplinary integration and applications. For 
instance, one particularly powerful interdisciplin-
ary idea that can be explored using the agent-based 
paradigm is that of emergence – the notion that 

interactions between simple individual agents can 
result in surprising and complex aggregate-level 
phenomena that appears to be “more than the sum 
of its parts” (Johnson, 2001; Wilensky, 2001). 
For instance, an emergent outcome of a traffic 
system is that traffic jams move backward, even 
though the individual cars that comprise the jam 
each move forward (Wilensky & Resnick, 1999).

The benefits of an agent-based approach for 
understanding complex systems, emergence, 
and notions of parallelism and decentralization 
– topics that are typically very difficult – are 
well-established. Wilensky and Resnick (1999) 
have found that a number of difficulties that 
students have in understanding complex systems 
stem from a deterministic/centralized (or DC) 
mindset – for instance, they are likely to attribute 
the emergent behavior of a system of entities 
(such as the formation of a flock of birds; or the 
evolution of a species) to some single cause or 
intention, rather than as the result of a collection 
of behaviors and interactions in a distributed 
system. Agent-based modeling enables students 
to explore how the behaviors of individual agents 
can lead to unintended outcomes, and better un-
derstand why those outcomes occur in a multitude 
of disciplines (including chemistry, Levy, Novak, 
& Wilensky, 2006; materials science, Blikstein & 
Wilensky, 2006; physics, Sengupta & Wilensky, 
2008; Wilensky, 2003; and biology Wilensky & 
Reisman, 2006).

We believe it is equally important for an 
ABM/MAS perspective to be an ingredient in 
computer science education – especially because 
understanding system-level behavior, emergence, 
and unintended outcomes is not only important 
for understanding, but also for designing systems 
of the future (Guckenheimer & Ottino, 2008). 
The MAgICS framework uses agent-based 
modeling and notions of emergence to focus on 
a variety of upper-level topics while encouraging 
connections to a wide array of interdisciplinary 
endeavors and real-world applications. As such, 
we refer to ABM/MAS as a “lens for conceptual 
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understanding” in computer science. Often, sub-
jects such as neural networks, particle systems, 
genetic algorithms, or sorting and searching are 
organized topically within the computer science 
curriculum, and are thus taught separately, without 
making conceptual connections between them. In 
contrast, an ABM paradigm uses concepts such 
as agents and micro/macro level phenomena to 
highlight the similarities and differences between 
the mechanisms at work. For example, later in 
this paper we discuss how algorithms for solving 
very different problems (such as sorting colored 
objects, or ranking the relevancy of web pages) 
can be similarly explained in terms of agents 
interacting with each other or with their environ-
ment according to simple rules.

This work is motivated by two central goals. 
First, MAgICS seeks to enrich early (“low-level”) 
computer science courses by engaging students 
with motivating and conceptually rich “high-level” 
topics. Second, it seeks to emphasize distributed, 
decentralized systemic thinking – a skill that is 
becoming increasingly relevant both within and 
beyond the domain of computer science. The MAg-
ICS framework aims to address the first goal (mo-
tivation and engagement) by building a curriculum 
around a series of dynamic agent-based models and 
modeling activities, coupled with compelling and 
interactive visualizations. This model suite offers 
a survey of several conventionally upper-level 
topics, and gives introductory students a broader 
intellectual taste for what computer science has to 
offer. Concepts of elementary programming can be 
covered through experimenting with the provided 
source code, extending the models, and writing 
new agent-based models from scratch. The suite 
of curricular models is central to our approach, 
and we will elaborate on the constituent models 
of the suite in a later part of this chapter.

The second goal (distributed, decentralized 
thinking) is the result of the evolving technical 
content of computer science education and the fu-
ture of computing. In recent years, computing has 
undergone an important shift toward parallelism. 

This includes the current prevalence of multiple 
and multi-core processors, the ubiquity of high 
performance computing clusters in academia and 
industry alike, cloud computing, massive peer-to-
peer networks, social networking and Web 2.0 
applications, increased deployment of massively 
parallel supercomputers for research, and parallel 
languages and language features that accompany 
these developments. We are not advocating that 
CS101 students should be forced to learn the 
intricacies of mutual exclusion semaphores for 
accessing shared memory. The point is a broader 
one: that it is time to re-examine whether the 
prevalent focus in contemporary introductory 
computer science courses on centralized, deter-
ministic, serial algorithms is best at preparing 
our students for a world of computation that is 
ubiquitously distributed, potentially stochastic, 
and increasingly parallel. This view is supported 
by previous work by Stein (1999), who challenged 
the current centralized computational metaphor 
with an alternative view of computation as a 
community of interacting entities. Our approach 
is further motivated by the goal of providing 
universal instruction in “computational think-
ing,” as described by Wing (2006), and Papert 
and diSessa’s call for a widespread literacy and 
fluency in computational methods and models 
(diSessa, 2001; Papert, 1980).

The remainder of this chapter is structured 
as follows. We first discuss related research in 
computer science education, and argue for the 
merits of using agent-based modeling (ABM) 
as a “lens for conceptual understanding” when 
exploring topics that computer science educa-
tors might not traditionally consider to be in the 
domain of ABM or MAS (or even in the domain 
of introductory computer science!). Next, we 
explore three example curricular models in some 
detail, and discuss how they may be used to pro-
mote understanding of multi-agent systems while 
learning about computer science topics. We also 
offer a brief overview of each of the other models 
in the suite. The remainder of the chapter is dedi-
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cated to discussion of a preliminary pilot study 
that we implemented to test out some of the ideas 
and models included in the MAgICS framework, 
and offer empirical support for the feasibility of 
our approach. We conclude with some remarks 
about potential implementation considerations 
and possibilities for future work.

related Work

There have been many suggested approaches for 
revitalizing computer science education. In this 
review we discuss only a few, for comparison 
to our own approach (for further coverage, we 
recommend readers to a recent survey paper on 
introductory computer science education; Pears et 
al., 2007). Specifically, we argue that integrating 
agent-based modeling into introductory computer 
science curriculum addresses many calls in the 
computer science education literature to engage 
students in motivating consequential tasks and to 
highlight the interdisciplinary nature of computer 
science and its applications.

Efforts to improve learning, motivation, rel-
evance, and student retention in the introductory 
computer science sequence may be loosely clas-
sified into two categories (although much work 
falls at least partially into both categories): reforms 
based on pedagogy (i.e., how CS should be taught), 
and reforms based on content (i.e. what should 
be taught). Pedagogy-based reforms include, for 
example, the integration of design-first program-
ming (Moritz, Wei, Parvez, & Blank, 2005), pair 
programming (Carver, Henderson, He, Hodges, 
& Reese, 2007), and non-computer-based activi-
ties focusing on computer science concepts (Bell, 
Witten, & Fellows, 1999). Content-based reforms 
include introducing computer science with a focus 
on robotics (Becker, 2001; Blank, 2006; Fagin & 
Merkle, 2003; Flowers & Gossett, 2002), game 
design (Overmars, 2004), multimedia such as 
sounds, images, and movies (Guzdial, 2003), or 
specific languages or language paradigms (Flow-

ers & Gossett, 2002; Howland, 1997; Radenski, 
2006). Our MAgICS framework also falls into 
this latter category, as it is largely a content-based 
reform yet it also has pedagogical entailments such 
as promoting the use of simple code fragments 
as behaviors, the importance of multiple solution 
paths and visual feedback. Another approach that 
is particularly relevant to our present work is that 
of Stein (1999), who designed a CS101 course 
centered around the paradigm of “interactions 
between entities”, including a significant focus 
on issues of concurrency. Our approach differs 
from the broader work of Stein in that we specifi-
cally focus on the use of agent-based models as 
a cohesive thematic element to draw together a 
variety of interesting and challenging computer 
science topics, and make them accessible at an 
introductory level.

Rather than focusing on changes to the con-
tent within the introductory course, Cushing et 
al. (2007) suggested broadening introductory 
CS by offering interdisciplinary courses with 
math and science (such as ecology) as a means 
to improve retention and increase interest in the 
field. Although not described here, an interdis-
ciplinary approach can also be easily employed 
using agent-based modeling, which is something 
we have productively done in other work (Levy 
& Wilensky, 2009; Sengupta & Wilensky, 2009; 
Wilensky & Reisman, 2006). Meanwhile, Buck-
ley et al. (2008) advocate for the integration of 
socially relevant projects into early computer 
science education, and Denning and McGettrick 
(2005) call for a “recentering” of computer science, 
expanding the public’s view of computer science 
as programming, and suggest an introductory CS 
sequence with a theme of technological innovation.

While there are a considerable variety of ap-
proaches to and opinions about how the current 
state of computer science education might be 
improved, we argue that agent-based modeling 
offers a possibility for addressing issues that many 
of these reforms are concerned with. As we hope 
to show, creating agent-based models provides a 
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natural opening to innovation and design of com-
plex systems and simulations, as well as fertile 
ground for socially relevant projects. Further-
more, a curriculum designed around the ideas of 
ABM/MAS can provide an effective coupling of 
advances in computer science education methods 
(e.g., visualization technology) with the more 
general goals of active engagement and intellectual 
inquiry on the part of students. Learning the art of 
computer programming remains a central piece of 
our educational framework (students will simply 
be programming multi-agent simulations, rather 
than, for example, writing programs for counting 
prime numbers). However, we do agree that early 
computer science courses often provide too narrow 
a view of what it means to be a computer scientist, 
and suggest that our approach will offer broader 
exposure to “upper level” topics.

Finally, while most introductory sequences 
in computer science are offered at the college or 
university level and we present this framework 
primarily in that context, we also acknowledge 
the important role of computer science educa-
tion at the pre-collegiate level (Patterson, 2005). 
Just as in college, enrollment in high school 
computer science courses is low, and there have 
been calls for a more diverse, integrated computer 
science curriculum (Goode, 2007). We suggest 
that an ABM/MAS paradigm, and the MAgICS 
framework specifically, is also a powerful way 
to introduce computer science to a younger au-
dience. In support of this assertion, we note that 
the NetLogo modeling environment (Wilensky, 
1999), and even several of the agent-based models 
discussed specifically in this chapter, have been 
successfully used with a wide range of students 
including in educational interventions as early as 
primary school.

centralized vs. decentralized 
approaches

While there are many real-world problems which 
call for decentralized thinking and are amenable to 

agent-based approaches, there are also many for 
which traditional serial deterministic algorithms 
are better suited. Therefore, at least a brief discus-
sion is in order regarding the relative merits of 
agent-based approaches versus more traditional 
centralized approaches.

For us, one vital learning goal is that students 
will able to use decentralized thinking to approach 
problems when there may be a benefit to doing so, 
and to understand the trade-offs between decentral-
ized and centralized approaches. Another is that 
students are able to consider issues of parallelism 
and distribution in not only programming, but in 
the conceptual design of systems. However, in 
order to make such decisions, students must be 
able to “think in both styles” – something that is 
notably difficult (Wilensky & Resnick, 1999). 
In other words, we do not argue that ABM/MAS 
is always the best approach for every problem. 
However, in a field where distributed thinking and 
parallelism are becoming increasingly important, 
an awareness of the variety of approaches one 
could take toward designing a project or solving 
a problem is a fundamental issue. Futhermore, the 
applications for which MAS/ABM are particularly 
well-suited – such as computational simulation 
and modeling – also emphasize the relevance of 
computer science to other fields of study, as well 
as for real-world applications and problem solv-
ing. We hope that the following section, which 
introduces some core MAgICS models, illustrates 
how incorporating MAS/ABM into introductory 
computer science can bring both of these issues 
to the forefront.

Fortunately, the distinction between central-
ized and decentralized programming approaches 
need not be couched in absolute terms, and in the 
MAgICS framework we do not wish to enforce 
a false dichotomy. In our view, distributed pro-
gramming almost always incorporates elements 
of serial programming as well. Specifically, when 
programming multi-agent systems, the code that 
controls the behavior of an individual agent is 
often written as a serial program, sequential 
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flow and logic, using standard procedural or 
functional components. Thus, as students learn 
to work with distributed multi-agent systems, 
they will concurrently be learning traditional 
programming techniques as well (such as loops, 
conditionals, variable assignment, functions, etc). 
This is especially important, as it also helps to 
address the potential concern about how students 
will handle the transition from MAgICS back to 
more traditional languages and curricula, as they 
progress in the CS sequence. Because the concepts 
of sequential programming will be included in the 
design of agent-based simulations, this transition 
is not as dramatic as it might appear.

While students will subsequently need to learn 
different languages after NetLogo, such a language 
change is not uncommon in many current com-
puter science sequences (e.g. Scheme, then C++). 
Furthermore, we consider a computer science 
education that contains only a single program-
ming language to be incomplete; students should 
be exposed to multiple languages and paradigms. 
As NetLogo contains both procedural and func-
tional language features, this should facilitate the 
transition to other languages in later CS courses.

the MagIcs FraMeWork

The MAgICS framework is designed to address 
several goals, including the enrichment of early 
CS courses with a broader range of content, im-
proving students’ understanding of parallel, 
non-deterministic, and distributed systems, and 
offering a more motivational and applications-
oriented introduction to the field.

MagIcs curricular Model suite

We have developed a wide collection of agent-
based models (available for download from the 
NetLogo Models Library (http://ccl.northwestern.
edu/netlogo/models/), and for the purposes of this 
chapter we include a cross-section of those models 

that relate to important or motivating topics in 
computer science (Kornhauser & Wilensky, 2007; 
Rand & Wilensky, 2006; Stonedahl & Wilensky, 
2008a, 2008b, 2008c, 2009; Wilensky, 1997a, 
1998, 2003). The suite of models we describe 
consists of nine models spanning seven topics, 
as shown in Table 1. Some of these models have 
been used with great success in short workshops 
and introductory courses on multi-agent model-
ing. We present here a cohesive framework for 
introductory computer science that we hope will 
be refined through trial, as well as feedback from 
others working in this area.

These models are all implemented using the 
NetLogo agent-based language and integrated 
modeling environment, which permits interactive 
modification of a model’s parameters as well as 
of the code itself. The NetLogo language, follow-
ing the Logo tradition (Papert, 1980), has also 
been designed to be easy to read and easy to learn, 
and the integrated modeling environment contrib-
utes to a low barrier for entry (Tisue & Wilensky, 
2004). Equally important, NetLogo is not a “toy 
language”; it is a full programming language 
currently being used by researchers across the 
globe, offering a wide range of control structures 
and data types, and it is extensible via the Java 
programming language if access to additional 

Table 1. MAgICS suite models and related com-
puter science topics, listed by order of appearance 
in this chapter 

Model Name Topic

PageRank Searching

Painted Desert Challenge Sorting

Virus on a Network Network Security

Simple Genetic Algorithm Optimization

Particle Swarm Optimization Optimization

Artificial Neural Net Machine Learning

Particle Systems Flame Computer Graphics

Flocking 3D Computer Graphics

Dining Philosophers Operating Systems



7

MAgICS

libraries is required. We also wish to emphasize 
the “glass box” nature of the suite of models: 
besides the visual interfaces (shown in figures 
below), each model comes complete with educa-
tional documentation and full source code that 
students can easily edit and run within the Net-
Logo modeling environment.

This is certainly not intended to be a compre-
hensive list of topics in computer science that could 
benefit from re-examination from an agent-based 
perspective. Instead, we seek to highlight several 
examples where parallel, distributed, stochastic, 
and emergent methods can be fruitfully incor-
porated into early computer science curricula. 
Furthermore, this list contains only fully imple-
mented and documented models that are presently 
ready for educational use. More models could be 
added to this list, highlighting other important 
ideas. Some of these topics (such as searching 
and sorting) are similar to those traditionally cov-
ered in an introductory CS sequence while others 
(such as particle swarm optimization) are more 
typically found in upper-level undergraduate or 
even graduate-level courses. We will discuss only 
the first three example models in detail, and then 
briefly explain the scope and purpose of the six 
remaining models. For all models, the provided 
source code is clear and concise (less than 100 
lines), and the accompanying visualizations serve 
to enhance the accessibility of the content.

searching: Pagerank Model

Traditional computer science curricula invariably 
include discussions of searching, often starting 
with students learning to do a sequential search 
in an array of numbers of strings. Later on, they 
are taught how to perform a binary search of 
sorted data, and to search other data structures 
such as trees or graphs, perhaps using depth-first 
search, breadth-first search (or perhaps Dijkstra’s 
algorithm). While we have no desire to debate the 
merit of these venerable and classic algorithms, 
we note that they are all designed to run deter-

ministically on a single processor accessing an 
unchanging data set.

Another approach to searching is to use a 
decentralized algorithm, which is especially 
useful for searching massive quantities of con-
stantly changing data, i.e. the World Wide Web. 
Furthermore, we suspect students may be more 
motivated to learn about how Google “magically” 
returns relevant search results about their favorite 
curling team, as opposed to discovering how to 
find the position of “milk” in an alphabetized 
grocery list. The PageRank model (Stonedahl & 
Wilensky, 2009; see Figure 1), is based on the 
now famous PageRank algorithm developed by 
the founders of the Google search engine in the 
late 1990s (Brin & Page, 1998). PageRank is not 
technically a search algorithm, but rather a ranking 
algorithm, which provides a basis for ranking the 
information on one page as being more useful/
important/relevant than the information on another 
page. The algorithm assigns a PageRank score to 
each web page, based on its relationship to other 
pages determined by the hyperlink structure of the 
web. Our PageRank model actually demonstrates 
two distinct agent-based methods for calculating 
the PageRank of a directed network (such as the 
web), though the two methods result in the same 
limiting behavior, and ultimately would assign 
the same PageRank scores to each page.

Method 1: Random Web Surfers

In this case, we assume there are “page” agents 
which are connected to each other in a directed 
network of hyperlinks, and there are also “web 
surfer” agents, which operate using these simple 
rules: Web surfer agents start at a random web 
page, and begin wandering the web. To wander, 
they either navigate a link from the current page 
to a new page, or they may jump directly to a 
random page somewhere on the web. If they run 
into a dead end page, they also jump to a random 
page. The probability with which they follow an 
existing link versus jump to a random page is 
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controlled by a parameter called “damping factor” 
(typically set at 85% chance of link-following). 
As these agents, move, the model records the 
number of times a web surfer has visited each 
page. One definition for the PageRank metric is 
given by the probability of a single random web 
surfer being at that page at a given instant. Using 
the random web surfers model, this can be easily 
calculated by dividing the number of visits for 
each page by the total number of visits. In more 
formal mathematical terminology, this can be 
viewed as finding the stationary distribution for a 
certain Markov Chain, where each page is a state, 
and there are transitional probabilities specified 
between each pair of states. However, introduc-
tory CS students do not need to have acquired this 
level of mathematical formalism to appreciate 
the emergent behavior of the agent-based model.

Method 2: Diffusion of 
PageRank Scores

In this case, the primary agents in the model are 
the web pages themselves. Each page starts off 
with an equal amount of PageRank score. At each 
time step, pages divide equally and transfer their 
own PageRank value to each web page that they 
link to. (Pages with no out-bound hyperlinks are 
treated as if they linked to every single other page 
in the web.) Each page then sums the PageRank 
value received from each of the pages that link 
to it. Also, each page receives a certain amount 
of PageRank, just for existing (determined by the 
“damping-factor” parameter). This redistribution 
of PageRank via diffusion is carried out repeatedly, 
and over time the PageRanks converge toward 
the correct PageRank value. Mathematically, 
this method is related to the “power method” for 

Figure 1. A screenshot from the PageRank model: Larger nodes represent higher PageRanks
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finding the dominant eigenvector of a modified 
adjacency matrix for the directed graph formed 
by the hyperlinks.

Beyond the clear benefits of exploring and 
understanding this classic algorithm that is so 
instrumental in making information accessible on 
the web, our PageRank model also provides an 
excellent launching point for students to experi-
ment by creating their own distributed link analysis 
and/or ranking algorithms. For example, students 
could endow the “random surfer” agents with 
more sophisticated behavior (use of the “back” 
button, bookmarks) and see how the rankings 
would be affected. A broader discussion about 
emergent search techniques could also encompass 
ant foraging mechanisms, or the search of fitness 
landscapes performed by genetic algorithms (mak-
ing a connection to the Simple Genetic Algorithm 
model also included in our suite).

sorting: Painted desert 
challenge Model

Sorting algorithms are another staple of early 
computer science education, inevitably including 
at least several of the following collection: bubble 
sort, selection sort, insertion sort, merge sort, quick 
sort, heap sort, bucket sort, shell sort, and radix 
sort. Again, a common theme is the deterministic 
single-threaded and serial aspects of sorting (al-
though many of these algorithms can be at least 
partially parallelized). As a counterpoint, we wish 
to present a messier, distributed, and stochastic 
view of sorting, in the Painted Desert Challenge 
model (Resnick & Wilensky, 1992; Wilensky, 
1997a; see Figure 2). While it may strike some as 
an inefficient approach to sorting, one should note 
that it is intrinsically parallel, reasonably robust, 
and could be applied in situations where the data 
is shifting during the sorting process, as a result 
of noise. However, it is important to keep in mind 
that we are not interested here in arguing for the 
merits of this particular sorting algorithm, but 
instead we are arguing for the merits of the ideas 

that students will be exposed to by exploring this 
model. The Painted Desert Challenge model offers 
insight into emergent systems, and in particular 
ant colony and other problem solving techniques 
inspired by nature.

The inspiration for this model goes back to a 
problem posed both at the Artificial Life III con-
ference and to participants in a study on decentral-
ized thinking (Resnick & Wilensky, 1998), where 
it was prefaced by a short whimsical vignette 
about insects that live in a painted desert and want 
to sort out each of the colors of sand after a wind-
storm mixed all the sand together. In this model, 
each termite follows the same set of very simple 
rules. It wanders in a 2D grid, wherein each grain 
of sand occupies one grid square. If it runs into a 
grain of sand, and it isn’t already holding one, it 
picks it up. It continues to wander. If it runs into 
a grain of sand that is the same color as the one 
it is carrying, it drops its grain in an adjacent 
location. The emergent result of this random 
wandering and picking up and dropping is shown 
in Figure 2. This is, however, just one possible 
set of rules.

We do not expect students to learn computer 
science only by passive observation, any more than 
we expect people to learn to bicycle by watching 
the Tour de France on television. It is imperative 
that they get their hands dirty in the code, take 
the model apart and put it together again. For 
instance, a simple extension would be to have the 
sand shifting while the termites are working, and 
measure the rate of entropy-reduction the termites 
are capable of. A more complicated extension 
would be to give the termites greater vision and 
more intelligence, and test if more complicated 
rules yield more efficient sorting. On the more 
theoretical side, we might ask students to try to 
prove that the algorithm will eventually yield a 
complete separation of each of the different colors. 
It is worth noting that there are other emergent 
sorting algorithms, such as Brueckner’s sorting 
networks (Brueckner, 2000), that could also be 
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discussed in class and/or implemented as student 
projects.

security: virus on a network Model

Discussions about computer networks and security 
are not particularly common in introductory CS 
classes, which often focus more on programming 
and data structures. However, many computer 
science graduates go on to pursue careers in infor-
mation technology where security is of paramount 
concern, which provides motivation for bringing 
this type of material into earlier coursework.

Rather than focusing on lower-level details 
of security, such as open ports or overrun buffer 
exploits, the Virus on a Network model (Stonedahl 
& Wilensky, 2008c) is concerned with security on 
a grander scale. In particular, worms and viruses 
that self-propagate from computer to computer 
through the Internet form a grave risk for today’s 
society due in part to the creation of large “botnets” 
capable of acting in unison to carry out destruc-
tive distributed denial-of-service attacks, or other 
illicit activities. Virus on a Network is an abstract 

model, based on the SIR (Susceptible, Infected, 
Removed) models found in epidemiology (e.g., 
Hethcote, 1989). The setup consists of nodes 
(i.e. computers) on a network, and links between 
them, which could represent a variety of different 
connections depending on the attack vector of the 
virus (e.g., email contacts, shared network drives, 
shared USB keys, external hard drives, or floppy 
disks, etc). Nodes start as susceptible, except for 
some specified number that are infected with the 
virus. With some probability (which is controlled 
by an adjustable model parameter), a node that is 
infected by the virus can spread that virus to each 
of its neighboring nodes. Infected nodes also have 
a chance of recovering (e.g., an antivirus program 
removed the virus but didn’t close up the vulner-
ability), and they have a chance of recovering 
and becoming resistant to future attacks (e.g., an 
antivirus program inoculated the computer against 
this virus). (see Figure 3)

Through exploration of the model, students 
can learn about how parameters such as number 
of nodes or average number of connections affect 
how quickly the virus moves through the network, 

Figure 2. “Before” and “after” from the Painted Desert Challenge model, demonstrating the reduction 
in entropy caused by the agents’ behavior
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as well as the lifetime of the virus, and the extent 
to which vaccination of a few nodes can or cannot 
prevent a widespread epidemic. The Virus on a 
Network model also has potential connections to 
other disciplines (such as medicine, marketing, 
or sociology), and promotes high-level discussions 
about computer security practices, the structure 
of social and computer networks, and the Internet. 
This also leads naturally to student projects and 
extensions of the model. For instance, the default 
network structure found in this model is based on 
spatial proximity of the nodes, with nodes that 
are closer together in the 2D plane having a high 
probability of being linked, whereas there are no 
long-distance links. Students can discuss wheth-
er such a configuration is plausible for virus 
contagion1 and write code to generate other types 
of network. A few other possible extensions in-
clude allowing the virus to mutate and evolve, 
and thus be able to re-infect computers which had 
become immune to a previous version of the virus, 

or to allow for coordinated (botnet) attacks by 
groups of infected nodes, or two have multiple 
different viruses present in the network. There are 
always opportunities for ambitious students to 
take this type of work further, and spin it off into 
summer research projects.

 remaining Model suite overview

 The remaining six models in our model suite (see 
Figure 4) cover topics from an additional four 
areas of  computer science. The Simple Genetic 
Algorithm and Particle Swarm Optimization mod-
els (Stonedahl & Wilensky, 2008a, 2008b) both 
offer an introduction to stochastic optimization 
algorithms by illustrating how  agents, acting with 
limited intelligence and information, can move 
toward a goal. In the Simple Genetic Algorithm 
model illustrates an evolutionary search process 
in which fitness and diversity levels of a popu-
lation change over time. In the Particle Swarm 

 Figure 3. A screenshot from the virus on a network model
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Optimization, the progress towards a goal can be 
viewed as agents traverse a 2D fitness landscape, 
searching for a global optimum. While these top-
ics are not usually covered until much later in a 
traditional computer science curriculum (probably 
an upper-level elective course), we believe they 
are thoroughly accessible to introductory-level 
students from an ABM/MAS perspective. Addi-
tionally, they allow interdisciplinary connections 
to evolutionary biology and particle physics.

Artificial neural networks can also be produc-
tively understood from an agent-based perspective, 
as we hope to demonstrate to students through 
exploration of the Artificial Neural Net model 
(Rand & Wilensky, 2006). Each perceptron (sim-
plified virtual neuron) can be conceived as an 
agent, which follows certain rules during the 
training phase, and then another set of rules when 
it is being tested. This is another fairly advanced 
topic, which admittedly may take some effort for 
students to understand and appreciate. However, 

it is not necessary for students to understand 
every detail of the back-propagation training al-
gorithm or what the nice mathematical properties 
of a sigmoid function are — this can wait. The 
important thing is for students to gain an intuitive 
understanding of how the agents are activating 
each other, and that by automatically modifying 
the weights of connections between agents, it is 
possible for the system as a whole to “learn” pat-
tern recognition skills. A classroom discussion 
comparing and contrasting this agent-based 
model with biological neural networks should 
also prove provocative and educational.

Agent-based modeling is useful in computer 
graphics as well, and is being increasingly explored 
as a means of automatically creating realistic 
procedural animations of systems with many in-
teracting creatures or objects. Through the Particle 
System models2 (Kornhauser & Wilensky, 2007) 
students can get a taste of the classic “particle 
systems” approach sometimes used in cinematic 

Figure 4. Model screenshots. Top row: Simple genetic algorithm, particle swarm optimization, artificial 
neural betwork; Bottom row: Particle system flame, flocking 3D, dining philosophers
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animation to create the illusion of water, fire, or 
smoke. While each particle is fairly passive, being 
pushed or pulled by an externally imposed force 
field, it is still useful to think of each particle as 
one agent of a distributed multi-agent system, and 
it is not difficult to modify the code to make the 
agents take a more active and/or intelligent role 
in their movement patterns. For instance, more 
sophisticated agent behavior is exhibited in the 
“Boids” algorithm (Reynolds, 1987) for creating 
realistic-looking flocks of animated creatures, 
which is the inspiration for our Flocking model 
(Wilensky, 1998). As the Flocking screenshot in 
Figure 4 shows, the NetLogo modeling environ-
ment also provides facilities for the development 
and visualization of three-dimensional models, 
which opens more possibilities for students to 
extend, modify, or create their own multi-agent 
computer animations.

The Dining Philosophers model (Wilensky, 
2003) introduces a classic case study in the 
synchronization of concurrent processes, posed 
as a puzzle about philosophers sitting around 
a table eating spaghetti that requires two forks 
to eat with, but having to share forks between 
them. Through this metaphor, concepts such as 
deadlock and resource starvation are explained. 
We mentioned above that part of the motivation 
for the MAgICS framework was the increasingly 
parallel nature of computing, such as the shift to 
multi-core and multi-processor machines. In reac-
tion, multi-threaded and multi-process program-
ming will become more pervasive, and it seems 
quite appropriate to include in the curriculum 
an agent-based model that addresses issues of 
resource sharing.

IMPleMentIng MagIcs: 
a PIlot study

Our hypothesis is that using an ABM/MAS 
perspective in introductory-level computer sci-
ence courses, as the MAgICS framework does, 

offers some potential advantages over traditional 
computer science curricula: specifically, that it 
provides students with an early, but applicable 
background in concepts such as distributed com-
puting and multi agent systems, and that the 
subject matter is more engaging than that found 
in many typical introductory computer science. In 
preparation for a complete implementation of the 
MAgICS framework in the future, we conducted a 
preliminary pilot study, which we describe below. 
It is important to note that while student modifi-
cation and creation of agent-based models is an 
important component of the MAgICS framework, 
it was not a component of the pilot implementa-
tion. As such, this study addresses broad-scale 
questions regarding the feasibility of integrating 
ABM/MAS into classrooms sessions, students’ 
enjoyment and the perceived relevance of the ap-
proach, and students’ very general take-up and use 
of distributed and decentralized techniques when 
thinking about problems. Our primary intentions 
are to provide support for the ongoing development 
of the MAgICS framework, additional pedagogical 
support, and curricular materials (assignments, 
lecture notes, etc.).

study design

The pilot study was a 50-minute classroom-based 
implementation of several elements of the MAg-
ICS framework, roughly two-thirds of the way 
through an introductory level computer science 
course at a private research university in the United 
States. The course is the first in the standard se-
quence for CS majors at this university, and draws 
students from both the school of engineering and 
the college of arts and sciences. The students were 
informed several days in advance that their usual 
professor would be out of town, and that a guest 
lecturer would be teaching the class instead. The 
total enrollment for the class was 39 students; 25 
students attended class that day and all of those 
took part in the study. The class was learning 
(primarily functional) computer programming 
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using a variant of the Scheme language. Although 
the course does incorporate several contemporary 
pedagogical elements, such as the use of images 
and animation, in addition to standard numeric 
and string manipulation routines, it does not have 
any focus on distributed or decentralized topics 
or approaches.

The format of the study consisted of four parts: 
a pre-quiz (7-8 minutes), a period of lecture (35 
minutes), a post-quiz (7-8 minutes), and a follow-
up survey soliciting student feedback. The lecture 
component consisted of the following sequence: 
(1) a few introductory remarks contrasting central-
ized and decentralized approaches to designing 
computational systems, and recent technological 
shift toward more distributed/parallel systems 
in the real-world; (2) a demonstration of how 
multiple agents could be programmed to move 
simultaneously, using the NetLogo language; (3) a 
discussion/demo of the Painted Desert Challenge 
model discussed above (preceded by a simpler 
“Termites” model, which only involves one color); 
(4) a discussion/demo of the PageRank model, 
and Google’s PageRank™ algorithm to rank the 
relevancy of web search results. In a semester-
length implementation of the MAgICS curricula, 
the topics discussed in this compact lecture would 
be spread across at least three sessions, which 
would allow for more elaboration, class discus-
sion, extension and production of models, and 
in-depth treatment. However, for this pilot study, 
we chose to give students a broader taste of the 
MAgICS curriculum by exposing them to at least 
two distinct multi-agent systems topics.

research Questions, 
data and results

We are not arguing that the brief quiz responses 
obtained during a single class session exploring 
components of MAgICS are enough to illuminate 
whether or how students learned specific concepts 
or approaches in distributed computing. Instead, 
we view this study as a preliminary look into 

the feasibility and potential for an ABM/MAS 
perspective to present decentralized thinking as 
a relevant approach for addressing problems in 
computing. In this sense, our research questions 
related to this pilot implementation are:

• R1: Prior to the class session, did students 
have exposure to topics in parallel com-
puting, such as distributed/decentralized 
design and multi-agent systems? Did they 
consider issues of distribution and decen-
tralization when solving computational 
problems?

• R2: Can a brief presentation of topics from 
a multi-agent perspective using agent-
based models influence how students think 
about, and design solutions for, computa-
tional problems?

• R3: Do students find the MAgICS ap-
proach relevant and engaging?

Pre/Post Quizzes

Before and after the class session, quizzes were 
distributed to students. Both groups were given 
the same first question on the pre-quiz and the 
post-quiz, but two versions of question 2 were 
included from the pre- to post quiz: so that roughly 
half of the students answered question 2A on the 
pre-quiz and 2B on the post-quiz, and the other 
half question 2B, then 2A. By having students 
answer a different question on the pre-quiz than 
the post-quiz, we hoped to give them a new context 
to apply the ideas explored in class, By making 
sure we had some pre- and post- responses for 
both questions via different groups, we hoped 
to disentangle whether differences in students 
responses were a result of the question itself (2A 
versus 2B), or the class session. Three students 
who attended the class did not complete both the 
pre-quiz and post-quiz, and were thus omitted 
from our analysis, leaving a sample size of 22 
students that answered all 4 questions (2 before 
the lecture and 2 after).
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Due to the time constraints of the implemen-
tation and quizzes, our analysis focuses on very 
coarse-level outcomes: namely, the presence of 
decentralized thinking and knowledge of the Pag-
eRank algorithm in question 1, and presence or 
absence of design elements that reflect different 
dimensions of decentralized computing in question 
2 (we focus on the specific coding schematics in 
each respective section). Because students were 
not provided much time to complete the quizzes, 
and quiz performance is not considered for stu-
dents’ grades, it is likely that student responses 
were shorter and less complete than they might 
have otherwise been. This suggests that our results 
are, if anything, an underestimate of their adop-
tion of decentralized design strategies after being 
presented with MAgICS activities.

Each question, our motivation for including it, 
and the coding schemes used to determine results 
are described in detail below. For our analysis, 
question responses were first anonymized and 
organized such that their status as pre- or post-quiz 
responses was not apparent to coders. The authors 
then coded these responses, and a subportion 
(~32%, split evenly among each question) were 
also coded by an independent interrater with ex-
pertise in agent-based modeling and multi agent 
systems. Interrater agreement on question 1 was 
100%, and on question 2 was 97%.

Question 1

Pre Question: If you perform a Google™ search 
for the word “turtle”, there are over 5 million 
results. Describe how the Google search engine 
might choose to order the search results for you 
to view, so that the most useful/relevant web pages 
appear at the top.

Post Question: Briefly describe how Google’s 
PageRank™ algorithm assigns scores to rank 
sites according to their general importance in 
the world wide web.

Students’ brief responses were coded for refer-
ences to distributed/decentralized approaches 
to web page searching, across the following 
categories. At times, “partial credit” was given to 
responses, these are identified separately as the 
grey components of the histogram bars:

• Decentralized. Do student answers in-
clude discussion of any decentralized/
multi-agent factors? Specifically, did they 
mention ranking a web page by using fea-
tures of the web page that are not contained 
within the page itself, but result from the 
interaction with other web pages or human 
agents.

• Links. Do the students mention using in-
bound links (that point to the page being 
ranked) as a factor (partial credit), and do 
they also take into consideration the impor-
tance of the page from which the inbound 
links originate (full credit)?

• Surfing Algorithm. Do students mention 
the use of automated surfer bots (partial 
credit), and general algorithms by which 
those bots can be used to calculate the 
PageRank scores (full credit)?

• Diffusion Algorithm. Do students men-
tion the use of diffusion or value sharing 
(partial credit) that is repeated until an 
equilibrium is reached (full credit) to cal-
culate the PageRank scores?

• Either Algorithm. This category is de-
rived from the codes for the Surfing and 
Diffusion Algorithms, and features the 
number of students that mentioned either 
search algorithm (if they mentioned both, 
the highest level of credit is included).

As shown in Figure 5, more student responses 
fell into each of the coding categories across 
the board after the PageRank demonstration in 
class. These results are not particularly surpris-
ing, since one would hope that students should 
have a better understanding of the topic after 
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it has been discussed in the lecture. However, 
the data do offer support for several arguments. 
First, when confronted with a problem that is 
situated in a distributed context (such as the 
world wide web), even without prior exposure/
discussion about multi-agent systems, students 
often consider distributed ideas or approaches 
(this is in contrast with the results for question 
2B, discussed below). Second, given only a very 
brief lecture (10-15 minutes) on this topic, many 
students were able to understand the basic ideas of 
PageRank (91% explicitly mentioned some form 
of hyperlink analysis), and a substantial fraction 
(32%) were able to give a reasonably complete 
(“full”) description of at least one of the two al-
gorithmic processes by which PageRank can be 
calculated. These preliminary results suggest that 
the subject matter is within reach of students, and 
offer support for the feasibility of our approach for 
teaching “upper-level” topics from a multi-agent 
systems perspective.

In our pilot implementation, the final lecture 
segment (discussing the PageRank algorithm) 
ended up being somewhat rushed, especially with 
regard to the rules of the two featured algorithms 
(“Random Surfer” and “Diffusion”) for comput-
ing PageRank. Given ample class time to discuss, 

explain, and elaborate on the PageRank model, 
we would expect to see considerably greater 
improvement in the algorithmic understanding 
categories.

Question 2

2A. Planting: (Adapted from Kolikant 2001) Sup-
pose you are hired by Automagical Landscaping 
to design a robotic system for the very specific 
task of planting 1000 trees in an open field as 
efficiently as possible. (The planting sites will 
be designated by visual markers that are easy 
for robots to detect.) Planting one tree consists 
of three sub-tasks: digging a hole, dropping a 
seed in the hole, and filling in a hole. In order to 
keep costs down, robot physical capabilities and 
“intelligence” should be kept as simple as pos-
sible. Describe your approach.

2B. Sorting: (Adapted from Wilensky, 1997a) 
Suppose you are hired by the GWYPF (Get-What-
You-Pay-For) Agricultural Cooperative to design 
a robotic system for sorting grain based on its 
quality. Some grain is harvested too early, too 
late, or didn’t get as many nutrients as other grain, 
and GWYPF wants to differentiate between grain 

Figure 5. Student pre- and post-quiz results for question 1, separated by coding category



17

MAgICS

that’s grade A, grade C, grade M, or grade Z! Your 
laboratory has already developed a hyperspectral 
imaging sensor that can measure the quality of 
a single kernel from close-range. However, now 
you are faced with a vast warehouse, with kernels 
of corn spread thinly (and randomly) across the 
floor. Your robotic system should (roughly) sort 
the grain from worst to best from East to West. 
Describe a possible design for this system.

For question 2, responses were coded for the 
presence or absence of evidence of decentral-
ized/distributed approaches along a number of 
dimensions. If the proposed solution involved any 
of the following elements, we coded that dimen-
sion as “D”: in some cases, specific variants of 
these elements were identified separately as gray 
components of the histogram bars.

• Multi-Agent: Does the designed system 
involve multiple agents? (D signifies yes, 
while Df signifies only insofar as agents 
exist for different functions – for example, 
in the case of the gardening problem, a sin-
gle “digger”, “planter”, and “burier”.)

• Division of Labor: Does the designed sys-
tem exhibit a division of labor whereby 
different types of agents perform specific 
tasks?

• Concurrency: Can the designed system be 
executed concurrently such that the same or 
different tasks can be executed at the same 
time? (Ds signifies that only the same task 
can be executed concurrently: for instance, 
if multiple robots can dig simultaneously, 
but planting cannot also occur at the same 
time; Dd signifies that only different tasks 
can be executed at the same time; Db sig-
nifies that both the same or different tasks 
can occur at the same time.)

• Randomness: Does the designed system 
involve elements of randomness in its 
behavior?

• Locality: Does the designed system in-
volved updating and acting upon local 
information, rather than a prespecified 
knowledge of the entire system state?

Additionally, since the “sorting” question (2B) 
shares a lot of surface resemblance to the Termites/
Painted Desert model that was presented in class, 
many students suggested a solution that involved 
that very same algorithm, without considering 
the additional constraints imposed by the quiz 
problem (namely the need to sort grain East to 
West by quality). We identify these solutions in 
our plotted results by grey bars, and solutions that 
explicitly adapted the Termites example to address 
the East/West constraint, or introduced a different 
solution that could be coded for the presence of 
those components, by the black components of 
the bars. The results all coding categories for each 
of the questions are shown in Figure 6.

We would first like to make a point about the 
effect of task selection on the differences in results 
between 2A and 2B. It is clear (and expected) that 
question type and reasonableness play an impor-
tant role in students’ application of decentralized 
approaches. Along these lines, it is not clear that 
specializing function in the case of sorting grain 
(question 2B), or randomizing the motion of robots 
rather than having them engage in more directed 
search and detection methods for finding markers 
in a garden (question 2A), are reasonably adding 
efficiency or other benefits a student’s designed 
system. This is reflected in student responses: 
they did not apply every decentralized technique 
they were presented during the lecture “across 
the board”, but rather suggested techniques that 
were appropriate to the problem statement. Fur-
thermore, while it is established that students 
often adopt a deterministic/centralized mindset 
even toward phenomena that may not be well 
understood using this mindset and that such ways 
of thinking are difficult to change, we saw that 
(a) some students did use such reasoning even 
before the class period for the gardening tasks, 



18

MAgICS

and (b) introducing agent-based models as com-
putational problem solving techniques did appear 
to prompt these students to consider decentralized 
solutions. In other words, task selection might be 
one way to provide students with a “primer” to 
distributed thinking.

 Our two main arguments given this very cur-
sory data is that students did apply techniques 
that are characteristic of decentralized solutions 
to problems more often after the class session 
than they did before, and that in least in the case 
of question 2A, they sometimes did even before 
an explicit introduction to those techniques. We 
consider these findings to be quite promising, with 

regard to whether students possess an intuitive 
ability to think about issues of distribution as well 
whether students can learn the general concepts 
of distributed/decentralized computing at an 
early stage in their   computer science education. 
It appears that students are considering issues of 
 parallelism, and these considerations are brought 
to the forefront for consideration in issues of de-
sign by even a brief introduction to  multi-agent 
systems in applied contexts. Although this study 
cannot speak to students’ ability to productively 
integrate these concepts into instantiated designs, 
it certainly supports our claim that  agent-based 
modeling and issues of distributed and decentral-

 Figure 6. Student pre- and post-quiz results for questions 2A and 2B, presented separately by coding 
category
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ized thinking are not only motivating and relevant, 
but accessible for students at an introductory level 
in a way that addresses problems of algorithm 
design and problem solving.

student survey

The student survey consisted of eight questions, 
with responses based on a 1-5 Likert scale, with 
1 representing the most negative response and 5 
representing the most positive, plus one open-
response question which requested “any other 
comments about the lecture, topics discussed, or 
materials used?” Seventeen students responded 
to this voluntary anonymous survey, and the re-
sults are tabulated in Table 2. The eight category 
names correspond to the actual survey questions 
as follows.

• Familiarity. Prior to this guest lecture, 
how familiar were you with distributed and 
multi-agent systems?

• Learning. How much do you feel you 
learned from this class?

• Quiz. How appropriate were the quiz 
questions for the topics presented and your 
level of knowledge?

• Applicability. How applicable do you 
think the discussed topics are to real prob-
lems in engineering and computing?

• Interest. How interesting and engaging 
was the class session?

• Termites. How much did you enjoy the 
“multi agent sorting with termites” topic?

• PageRank. How much did you enjoy the 
“Google PageRank” topic?

• Future Interest. How interested would 
you be in learning more about multi-agent 
systems?

All the results should be interpreted with the 
standard limitations that apply to any self-reported 
survey data. That said, they mostly served to sup-
port/confirm our prior intuitions and hypotheses. 

However, several points are worth highlighting. 
First, on average students reported only a small 
amount of prior familiarity with distributed and 
multi-agent systems; more than half of the students 
reported a score of 2 or lower. Second, the results 
are generally quite positive, with over half of 
the class reporting either 4 or 5 (positive or very 
positive) for every question relating to how much 
they learned from the class, enjoyed particular 
subject matter, viewed the material as appropri-
ate or applicable, etc. Third, more than half of 
the students responded that the topics discussed 
in class were “very applicable” (5) to real-world 
problems in engineering and computing. While 
it is the authors’ view that the world is becoming 
increasingly distributed, and that decentralized 
thinking and the design of multi-agent systems are 
becoming a key skill for the next-generation of 
computational problem solvers, it was not evident 
to us (before administering the survey) whether or 
not students would share this view. When judging 
student motivation and engagement, it is difficult 
to disentangle characteristics of the curriculum/
subject matter from style in which it is taught; a 
good lecturer can make even the driest material 
engaging. Accordingly, we must limit our findings 
to conclude only that the study provides evidence 
that the topics/ideas can be presented in a manner 
that students consider enjoyable and relevant.

Table 2. Anonymous online student feedback 
survey results 

Mean Median

1 Familiarity 2.1 2

Learning 3.8 4

Quiz 3.7 4

2 Applicability 4.4 5

3 Interest 4.2 4

Termites 4.4 4

PageRank 4.1 4

Future Interest 4.3 4
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Seven students responded to the free-form 
question soliciting any additional comments: 
several students commented on the quality of the 
lecture, or that the topics discussed were “very 
interesting”. For instance, one student wrote “This 
lecture was interesting and although not exactly 
relevant to the course, I think I learned a lot that 
I can apply to my life. Well done!”, and another 
wrote “It was a very educational and interesting 
experience. Being a sort of beginning program-
mer I didn’t understand a lot of what was going 
on, but I had a great appreciation for the pro-
gram and interaction and everything. Very very 
interesting stuff. Thank you for the experience!” 
These comments bring up a number of important 
points, both about the strengths and limitations 
of this pilot excursion toward implementing the 
MAgICS framework. The first response didn’t 
judge the topic was “relevant to the course”, and 
the second expressed difficulty understanding 
the computer programming aspects. These both 
speak to the fact that within the time constraints 
of a single class period, we were unable to delve 
deeply into learning the programming language, 
or have students write their own code to achieve 
a deeper understanding of programming multi-
agent systems, instead of merely observing 
them and learning about the rules/algorithms in 
English language. We believe that this is an im-
portant component that needs to receive further 
consideration when implementing the MAgICS 
framework. In any case, these responses do show 
a clear indication of interest and enthusiasm for 
these topics and/or an appreciation for applying 
the ideas learned during this brief class period to 
real life issues.

limitations

We would like to stress that this pilot implementa-
tion of the MAgICS framework was not intended 
as a rigorous test of its efficacy – indeed, many 
aspects and activities that we would consider 
essential components of the framework, such as 

students designing and constructing agent-based 
models, were absent from our pilot. Instead, we 
view the pilot as providing support for the feasibil-
ity of introducing these topics at an introductory 
level in the context of introductory computer 
science, as well as for our claims regarding the 
motivational potential relevance to real world 
topics. In other words, we believe this supports 
our claims that MAgICS to be a successful com-
ponent of introductory computer science because 
it provides evidence that students’ strategies, 
motivations, and ways of thinking are consistent 
with and responsive to the MAgICS approach.

On the other hand, this study does not illumi-
nate very much about how or how much students 
learn. The short student quiz responses did not 
provide nearly enough information to draw any 
conclusions along these lines; a more intensive 
study would be required. Furthermore, the fact 
that attendance of the class session and completion 
of the online student survey were optional may 
have led to a sampling bias favoring individuals 
who were more academically motivated than the 
average student, which could have impacted our 
study results.

dIscussIon and Future 
research dIrectIons

Our intention in this work is to offer a window 
into an alternative introductory computer science 
curriculum. In practice, we would not expect this 
approach to be used to the complete exclusion 
of other curricula or approaches. We emphasize 
that in many cases it would be most beneficial to 
compare and contrast centralized and decentral-
ized approaches to the same topic. Furthermore, 
the introductory course should still have a strong 
emphasis on learning to write computer programs. 
However, starting with existing programs (in this 
case, agent-based models) provides an opportunity 
for students to explore, modify, and learn to read 
the language while they are learning to write it.
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The MAgICS framework permits the integra-
tion of a number of other techniques shown to be 
beneficial for computer science education. There is 
no reason, for example, that the pair programming 
approach (Carver, et al., 2007) or the integration 
of robotics (Blank, 2006) cannot be implemented 
successfully within the context of MAgICS. 
Indeed, the NetLogo programming environment 
includes interfaces to various physical devices 
and a variety of “bifocal modeling” (Blikstein & 
Wilensky, 2007) activities, which allow users in 
a variety of contexts to compare computational 
agent-based models with real-world data col-
lected using robotic sensors and actuators. Also, 
the VBot materials (Berland & Wilensky, 2005), 
designed primarily for middle school students, 
engage users in programming independent robot 
agents, which can then interact with one another 
in a shared context (such as a robot soccer arena). 
Some inclusion of physical robotics would be very 
natural addition to an introductory course themed 
around ABM/MAS.

Our present work on the MAgICS framework 
serves as a starting place for future investigations 
about reinventing introductory computer science 
education with a focus on multi-agent systems. We 
plan to engage in more substantial research that 
includes more aspects of the MAgICS framework, 
such as having students design and program their 
own agent-based models tasks and performing 
more in-depth analyses (through interviews and 
detailed analyses of student work) of understand-
ing of both the specific computer science topics 
explored, as well as overarching themes such as 
emergence, distributed/decentralized approaches 
to design and problem solving, etc. Such studies 
will help us to determine which topics and student 
activities are most appropriate for an introduc-
tory curriculum, and will contribute toward our 
continued refinement and development of the 
framework.

conclusIon

Through the MAgICS framework we are offering 
a first attempt at producing a coherent introductory 
CS curriculum centered on a series of agent-based 
models spanning a variety of computer science 
topics. We believe that this framework addresses 
recent calls by computer science educators to 
introduce widely applicable, engaging curricula 
early in the computer science sequence with a 
focus on the notion of “computational thinking”, 
rather than specific algorithms and techniques. 
There unquestionably remains considerable 
room for improvement in this framework, and we 
hope that this work leads to expanded conversa-
tion and academic discourse about the fusion of 
multi-agent systems approaches with computer 
science education.
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endnotes

1  Generally speaking, it is not. Real-world 
networks usually display a power-law degree 

distribution and “small-world” structure 
which includes the presence of long-distance 
links. However, we consciously chose this 
spatially-restricted network structure to 
support clear visualization of the contagion 
process.

2  The Particle Systems model is technically 
divided into four distinct NetLogo model 
files — Basic, Flame, Fountain, and Wa-
terfall — but they are all grouped together 
because they express the same fundamental 
idea.


